
SANDIA REPORT
SAND2011-6031
Unlimited Release
Printed August 2011

Atom-to-Continuum Methods for Gaining
a Fundamental Understanding of Fracture

Reese E. Jones, Jonathan A. Zimmerman, Jeremy A. Templeton, Xiaowang Zhou,
Neville R. Moody, E. David Reedy Jr., Christopher J. Kimmer, Terry J. Delph,
Jay Oswald, Ted Belytschko, Jeffrey T. Lloyd, and David L. McDowell

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.



Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

•
 •
U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2



SAND2011-6031
Unlimited Release

Printed August 2011

Atom-to-Continuum Methods for Gaining a
Fundamental Understanding of Fracture

Reese E. Jones, Jonathan A. Zimmerman, Jeremy A. Templeton,
Xiaowang Zhou, Neville R. Moody, E. David Reedy Jr.

Sandia National Laboratories
Livermore, CA 94551

rjones@sandia.gov

Christopher J. Kimmer
Indiana University Southeast

New Albany, IN

Terry J. Delph
Lehigh University

Bethlehem, PA 18015

Jay Oswald, Ted Belytschko
Northwestern University

Evanston, IL 60208

Jeffrey T. Lloyd, David L. McDowell
Georgia Institute of Technology

Atlanta, GA 30332

Abstract

This report describes an Engineering Sciences Research Foundation (ESRF) project to character-
ize and understand fracture processes via molecular dynamics modeling and atom-to-continuum
methods. Under this aegis we developed new theory and a number of novel techniques to describe
the fracture process at the atomic scale. These developments ranged from a material-frame con-
nection between molecular dynamics and continuum mechanics to an atomic level J integral. Each
of the developments build upon each other and culminated in a cohesive zone model derived from
atomic information and verified at the continuum scale.
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clarity, atoms are shown only if they possess a high value of centrosymmetry pa-
rameter [92], and each subfigure shows both full-range (left) and close-up (right)
views. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

13



6.5 Lowest eigenvalue as a function of increasing load (step) for the nanoindentation
simulation for analysis regions that contain N number of atoms and enclose the
contact area. For systems where N ≥ 75 the minimum of each curve is at an in-
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displacement of about 7 Å, after which loading rate-dependent behavior is evident. 191

8.9 FEA mesh of Compact Tension specimen. The specimen’s height H = 369 nm, its
effective width W = 307 nm, and its initial crack length a = 155 nm (a/W ≈ 0.5). . 193

8.10 Quasistatic crack growth in the CT geometry. Loading-pin displacements of (a)
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Chapter 1

Introduction
This report describes an Engineering Sciences Research Foundation (ESRF) project to character-
ize and understand fracture processes via molecular dynamics modeling and atom-to-continuum
methods. The effort is predicated on the idea that processes and information at the atomic level
are missing in engineering scale simulations of fracture, and, moreover, are necessary for these
simulations to be predictive.

In this project we developed considerable new theory and a number of novel techniques in or-
der to describe the fracture process at the atomic scale. Chapter 2 gives a detailed account of the
material-frame connection between molecular dynamics and continuum mechanics we constructed
in order to best use atomic information from solid systems. With this framework, in Chapter 3, we
were able to make a direct and elegant extension of the classical J down to simulations on the scale
of nanometers with a discrete atomic lattice. The technique was applied to cracks and dislocations
with equal success and displayed high fidelity with expectations from continuum theory. Then,
as a prelude to extension of the atomic J to finite temperatures, we explored the quasi-harmonic
models as efficient and accurate surrogates of atomic lattices undergoing thermo-elastic processes
(Chapter 4). With this in hand, in Chapter 5 we provide evidence that, by using the appropriate
energy potential, the atomic J integral we developed is calculable and accurate at finite/room tem-
peratures. In Chapter 6, we return in part to the fundamental efforts to connect material behavior
at the atomic scale to that of the continuum. In this chapter, we devise theory that predicts the
onset of instability characteristic of fracture/failure via atomic simulation. In Chapters 7 and 8,
we describe the culmination of the project in connecting atomic information to continuum mod-
eling. In these chapters we show that cohesive zone models are: (a) derivable from molecular
dynamics in a robust and systematic way, and (b) when used in the more efficient continuum-level
finite element technique provide results that are comparable and well-correlated with the behavior
at the atomic-scale. Moreover, we show that use of these same cohesive zone elements is feasible
at scales very much larger than that of the lattice. Finally, in Chapter 9 we describe our work in
developing the efficient non-reflecting boundary conditions necessary to perform transient fracture
and shock simulation with molecular dynamics.
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Chapter 2

A material frame approach for evaluating
continuum variables in atomistic
simulations
Principal Authors: Jonathan A. Zimmerman, Reese E. Jones, and Jeremy A.
Templeton

In this chapter, we present a material frame formulation analogous to the spatial frame for-
mulation developed by Hardy, whereby expressions for continuum mechanical variables such as
stress and heat flux are derived from atomic scale quantities intrinsic to molecular simulation. This
formulation is ideally suited for developing an atomistic-to-continuum correspondence for solid
mechanics problems. We derive expressions for the first Piola-Kirchhoff (P-K) stress tensor and
the material frame heat flux vector directly from the momentum and energy balances using local-
ization functions in a reference configuration. The resulting P-K stress tensor, unlike the Cauchy
expression, has no explicit kinetic contribution. The referential heat flux vector likewise lacks the
kinetic contribution appearing in its spatial frame counterpart. Using a proof for a special case and
molecular dynamics simulations, we show that our P-K stress expression nonetheless represents a
full measure of stress that is consistent with both the system virial and the Cauchy stress expres-
sion developed by Hardy. We also present an expanded formulation to define continuum variables
from micromorphic continuum theory, which is suitable for the analysis of materials represented
by directional bonding at the atomic scale.

2.1 Introduction

Continuum theory has been used for decades to analyze and predict the mechanics of materials and
structures. However, as technologies shrink to the nanometer range, quantities such as stress and
strain become ill defined and the application of continuum mechanics in nanomechanical frame-
works becomes suspect. This brings into question whether the traditional design tools used for
manufacturing can be applied to micro or nano electro-mechanical systems. And while atomic
scale modeling and simulation methods, e.g. molecular dynamics, have provided a wealth of in-
formation for such systems, the use of such methods has not been standardized. Certainly, the use
of continuum mechanics methods would be invaluable provided that clear connections between
nanoscale mechanics and engineering scale analysis can be made.
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The development of definitions for continuum variables that are calculable within an atomic
system has a long and rich history. In the late 19th century, Clausius [31] and Maxwell [125, 126]
simultaneously developed the virial theorem (VT) to define the stress applied to the surface of
a fixed volume containing interacting particles and a non-zero temperature. Since these initial
efforts, there have been many subsequent works to improve on this definition [27, 35, 71, 83, 118,
136, 138, 143, 163, 170, 188, 200, 213–215, 222], most of which have occurred in the last quarter
of the 20th century and have continued into the 21st century. The articles cited here have addressed
important issues such as the consistency of stress expressions with the mechanical concept of a
force acting on a unit area, the validity of an atomic stress based on the VT, and the role of both
spatial and time averaging. For brevity, we refer the reader to the discussions in [222] and [200]
for more information.

Among these efforts is the notable work by Hardy and colleagues [71–73]. Hardy’s formalism
uses a finite valued and finite ranged localization function in lieu of the Dirac delta function [83]
to establish a self-consistent manner of distributing discrete atomic contributions to thermome-
chanical fields. While the range and form of the localization function can be selected arbitrarily,
the resulting expression for, say, the stress has a certain amount of regularity with varying sized
support regions given reasonable choices for the form. Hardy’s original formulation is based on
the Eulerian or spatial configuration where localization volumes are essentially control volumes
fixed in space that matter occupies at a particular time. Hence, Hardy’s expressions for stress and
heat flux contain both potential (based on derivatives of potential energy) and kinetic (based on
the flux of momentum or energy through the localization volume) terms. The validity of kinetic
contributions to stress has been an issue of some contention, and has been examined in detail by
such authors as Zhou [214] and Murdoch [138].

An alternative approach that obviates the separation of potential and kinetic contributions to
stress is to construct a similar formulation to Hardy’s in the Lagrangian or material frame. In the
material frame, an appropriate stress measure is the 1st Piola-Kirchhoff tensor P, which represents
the amount of current force exerted on a unit area as measured in the reference configuration.
Expressions to calculate P have been developed by Andia et al. [7, 8, 36, 37]; however, their
definition is constructed as a system average, i.e. a single value representative of the average stress
state for a cell with periodic boundary conditions. In addition, Andia et al. make the distinction
between internal and external forces, separating the interactions between atoms within the cell and
the interactions between atoms with “ghost” atoms located across the periodic boundaries. This
distinction is not made in many of the approaches mentioned earlier, and application of this concept
is not straightforward for the localization volume framework of Hardy.

In this paper, we present a material frame formulation analogous to the one developed by Hardy
for the spatial frame. This formulation relies on a mapping from reference to current positions
of material points. It is ideally suited for developing an atomistic-to-continuum correspondence
for solid mechanics problems as it contains atom-to-material point mapping functions that need
only be calculated once for a given simulation. Also, it easily links to concepts and variables
used within continuum constitutive models such as the deformation gradient. In Section 2.2, we
derive an expression for P-K stress and the referential heat flux directly from the momentum and
energy balances using localization functions in a zero temperature reference configuration. Neither
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the P-K stress nor the referential heat flux vector have explicit dependence on kinetic energy.
Nevertheless, we demonstrate that the derived P-K stress is consistent with the Hardy expression
for Cauchy stress using a proof based on a system average in Section 2.2.4, as well as pointing
out the obvious connection between the continuum versions of these two quantities which are
derived directly from the appropriate balance laws. Furthermore, we employ molecular dynamics
simulations discussed in Section 2.3 to verify that our stress expression is consistent even for
systems where the kinetic portion of the Cauchy stress is a significant fraction of the total value.
As a further extension of this work, we also present an expanded formulation to define continuum
variables from micromorphic continuum theory in Section 2.4. This extension relies crucially on
the Lagrangian framework we develop and shows that our formulation is useful for the analysis of
materials represented by directional bonding at the atomic scale.

2.2 Formulation for Standard Continuum Mechanics

Before we begin our formulation, we define the notation for spatial and temporal derivatives and
operators used in this paper. Letting the notations g̃ and ĝ refer to g as a function of the spatial
coordinate x or the material coordinate X, respectively, we can write g = g̃(x, t) = g̃(x̂(X, t), t) =
ĝ(X, t), for any scalar, vector or tensor function g. With this notation we can define the spatial
frame and material frame divergences to be ∇x · g̃ and ∇X · ĝ, and likewise define the spatial frame
and material frame gradients as ∇xg̃ and ∇Xĝ. In the following, this explicit notation will not
be used; rather, it will be clear from context whether the field referred to is a function of the
spatial configuration or the material configuration, as is customary in the continuum mechanics
literature, e.g. [68, 119]. Also, it is understood that if g(X, t) is a tensor of “mixed” character,
e.g. the 1st Piola-Kirchhoff stress tensor, then the expression ∇X · g is defined to be consistent
with the index notation giJ,J , where lower-case Roman letters denote spatial frame indices and
upper-case Roman letters denote material frame indices, with both types of subscripts referring
to the Cartesian coordinate components of vector or tensor quantities. Regarding derivatives in
time, we express the partial time derivative of g̃(x, t) as ∂g

∂t ≡
∂g
∂t

∣∣∣
x

and the full or material time

derivative as dg
dt ≡

∂g
∂t

∣∣∣
X

. As usual, these two time derivatives are related through the expression
dg
dt = ∂g

∂t +∇xg ·v.

2.2.1 Balance Laws

We begin by modifying Hardy’s formulation for the Lagrangian or material frame. Hardy’s work
uses the balance equations for mass, linear momentum and energy. These are expressed in a spatial
configuration as follows:

∂ρ

∂t
+∇x · (ρv) = 0 (2.1)

∂(ρv)
∂t

= ∇x · (σσσ−ρv⊗v)+ρb (2.2)
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∂(ρe)
∂t

= ∇x · (σσσ ·v−ρev−q)+ρb ·v+ρh (2.3)

These expressions can be manipulated to use the full or material time derivative d
dt instead of the

partial time derivative ∂

∂t :
dρ

dt
+ρ∇x ·v = 0 (2.4)

ρ
dv
dt

= ∇x ·σσσ+ρb (2.5)

ρ
dε

dt
= σσσ : ∇xv−∇x ·q+ρh (2.6)

In equations (2.1) through (2.6) ρ is mass density, v is velocity, σσσ is Cauchy stress, b is body
force per unit mass, e is total energy per unit mass, ε is internal energy per unit mass (total energy
contains contributions from both internal energy and continuum kinetic energy: e = ε+ 1

2v2), q is
heat flux and h is energy generation per unit mass. Equations (2.1) - (2.3) are commonly used in
fluid dynamics analyses whereas equations (2.4) - (2.6) are typically used to solve solid mechanics
problems. Nevertheless, the variables used within all of these equations are defined with respect to
the current/spatial configuration, i.e. variables are functions of spatial coordinate x and time t.

These variables and equations can also be expressed with respect to the reference/material
configuration:

dρ0

dt
= 0 (2.7)

ρ0
dv
dt

= ∇X ·P+ρ0b (2.8)

ρ0
dε

dt
= P :

dF
dt
−∇X ·Q+ρ0h (2.9)

In these equations, ρ0 is reference mass density (mass per unit reference volume), P is 1st Piola-
Kirchhoff stress (force per unit reference area), F is the deformation gradient ( ∂x

∂X ), and Q is
the reference heat flux (energy per unit reference area per unit time). These variables in equa-
tions (2.7)-(2.9) are all functions of the reference coordinate X and time t, with the material time
derivative retaining its earlier definition, dg(X,t)

dt = ∂g
∂t

∣∣∣
X

. Although different in form and func-
tional dependencies, all three sets of equations, (2.1)-(2.3), (2.4)-(2.6), and (2.7)-(2.9), represent
the same fundamental balance laws and are derivable from one another as shown in standard texts
on continuum mechanics, e.g. [68, 119].

2.2.2 Densities and Localization

We consider a body to be a system of N atoms which are interacting with each other through
some inter-atomic potential energy formulation. Each atom α is characterized by its mass mα,
its position in the reference configuration Xα, its position in the current configuration xα(t), its
velocity vα(t) = dxα

dt , and a displacement uα(t) ≡ xα(t)−Xα. Herein, any superscripted, lower-
case Greek letter will be used to refer to a particular atom.
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In Hardy’s formulation, two views of the material system are considered. One perspective is
the continuum, where quantities are point-wise functions of time and position. These quantities in-
clude mass density ρ0(X, t), momentum density p0(X, t), and energy density ρ0e(X, t). The other
perspective is that the material system contains atoms, each of which has its own mass, momentum,
potential energy and kinetic energy. In order to connect the two views, Hardy uses a localization
function ψ which spatially averages the properties of the atoms, and allows many atoms to con-
tribute to a continuum property at a specific position and time. In his original formulation, Hardy
expressed ψ as a function of current position. In our derivation, we instead choose it to be a
function of reference position. The three key relations analogous to Hardy’s spatial forms are:

ρ0(X) =
N

∑
α=1

mα
ψ(Xα−X) (2.10)

p0(X, t) =
N

∑
α=1

mαvα
ψ(Xα−X) (2.11)

ρ0(X)e(X, t) =
N

∑
α=1

{
1
2

mα (vα)2 +φ
α

}
ψ(Xα−X). (2.12)

A few important things to note:

• The localization function ψ(r) is non-negative,1 i.e. ψ(r)≥ 0.

• ψ(r) has dimensions of inverse volume.

• ψ(r) is a normalized function, thus Z
Ω

ψ(r)d3r = 1, (2.13)

where Ω⊂ R3 is the domain of interest containing the collection of atoms.

• In equation (2.12), the total potential energy density of the system is expressed as the sum-
mation of individual atomic potential energies, φα.

• The velocity field v is defined by the expression

v(X, t)≡ p0(X, t)
ρ0(X)

=
∑

N
α=1 mαvαψ(Xα−X)

∑
N
α=1 mαψ(Xα−X)

. (2.14)

which is effectively a mass weighted average. With velocity defined in this manner, the
displacement field u can be defined as

u(X, t) =
∑

N
α=1 mαuαψ(Xα−X)

∑
N
α=1 mαψ(Xα−X)

, (2.15)

1While it is possible to choose localization functions that are not non-negative (as discussed on p. 77 of [137]), in
practice this is rarely done as it contains the potential to admit unbounded values for the extremum. In such instances,
additional regularity requirements are needed.
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which is consistent with the velocity field defined in (2.14), i.e. v = du
dt . With a displacement

field we can construct the motion of material points X from reference to current configuration
as a function of time in the usual way x(X, t) = X+u(X, t). Furthermore, we can apply the
differential operator ∇X to (2.15) to define a displacement gradient,

∇Xu =
∑

N
α=1 mα (uα−u(X, t))⊗∇Xψ(Xα−X)

∑
N
α=1 mαψ(Xα−X)

, (2.16)

which then can be used to form a locally defined deformation gradient F(X, t) = 1 + ∇Xu.
However, this use of Hardy localization places additional requirements on the smoothness
and exact form of ψ. For example, a so-called “top hat” or radial Heaviside function that
is constant and non-zero only in compact region would not produce smooth, continuous
displacement gradients.

The question arises: can one relate a Lagrangian/referential field ĝ(X, t) derived from atomic
data to an Eulerian/spatial field g̃(x, t) derived from the same data. First, let us examine the mass
density starting with the referential definition (2.10). To map this referential function into a spatial
one we need to transform the localization function ψ and its base point X to the current configura-
tion. Given a reference configuration for the atoms {Xα}, which defines the atomic displacements
uα(t) = xα(t)−Xα, we can construct the continuum/coarse-scale motion x(X, t) = u(X, t) + X
from the field u defined by Equation (2.15). Then

ψX = ψX(x,t) ≡ ψ
t
x (2.17)

where ψt
x is the deformed version of ψX which is not equivalent to ψx in general, please refer to

the schematic in Figure 2.1. Here, we have introduced new notation, e.g. ψX(Xα) = ψ(Xα−X),
to make clear that the function ψ on R3 transforms differently than its argument Xα in going from
reference to current configuration, i.e. the kernel transforms with the displacement field and the
atoms follow their particular trajectory. To first order, i.e. where the kernel radius is small enough
relative to the spatial gradient of the motion F,Z

Ω0

ψX(Y)d3Y =
Z

Ω

ψ
t
x(y)

1
detF

d3y≈ 1
detF

Z
Ω

ψ
t
x(y)d3y (2.18)

and (detF)ψx ≈ψt
x since

R
Ω0

ψX(X)d3X =
R

Ω
ψx(x)d3x = 1. With this in hand, we have the usual

relation between referential and spatial mass density

ρ0(X) =
N

∑
α=1

mα
ψX(Xα) =

N

∑
α=1

mα
ψ

t
x(x

α)≈ detF
N

∑
α=1

mα
ψx(xα) = detF(X, t)ρ(X, t) (2.19)

This derivation can also be directly applied to the momentum and energy densities which were
defined as primary fields in (2.11) and (2.12). Please note that, despite the mapping of ψX to ψt

x by
the coarse-scale motion, the same atoms may not contribute to the density of corresponding points
X and x. For solids,2 where the discrepancies in coarse motion x(Xα, t) and the atomic trajectory

2Fluids and granular materials will be touched on in the Discussion at the end of the paper.
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xα(t) are small and of a thermal nature, there should not be significant changes in the set of atoms
that contribute the densities calculated with ψX or ψt

x.3 Now turning to the derived velocity (2.14)
and displacement (2.15) fields, we see that they are simply ratios of the momentum to mass density
and hence the determinant factors detF drop out so that

û(X, t) =
∑

N
α=1 mαuαψX(Xα)

∑
N
α=1 mαψX(Xα)

=
∑

N
α=1 mαuαψt

x(xα)

∑
N
α=1 mαψt

x(xα)
≈ detF∑

N
α=1 mαuαψx(xα)

detF∑
N
α=1 mαψx(xα)

= ũ(x, t) (2.20)

for instance. As will be made clear in Section 2.2.4, the connection between Lagrangian and
Eulerian fluxes such as stress, is made through the correspondence between the continuum balance
laws (2.1-2.3) and (2.7-2.9).

ψX

Xα xα

X x

ψt
x

ψx

Figure 2.1. Schematic showing the motion of atom α : Xα→ xα

and a nearby point X→ x. Also shown are the support of the lo-
calization function in the reference configuration ψX and its image
in the current ψt

x which is subject to deformation. For comparison
the undeformed kernel ψx identical to ψX but centered at x in the
current configuration is also shown.

On closing this section, we note that in his earlier works [71, 73], Hardy established an im-
portant property of the localization function ψ. Given regularity of ψ, a bond function Bαβ(X)
between atoms α and β can be defined by the expression

Bαβ(X)≡
Z 1

0
ψ(λXαβ +Xβ−X)dλ, (2.21)

where Xαβ = Xα−Xβ. By taking the derivative of ψ(λXαβ +Xβ−X) with respect to λ,

∂ψ(λXαβ +Xβ−X)
∂λ

=−Xαβ ·∇Xψ(λXαβ +Xβ−X), (2.22)

and then integrating from λ = 0 to λ = 1, one obtains the identity:

ψ(Xα−X)−ψ(Xβ−X) =−Xαβ ·∇XBαβ(X). (2.23)

We will revisit the connection between the bond function in the reference and current configuration
in Section 2.2.4.

3An alternate viewpoint considering only the transformation of discrete values of the localization function follow-
ing the trajectories of the relevant atoms ψX(Xα) from the reference to current, would not lead to any change in the
set of atoms but says nothing about points in space not occupied by atoms nor provides a simple route to (2.18).
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2.2.3 Energy and Force Assumptions

Hardy makes four key assumptions about the forms of the energies of, and forces on, the atoms in
the system. The first is that the total potential energy of the system, Φ, can be considered to be the
summation of individual potential energies of each atom within the system,

Φ =
N

∑
α=1

φ
α. (2.24)

The usual procedure for constructing φα is to partition the energies per bond to each of the con-
stituent atoms such that the partition factors add to one.

The second assumption is that the force on any atom can be expressed by the summation

fα ≡− ∂Φ

∂xα
=

N

∑
β 6=α

fαβ. (2.25)

Although it is not always clear what the physical meaning of fαβ is, this partition can always be
made. When Φ is the summation of pair potentials, φα = 1

2 ∑
N
β6=α

φαβ(xαβ) where xαβ = ‖xαβ‖ and

xαβ ≡ xα− xβ, or for the Embedded Atom Method (EAM) [57], fαβ obviously means the force
exerted on atom α by atom β. However, for some multi-body potentials, such as the 3-body term
in the Stillinger-Weber potential [177], the meaning is not so straight-forward; nevertheless, the
force partition (2.25) can be constructed. This partition is not unique; more discussion of this fact
will be given in Sections 2.2.4 and 2.4.3.

The third assumption Hardy makes is that the atomic potential energies depend only on the
relative inter-atomic distances, φα = φα(xαβ,xαγ, . . . ,xβγ), so

fα =−
N

∑
β6=α

∂Φ

∂xαβ

xαβ

xαβ
=−

N

∑
β6=α

N

∑
γ=1

∂φγ

∂xαβ

xαβ

xαβ
. (2.26)

This expression includes the possibility that α = γ. While it is clear that radially-symmetric po-
tentials such as Lennard-Jones [109, 110] and EAM satisfy this assumption, it is also true that
potential energies that depend on bond orientations satisfy this as well. For the 3-body term in the
Stillinger-Weber potential [177], it can be shown by way of the law of cosines, which relates the
bond angles to relative inter-atomic distances, that this third assumption is valid.

Finally, the fourth assumption made is that each atomic potential energy depends only on the
distances between the atom under consideration and all other atoms, φα = φα(xαβ,xαγ, . . . ,xαN).
Thus, the force between atoms α and β can be expressed as

fαβ =−
{

∂φα

∂xαβ
+

∂φβ

∂xαβ

}
xαβ

xαβ
=−fβα. (2.27)

Clearly, while pair potentials and EAM qualify for this assumption, the potential of Stillinger-
Weber does not since the angle between atoms α,β,γ depends on all three relative distances in-
cluding xβγ. This should in no-way imply that the quantity fαβ cannot be defined. Rather, we
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merely note that for some choices of inter-atomic potential Hardy’s fourth assumption does not
appear to be applicable. This point will be further addressed in Section 2.4.

2.2.4 Derivation of Continuum Expressions

Here we apply the kinematic definitions (2.10-2.12) to the balance laws (2.7-2.9) in order to define
the referential fluxes of stress and heat. We also make connections between these fluxes and their
spatial counterparts through the well-known Piola transform which is ultimately derived from the
relations between the respective balance laws, (2.7-2.9) and (2.1-2.3).

Balance of Mass

Inspection of equation (2.10) reveals that

dρ0

dt
= 0,

since locations of atoms in the reference configuration, {Xα}, are fixed.

Balance of Linear Momentum

Starting with Hardy’s expression for momentum density (2.11),

ρ0
dv
dt

=
dp0

dt
=

d
dt

{
N

∑
α=1

mαvα
ψ(Xα−X)

}

=
N

∑
α=1

mα dvα

dt
ψ(Xα−X)

=
N

∑
α=1

(fα +mαbα)ψ(Xα−X),

where we have applied Newton’s 2nd law for each atom and divided the total force on atom α into
the sum of total internal force fα and the body force mαbα. The internal force term on the RHS of
the above expression can be combined with Hardy’s second force assumption to obtain,

N

∑
α=1

fα
ψ(Xα−X) =

N

∑
α=1

N

∑
β 6=α

fαβ
ψ(Xα−X).

Since α and β run over all atoms in the system, they are considered dummy indices and can be
switched. By doing this, and using the symmetry condition, (2.27), one obtains

N

∑
α=1

fα
ψ(Xα−X) =

1
2

N

∑
α=1

N

∑
β6=α

fαβ

(
ψ(Xα−X)−ψ(Xβ−X)

)
.
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Using this with expression (2.23), the time derivative of the momentum density becomes

ρ0
dv
dt

=
N

∑
α=1

(
1
2

N

∑
β6=α

fαβ

(
−Xαβ ·∇XBαβ(X)

)
+mαbα

ψ(Xα−X)

)
(2.28)

= ∇X ·
(
−1

2

N

∑
α=1

N

∑
β 6=α

fαβ⊗XαβBαβ(X)

)
+

N

∑
α=1

mαbα
ψ(Xα−X). (2.29)

Comparing equation (2.29) with the continuum balance of momentum (2.8), we observe that in
order for these expressions to be consistent with one another,

P(X, t) =−1
2

N

∑
α=1

N

∑
β6=α

fαβ⊗XαβBαβ(X), (2.30)

and

b(X, t) =
1

ρ0(X)

N

∑
α=1

mαbα
ψ(Xα−X) =

∑
N
α=1 mαbαψ(Xα−X)

∑
N
α=1 mαψ(Xα−X)

. (2.31)

For pair and other central force potentials (e.g., EAM),

P =
1
2

N

∑
α=1

N

∑
β6=α

{
∂φα

∂xαβ
+

∂φβ

∂xαβ

}
xαβ⊗Xαβ

xαβ
Bαβ(X). (2.32)

This expression can be further simplified by splitting this expression into two terms, switching
the dummy indices used in one of the terms, and using the relations xβα = xαβ, xβα = −xαβ,
Xβα =−Xαβ and Bβα = Bαβ to obtain

P =
N

∑
α=1

N

∑
β 6=α

∂φβ

∂xαβ

xαβ⊗Xαβ

xαβ
Bαβ(X). (2.33)

It is interesting to note that equation (2.30) shows that P is connected to the underlying atomic
displacements through the inter-atomic forces fαβ. It is also through this connection that P is im-
plicitly dependent on thermal motion of the atomic system. Our expression defines stress without
the need to necessarily define a deformation gradient field or a hyperelastic stored energy function.

Also note that equation (2.30) contains only force terms on the right-hand side; no explicit
dependence on velocity is present,4 unlike the Cauchy stress expression

σσσ(x, t) =−1
2

N

∑
α=1

N

∑
β 6=α

fαβ⊗xαβB̃αβ(x)−
N

∑
α=1

mαwα⊗wα
ψ̃(xα−x) (2.34)

from the Eulerian analysis [71, 73]. The relative velocity wα is defined

wα(x, t)≡ vα−v(x, t) . (2.35)

4The P-K expression (2.30) also differs from the Cauchy expression (2.34) in that it gives a zero value for the
somewhat degenerate case of a non-interacting gas regardless of temperature.
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and has the property
N

∑
α=1

mαwα
ψ̃(xα−x) = 0 (2.36)

by virtue of the Eulerian analogue of the definition (2.14). Note that ψ̃ and B̃ are the localization
and bond functions expressed in units of inverse current/deformed volume rather than units of
inverse reference/undeformed volume.

