
SANDIA REPORT
SAND2011-6036
Unlimited Release
Printed August 2011

Optimizing Tpetra’s Sparse
Matrix-Matrix Multiplication Routine

Kurtis L. Nusbaum

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

• •U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

SAND2011-6036
Unlimited Release

Printed August 2011

Optimizing Tpetra’s Sparse Matrix-Matrix
Multiplication Routine

Kurtis L. Nusbaum
Scalable Algorithms

Sandia National Laboratories
Mailstop 1318

Albuquerque, NM 87185-1318

Abstract

Over the course of the last year, a sparse matrix-matrix multiplication routine has
been developed for the Tpetra package. This routine is based on the same algorithm
that is used in EpetraExt with heavy modifications. Since it achieved a working state,
several major optimizations have been made in an effort to speed up the routine. This
report will discuss the optimizations made to the routine, its current state, and where
future work needs to be done.

3

Acknowledgments

Thanks to all of those at Sandia National Labs who helped provide the tools needed to
compile this report. A special thanks to Dr. Chris Baker, Dr. Chris Siefert, Dr. Mark
Hoemmen, and Dr. Jonathan Hu whose guidance was invaluable. Thanks to Dr. Mike
Heroux for funding this project. Thank you to the entire Trilinos community whose help is
always appreciated. Thanks to St. John’s University for providing resources which helped
create the material that this report evaluates.

This research used resources of the National Energy Research Scientific Computing Cen-
ter, which is supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231.

The format of this report is based on information found in [5].

4

Contents

1 Introduction . 7
2 Basic Outline of the Algorithm . 8
3 Optimizations . 9

3.1 Fixing FillComplete’s Sort . 9
3.2 Removal of Specific Transpose Mode Kernels . 9
3.3 Streamlining the Graph Building Routine . 9

4 Performance. 11
4.1 Comparison of Development Stages . 11
4.2 Tpetra vs. EpetraExt vs. ML . 11
4.3 Transpose Mode Tests . 16

5 Areas for Future Improvement. 18
5.1 Serial Test Motivations . 18
5.2 Improvement of Underlying Tpetra Architecture . 18
5.3 Possible Implementation of ML’s Algorithm . 18
5.4 Kokkos Kernel . 19

6 Contributions . 21
References . 22

Appendix

A Trilinos Configure Script . 23

Figures

1 Tpetra Development Time Comparison . 12
2 Tpetra Development Efficiency Comparison . 13
3 All Algorithms Time Comparison . 14
4 All Algorithms Efficiency Comparison . 15
5 Transpose Time Comparison . 16
6 Transpose Efficiency Comparison . 17
7 Hash based algorithm . 20

Tables

1 Serial Matrix-Matrix Multiplication Run Times . 18

5

6

1 Introduction

Over the course of the last year, a sparse matrix-matrix multiplication routine has been
developed for the Tpetra [3] package. This routine is based on the same algorithm that is
used in EpetraExt [1] with heavy modifications. Since it achieved a working state, several
major optimizations have been made in an effort to speed up the routine. This report will
discuss the optimizations made to the routine, its current state, and where future work needs
to be done.

7

2 Basic Outline of the Algorithm

The Tpetra sparse matrix-matrix multiply algorithm allows two matrices (A and B) to be
multiplied. The result of this multiplication is then placed in a third matrix (C). The basic
algorithm is as follows:

1. A′ and B′ are created from A and B, respectively. If it has been specified that A
should be transposed, an actual transpose of the matrix is created and assigned to A′.
Otherwise A′ is simply set equal to A. The same is done for creating B′.

2. A “view” of A′ and a “view” of B′ are created. These views simply provide fast access
to information that will be needed later in the algorithm. In addition, any imports
of off-processor elements are done. Namely, all the rows in B′ that contain columns
needed by the local copy of A′ are imported.

3. The sparsity pattern of C is determined by doing a symbolic multiplication of A′ and
B′, i.e., no actual value computations are done. In this step, column indices for C are
computed and used to construct a graph.

4. The actual multiplication of A′ and B′ is done by iterating through each row of A′.
For each row in A′, every row in B′ is looped through and the appropriate calculations
are done.

