
SANDIA REPORT
SAND2011-6301
Unlimited Release
Printed Sept 2011

Develop feedback system for intelligent
dynamic resource allocation to improve
application performance

Jim Brandt, Ann Gentile, David Thompson, Tom Tucker

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

2

SAND2011-6301
Unlimited Release
Printed Sept 2011

Develop feedback system for intelligent dynamic
resource allocation to improve application

performance

Jim Brandt, Ann Gentile, David Thompson
Sandia National Laboratories

M.S. 9159, P.O. Box 969
Livermore, CA 94551, U.S.A.

brandt@sandia.gov, gentile@sandia.gov, dcthomp@sandia.gov
Tom Tucker

Open Grid Computing, Inc.
4030 West Braker Lane STE130

Austin, Texas 78759
tom@opengridcomputing.com

Abstract

This report provides documentation for the completion of the Sandia Level II milestone ”De-
velop feedback system for intelligent dynamic resource allocation to improve application per-
formance”. This milestone demonstrates the use of a scalable data collection analysis and
feedback system that enables insight into how an application is utilizing the hardware re-
sources of a high performance computing (HPC) platform in a lightweight fashion. Further
we demonstrate utilizing the same mechanisms used for transporting data for remote analysis
and visualization to provide low latency run-time feedback to applications. The ultimate goal
of this body of work is performance optimization in the face of the ever increasing size and
complexity of HPC systems.

3

4

Acknowledgment

The authors would like to thank:

• John Zepper (SNL), John Noe (SNL), and Jeff Ogden (SNL), Sue Kelly (SNL), and Robert
(Bob) Ballance (SNL) for providing root access, time, and support on SNL’s Cielo Del Sur
(key in enabling us to develop on a platform at our target scale) and on Muzia, both Cray
XE6 systems

• Jim Lujan (LANL), Cory Lueninghoener (LANL), Kathleen (Kaki) Kelley (LANL), Cindy
Martin (LANL), and Quellyn Snead (LANL) who were all instrumental in our Cielo deploy-
ment beginning with small scale testing on their development platforms and culminating in
several dedicated application times at our target scale

• Jerry Friesen (SNL), and Adam Supinger (SNL) for providing root access to and allowing
us to install hardware and software on SNL’s Whitney TLCC cluster for data collection and
analysis

• Tuesday Armijo (SNL) for working with SNL’s cyber security personnel to accelerate our
software approval for deployment in Whitney’s security environment

• Karen Devine (SNL)[Zoltan]; Pat Notz (SNL), Greg Wagner (SNL), Stefan Domino (SNL),
Alex Brown (SNL), and Robert Baca (SNL) [SIERRA/Aria and SIERRA/Fuego]; Elijah
Newren (SNL) and Mike Kurtzer (SNL) [SIERRA platforms]; Jonathan Hu [SIERRA-Trilinos
integration]; Nicholas Gentile (LLNL) [MCB]; and Mahesh Rajan (SNL) [cth] for their sup-
port and insight into the applications used in the preparation and execution of this milestone

• Joel Stevenson (SNL) for his help and support for running applications on Cielo and Muzia

• Larry Kaplan (Cray) and Jason Schildt (Cray) for providing needed XE6 platform specific
information

Finally we would like to thank Sudip Dosanjh (SNL) and Ron Brightwell (SNL) for their funding
support on the projects that jointly enabled this milestone.

5

6

Contents
1 Executive Summary . 9

1.1 Description . 9
1.2 Motivation . 9

2 Motivation . 11
3 Architecture . 12

3.1 Design . 12
3.1.1 Design Criteria . 13

3.2 Implementation . 13
3.2.1 Cielo Del Sur . 14
3.2.2 Cielo . 14
3.2.3 Node-local Data Collection . 15
3.2.4 Off-node Transport . 16
3.2.5 Remote Storage . 18
3.2.6 Analysis and Visualization . 19
3.2.7 Node-Local Feedback to Application . 26

4 Criteria-Related Results . 30
4.1 ASC Relevant Platform . 30
4.2 Data Acquisition . 30
4.3 Data Analysis and Visualization . 34
4.4 Affect Run-time Work to Resource Mapping . 39

4.4.1 SIERRA/Fuego . 40
4.4.2 SIERRA/Aria . 42

5 Conclusion . 45
References . 46
Appendix: Signoff Memo . 47

7

8

1 Executive Summary

This report provides documentation for the completion of the Sandia Level II milestone ”Develop
feedback system for intelligent dynamic resource allocation to improve application performance”

1.1 Description

Demonstrate the ability to affect application performance on a Cielo-like architecture or similar-
scale platform through appropriate resource allocation (both static and dynamic) based on historic,
run-time, or user furnished process resource requirements in conjunction with current platform
resource usage and availability. Historic and run-time application resource requirement character-
istics as well as platform resource utilization will be derived using a scalable information gathering
and run-time analysis system. Numeric hardware related metrics and information acquired from
the platform scheduler/resource manager will be used.

Expected deliverable: Demonstration of high-fidelity monitoring with distributed data collection,
run-time analysis, response trigger generation, and response at large scale (> 10,000 computa-
tional units).

1.2 Motivation

Due to the size and complexity of modern supercomputers it is difficult for application writers and
users as well as platform system administrators to gain insight into how the resources of individual
platform components (socket, core, memory, network, etc.) are being utilized by application and
system processes. As part of Sandia’s resilience effort, which seeks to gain low-level understand-
ing of resource characteristics for prompt failure diagnosis and prediction, we have developed
lightweight and scalable data collection, analysis, and visualization tools. As part of a research
project at Sandia aimed at improving application resource utilization through system feedback to
applications, we have also been working on using resource utilization information to help guide
intelligent applications in their selection of resource to load binding decisions. This milestone
combines tools from both areas of research and development to enable both large-scale resource
utilization information collection for post run analysis and run-time use of this information for
guiding load balancing operations.

Based on the text and intent of the milestone we define the following to be the minimum success
criteria for this milestone:

1. The platform from which resource information will be acquired and on which applications
will be run will be an ASC relevant architecture.

2. Acquisition and storage of > 20 metrics per processing element over > 10K processing
elements at a collection frequency of 6 per minute.