In addition to the well-known connection between the continuum measures of stress, P and
σσσ, we now show that our expression for P given in equation (2.30) can be directly related to
Hardy’s Cauchy stress expression (2.34) in a manner consistent with this connection. Given the
continuum Piola transformation5 from 1st P-K stress to Cauchy stress, σσσ = 1

J P ·FT where J≡ detF,
we produce

1
J

P ·FT =−1
J

N

∑
α=1

N

∑
β6=α

1
2

fαβ⊗XαβBαβ(X) ·FT . (2.37)

In order to simplify this equation, we assert that the position of each atom can be decomposed into
a rigid body translation, r(t), a homogeneous deformation F relative to the material point X, plus
a perturbation due to thermal fluctuations and/or inhomogeneities in the deformation field,

xα = r(t)+F(X, t) ·Xα + zα(X, t), (2.38)

where zα is merely the remainder of xα with respect to the expansion of xα to first order in Xα. We
define ΞΞΞ

α = Xα−X where now X satisfies the relation

X =
1

ρ0(X)

N

∑
α=1

mαXα
ψ(Xα−X). (2.39)

This relation enforces the restriction that material points X coincide with the centers of mass of the
localization volumes they are associated with. This restriction apparently makes the selection of
material points X non-trivial since (2.39) is an implicit relationship. However, since most crystal
structures possess a high degree of symmetry, especially if an undeformed, defect-free configura-
tion is used as a reference state, immediate selection of the appropriate locations of material points
is possible and can be as dense as the lattice itself. Equation (2.39) allows us to write

vα =
dr
dt

+
dF
dt
·Xα +

dz
dt

α

=
dr
dt

+
dF
dt
·X+

dF
dt
·ΞΞΞα +

dz
dt

α

(2.40)

and then to identify

wα =
dF
dt

ΞΞΞ
α +

dz
dt

α

(2.41)

with the part of the velocity vα that satisfies (2.36). Since xαβ = F ·Xαβ +zαβ, we can recast (2.37)

5The Piola transform comes directly from Nanson’s formula da = det(F)F−T dA which relates the change in di-
rected area elements from reference to current configuration by way of the deformation gradient.
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as

1
J

P ·FT =− 1
2J

N

∑
α=1

N

∑
β6=α

fαβ⊗
(

xαβ− zαβ

)
Bαβ(X)

=− 1
2J

N

∑
α=1

N

∑
β6=α

fαβ⊗xαβBαβ(X)+
1
2J

N

∑
α=1

N

∑
β6=α

fαβ⊗ zαβBαβ(X).

(2.42)

If we now examine the special case of a full system average such that 1
J Bαβ = 1/V for all points

in a system with finite volume V , the Piola transformed P from (2.42) becomes

1
J

P ·FT =− 1
2V

N

∑
α=1

N

∑
β 6=α

fαβ⊗xαβ +
1

2V

N

∑
α=1

N

∑
β6=α

fαβ⊗ zαβ, (2.43)

and the Cauchy stress (2.34) becomes

σσσ =− 1
2V

N

∑
α=1

N

∑
β 6=α

fαβ⊗xαβ− 1
V

N

∑
α=1

mαwα⊗wα. (2.44)

The difference between these two expressions, (2.43) and (2.44), is

1
J

P ·FT −σσσ =
1
V

N

∑
α=1

1
2

N

∑
β 6=α

fαβ⊗ zαβ +
N

∑
α=1

mαwα⊗wα

=
1
V

N

∑
α=1

(fα⊗ zα +mαwα⊗wα)

(2.45)

after using the identity

1
2

N

∑
α=1

N

∑
β6=α

fαβ⊗ zαβ =
1
2

N

∑
α=1

N

∑
β 6=α

fαβ⊗ (zα− zβ)

=
1
2
( N

∑
α=1

N

∑
β 6=α

fαβ⊗ zα +
N

∑
α=1

N

∑
β6=α

fβα⊗ zβ
)

=
N

∑
α=1

fα⊗ zα

(2.46)

which results simply from the manipulation of dummy indices, the definition (2.25) and the sym-
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metry condition (2.27). In the absence of a body force (fα = mα dvα

dt ) then

〈 N

∑
α=1

fα⊗ zα

〉
=
〈 d

dt

N

∑
α=1

mαvα⊗ zα

〉
−
〈 N

∑
α=1

mαvα⊗ dzα

dt

〉

=−
〈 N

∑
α=1

mαvα⊗ dzα

dt

〉

=−
〈 N

∑
α=1

mα
(
v+wα

)
⊗
(
wα− dF

dt
ΞΞΞ

α
)〉

=−
〈

v⊗
N

∑
α=1

mαwα

〉
+
〈

v⊗ dF
dt

N

∑
α=1

mα
ΞΞΞ

α

〉

−
〈 N

∑
α=1

mαwα⊗wα

〉
+
〈 N

∑
α=1

mαwα⊗ dF
dt

ΞΞΞ
α

〉

=−
〈 N

∑
α=1

mαwα⊗wα

〉
+
〈 N

∑
α=1

mαwα⊗ dF
dt

ΞΞΞ
α

〉

(2.47)

given the definition of ΞΞΞ
α, and the fact that time averages 〈•〉 of exact differentials of bounded

quantities are zero. The identity (2.47) is a simply a version of the virial theorem and if we assume
a steady state, where dF

dt must be zero, then we have

〈 N

∑
α=1

fα⊗ zα

〉
+
〈 N

∑
α=1

mαwα⊗wα

〉
= 0 , (2.48)

This does not mean that F is necessarily fixed at the identity; rather, it means that (2.48) is satisfied
only for truly steady systems. Now we can return to (2.45) and show that the (time-averaged)
expressions for the transformed 1st Piola-Kirchhoff stress and the Cauchy stress are consistent:

〈1
J

P ·FT −σσσ
〉

=
1
V

〈 N

∑
α=1

fα⊗ zα +mαwα⊗wα

〉
= 0 (2.49)

by use of (2.48).

The main difficulty in extending this proof to the general case is that the atoms contributing to
the sums in (2.34) and (2.37) may be different depending on how atoms are flowing through space.
Moreover, mapping the reference frame function Bαβ(X) = Bαβ

X to the spatial B̃αβ(x) = Bαβ
x is non-

trivial (as alluded to in Section 2.2.2). Rather than attempting to do this analysis, in Section 2.3
we will explore how the expression for P in equation (2.30) performs for cases where the thermal
fluctuations are significant, and compare our results with expectations from continuum mechanics
and with the usual Hardy definition for Cauchy stress.
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Balance of Energy

Starting with the Lagrangian expression for the system energy (2.12),

d (ρ0e)
dt

= ρ0
de
dt

=
d
dt

{
N

∑
α=1

{
1
2

mα (vα)2 +φ
α

}
ψ(Xα−X)

}

=
N

∑
α=1

{
mα

(
dvα

dt
·vα

)
+

dφα

dt

}
ψ(Xα−X)

=
N

∑
α=1

{
(fα +mαbα) ·vα +

dφα

dt

}
ψ(Xα−X).

By imposing the second and third force assumptions, this simplifies to

ρ0
de
dt

= ∇X ·
(

N

∑
α=1

N

∑
β 6=α

N

∑
γ6=α

(
∂φγ

∂xαβ

xαβ

xαβ
·vα

)
XαγBαγ(X)

)
+

N

∑
α=1

mαbα ·vα
ψ(Xα−X). (2.50)

Equation (2.50) can be further simplified by using the fourth force assumption:

ρ0
de
dt

= ∇X ·
(

N

∑
α=1

N

∑
β6=α

N

∑
γ6=α

(
∂φγ

∂xαβ

(
δαγ +δβγ

) xαβ

xαβ
·vα

)
XαγBαγ(X)

)
+

N

∑
α=1

mαbα ·vα
ψ(Xα−X)

(2.51)

= ∇X ·
(

N

∑
α=1

N

∑
β6=α

(
∂φβ

∂xαβ

xαβ

xαβ
·vα

)
XαβBαβ(X)

)
+

N

∑
α=1

mαbα ·vα
ψ(Xα−X) (2.52)

To proceed further, we separate atomic motion from continuum motion in two ways. First, we
split the atomic velocities vα into the continuum velocity v(X, t) and a relative velocity wα(X, t)
as in (2.35). Next we recall that earlier we recognized that the total energy, e contains contribu-
tions from both internal energy and continuum-scale kinetic energy. We separate this using the
expression e = ε+ 1

2v2:

ρ0
de
dt

= ρ0
dε

dt
+ρ0

dv
dt
·v (2.53)

Application of (2.53) to the LHS of (2.52) and (2.35) to the RHS of (2.52) produces:
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ρ0
dε

dt
+ρ0

dv
dt
·v = ∇X ·

(
N

∑
α=1

N

∑
β6=α

(
∂φβ

∂xαβ

xαβ

xαβ
· (v+wα)

)
XαβBαβ(X)

)

+
N

∑
α=1

mαbα · (v+wα)ψ(Xα−X)

= ∇X · (v ·P)+∇X ·
(

N

∑
α=1

N

∑
β 6=α

(
∂φβ

∂xαβ

xαβ

xαβ
·wα

)
XαβBαβ(X)

)

+ρ0b ·v+
N

∑
α=1

mαbα ·wα
ψ(Xα−X)

= (∇Xv) : P+v · (∇X ·P+ρ0b)+∇X ·
(

N

∑
α=1

N

∑
β 6=α

(
∂φβ

∂xαβ

xαβ

xαβ
·wα

)
XαβBαβ(X)

)

+
N

∑
α=1

mαbα ·wα
ψ(Xα−X)

Using the balance of linear momentum equation (2.8), this simplifies to

ρ0
dε

dt
= (∇Xv) : P+∇X ·

(
N

∑
α=1

N

∑
β6=α

(
∂φβ

∂xαβ

xαβ

xαβ
·wα

)
XαβBαβ(X)

)
+

N

∑
α=1

mαbα ·wα
ψ(Xα−X).

(2.54)
Since the ∇X and d

dt operators are commutative, ∇Xv = dF
dt . Hence,

ρ0
dε

dt
= P :

dF
dt
−∇X ·Q+ρ0h, (2.55)

where

Q(X, t) =−
N

∑
α=1

N

∑
β 6=α

(
∂φβ

∂xαβ

xαβ

xαβ
·wα

)
XαβBαβ(X) (2.56)

is the heat flux as expressed in the reference configuration. We note that like the expression for
stress this expression contains only a potential term and not a kinetic term, unlike the spatial
frame heat flux expression derived by Hardy [159]. Nevertheless, thermal motion does enter this
expression through the derivatives of the potential energy, the inter-atomic positions xαβ, and the
relative velocities wα.

Comparison of (2.54) with (2.55) also produces the relation defining energy generation per unit
mass:

h(X, t) =
1

ρ0(X)

N

∑
α=1

mαbα ·wα
ψ(Xα−X) =

∑
N
α=1 mαbα ·wαψ(Xα−X)

∑
N
α=1 mαψ(Xα−X)

(2.57)

We note that for a uniform body force field this term simplifies to zero. This term would be
also be negligible for a non-uniform body force field for which significant variations in the field
are defined at larger length scales that the localization volume size associated with ψ. However,
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for situations where b truly varies from atom to atom, it appears that the work done by the field
against the relative velocity field generates energy. The term h may also be related to other energy
source terms that can be introduced into the atomic energy, although none are present in the above
analysis.

Hardy and colleagues also derived [159] an expression for temperature by considering the
equipartition theorem and the kinetic energy associated with atomic velocities relative to the ve-
locity of the continuum at a spatial point,

T(x, t) =
1

3kB

∑
N
α=1 mα (wα)2

ψ(xα−x)

∑
N
α=1 ψ(xα−x)

, (2.58)

which is a simple weighted average as opposed to the volume average in (2.10) for example.
Here kB is Boltzman’s constant. Similarly, we can define a temperature field using our densities
expressed in the reference configuration,

T(X, t) =
1

3kB

∑
N
α=1 mα (wα)2

ψ(Xα−X)

∑
N
α=1 ψ(Xα−X)

. (2.59)

This definition is consistent with the allocation of 1
2kBT of kinetic energy per degree of freedom for

an atomic system. For solids, this allocation is somewhat inexact due to constraints, e.g. periodic
boundary conditions, that may be acting on the system, but this difference is minimal for systems
where the number of atoms is much larger than the number of constraints.

2.3 Evaluation of Material Frame Expressions

In this section, we examine the behavior of our P-K stress expression for several molecular dynam-
ics simulations. These simulations will confirm that our expression for P-K stress is consistent with
both the virial stress and the Cauchy stress expression defined by Hardy.6 All of our simulations
involve system of copper modeled using the EAM potential by Foiles et al. [57]. This potential
creates an equilibrium, face-centered-cubic crystal of Cu of lattice parameter equal to 3.615 Å at
zero temperature. For molecular dynamics simulations, a timestep of 0.001 ps is used.

Calculations are done using specialized routines written for ParaDyn [167] and the Large-scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS)[168], molecular simulation codes de-
veloped at Sandia National Laboratories. For the analyses presented in this section, the choice of
the zero temperature, undeformed system is used as our material configuration. The rationale for
this selection will be elaborated upon in the subsequent discussion section.

6In this section, all calculations of Cauchy stress (σσσ) are determined using equation (2.34), where the fixed spatial
point x coincides with the material point X used to calculate P via equation (2.30).
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2.3.1 Stress for a constrained finite temperature system

In this and the following section, we present simulations of a system containing 4,000 atoms
(10 x 10 x 10 unit cells), where periodic boundary conditions are enforced on all sides of the
simulation box. Two sets of calculations are performed: one using a single point in the center of
system with a spherical localization volume of radius 15 Å and a quartic polynomial localization
function, and another using a step function where both ψ and Bαβ equal the quantity V−1

0 (where
V0 is the system size at zero temperature and deformation).

We first examine the situation where our system is constrained to remain at the reference vol-
ume, but heated to a finite, non-zero temperature. In this instance F = 1 and J = 1; hence, the
values of 1st P-K and Cauchy stress should coincide. Unless otherwise stated, the results presented
here refer to the continuum stress measures evaluated for the single point simulations. The results
obtained in the step-based simulations were similar in all cases, with stress values much closer in
agreement to the system virial as one would expect since all atoms and bonds contribute uniformly
in that analysis.

Figure 2.2 shows the variation of instantaneous pressure with time for a system that is heated to
100 K. ‘Pressure’ in this case refers to the negative of the hydrostatic stress for each stress measure,
i.e. the P-K pressure equals−1

3Trace(P) =−1
3Pkk, the Cauchy pressure equals−1

3Trace(σσσ) and the
same relation is used for the system virial. The distributions of P-K and Cauchy nearly perfectly
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Figure 2.2. Variation of instantaneous pressure with time for a
constrained system at 100 K.
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overlap with one another, and both distributions are centered around the virial distribution. Also,
since the volume of material used for evaluation is a subset of the whole system, the variations
from the mean value are larger in magnitude for both P-K and Cauchy pressures as compared with
the variation observed in the virial. It is interesting to note that while the mathematical analysis
presented in the previous section showed that the P-K and Cauchy stress expressions agree with one
another (through the Jσσσ = P ·FT transformation) only if a long time average is taken, Figure 2.2
shows that close agreement also exists for stress evaluations at specific instants in time. We suspect
that this is due to the ensemble averaging provided by the Hardy method.

The agreement between our stress measures and the virial is easier to see by using the data in
Figure 2.2 to calculate cumulative time averaged pressures. Figure 2.3 shows the variation of these
time averaged pressures with time for the same duration, 106 timesteps. This figure shows that

 0.65

 0.655

 0.66

 0.665

 0.67

 0  200000  400000  600000  800000  1e+06

pr
es

su
re

 (G
Pa

)

timestep

PK1
Cauchy

Virial

Figure 2.3. Variation of time averaged pressure with time for a
constrained system at 100 K.

the time averaged pressures essentially converge within 500,000 timesteps (0.5 ns), and that the
converged values of P-K, Cauchy and virial pressures are very close to one another. This agreement
is more clearly shown in Table 2.1, which compares the converged values of P-K pressure (after
106 timesteps) with the virial pressure for both the point-based analysis shown in Figure 2.3 and
the step-based analysis. We note in Table 2.1 that the percent difference between P-K and virial
pressures is much less than 1%, and that this difference is smaller for the step-based analysis
(which uses all atoms in the system) than for the point-based analysis.

Table 2.1 also shows the converged time averaged pressures for systems heated to 300 K and
675 K, values approximately 22% and 50%, respectively, of the melting temperature of copper.
It can be seen that the agreement between P-K pressure and the virial remains excellent even at
these high temperatures and stress levels. This close agreement is emphasized in Figure 2.4, which
graphically shows the variation of pressure with increasing temperature for this constrained system.
It was also observed that, at the highest temperature simulated of 675 K, agreement between the
P-K pressure and the virial improved if a longer time average is taken.

The above analyses show that our derived expression for P-K stress is consistent with a thermo-
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Table 2.1. Time averaged pressures after 106 timesteps for con-
strained volume simulations.

Temperature (K) Point / Step virial pressure (GPa) P-K pressure (GPa) % difference
100 Point 0.6613775 0.6618136 0.06653
100 Step 0.6614168 0.6613937 -0.00350
300 Point 1.944335 1.944422 0.00448
300 Step 1.944465 1.944413 -0.00264
675 Point 4.335872 4.334868 -0.02316
675 Step 4.335840 4.336577 0.01699

mechanical measure of stress despite the fact that it contains only a potential and not a kinetic term,
unlike the Cauchy stress expression derived by Hardy. The small level of error between P-K stress
and the system virial noted in Table 2.1 is much smaller than the amount of stress attributed to the
kinetic part of Hardy’s Cauchy stress or the virial itself. That kinetic part is approximately equal to
0.1169 GPa, 0.3507 GPa and 0.7891 GPa for the temperatures considered (100 K, 300 K and 675 K,
respectively). Comparison of these values with the virial pressure listed for each temperature,
given in Table 2.1, shows that they are significant fractions of the virial, about 17.7%, 18.0% and
18.2%, respectively. This finding confirms that for cases where the kinetic contribution to the stress
tensor is significant, the P-K stress expression yields a full measure of stress in agreement with the
expression for the total Cauchy stress, which explicitly includes this kinetic contribution.

2.3.2 Finite temperature deformation

For the situation of a constrained volume, the values of P-K and Cauchy stress were not anticipated
to differ by any significant amount. However, we have yet to consider a case for which deformation
occurs and the two values should be related by the Piola transform σσσ = 1

J P ·FT . We now examine
the scenario where our system starts out at zero temperature, is heated over the course of 106

timesteps (1 ns) to a finite temperature but allowed to expand in order to maintain a condition of
zero pressure, is equilibrated for an additional 106 timesteps at that non-zero temperature and zero
pressure, and is then triaxially stretched an additional 1% or 5% from this expanded state.

Figure 2.5 shows the variation of the hydrostatic stresses for P, σσσ (as measured using the
original Hardy formulation) and the system virial for a stretch of 1% after equilibration at 100 K.
In this section, we plot and discuss only values measured from the simulations performed with the
point-based analysis; however, values calculated with step-based analysis were virtually the same.
Figure 2.5 shows large variations in the instantaneous estimates of P and σσσ as compared with the
system virial. It is observed that this variation stays within a limit of approximately ± 15% of
the long time average after 400,000 timesteps (0.4 ns) have elapsed. As expected, the values of
P are slightly higher than the values of σσσ and the virial. Figure 2.6 compares the transformed
stress 1

J P ·FT to the Cauchy stress and virial, and demonstrates that the transformed P-K stress is
in close correspondence with the Cauchy measure. In this figure, we see that the distributions of
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Figure 2.4. (a) Time averaged pressures after 106 timesteps
for constrained volume simulations performed at various tempera-
tures. (b) Differences between P-K and virial measures of pressure
at various temperatures.

transformed Piola-Kirchhoff stress and Cauchy stress nearly perfectly overlap with one another,
and both distributions are centered around the virial distribution. Again, we note that although
the mathematical analysis presented in the previous section showed that the P-K and Cauchy stress
expressions agree with one another only if a long time average is taken, Figure 2.6 shows that close
agreement also exists for stress evaluations at specific instants in time.

Figure 2.7 shows the cumulative time averages of the four stress values (P, σ, virial and trans-
formed P). It is observed that the system virial approaches its long time average in a short amount
of time, ∼ 20,000 timesteps (0.02 ns), and that both the Cauchy stress and transformed P-K stress
approach this same value within approximately 200,000 timesteps (0.2 ns). The P-K stress also ap-
proaches its own long time average within this same amount of time, and the value is appropriately
higher. Values of these long time averages are listed in Table 2.2. These results clearly show a
negligible difference between the transformed P-K stress value and the virial of the system. Thus,
we again conclude that our derived expression is consistent with the continuum relation between
Cauchy and P-K stress despite the absence of a kinetic term.

In addition to our simulation results for the case of 1% stretch at 100 K, Table 2.2 also shows
results for systems heated to 300 K and 675 K for stretches of both 1% and 5% following thermal
equilibration at zero pressure. We observe that in all cases, the difference between the hydro-
static virial stress and the hydrostatic transformed P-K stress is very small with a difference of, at
most, 1%. The results in Figures 2.8(a) and (b) show near perfect agreement of the virial and the
transformed P-K stress across a range of temperatures.7

7These figures reveal that at higher temperatures a lower amount of stress is produced within the system. This
result can be attributed to the temperature dependence of the elastic constants that softens (decreases) their value with

40



 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 4.6

 0  200000  400000  600000  800000  1e+06

st
re

ss
 (G

Pa
)

timestep

PK1
Cauchy

Virial

Figure 2.5. Variation of the instantaneous hydrostatic stresses for
P [eqn. (2.30)], σσσ [eqn. (2.34)] and the system virial for a stretch
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Figure 2.7. (a) Variation of time averaged hydrostatic stress mea-
sures with time for a stretch of 1% after equilibration at 100 K and
zero pressure. (b) Close-up of (a) for the first 250,000 timesteps.

2.3.3 Tensile stretching of a center-cracked body

The previous two examples show that our formulation enables the calculation of 1st Piola-Kirchhoff
stress that is consistent with estimates of the Cauchy stress, either using the system virial or the
original Hardy formulation. However, these examples only produce a single value of stress rep-
resentative of the entire system, i.e. systems subjected to a homogeneous deformation state. The
strength of our formulation lies in its ability to produce a field of spatially varying values of stress
for cases where an inhomogeneous deformation is produced.

The Hardy formalism has much in common with the data reduction and smoothing technique
called Moving Least Squares (MLS) [105]. For instance, (2.15) can been seen as the solution to a
weighted least-squares problem using a lumped version of the least squares matrix [197]. Although
effective, it becomes expensive to recalculate, say (2.15) at every sample point of interest in a

increasing temperature.

43



Table 2.2. Time averaged stresses after 106 timesteps for simu-
lations of a heated and triaxially strained system. Here,‘% differ-
ence’ refers to the difference between transformed P-K stress (the
6th column) and the virial.

T (K) Point / Step total strain virial (GPa) P-K (GPa) 1
J (P-K)FT % difference

0 Point 0.01 3.876275 3.954033 3.876123 -0.00394
0 Step 0.01 3.876273 3.954190 3.876277 -0.00009
0 Point 0.05 14.70036 16.20713 14.70035 -0.00009
0 Step 0.05 14.70036 16.20710 14.70032 -0.00026

100 Point 0.01168 3.779846 3.868452 3.779658 -0.00499
100 Step 0.01163 3.782552 3.871040 3.782538 -0.00038
100 Point 0.05169 14.26000 15.77334 14.26085 0.00597
300 Point 0.01495 3.581698 3.690054 3.582124 0.01190
300 Step 0.01495 3.579387 3.687273 3.579472 0.002386
300 Point 0.05515 13.30167 14.80901 13.30142 -0.00186
675 Point 0.02174 3.194773 3.334715 3.194304 -0.01469
675 Step 0.02174 3.194821 3.303813 3.164701 -0.94278
675 Point 0.06221 11.33258 12.78735 11.33345 0.00768

simulation with large spatial variations. Instead we choose to sample on a collection of points
I = 1..M on a regular grid and then use finite element shape functions NI(X) to construct an
approximation to the field of interest, for example the displacement field

u(X, t) =
M

∑
I=1

uI(t)NI(X) =
M

∑
I=1

∑
N
α=1 mαuαψ(Xα−XI)

∑
N
α=1 mαψ(Xα−XI)

NI(X) (2.60)

where we can define and store the matrices ψIα = ψ(Xα−XI) and BIαβ = Bαβ(XI). This also
gives us a second way to estimate the displacement gradient (2.16) by taking the gradient of the
interpolation NI(X).

In this section, we examine a system containing a center crack and compare the inhomogeneous
stress fields that arise due to tensile stretching. Our system consists 9,840 atoms, approximately
20 x 20 x 6 unit cells, that contains a center crack 4 unit cells wide in the center. We acknowledge
that this is a small and highly constrained system, and use it only as a means to show our ability
to estimate spatially varying stress fields. The crack is created by excluding interactions between
atoms above the center-plane of the system (and within the 4 unit cell width) and atoms below
the center-plane. Periodic boundary conditions are used in the horizontal and thickness directions,
while atoms within 2 unit cells of the system’s upper and lower boundaries are controlled by
prescribing a fixed velocity of ±0.1 Å/ps, respectively. Given the dimensions of our system, this
produces an approximate strain rate of initial value 3.46 x 10−3 ps−1 = 3.46 x 109 sec−1. Before
inducing the stretching, our system is relaxed using a conjugate gradient minimization algorithm
in order to relax the upper, lower and crack boundaries and set the reference configuration.

To calculate stress at material points, we use localization volumes consisting of rectangular
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Figure 2.8. Variation of time-averaged hydrostatic stress mea-
sures after 106 timesteps with temperature for a stretch of (a) 1%,
and (b) 5 % after equilibration at that temperature.

parallelepipeds, and localization functions that are multiples of three linear shape functions, one
for each orthogonal direction, as in the finite element method. For this system, our mesh consists
of 10 x 15 x 1 = 150 elements where our mesh extends beyond the atomic system in the vertical
direction by 2.5 unit cells at both the upper and lower boundaries.

Figure 2.9 shows the displaced atoms, colored by the values of the component uy of their dis-
placement vector, as well as uy displacement field evaluated at nodes and interpolated through
elements, for the center-cracked body vertically stretched by approximately 6.9%. The left por-
tion of Figure 2.9 clearly shows that the nodal values of displacement agree with the values of
nearby atoms, while the right portion displays a displacement field consistent with expectations
from fracture mechanics. It is interesting to note that the normalization present in equation (2.15)
enables approximately correct values of uy to be calculated at nodes bordering the boundaries of
the atomic system, even though 1/2 of each node’s localization volume is empty. This is because
the normalization produces a displacement value corresponding to the center of mass of the local-
ization volume and assigns that value to the node. And, since each element only contains a small
number of atoms, the difference between the nodal position and the center of mass position is rel-
atively small. Obviously, special care should be taken to use small elements near the boundary
of an enclosed atomistic system, or near any region for which mass is unevenly distributed within
the localization volume in the reference configuration. Nodes with localization volumes that are
completely empty of atoms are assigned a zero value.

Figure 2.10 shows the fields of Pyy and σyy for the same stretch state of 6.9%. These fields are
consistent with expectations from fracture mechanics, possessing features such as zero stress in the
crack opening region and concentrations of tensile stress near the crack tips. Consistency between
our formulation and Hardy’s is shown by the qualitative similarity of the fields, with values of σyy
having, in general, a slightly higher magnitude than the corresponding value of Pyy. Quantitative
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Figure 2.9. Displacement field uy for a center-cracked body ver-
tically stretched 6.9%. Left: Atoms pictured with overlaying mesh
and nodes. Right: Mesh elements showing contours of continuum
displacement field; mesh is shown with gray lines to identify ele-
ments.

consistency can be evaluated by comparing the values at a specific material point. We choose a
node near the crack tip, at a position of {21.69 Å, 10.845 Å, 10.845 Å} (6 elements down from
the top of the system, and 2 elements from the right edge). At this node, the value of Pyy equals
9.40327 GPa, and the value of σyy is 10.0719 GPa. Using our method to estimate displacement
gradient ∇Xu, and by using the relation F = 1 + ∇Xu, the value of transformed P-K stress is cal-
culated to be 9.48638 GPa. This value is somewhat lower than the expected value from the Hardy
expression (a difference of about -5.81%). However, our earlier simulation examples indicate that
this agreement may improve if the system is fixed at a given (inhomogeneous) deformation state
and stress values are time averaged for periods ∼ 1 ns. It may also be the case that displacement
gradient values are actually higher in magnitude than estimated here due to the small size of the
system and the use of (relatively) large localization volumes near the crack tip, i.e. the estimated
displacement gradient also has errors associated with it.