5. Unless indicated otherwise by the user, fillComplete is called on matrix C.

8

3 Optimizations

3.1 Fixing FillComplete’s Sort

As part of its algorithm, the fillComplete function relies on a function called sort2. This
function performs a sort on two arrays by sorting the first array and concurrently doing the
same permutations on the second array, i.e., both arrays are sorted according to the ordering
of the first array. The main use case for this function is sorting an indices array and moving
the values in a values array so that they stay matched up with their associated index.

Up until recently, the sort2 function relied on an insertion sort algorithm. We modified
the function so that it first checks to see if the arrays are already sorted (which happens quite
often) and returns right away if they are. If the arrays are not sorted, a quicksort is performed
on the arrays. This means that for the section of our sparse matrix-matrix multiply routine
where we call fillComplete we went from running on average O(n2) operations to running
on average O(n log(n)) operations. It’s also worth noting that since our sort2 function
checks first to see if the arrays are already in order, we avoid the worst case runtime for the
quicksort routine.

3.2 Removal of Specific Transpose Mode Kernels

In the original ExpetraExt algorithm there were separate multiplication kernels for each
possible transpose combination (e.g., AT B, ABT , and AT BT). Some of these kernels relied
on a function called find_rows_containing_columns. The relevant trait to know about this
function is that during execution it created an array that was of size Nc +2Np +NpNr, where
Nc, Np, and Nr are the number of local columns, processors, and local rows, respectively.
Obviously this is not scalable. At anything but the lowest processor counts, this array
quickly balloons to a size that won’t fit in memory. We decided to remove this function and
the specific transpose kernels. Instead, we explicitly transpose the matrices using Tpetra’s
RowMatrixTransposer if needed and use the A × B kernel on those matrices. This has
significant1 performance benefits when doing operations like AT ×B.

3.3 Streamlining the Graph Building Routine

The original algorithm from EpetraExt used the same function for both building the graph
of matrix C and calculating its values by doing two passes through the same function with
different data. As a result, on the first pass through the function when the graph was being
calculated, the values for matrix C were also calculated, but thrown out. It’s not until the
second pass through the function that the values calculated are actually inserted into matrix
C. We modified this function so that it takes an argument which indicates whether or not

1See Section 4 for details

9

we’re just calculating the graph for matrix C. If we’re just calculating the graph, all the value
calculation is skipped. This saves the routine O(Numrows × nnzMax(A) × nnzMax(B))
operations where nnzMax is the maximum number of non zeros in the rows of a given
matrix.

10

4 Performance

We conducted a series of weak scaling studies on the Hopper NERSC machine. Hopper is
a Cray XE6 with 24 cores per node2. We define weak scaling as increasing the problem
size while holding the amount of work done on each node constant. We define weak scaling
efficiency as Timeserial/T imeparallel, where Timeserial is the amount of time required to run
on a single node3 and Timeparallel is the amount of time to run on N number of nodes.

4.1 Comparison of Development Stages

Figure 1 and Figure 2 show the test results of comparing the Tpetra sparse matrix-matrix
multiply routine at various stages of its development. The tests were as such: Two matrices
were constructed, each using a 3D Laplace stencil. Each node was assigned 1103 number
of rows from each matrix (this means each core has approximately 55500 rows). We then
timed the cost of multiplying these two matrices together. We ran these experiments three
times for each node count, and then averaged the results. The red line represents the routine
as it was when it first achieved a working state. The blue line represents the routine after
the sort2 algorithm problem had been fixed and we removed the specific transpose mode
kernels. And the purple line represents the routine after all optimizations had been applied.
As can be clearly seen, the optimizations we applied helped the algorithm substantially.
After all of our optimizations were applied, the sparse matrix-matrix multiply routine was
running in roughly half the time it was originally.

4.2 Tpetra vs. EpetraExt vs. ML

Figure 3 and Figure 4 show the test results of comparing the Tpetra sparse matrix-matrix
multiply routine (with all of its optimizations) to other sparse matrix-matrix multiply rou-
tines in Trilinos [4] (namely the original EpetraExt routine and a slightly modified version
ML’s Epetra sparse matrix-matrix multiply routine4). These tests were conducted in the
same manner as above. The encouraging thing about these results is that the Tpetra algo-
rithm is as good as if not better than the EpetraExt algorithm at scale. It should be noted
that the ML lines are cut short because at the next problem size in our testing, they would
fail due to a memory error. Consequently, we could not run tests for greater problem sizes
with ML.