9

3. Analysis of information pertaining to resource utilization for a particular application run or
set of runs spanning 10K processing elements.

(a) Post-run analysis on aggregate archived information

(b) Run-time analysis and visualization on streaming data

4. Use of a subset of metric values being collected to affect run-time work to resource mapping
in an application run and/or ensemble of application runs.

(a) Affect of feedback on application performance will be evidenced through a change in
load to resource mapping, application run-time or both as compared with the applica-
tion running concurrent with data acquisition but with no feedback.

(b) At least one application run will span > 10K processing elements.

10

2 Motivation

Performance of an application on a particular platform depends not only on the speed and capabil-
ities of the hardware and system software but also on how the application utilizes those resources.
Though it is the job of the operating system scheduler to place processes efficiently, it only has
insight into what is going on local to a node. Thus the burden of efficiently allocating work across
all of the nodes associated with a particular application falls to the application software and user.
Further, for performance reasons, the typical practice is to bind processes to a particular core within
a node leaving balance within a node to the application/user. Thus tuning an application for per-
formance requires some level of insight into how it will utilize the underlying compute resources
both at the system level (e.g. nodes in network topology, storage) and at the node level (e.g. cpu,
memory, cache, shared communication bus, network subsystem). Due to the size and complexity
of modern supercomputers it is difficult to gain insight into how these resources are being utilized
by the application processes. Profiling tools such as OProfile [12], Tuning and Analysis Utilities
(TAU) [11] and CrayPat [1], to name a few, allow a user to profile their applications but can in-
cur significant overhead which can impact the behavioral profile of the application. Also many of
these tools require building instrumented code or relinking against other libraries. With complex
codes the tools for automatically instrumenting an application may fail leaving the user to instru-
ment by hand. As part of Sandia’s resilience effort, which seeks to gain low-level understanding of
resource behavioral characteristics for the purpose of failure modeling, we have been developing
lightweight and scalable data collection, analysis, and visualization tools targeted at automated de-
cision making based on relevant component level (node, core, network, etc.) information. As part
of a research project at Sandia we have also been targeting use of resource utilization information
to help guide intelligent applications in their selection of resource to load binding decisions.

The applicability of and need for this direction of development is called out in an NNSA Work-
shop on Exascale Computing Technologies tools working group white paper [14] This document
expresses the need for ”scalable collection and analysis of performance data”, the ”ability to feed
analysis results back to the application and/or system software”, and for ”analysis results to be
used by applications for run-time optimization”.

This milestone combines tools from both areas of research and development to enable both large-
scale resource utilization information collection for post run analysis and run-time use of this in-
formation for guiding load balancing operations. The main goal of this milestone is to demonstrate
the viability of large scale collection and use of this type of information to inform application load
balancing decisions through both post-run analysis and run-time node/process local analysis.

11

3 Architecture

This section describes the architecture of our system for collection of information on the compute
nodes of a HPC platform, transport of that information to remote hosts for analysis as well as
acquisition of the information by applications for use in load balancing decisions.

3.1 Design

Figure 1. Main functional components of system

The five main functional components in our design are illustrated in Figure 1.

Node local data collection mechanisms acquire data from a node and store it in local user space
memory. Off-node transport of data to remote hosts is accomplished via a flexible socket or RDMA
based mechanism. Remote storage to either database or flat file is supported. Analysis* and
visualization are supported in both streaming and post processing mode Node-local feedback to
application is accomplished via the same interface as used for off-node transport

Each of these components is described in more detail Section 3.2

*Outlier detection

12

3.1.1 Design Criteria

The following guidelines and criteria were used in the execution of this milestone and related work:

• Provide an architecture to gain insight into resource utilization that is separate from the
application but can be utilized by the application without significant application change

• No change required in the application (e.g. re-link to additional libraries) in order for the
user to get utilization information

• The data collection and transport must not significantly impact the performance of the appli-
cation

• Lower bound of 1 sec data collection intervals on compute nodes to match the minimum the
time stamp resolution of MySQL.

• Upper bound of 10 sec data collection intervals in order to enable post processing analysis
of some level of dynamic use of resource in applications with run-times in minutes (6 data
points per variable per minute).

• Minimal state retention on the node limited to the current set of data and meta-data

• Transport must support multiple host hops to enable use of collection to remote hosts given
architectural and security constraints of our target platform, Cielo

• Support long term retention of data for long term analysis and multi-run comparison, and the
ability to provide data sets to application users

• Streaming visualization on a single data variable at the storage data rate required for:

– Interactive user feedback to application

– Provide a qualitative understanding at live rates to guide more detailed post-run analysis

• Node-local feedback only due to security constraints

3.2 Implementation

In this work we deployed our monitoring, analysis, and feedback system on two Cray XE6 plat-
forms: Cielo at LANL, and Cielo Del Sur at SNL. These compute platforms were the targets for
gathering resource utilization data while running applications and using that information to give
feedback to these applications via initial scheduling decisions, static weighting of resource capa-
bility, or run-time feedback. Additionally we required infrastructure for transporting information
off platform, storing it for post-run analysis, and performing post-run analysis. Diagrams of each
whole system deployment are shown for Cielo in Figure 12 and for Cielo Del Sur in Figure 13. In
this section we discuss the characteristics, challenges, and solutions for each of these deployments.

13

3.2.1 Cielo Del Sur

Cielo Del Sur is a six cabinet Cray XE6 with 21 service nodes and 556 compute nodes (8880 pro-
cessors). Given our goal of demonstration at greater than 10K cores this is a reasonably compatible
system. Since there is no connection from either the compute nodes or boot node, which has direct
connection to the compute nodes, to the external network we had to take multiple hops as shown in
Figure 13. Further, since we could not initiate a socket connection from an external host to cdssmw
we had to run ldmsd 3.2.4 in bridge mode on this host and passive on each of the storage and anal-
ysis hosts. For our storage and analysis hosts we used four desktop Shuttle XPC PCs each with a
single Intel Core i7 3.3 GHz processor and 6GB of memory and running Fedora 14 and a 2.6.35
kernel. We stored information to two MySQL databases per storage host. For database storage we
used a single Crucial M4-CT256M4SSD2 solid state drive (SSD) per host which provided almost
a factor of ten decreased insert times for our volume of traffic over using the mechanical disk used
for general user and system software. Thus our final configuration used 8 databases (2 per SSD)
across our four storage hosts. With this configuration we were able to ingest 1012 samples per
node per 5 second interval over all compute nodes.