2.4 Formulation for a Micromorphic Continuum

In Section 2.2.3, we noted that Hardy makes four assumptions about the forms of the energies of,
and forces on, the atoms in the system. We also noted that arbitrary multi-body potentials do not
necessarily satisfy all four assumptions. For example, the Stillinger-Weber potential for silicon
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Figure 2.10. Stress fields for a center-cracked body vertically
stretched 6.9%. Left: Mesh elements showing contours of contin-
uum field Pyy. Right: Mesh elements showing contours of contin-
uum field σyy as determined from the original Hardy formulation.
In both pictures, the mesh is shown with gray lines to identify ele-
ments.

[177], contains a 3-body term that violates the fourth assumption. This assumption is pivotal as it
leads to a simplified form of the inter-atomic force between two atoms, which is then used to isolate
the expression for stress in the balance of energy. Without this relationship, it is not straightforward
to show that the stress expression derived from momentum balance also satisfies energy balance.

This issue has been examined further by both Delph [40] and Chen [24]. In his work, Delph
uses the linear momentum balance to derive a generalized expression for stress that includes multi-
body terms up to Nth order (where N is the number of atoms in the system). However, this same
expression is not present within his analysis of the balance of energy. On the other hand, Chen
restricts her analysis to consider only potentials with 2-body and 3-body terms, such as the afore-
mentioned Stillinger-Weber potential and the potential by Tersoff [180, 181]. While Chen does
manage to show that the stress expression defined by linear momentum appears in the energy bal-
ance, her derivation is unclear in its consistency with regard to the expression for the inter-atomic
force between two atoms.

We hypothesize that the difficulties experienced by both Delph and Chen are due to the un-
derlying assumption that potential energies that use multi-body terms representative of directional
bonding constitute a standard continuum at the microscopic scale. Rather, we conjecture that an
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enhanced continuum theory is required in order to represent such a material. One such theory is
that of a micromorphic continuum as put forth by Eringen [46, 47]. This theory is attractive as it
is based on the supposition of microscopic deformations and rotations and includes the concepts
of asymmetric stress and a couple stress tensor, both of which act to balance angular or rotational
momentum in a body. Such concepts would seemingly be vital when defining volumes associated
with continuum material points of arbitrary size and shape for a material governed by directional
bonding between atoms. (This point is further addressed in the Appendix.)

In this section, we apply our material frame version of the Hardy formulation to the set of
balance laws for a micromorphic continuum. The choice of a material frame analysis is not hap-
penstance; indeed, the authors have attempted to perform a spatial frame analysis consistent with
the original formulation by Hardy. However, this analysis is not trivial as an inconsistency exists
between the notion of a fixed spatial point x from the Hardy formulation with the material point x̄
of Eringen’s theory. In micromorphic theory, x̄ represents the center of mass of a “microvolume”
or “microelement” at the current state of deformation. However, Hardy’s analysis requires that x
represent a fixed spatial point. Combining the two formulations requires the introduction of addi-
tional terms to account for the offset of the center of mass from the spatial point x. We have thus
far been unable to define a unambiguous set of balance laws that includes such additional vari-
ables. Eringen’s original derivation for balance laws in the material frame, as shown in [47], does
include such variables. For a material frame analysis (as presented in Section 2.2), this inclusion is
unnecessary: a set of material points X can be selected that satisfy the center of mass requirement
and these points remain fixed over time in the reference configuration. This statement is not true
for spatial points that coincide with the material points when the system occupies the reference
configuration as, at a later time, they will no longer represent mass centers.

Before proceeding, we note that Chen and Lee previously performed an analysis to connect
atomistic quantities to micromorphic theory [25, 26]. In their work, they consider both instanta-
neous and time-averaged forms of thermomechanical variables and the consistency of these vari-
ables with the balance laws for a micromorphic continuum. However, their analysis was performed
using a mixture of material and spatial frames as they use the spatial forms of the balance laws and
consider current positions of microelements but define quantities relative to fixed sets of atoms
associated with each microelement. In addition, they use the original form of Eringen’s theory
without consideration of the mass center issue discussed above. Our work will involve manipula-
tion of the material frame versions of the balance laws, thereby avoiding this inconsistency. It is
worth noting that Zhou and McDowell considered a similar “equivalent continuum” analysis for a
micropolar continuum [215] (a continuum with microelements that undergo rigid rotations only),
but proceeded in an entirely different manner than we do or that Chen and Lee have. Also, Mur-
doch has performed an analysis in which he defined a couple stress tensor that satisfies a moment
of momentum balance [136]. It will be seen that our expression for couple stress contains signifi-
cant differences as compared to Murdoch’s expression, and that, unlike Murdoch, we consider the
full set of micromorphic balance laws as established by Eringen.
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2.4.1 Balance Laws

The material frame balance laws for a micromorphic continuum, as derived by Eringen in [47], are
as follows:

dρ0

dt
= 0 (2.61)

ρ0
dI
dt

= 0 (2.62)

ρ0
dv
dt

= ∇X ·P+ρ0b (2.63)

ρ0
d2χχχ

dt2 · I = ∇X ·M+P− P̄+ρ0c (2.64)

ρ0
dε

dt
= P :

dF
dt

+M :
(

∇X
dχχχ

dt

)
+
(
P̄−P

)
:

dχχχ

dt
−∇X ·Q+ρ0h (2.65)

where I is the micro-inertia tensor, χχχ is the micro-deformation gradient, and M is the couple stress
tensor.8 The stress P̄ is a quantity related to P in the sense that the latter is considered by Eringen
to be a surface averaged limit of a traction while the former is a volume averaged limit of that same
traction (for a more precise explanation, the reader is referred to reference [47]). We note that the
total energy contains contributions from internal energy, continuum translational kinetic energy
and continuum micro-rotational kinetic energy: e = ε + 1

2v2 + 1
2I :

(
dχχχ

dt
T · dχχχ

dt

)
.9 These equations

appear in a more generalized form in [47]; however, to simplify our analysis we have made the
assumption of Cartesian coordinates (instead of curvilinear coordinates) and do not separate out
intrinsic surface energy density. We also assume that the material points X coincide with the
centers of mass of the localization volumes they are associated with, as in (2.39). Hence,

X =
1

ρ0(X)

N

∑
α=1

mαXα
ψ(Xα−X) =

∑
N
α=1 mαXαψ(Xα−X)

∑
N
α=1 mαψ(Xα−X)

. (2.66)

The consequences of this assumption were mentioned earlier in this paper.

2.4.2 Densities

The expressions for ρ0, p0 and ρ0e defined in equations (2.10), (2.11) and (2.12), respectively,
are reused for the micromorphic formulation. In addition, we define the following expression for
micro-inertia tensor I:

ρ0I(X) =
N

∑
α=1

mα
ΞΞΞ

α⊗ΞΞΞ
α

ψ(Xα−X) (2.67)

8As the couple stress is a third order tensor, the divergence operator is taken to act on the outermost index of M,
i.e. ∇X ·M = MiJK,K .

9Note that in equation (2.65), the notation A : B represents the quantity ∑
3
i=1 ∑

3
J=1 AiJBiJ when A and B are second

order tensors and the quantity ∑
3
i=1 ∑

3
J=1 ∑

3
K=1 AiJKBiJK when A and B are third order tensors.
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In this expression, ΞΞΞ
α ≡ Xα−X using Eringen’s notation.10 We also note that micro-inertia is the

second moment of mass for the localization volume centered at X (using relative position vectors
ΞΞΞ

α), while mass density is the zeroth moment. Equation (2.66) can be used to show that the first
moment of mass is, in-fact, zero:

N

∑
α=1

mα
ΞΞΞ

α
ψ(Xα−X) =

N

∑
α=1

mα (Xα−X)ψ(Xα−X)

=
N

∑
α=1

mαXα
ψ(Xα−X)−

N

∑
α=1

mαXψ(Xα−X)

= ρ0X−X

(
N

∑
α=1

mα
ψ(Xα−X)

)

= ρ0X−ρ0X = 0

We also define a micro-rotational momentum tensor ϒϒϒ,

ρ0ϒϒϒ(X, t) =
N

∑
α=1

mαvα⊗ΞΞΞ
α

ψ(Xα−X). (2.68)

As for standard continuum theory, there are several interesting aspects of this expression. Con-
sistency between equations (2.64) and (2.68) requires that ϒϒϒ = dχχχ

dt · I. This makes sense; just as
we earlier defined a continuum velocity field as the product of linear momentum density and the
inverse of the mass density, now we define a “micro-deformational velocity tensor” (dχχχ

dt ) as the
product of micro-rotational momentum tensor and the inverse of the micro-inertia tensor:

dχχχ

dt
(X, t) = (ρ0ϒϒϒ) · (ρ0I)−1 =

(
N

∑
α=1

mαvα⊗ΞΞΞ
α

ψ(Xα−X)

)
·
(

N

∑
α=1

mα
ΞΞΞ

α⊗ΞΞΞ
α

ψ(Xα−X)

)−1

.

(2.69)
We also note that since the only time-dependent quantities in the above expression are the individ-
ual atomic velocities, we can integrate the expression to obtain the micro-deformation gradient,

χχχ(X, t) =

(
N

∑
α=1

mαxα⊗ΞΞΞ
α

ψ(Xα−X)

)
·
(

N

∑
α=1

mα
ΞΞΞ

α⊗ΞΞΞ
α

ψ(Xα−X)

)−1

. (2.70)

Using the expression Xα = X + ΞΞΞ
α with equation (2.66), we notice that χχχ→ 1 in the limit of

zero deformation. We can use (2.69) and (2.70) to estimate the micro-gyration tensor defined by
Eringen,

ννν≡ dχχχ

dt
·χχχ−1 =

(
N

∑
α=1

mαvα⊗ΞΞΞ
α

ψ(Xα−X)

)
·
(

N

∑
α=1

mαxα⊗ΞΞΞ
α

ψ(Xα−X)

)−1

. (2.71)

Comparison of this expression with the expression by Chen and Lee [25] shows that our formula-
tion, while similar, does display significant differences.

10Recall that this same definition was used in (2.39).
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2.4.3 Derivation of Continuum Expressions

Balance of Mass and Micro-Inertia

As before, inspection of equation (2.10) reveals that dρ0
dt = 0. Similarly, we notice that the ex-

pression for micro-inertia given in equation (2.67) contains no atomic variables that are time-
dependent. Hence,

ρ0
dI
dt

=
d (ρ0I)

dt
= 0.

Balance of Linear Momentum

We choose not to repeat the derivation shown in Section 2.2.4, but merely refer to our derived
expressions for the 1st Piola-Kirchhoff stress tensor in equation (2.30),

P(X, t) =−1
2

N

∑
α=1

N

∑
β 6=α

fαβ⊗XαβBαβ(X),

and the body force vector in equation (2.31),

b(X, t) =
∑

N
α=1 mαbαψ(Xα−X)

∑
N
α=1 mαψ(Xα−X)

.

We note that in this derivation it was not necessary to define the quantity fαβ, but merely acknowl-
edge the relations fα = ∑

N
β 6=α

fαβ and fβα =−fαβ. We will address the specific form of fαβ in a later
section.

Balance of Rotational Momentum

We start with the expression for micro-rotational momentum given in (2.68) and take its time
derivative:

ρ0
d2χχχ

dt2 · I =
d
dt

(
ρ

dχχχ

dt
· I
)

=
d
dt

(ρ0ϒϒϒ)

=
d
dt

(
N

∑
α=1

mαvα⊗ΞΞΞ
α

ψ(Xα−X)

)

=
N

∑
α=1

mα dvα

dt
⊗ΞΞΞ

α
ψ(Xα−X)

=
N

∑
α=1

(fα +mαbα)⊗ΞΞΞ
α

ψ(Xα−X)
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By using the relation fα = ∑
N
β6=α

fαβ and acknowledging that α and β are dummy indices, one
obtains:

ρ0
d2χχχ

dt2 · I =
1
2

N

∑
α=1

N

∑
β 6=α

fαβ⊗
(

ΞΞΞ
α

ψ(Xα−X)−ΞΞΞ
β
ψ(Xβ−X)

)
+

N

∑
α=1

mαbα⊗ΞΞΞ
α

ψ(Xα−X)

(2.72)
In order to use the relationship shown in equation (2.23), we rearrange the first term on the RHS
of (2.72) (labeled RHS1 for convenience) into the following expression:

RHS1 =
1
2

N

∑
α=1

N

∑
β6=α

fαβ⊗
(

Xα
ψ(Xα−X)−Xβ

ψ(Xβ−X)−X
[
ψ(Xα−X)−ψ(Xβ−X)

])

This can now be simplified to

RHS1 =
N

∑
α=1

N

∑
β6=α

fαβ⊗Xα
ψ(Xα−X)+

1
2

N

∑
α=1

N

∑
β6=α

fαβ⊗X⊗Xαβ ·∇XBαβ(X).

We then use the chain rule to bring the divergence operator to the outside of the second term.
Hence,

ρ0
d2χχχ

dt2 · I =
N

∑
α=1

N

∑
β 6=α

fαβ⊗Xα
ψ(Xα−X)

+∇X ·
(

1
2

N

∑
α=1

N

∑
β 6=α

fαβ⊗X⊗XαβBαβ(X)

)

− 1
2

N

∑
α=1

N

∑
β6=α

fαβ⊗XαβBαβ(X)+
N

∑
α=1

mαbα⊗ΞΞΞ
α

ψ(Xα−X).

(2.73)

At this point, we note that the third term on the RHS is none other than P. Also, the first two terms
on the RHS of equation (2.73) appear to lack frame invariance, i.e. the value of these terms will
depend on the material frame coordinate origin. In order to correct this, we add (to the first term)
and subtract (from the second term) the quantity

∇X ·
(

1
2

N

∑
α=1

N

∑
β6=α

fαβ⊗Xα⊗XαβBαβ(X)

)
,

and again use the relation in equation (2.23). This simplifies equation (2.73) to

ρ0
d2χχχ

dt2 · I =
1
2

N

∑
α=1

N

∑
β6=α

fαβ⊗Xα

(
ψ(Xα−X)+ψ(Xβ−X)

)

+∇X ·
(
−1

2

N

∑
α=1

N

∑
β6=α

fαβ⊗ΞΞΞ
α⊗XαβBαβ(X)

)
+P+

N

∑
α=1

mαbα⊗ΞΞΞ
α

ψ(Xα−X).
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Finally, by separating the first term on the RHS into two separate terms, switching dummy indices
α and β and using the relation fβα =−fαβ, we arrive at

ρ0
d2χχχ

dt2 · I =
1
2

N

∑
α=1

N

∑
β6=α

fαβ⊗Xαβ
ψ(Xα−X)

+∇X ·
(
−1

2

N

∑
α=1

N

∑
β6=α

fαβ⊗ΞΞΞ
α⊗XαβBαβ(X)

)
+P+

N

∑
α=1

mαbα⊗ΞΞΞ
α

ψ(Xα−X).

(2.74)

Comparing equation (2.74) with (2.64), we identify the expressions for couple stress,

M(X, t) =−1
2

N

∑
α=1

N

∑
β 6=α

fαβ⊗ΞΞΞ
α⊗XαβBαβ(X), (2.75)

for P̄,

P̄(X, t) =−1
2

N

∑
α=1

N

∑
β6=α

fαβ⊗Xαβ
ψ(Xα−X), (2.76)

and for the body couple,

c(X, t) =
1

ρ0(X)

N

∑
α=1

mαbα⊗ΞΞΞ
α

ψ(Xα−X) =
∑

N
α=1 mαbα⊗ΞΞΞ

α
ψ(Xα−X)

∑
N
α=1 mαψ(Xα−X)

(2.77)

Before proceeding to the next section, we again point out that, with regard to the inter-atomic
forces, we have only used the relations fα = ∑

N
β 6=α

fαβ and fβα =−fαβ. We have not yet specified a

form for the quantity fαβ.

Balance of Energy

As before, we begin with Hardy’s expression for the system energy (2.12),

ρ0
de
dt

=
d (ρ0e)

dt
=

d
dt

{
N

∑
α=1

{
1
2

mα (vα)2 +φ
α

}
ψ(Xα−X)

}

=
N

∑
α=1

{
mα

(
dvα

dt
·vα

)
+

dφα

dt

}
ψ(Xα−X)

=
N

∑
α=1

{
(fα +mαbα) ·vα +

dφα

dt

}
ψ(Xα−X)

=
N

∑
α=1

{
fα ·vα +

dφα

dt

}
ψ(Xα−X)+

N

∑
α=1

mαbα ·vα
ψ(Xα−X).
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Using Hardy’s second assumption, fα = ∑
N
η=1 fαη, this can be also written as

ρ0
de
dt

=
N

∑
α=1

{
N

∑
η 6=α

fαη ·vα +
dφα

dt

}
ψ(Xα−X)+

N

∑
α=1

mαbα ·vα
ψ(Xα−X). (2.78)

In order to simplify the expression above, we must (as did Hardy) provide a relationship between
the inter-atomic force fαη and the atomic potential energies φα and φη. Earlier, we noted that
Hardy’s third and fourth assumptions combined are only valid for pair and central force (e.g.
EAM) potentials and not for potentials representative of directional bonding such as the Stillinger-
Weber potential. Here, we substitute a new third assumption: each atom’s potential energy de-
pends only on the vectors that connect the atom under consideration to all other atoms. Hence,
φα = φα(xαβ,xαγ, . . . ,xαN). We acknowledge that this form of φα is not invariant with respect to
orientation of the coordinate system origin. (It is invariant with respect to translation.)11 The ac-
tual form of φα is based on invariant arguments such as the angle between three neighboring atoms
θ

βγ

α which we express here in terms of relative position vectors, i.e. θ
βγ

α = xβα·xγα

‖xβα‖‖xγα‖ , for conve-
nience in the subsequent mathematical developments. Using this new relation, the force between
atoms α and η can be defined as

fαη =−
{

∂φα

∂xαη
+

∂φη

∂xαη

}
, (2.79)

our new fourth assumption.

Inserting equation (2.79) into the first term on the RHS of (2.78), this term (RHS1) becomes
the following:

RHS1 =
N

∑
α=1

{
−

N

∑
η6=α

{
∂φα

∂xαη
+

∂φη

∂xαη

}
·vα +

dφα

dt

}
ψ(Xα−X)

=
N

∑
α=1

{
−

N

∑
η6=α

{
∂φα

∂xαη
+

∂φη

∂xαη

}
·vα +

N

∑
η 6=α

∂φα

∂xαη
·vαη

}
ψ(Xα−X)

=
N

∑
α=1

N

∑
η6=α

{
− ∂φα

∂xαη
·vα− ∂φη

∂xαη
·vα +

∂φα

∂xαη
·vα− ∂φα

∂xαη
·vη

}
ψ(Xα−X)

=
N

∑
α=1

N

∑
η6=α

{
− ∂φη

∂xαη
·vα− ∂φα

∂xαη
·vη

}
ψ(Xα−X)

=−
N

∑
α=1

N

∑
η 6=α

∂φη

∂xαη
·vα

ψ(Xα−X)−
N

∑
α=1

N

∑
η 6=α

∂φα

∂xαη
·vη

ψ(Xα−X)

We now switch dummy indices on the right term of the above expression (i.e. α↔ η) and use the
relation xηα =−xαη to obtain

RHS1 =−
N

∑
α=1

N

∑
η 6=α

∂φη

∂xαη
·vα (ψ(Xα−X)−ψ(Xη−X)). (2.80)

11The Appendix of reference [222], discusses the fact that the system potential energy Φ must depend on its config-
uration through invariant quantities such as bond lengths, angles between bonds involving common atoms, areas and
volumes.
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Combining this result with equations (2.23) and (2.78), we arrive at

ρ0
de
dt

=
N

∑
α=1

N

∑
η 6=α

(
∂φη

∂xαη
·vα

)
(Xαη ·∇XBαη(X))+

N

∑
α=1

mαbα ·vα
ψ(Xα−X). (2.81)

As before, this can be modified to

ρ0
de
dt

= ∇X ·
(

N

∑
α=1

N

∑
η6=α

(
∂φη

∂xαη
·vα

)
XαηBαη(X)

)
+

N

∑
α=1

mαbα ·vα
ψ(Xα−X). (2.82)

Similar to our material frame analysis of the balance of energy for standard continuum theory,
we separate atomic motion from continuum motion by splitting the atomic velocities vα. However,
for a micromorphic continuum, this velocity becomes the sum of three terms,

vα = v(X, t)+
dχχχ

dt
(X, t) ·ΞΞΞα +wα(X, t), (2.83)

where dχχχ

dt (X, t) ·ΞΞΞα now represents a continuum velocity associated with the microscale rotation
and deformation of the microelement containing atom α. Substitution of this expression into
(2.82), along with the aforementioned relation e = ε + 1

2v2 + 1
2I :

(
dχχχ

dt
T · dχχχ

dt

)
, results in the fol-

lowing upon simplification:

ρ0
dε

dt
+ρ0

dv
dt
·v+

(
ρ0

d2χχχ

dt2 · I
)

:
dχχχ

dt
=

∇X ·
(

v ·
{

N

∑
α=1

N

∑
η6=α

∂φη

∂xαη
⊗XαηBαη(X)

})

+∇X ·
(

dχχχ

dt
:

{
N

∑
α=1

N

∑
η 6=α

∂φη

∂xαη
⊗ΞΞΞ

α⊗XαηBαη(X)

})

+∇X ·
(

N

∑
α=1

N

∑
η 6=α

(
∂φη

∂xαη
·wα

)
XαηBαη(X)

)

+ρ0b ·v+
dχχχ

dt
:

(
N

∑
α=1

mαbα⊗ΞΞΞ
α

ψ(Xα−X)

)
+

N

∑
α=1

mαbα ·wα
ψ(Xα−X)

(2.84)

Equation (2.84) can be further simplified in two ways. On the LHS, the expressions ρ0
dv
dt and

ρ0
d2χχχ

dt2 · I are replaced using the balance of linear and rotational momentum equations shown in
equations (2.63) and (2.64), respectively. On the RHS, we can relate each divergence term to a
corresponding continuum quantity. By using our new expression for inter-atomic forces defined in
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equation (2.79), we notice that the 1st Piola-Kirchhoff stress P is

P =−1
2

N

∑
α=1

N

∑
η 6=α

fαη⊗XαηBαη(X)

=
1
2

N

∑
α=1

N

∑
η 6=α

{
∂φα

∂xαη
+

∂φη

∂xαη

}
⊗XαηBαη(X)

=
1
2

{
N

∑
α=1

N

∑
η 6=α

∂φα

∂xαη
⊗XαηBαη(X)+

N

∑
α=1

N

∑
η 6=α

∂φη

∂xαη
⊗XαηBαη(X)

}

=
1
2

{
N

∑
η=1

N

∑
α 6=η

∂φη

∂xηα
⊗XηαBηα(X)+

N

∑
α=1

N

∑
η6=α

∂φη

∂xαη
⊗XαηBαη(X)

}

=
1
2

{
N

∑
α=1

N

∑
η 6=α

∂φη

∂xαη
⊗XαηBαη(X)+

N

∑
α=1

N

∑
η 6=α

∂φη

∂xαη
⊗XαηBαη(X)

}

=
N

∑
α=1

N

∑
η 6=α

∂φη

∂xαη
⊗XαηBαη(X).

Hence,

∇X ·
(

v ·
{

N

∑
α=1

N

∑
η6=α

∂φη

∂xαη
⊗XαηBαη(X)

})
→ ∇X · (v ·P) = P :

dF
dt

+v · (∇X ·P) . (2.85)

Regarding the second divergence term in (2.84), we notice that the couple stress tensor (equa-
tion (2.75)) now has the form

M =
1
2

N

∑
α=1

N

∑
η 6=α

{
∂φα

∂xαη
+

∂φη

∂xαη

}
⊗ΞΞΞ

α⊗XαηBαη(X).

Admittedly, it is not as easy to simplify this expression as it was to simplify the expression for
P. However, we note here that Delph asserted that any potential energy expression dependent on
M atoms within the N-atom system is equally divided among the M atoms [40]. For example, the
contribution for a 3-body energy term between atoms α, β and γ is divided equally into thirds for
φα, φβ and φγ respectively. Hence, this assertion results in the conclusion that while, in general,
φα 6= φη, it is the case that ∂φα

∂xαη = ∂φη

∂xαη since the portion of potential energy that provides non-zero
values of this derivative is the same for both atoms α and η. Hence,

M =
N

∑
α=1

N

∑
η 6=α

∂φη

∂xαη
⊗ΞΞΞ

α⊗XαηBαη(X),

and,

∇X ·
(

dχχχ

dt
:

{
N

∑
α=1

N

∑
η 6=α

∂φη

∂xαη
⊗ΞΞΞ

α⊗XαηBαη(X)

})
→ ∇X ·

(
dχχχ

dt
: M
)

= M :
(

∇X
dχχχ

dt

)
+

dχχχ

dt
: (∇X ·M)

(2.86)
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The third divergence term provides us with the definition for heat flux vector for a micromor-
phic system:

Q(X, t) =−
N

∑
α=1

N

∑
η 6=α

(
∂φη

∂xαη
·wα

)
XαηBαη(X) (2.87)

Combining (2.85), (2.86) and (2.87) into equation (2.84), along with the earlier definitions for
energy generation per unit mass (2.57) and body couple (2.77), we obtain:

ρ0
dε

dt
+(∇X ·P+ρ0b) ·v+

(
∇X ·M+P− P̄+ρ0c

)
:

dχχχ

dt
=

P :
dF
dt

+v · (∇X ·P)+M :
(

∇X
dχχχ

dt

)
+

dχχχ

dt
: (∇X ·M)

−∇X ·Q+ρ0b ·v+
dχχχ

dt
: ρ0c+ρ0h

(2.88)

Upon simplifying this equation, we obtain

ρ0
dε

dt
= P :

dF
dt

+M :
(

∇X
dχχχ

dt

)
+
(
P̄−P

)
:

dχχχ

dt
−∇X ·Q+ρ0h, (2.89)

which exactly matches the balance of energy equation derived by Eringen [47] and given earlier in
equation (2.65).

2.5 Discussion

By constructing a material frame-based formalism similar to the spatial frame-based formalism
developed by Hardy, we have derived expressions for continuum theory variables based on atomic-
scale quantities. For an atomistic system governed by central force potentials, these expressions are
based on conventional continuum theory and include the 1st Piola-Kirchhoff stress tensor, a body
force field, a heat flux vector field, and an energy generation rate. For an atomistic system where
the inter-atomic potential is multi-body and directional in nature, these expressions are based on
micromorphic continuum theory and also include a couple stress tensor and a body couple tensor
field.

Our formulations are suitable for the analysis of solid mechanics problems for which rear-
rangement of the configuration due to large relative motions of neighboring atoms is minimal. For
simulations involving fluid and gaseous states of matter the concepts of a reference configuration
and deformation gradient are not well-defined. Hence, our formulations would have limited use-
fulness for these types of simulations. This would also be true for situations of dramatic molecular
rearrangement, such as mixing (as happens in granular materials). For all of these cases, the origi-
nal spatial frame formulation developed by Hardy would be appropriate. The difficulty inherent to
developing a spatial frame formulation for a micromorphic continuum was discussed earlier, and
more work is warranted to overcome this challenge. For the situation of plastic deformation, the
use of the reference configuration should remain valid; however, this has yet to be verified and is
deferred for future research.
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Our expressions are distinct from both Hardy’s original formulation, as well as the many other
works discussed in the Introduction, as they are for material frame-based continuum variables. Ex-
ceptions to this are found in the text by Weiner [201, Chapter 4 and Appendix I in Chapter 6] and
the articles by Andia and colleagues [7, 8, 36, 37]. As mentioned earlier, Andia et al. define an
expression for P-K stress as a cell averaged quantity. Our expression is defined at a single material
point and depends only on the size of the volume associated with that point in the sense that a min-
imum volume must be used to show consistency with expected continuum behavior. Additionally,
both Andia et al. and Weiner make the distinction between internal and external forces, separating
the interactions between atoms within the cell and the interactions between atoms with “ghost”
atoms located across the periodic boundaries. This distinction is not needed for our approach.

The analyses presented in the Evaluation section clearly show that our derived expression for
P-K stress is a full thermo-mechanical measure of stress despite the fact that it contains only a
potential and not a kinetic term, unlike the Cauchy stress expression derived by Hardy. Our analysis
also shows that our expression for P is consistent with Cauchy stress via the Piola transformation
σσσ = 1

J P ·FT . While, in the special case of a system average, Weiner’s expression [201, Equation
A44] is equivalent to our expression for P (2.30), we have gone one step further and made a strong
connection between (2.30) and the expressions for Cauchy stress (2.34) and the virial.