2For more machine information regarding Hopper, please visit http://www.nersc.gov/systems/
hopper-cray-xe6

3Strictly speaking, Timeserial is not actually serial runtime in our tests because a single node on hopper
has 24 cores. That said, it’s worth noting that none of the testing done below involving Tpetra utilizes any
Kokkos [2] kernels. This means that we’re not taking advantage of any node-level parallelism.

4The only difference between the ML’s Epetra_MatMat_Mult and the one we used in our test is that we
modified the routine to use ML’s matrix storage when assembling matrix C rather than Epetra’s

11

 0

 2

 4

 6

 8

 10

 12

 0 100 200 300 400 500 600 700 800

R
un

tim
e

(s
ec

on
ds

)

Number of Nodes

Weak Scaling Runtime vs. Number Of Nodes for Tpetra Matrix-Matrix Multiply (lower is better)

Initial Matrix-Matrix Multiply
Matrix-Matrix Multiply With Optimzations From 3.1 and 3.2

Matrix-Matrix Multiply With All Optimizations

Figure 1. A comparison of the Tpetra sparse matrix-matrix
multiply routine’s runtime throughout various stages of its
development. Note this is a simple C = A × B; so we are
running in non-transpose mode.

12

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800

P
er

ce
nt

 E
ffi

ci
en

cy

Number of Nodes

Weak Scaling Scale efficiency vs. Number Of Nodes for Tpetra Matrix-Matrix Multiply (higher is better)

Initial Matrix-Matrix Multiply
Matrix-Matrix Multiply With Optimzations From 3.1 and 3.2

Matrix-Matrix Multiply With All Optimizations

Figure 2. A comparison of the Tpetra sparse matrix-matrix
multiply routine’s scaling efficiency throughout various stages
of its development. Note this is a simple C = A × B; so we
are running in non-transpose mode.

13

 0

 1

 2

 3

 4

 5

 6

 0 100 200 300 400 500 600 700 800 900 1000

R
un

tim
e

(s
ec

on
ds

)

Number of Nodes

Weak Scaling Runtime vs. Number Of Nodes for Matrix-Matrix Multiply (lower is better)

Tpetra Matrix-Matrix Multiply (with all optimizations)
EpetraExt Matrix-Matrix Multiply
ML_Epetra::Epetra_MatrixMult

Figure 3. A comparison of various Trilinos sparse matrix-
matrix multiply routines’ runtime. The ML line is cut short
due to a memory error that prevented testing at higher node
counts.

14

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800 900 1000

P
er

ce
nt

 E
ffi

ci
en

cy

Number of Nodes

Weak Scaling Scale efficiency vs. Number Of Nodes for Matrix-Matrix Multiply (higher is better)

Tpetra Matrix-Matrix Multiply
EpetraExt Matrix-Matrix Multiply
ML_Epetra::Epetra_MatrixMult

Figure 4. A comparison of various Trilinos sparse matrix-
matrix multiply routines’ scaling efficiency. The ML line is
cut short due to a memory error that prevented testing at
higher node counts.

15

 0.1

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100 120 140

R
un

tim
e

(s
ec

on
ds

)

Number of Nodes

Weak Scaling Runtime vs. Number Of Nodes for Matrix-Matrix Multiply (lower is better)

Tpetra Matrix-Matrix Multiply (with all optimizations)
EpetraExt Matrix-Matrix Multiply

Figure 5. A comparison of sparse matrix-matrix multiple
runtime in Tpetra and EpetraExt using transpose mode

4.3 Transpose Mode Tests

Since Tpetra and EpetraExt differ wildly when it comes to transpose modes, we decided to
compare the two. We did the same testing procedure as above, except that we requested A
be transposed5. Figure 5 and Figure 6 show the results. To say that the Tpetra algorithm
scales better than the EpetraExt algorithm would be a gross understatement. The Tpetra
algorithm levels off at about a 5 second runtime, where as EpetraExt algorithm’s runtime
seems to grow quadratically. We attempted to conduct a similar experiment where we
transposed B instead of A, but the EpetraExt algorithm was taking even longer (over ten
minutes on a single node of Hopper) and we didn’t want to waste our limited computing
resources.

5One could first explicitly transpose a matrix and then give it to the ML algorithm which does not have
a transpose mode. We did not do this because the point of this test was to compare EpetraExt and Tpetra.