The XE6 platform, like most other production HPC platforms, only allows a user to schedule a
single job on a node at a time. Thus in order to run our monitoring software concurrently with an
application we run it as a root process from the platform boot node prior to running an application
to be monitored. Additionally we have a vmstat kernel module and a supporting ldms kernel
module that, in order to be used, must be installed by root. Launching or removing all components
and checking for their status over all CDS compute nodes in parallel takes on order of 60 sec
making it feasible as an automated launch-time option.

3.2.2 Cielo

Cielo is a 96 cabinet Cray XE6 with 9K compute nodes and 145K cores. To reach our goal of
10K processors we used 7 racks with 646 compute nodes and 10,336 processors. To meet our goal
of distributed data collection on the platform we utilized two visualization nodes that had both
direct connectivity to the compute nodes and a direct connection to the tri-lab DISCOM network
(see Figure 12. We utilized a DISCOM connected node of SNLs Whitney cluster as the next hop
with the end points being a diskfull admin node and a diskless compute node. We populated each
of these nodes with with two Crucial M4-CT256M4SSD2 SSDs for storing the data from Cielo.
The Whitney nodes used each have four AMD Barcelona quad core 2.2 GHz processors and 32GB
of memory. The admin and compute node were both running Red Hat Enterprise Linux 5 with a
2.6.18 kernel. Due to the poor database performance of these machines we wrote the data initially
to flat files and subsequently bulk loaded it into a database on the admin node for analysis. We
collected 1012 data values per node at a sample interval of 9 seconds to meet our criteria of 6 data
sets per minute per monitored node.

14

3.2.3 Node-local Data Collection

Our lightweight distributed metric service (LDMS) infrastructure was designed to meet the need
for both low impact data collection and movement on a compute node and for low overhead trans-
port off a compute node for storage and/or analysis.

LDMS allows for zero CPU overhead when gathering data from compute nodes through the
RDMA transport, however, there is still overhead associated with gathering the data at the sampled
node. Unfortunately data of interest is kept in many different places on a Linux system. Some data
is maintained by user-mode programs, for example, Zoltan, or MPI rank and job data, other data
is kept in the kernel, for example scheduler and VM data, and still other data is kept by hardware
itself such as hardware performance counters.

This presents a number of challenges; to first order, the data has to be gathered into a Metric Set
where it can be fetched by the sampling node. For user-mode data, this can be trivially accom-
plished by either keeping the data natively as a LDMS Metric Set, or by gathering the data of
interest and writing it to an LDMS Metric Set. For kernel data, there is the problem of accessing
the data itself. Some data is accessible trivially by kernel modules because the containing data
structure is exported, e.g vmstat data. Other data, however, is ’hidden’ by virtue of being declared
”static” in C and can only be accessed through a user-mode /proc filesystem interface; e.g. sched-
stat. Finally Hardware performance counter data can be accessed with the kernel perfctr API. In all
cases, however, there is the problem of introducing scheduler jitter when sampling. For kernel data
gathering, this can be avoided by using a kernel work-queue and only gathering data during I/O
wait or otherwise idle cycles. In user-mode, this can be accomplished by scheduling the sampler
thread with very low priority. In both cases, however, the data gathering time should be minimized
in order to avoid delaying an I/O wake up that would awaken a compute process.

An optimally low-jitter sampler would:

• Be run on a kernel work-queue thread

• Be run in less than 100ns

• Gather data directly from memory or hardware performance counters

• Avoid filesystem interfaces such as /proc

In order to achieve this in practice, however, requires that the stock kernel be modified in order
to access metrics in hidden data structures such as schedstat and the LDMS kernel modules be
installed that provide a means for LDMS to map kernel resident data into user mode and have this
memory registered for RDMA base transports such as Infiniband, iWARP or GNI.

15

3.2.4 Off-node Transport

In developing an appropriate transport mechanism we had to take into consideration the following:
1) data sources may have data available at different times and may collect on different time scales,
2) data would have to be relayed through intermediate hosts which may have asymmetric network
access privileges between them and the next/previous hop host, 3) latency between initiating a data
request and receiving the information, 4) we would like it to incur minimal impact/overhead on
the monitored compute nodes, and 5) we need to be able to parallelize this process for scalability
reasons. To accommodate for these constraints we developed a transport which is included in our
lightweight distributed metric service (LDMS) suite of tools called ldmsd.

Because of the asynchronous nature of the data gathering across compute nodes we decided that
data movement would be done autonomously and asynchronously by each ldmsd on a hop by
hop basis from the source to the storage host. A generation number is published with each data
set and is checked before insertion into storage to ensure that old data is not stored repeatedly.
Further, data sets are comprised of raw values and deltas are taken at the time of insert into long
term storage so that if a set is missed due to the asynchronous nature of the collection it only
results in loss of fidelity not data. Data sets are generated on a set by set basis on the compute
node asynchronously and on a time interval set by the user. When a next hop host ldmsd makes a
request for data, the ldmsd on the compute node sets up a connection and sends both the data set
and variable names (meta-data) and data to that host. After the initial connection and meta-data
transfer only data is sent on subsequent requests unless the meta-data generation number changes.
This next-hop ldmsd stores the information locally and queries the compute node for more data
according to a user specified time interval which need not have any relationship with the actual
collection frequency. This same behavior happens on a hop by hop basis clear to and including
the storage host. Finally on the storage host another entity, called komondor, fetches information
on its own time scale from the ldmsd on the storage host. The reason the collection frequency is
allowed to vary across ldmsd entities is that this leaves it open for a user to set the node based
collection frequency based on how often their application may require feedback while letting the
long term storage system collect at a rate commensurate with the collection system and fidelity
of information they want to store and analyze. Latency for a data fetch is dependent on the data
volume, network (bandwidth and latency), and host load.