In order to show the consistency of our expression with continuum thermodynamics, we chose
our material configuration to be the zero temperature, undeformed state of the system simulated.
Unlike conventional continuum mechanics where the choice of reference configuration and tem-
perature is arbitrary, the selection of a zero temperature state as the reference configuration is
mandatory for our formulation. This requirement was discussed by Weiner [201, Chapter 4], who
noted that for the case of anharmonic pair potentials, a zero value of P-K stress is achieved only at
zero temperature. This can be more easily understood by examining our expression for P-K stress,

P =−1
2

N

∑
α=1

N

∑
β6=α

fαβ⊗XαβBαβ(X),

and comparing it with the expression derived by Hardy for Cauchy stress,

σσσ =−1
2

N

∑
α=1

N

∑
β 6=α

fαβ⊗xαβB̃αβ(x)−
N

∑
α=1

mαwα⊗wα
ψ̃(xα−x).

Here, we see that if we select the given current configuration to represent our material frame, the
first term on the right-hand side of the Cauchy expression will exactly equal the full value of the
P-K expression. However, this term will not equal zero for any system that has been equilibrated
to a non-zero temperature. For that case, it is apparent that the second term on the right-hand side
will be equal to a non-zero value. Ergo, the P-K and Cauchy stresses will differ by exactly this
amount and the expected relationship between P-K and Cauchy stresses will not hold.

Although our continuum formulations are distinctly different from the works by Delph and
Chen due to our use of a material frame basis, it is interesting to notice that our formulations offers
two advantages. First, unlike in Delph’s derivation, our stress expression appears in both the linear
momentum and energy balance laws without modification. Second, unlike the work by Chen, the
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balance laws our expressions satisfy are the same as from micromorphic continuum theory; no
specialized “microscale balance laws” need to be postulated.

Our formulation, as applied to micromorphic theory, yields an expression for the couple stress
tensor M, equation (2.75). As couple stress has dimensions of stress times length, it is reasonable
to ask if there is a characteristic length. The terms present in this expression include fαβ, Bαβ(X),
ΞΞΞ

α, and Xαβ. The first of these, fαβ, is non-zero only for distances less than or equal to the cut-off
distance of the inter-atomic potential used in the simulation. By comparison, Bαβ(X) is non-zero
over a region corresponding to the localization volume. The two remaining terms, ΞΞΞ

α and Xαβ,
have no intrinsic length scale connected with them, as they span distances ranging from zero to the
system size. Given the fact that both fαβ and Bαβ(X) go to zero outside their respective ranges,
it is clear that the shorter of the two distances, i.e. the potential’s cut-off distance or localization
volume’s size, constitutes an appropriate characteristic length. In most instances, the volume size is
larger than the cut-off distance (a recommendation made in [222] for producing smooth continuum
fields), and hence the latter defines the length scale for this microcontinuum.

Finally, in order to relate the material frame variables defined here to their spatial frame coun-
terparts, it is necessary to define kinematic deformation variables such as the deformation gradi-
ent. It is interesting to note that few of the aforementioned articles establish such field variables.
However, in equation (2.15) we define a displacement field u consistent with the same localiza-
tion function and volumes used to define the thermodynamic variables. This field could easily be
used to construct a locally-varying deformation gradient expression. Also, in equations (2.70) and
(2.71) we derived expressions for the micro-deformation gradient χχχ and micro-gyration tensor ννν,
respectively, the kinematic variables inherent to micromorphic continuum theory. It is interesting
to note that if the relationship xα = x + ξξξ

α is applied to equation (2.70), where ξξξ
α is the spatial

frame counterpart to ΞΞΞ
α, then it can also be shown that

χχχ(X, t) =

(
N

∑
α=1

mα
ξξξ

α⊗ΞΞΞ
α

ψ(Xα−X)

)
·
(

N

∑
α=1

mα
ΞΞΞ

α⊗ΞΞΞ
α

ψ(Xα−X)

)−1

. (2.90)

This expression for micro-deformation gradient bears a strong resemblance to the expressions de-
veloped by both Horstemeyer et al. [66, 78, 79] and Zimmerman et al. [221, 223] to define an
atomic-scale deformation gradient. Detailed comparisons between our micro-deformation gradi-
ent and the atomic-scale equivalent defined in these works is deferred for future work.

2.6 Appendix A

It can be shown that inter-atomic potentials representative of directional bonding will result in a
non-symmetric Cauchy stress. To accomplish this, we use the “potential” portion of the Hardy
expression, σσσ = −1

2 ∑
N
α=1 ∑

N
β 6=α

fαβ⊗xαβB̃αβ(x), combined with our new expression for fαβ =

−
{

∂φα

∂xαβ
+ ∂φβ

∂xαβ

}
. As a simple case, we consider the interaction of only 3 atoms (α, β and δ)

through a single 3-body potential energy term Φ,

Φ = Φ(xαβ,xαδ). (A.1)

59



This form fits the case of the 3-body term in the Stillinger-Weber potential [177] where α is the
center atom of the β-α-δ triplet and

Φ(xαβ,xαδ) = ελexp(
γ

xαβ

σ
−a

)exp(
γ

xαγ

σ
−a

)
{

cos(θ)+
1
3

}2

, (A.2)

where ε, λ, γ, σ and a are fitted material parameters and

θ≡ arccos(
xαβ ·xαδ

xαβxαδ
). (A.3)

Using the relation φα = φα(xαβ,xαγ, . . . ,xαN), the full energy Φ is partitioned equally among the
3 atoms, φα = φβ = φδ = 1

3Φ. However, in order to correctly take partial derivatives of these
individual energies, we must express the functional dependency for each energy correctly. For
atom α, the expression is trivial,

φ
α =

1
3

Φ(xαβ,xαδ), (A.4)

but for atoms β and δ, the expressions are

φ
β = φ

β(xβα,xβδ) =
1
3

Φ(xαβ,xαβ +xβδ) (A.5)

φ
δ = φ

δ(xδα,xδβ) =
1
3

Φ(xαδ +xδβ,xαδ) (A.6)

In these relations, we have substituted xαβ + xβδ for xαδ in the expression for φβ since it cannot
depend directly on xαδ. Likewise for the φδ term, we have substituted xαδ +xδβ for xαβ. Obviously,
clarity requires that any expression that uses Φ in a simple way must refer to its original form shown
in (A.1). So, when partial derivatives are taken, they must include terms that may indirectly depend
on certain variables. For example,

∂φβ

∂xαβ
=

1
3

(
∂Φ

∂xαβ
+

∂Φ

∂xαδ

∂xαδ

∂xαβ

)
=

1
3

(
∂Φ

∂xαβ
+

∂Φ

∂xαδ

)
. (A.7)

Equation (A.7) is easily understood. The first term inside the parentheses results from the derivative
of Φ with respect to xαβ as it appears explicitly within the normal functional form of Φ, but the
second term is present because Φ also depends on xαδ, which itself depends on xαβ through the
relation xαδ = xαβ +xβδ. Since

∂φα

∂xαβ
=

1
3

(
∂Φ

∂xαβ

)
, (A.8)

we can now calculate fαβ to be

fαβ =−
{

∂φα

∂xαβ
+

∂φβ

∂xαβ

}

=−
{

1
3

(
∂Φ

∂xαβ

)
+

1
3

(
∂Φ

∂xαβ
+

∂Φ

∂xαδ

)}

=−
{

2
3

∂Φ

∂xαβ
+

1
3

∂Φ

∂xαδ

}
.

(A.9)
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Similarly, for this example

fαδ =−
{

2
3

∂Φ

∂xαδ
+

1
3

∂Φ

∂xαβ

}
, (A.10)

It is interesting to note that the expression for fαβ in (A.9) involves derivatives with respect to
inter-atomic vectors other than just xαβ, and that it is not necessarily collinear with xαβ.

Combining the expressions in equations (A.9) and (A.10) with a similarly derived expression
for fβδ, the expression for Cauchy stress becomes:

σσσ(x, t) =−1
2

N

∑
α=1

N

∑
β6=α

xαβ⊗ fαβB̃αβ(x)

=−xαβ⊗ fαβB̃αβ(x)−xαδ⊗ fαδB̃αδ(x)−xβδ⊗ fβδB̃βδ(x)

= xαβ⊗
{

2
3

∂Φ

∂xαβ
+

1
3

∂Φ

∂xαδ

}
B̃αβ(x)+xαδ⊗

{
1
3

∂Φ

∂xαβ
+

2
3

∂Φ

∂xαδ

}
B̃αδ(x)

+xβδ⊗
{
−1

3
∂Φ

∂xαβ
+

1
3

∂Φ

∂xαδ

}
B̃βδ(x),

(A.11)

which can be simplified to

σσσ(x, t) = xαβ⊗
{

2
3

∂Φ

∂xαβ
+

1
3

∂Φ

∂xαδ

}
B̃αβ(x)+xαδ⊗

{
1
3

∂Φ

∂xαβ
+

2
3

∂Φ

∂xαδ

}
B̃αδ(x)

+
{

xαδ−xαβ

}
⊗
{
−1

3
∂Φ

∂xαβ
+

1
3

∂Φ

∂xαδ

}
B̃βδ(x).

(A.12)

To proceed further, we assume that the potential function Φ can be expressed an an alternative
function Φ̃ that depends only on the invariants xαβ, xαδ and θ (as defined in equation (A.3)):

Φ = Φ(xαβ,xαδ) = Φ̃(xαβ,xαδ,cosθ). (A.13)

This assumption is certainly true for the Stillinger-Weber 3-body term (A.2) and can be generalized
for other potentials representative of directional bonding. Using (A.13), we obtain the relations

∂Φ

∂xαβ
=

∂Φ̃

∂xαβ

xαβ

xαβ
+

∂Φ̃

∂cθ

[
xαδ

xαβxαδ
− cθ

xαβ

xαβ

xαβ

]

∂Φ

∂xαδ
=

∂Φ̃

∂xαδ

xαδ

xαδ
+

∂Φ̃

∂cθ

[
xαβ

xαβxαδ
− cθ

xαδ

xαδ

xαδ

]
,

(A.14)

where cθ represents cosθ. Substituting the above relations into equation (A.12), we clearly see
that the expression for σσσ(x, t) will contain many terms that are non-symmetric. Specifically, the
quantities xαβ⊗xαδ and xαδ⊗xαβ will both be present but will not have the same scalar coefficient,
a requirement for a symmetric tensor.
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One result we can obtain is the expression for the average stress, σ̄σσ(t), for the entire volume V
of the system. Integrating both sides of equation (A.12), we obtain

σ̄σσ(t) =
1
V

(
xαβ⊗

{
2
3

∂Φ

∂xαβ
+

1
3

∂Φ

∂xαδ

}
+xαδ⊗

{
1
3

∂Φ

∂xαβ
+

2
3

∂Φ

∂xαδ

}

+
{

xαδ−xαβ

}
⊗
{
−1

3
∂Φ

∂xαβ
+

1
3

∂Φ

∂xαδ

})

=
1
V

(
xαβ⊗ ∂Φ

∂xαβ
+xαδ⊗ ∂Φ

∂xαδ

)
(A.15)

Substitution of (A.14) into (A.15), along with simplification of terms, results in the expression

σ̄σσ(t) =
1
V

([
∂Φ̃

∂xαβ
− ∂Φ̃

∂cθ

cθ

xαβ

]
xαβ⊗xαβ

xαβ
+
[

∂Φ̃

∂xαδ
− ∂Φ̃

∂cθ

cθ

xαδ

]
xαδ⊗xαδ

xαδ

+
∂Φ̃

∂cθ

{
xαβ⊗xαδ +xαδ⊗xαβ

}

xαβxαδ


 .

(A.16)

Clearly, the average stress for the system is a symmetric quantity. This explains why standard
continuum theory adequately describes the deformation of directional bonded materials such as
silicon. At the macroscopic scale, asymmetries in stress are probably minor and unnoticeable.
However, at the microscopic scale, these asymmetries may be significant and indicative of the
need for a microcontinuum theory.
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Chapter 3

The construction and application of an
atomistic J-integral via Hardy estimates of
continuum fields
Principal Authors: Reese E. Jones and Jonathan A. Zimmerman

In this chapter, we apply a Lagrangian kernel-based estimator of continuum fields to atomic
data in order to estimate the J-integral for the analysis of cracks and dislocations. We show that
this method has the properties of: consistency between the energy, stress and deformation fields;
path independence of the contour integrals of the Eshelby stress; and excellent correlation with
linear elastic fracture mechanics theory for appropriately constructed simulations. We discuss the
appropriate reference configuration and reference energy for this type of analysis. Lastly, we use
canonical examples to demonstrate that the proposed method is a direct and rational approach for
estimating the configurational forces on atomic defects.

3.1 Introduction

At the macro-scale, Eshelbian mechanics has found myriad applications ranging from the anal-
ysis of defects to the modeling of the dynamics of phase boundaries [69]. With the advent
of nanoscience and nanotechnology, there is strong motivation to extend its application to the
nanoscale where issues of dissipation, compatibility, and isotropy are of both scientific and prac-
tical interest. For example, with an accurate measure of the atomic configurational forces we
can construct traction-separation laws for macroscale closures of fracture problems and estimate
resistance limits for defects propagating in complex environments, e.g.composed of clusters and
aggregates of defects and dislocations, via simulation.

Eshelby’s seminal work [48, 49] lead to Rice’s well-known J-integral [152] of fracture me-
chanics and can be connected to Peach and Koehler’s work [149] on the force on dislocations. The
J-integral is a path independent contour or surface integral (in 2- or 3-dimensions, respectively)
that evaluates the energetic driving force that acts to propagate an existing defect in a continuous
medium. The J-integral is commonly used in numerical simulations of continuum mechanical
deformation, such as the finite element method, to indicate when a critical loading state has been
achieved that will result in crack growth. In the context of dislocations and linear elasticity, the
J-integral represents the force to move a dislocation through the material in which it is embed-
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ded. For both cracks and dislocations, the J-integral force is ultimately due to applied loads and
interactions with other defects.

The use of molecular simulation methods to develop insight on mechanisms of fracture in
materials has spawned numerous efforts to develop an “atomic-scale” J-integral, i.e. one estimated
directly from atomistic information. The first such effort (known to the authors) is that of Inoue et
al. [81, 82], who combined potential energy, the per-atom contribution to the virial and an estimate
of the displacement gradient at an atom for designated atoms comprising a loop around a crack
tip to calculate the “H-sum” parameter, an approximation for J. While the authors claim that this
H-sum is path independent, their work clearly shows significant non-zero values of H for a closed
path that does not enclose a crack tip.

Nakatani et al. [140, 141] attempted to avoid the difficulties that plague the calculation a con-
tour integral by using a domain integral approach where atomic contributions to J are weighted
spatially according to each atom’s position within an annular region surrounding a crack tip. They
examined how their estimate of J depended on the geometric features of the annular region. This
work is interesting in two regards. First, the authors explicitly comment that an unloaded, un-
cracked system must be used to define a reference state with regard to strain energy density, with
the exception of atoms at free surfaces where the reference energy is given by the surface energy.
With regard to stress, they ascertain that the bulk lattice provides the appropriate reference value
for every atom; whereas for energy, two different reference states are used. Second, Nakatani
et al. show that their measurement of J agrees with the theoretical solution provided from linear
elastic fracture mechanics (LEFM) only for small values of stress intensity factor, whereas for
large deformation, deviation from the LEFM value occurs due to geometric nonlinearity. Both of
these issues will be addressed later in this article. Jin and Yuan [86] and Khare et al. [93] have also
used a domain integral approach for calculating an atomistic J-integral, where differences from the
Nakatani et al. formulation are due to how strain energy density is calculated.

Xu et al. [205] presented calculations of J using an energy release rate form, i.e. energy per
unit area created during crack advance, in order to estimate a critical value for the ductile fracture
of a nickel crystal. Although fundamental in their approach, Xu et al. did not examine whether
their metric is consistent with LEFM, nor with the contour-based methods that they cite, e.g. [81].
In addition, this approach is limited to defects that can propagate stably due to the need to make a
finite difference approximation of the change in potential energy with respect to a (finite) change
in crack length. As a consequence, it is clearly limited to estimating the critical value of J. No
quantification of the driving force is possible prior to crack length extension. Also, it becomes
complex in its application in the context of isolating the J of an individual defect in a group of
defects, unlike contour based methods. In an attempt to use both atomistic and continuum simula-
tion methods to characterize the fracture of a graphene sheet, Tsai et al. [189] have recently shown
that calculation of such a strain energy release rate displays better agreement with a continuum
model of fracture than using atomistic-based stress fields to directly estimate an appropriate stress
intensity factor. For the latter method, these authors show that the near-tip stress fields display
non-local behavior, making a quantitative estimate of stress intensity factor unreliable. However,
calculations of energy release rate using both global and local techniques are in agreement with
estimates made from their continuum model.
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Finally, Choi and Kim [30] combined atomistics with anisotropic linear elasticity, a hybrid
definition of atomic-scale deformation gradient, and an alternative contour integral to define their
own metric of J. They too did not investigate consistency with LEFM, but rather focused on
developing traction-separation relations for use in cohesive zone simulations.

In this article, we present a novel methodology for calculating the J-integral. We construct
continuum variable fields from atomic data that are consistent with the continuum Euler balances
of mass, momentum and energy, then use these fields in the traditional contour/surface integral
expressions to estimate the J-integral. Our approach to estimate continuum fields from atomic
data originated with Irving and Kirkwood’s work [83] (which was later continued by Noll [143]).
They established the consistency between Dirac delta weighted atomic point data and continuum
fields through a correspondence between Newton’s law governing the evolution of the particles and
Euler’s “hydrodynamic” balance laws governing the continuum. Hardy extended the averaging
technique from Dirac delta weight functions to continuous kernels [71, 159], see also [200, 222]
for review and applications. Hardy’s and others’ use of coarse-grained averages of atomic data has
been shown by many researchers to be superior to per-atom data alone, in particular the atomic
stress based on the virial theorem, with regards to producing results consistent with continuum
mechanics theory. For example, Cormier et al. [35] showed that for the analysis of stress fields in
the vicinity of an elastic inclusion, the use of coarse-graining produced fields closer in agreement
with continuum estimates than did the per-atom virial stress. More recently, Admal and Tadmor
[3] conducted an in-depth analytical and numerical study of how Hardy’s expression for stress
and the virial stress compare with each other and with other metrics used for estimating stress
from atomistics. By examining cases of both homogeneous and inhomogeneous deformation, they
conclude that the Hardy stress definition possesses higher accuracy and quicker convergence with
averaging domain size than the other methods studied, including the coarse-grained (i.e. volume-
averaged) virial stress.

Hardy’s work, based in an Eulerian description of motion, was subsequently reformulated in
the Lagrangian framework natural for solids by the authors in [224]. Given Eshelbian mechanics
dependence on the material frame, it is rational to adopt the Lagrangian description. Our La-
grangian, kernel-based method, unlike that of previous work, has the benefits of preserving path
independence down to a surprisingly small size. It must be emphasized that without this property
any contour-based method that purports to give an estimate of J is questionable. In addition, the
proposed method has excellent correspondence with linear elastic fracture and defect mechanics
with regard to critical values and trends for idealized problems where there are analytical solutions.
These properties will be demonstrated with numerical simulation of fundamental defect types in
Section 3.5. Section 3.2 provides a brief summary of the continuum J-integral theory. Section
3.3 gives a concise summary of the continuum field estimators needed to calculate the J-integral
and Section 3.4 discusses the various aspects of consistency, e.g.between stored energy and stress,
needed to obtain accurate J-integral estimates from atomic data. As mentioned, in Section 3.5
representative simulations are given to validate the method and display its numerical properties.
Lastly, the paper is concluded with a discussion of future work.
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3.2 The Eshelby tensor

The Eshelby energy-momentum tensor S [48, 49] can be defined in terms of the free energy density
Ψ, the deformation gradient F and the first Piola-Kirchhoff (PK) stress P as

S = ΨI−FT P . (3.1)

The deformation gradient is a kinematic measure F = ∇∇∇Xχχχ defined in terms of the motion x =
χχχ(X, t) of material, with X being the reference position. It has many applications to the mechanics
of defects, specifically in characterizing the evolution and propagation of cracks and dislocations,
see, e.g.[69, 123]. Rice’s directly related J-integral [152] is defined as a boundary integral of S

J =
Z

∂Ω

S NdA =
Z

∂Ω

ΨN−FT PNdA (3.2)

where the Eshelby stress acts on N, the outward normal to the surface ∂Ω enclosing the region
Ω in the reference configuration. For a region at a constant temperature and in equilibrium, this
expression can be simplified to

J =
Z

∂Ω

ΨN−HT PNdA =
Z

∂Ω

WN−HT PNdA (3.3)

The first equality requires equilibrium

∇∇∇X ·P = 0 →
Z

∂Ω

PNdA = 0 , (3.4)

and the relation between the deformation gradient F and the displacement gradient H = F− I,
with u = x−X being the displacement. The second equality requires that there is no heat flow,
i.e. constant temperature, so the free energy density Ψ is equal to the internal energy density W
with respect to the reference differential volume dV . The assumption of quasi-static motion at zero
temperature will be used throughout the remainder of the paper.

As an aside, an Eulerian version of the J-integral can be derived using Nanson’s formula,
nda = det(F)F−T NdA, so that (3.3) becomes

J =
Z

∂Ω

(
W I−HT P

)
NdA

=
Z

∂Ω̃

(
W I−FT

∇∇∇
T
x u det(F)TF−T

) 1
det(F)

FT nda

=
Z

∂Ω̃

FT
(

wI−∇∇∇
T
x uT

)
nda

given the Cauchy stress T = 1
det(F)PFT , energy density w = 1

det(F)W in the current configuration oc-

cupied by Ω̃, and spatial displacement gradient ∇∇∇xu = HF−1. Although attractive due to the usual
connection between the Cauchy stress and the virial, this formulation still requires a reference con-
figuration to define the displacement u. As such, we use the material formulation, as is customary
in the continuum mechanics community. It is also interesting to note that in [49], Eshelby derives
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a spatial-frame version of the energy-momentum tensor ΣΣΣ = wI−∇∇∇
T
x u ∂w

∂∇∇∇xu . However, the work-

conjugate of displacement gradient ∂w
∂∇∇∇xu only equals the Cauchy stress in the small strain limit.

This equality does not hold for general, finite deformation problems.

If the motion χχχ is smooth enough in the region Ω for the application of the divergence theorem,
the J-integral can be reinterpreted as the divergence of the Eshelby stress in the region bounded
by ∂Ω, i.e.

R
∂Ω

SNdA =
R

Ω
∇∇∇X · S dV . Given that the region is arbitrary, this statement can be

localized to
∇∇∇X ·S = ∇∇∇XW −∇∇∇XFT P−FT

∇∇∇X ·P = P∇∇∇XF−∇∇∇XFT P = 0 (3.5)

assuming that the thermodynamic conjugacy between P and F holds, i.e.

P =
∂W
∂F

. (3.6)

The last step in (3.5), i.e. (PiBFiB,A−FiA,BPiB) = 0, is only valid if the motion is twice differentiable
i.e. FiA,B = xi,AB = xi,BA = FiB,A, so clearly the J-integral is sensitive to the compatibility of the
motion. This result also leads directly to the fact that the J-integral around a closed region with a
smooth motion is zero and consequently that J is path-independent for arbitrary contours around
regions that contain singularities like cracks and dislocations.

It is well known that the Eshelby stress acts as a material force conjugate to the change in the
reference configuration due to the evolution of a defect. Work conjugacy provides a fundamental
definition for the Eshelby stress S and the J-integral. Starting with the total potential energy of a
region Ω

Π(X,x,F) =
Z

Ω

W (X,F)dV −
Z

∂Ω

p̄ ·u(x,X)dA (3.7)

where, here, body forces are omitted for simplicity and the applied boundary tractions p̄ are as-
sumed to be independent of configuration X. Now if a map ϕϕϕt(X) such that ϕϕϕt(Ω) = Ω is intro-
duced to describe the configurational changes associated with the defect, the difference between
the rates of change of Π(X,χχχ,F) and Π(ϕϕϕt(X),χχχ,F) leads to the energy release rate

Π̇(ϕϕϕt(X),χχχ,F)− Π̇(X,χχχ,F) =
Z

∂W
∂X

∣∣∣∣
expl
· ϕ̇ϕϕdV (3.8)

where
∂W
∂X

∣∣∣∣
expl
≡ ∂W (X,F)

∂X
=

∂W (X,F(X))
∂X

− ∂W (X,F(X))
∂F

: ∇∇∇XF = ∇∇∇X ·S (3.9)

is work conjugate to the configurational change [49]. The J-integral is the resultant of these forces

J =
Z

∂Ω

SNdA =
dΠ

dX

∣∣∣∣
expl

(3.10)

The details of Eshelbian mechanics specific to cracks and dislocations are given in Section 3.5.
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3.3 Atom-based measures of continuum quantities

In order to measure the Eshelby stress field we need estimates of stored energy density W , the
displacement gradient H, and the first Piola-Kirchhoff stress P. As mentioned in the Introduction,
Hardy projection [71, 83, 224] has the advantage of being consistent with the continuum balance
laws by extension of Irving and Kirkwood’s seminal work [83] to continuous kernels. These ker-
nels ψ(x), also called “localization functions”, have the basic properties:

ψ > 0 (3.11)Z
Ω

ψdV = 1 (3.12)

Given the material frame orientation of Eshelbian mechanics, we have chosen to use a Lagrangian
description [224] of kinematic and dynamic quantities. In fact this choice is crucial in determining
configurational forces like the J-integral due to the fact that it naturally measures energy density,
deformation and stress with respect to a given, fixed reference configuration.

In the following, Greek letters denote the label or index of a particular atom in the system. For
instance, xα is the location of atom α.

3.3.1 Energy density

First, let us examine the stored energy density field W which can be defined as a local, weighted
average of the potential energy per atom φα

W (X, t) = ∑
α

(φα(t)−φ
α
X)ψ(X−Xα) = ∑

α

φ
α(t)ψ(X−Xα)−W (X) (3.13)

where φα
X = φα({Xβ}) in a fixed reference configuration {Xβ}, and W (X) = ∑α φα

X ψ(X−Xα) by
virtue of the fact that ψ(X−Xα) is independent of time. The field W (X) is equal to the potential
energy density for the zero temperature, perfect lattice configuration Xα. This reference configura-
tion is not necessarily the initial configuration nor even occupiable from subsequent configurations
of the system. This choice of zero point for W (X, t) is necessary for W (X, t) = 0 to imply P = 0,
i.e. an unloaded reference state in a homogeneous system. (Readers are referred to the more elab-
orate discussion of this choice of reference configuration in [224].) The potential energy per atom
φα can be defined by partitioning the total potential energy to the atoms in any reasonable way,
e.g.partitioning the energy of a bond equally to all its constituent atoms (refer to [200] for more
details).
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3.3.2 Displacement gradient

In order to define the displacement gradient H in terms of atomic quantities, we must first define
the displacement u. This is done in a mass-weighted fashion

u(X, t) = ∑α (xα(t)−Xα)mαψ(Xα−X)
∑α mαψ(Xα−X)

, (3.14)

with mα being the mass of atom α, in order to connect to the dynamical variable, momentum,
which is given a primitive definition.1 A direct differentiation of this kernel estimator leads to

∇∇∇Xu =
∑

N
α=1 (uα−u)mα⊗∇∇∇Xψ(Xα−X)

∑
N
α=1 mαψ(Xα−X)

(3.15)

Since we need to efficiently represent continuous fields, we instead adopt partition of unity inter-
polation NI | ∑I NI = 1, specifically finite element (FE) shape functions. This choice allows us to
compute, for example, (3.14) on a grid of points XI and then interpolate u as

u(X, t) = ∑
I

uI(t)NI(X) = ∑
I,α

NI ψIα uα, (3.16)

where uI = u(XI, t) and ψIa = ψ(Xα−XI). A differentiation of this interpolation leads directly to
our definition of the displacement gradient

H = ∇∇∇Xu = ∑
I

uI(t)∇∇∇XNI(X) . (3.17)

3.3.3 Stress

Finally, the referential first Piola-Kirchhoff stress [224] for pair potentials can be defined in terms
of the force fαβ between atoms α and β and the difference between their positions in the reference
configuration Xαβ = Xα−Xβ. Instead of a simple average of the virial weighted by ψIα, the
so-called “bond” function Bαβ is required for consistency with the continuum. The bond function

Bαβ(X) =
Z 1

0
ψ

(
λ(Xα−X)+(1−λ)(Xβ−X)

)
dλ (3.18)

is constructed directly from the localization function ψ in order to have the defining property that
the difference in localization values at α and β is the directional derivative along the vector from α

to β, i.e.
ψ(Xα−X)−ψ(Xβ−X) = Xβα ·∇∇∇XBαβ . (3.19)

1In the Hardy formalism [71], momentum is defined as ∑α mαvαψ(Xα−X) and velocity as the ratio of momentum
and mass density v = ∑α mαvαψ(Xα−X)

∑α mαψ(Xα−X) .
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Our definition of the first PK stress [224] is derived by equating the stress divergence in the balance
of momentum with the ψ-weighted average of the forces fα of Newton’s law for the particles,2

∇∇∇X ·P = ∑
α

fα(t)ψ(Xα−X) . (3.20)

Subsequent manipulation produces the following expression for first PK stress:

P(X, t) =− ∑
α<β

fαβ(t)⊗XαβBαβ(X) (3.21)

for pair potentials where fαβ is the force between atom α and β. The evaluation of the line integral
in (3.18) will be discussed in Section 3.4.