16

 0.1

 1

 10

 100

 0 20 40 60 80 100 120 140

P
er

ce
nt

 E
ffi

ci
en

cy

Number of Nodes

Weak Scailing Scale efficiency vs. Number Of Nodes for Matrix-Matrix Multiply (higher is better)

Tpetra Matrix-Matrix Multiply
EpetraExt Matrix-Matrix Multiply

Figure 6. A comparison of sparse matrix-matrix multiple
scaling efficiencies in Tpetra and EpetraExt using transpose
mode

17

Tpetra EpetraExt ML
Time (Seconds) 1.4 0.9 0.3

Table 1. Serial Matrix-Matrix Multiplication Run Times

5 Areas for Future Improvement

5.1 Serial Test Motivations

Table 1 shows the results of running three Trilinos-based sparse matrix-matrix multiply
algorithms in serial. These tests were conducted identically to the ones in section 4 with the
exception of being run on a single core of Hopper. Since this test was in serial, all run times
should be void of any time that might be attributed to communication. The discrepancy
between the EpetraExt and ML has been known for quite some time and is believed by
several scientists at Sandia National Labs to be attributed to a hashing scheme employed by
the ML algorithm. We believe the discrepancy between Tpetra’s and EpetraExt’s time has
do to with Tpetra’s fillComplete function since most everything else in this simple test is
relatively the same between the Tpetra algorithm and the EpetraExt algorithm. This leads
us to believe that by improving Tpetra’s underlying architecture (i.e. refining fillComplete)
and implementing ML’s hashing scheme, we should be able to make Tpetra’s sparse matrix-
matrix multiplication routine run at the same level as ML’s.

5.2 Improvement of Underlying Tpetra Architecture

The most important thing that will help the sparse matrix-matrix multiply routine is to
improve the implementation of the underlying Tpetra architecture. Undoubtedly the inef-
ficient sort2 routine we found is not the only problem with Tpetra at large. There have
been reports from other scientists at Sandia National Labs that things like the Tpetra Im-
port/Export classes are not running as nearly as fast as their Epetra counterparts. In
addition, Tpetra has no performance tests. Consequently, the performance of almost all of
tpetra is unknown. These things need to be investigated, and fixed if necessary.

5.3 Possible Implementation of ML’s Algorithm

ML’s sparse matrix-matrix multiply routine uses a complex hashing scheme in order to
speed lookup times for column indices. Overall, ML’s sparse matrix-matrix multiplication
algorithm is fast, and several scientist’s at Sandia National Labs believe this is mainly due
to the hashing scheme. Figure 7 outlines, in pseudo code, the algorithm as current Tpetra
developers understand it. Implementing this algorithm in the Tpetra sparse matrix-matrix

18

multiply routine should not be all that difficult and could potentially provide great speed
improvements.

5.4 Kokkos Kernel

While not necessarily indicated by the serial tests, writing a Kokkos kernel for the matrix-
multiply routine could improve performance. The implementation of such a kernel should be
fairly trivial and provide significant speedups by taking advantage of node-level parallelism.

19

1. For matrix B only, create a hashtable where given a globalid,
we get a unique hashtag. i.e. hash[gid] = hashtag
Note that in Serial we don’t actually need a "hash", local id’s should suffice
2.Create a "reverse" map, one where we can do rmap[hashtag] = gid
3. Allocate an array called acc_index with the same size as the hash table
4. Allocate two arrays called acc_col and acc_val whose size is
equal to the maximum number of row entries in matrix A.
5. For each row i in A{
acc_index.fill(-1)
ArrayView cur_A_cols;
ArrayView cur_A_vals;
A->getRowView(i, cur_A_cols, cur_A_vals);
curr_acc_ptr=0;
for each column k in row A[i]{
ArrayView cur_B_cols;
ArrayView cur_B_vals;
(B or Bimport)->getRowView(k, cur_B_cols, cur_B_vals);
for(j=0; j< cur_B_cols.size(); ++j){
cur_acc_index = hashtable(getGlobalElement(cur_B_cols[j])) //precomputing this might be useful
if(acc_index(cur_acc_index) == -1){
acc_col[cur_acc_ptr] = cur_acc_index //Probably should just put in gid actually
acc_val[cur_acc_ptr] = cur_B_vals[j]*cur_A_vals[k]
acc_index[curr_acc_index]=cur_acc_ptr++

}
else{
acc_val[acc_index(cur_acc_index)] += cur_B_vals[j]*cur_A_vals[k]

}
}

}
c.insertGlobalVals(i, (Global_ids_of_hashes(acc_col))(0, curr_acc_ptr), acc_val(0,cur_acc_ptr))

}

Figure 7. ML’s hash based algorithm for sparse matrix-
matrix multiply

20

6 Contributions

All matrix multiplication code was adapted from EpetraExt for use in Tpetra by Kurtis
Nusbaum. Test code was written by Jonathan Hu, Chris Siefert, Jeremie Gaidamour, and
Kurtis Nusbaum.