In traversing multiple hosts from the compute nodes to the final storage hosts in our deployments
there were hosts that for security reasons were not allowed to initiate connections with the next-hop
host. In order to get around this impediment we developed three different modes of operation for
ldmsd (active, bridge, passive). An active ldmsd can be connected to directly as described above.
For the asymmetric case, the host that is allowed to initiate connections runs ldmsd in bridge mode
and polls for the target ldmsd running in passive mode. Once the connection is established the
passive ldmsd behaves as described above and polls the bridge ldmsd periodically for new data.
The directions of connection, data request, and data flow are shown in Figure 2.

As is described in Section 3.2.5, the performance bottleneck in this system is on final processing of
data by the komondor for insert into a database. Though data is collected and transmitted serially
by a ldmsd as a single data stream from which multiple komondor processes can read subsets of the

16

Figure 2. Directions of connection, data request, and data flow
in the ldmds chain. Multiple connection operation modes (Bridge,
Active, Passive) support constraints on connection initiation.

information there is time involved in serially bundling and transporting this information which can
also be affected by how busy the systems processing the data are. Thus we used a single komondor
per data stream and sized the stream (in terms of number of data sets) to yield the database write
performance we were targeting.

To demonstrate the scalability of utilizing multiple ldmsds in parallel over different paths we ran
multiple ldmsd entities on separate first hop hosts (see Figure 12), and then on a common second
hop host. We determined the number of compute node data sets per komondor by increasing the
number until the database insert rate per component started decreasing and then backing off. This
is of course dependent on the frequency of inserts and the amount of data being collected per
compute node. While data transport CPU related overhead could be minimized by utilizing the
Gemini RDMA transport, due to the proprietary nature of this interconnect we used Cray’s socket
based transport over the Gemini network. We were not able to evaluate the relative impact as we
did not achieve an operational Gemini RDMA based solution during the course of this work.

The network impact of data flowing to one of the four storage hosts shown in Figure 13 can be seen
in Figure 3. The traffic on the inbound interface of each storage host was captured at one second
intervals though the ldmsd updates were at four second intervals. The reason for the various levels
is that we were running six ldmsds per storage host and they were started with a small time delay
between to spread out the traffic. The aggregate traffic going to a storage host in this case is 2MB
per second or 4Mb per second. Thus the aggregate network traffic for collecting 1012 values for
each of the 556 compute nodes on CDS is 16Mb per second. As shown in Figure 13 this data was
streamed over the wide area network from SNL/NM to SNL/CA.

17

Figure 3. Network traffic to one storage node over 1000 sec with
measurements taken at 1 sec intervals

3.2.5 Remote Storage

Storage of data occurs on the remote hosts as indicated in Figure 1. Motivation for storing data
includes the desire to enable post-run and long-term analysis and multi-run comparison. An addi-
tional desirable feature is the potential to hand off per-application datasets to the application user
post-run.

Constraints on the handling of data at endpoints then include 1) the ability to ingest data at the
desired collection rate 2) its representation in some form that supports analysis and visualization
and 3) the ability to transform the data into the desired form(s) on necessary time-scales.

Data is read at the endpoint via an ldmsd entity running on the remote host. Another entity, called
the komondor, reads LDMS data from the local ldmsd and is responsible for its transformation into
an intermediate or final stage. A database is a desirable option for representation of data while it
is being used for analysis and visualization of long term data, particularly where a large number of
components or many data metrics are possible. Databases additionally support the ability to write
out to files or to load in data files, thus supporting storing and re-accessing data. However, the
insert performance of the database is a potential bottleneck in supporting data ingestion rates. For
this reason, we have written the komondor to optionally 1) write the data directly into a database
on a per-component per-metric basis as it is received; 2) submit the data to the shepherd [13, 3],
which can both process the data as it is streamed and aggregate the data on a per-metric basis for
efficient bulk insertion into a database; or 3) write the data to files which can then be periodically
loaded into the database. The first method can potentially reduce time skew (subject to the insert
rate supported by the database); the latter two methods support greater ingestion rates at the host
but are subject to a delay before a timestamp is added to the measurement. In addition, multiple
komondor processes can read all or subsets of the data from a single ldmsd enabling balancing of

18

the data flow with the database insert performance. Finally, the architecture also supports the user
of multiple, non-replicated databases for analysis and visualization, in order to support the data
load. Options for the komondor are shown in Figure 4 In this work we utilized SSD’s for database
and flat file storage as our rotating media had unacceptable performance characteristics.

Figure 4. Handling of the data stream on the remote end-
points. Komondor read data from local ldmsd. They can option-
ally provide measurements to 1) the shepherd, where recent val-
ues are cached and logged for bulk inserts into the database; 2) the
database directly; or 3) flat files. Multiple komondor can read from
the same ldmsd. The multiple options enable the data storage rate
to be commensurate with the data ingestion rate on the node.

Note that as in other parts of the transport system both the local ldmsd and the komondor can set
their query rates independently of all other parts of the ldmsd chain. Thus, if desired, data can be
collected more frequently at the nodes but transported off the the nodes and/or collected by the
komondor less frequently if higher fidelity information is required on node than is desired to be
stored. Additional processing steps can occur before storage in case only a subset of the data is
wanted for long term storage.

3.2.6 Analysis and Visualization

In order to perform analysis and visualization of the measurements provided by LDMS, the raw
data and results of analysis must be aggregated from distributed databases. The next generation of
OVIS’s [13, 3] baron – a tool for inspecting system metrics – was designed so that the subsets of
data required for presentation are small in order to provide interactivity and scalability.

In addition to the demands placed on visualization by the parallel nature of the data, informal input
from stakeholders in the development and administration of HPC platforms was used to define
common tasks that the baron must address. These are presented in Table 1. Beyond common
tasks, user input also suggested several desirable features for visualization and analysis. Because

19

Table 1. Use cases for analysis and visualization.

Describe the system
Show or enumerate the components that compose the system.
Illustrate the layout of components.

Characterize the system behavior
List the measurements made on each type of component in the system.
Present the range of values taken on by a metric over the entire system.
Identify the set of components associated with a particular application.
Illustrate trends over time in measurements.
Discover simultaneity of events.