3.4 Consistency of the atomic and continuum descriptions

A number of issues need to be addressed to get accurate estimates of the J-integral using atom-
based data. In the following sections we discuss: (a) the convergence of the field estimates with
grid and kernel size; (b) the consistency between the energy, stress and deformation fields; and (c)
the intrinsic errors in the contour integrals used to evaluate the divergence of the relevant stress
fields.

In order to examine these issues, we performed molecular static and dynamic simulations in
well defined ensembles with regard to energy, stress, and temperature. These simulations were
done using the LAMMPS molecular simulation code [168] together with the “user-atc” package
developed in-part by the authors.3 In the discussion that follows (and in Section 3.5), specific
simulation details are provided for each case examined.

3.4.1 Convergence of stress estimate

The consistency of Hardy’s stress measure and the virial has been explored in [222] and [224] for
the Eulerian and Lagrangian descriptions, respectively. We will revisit this subject to (a) prove that
the two measures are exactly consistent in one-dimension and (b) show why they are only approx-
imately so in higher dimensions, for the practical reason of tuning our subsequent simulation.

For a homogeneous system, the virial stress in one dimension is simply

σ =
1

2V ∑
α,β

ν
αβ =

N
2V ∑

β

ν
αβ =

N
V

ns

∑
s=1

ν
s (3.22)

2At zero temperature, the only difference between this definition of the first PK stress and that of the Cauchy stress
is the replacement of X with x in the second leg of the dyad fαβ(t)⊗Xαβ and in the function B(X).

3More information can be found at the URL: http://lammps.sandia.gov/doc/fix atc.html.
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where ναβ =− f αβ⊗xαβ = νβα is the virial contribution of pair αβ, and νs = f αβs⊗xαβs is the virial
contribution of the s-th shell. Here, βs = α + s and ns is the number of shells. The corresponding
Hardy estimate of the Cauchy stress at a point xI is

σI =
1
2 ∑

α,β

ν
αβBαβ

I =
ns

∑
s=1

ν
s
∑
α

Bαβs
I (3.23)

So in order for this estimate to be consistent with the virial value, and in this case also with the
Cauchy-Born stress, ∑α Bαβs

I must be equal to N
V . Now re-examine (3.18) in this context

∑
α

Bαβs
I = ∑

α

Z 1

0
ψ(λxαβs + xβs− xI)dλ = ∑

α

Z xα+s

xα

ψ(x− xI)dx
1
sa

(3.24)

which is simplified via x = λxαβs + xβ
s = λ(sa)+ xα +(sa) where a is the lattice constant in the

current configuration. Finally, realize that for the s-th version of this expression ∑α

R xα+s

xα gives us
s copies of the domain (i.e. Ω = R, the real line)4 so that

∑
α

Bαβ

I = ∑
α

Z xα+s

xα

ψ(x− xI)dx
1
sa

= s
Z

Ω

ψ(x− xI)dx
1
sa

=
1
a

(3.25)

Since N
V = 1

a in one dimension, we have proved consistency for all admissible localization functions
ψ and node locations xI in one dimension. An analogous result holds for the first Piola-Kirchhoff
stress, with a being the lattice constant in the reference configuration. This proof relies directly
on the fact that the line integral in the definition for Bαβ

I is also a volume integral equivalent, in
one dimension, to the normalization condition (3.12). Hence, we can not expect this same result in
three dimensions.

In fact, direct simulation shows, see Figure 3.1, that even for a homogeneous stress state the
Hardy estimate is sensitive to alignment of the kernel support and the lattice. Here, Hardy esti-
mates of the first PK stress using two types of kernels were compared to the Piola transformed
virial stress. The results labeled “spline” employed a quartic spline with a cylindrical support
aligned with the x3 direction, and the results labeled “FE” used the bilinear shape function on the
rectangular domain typically employed in finite elements. Note that these kernels are centered on
an atom since typically centering the kernel at off-lattice sites leads to higher errors. For small val-
ues of stress the errors relative to the virial stress can be excessive, see Figure 3.1a, but fortunately
these errors decreases with magnitude of stress, see Figure 3.1b. This error seems to be a fictitious
residual stress induced by a bias in the method that becomes insignificant as stress levels increase.

An interesting and useful feature of the FE-based kernel is that it is exact relative to virial
at radius equal to {1,2,4, . . .}a. It also appears to be a biased estimator since it typically under-
predicts stress. For both types of kernel the actual integration of the bond function (3.18) was
performed using a 10 point Gauss quadrature.5 For the non-FE kernel the domain of integration

4To see this, draw the lattice and skip every other atom, first for the even atoms and second for the odds. This
constructs two copies of the real line for second nearest neighbors.

5The integration ψ can be accomplished analytically for a step function on any support since it involves only the
difference in the intersection points; however, these type of kernels have lower accuracy in practice.
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was the intersection of the line segment Xα to Xβ with the compact support of the kernel.6 For the
FE kernel, on the other hand, the quadrature points were placed on the line segment, without any
regard to intersection of the support of the kernel and the segment delineating the bond, and the
partition of unity property was used to assign contributions to the nodes whose support overlaps
the bond. This was done for efficiency but also plays a role in the convergence of estimates with
FE-based kernels. Put succinctly, the FE-based kernels can be tuned easily but the spline kernels
allow the freedom of picking their support independent of mesh size.
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Figure 3.1. Kernel and mesh convergence for support centered
on an atom. Error in the 11 stress is computed relative to the virial
which is 0.022bar in the left graph (a) and 2.06× 105 bars in the
right graph (b).

3.4.2 Work conjugacy

The work conjugacy of the stress and strain measures is crucial towards ensuring that these mea-
sures are physically meaningful, and to calculating an accurate energy release rate (3.8) which is at
the core of the J-integral. The momentum balance in equilibrium is given by (3.4) and the energy
balance is simply

Ẇ (F) =
∂W
∂F
· Ḟ = P · Ḟ (3.27)

6A bond fully in support of a step kernel, or approximately for a general kernel in a region where B is nearly
constant, does not contribute to the stress

B∑
α,β

fαβ⊗Xαβ = B∑
α,β

fαβ⊗ (Xβ−Xα) = B

(
∑
β

fβ⊗Xβ−∑
α

fα⊗Xα

)
= 0 (3.26)

So it appears that accurate integration of P in regions where B has relatively high gradients is crucial.
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in the absence of heat flow and heat generation, defect evolution or any other type of dissipation.
For a quasi-static, constant temperature process, where time is merely a parameter, the energy bal-
ance (3.27) is exactly the rate of change of mechanical energy and a statement of work conjugacy
between P and F.

Using a undefected bulk system loaded by stretching the periodic box in one direction, we see
in Figure 3.2 that the Hardy estimate of the referential stress (3.21) is consistent with the Hardy
measures of energy (3.13) and deformation (3.17) through the usual first Piola-Kirchhoff formula
(3.6). A central difference scheme with small load increments was used to evaluate the derivative
∂W
∂H = ∂W

∂F .
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Figure 3.2. Consistency of the Hardy estimates of stress P, en-
ergy W and strain εεε = H for a constrained, uniaxial tension simu-
lation of EAM Cu. Only the along-axis, normal 11 components of
P and εεε are plotted.

3.4.3 Convergence of contour integration

There are intrinsic errors in calculating the continuum fields, as we have seen in Section 3.4.1.
Additional errors affect our J-integral results, specifically the errors due to the contour integration.7

Although these errors affect the estimate of the contour integration of the Eshelby stress S (3.2),
they are most clearly seen in the integration of the stress P since the expected value is known to be

7We have chosen contour integration over domain integration of the J-integral mainly due to the fact that our data
is at nodes, whereas in a finite element simulation the relevant data is a integration points interior to the interpolation
cells.
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zero for a system in equilibrium (3.4).8

The divergence theorem connects the boundary integral used to simplify (3.3) to the momentum
balance (3.4) Z

∂Ω

P ·NdA =
Z

Ω

∇∇∇X ·PdV (3.28)

if P is differentiable and ∂Ω is piece-wise smooth. If we are using a non-interpolated version of
Hardy and Ψ(r)→ 0 as r→ ∞ smoothly so that the fields are smooth and continuous, then the
divergence theorem is applicable, i.e.

Z
∂Ω

P ·NdA =
Z

Ω

∇∇∇ ·PdV = ∑
α

fα

Z
Ω

Ψ(Xα−X)dV = 0 (3.29)

by virtue of (3.20) since fα = 0. On the other hand, if we are using a FE interpolation , we have

Z
�

∇∇∇ ·PdV = ∑
I

PI ·
Z

�
∇∇∇NI dV (3.30)Z

∂�
P ·NdA = ∑

I
PI ·

Z
∂�

NINdA (3.31)

over every element region, with � being the domain of a single element and PI = −∑α<β fαβ⊗
XαβB(XαI,XβI). Note that within an element NI is smooth enough for

R
� ∇∇∇NI dV =

R
∂� NINdA.

From this observation and the fact that the interpolated field is continuous we see that we can
extend this result to any region that is an assembly of element volumes. Apparently, unlike the non-
interpolated case where we have estimated divergence-free values at all points, the FE interpolated
version has an inherent error at the interpolated points, i.e. X 6= XI , that can be mitigated by taking
finer meshes. This process, of course, reaches the non-interpolated case in the limit if the radius of
the kernel is held fixed.

Figure 3.3 shows the rate of decrease in the integration error with decreasing mesh size for a
simulation with a inhomogeneous stress field created by displacing a subset of atoms. By plotting
the convergence of a spline kernel with a fixed radius in addition to a mesh kernel tied to the size
of the mesh elements we have tried to separate the the field estimation error discussed in Section
3.4.1 from the error directly attributable to the contour quadrature. Given that the two curves
are comparable, Figure 3.3 implies that the contour integration error is dominant, at least in this
particular example of the compression of a hard inclusion in a quasi-two-dimensional periodic
domain.9

8Note that errors in stress that are constant over the region of integration do not affect the accuracy of the contour
integration.

9Note that a kernel with a very small support is not ideal in a thermalized system since it reduces the number of
atoms to average over; we will revisit this issue in future work.
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Figure 3.3. Error in the contour integration of stress in equilib-
rium as a function of mesh size (in lattice units) for a kernel of
fixed radius (with cylindrical support with radius R = 2.5 lattice
units) and a finite element kernel whose support scales with mesh
size. The black trend line has an exponent of 2.

3.5 Simulations

In this section, we demonstrate the utility of our approach by estimating J for two common defects,
an isolated crack and an isolated edge dislocation, and examining the properties of the atomistic J
relative to its continuum counterpart. The configurations employed are meant to be simple enough
to be relatively easy to interpret and compare to classical theory. The quasi-two-dimensional semi-
infinite crack and dislocation have some common features since they are both treated as line defects
in Eshelby’s work [48] and their dissipation is due to a change in area swept by the line singularity;
however, they also have some fundamental differences that make them canonical test problems for
the atomistic J-integral.

In order to obtain accurate estimates of the J-integral we must choose the reference config-
uration and reference energy rationally. To obtain, for example, the correct Burgers vector for a
dislocation, we must take the undeformed, perfect lattice sites as the reference configuration. This
reference configuration is also appropriate for the crack. This choice can lead to non-zero stress
in an unloaded initial state, at least in the case of a dislocation whereas for a crack the initial state
is relatively stress-free. In addition to setting the reference configuration, we also choose to cut
the interpolation mesh in order to allow for jumps in the fields. This is particularly crucial for
estimating Burgers vector from the displacement field but makes no significant difference in the
J-integral in the crack or the dislocation, as we will see. We also have some freedom in assigning
the reference energy density (3.13). For the crack configuration, we set it to the energy density of
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the undeformed, unrelaxed bulk after the bonds that form the crack have been deleted. This has the
effect of negating the surface energy present in the initial configuration. For the dislocation case,
we set the reference energy density equal to a value corresponding to an unloaded bulk crystal.

In all the following simulations we used a FE-based kernel and a mesh spacing set to the lattice
size for efficiency and accuracy. Periodic boundary conditions were used in the third dimension to
effect plane strain. In all the examples, we use energy minimization to create a sequence of zero
temperature lattice configurations parametrized by the loading. As already mentioned, simulations
were performed using the LAMMPS molecular simulation code [168]. Units given in this paper
are the same as the ‘metal’ units designated within LAMMPS, e.g.distance in units of Angstroms
(1 Å = 0.1nm), stress in units of bars (1bar = 0.1MPa), energy in units of eV (1eV = 1.602×
10−19 J).

3.5.1 Planar crack

In this example we examine a quasi-two dimensional, non-branching idealized crack propagating
in the e1 direction with the crack front aligned with e3. As mentioned in Section 3.2, the J-integral
is work conjugate to the change in reference configuration, specifically the area of an idealized
crack with a single crack front Ac = L3`. Here the length of the crack is ` and the depth of the
system is L3. The potential energy of such a system Π(ξξξ,F) is explicitly a function of the location
of the crack tip ξξξ(t) in the reference configuration so that

Π̇ = J · ξ̇ξξL3 = J1L3 ˙̀ (3.32)

Semi-infinite crack

In order to directly compare an atomic system with this theory, we form a crack in an Au FCC
system by deleting interactions crossing the (−x1)-x3 half plane in a cylindrical region of 22a in
radius, see Figure 3.4, where the lattice spacing is a = 4.08 Å, e1 is aligned with 〈100〉, and e2
is aligned with 〈010〉. The displacement of the outer annulus of atoms, approximately 2a thick
to avoid spurious free surface effects, was prescribed from the linear elastic fracture mechanics
(LEFM) solution [107, Chapter 2] to this boundary value problem:

u1 =
KI

2µ

√
r

2π
cos
(

θ

2

)[
κ−1+2sin2

(
θ

2

)]

u2 =
KI

2µ

√
r

2π
sin
(

θ

2

)[
κ+1−2cos2

(
θ

2

)] (3.33)

where KI is the stress intensity factor parametrizing the solution, (r,θ) are the usual polar coordi-
nates and u3 = 0 in plane strain. Note that the origin of coordinates was not updated to follow the
crack tip. Periodic boundary conditions were used in the out-of-plane direction e3 which was 3a
deep. Before loading, the reference configuration is set to the perfect lattice sites and the reference
energy is such that it negates the surface stress induced by the initial cut. Our configuration and
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methodology are similar to that used by Farkas and coworkers [53, 54, 145], who verified that
this technique shows good correspondence with expectations from LEFM regarding predicting the
onset of brittle cleavage.

Figure 3.4. The configuration of single crack showing the u1
displacement of the underlying MD lattice (left), Hardy estimate of
the continuum fields (middle), and the prediction of LEFM (right)

Although the atomic system is not exactly the idealization of the continuum LEFM solution,
it is clear from Figure 3.4 that the two displacement solutions compare well. This is despite the
fact that the atomic system is anisotropic, non-linear, and does not have a sharp crack with parallel
faces. In order to distinguish non-linear geometrical effects from the non-linearity of the typi-
cal potential we simulated the cracking process with a third nearest neighbor Lennard-Jones (LJ)
potential and also with a purely harmonic one. The LJ potential used is a shifted and truncated ver-
sion of original Lennard-Jones function, shown in equation (121) of [100], with parameter values
ε = 0.72427860 eV, σ = 2.59814680 Å, and rc = 2.1σ = 5.45610827 Å. The harmonic potential is a
pair potential with the energy per pair equal to 1

2k (r− ro)
2, with parameters k = 6.33422 eV/Å2 and

ro = 2.88499567 Å. An atomic interaction cutoff distance of 3.60624 Å was used to include only
nearest neighbor interactions, and neighbor assignment was only done once, during the simulation
setup (please note that this freezing of the neighbor lists was only done for the harmonic potential).
The values of ro and k were specifically chosen such that the LJ and harmonic materials possessed
the same values of lattice parameter and elastic modulus C11 at zero temperature. The choice of fit-
ting C11, while arbitrary, is reasonable given the nature of Mode I loading and the cubic structure of
the modeled crystal. Parameters of potentials are usually tuned using cohesive energy (the energy
per atom for a crystal’s bulk, equilibrium configuration), surface energy, or work of decohesion
(the amount of energy per unit area expended to create free surfaces). For the harmonic model,
both cohesive energy and surface energy are zero, while the work of decohesion is effectively in-
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finite and thus not well-defined. Hence, the choice was made to match C11 between the LJ and
harmonic potentials. Figure 3.4 and Figure 3.5 show the results for the harmonic system where the
only non-linearities are of a geometric nature. Note that these results are shown for a mesh without
any cuts to allow discontinuities in the field across the crack. We performed analogous simulations
with such a cut and the results were comparable. Also, it should be clear that using perfect lat-
tice sites and a Lagrangian formulation effectively gives a conformal map between the lattice and
the mesh throughout the deformation process. Lastly, it should be noted that a J-integral based
on a coarse-grained atomic virial transformed to a 1st PK stress using the estimated displacement
gradient also achieved path-independence commensurate with our proposed method. This demon-
strates that the particular stress measure may not be crucial for some simulations; however, the
use of an averaged virial would have to be evaluated on a case-by-case basis whereas the Hardy
measure’s property of consistency with the continuum momentum balance gives us confidence that
it is universally applicable as an accurate measure of stress in an inhomogeneous environment.

Figure 3.5. The P22 stress from the Hardy estimate (left) and
from LEFM theory (right). A mid-size contour loop (“loop 2”)
and the FE interpolation grid are also shown on the left. Note that
the apparent asymmetry of the LEFM solution at the crack tip is
an artifact of the graphical tool used to produce the figure.

We also note that Figure 3.5 shows satisfaction of the traction-free condition on the crack faces,
as the value of P22 is nominally close to zero for the Hardy estimate. The existence of a traction free
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surface near the boundary of a lattice was established by Zimmerman et al. [222] for the original
Hardy formulation, and is confirmed here for the material frame formulation [224].

In Figure 3.5, we compare the stress fields with those of LEFM [107, Chapter 2]

σ11 =
KI√
2µr
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(

θ

2

)[
1− sin

(
θ

2

)
sin
(

3θ

2

)]
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KI√
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(
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2

)[
1+ sin

(
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2

)
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(
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2
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σ12 =
KI√
2µr
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(

θ

2

)
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(

θ

2

)
cos
(

3θ

2

)
(3.34)

To evaluate the J-integral, we use four square loops centered on the crack tip with side lengths of
8a (loop 1), 16a (loop 2), 20a (loop 3) and 24a (loop 4), where a is the lattice constant of the atomic
crystal. For example, Figure 3.5 shows loop 2 superimposed on the estimated P22 stress field. Note
that we set the spacing of the interpolation mesh to a in this and all subsequent simulations to
reduce contour integration errors.

Using the fundamental crack tip solution (3.33) and superposition, LEFM predicts the value of
J to be quadratically dependent on the stress intensity factor KI and inversely proportional to the
appropriate modulus E∗:

J1 =
K2

I
E∗

J2 = J3 = 0 (3.35)

For our case of normal (mode I) loading, and given the cubic symmetry of the lattice, the modulus
E∗ is

E∗ =
E

1−ν2 =
C11−2C2

12/(C11 +C12)

1− (C12/(C11 +C12))
2 . (3.36)

For the LJ potential, C11 = 4.97478× 106 bars, C12 = 2.8158× 106 bars, and E∗ = 3.38099×
106 bars. It has a surface energy of 0.1599 eV/Å2. For the harmonic potential, C11 = 4.97478×
106 bars, C12 = 2.48739×106 bars, and E∗ = 3.73108×106 bars. No well-defined surface energy
exists for the harmonic potential.

Figure 3.6 clearly establishes path independence of the atomistic J-integral even at this ex-
tremely small length-scale and also shows that a loop (loop 0) not around the defect generates
an insignificant J1 < 0.001 in reduced units. The fact that J2 < 10−7 in reduced units is another
indication that we obtain accurate results.

Figure 3.7 shows the nearly perfect quadratic dependence of J1 on loading KI of the harmonic
potential and a slight deviation due to strain softening apparent at higher loads in the Lennard-Jones
system. Both systems correspond very well to the LEFM result at low loads (and correspondingly
small strains). The deviation at higher strains could well be due to the growth of the non-linear
region with loading which would invalidate our use of (3.33) as “far-field” loading.

As the loading increases, the LJ crack propagates. Griffith’s criterion states that a reversible
crack in equilibrium will be in incipient propagation if the available mechanical energy J1 is equal
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Figure 3.6. The calculated J-integral for the single crack con-
figuration showing path independence. The J-integral values were
normalized by twice the surface energy of the Lennard-Jones sys-
tem and the loading parameter KI by the corresponding critical
value KIc for the Lennard-Jones system. Note that J2 components
of all loops were negligible and not plotted.

to the resistance to propagation R

J1 =− ∂Π

∂Ac
≤ R (3.37)

For an ideal brittle crack the resistance R is equal to the energy of the two new surfaces created
by the crack, i.e. R = 2γ where γ is surface energy. Consequently, the critical load KIc can be
calculated as KIc =

√
2γE∗. Figures 3.6 and 3.7 demonstrate that the LJ system attains its ideal

crack resistance limit upon crack propagation, which initiates at the appropriate load KIc and is
stable and incremental with subsequent loading.

Note that simulations discussed in this section show no evidence of lattice trapping, a phe-
nomenon first identified by Thomson et al. [184] for discrete models of fracture in which a crack
is stable for applied loadings that exceed the amount predicted by the classical Griffith criterion
to induce crack growth. The magnitude of this effect is influenced by the type and range of the
inter-atomic potential used and the orientation of the crystal relative to the crack front and crack
plane. In some cases, this effect has been shown to be negligible [55, 67, 148], while in others it is
quite significant [55, 173, 184]. Since most of the potentials we use are long-ranged, the absence
of noticeable lattice trapping in our simulations is consistent with expectations developed in [148]
and [67].
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In Figure 3.8 we compare the components that comprise J1, namely the divergence of the stored
energy Z

∂Ω

WNdA =
1−2ν

4(1−ν)
K2

I
E∗

=
1−2ν

4(1−ν)
J1 (3.38)

in plane strain and the work term −R
∂Ω

HT PNdA, which can be calculated using the definition
(3.3) and (3.38). We see very good correspondence for both potentials (at least up to fracture for
LJ). We have also plotted the contour integral measuring the stress divergence to demonstrate that
it is insignificant relative to our J values.

Finite width crack

Using the same LJ potential as well as a corresponding Embedded Atom Method (EAM) Au po-
tential formulated by Foiles et al. [57], we performed simulations with a center crack configuration
by deleting interactions for a cut ` = 4a wide in the x1-x3 plane, see Figure 3.9. The overall dimen-
sions of this quasi-two-dimensional, fully periodic system was L1 = L2 = 20a square and L3 = 3a
deep. As before, the reference configuration is set to the perfect lattice sites and the reference
energy is such that it negates the surface energy induced by the initial deletion of bonds (refer to
Figure 3.9a). Loading strain is effected by stretching the periodic simulation box so that at the
boundary the displacement gradient is H̄(λ) = (λ−1)e2⊗E2.
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From Figure 3.9, we can see that the Eshelby stress is smooth and localized appropriately. Fig-
ure 3.10 shows that the J estimates are still path independent. For this configuration, the crack
tips are too close to one another to be treated accurately using LEFM (which significantly overes-
timates J1). This observation agrees with work done by Shastry and Farkas [171], who noted that
for a short crack similar to ours the two tips exhibit an antishielding interaction that results in an
increase of the critical stress intensity over the Griffith value. Figure 3.10 also shows that there are
significant differences in potentials due to their respective surface energies, which is manifest in
the balance between stored energy accumulated during loading versus work done. Nevertheless,
both attain their surface energy limits. In addition to being quantitatively different, EAM has the
qualitative difference that, for this system size and loading step size, the crack propagated and
arrested before fully rupturing. This is manifest by the slight increase in the J1 curves over the
ultimate resistance limit near complete fracture. Figure 3.10b also shows that almost all the en-
ergy attributed to J1 comes from W and the energy associated with the new surfaces created after
rupture, while the stress component

R
HT PNdA goes nearly to zero as the system relaxes. The J1

vs. strain squared curve in Figure 3.10 also has a pronounced change in slope right before rupture,
especially for the LJ system, that we attribute to the coarseness of the loading since it was not
observed in the semi-infinite crack case.

Figure 3.9. The atomic configuration of the LJ system colored
by potential energy (in eV and relative to potential energy of a
free atom) showing surface energy (left) and 11 component of the
Eshelby stress S (in eV/Å3, right) for an applied strain of 4%.
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Lennard-Jones system. Left (a) path independence and right (b)
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3.5.2 Edge dislocation

In this example, an edge dislocation is created in a FCC crystal of Pd (lattice parameter a = 3.89 Å)
through the removal of a partial plane of atoms. The crystal is oriented such that e1 = [110],
e2 =

[
1̄11
]
, and e3 =

[
11̄2
]
, and the Burgers vector of the created dislocation is b = a

2 [110].
Consistent with the treatment of the crack, the reference configuration is set to the perfect lattice
sites and the reference potential energy is also defined by this configuration. Subsequent to the
deletion, the whole system (approximate dimensions of 325 Å × 322 Å × 14.3 Å) is relaxed by
applying the continuum displacement field associated with a unloaded edge dislocation,

u⊥1 =
b

2π

[
tan−1

(
x2

x1

)
+

x1x2

2(1−ν)(x2
1 + x2

2)

]

u⊥2 =− b
2π

[
1−2ν

4(1−ν)
ln
(
x2

1 + x2
2
)
+

x2
1− x2

2

4(1−ν)(x2
1 + x2

2)

]
,

(3.39)

where b is the magnitude of the Burgers vector in the the e1 direction. Note that these displacement

fields decay faster than r−1, where r =
√

x2
1 + x2

2. Poisson’s ratio

ν =
2(C11−C12)(C11 +2C12−2C44)
3(C2

11−2C2
12 +C11(C12 +2C44))

(3.40)

and the shear modulus
µ =

1
3
(C11−C12 +C44) (3.41)

are estimated via application of the Cauchy-Born formalism to the potential for this crystal orien-
tation. The interatomic potential used was an EAM model developed by Foiles and Hoyt [58] and
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specially fitted to accurately predict the high value of intrinsic stacking fault energy for Pd. The cu-
bic elastic constants of this simulated material are C11 = 2.392×106 bars, C12 = 1.735×106 bars,
and C44 = 0.656× 106 bars, and Youngs’ modulus in the 1 direction is 2.7195× 106 bars. Climb
loading is effected by prescribing motion in the e1 direction of a bounding layer of atoms 7.78 Å
thick, so that

u = u⊥+u∞

σσσ = σσσ
⊥+σσσ

∞
(3.42)

in the linear regime. Here the linear field u∞ and homogeneous Cauchy stress σσσ∞ are due solely to
the far-field loading. The stress fields due to the edge dislocation are

σ
⊥
11 =− µb

2π(1−ν)
y(3x2 + y2)
(x2 + y2)2

σ
⊥
22 =

µb
2π(1−ν)

y(x2− y2)
(x2 + y2)2

σ
⊥
12 =

µb
2π(1−ν)

x(x2− y2)
(x2 + y2)2

(3.43)

from linear elasticity [76].

Figure 3.11 shows the characteristic stress field of an edge dislocation for the initial state. In
this figure, the P11 and P22 fields are calculated via the material frame Hardy formulation, and are
compared with Cauchy stress fields as given by the analytical formula (3.43). These fields also
show some artifacts of the Hardy estimation, as in [200], and the cut in the mesh which follows
the deleted plane of atoms. Nevertheless, there is good qualitative agreement between the pictured
fields, and decent quantitative agreement given expected differences due to anisotropy, a nonlocal
interatomic potential, and large-strain deviations from linear elasticity.