21

References

[1] M. Heroux. EpetraExt: Linear algebra services package. http://trilinos.sandia.

gov/trilinos/packages/epetraext/, 2001.

[2] M. Heroux and C. Baker. Kokkos: Core kernels package. http://trilinos.sandia.

gov/trilinos/packages/kokkos.

[3] M. Heroux, C. Baker, and A. Williams. Tpetra: Next-generation templated Petra. http:
//trilinos.sandia.gov/trilinos/packages/tpetra.

[4] Michael A. Heroux, Roscoe A. Bartlett, Vicki E. Howle, Robert J. Hoekstra, Jonathan J.
Hu, Tamara G. Kolda, Richard B. Lehoucq, Kevin R. Long, Roger P. Pawlowski, Eric T.
Phipps, Andrew G. Salinger, Heidi K. Thornquist, Ray S. Tuminaro, James M. Willen-
bring, Alan Williams, and Kendall S. Stanley. An overview of the Trilinos project. ACM
Trans. Math. Softw., 31(3):397–423, 2005.

[5] Tamara K. Locke. Guide to preparing SAND reports. Technical report SAND98-0730,
Sandia National Laboratories, Albuquerque, New Mexico 87185 and Livermore, Califor-
nia 94550, May 1998.

22

A Trilinos Configure Script

Figure A.1 shows the script that was used to configure the build of Trilinos on Hopper that
was used for testing.

23

#!/bin/bash
#
This configure worked for me (Kurtis Nusbaum <klnusbaum@gmail.com>) on
NERSC’s hopper machine as of 21/07/2011.

if [$# != 0]
then
echo ""
echo "NOTE: Before running this configure, I needed to run the "
echo "following module commands. You might need to as well. "
echo "module swap PrgEng-pgi PrgEnv-gnu"
echo "module load git"
echo "module load cmake"
echo "This configure script is also designed for an \"out of source\""
echo "build. You should create a build directory within your TRILINOS_HOME"
echo "and run this script from in there."
echo ""
else
cmake \
-D MPI_CXX_COMPILER="CC" \
-D MPI_C_COMPILER="cc" \
-D MPI_Fortran_COMPILER="ftn" \
-D Teuchos_ENABLE_STACKTRACE:BOOL=OFF \
-D Teuchos_ENABLE_LONG_LONG_INT:BOOL=ON \
-D Trilinos_ENABLE_Tpetra:BOOL=ON \
-D Tpetra_ENABLE_TESTS:BOOL=ON \
-D Tpetra_ENABLE_EXAMPLES:BOOL=ON \
-D Tpetra_ENABLE_EXPLICIT_INSTANTIATION:BOOL=ON \
-D Teuchos_ENABLE_EXPLICIT_INSTANTIATION:BOOL=ON \
-D TPL_ENABLE_MPI:BOOL=ON \
-D CMAKE_INSTALL_PREFIX:PATH="$HOME/opt/Trilinos/tpetraEval" \
-D BLAS_LIBRARY_DIRS="$LIBSCI_BASE_DIR/gnu/lib" \
-D BLAS_LIBRARY_NAMES="sci" \
-D LAPACK_LIBRARY_DIRS="$LIBSCI_BASE_DIR/gnu/lib" \
-D LAPACK_LIBRARY_NAMES="sci" \
-D CMAKE_CXX_FLAGS="-O3 -ffast-math -funroll-loops" \
\
..
fi

Figure A.1. Configure script used for Trilinos

24

DISTRIBUTION:

1 MS 1318 Kurtis Nusbaum, 01426

1 MS 1320 Dr. Michael Heroux, 01426

1 MS 0378 Dr. Christopher Siefert, 01443

1 MS 9159 Dr. Jonathan Hu, 01426

1 MS 1320 Dr. Jeremie Gaidamour, 01426

1 MS 0899 Technical Library, 9536 (electronic copy)

25

26

v1.36