Diagnose problems and faults
Determine which components share access to resources (e.g., network, cache, power).
Compute statistics of a set of metrics over a set of components and range of time.
Identify which components take on extreme values of a metric or statistic.
Compare metric measurements taken on different components.
Compare measurements of different metrics taken on the same component.

many administrators manage HPC systems remotely via thin clients, renderings that require fast
graphics cards should be avoided in favor of simpler illustrations. Also, while the ability to examine
detailed information is important, having a summary view of the entire HPC system is also needed
to quickly alert administrators when a problem arises. Finally, users submitting jobs to run on the
HPC system should also have access to metric data taken during the time of their run.

From this information, we decided on an architecture that uses an embedded web server – Mon-
goose [9] – as the primary means of communicating with both data collection and visualiza-
tion/analysis processes. Mongoose and other embeddable web servers use multiple threads to
process hundreds to thousands of requests per second, provide access controls and encryption, and
transparently handle socket connection management. The user interface is composed in HTML
and JavaScript so that web browsers such as FireFox and Safari can be used on thin clients.

Data is sent to the browser in JavaScript Object Notation (JSON) form[4]. Summary metadata for
the cluster is present in every shepherd process’s database and includes the number and type of
components and metrics. The browser is instructed to retrieve this data from a single shepherd
– usually the one from which the HTML and JavaScript code were also obtained. Other data is
partitioned among all of the shepherds’ databases: it resides on only one shepherd. The browser
retrieves each shepherd’s subset of the data by sending a request to each shepherd directly. Because
web browsers have been optimized to perform layout and rendering concurrently as network traffic
is received, subsets of data returned by each shepherd are displayed immediately as they become
available; any processing required to aggregate per-shepherd data is performed asynchronously.

Figure 5 shows the baron’s summary view which lists available visualizations. The following
figures and paragraphs describe each one in turn.

20

Figure 5. The baron provides a list of views, each of which em-
bodies a different visualization of OVIS data.

The Namespace View, shown in Figure 6, provides the user with a description of all metrics in the
database organized by the type of component the measurement is associated with. For instance
information from /proc/meminfo is provided on a node basis and is hence associated with the
”node” component type while /proc/stat provides information at both the node and core level
which is then split into ”node” metrics and ”core” metrics.

Figure 7 shows the baron’s Graphical View. It draws graphs (layed out using a subgraph that is a
tree) to show how components are related. By default only the top-level components in the tree
are displayed. When the user enters the name of a particular component, it is highlighted and
drawn with all of its siblings, its parents, and its parents’ siblings. This can be used to identify, for
instance, which cores are present on a particular node.

Typically, when users are exploring measurements, they will identify related components using
the Graphical View and then plot time histories of a few metrics on these components. The Time-
history View (Figure 8) presents an interactive plot where users can specify a list of metrics and
components whose data should be plotted. Panning and zooming interactions are supported and
the data is subsetted so that a roughly constant number of samples are drawn per-component per-
metric. This subsetting is achieved by assigning a level-of-detail (LOD) to each sample in the
database and then only requesting samples with a LOD greater than k log2 ∆t, where ∆t is the time
range of the view and k is a constant related to the desired number of samples per plot series relative
to the nominal sampling frequency of the metric.

In addition to plotting time-histories of components, it is sometimes useful to see the entire state
of the system at once. Time-series plots do not allow this for more than a few components. How-
ever, hundreds of thousands of components can be represented by pixels in an image on modern
computer monitors. The Operating State View of Figure 9 shows every component’s value of

21

Figure 6. The Namespace View displays information about met-
rics collected for each type of component (or more generally, each
namespace, since measurements may eventually include jobs and
other non-physical entities).

22

Figure 7. The Graphical View displays relationships between
components by connecting them in a graph.

23

Figure 8. The Time-history View plots how metrics vary over
time for subsets of components over which they are collected.

24

Figure 9. The Operating State View displays the current value of
a metric for every component it has been measured on.

25

metric as a colored pixel in a regular grid with the first component in the bottom left and increas-
ing from left-to-right and then bottom-to-top. These images are generated by each shepherd with
transparent pixels where no information is available so that by superimposing images from all
the shepherds, a picture of the entire cluster’s state is produced. The shepherds use information
cached during metric insertion to generate the images rather than performing SQL queries so that
interactive framerates can be achieved. However, in order for this information to be available, the
shepherd must be used to insert measurements rather than allowing other processes direct access
to the database.

After examining the system state, users may wish to quantify trends and test hypotheses regarding
the distribution of metric values. The Haruspex View of Figure 10 allows users to enter parameters
for an analysis in the top panes by selecting the type of analysis and the range of components and
time over which to sample. Once the user clicks learn, the results are displayed below. Clicking
on a colored rectangle summarizing analysis results allows the user to add or view free-form text
annotations for the analysis. Clicking on a sequence number in the result pops up a window where
users may visualize how well the inferred model matches observations.

Sometimes it is useful to know which components take on a given value. When a metric is con-
strained to take on discrete values and the number of values is small, the Entities By Value View
(Figure 11) can be used to identify which components take on the given value at any time in their
entire history. This was used during the milestone runs to determine which cores were assigned to
a particular run of a particular application.

Besides its analysis and visualization functions the shepherd’s web server also provides an efficient
mechanism for inserting data into the database. The komondor submits a URL encoded with the
metric table, component identifier, and measured value to the web server where it is logged and
eventually inserted into a persistent store. This is described in greater detail in Section 3.2.5.

3.2.7 Node-Local Feedback to Application

In addition to enabling streaming data off the platform, the LDMS service also supports on-node
queries of the data. Thus an application or intermediate code can also query LDMS for resource
state and use that information to invoke resource-aware run-time response.

In order to illustrate this capability, we targeted applications that already have capabilities for
dynamic reconfiguration and we augmented that process to include dynamic resource-state infor-
mation into the reconfiguration process. In particular, we targeted Aria [10] and Fuego [7, 6] in the
Sierra [8] suite, which, under certain conditions, repeatedly rebalance during run-time using the
Zoltan [5] partitioner.