For an edge dislocation, the J-integral is related to the Peach-Koehler force [149] as shown by
[48]. Here the total potential energy (3.7) reduces to [123, Chapter 2]

Π =−b ·
Z

∂Ω

PNdA (3.44)

where the Burgers vector b is defined

b =
I

du =
I

∇∇∇Xu · ds (3.45)

and ds = ∂x
∂s ds is the tangent to the loop encircling the dislocation core. Here, we have assumed

small strains, where P≈ σσσ. The change in potential energy with motion of the core is

Π̇ =−
Z

(Pb)× (L3e3) · ξ̇ξξds = J · ξ̇ξξ (3.46)

where NdA = ds×L3e3 and L3e3× ξ̇ξξ is rate of change in area swept by dislocation. This result is
consistent with the direct application of the Eshelby tensor

J =
Z

WN−HT PNdA =
Z

P∞ ·∇∇∇Xu⊥N−∇∇∇Xu⊥P∞NdA

=
(

P∞

I
∇∇∇Xu⊥ ds

)
×L3e3 = (P∞b)×L3e3

(3.47)
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Figure 3.11. The 11 stress (top) and 22 stress (bottom) of the
edge dislocation in the initial configuration. Hardy field with a
mid-size contour (loop 2) on the left and linear elasticity on the
right.
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given the decomposition (3.42). The expression shown in (3.47) is a direct consequence of the
known property that in order for J to possess path independence, the integration of terms W and
HT P must produce a finite, non-zero value in the limits of very small and very large contours.
As such, the only terms contributing to J must be of order O(r−1), where r is the distance from
the defect to a point on the contour. For the case of a crack under Mode I loading, the induced
stress fields (3.34) are of the order O(r−

1
2 ) and thus satisfy this requirement. For the case of a

dislocation subjected to far-field loading, as the self-stress fields (3.43) are of the order O(r−1),
only the cross-terms between the self-induced fields

{
u⊥,P⊥

}
and remote fields {u∞,P∞} yield a

non-zero contribution to J.

As mentioned previously, the reference configuration must be the undistorted bulk to obtain an
accurate Burgers vector. As mentioned previously, we also inserted a horizontal cut in the mesh
extending from the left boundary to the center of the system. Figure 3.12 shows that we do an
excellent job of estimating the theoretical Burgers vector, which clearly has a tendency to increase
with stretch. This figure also shows convergence of this estimate with increasing loop size, i.e.
loop 1 is 12a on a side, loop 2 is 24a on a side and loop 3 is 36a on a side.
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To estimate the far field stress P∞, we used the average normal stress on the right boundary

P̄11 =
1

L2L3

Z
n ·PNdA (3.48)

Although our “far-field” stress is not constant, it is nearly so, with P11 deviating only 2 % from its
mean. This also gives us confidence that the boundaries are far enough away from the dislocation
core. Figure 3.13 shows an excellent correspondence with linear elasticity, i.e. J2 ∼ ε11 in the
low strain regime where C̃11ε11 is a good estimate of the stress and C̃11 = 1

2 (C11 +C12 +2C44). As
strain increases, the atomic estimates of J2 track the applied stress P̄11 times the theoretical Burgers
vector value b = a√

2
remarkably well. Figure 3.13 (inset) also shows that there is convergence to

the expected value with increasing loop size.
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tic values with increasing loop size. The J1 components were all
negligible and not plotted.

With this loading our particular edge dislocation does not propagate due to a high energy bar-
rier for climb. However, for shear loading in the e2 direction, the dislocation slips readily. We
performed such a simulation using additional concentric loops of sizes 12a (loop 1), 16a (loop 2),
20a (loop 3), 24a (loop 4), 28a (loop 5), 32a (loop 6), and 36a (loop 7) on a side. Figure 3.14
shows that the Burgers vector is nearly the theoretical value and follows a similar loading trend as
in the climb case. Unlike the climb case, as the core moves away from the left boundary with the
cut all contours converge. On the other hand, the J-integral, shown in Figure 3.15, does not follow
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the analytical solution as the dislocation slips from its original position, nor is it path independent.
However, detailed examination reveals that the initial loading follows the analytical solution, at
least for the smallest loop. Also, the J value for each loop reaches a common limiting value before
decaying as the core moves out of the loop, and overall, the curves are similar in shape implying a
scaling relation between them.10
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Figure 3.14. Burgers vector for loops of increasing size showing
convergence and also increase of the effective Burgers vector with
stretch.

At least one possible explanation exists for why path independence is lost once the defect has
slipped from its original position. Our system is not infinite in its extent but rather is constrained
by controlled boundary regions. As such, our dislocation may be subject to additional stress fields
caused by image dislocations. Arguments of symmetry and functional dependence of the disloca-
tion stress fields can be used to reason that while these fields negligibly contribute to the tensile
loading considered in the climb scenario, they may be considerable with regard to the shear load-
ing for the slip case. And, as the dislocation moves to new equilibrium positions upon increase of
the far-field shear loading, this excess contribution becomes increasingly significant. It is impor-
tant to realize, of course, that path independence is only expected until the dislocation intersects
each contour. For a given contour, it is reasonable that the estimate of J drops to zero once the
dislocation no longer resides within its interior region.

10In fact by rescaling strain for each loop all the curves can be made to lie on top of each other.
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Figure 3.15. Variation of the J2-integral with applied normal
strain in the 1 direction.

3.6 Conclusion

In this article, we have presented an innovative method for estimating the J-integral in nanoscale
systems using molecular simulation results. Our method represents a distinct departure from the
traditional attempt to use atomic energies and contributions to the virial directly with “atomistic”
versions of the J-integral. Instead we employ a material frame version of the well-regarded Hardy
formulation to calculate continuum mechanical field variables and use these calculations within the
traditional contour/surface integral expressions to estimate the J-integral. The Hardy formulation is
marginally more expensive than a coarse-grained virial and has been shown to give superior results
even for cases where simple linear elastic solutions do not exist. Using several numerical examples
including cracks and dislocations, we have shown that our method of J-integral calculation:

- displays the path independence (independent of load) consistent with continuum mechanics
theory. Without this property any J estimate is questionable. Also this property leads to
straightforward localization of estimates for individual defects in complex environments;

- is in agreement with predictions of linear elasticity theory in the appropriate small strain
regime, predicting the correct limiting values for J and KI in fracture and the correct depen-
dence on loading for both isolated cracks and dislocations.
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None of the existing methods have achieved this. Arguably the best contour/domain integral-
based method to-date [140, 141] displays greater variability in its J estimates, questionable path-
independence at low loads, and greatly degraded path-independence with increasing load. Also in
contrast with existing methods, the proposed method:

- gives pre-propagation information, without any issues with measuring crack length or crack
stability, unlike Griffith’s criteria methods based directly on estimates of energy release rate;

- can be more efficient than domain integral-based methods since fields need to be computed
in only a thin annulus of the lattice around defect.

The superior results that we have obtained are due to: the use of coarse grained stress and dis-
placement fields consistent with the continuum momentum balance and the work conjugacy rela-
tion (3.27), and an appropriate choice of reference configuration and state. Moreover, this rational
development leads to an elegant, direct of application of continuum configurational mechanics to
atomistic systems without the specialized, ad hoc treatments found in many other methods.

The potential of our new method is easily grasped. First, it can be used within coupled
atomistic-continuum simulation frameworks, e.g.[100], to establish a consistent metric for predict-
ing the onset of defect propagation that is well-defined in both types of simulation regions. Second,
it can provide an accurate measure of the resistance to defect propagation at the nanoscale, which
can in-turn be used to construct traction-separation laws used in the continuum-scale cohesive
zone simulation. Finally, for problems where molecular simulation is exclusively used (such as the
analysis of nanoscale structures, e.g.nanowires, and nanostructured materials), it extends proven
concepts of traditional fracture mechanics down to this regime, providing a possibility for their
usefulness in the engineering of nanotechnology.

While this effort promotes a powerful new technique, clear paths are evident that warrant fur-
ther investigation. Our example of a dislocation subjected to shear loading shows that issues need
to be resolved to determine if our J-integral calculation method has the potential for path inde-
pendence when the defect is undergoing quasi-static motion during transitions in applied loading.
More generally, our method needs to be extended to the case of mobile defects to determine if its
consistency with the continuum measure of J is retained when kinetic fields are present. Likewise,
expansion of method is required to analyze systems subject to finite, non-zero temperature. In such
situations, we anticipate that calculation of a free energy (rather than strain energy) density will
be required, and we have begun to pursue this path. In addition, the stress measure employed in
the J-integral would need to include temperature effects. This can be done explicitly in the case of
the Cauchy stress by the inclusion of a kinetic term [178], or implicitly, using the Lagrangian, first
Piola-Kirchhofff stress [115, 224] employed in this work. Finally, while we have not performed
a comprehensive study of multiple, interacting defects, the results of Section 3.5.1 give us confi-
dence that our method will retain the properties of path independence and correct predictions of
defect propagation resistance in complex environments.
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Chapter 4

Continuum constitutive models from
analytic free energies
Principal Authors: Christopher J. Kimmer and Reese E. Jones

In this chapter, we present a critical investigation of the validity of the harmonic approxima-
tion for developing constitutive models for multiscale simulations. We examine models using the
Cauchy-Born hypothesis within the quasiharmonic, local harmonic, and modified local harmonic
approximations in order to characterize the strain and temperature dependence of the Cauchy stress
for uniaxial, equibiaxial and equitriaxial deformations. We compare these predictions with molec-
ular dynamics simulations to evaluate each harmonic model’s suitability over a wide range of
strains and temperatures. The various harmonic approximations are found to be very robust over a
large temperature range. All the approximations make very similar predictions at small strains and
temperatures. At larger strains and temperatures, the quasiharmonic model is the most accurate but
also the most computationally expensive. The modified local harmonic model is seen to provide
an accurate alternative to the full quasiharmonic model over a wide range of strains while being
much less computationally expensive. The local harmonic model is similar in absolute accuracy to
the modified local harmonic model, but the modified harmonic model is seen to more accurately
predict the elastic moduli.

4.1 Introduction

Knowledge of the free energy of a system is crucial for understanding its properties as a function
of temperature, stress, or strain. Although quite general numerical methods exist for computing the
free energy of a system, many important problems only benefit from having analytic expressions
for the free energy. For a crystalline solid, exact analytic expressions are available only if the
interatomic interactions are linear so that the solid is harmonic. At low temperatures in a nonlinear
solid, anharmonic effects may be small and, consequently, the harmonic free energy can be an
accurate and useful analytic approximation. Since anharmonic effects in a strained lattice can
render the harmonic approximation invalid even at low temperatures, a variety of approximations
based on expanding the potential energy about the strained state have been developed.

The quasiharmonic (QH) approximation [12] is based on a second-order expansion about a ho-
mogeneously deformed reference state. The dynamics of the solid are approximated as harmonic
oscillations around strained atomic positions which are expected to coincide with the average sys-
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tem configuration. The QH vibrational frequencies are found from the eigenvalues of the 3N×3N
dynamical matrix. In contrast, the local harmonic (LH) approximation [111] neglects the vibra-
tional coupling between atoms, and the vibrational frequencies are found from an approximate
dynamical matrix that is only 3× 3. A third approach, the so-called modified local harmonic
model (MLH) [157] adds correction terms to the LH free energy in order to more closely approx-
imate the QH free energy. The MLH approach yields a power series that is in principle exact for
systems and strains that are sufficiently symmetric, but approximations are required in order to
develop expressions for more general systems or strain states. In this paper, we present one such
approximation developed in terms of an average local harmonic frequency which is suitable for
anisotropic strain states and general crystal symmetries. The LH and MLH methods are less ac-
curate than the QH model, but they have tremendous advantages in computational time even for
moderately-sized systems, due to the smaller dynamical matrices required.

Numerous studies have compared the accuracy of the various harmonic approximations for
perfect crystals [56, 104, 111, 139] as well as systems containing grain boundaries and vacan-
cies [56] or point defects [39]. Likewise, the QH models alone have been compared directly with
molecular dynamics (MD) simulations for systems in an isotropic stress state [191]. Most of these
studies focus on the accuracy of the free-energy function itself or the ability to predict the free
energy associated with system inhomogeneities. Little attention has been paid to the validity of
these harmonic models for systems in anisotropic stress or strain states. Likewise, while the pres-
sure versus density or temperature has been extensively characterized, less attention has been paid
to the accuracy of individual components of the stress tensor predicted by these models for more
general stress or strain states.

A class of problems where the model’s performance in general stress or strain states must be
well-understood is exemplified by current efforts to seamlessly couple MD and the finite element
method (FEM) in a single, concurrent multiscale simulation. These simulations are expected to be
accurate, efficient alternatives to current direct approaches for problems involving coupled physics
with widely different characteristic length and time scales. A canonical example is brittle fracture
and subsequent crack propagation. The fracture process ultimately depends on the rupture of
individual bonds at or near the crack tip, while the motion of atoms far from the crack tip are well
characterized by the smooth continuum strain field of linear elasticity. Consequently, the region
near the crack tip is modeled with MD while the longer-scale physics are modeled with FEM
further from the crack. Among the currently-proposed multiscale methods are the quasicontinuum
method [42], the bridging-scale method [196], and coarse-grained molecular dynamics [164].

All these methods can at best match, in a locally averaged sense, the “exact” solution obtained
with a single MD simulation modeling the entire system. This constraint typically leads to an inter-
pretation of the FEM region as a coarse-scaled atomic region with all atoms locally experiencing
the same homogeneous deformation described by the continuum strain field. This interpretation,
known as the Cauchy–Born (CB) hypothesis [17], allows the energetics of the continuum to be
derived from the energy per unit volume of the homogeneously-deforming atomic system. At
nonzero temperature, the effects of thermal vibrations about the mean position are neglected in
the continuum by the CB hypothesis. To include thermal effects in the coarse-scale constitutive
model and to correctly couple to an MD region at nonzero temperature, the CB hypothesis is ex-
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tended so that only the ensemble-averaged deformation is homogeneous. Although not explicitly
modeled, fluctuations about the average deformation contribute to the average stress tensor [179],
so the long-time, large-scale dynamics modeled by the FEM region must correctly reproduce this
average stress. Consequently, the continuum energetics and dynamics are obtained from the free
energy, as in the finite-temperature Cauchy–Born methods [85, 202].

As mentioned earlier, most work has focused on the accuracy of the free energy function itself,
while the MD-FEM coupling problem requires that the derivatives of the free energy with respect
to the strain measure be accurate. Moreover, this accuracy must hold over a wide range of strains
and deformations. The accuracy of these harmonic approximations has been previously examined
as a function of volumetric strain [111, 139, 191], but such deformation represents only a small part
of the full deformation space expected in a multiscale simulation. The reliability of these models
for anisotropic deformation states has received much less attention.

Another issue that has received scant attention as it pertains to multiscale modeling is sta-
bility. A partial explanation for this lack of attention is because it is still not completely clear
within the continuum community what the basic stability criteria for a stressed solid should be, see,
e.g., [13], and the references therein. This ambiguity arises, in part, because the criteria depend
on the geometric description of the stressed state’s deformation [75] as well as on the thermody-
namic mechanism maintaining the system in a constant stress ensemble [135]. For the multiscale
problem, stability issues become important from the continuum viewpoint because the vanishing
elastic moduli are equivalent to the loss of ellipticity of the equations of equilibrium. Moreover,
implicit solution methods in FEM codes rely on the elastic moduli or their approximants in order
to determine the continuum strain field. Stability analysis can consequently be seen as providing a
bounds on the strains and temperatures for which a coarse-scale stress model is valid.

We present a critical evaluation of the QH, LH, and MLH models for the specific purpose of
deriving a temperature-dependent continuum constitutive model for a coupled MD/FEM simula-
tion. We examine the effects of temperature as well as the type and amount of deformation on
the average value of the stress tensor calculated from MD simulation. With this data, we inves-
tigate whether any of the existing harmonic approximations are valid over the range of temper-
atures and strains by comparing the data with predicted stress tensors of the various harmonic
models. Finally, we point out that the differences observed between the various approximations
have rather profound effects on stability estimates which may be important to the FEM applica-
tion of the constitutive models. We find that the LH and QH models agree qualitatively only for
the case of isotropic deformations. The QH and MLH models better capture the deformation de-
pendence for all the anisotropic strain states considered here. Even though less accurate, the LH
and MLH approaches may be preferred in practice because they are computationally inexpensive.
For anisotropic models, the LH model performs worse than the MLH model. We show that this
has implications for stability predictions using the LH model, so that the MLH model should be
preferred over the LH model for multiscale methods as an reasonably accurate but less expensive
alternative to the QH method.

The outline of the paper is as follows. In Section 4.2 we present an overview of continuum
stress tensors derived from the Helmholtz free energy using the harmonic approximations. In
Section 2, we also present a general version of the MLH model suitable for anisotropic strains and
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any crystallographic symmetry. In Section 4.3, we compare the harmonic predictions with MD
simulation, and we conclude in Section 4.4. In the Appendix, we present useful expressions for
implementing the various harmonic models and performing stability calculations.

4.2 Methodology

We consider a monatomic crystal in its reference state with atoms located at Rα and labeled by their
unit cell α. In particular, for an N-atom crystal we have ∑α 1 = N. A homogeneous deformation of
the crystal maps any point X in the reference configuration to a point x in the strained configuration;
and, consequently, atoms at Rα map to rα = F.Rα. Here F is the deformation gradient

F≡ ∂x(X)
∂X

. (4.1)

The homogeneous deformation is viewed as describing the thermally-averaged atomic positions
so that the appropriate dynamic variables are the displacements uα measured relative to the homo-
geneously deformed crystal, i.e. the configuration represented by rα. In an MD-FEM multiscale
simulation, the displacements uα would be resolved at the FEM scale only in a thermally-averaged
sense while the longer wavelength degrees of freedom rα would be resolved fully. For simplicity,
we restrict attention to interatomic potential energies Φ that are sums over pair potentials φ(r), but
the treatment of more general cases is straightforward. In this case, the potential energy is given
by

Φ({uα} ;F) = ∑
α<β

φ(rαβ +uαβ) (4.2)

with rαβ = rα− rβ and a similar definition for uαβ. At constant energy, the dynamics are derived
from the Hamiltonian H. At constant temperature T , the Helmholtz free energy F provides infor-
mation about the system’s static and dynamic properties. F is a function of F and T and a functional
of Φ over the configurational space {uα}. The 1st Piola–Kirchoff stress P is work–conjugate to F,
namely

P = V−1
0

∂F

∂F

∣∣∣∣
T

(4.3)

where V0 is the volume of the undeformed system. For comparison with MD simulation, the
Cauchy stress, σ may be equated with the time-averaged virial stress tensor [221] and the stress
controlled by typical MD barostats [5]. The Cauchy stress is found from P

σ = J−1PFT (4.4)

where J = detF = V/V0.

All the harmonic approximations studied here may be viewed as arising from an approxi-
mate Hamiltonian that depends on the deformation F but is quadratic in the atomic displacements.
Within this approximation, F becomes the sum of the potential energy due to the average homo-
geneous deformation and a harmonic vibrational energy term. Omission of the vibrational energy

96



term yields the familiar Cauchy-Born energetics and constitutive model for the averaged kinemat-
ics rα. The vibrational terms describe uncoupled harmonic oscillators with frequencies

{
ωγ

}
. The

actual values of the frequencies depend on the exact nature of the approximation used and will
be treated shortly. To compare with MD, which is a classical simulation technique, we restrict
attention to the classical or high–temperature limit (~ωγ � kBT ) where the distribution function
obeys Boltzmann statistics. The free energy in the various harmonic models is then completely
determined by the Cauchy-Born energy and the vibrational spectrum of the model [198]

F(F,T ) = Φ(F)+ kBT ∑
γ

ln
(

~ωγ(F)
kBT

)
. (4.5)

The first term on the right hand side is independent of temperature and is the energy of the Cauchy-
Born system, FCB ≡Φ(F). The temperature dependence is determined by the vibrational spectrum
in the second term above which we denote Fω. Using (4.3), the 1st Piola–Kirchoff stress follows

V0P =
∂Φ

∂F
+ kBT ∑

γ

ω
−1
γ

∂ωγ

∂F
(4.6)

where we have suppressed the dependence of the stress tensor on F and T for brevity. The first
term on the right hand side is the stress determined from the Cauchy–Born model, V0PCB = ∂

∂FFCB.
The temperature dependence of the constitutive model is solely due to the change in frequency
with deformation which is a consequence of the anharmonicity of the potential. We denote these
temperature dependent terms Pω. Thus, we have

P = PCB +Pω (4.7)

and may use an analogous decomposition and notation for the Cauchy stress tensor. This decompo-
sition is advantageous since we consider the QH, LH, and MLH harmonic approximations which
share the same Cauchy-Born term but differ in their treatment of the vibrational free energy and
Pω. Consequently, we use Fω only for the generic vibrational free energy term computed using any
approximation and use FQH ,FLH , and FMLH to refer to the vibrational free energy using one of the
three specific harmonic approximations. A similar notation may be employed for the vibrational
contributions to the stress calculated with each specific model. Finally, as seen from Eq. 4.6, Pω

is linear in temperature. This linearity is important in providing a means to ascertain whether any
harmonic approximation is accurate in describing the thermally-averaged dynamics over a given
range.

Although each of the three different harmonic approximations differ in their treatment of the
vibrational spectrum, they all depend fundamentally on the force constant matrix Dαβ ≡ ∂2

∂uα∂uβ
Φ

describing the linear interaction of atom α with atom β. For defect-free crystals, translational in-
variance allows us to restrict attention to a subset of force-constant matrices Dα ≡ ∂2

∂uα∂u0 Φ for the
bond between two atoms separated by rα. The vibrational frequencies

{
ωγ

}
in the QH approxi-

mation are determined from the eigenvalues ω2
Kλ

of the Fourier-transformed force constant matrix
DQH(K). This dynamical matrix is given by

DQH(K) = ∑
α

Dαexp(−iK ·Rα) . (4.8)
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The N wave-vectors {K} span the lattice reciprocal to the reference configuration. The defor-
mation of the reciprocal lattice need not be considered since k · rα = K ·Rα is invariant under
homogeneous deformation. The deformation dependence is contained in the force constant matri-
ces and enters only through the derivatives of the potential evaluated in the strained configuration.
The QH model for an N-atom monatomic crystal yields a maximum of N distinct wave-vectors K
each corresponding to three frequency branches labeled by λ. The QH approximation thus mod-
els acoustic and optical branches as well as the dispersion relation for longitudinal and transverse
normal modes.

In contrast to the QH model, the LH approximation neglects the coupling between interacting
atoms. Each branch of the QH spectrum is then approximated by a single LH frequency. For a
homogeneous monatomic system, the LH simplification of the QH model yields the single 3× 3
dynamical matrix

DLH = ∑
α

Dα (4.9)

with three possibly degenerate eigenvalues ω2
γ ,γ = 1,2,3. Because of the drastic reduction in size

of the dynamical matrices, the LH model is much less computationally expensive than the QH
model. The MLH model is likewise less expensive than the QH model, and it takes the form of a
correction to the LH vibrational free energy. This correction is derived from the construction of an
analytic expression for the difference between the QH free energy and the LH free energy [157].
For certain deformations where the local harmonic frequency is triply degenerate, this difference
may be written exactly as a power series in the complete 3N × 3N QH dynamical matrix. For
more general deformations, we develop the MLH approximation in terms of an average frequency
ω6

MLH ≡ detDLH, recovering the original method for isotropic deformations of cubic systems. The
vibrational free energy within the MLH model is then given by:

FMLH = FLH−
3NkBT
ω4

MLH
∑
α

Tr(Dα)2 +O(D3). (4.10)

For this version of the MLH model, we retain only this first correction term before truncating the
expression. The leading term in this power series is a second-order term proportional to the square
of the QH dynamical matrix. For the homogeneous systems studied here, the correction term can
be written as a sum of the elements of the force constant matrices. We defer further details of the
exact computation of the MLH correction term and the various harmonic stress-tensor calculations
to the Appendix.

4.3 Results

The analytic expressions for the Helmholtz free energy and its strain derivatives presented in the
previous section can provide predictions for several averaged quantities which may be obtained
from MD simulation. Here we compare the various harmonic models’ predictions for the pressure
and the diagonal components of the Cauchy stress tensor with MD data. Herein, we consider only
deformations in which the off-diagonal stress components are zero.
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The MD simulation method has been described in detail elsewhere [5], but we briefly describe
our technical approach. We integrate Hamilton’s equations of motion with the velocity Verlet
algorithm and thermostat our system with a Nose-Hoover thermostat. We use a smooth Lennard-
Jones interatomic potential cutoff after 2nd nearest neighbors. The specific cutoff distance as a
function of deformation depends on the strain state, since the number of neighbors within a cutoff
distance can change as the stretch is increased or decreased. The interatomic pair potential is

φ(r) = 4ε

[(
σ

r

)12
−
(

σ

r

)6
]
. (4.11)

We use reduced units where mass m is 1, energy is in units of ε, length is units of σ, and stress is
units of ε/σ3. We use a timestep of ∆t = 10−3

√
mσ2/ε for all MD simulations. For each strain

state and temperature, we apply the homogeneous deformation to the unstrained crystal and to
the periodic simulation box. Initial velocities are chosen for each prescribed temperature from a
Gaussian distribution with zero center of mass momentum and the correct temperature achieved
by scaling. The system is equilibrated in the initial state for 40,000 time steps and then spatial and
temporal averages are calculated for the next 160,000 time steps. The NVT ensemble is sampled
using a Nose‘-Hoover thermostat with a characteristic period of 400 timesteps. We have verified
that our ensemble averages and results are independent of the particular sampling scheme used and
the specific value chosen for the thermostat mass.

We simulate an FCC crystal in a cubic periodic simulation cell with 8 cubic unit cells on
each side, yielding N = 2048 atoms. We investigate three different deformation states: uniaxial
deformation (straining the (100) direction), equibiaxial deformation (straining (100) and (010)
equally), and isotropic deformation (a volumetric strain) as a function of temperature and strain.
In other words, each type of deformation is characterized by a single parameter, i.e. uniaxial
deformation by F11, equibiaxial deformation by F11 = F22, and isotropic deformation by F11 =
F22 = F33. We consider stretches from -5% to +10% (F11 = 0.95 to 1.1), investigating both tension
and compression over a wide range. For each strain state, we model temperatures kBT ranging
from 0 to a maximum of 1.2 ε. For many strain states, this maximum temperature is above the melt
temperature, and the solid becomes unstable well before this maximum temperature is reached.
We show only data for stable solids at each strain state and temperature. We choose the zero-
temperature stress-free lattice as our reference configuration.

Stress-strain curves at constant temperature for this system computed from the various har-
monic models in uniaxial tension are shown in Fig. 4.1. Up to strains of about 3%, the approxima-
tions are seen to be indistinguishable. At higher strains, they show markedly different behaviors
with the QH model in between the extremes suggested by the LH and MLH models. The MLH
correction term added to the LH model is thus seen as an over–correction to the actual QH stress-
strain curve, but both the LH and MLH approximations have roughly the same absolute error with
respect to the QH values. One can ignore the complex frequency- and deformation-dependence
of each model and characterize the differences in each stress strain curve by the derivatives of the
stress tensor with respect to deformation and with respect to temperature. From this viewpoint,
the LH provides an over estimation of the deformation derivative while the MLH and QH models
are qualitatively similar. Because of the simple dependence on temperature within the harmonic
approximations, the derivative of stress with respect to temperature is constant.
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Figure 4.1. (a) Isothermal Cauchy stress-strain curves for kBT =
ε/4 showing the harmonic models’ predictions for uniaxial ten-
sion. Shown is σ11 as predicted by the QH model (solid), the LH
model (short dashes), and the MLH model (long dashes). The
MLH model is seen to be an over-correction from the LH to the
QH predictions. All models are virtually indistinguishable at small
strains. (b) The frequency-dependent part of the stress scaled by
temperature for the QH (solid), LH (long dashes), and MLH (short
dashes) models.

For the temperature range studied here, we observe a linear variation of pressure with tem-
perature as shown in Fig. 4.2 for equibiaxial deformation. This data is representative of similar
results seen for isotropic and uniaxial deformations. At small strains, the data agree well with the
harmonic approximations throughout the large temperature range. The melt temperature of the
LJ FCC crystal at zero-pressure is 0.65ε− 0.68ε, depending on the range of the potential [134].
Consequently, the suppression of surface effects by the periodic boundary conditions leads to some
MD simulations being run for superheated LJ crystals [63, 87]. Although the physical relevance
of these simulations is scant, this large temperature range reveals that the predictions are reason-
ably close to the data even beyond the melt temperature. The harmonic approximations can be
considered extremely robust even under the anisotropic deformations considered here. At higher
stretches, the melting temperature is reduced. So, although the LH model performs more poorly
at large temperatures and strains, it still performs well between zero temperature and the reduced
melt temperature for each corresponding strain. It is also apparent that the LH approximation over-
estimates derivatives with respect to temperature. In fact, all three harmonic approximations are
similar in this sense. The case of uniaxial deformation leads to the best agreement between sim-
ulation and the analytic models, yet all three deformations studied clearly show deviations from
the expected linear dependence. These deviations are small relative to the value of the pressure
itself, so these harmonic approximations are indeed suitable over the temperature and strain ranges
studied here.