Zoltan determines balanced partitionings taking into account specified object weight(s) and par-
tition size(s). Examples of the former include number of elements or particles. Aria and Fuego
support some user selectable options for weight, imbalance thresholds to invoke rebalance, and
rebalance frequency rates. While in practice in these codes the partition size is typically uniform,
we have modified Zoltan within Sierra to call the node-local ldmsd, either directly or indirectly

26

Figure 10. The Haruspex View displays results of analyses and
allows submission of new analyses of metric data.

27

Figure 11. The Entities By Value View displays all of the dis-
tinct values a metric takes on and allows users to request the set of
components taking on a given value.

28

through intermediate code, to get system state information on demand and evaluate it in order to
determine relative partition size targets at the core level. In this work, we address providing feed-
back to an application to enable its reconfiguration at run-time; follow-on work involves using the
system developed here to determine what data is relevant, what functional forms should be used,
and what weighting across the partitions should be used. However, demonstration usage of the
feedback mechanism is provided as part of this work.

Note that the LDMS update frequency is independent of the timescales of the Zoltan partitionings.
Zoltan will receive partition sizes based on the most current system state information held by
LDMS. In this way there is minimal delay in obtaining the system state information, with the
tradeoff of possibly using out-dated system information. Note however, that ultimately one does
not necessarily need to achieve the best partitioning, but rather only a better partitioning.

29

4 Criteria-Related Results

Based on the text and intent of the milestone we define the following to be the minimum success
criteria for this milestone:

1. The platform from which resource information will be acquired and on which applications
will be run will be an ASC relevant architecture.

2. Acquisition and storage of > 20 metrics per processing element over > 10K processing
elements at a collection frequency of 6 per minute.

3. Analysis of information pertaining to resource utilization for a particular application run or
set of runs spanning 10K processing elements.

(a) Post-run analysis on aggregate archived information

(b) Run-time analysis and visualization on streaming data

4. Use of a subset of metric values being collected to affect run-time work to resource mapping
in an application run and/or ensemble of application runs.

(a) Affect of feedback on application performance will be evidenced through a change in
load to resource mapping, application run-time or both as compared with the applica-
tion running concurrent with data acquisition but with no feedback.

(b) At least one application run will span > 10K processing elements.

4.1 ASC Relevant Platform

This section provides evidence related to our platform relevance criteria described in Section 4
item 1.

In this work we utilized two systems: The Cielo platform at LANL whose resource utilization data
was moved across the wide area DISCOM network to Whitney, a TLCC system at SNL/CA, for
remote analysis and the Cielo Del Sur System at SNL/NM whose data was moved across the wide
area to desktop machines at SNL/CA for remote analysis. Both Cielo and Cielo Del Sur are Cray
XE6 platforms and hence relevant ASC platforms as Cielo is the latest large scale tri-lab ASC HPC
platform acquisition. The instantiation of our collection and feedback system on these systems are
shown in Figures 12 and Figure 13.

4.2 Data Acquisition

This section provides evidence related to our data acquisition criteria described in Section 4 item
2.

30

Figure 12. System instantiation to address Cielo

31

Figure 13. System instantiation to address Cielo Del Sur

Figure 14. Fractional overhead for LDMS processes on a per
core basis running on a particular compute node

32

Figure 15. Fractional overhead for LDMS processes on a per
core basis averaged over all nodes involved in a 10,112 processor
Aria run

Figure 16. Fractional overhead for LDMS processes on a per
core basis, including high and low (0), over all nodes involved in a
10,112 processor Aria run

33

Data sources used in this work were the following files from the proc filesystem: vmstat, mem-
info, stat, kgnlnd, interrupts, and PID. We successfully collected 1012 data values per node over
646 nodes (10336 cores), 720 of which were core related (45/core) with a collection period of 9
seconds. The overall overhead on a per node basis for using our monitoring software was 0.02%.
Figure 14 shows the overhead variation, on a per core basis, for all LDMS processes running on a
particular node. The average over all nodes, on a per core basis, is shown in Figure 15 and again
in Figure 16 with high and low bars (note that for all cores the low is zero).

4.3 Data Analysis and Visualization

This section provides evidence related to our data analysis and visualization criteria described
in Section 4 item 3. In this work we utilized run-time visualization over various parameters to
determine some metrics of interest which we then used in post-run analysis. Both types of analysis
are described in this section along with some results and screenshots.

Our first step in identifying metrics of interest was to utilize our run-time display to visualize the
distribution of nonvoluntary context switches on a per-user-process basis. Since each user process
is bound to a particular core this is equivalent to looking at these same metrics on a per-core basis
where the core to rank mapping is acquired from the ALPS scheduler at run-time. The reason
for this particular metric is that their occurence means that the running application process was
swapped out by the scheduler in order to run another process which will obviously affect the
performance of that process and the application. Figure 17 shows that not only are nonvoluntary
context switches not spread uniformly across cores of a each node but that across many nodes
(556 in this case) they happen preferentially on certain cores (5, 9, and 13 in this case). Thus we
made use of nonvoluntary context switches as a metric for providing feedback to the application
as described in Section 4.4.

Looking at where system processes are running (Figure 18) yields insight into what is driving
these context switches. It is obvious from this information that the system processes are what
is driving the context switches and visualizing this over time shows that though there is some
temporal migration of these processes among cores of a node they seem to be scheduled relatively
statically on these sets of cores. It is interesting to note that running an application with core-
specialization [2] which puts all non application processes on a particular core (default is 15 in this
case) causes them to generally be preferentially scheduled on core 15 afterwards presumably due
to cache. Figure 19 shows data from a 1024 core (64 node) run where the green plots (system time
spent on a core - system time for the application process on that core) summed over the run and
the red plots system time spent on our monitoring processes on each core. This figure shows the
preferential scheduling of non-application processes on cores 5, 9, and 13. The x axis in this figure
is core number and the y axis is clock ticks. The anomaly for a process on a core 11 appears to
show a process which had at least some of its system time scheduled on other cores.

Another metric of interest to us in this work was what fraction of each core’s available cycles
were being used by the application. In order to determine this we used the ratio of the sum of
the application processes user and system time to the sum of the application processes user time,

34

Figure 17. Nonvoluntary context switches for one collection pe-
riod (9 sec) on a per core basis over 556 nodes (8896 cores) of
CDS (Note that red is 0 and blue is 1000)

35

Figure 18. System time for one collection period (9 sec) on a per
core basis over 556 nodes (8896 cores) of CDS (Note that red is 0
and blue is 3)

36

Figure 19. Plot, for a 1024 processor Aria run, of the sum of
system time (measured in clock ticks), on a per core basis, ded-
icated to non-application tasks for that core (red-LDMS, green -
other). Note that the negative spike for core 9 appears to be due to
an application process having system time on its behalf spent on a
different core

37

Figure 20. Fractional CPU utilization for the Aria application on
a per core basis running on a particular compute node on Cielo

Figure 21. Fractional CPU utilization for the Aria application on
a per core basis running on a particular compute node on CDS

38

application process system time, and core idle time. Figure 20 shows this for a particular node
aggregated over the run-time of the Aria application run over 10,112 cores on Cielo while Figure 21
shows the same plot for Aria run on CDS over 8310 cores (note that y axes of the graphs do not
start at 0). This fluctuation on a per node basis led us to utilize this imbalance on a per node basis
as another metric for application feedback as described in Section 4.4.

Figure 22. Fractional utilization of core cycles for the Aria ap-
plication on a 10,112 core run averaged over the course of the run
on a per core basis.

We also analyzed the fractional utilization across all 632 nodes of an Aria run on 10,112 cores. The
results are shown in Figure 22 including high and low water marks. Note that this is the aggregate
over the whole run.

4.4 Affect Run-time Work to Resource Mapping

This section provides evidence related to feedback criteria described in Section 4 item 4.

In this work we demonstrate the capability to use system information at run-time; detailed analysis
to determine which data is most relevant to performance tuning and the functional forms to be
used in transforming such information into partition sizes is longer-term follow on work. Note that
similarly the partitioning frequencies have not been tuned.

We implemented run-time feedback to the Zoltan partitioner in two applications: SIERRA/Aria
and SIERRA/Fuego.

39

4.4.1 SIERRA/Fuego

SIERRA/Fuego is a particle code. In the problem evolution particles move, are injected, can split,
and can be removed. Because of this, the computational load will vary in the physical space
through time, and hence the workload per processor will vary through time. Fuego can rebalance,
using Zoltan, when the particle imbalance across processors exceeds a user defined threshold.

The partitioning in the physical space for an problem across 32 processors (32 chosen for visual
clarity) is shown in Figure 23. Particle number drives the partitioning of the space. At this time the
partitions are unevenly divided in space, seeking to balancing the particle density which is greatest
at the bottom left of the figure. The regions of high particle number vary with time, as the particle
locations and evolve inward and up and thus partition sizes and locations will change with time.

Figure 23. Mapping of physical space and particles to partitions
in a Fuego problem. Particle number drives the partitioning of the
space. The regions of high particle number vary with time, starting
at the lower left of the figure and evolving inward and up. Thus
partition sizes and locations will change with time.

The effect of the particle evolution on the partitioning is shown in Figure 24. The left column
shows partition distributions based on particle number with a uniform partition target size for the
case above but on 64 processors. The upper left is the distribution after a rebalancing. It is seen
that within the physical constraints of the problem and the algorithm that a completely uniform
distribution of particles per partition is not achieved in practice. As particles move in time the
particle-partition mapping changes and the distribution is spread out thus triggering a rebalancing.
The distribution change after a number of timesteps is shown in the middle left figure and the
resultant rebalancing is shown in the middle bottom.

40

While this example problem is insufficiently large to necessitate running on larger processor counts,
it represents the type of dynamic application needs that we seek to address with this work. We il-
lustrate the ability to feedback information to the application to affect the work-load to resource
balance in Figure 24, In this case the ratio of idle cycles to total cycles utilized since the last
partitioning was used to determine the target partition sizes with the intent that processors that
had exhibited larger idle time could take on more load. (In practice we expect that a function that
weights more heavily more recent load will be a better choice.) The resultant partition distributions
are generally a bit wider as a result of variations in the target sizes(right column).

Figure 24. Particle Distributions in the Partitioning Evolution in
a Fuego problem (a) after a rebalance (top) (b) after a few timesteps
before the next rebalance (middle) (c) after the next rebalance (bot-
tom) (d) without feedback (left column) (e) with feedback (right
column). Rebalancing in general seeks to provide an even distri-
bution but is not in practice completely uniform (top and bottom).
As the problem evolves and particles move the distribution widens
triggering the need for rebalancing (middle).

Figure 25 shows that for this simple demonstration there is a resultant improvement in computa-
tional cycles dedicated to the application execution across all processors involved. Again, detailed
determination of data and the feedback functional form for this case were beyond the scope of this
work and thus this should not be taken as a general indicator of potential results.

41

Figure 25. Simple demonstration shows improvement in compu-
tational cycles across all processors involved.

4.4.2 SIERRA/Aria

SIERRA/Aria is a thermal code. In a general sense the dynamics of the simulation is not as closely
tied to the computational load as in the particle case since, for instance, a hot spot in the calculation
does not change the size of a matrix, but rather the values within it. However the problem may
still be subject to imbalance and hence Aria provides the ability to rebalance using Zoltan when
element imbalance or assembly time imbalance exceed user-defined thresholds.

We ran an Aria problem which has been used in scaling tests and would support the 10K proces-
sor target. Analysis on several runs indicated that non-voluntary context switches and interrupts
occurred non-uniformly. Since these impact the time dedicated to the application on a resource,
we chose to assign partition size based upon the number of occurrences of non-voluntary context
switches and interrupts since the previous rebalancing. Extensive analysis of the impact of the
occurrences on the amount of time taken from an application was beyond the scope of this current
work.

Results of this feedback are shown if Figure 26. In this case the distribution of partition sizes
resulting was very broad resulting in a broad distribution of elements per partition as compared to
the initial distribution. Non-voluntary context switches and interrupts occurred preferentially on
Cores 0 and 9 during this run and as a result, the smaller partitions did occur preferentially on those
cores. Overall, while this did demonstrate the ability to enact run-time feedback and mapping at
the target scale, more work is required to determine a weighting of these quantities that might be
advantageous for overall application run time.