The MD data displays smooth variations in the energy or stress as a function of temperature
and deformation up until critical strains or temperatures are reached. We associate the onset of
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Figure 4.2. Comparison of the predicted LH pressure at constant
deformation (solid lines) with the MD results (crosses) vs. T for
equibiaxial deformation over a range of strains and temperatures.
The strain increases from top to bottom, and the LH approximation
is seen to perform well at low temperatures and more poorly at
high temperatures.

instability as a function of strain and temperature with these critical values where discontinuities
in the stress tensor are first observed. The initial instabilities correspond to localized defects in
the solid and are dependent on the initial conditions of the simulation. At slightly larger critical
strains or temperatures, we find that no initial conditions produce a stable solid. The critical strains
and temperatures may be compared with predictions using any of the various stability criteria for
a stressed solid. An upper bound on these critical values is found using the commonly employed
Legendre-Hadamard condition [187], a long-wavelength elastic measure of the stability. We also
may equate a short-wavelength, or phonon instability, with the strain and temperature at which the
QH or LH dynamical matrices no longer have real eigenvalues. A zero or imaginary eigenvalue
corresponds to a localized deformation whose amplitude grows without without energy penalty
or without bound, respectively. This failure of the harmonic models is sensitively dependent on
the model and range of potential, and it has not been previously pointed out as a limitation of the
harmonic models.

In Fig. 4.3a we compare the MD data for a variety of temperatures with the harmonic predic-
tions for the 11 component of the temperature-dependent part of the Cauchy stress σω. We have
subtracted the Cauchy-Born stress tensor from the measured MD virial stress in order to compare
with the predicted temperature-dependent contribution to the stress tensor, σω. We then scale this
tensor by temperature so that the data at different temperatures would fall on the same curve if the
harmonic approximation were exact. That collapse to a single curve is not observed is indicative
of the degree of anharmonicity in the system increasing with temperature and strain. Interestingly,
none of the harmonic models reproduces the simulation data well even at low temperatures us-
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Figure 4.3. Comparison of the temperature-dependent (a) on-
axis component (σω)11 and (b) off-axis components (σω)22 =
(σω)33 of the Cauchy stress tensor for uniaxial deformation vs. the
stretch F11. Shown are predictions from the QH (solid line), MLH
(short dashes), and LH (long dashes) models vs. the MD (crosses)
results.
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Figure 4.4. Comparison of the temperature-dependent diago-
nal component of the Cauchy stress (σω)11 = (σω)22 = (σω)33 for
isotropic stretch. Shown are predictions from the QH (solid line),
MLH (short dashes), and LH (long dashes) models vs. the MD
(crosses) results.
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Figure 4.5. Comparison of the locus of instabilities seen in MD
simulation against the long-wavelength elastic predictions for the
onset of instability using the LH (long dashes) and MLH (solid)
models for isotropic deformation.

ing this criterion. However, the scaling by temperature effectively reduces this contribution to the
stress tensor at small temperatures so that the overall error between simulation and prediction re-
mains small. The error between the data and the harmonic predictions is roughly similar for all
three models, but the QH and MLH models clearly match the first derivative of the data more ac-
curately than the LH model does. We see similar results for the off-axis stress in the uniaxial case
(Fig. 4.3b) and for the equibiaxial case. Interestingly, all three harmonic models perform more or
less equally well for isotropic deformation, as seen in Fig. 4.4. Overall, it is seen that one must
consider the models’ performance under anisotropic deformation in order to completely describe
the relative strengths of each approximation.

To further characterize the accuracy of the LH and MLH approximations, we consider each
models’ predictions for the elastic stability limits of the solid. We employ a Legendre-Hadamard
condition [187] to ascertain the large-scale incremental stability of the lattice, namely

BiJkLaiNJakNL > 0 ∀ ai,NJ . (4.12)

Here B is the so-called 1st elasticity tensor

B =
∂P

∂F
=

∂2F

∂F∂F
. (4.13)

Physically speaking, condition (4.12) can be interpreted as a requirement that small-amplitude
plane waves solutions to the equation of motion linearized about the deformed configuration have
positive, real frequencies; or in other terms, it requires that the deformed configuration is such
that the equilibrium equation ∂

∂X ·P = 0 is still elliptic [51, 74]. In the former interpretation, N is
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the propagation direction and a is the polarization vector. We find the eigenvalues of the acoustic
tensor

Aik(N) = BiJkLNJNL (4.14)

for all N for a given deformation and temperature. If the minimum eigenvalue is non-positive the
state is considered unstable. To follow the locus of stability points in (F,T ) we start by finding
the critical deformation F along the zero temperature curve, i.e. for B = BCB, and then index the
one-parameter deformation gradient F and find the critical temperature for this deformation.

In Fig. 4.5 we show the LH and MLH models’ predictions of the long-wavelength elastic stabil-
ity limits. Both models predict the same trends as the MD data, but the MLH model’s estimations
of the maximum stable stretch at a given temperature are considerably smaller than those of the
LH model. For each model, the failure mode is shear at low temperatures while at higher tempera-
tures the stability limit is governed by tensile failure. The critical strain for shear failure increases
with increasing temperature while the tensile failure modes have a decreasing critical strain with
increasing temperature. The shear failure regime is in essence the Born stability criterium for
the vanishing shear modulus C1212 = 0 [19] except that additional finite-strain and temperature-
dependent effects on the elastic moduli are included in the calculations. As temperature increases,
the harmonic models’ vibrational contribution to the elastic moduli increases and eventually be-
comes the dominant factor in determing the stability locus. The transition temperature or strain
from shear to tensile failure is consequently different for each of the harmonic approximations.
The MLH model more accurately models the elastic moduli as a function of temperature and strain,
and this accuracy is seen here to produce a better estimate of the onset of instability in the crystal,
at least at low T . Neither estimate is very accurate at high T however, indicating that a more local-
ized measure for the onset of stability may be appropriate. This is not completely surprising since
the short-wavelength modes become unstable at smaller strains than the longer wavelength modes
in general. This data indicates that the most accurate stability measure may need to be based on
the complete vibrational spectrum and not just the long-wavelength elastic properties. However,
the MLH model is clearly seen to provide a better estimate than the LH model.

4.4 Discussion

It has been shown that all three harmonic models can be used to provide a reasonably-accurate
constitutive model for the multiscale modeling of Lennard-Jones crystals using coupled MD-FEM
simulations. Indeed, up to temperatures approaching the melt temperature, all three harmonic
models can be said to be sufficiently accurate over a wide range of strains to closely follow the
Cauchy stress tensor as determined from the MD simulation data. A critical examination of the
temperature-dependent terms in the Cauchy stress tensor reveals that all three harmonic approxi-
mations have similar absolute errors between their predictions and the actual values seen from the
MD simulations. At low temperatures, this error is small relative to the Cauchy Born contribution
to the stress, and at high temperatures, the differences in the various harmonic approximations lead
to different over- and under-estimations relative to the MD data. From this point of view, the LH
model is insufficient to capture trends that depend on the elastic moduli or the strain derivatives of
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the stress tensor. The MLH and QH models do capture these trends, and the MLH is considerably
less computationally expensive than the QH model. Of the deformation states studied, the LH
model performs worst for uniaxial deformation and best for isotropic deformation. On the other
hand, the MLH and QH models perform similarly for all the deformation states investigated. The
more accurate approximation of the elastic moduli is also reflected in the MLH model’s ability to
predict the onset of instability more accurately than the LH model.

The tremendous decrease in computer time gained with the LH and MLH models strongly ar-
gue against using the QH model in a multiscale simulation where the stress tensor is evaluated
repeatedly for different local deformation states. Similarly, the MLH model is seen to be more
accurate than the LH model, yet the first-order correction incurs only a modest additional compu-
tation cost. Consequently, the results shown here suggest that adoption of the MLH model would
lead to some increase in the accuracy of current multiscale methods that currently use the LH
model.

Finally, we note that investigations similar to those described here should be carried out for
additional potentials, such as the embedded atom method (EAM) potentials. The LJ potential used
here is known to have smaller anharmonic effects than the EAM potentials. Similar critical inves-
tigations of the stress tensor’s detailed dependence on the deformation state for more anharmonic
potentials can provide important indications of the robustness of these results and their general
applicability to current multiscale efforts.

4.5 Appendix B: Analytical formulation of traction-displacement-
mixity relation

Following Sec. 4.2, we consider a static homogeneous deformation F with dynamic displacements
{uα} about the deformed configuration. We use Greek indices to label atoms, dynamical matrices,
or frequencies and reserve Arabic indices to label components (lowercase for current quantities
and uppercase for referential). In component notation, the deformation gradient is

FiJ =
∂xi

∂XJ
(B.1)

where ek and EL are Euclidean basis vectors. Given

(rα)2 = RαCRα, C≡ FT F (B.2)

and the pair potential φ, the derivatives of the frequencies with respect to the deformation can be
calculated in a straightforward but tedious fashion.

With the restriction to pair potentials φ(r), the force constant matrix Dα becomes

Dα = δ
α0

∑
γ

∂2φ

∂uγ∂u0 −
∂2φ

∂uα∂u0 (B.3)
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The second derivatives in component notation are

∂2φ

∂uα
i ∂u0

j

∣∣∣∣∣
u=0

= g(rα)δi j +2 f (rα)rα
i rα

j . (B.4)

where g(r) = r−1φ′(r) and f (r) = r−2 (φ′′(r)− r−1φ′(r)
)
. In the QH model, we note that

∏
λ

ω
2
Kλ

= detDQH(K). (B.5)

Consequently, F can be written as a sum of determinants of the N dynamical matrices

F = Φ(F)+
kBT

2 ∑
K

lndetDQH(K). (B.6)

Likewise, within the LH model one has that

∏
γ

ω
2
γ = detDLH. (B.7)

The free energy becomes

F = Φ(F)+
kBT

2 ∑
α

lndetDLH. (B.8)

which may also be used to write down F. Returning to the generic label γ for the different dynam-
ical matrices, both models yield a free energy of the form

F = Φ(F)+
kBT

2 ∑
γ

lndetDγ. (B.9)

As described in Sect. 4.2, the MLH model is implemented as a single correction term applied to
the Helmholtz free energy obtained within the LH approximation.

The determination of the temperature-dependent terms in the 1st Piola-Kirchoff stress in the
QH or LH models thus reduces to determining the derivatives of the determinant with respect
to the deformation gradient. For the MLH model, one supplements this with the derivatives of
the force constants with respect to the strain. We note here that first order perturbation theory
may be used to write these eigenvalue derivatives in terms of the eigenvectors and the derivative
of the dynamical matrix with respect to F. We prefer to calculate the derivatives directly from
determinants of the dynamical matrices. Our approach offers considerable ease in implementing
the second derivatives using symbolic algebra on the computer, and perhaps more importantly,
subtleties about the treatment of degenerate frequencies do not arise. We calculate the derivatives
of the determinant using the chain rule. In coordinate notation,

detDγ = Dγ

1 jc1 j = Dγ

2 jc2 j = Dγ

1 jc3 j (B.10)

where summation over repeated variable indices is implied and ci j is the the i j component of the
adjugate of Dγ, i.e the cofactor of Dγ

i j. With this result, Jacobi’s Formula gives us the necessary
derivative

∂detDγ

∂FkL
=

∂Dγ

i j

∂FkL
ci j. (B.11)
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The derivative of the QH dynamical matrix is given by

∂DQH(K)
∂F

= ∑
α

∂Dα

∂F
e−iK·Rα

. (B.12)

The derivatives of the LH dynamical matrix follow simply from Eq. 4.9 and the chain rule. When
specialized to pair potentials, the derivative of Dγ is calculated from Eqs. B.3 and B.4

∂Dα
i j

∂FkL
=
(

g′(r)
2r

δi j +
f ′(r)

r
rir j

)
RPRQ

∂CPQ

∂FkL
+ f (r)

(
δikr jRL +δ jkriRL

)
. (B.13)

The remaining required derivative above is given by

∂CPQ

∂FkL
= (δPLFkQ +FkPδQL) (B.14)

The temperature-dependent terms of the 1st Piola-Kirchoff stress become

V0 Pω =
kBT

2 ∑
γ

(detDγ)−1 ∂detDγ

∂F
. (B.15)

With this expression, the required components of the Cauchy stress tensor may be evaluated, too.

The elastic moduli are also now obtainable, although they involve considerably more compu-
tation in the QH approximation. Given the additive decomposition of the free energy F, we obtain
a similar one for the moduli

B≡ ∂P

∂F
= BCB +Bω. (B.16)

We compute the Cauchy-Born contribution to the modulus

V0 (BCB)iJkL = δik
∂Φ

∂CJL

∣∣∣∣
rα

+4∑
α

∂2Φ

∂r2∂r2

∣∣∣
rα

ri RJ rk RL (B.17)

by employing the fact that we are examining only pair potentials. The temperature-dependent
tangent modulus is given by

V0 Bω =
kBT

2 ∑
γ

[
−(detDγ)−2 ∂detDγ

∂F
⊗ ∂detDγ

∂F
+(detDγ)−1 ∂2 detDγ

∂F∂F

]
. (B.18)

The second derivative of the determinant is

∂2 detDγ

∂FlM∂FpQ
=

∂Dγ

ik
∂FlM∂FpQ

cik +
∂Dγ

ik
∂FlM

∂cik

∂FpQ
, (B.19)

which contains terms proportional to the second derivative of the dynamical matrices as well as
terms containing the product of two first derivatives. The second derivative of the dynamical matrix
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is

∂2Dγ

i j

∂FkL∂FmN
= (4r)−1

[
∂

∂r

(
g′(r)

r

)
δi j +

∂

∂r

(
f ′(r)

r

)
rir j

]
RPRQ

∂CPQ

∂FkL
RSRT

∂CST

∂FmN

+
[

g′(r)
r

δi j +
f ′(r)

r
rir j

]
RLRNδkm (B.20)

+
f ′(r)
2r

(
r jRNδim + riRNδ jm

) ∂r
∂FkL

+
f ′(r)
2r

(
r jRLδik + riRLδ jk

) ∂r
∂FmN

+ f (r)
(
RLRNδikδ jm +RLRMδ jkδim

)
.

Within the QH approximation for a moderately-sized system, this term is prohibitively expensive
to evaluate using symbolic algebra programs.
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Chapter 5

An atomistic J-integral at finite temperature
based on Hardy estimates of continuum
fields
Principal Authors: Reese E. Jones, Jonathan A. Zimmerman, Jay Oswald,
and Ted Belytschko

In this chapter, we apply a material-frame, kernel-based estimator of continuum fields to atomic
data in order to estimate the J-integral for the analysis of an atomically sharp crack at finite temper-
atures. Instead of the potential energy appropriate for zero temperature calculations, we employ the
quasi-harmonic free energy as an estimator of the Helmholtz free energy required by the Eshelby
stress in isothermal conditions. We employ the simplest of the quasi-harmonic models, the local
harmonic model of LeSar et al. , and verify that it is adequate for correction of the zero temperature
J-integral expression at various deformation states for our Lennard-Jones test material. We show
that this method has the properties of: consistency between the energy, stress and deformation
fields; path independence of the contour integrals of the Eshelby stress; and excellent correlation
with linear elastic fracture mechanics theory.

5.1 Introduction

Configurational forces [69, 123] based on the Eshelby stress [48, 49] are typically used to de-
scribe the mechanics of extended defects such as dislocations and cracks. In fracture mechanics,
the J-integral [152] (the divergence of the Eshelby stress calculated via a contour integral) was
developed to quantify the driving force for propagation of a crack due to mechanical energy avail-
able from external loading and other material inhomogeneities. It has been widely employed in
macroscale experimental mechanics to measure materials inherent resistance to crack propagation.
In nanoscience and nanotechnology, there is strong motivation to extend the application of J to the
nanoscale given the influence of defects on performance and reliability of devices and materials.
In a recent article [88], we developed a methodology for predicting the J-integral in nanostruc-
tures through the construction of continuum fields from atomic data, and using these fields in
the traditional contour-integral expression for J. While we were able to show good agreement
between our metric and expectations from continuum linear elastic fracture mechanics (LEFM),
our method was only applied to quasi-static calculations performed at zero temperature where the
atomic configurations were determined via energy minimization and the atomic potential energies
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were employed in the potential for stress 1 .

Eshelby’s tensor relies on the energy, stress and deformation measure be related such that the
stress and the deformation measure are conjugate through the chosen energy. At finite tempera-
tures, the stress potential depends on the process or ensemble. It is well known that the Helmholtz
free energy is the potential for stress given a constant temperature process, whereas the internal en-
ergy is the appropriate potential for an isentropic process, see e.g.[119, Chapter 4 ] [23, Chapters
6 & 7]. We limit our present investigation to quasi-static loading at finite temperatures in thermal
equilibrium using the Nosé-Hoover [77] realization of the constant temperature ensemble (NVT) in
molecular dynamics (MD), where the appropriate energy is the Helmholtz free energy. For the case
of non-equilibrium dynamic propagation, where the fracture process may be effectively adiabatic,
the internal energy is the more appropriate quantity to include in the J expression. However, the
standard expression for J would need to be amended with additional inertial and possibly temper-
ature gradient terms to be valid. The estimated energy release rate will depend on which potential
is employed as the theory of Nikolaevskii [142] shows in in isothermal and adiabatic limits. More
discussion of this point of departure will be given in the concluding section.

The existing MD literature devoted to fracture mechanics that we are aware of has not taken
the approach we are proposing. First of all, many efforts to estimate an atomic J using molecular
dynamics are done so at near zero temperatures, e.g.Inoue et al. [81], where differences between
internal energy and free energy are not significant. Nakatani et al. [141] estimate a strain energy
density through changes in potential energy density (i.e. atomic potential energies divided by an
atomic volume). Although they apply mechanical loading to a system equilibrated to a temperature
of 300 K, it is not clear whether temperature controls are used during the loading process. While
the imposed strain rate is very high (∼ 1010 sec−1), an unloading-relaxation-reloading process is
used to evaluate mechanical properties. As such, the system cannot be considered to be either
isothermal or adiabatic and, consequently, the relevant energy metric is unclear. Xu et al. [205]
used a system energy release rate approach to estimate the critical value of J for the ductile fracture
of a nano-sized crystal of nickel. Their analysis calculates J using changes in potential energy due
to crack advance; however, their simulation is run at a temperature of 300 K using a specialized
algorithm to scale atomic velocities at every step such that this temperature is maintained, i.e.
isothermally. In another Griffith’s-criteria [107, Chapter 1] based method, Latapie and Farkas
[106] used MD to examine the ductile fracture behavior of nanocrystalline α-Fe at temperatures of
100 K, 300 K, and 600 K. While these authors do not attempt to quantify J, they do estimate the
excess potential energy of the system as a function of average crack tip position. The slope of these
calculated curves is equated to an estimate of fracture toughness which they observe to increase
with increasing temperature. They associate this trend with an increase in observed plasticity
in their simulations at higher temperatures. None of these past attempts to quantify the fracture
process at finite temperature systems have made use of the free energy.

Free energy is complex to measure directly since it inherently involves an estimation of entropy
density. We seek to construct a free energy density field in the same way that our formulation con-
structs stress, temperature and deformation gradient fields using weighted spatial average of atomic
data over a region of compact support in the manner of Irving and Kirkwood [83] and Hardy [71].

1The potential for stress is sometimes called the “strain energy” density in the context of theory of elasticity.
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One viable method for local estimates of free energy is the quasi-harmonic (QH) approximation
[12, 18]. The QH method has known limits of applicability: the material has to behave classi-
cally 2, and the temperature must be low enough such that the approximation of harmonic motion
superposed on large strain is valid. The full QH approximation, which is quite expensive to com-
pute, has been followed by simplifications known as the local harmonic (LH) [111] and modified
local harmonic (MLH) [155] approximations. The LH approximation is essentially an Einstein
model of the vibrational frequencies and has been used extensively in MD-finite element coupling
[16, 42, 90, 121, 186].

The QH model and its variants have been applied to the analysis of the free energy of vacancies,
e.g.[56, 212], other point defects, e.g.[39, 131] and bulk mixtures, e.g.[84], using pair and many-
body potentials. A number of authors have also used the QH method to examine extended defects.
Foiles [56] performed simulations to calculate the free energy of a Σ5 symmetric tilt grain bound-
ary in copper as modeled with the embedded-atom method (EAM) [57]. The article compares free
energy calculated via thermodynamic integration (TI), see e.g.[154], using data from Monte Carlo
simulations with estimates made using the QH and LH approximations. Foiles notes that QH and
LH are adequate for non-defected bulk crystals at low-to-moderate temperatures, but their under-
lying assumptions can break-down at high temperatures and around defects. As Foiles explains,
the presence of defects can result in large amplitude vibrations that invalidate the assumption of a
quadratic form of the potential energy. This, along with a loss of structural symmetry of the crystal
around defects, results in third- and fourth-order terms contributing significantly to the potential
energy expansion. Upon applying his method to the Σ5 grain boundary, he observes that both QH
and LH over-predict the interfacial free energy, with QH slightly better than LH. However, Foiles
also remarks that his QH and LH estimates do not reflect systems that have been fully energy-
minimized, i.e. atomic positions have not been relaxed to minimize the total free energy, which is
likely the cause of at least some of the over-estimation. Even with this issue, the estimates appear
to be acceptable for temperatures below half the melt temperature. Lebouvier et al. [108] used
QH to model a Σ13 grain boundary in silicon. They observed that variations in the grain boundary
structure have only a small effect on the free energy calculated over a large variation in temperature
(from 300 K to 1500 K). Najafabadi and Srolovitz [139] compared TI of Monte Carlo data with QH
and their free-energy minimization method by analyzing bulk and defected structures in copper as
modeled by both EAM and pair potentials (Lennard-Jones and Morse). Defected structures exam-
ined include the (001) free surface and single vacancy formation. Their results show very good
agreement between the three methods for bulk crystals at various temperatures, particularly be-
tween QH and TI. For free surfaces, calculation of surface energy shows good agreement between
QH and TI for the Lennard-Jones potential, while QH overestimates surface energy for Morse and
even more-so for EAM. This difference between QH and TI is near zero at room temperature, but
increases at higher temperatures. For example, at 1200 K the QH overestimates the TI estimate
for surface energy by approximately 13.1%, 2.2%, and 0.5% for EAM, Morse, and Lennard-Jones,
respectively. These same trends are also observed for vacancy formation energy.

In this chapter, we first develop the basic theory of the J-integral and the LH approximation
specific to our goal of characterizing atomic-scale cracks at finite temperature. Next, we discuss

2An actual material would have to be above its Debye temperature, but for MD simulation this classical behavior
exists at any temperature
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our material frame formulation for constructing fields from MD data. Motivated by the results of
Najafabadi and Srolovitz [139], we chose a Lennard-Jones test material and we show that that LH is
sufficiently accurate for bulk states using a comparison with TI. Also, taking into account findings
of Foiles [56], we measure the free energy in contours away from the crack tip and minimize
the effects of the free surface that the contours cross by taking the free energy relative to a zero
temperature reference configuration. Relying on these results, we subsequently show that our J-
integral estimate based on free energy provides a significant correction to an estimate based on
internal energy for an atomically sharp and smooth-sided single crack.

5.2 The J-integral

The Eshelby energy-momentum tensor S [48, 49] quantifies the configurational forces that drive
the evolution of defects. It is defined in terms of the (Helmholtz) free energy density Ψ = Ψ(F,T ),
the deformation gradient F and the first Piola-Kirchhoff (PK) stress

P = ∂F|T Ψ (5.1)

as
S = ΨI−FT P . (5.2)

where T is the temperature. The deformation gradient F = ∇∇∇Xχχχ is a kinematic measure defined in
terms of the motion x = χχχ(X, t) of material, with X being the position vector in the reference con-
figuration. The Eshelby tensor has many applications to the mechanics of defects, specifically in
characterizing the evolution and propagation of cracks and dislocations, see, e.g.[69, 123]. Rice’s
J-integral [152] is defined as a boundary integral of S

J =
Z

∂Ω

S NdA =
Z

∂Ω

ΨN−FT PNdA (5.3)

where the Eshelby stress acts on N, the outward normal to the surface ∂Ω enclosing the region Ω in
the reference configuration. Consequently, J is directly related to the divergence of S . Specifically,
the J-integral can be employed to quantify the driving force for crack propagation.

5.3 Quasi-harmonic Cauchy-Born model

The basic thermodynamic quantities embedded in (5.2) can be related to the partition function Z
[127, Chapter 7] of the lattice of atoms comprising the body occupying the region Ω. The free
energy density

Ψ = U−T S =−kBT
V

logZ (5.4)

is a Legendre transform of the internal energy density

U =− 1
V

∂

∂β̄
logZ (5.5)
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via the entropy density

S =
kB

V

(
logZ− β̄

∂

∂β̄
logZ

)
(5.6)

where β̄ = (kBT )−1, kB is Boltzmann’s constant and V is a reference volume for the system. Note
that we are using densities as opposed to the extensive versions that are more traditional in the
literature, see, e.g. [98]. We define a tributary volume for an atom as Vα = V/N where N is the
number of atoms in the system volume V .

The classical harmonic partition function [201, Section 4.5] for a quasi-harmonic (QH) system
is based on the harmonic approximation of the Hamiltonian H

H ≈ HQH = Φ0(F)+
1
2

n

∑
i=1

(
ω

2
i miq2

i +
1
mi

p2
i

)
(5.7)

with the atomic positions xα in the current configuration following the decomposition xα = FXα +
qα, and the momenta pα begin given their usual definition. Here, and throughout this section, we
will use a Greek subscript to refer to an enumeration of atomic quantities, e.g. xα, and a Latin one
for enumeration based on degrees of freedom, e.q. qi, where i runs 1 to n ≈ 3N. The resulting
partition function Z is

ZQH = ZQH(F,T ) = h−n
Z

Γ

exp
(
−β̄H(q,p;F)

)
dqdp = h−nZqZp

= exp(−β̄Φ0)h−n
n

∏
i=1

Z
∞

−∞

exp
(
−1

2
β̄

1
mi

p2
i

)
d pi

Z
∞

−∞

exp
(
−1

2
ω

2
i β̄miq2

i

)
dqi

= exp(−β̄Φ0)h−n
n

∏
i=1

2π

β̄ωi
= exp(−β̄Φ0)

n

∏
i=1

kBT
~ωi

(5.8)

We have non-dimensionalized Z by a factor of Planck’s constant h ( raised to the power −n ) to
connect with the quantum partition function, see e.g.[127, Chapter 7], in the the classical high
temperature limit (~ωi � kBT )3 . Hence, the Helmholtz free energy density, Ψ, of a crystalline
solid is determined from the potential energy density, Φ0, of the atoms in their average positions
FXα and the vibrational spectrum of frequencies, ωi, [18, Section 16] as

ΨQH = Φ0 +
kBT
V

log
n

∏
i=1

~ωi

kBT
(5.9)

The term in Eq. (5.9) depending on the vibrational modes of the lattice can be connected to
eigenvalues of the dynamical matrix. The dynamical matrix, Dαβ = Dαβ(F), is simply

Dαβ ≡
V

√mαmβ

∂2Φ

∂qα∂qβ

, (5.10)

3Note
R

∞

−∞
exp(− 1

2 β̄x2)dx =
√

2π

β̄
. Also, it is necessary for the potential energy Φ0 = Φ(F) to be independent of

qi, and for the system to be in equilibrium ∂Φ

∂xα
= 0 to obtain this form.
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where V Φ is the total potential energy of the crystal, and qα = xα− FXα is the displacement
of atom α from the (homogeneously) deformed state FXα. It is important to realize that Φ is
distinct from Φ0 as the former represents the true potential energy density while the latter is an
approximation based on the assumption of homogeneous deformation.

Clearly, the vibrational frequencies ωi are the eigenvalues of the dynamical matrix, and their
product is related to the determinant of the dynamical matrix by

n

∏
i=1

ωi =
√

detD (5.11)

where D is the system dynamical matrix assembled from the constituent Dαβ matrices. If the
deformation gradient is uniform and the crystal is free of defects, infinite, and composed of a
single element ( so that mα = m), then each Dαβ is identical and, by translational invariance, the
row of the dynamical matrix associated with any atom is identical (given an appropriate rotation
of the indices). In this case, we can restrict our attention to interactions between a representative
atom, denoted as β = 0, and all other atoms in the lattice

Dα ≡
V
m

∂2Φ

∂q0∂qα

(5.12)

The local harmonic (LH) approximation [156] neglects the coupling between interacting atoms.
For a homogeneous system, the LH simplification reduces the QH dynamical matrix to a single
3×3 matrix by dropping all the elements of the dynamical matrix except for α = β = 0.

DLH ≡ D0 = m−1 ∂2Φ

∂q0∂q0
(5.13)

It will be shown in Section 5.5 that this drastic approximation is sufficient to accurately describe
the behavior of our test material. In this case, the free energy density is:

ΨLH = Φ0 +ΘLH (5.14)

where

ΘLH =
kBT
Vα

log

((
~

kBT

)3√
detDLH

)
. (5.15)

See Appendix 5.7 for details specific to pair potentials.