We applied the idle cycle criteria previously used in the Fuego problem to this problem on a
8310 core run on CDS. We targeted a relatively comparable size, but still with less than the full
complement of cores at our disposal, since this enabled us to also test the problem with Cray’s
core specialization [2] option. Results of the partitioning with and without feedback are shown
in Figure 27 for a set of selected timesteps. The non-feedback distribution changes only slightly
in time, as expected. This is also true of the spatial placement (unshown) which we examined on

42

Figure 26. Feedback Distributions for 10,112 processor run of
an Aria problem on Cielo. Processors exhibiting more context
switches and interrupts are assigned a smaller target partition size.
In this case the distribution of partition sizes is broad (top) result-
ing in a broad distribution of elements per partition as compared to
the initial distribution (middle). Non-voluntary context switches
and interrupts occurred preferentially on Cores 0 and 9 across all
nodes and, as a result, the smaller partitions occur preferentially
on those cores.

43

smaller scale runs. In the feedback case an early distribution (green) is much broader than the non-
feedback distribution, probably to a larger degree than desired given the general computational
balance of the problem. In this case the use of a feedback function that includes computational
load drives the target partitioning and thus the distribution to a more balanced distribution.

Figure 27. Partition Distributions for selected timesteps for an
8310 processor run of an Aria problem on Cielo. Processors ex-
hibiting larger ratio of idle cycles to total cycles utilized since the
last partitioning are assigned a higher partition size. Uniform par-
tition sizes (top) results in tighter distributions than those without
feedback. In the feedback case, when too broad partitioning oc-
curs early (bottom, green), the partitioning feedback criteria will
adjust the distribution.

44

5 Conclusion

As required by the milestone we have developed a feedback system for intelligent dynamic re-
source allocation, used it acquire and analyze resource utilization data, and affected run-time to
work resource mapping on an ASC relevant architecture at the target scale.

The infrastructure demonstrated in execution of this milestone has potential to provide insight to
developers and researchers alike and provides a foundation for further development in this area.
While this milestone specifically targeted run-time feedback we are also interested in using the
information gained to more appropriately place application processes for applications that do not
support runtime adjustment. The data storage, visualization, and analysis capabilities developed
and enhanced during the execution of this milestone can be used both at run-time and for post-
processing. The latter would be of interest to analysts who could play back through their run.

This work has inspired collaboration and follow on LDRD work with Zoltan to develop run-time
resource and machine aware-partitioning and hierarchical partitioning. This infrastructure will
provide information that will feed into algorithm development and determination of what machine
data is of value and how to properly weight resources in the machine model. Hierarchical partition-
ing developed in Zoltan will enable a more targeted mapping of work-load to resource, particularly
when considering issues such as shared memory and repartitioning within and across nodes.

45

References

[1] Using Cray Performance Analysis Tools. Cray Doc S-2376-52.

[2] Workload Management and Application Placement for the Cray Linux Environment. Cray
Doc S-2496-31.

[3] J. Brandt, B. Debusschere, A. Gentile, J. Mayo, P. Pebay, D. Thompson, and M. Wong. OVIS-
2: A robust Distributed Architecture for Scalable RAS. In 22nd IEEE International Parallel
and Distributed Processing Symposium, 4th Workshop of System Management Techniques,
Processes, and Services, 2008.

[4] Douglas Crockford. RFC 4627: The application/json media type for JavaScript Object Nota-
tion (JSON). RFC 4627, July 2006.

[5] K. Devine, E. Bowman, R. Heaphy, B. Henrickson, and C. Vaughan. Zoltan Data Manage-
ment Services for Parallel Dynamic Applications. In Computing in Science and Engineering,
volume 4, pages 90–97, 2002.

[6] S. Domino, G. Wagner, A. Luketa-Hanlin, A. Black, and J. Sutherland. Verification for
Multi-Mechanics Applications. In 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics, and Materials Conference (AIAA Paper 2007-1933), 2007.

[7] S. P. Domino, C. D. Moen, S. P. Burns, and G. H. Evans. SIERRA/Fuego A Multi-Mechanics
Fire Environment Simulation Tool. In 41st AIAA Aerospace Sciences Meeting (AIAA Paper
2003-0149), 2003.

[8] H. C. Edwards. Sierra Framework Version 3: Core Services Theory and Design, 2002.

[9] Sergey Lyubka. Mongoose. http://code.google.com/p/mongoose/.

[10] P. Notz, S. Subia, M. Hopkins, H. Moffat, and D. Noble. Aria 1.5 User Manual. Sandia
National Laboratories Report SAND2007-2734, 2007.

[11] University of Oregon. Tuning and Analysis Utilities:TAU.
http://www.cs.uoregon.edu/Research/tau/home/php.

[12] OProfile. OProfile. http://oprofile.sourceforge.net/news.

[13] Sandia National Laboratories. OVIS. http://ovis.ca.sandia.gov.

[14] M. Schulz, A. Arowojolu, J. Blanchard, J. Brandt, S. Futral, J. Mellor-Crummey, B. Miller,
D. Montoya, M. Rajan, K. Roche, and Zosel. M. Tools and Tool Support for the Exascale
Era, 2011.

46

47

DISTRIBUTION:

1 MS 9159 Jim Brandt, 8953
1 MS 9152 Ann Gentile, 8953
1 MS 9159 David Thompson, 8953
1 MS 0899 Technical Library, 9536(electronic copy)

48

v1.33

	Executive Summary
	Description
	Motivation

	Motivation
	Architecture
	Design
	Design Criteria

	Implementation
	Cielo Del Sur
	Cielo
	Node-local Data Collection
	Off-node Transport
	Remote Storage
	Analysis and Visualization
	Node-Local Feedback to Application

	Criteria-Related Results
	ASC Relevant Platform
	Data Acquisition
	Data Analysis and Visualization
	Affect Run-time Work to Resource Mapping
	SIERRA/Fuego
	SIERRA/Aria

	Conclusion
	References
	Appendix: Signoff Memo