The internal energy density in this approximation is

U = Φ0 +
n
V

kBT = Φ0 + cvT (5.16)

via (5.5), where nkBT is the equilibrium total energy above the ground state Φ0(F) and cv is the
heat capacity per volume at constant volume. For a classical system, the law of Dulong and Petit
[10, Chapter 21] identifies the heat capacity cv with

cv =
nkB

V
=

3kB

Vα

(5.17)
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5.4 J-integral estimates

The results in the previous section were for full system averages. Hardy’s methodology allows for
the local averaging needed to obtain fields and ultimately the divergences of fields necessary to
evaluate the J-integral. Briefly, Hardy’s methodology [71, 159] generalizes Irving and Kirkwood’s
well-known results [83] on relating atomic quantities to the continuous fields in the Euler balance
laws to extended, continuous kernels.

If the system is in mechanical equilibrium, ∇∇∇X ·P = 0, the expression (5.3) can be simplified to

J =
Z

∂Ω

〈Ψ〉N−〈FT P〉NdA =
Z

∂Ω

〈Ψ〉N−〈HT P〉NdA (5.18)

where H = F− I is the displacement gradient. We use the zero temperature, perfect lattice as
the reference configuration {Xα}, see our previous work [88, 224] and [201, Chapter 4] for a full
justification. Assuming thermal equilibrium, ∇∇∇XT = 0, or equivalently

R
∂Ω

T NdA = 0, allows us
to drop directly related terms, e.g.the kinetic energy, in the boundary integral. This assumption
leads specifically to Z

∂Ω

UNdA =
Z

∂Ω

ΦNdA =
Z

∂Ω

Φ0NdA (5.19)

via (5.16). In this case, another (equivalent) expression for J arises in the form of a correction to
the J-integral calculated based on either: the zero-temperature potential energy J0 = J(F,T = 0)
or internal energy JU ,

JT =
Z

∂Ω

Φ0N−〈HT P〉N−〈Θ〉NdA = J0−
Z

∂Ω

〈Θ〉NdA

=
Z

∂Ω

〈U〉N−〈HT P〉NdA−
Z

∂Ω

〈Θ〉NdA = JU −
Z

∂Ω

〈Θ〉NdA
(5.20)

given the definition (5.14). It is noteworthy that JU can be estimated by the usual formula based
on Hardy estimates alone, i.e. without resorting to the QH model. We will assume that ensem-
ble average 〈•〉 is approximated by the long time average under constant temperature dynamics.
Specifically, the quantities in angle brackets are functions of H and T which are estimated from the
atomic positions relative to a reference configuration and atomic velocities in a manner that will
be described shortly. Lastly, as in our previous work [88], we employ a free energy relative to the
reference configuration by shifting Ψ by the potential energy density field of the zero-temperature,
reference configuration.

For a uniform temperature fieldZ
∂Ω

〈Θ〉NdA =
Z

∂Ω

〈
kBT
Vα

log

((
~

kBT

)3√
detDLH

)〉
NdA

=
Z

∂Ω

〈
kBT
Vα

log
(√

detDLH

)〉
N+

〈
kBT
Vα

log
(

~
kBT

)3
〉

NdA

=
kBT
Vα

Z
Ω

∇∇∇X

〈
log
√

detDLH

〉
dV =

kBT
Vα

Z
Ω

〈
∇∇∇X detDLH

2detDLH

〉
dV

(5.21)
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is clearly nearly linear in T , given a weak dependence of DLH on T . Furthermore, using lineariza-
tion based on Jacobi’s formula : detD(xα) = detD(Xα)(1+ tr(D−1(Xα)∆D))+O(‖∆D‖2), we see
that this same correction to Ψ is linear in the change in D due to deformation, ∆D,

Z
∂Ω

〈Θ〉NdA≈ kBT
Vα

Z
Ω

〈
detD(Xα)∇∇∇X tr

(
D−1(Xα)∆D

)

2(detD(Xα)+detD(Xα) tr(D−1(Xα)∆D))

〉
dV

≈ kBT
2Vα

Z
Ω

〈
∇∇∇X
(
tr
(
D−1(Xα)∆D

))〉
dV

(5.22)

for a small perturbation ∆D from an undeformed, perfect lattice reference configuration Xα, i.e.
∇∇∇XD(Xα) = 0. Here we have dropped the subscript LH for clarity.

Given the expressions (5.18) and (5.20), we need estimates for H, P, and T given the ex-
plicit dependencies and the arguments of Ψ and Θ. As in our previous work [88, 224], we em-
ploy a Lagrangian formulation of Hardy estimation based on a normalized localization function
ψ(X) | R

Ω
ψdV = 1. Many suitable choices for the particular form of ψ are available; in this work

we adopt the piece-wise linear finite element basis functions first introduced in [224].

In order to define the displacement gradient H in terms of atomic quantities, we must first
define the displacement u = x−X. This is done in a mass-weighted fashion

u(X, t) = ∑α (xα(t)−Xα)mαψ(Xα−X)
∑α mαψ(Xα−X)

, (5.23)

with mα being the mass of atom α, in order to connect to the dynamical variable, momentum, which
is given a primitive definition in the Hardy formalism [71]. To obtain the gradient H = ∇∇∇Xu, we
compute (5.23) on a grid of points XI and then interpolate u as

u(X, t) = ∑
I

uI(t)NI(X) = ∑
I,α

NI ψIα uα, (5.24)

using a partition of unity4 basis NI , where uI = u(XI, t) and ψIa = ψ(Xα−XI). A differentiation
of this interpolation leads directly to our definition of the displacement gradient

H = ∇∇∇Xu = ∑
I

uI(t)∇∇∇XNI(X) . (5.25)

The temperature field is simply given a kinetic definition

T (X, t) =
1

3kB

∑α mαvα(t) ·vα(t)ψ(Xα−X)
∑α ψ(Xα−X)

(5.26)

The referential first Piola-Kirchhoff stress [224] for pair potentials5 can be defined in terms of
the force fαβ between atoms α and β and the difference between their positions in the reference

4A partition of unity interpolation has the property ∑I NI = 1 and examples include the usual finite element inter-
polations.

5Additional details on the form of P for pair and central force potentials can be found in [224]. This reference also
discusses the definition of fαβ in the case of more general potentials, e.g., Stillinger-Weber.
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configuration Xαβ = Xα−Xβ. Instead of a simple average of the virial weighted by ψIα, the
so-called “bond” function Bαβ is required for consistency with the continuum [71, 159, 224]

Bαβ(X) =
Z 1

0
ψ
(
λ(Xα−X)+(1−λ)(Xβ−X)

)
dλ (5.27)

and is constructed directly from the localization function ψ. The resulting expression for the first
PK stress is

P(X, t) =− ∑
α<β

fαβ(t)⊗XαβBαβ(X) (5.28)

Lastly, we can estimate the potential energy density as

Φ =
1
2 ∑

α

φαψIα (5.29)

and the internal energy density in a manner consistent with (5.16). For further details the construc-
tion of fields via the Lagrangian Hardy formalism consult [88, 224].

5.5 Results

For this study we use a Lennard-Jones (LJ) model of Au with lattice constant a = 4.08 Å and
parameter values ε = 0.72427860 eV, σ = 2.59814680 Å, as representative of a well-behaved atomic
solid. This inter-atomic potential is truncated at a separation of rc = 2.1σ = 5.45610827 Å, and
smoothed such that pair energy and forces are zero at this distance, see [100, equation (121)]. This
parametrization leads to elastic constants , C11 = 497.478 GPa, C12 = C44 = 281.58 GPa 6 , and a
surface energy of 0.1599 eV/Å2. For reference, the experimentally measured Debye temperature
for Au is 170K and its melt temperature is 1337K. Since the LJ model over-estimates the elastic
constants of Au (C11 = 186 GPa, C12 = 157 GPa, C44 = 42 GPa), the approximate effective Debye
and melt temperatures are 280K and 5200K, respectively 7 .

In the following, we first validate the free-energy model and then employ it in the estimation
of the J-integral of a finite temperature, quasi-static crack. The validation is necessary to give
confidence in the J-integral and the conclusions we draw from it. All simulations were performed
with the publicly available LAMMPS MD code (see http://lammps.sandia.gov).

5.5.1 Free energy

To validate the use of a LH model of free energy, we compare ΨLH to estimates of Ψ from thermo-
dynamic integration (TI) for four (one-parameter) deformations: (a) uniaxial stretch F = λe1⊗E1,

6These elastic constants were determined analytically and verified empirically.
7The Debye temperature TDebye is estimated using the fact that it is proportional to the speed of sound in the

material so that TDebye ∼
√

C11. The melt temperature Tmelt is proportional to the depth of the potential well and can
be approximated by kBTmelt ≈ 0.62ε where kB is the Boltzmann constant.
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(b) simple shear F = λe1⊗E2, (c) biaxial stretch / pure shear F = λe1⊗E1 +1/λe2⊗E2, and (d)
volumetric dilation F = λI, through {F,T} space, where F = I + H. The Cartesian bases ei and
Ei, in the current and reference configurations respectively, are aligned with the lattice basis in the
reference configuration. To perform TI we fitted the P vs F and U vs T trends (for small values
of λ and T ) from NVT MD data using the Nosé-Hoover thermostat (NH) and integrated these fits
to obtain ΨT I . It was also necessary to take a single temperature close to zero where we assumed
ΨT I ≡ ΨLH for all deformations. The correspondence of ΨLH and ΨT I at higher temperatures
justifies the somewhat arbitrary choice of 1 K for this reference temperature. See Appendix 5.8 for
more details of the procedure.

To realize the various deformation-temperature states we : (a) obtained a sequence of zero
temperature, deformed configurations through energy minimization and displacement boundary
conditions on a periodic system, (b) from each of these states we thermalized the system to a
steady, equilibrium state using NH dynamics, and then (c) took long time averages of the necessary
quantities under the same dynamics. Since these are equilibrium states, the path to arrive at them
is immaterial and consequently the procedure was chosen based on expediency. The states were
verified to be at equilibrium by reversing the temperature loading and checking that the same
averages where obtained to within error.

First, we take a temperature excursion from 1K to 600K for: a uniaxial stretch (a) F11 = 1.015
and a volumetric dilation (d) F11 = F22 = F33 = 1.045 . Figure 5.1 shows the excellent com-
parison of ΨLH and ΨT I for the uniaxial case and, likewise, Figure 5.2 shows similar results for
the volumetric case. Both Figure 5.1a and Figure 5.2a exhibit similar slopes, 1.52163× 10−5

and 1.52176× 10−5 eV/(K-Å)3, respectively corresponding to the heat capacity cv = 1.52256×
10−5 eV/(K-Å)3 based on the reference Vα in (5.17). The intercepts,−0.23112 and−0.22945 eV/Å3

respectively, depend on deformation as Eq. (5.16) indicates. The temperatures at which U crosses
Ψ and is henceforth strictly greater than Ψ are 12.2 K and 14.1 K respectively as can be seen in the
insets of Figures 5.1(b) and 5.2(b).

Second, we deform for simple shear (b) and biaxial stretch (c) at a sequence of constant tem-
peratures T = 30,100,300 K. The reader should note that biaxial stretch effects a “pure” shear state
with respect to a coordinate system rotated by π/4 about the E3 axis and that F12 ≡ H12. These
shear deformation modes are particularly rigorous tests of the LH model. Figure 5.3 shows reason-
able correlation between the LH and TI estimates of free energy for simple shear (b) and Figure
5.4 shows similar results for biaxial stretch. It is apparent that the behavior of the LH estimate is
less noisy for a temperature process than for a deformation process, perhaps due to the differenc-
ing of atomic positions required in the Hardy based estimate of F. The discrepancies are clearly
temperature dependent and are not noticeable at the lowest temperature. These tests demonstrate
that there is thermodynamic consistency between the derivative of the free energy and the stress
measure i.e. (5.1). As expected, the respective moduli are relatively insensitive to temperature. For
our material, the modulus for simple shear is C12 = 281.58 GPa which is slightly higher than the
modulus for pure shear (C11−C12) = 215.898 GPa.

The results displayed in this section are typical for temperatures below half melt and strains
below 10 %. Although not completely verified, it appears that our test system is behaving in
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Figure 5.1. (a) Internal, and (b) Free energy density variation
with temperature for the LJ-gold system at a uniaxial stretch of
1.015 and Tref = 1 K.
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Figure 5.2. (a) Internal, and (b) Free energy density variation
with temperature for the LJ-gold system at a volumetric stretch of
1.045 and Tref = 1 K.
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Figure 5.3. Simple shear at T = 30,100,300K. (a) P12 vs. F12
and (b) U , ΨLH and ΨT I vs. F12.
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Figure 5.4. Biaxial stretch at T = 30,100,300K. (a) P12 vs. F12
and (b) U , ΨLH and ΨT I vs. F12.
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manner consistent with a linear thermo-elastic material with a free energy of the form [9]:

Ψ =
1
2

H ·CH−T ααα ·H− 1
2

cvT 2 (5.30)

where C = ∂2Ψ

∂H∂H is a (fourth-order) elastic modulus tensor and ααα = ∂2Ψ

∂H∂T is a thermal expansion
tensor. These results give confidence that the thermodynamic consistency necessary establish Eq.
(5.1) with Hardy measures of the fields is satisfied. It should also be noted that ααα can be related to
a Grüneisen-like tensor γγγ =− 1

cv
ααα, which is a well-known measure of the sensitivity of entropy to

deformation as well as stress to changes in temperature and therefore related to how the vibrational
modes ωi are affected by these changes.

5.5.2 J-integral of a single crack at finite temperature

The fundamental crack tip solution [107, Chapter 2] in polar coordinates r,θ is

u1 =
KI

2µ

√
r

2π
cos
(

θ

2

)[
κ−1+2sin2

(
θ

2

)]

u2 =
KI

2µ

√
r

2π
sin
(

θ

2

)[
κ+1−2cos2

(
θ

2

)] (5.31)

for a two-dimensional crack aligned with e1. Here µ is the elastic shear modulus, κ = 3−4ν and ν

is Poisson’s ratio. Linear elastic fracture mechanics (LEFM) predicts the value of J to be quadrat-
ically dependent on the stress intensity factor KI and inversely proportional to the appropriate
modulus E∗

J =
K2

I
E∗

E1 (5.32)

For normal (mode I) loading, the modulus E∗ is

E∗ =
E

1−ν2 =
C11−2C2

12/(C11 +C12)

1− (C12/(C11 +C12))
2 = 338.099GPa (5.33)

for a material with cubic symmetry.

To realize a system similar to the LEFM idealization of a crack, we created a perfect lattice
in a cylindrical region of radius 20a and 3a in depth ( consisting of 18276 atoms ). Periodic
boundary conditions were applied in the e3 direction. We created a crack by deleting interactions
on a slit extending to the center of the cylindrical region and boundary conditions in the e1 and
e2 directions corresponding to (5.31) were effected on an annular layer of zero temperature atoms
away from the crack tip, see Figure 5.5. Using a loading procedure similar to that used in the
previous section, i.e. zero temperature minimization of a sequence of deformed states indexed by
KI and then thermalized using a NH thermostat, we obtain the necessary time averaged fields taken
over 105 samples at sampling frequency 40 f s (variances were computed from 10 independent
averages of same data). The support of the localization function ψ is twice the size of the mesh
elements which are square and one lattice unit in width. The four loops that were used to compute
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(5.18) were taken outside the central crack tip region where ΨLJ is expected to be a good estimator
of free energy (loop 3 is shown in Figure 5.5b). As mentioned in Section 5.2 the free energy
density field is computed relative to that of a zero temperature reference configuration, which has
the effect of negating the perturbation due to the free energy of the existing surfaces.

As in our zero temperature work [88], Figure 5.6 shows remarkable path independence for
T=100, 300 K (with similar results for other temperatures). All loops display equivalent values to
within error based on thermal fluctuations for a given T. Loop 0, which does not encompass the
crack, displays an insignificant J1 value relative to the other loops, as expected.

Figure 5.7 shows the temperature dependence of J and JU for T = 10,100,300,600,900,1200
K. All J1 curves at T > 0 are below the T=0 curve as a consequence of the reducing driving force
which delays fracture propagation. It is notable that (J1)U at T=10 K is actually above the T=0
curve and that at this temperature U ≈ Ψ, so it seems that the divergence of Ψ is significantly
different that that of U . The thermal expansion constrained by the boundary atoms used to stretch
the system creates compressive stresses which are unloaded as the boundary atoms follow a motion
given by (5.31). Near KI = 0 we have identified some trends that are artifacts of the way in which
we created the crack by deleting atomic interactions that would have supported the compressive
stresses at low KI . In the literature this is a common way to create a crack, but a non-healing
crack under compression from thermal expansion leads to some fictitious relief of the compressive
stresses. Once the boundary loading is sufficient to open the crack fully, these artifacts disappear.
Without these artifacts we would expect that all the J curves for the various temperatures would
approximately the same shape, even near the origin, and that the vertical shift of the T = 0 curve
dependent on temperature seen at higher applied KI would carry through to KI → 0. If this were
achievable, it would clearly illustrate that the total KI is the sum of the far-field, applied KI and a
component due to thermal effects. Also, it is apparent from Figure 5.7a that the strict ordering of
the J1 curves with temperature is broken in the neighborhood of T ≈ 1000. This may be due solely
to the larger variances in the observed quantities at higher temperature but it could also be due to
the loss of accuracy of the LH model in a more anharmonic environment.

Figure 5.7c shows the difference in the internal energy and free energy-based J1-integrals (the
temperatures T = 900,1200 have been omitted due to their large variances obscuring the other
curves). The difference is clearly due to the divergence of Θ (5.21), since the difference for loop
0 that does not surround the crack is zero. The correction is apparently linear in K and T as Eqs.
(5.21) and (5.22) would lead us to expect, and is approximately 10 % different at 300 K near KIc.
The differences may not be strictly statistically significant given the calculated error estimates;
however, we expect that the trends will remain if the time-averages were extended to the point
that the variances in the averages become insignificant. It is well know the time averaging has
a slow N−1/2 convergence where N is the number of independent samples. An alternate method
to overcome the errors is averaging over an ensemble of parallel replicates generated from the
constant temperature Boltzmann distribution.
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(a) Lattice colored by potential energy (b) Eshelby stress component S22

Figure 5.5. Deformation and stress state at KI/KIc = 0.975,
T = 300K. (a) Lattice configuration showing overlaid mesh, only
some of the boundary atoms used to control the deformation are
show for clarity. (b) Eshelby stress component S22 showing con-
centration at crack tip in the center of the mesh (size h = a) and
background thermal fluctuations. The third largest loop (loop 3)
used to evaluate the J-integral is shown for size. Note in (a) the
lattice is in its deformed configuration but the mesh is in its refer-
ence configuration.
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Figure 5.6. Path independence of the J-integral at T=100K and
300K. Loops of various sizes give the same J1 values to within
error. The four square loops centered on the crack tip with side
lengths of 8a, 16a, 20a and 24a are labeled loop 1, 2, 3, 4, respec-
tively. Note loop 0 does not encompass the crack tip and is used
to give an estimate of the error in the evaluation of the contour
integrals.
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based on internal energy JU .
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5.6 Discussion

This work shows the reduction of the J estimates due to fact that the free energy available for crack
propagation is less that the internal energy at sufficiently high temperatures. Mechanically, this en-
tropy increase is manifest in thermal expansion. We calculate that J-integrals at room temperature
based on internal or potential energy can over-estimate J by approximately 10 %. In needs to be
emphasized that both MD and QH require high enough temperatures hω� kBT for their classical
behavior to correspond to real materials but QH has the additional restriction that the temperature
needs to be sufficiently low so that harmonic approximation is still valid. Our results show that
that behavior at temperatures at least as high as one-eighth of the effective melt temperature can be
simulated sufficiently accurately with LH model. More accurate models like the MLH may extend
this result to higher temperatures.

The present work is confined to crystalline solids; however, extension to amorphous solids is
feasible. Since the Hardy methodology [71] using a kernel-based estimator of fields was orig-
inally developed for liquids, we have confidence that the means for determining the stress and
displacement fields will be accurate for a dense, amorphous material without modification. On
the other-hand, the Cauchy-Born formula that the free-energy estimates are based on would most
likely need to be modified along the lines of the virtual internal bond [99] extension to the Cauchy-
Born rule. Whether this would accurately represent the phonon modes needed to determine the
dynamical matrix would need to be tested.

In future work, we intend to explore a wider range of materials that may warrant the accuracy of
the MLH [94, 155] to produce physical results and significant corrections. To extend this work to a
dynamically propagating crack, the issue of what constitutes the appropriate contour integral in this
case would need to be revisited. A certain amount of previous work [103, 142] exists on the subject,
most notably Maugin’s [124]. The author noted that for general dynamic, thermo-mechanical
problems the free energy density should be used, and a thermal material force dependent on the
gradient of the temperature field should be included. For such an analysis, the resulting integral is
not path-independent due to fact that a nonuniform temperature field can be viewed as a distributed
source of material inhomogeneity.

5.7 Appendix C: Quasiharmonic model for pairwise potentials

In the case of pairwise potentials the potential energy density for the system is given by

Φ =
1

2V

N

∑
α

N

∑
β6=α

φ(rαβ), (C.1)

where φ is the pairwise interaction which depends solely on the distance rαβ between two atoms
and V is the volume of the undeformed crystal. The LH dynamical matrix for a monoatomic lattice

126



is

DLH =
1
m

∂2Φ

∂u2
0

=
1
m

∂

∂u0
∑
β 6=0

φ
′(rβ0)

rβ0

rβ0

=
1
m ∑

β6=0

(
φ
′′(rβ0)

rβ0

rβ0
⊗ rβ0

rβ0
+φ
′(rβ0)

1
rβ0

[
I− rβ0

rβ0
⊗ rβ0

rβ0

]) (C.2)

given I being the identity tensor and

∂rβ0

∂u0
=−rβ0

rβ0
,

∂2rβ0

∂u2
0

=
1

rβ0

(
I− rβ0

rβ0
⊗ rβ0

rβ0

)
,

(C.3)

for β 6= 0.

5.8 Appendix D: Thermodynamic integration

Direct thermodynamic integration (TI) [95] can be used to calculate the free energy difference
between two states connected by a reversible path. It is based on the differentials of the Helmholtz
free energy state function Ψ(F,T )

dΨ = dΨ(V,T ) = d(U−T S) = (T dS−P ·dF)−T dS−SdT = P ·dF−SdT (D.1)

where ∂Ψ

∂T

∣∣∣
F

=−S, ∂Ψ

∂F

∣∣∣
T

= P. Now, a path at constant temperature leads to

∆Ψ =
Z
〈P〉NV T · dF → Ψ1 = Ψ0 +

Z
〈P〉NV T · dF (D.2)

and likewise

∆

(
Ψ

T

)
=

Z
〈U〉NV T dT → Ψ1 = Ψ0

T1

T0
+T1

Z 1

0
〈U〉NV T d(1/T ) (D.3)

for a path at constant deformation. An example of the first formula for a uniaxial deformation
F = λe1⊗E1 + e2⊗E2 + e3⊗E3 is

Ψ1 = Ψ0 +
Z

λ1

λ0

〈P11〉NV T dλ (D.4)

The second statement (D.3) is a result of

Ψ

T
=

U
T
−S → d

(
Ψ

T

)
= Ud

(
1
T

)
+

1
T

dU−dS → d
(

Ψ

T

)
= Ud

(
1
T

)
(D.5)
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which comes from the definition dS = dS(V,T ) = 1
T dU , the assumption that dU is equal to the

differential of net heat absorbed, and the differential of the internal energy state function

dU = dU(F,S) =
∂U
∂S

∣∣∣∣
F

dS +
∂U
∂F

∣∣∣∣
S

dF = T dS +P ·dF (D.6)

restricted to constant deformation.

It is well-known that (D.3) is problematic starting from T0 = 0. Even at small temperatures
where the approximation

U |F = aT +b (D.7)

(see Eq. (5.16) ) is valid for a classical system and

Ψ̃ = (Ψ0−b)
T
T0
−aT0

T
T0

log
(

T
T0

)
+b (D.8)

we see that the limit limT0→0 Ψ̃ does not exist. Instead we define

ΨT I ≈ (Ψref−b)
T

Tref
−aTref

T
Tref

log
(

T
Tref

)
+b (D.9)

with Ψref = ΨLH(F,Tref) for Tref� TDebye. We use this approximation in TI for small temperatures
above Tref to avoid the cost of a logarithmic density of quadrature points (i.e. MD samples) needed
to accurately evaluate (D.3) for temperatures near zero.

We observe that Ψ = U at two temperatures. The first point is, of course, at T = 0 K. The
second point is the the maximum of the Ψ(T ) curve at

Tmax = Tref exp
(

Ψref−b
aTref

−1
)

(D.10)

which results from solving dΨ

dT = 0. Substituting equation (D.10) into (D.9), we verify

ΨLH(Tmax) = (Ψref−b)
Tmax

Tref
−aTref

Tmax

Tref
log
(

Tmax

Tref

)
+b

= aTref exp
(

Ψref−b
aTref

−1
)

+b = aTmax +b = U(Tmax).
(D.11)

assuming a = cv and b = Φ0 . This observation provides an independent check on the accuracy of
our two methods of estimating the free energy (namely QH and TI).
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Chapter 6

Prediction of instabilities at the atomic scale
Principal Authors: Terry J. Delph and Jonathan A. Zimmerman

Atomic scale instabilities, in which atomic bonds are broken and reform as the body shifts into
a lower-energy configuration, are responsible for a wide range of material behaviours of interest.
Building upon previous work, we outline here the construction of a criterion for the prediction of
such instabilities. The criterion is implemented within the context of the well-known embedded
atom (EAM) family of interatomic potentials. We present two examples of the application of this
criterion: oriented cavitation in an FCC crystal due to uniform triaxial stretching, and dislocation
nucleation due to nanoindentation of the (001) face of an FCC crystal.

6.1 Introduction

Numerous macroscale phenomena in the behaviour of solids, e.g., plastic flow, fracture, and cavita-
tion, are governed by the initiation of defects on the nanoscale. Various quite different continuum-
based criteria have been proposed to separately describe each of these phenomena, but at the
nanoscale it is possible to identify a few unifying features. In particular, each of these phenomena
originates from a process in which a given atomic configuration, under the action of external loads
or otherwise, becomes unstable and shifts into a stable, lower energy, configuration. This shift
may involve the breaking and reforming of a relatively small number of interatomic bonds, as is
the case in the nucleation of a single dislocation in a perfect crystal, or it may involve a large-scale
change in atomic configuration, as with catastrophic brittle fracture. Viewed in this fashion, loss
of stability of the atomic configuration becomes the general mechanism underlying a wide variety
of macroscopic and microscopic features of great importance in the behaviour of materials.

Instability criteria that would predict atomic-scale defect initiation have accordingly been of
considerable recent interest. Early work along these lines took the form of applications of continuum-
scale criteria to the nanoscale. Work by Milstein and Huang [130] and Milstein and Hill [129] pre-
sented stability criterion based on the positive definiteness of atomic-scale elastic constants. Alber
et al. [4] applied such a criterion to single atoms along a grain boundary to investigate grain bound-
ary stability. Wang et al. [199] analyzed the stability of a homogeneous lattice under a constant
uniform load, identifying several modes of instability: lattice decohesion by pure dilatation, tetrag-
onal shear-induced bifurcation (Born instability), and simple shear-induced failure. This analysis
was more rigorously probed by Morris and Krenn [135] in their effort to define the upper limits of
mechanical strength. More recently, Van Vliet et al. [193] extended the strong ellipticity condition
of Hill [74] downwards to the atomic scale, using atomic level elastic constants and stresses. As
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with the work of Alber et al. , these quantities were calculated on an atom-by-atom basis. The
resulting criterion was then applied to the prediction of dislocation nucleation in nanoindentation.
Kolluri et al. [101] used the techniques by Wang et al. and Morris and Krenn in a molecular
dynamics framework to evaluate the stability of biaxially strained thin films.

One notable weakness of these efforts is that they involve continuum-scale concepts, namely
elastic constants and stress, which translate down to discrete atomic systems only with some dif-
ficulty, e.g. Delph [40]. In the articles cited above, the underlying assumption of homogeneous
deformation is crucial towards defining these atomic-scale equivalents of continuum variables.
Their validity for systems undergoing inhomogeneous deformations is questionable. In an effort
to avoid this difficulty, Kitamura et al. [96, 97], Lu and Zhang [116] and Miller and Rodney [128]
have independently proposed stability criteria that make no reference to continuum level quan-
tities, but that depend only upon the interatomic potential. They have been applied by various
researchers to predict thin film buckling and crack initiation [41, 96], the initiation of defects in
carbon nanotubes [117], dislocation nucleation in nanoindentation [128], instability in shear [144]
and in triaxial tension [41].

At least for the simple case of pair potentials, all of these criteria can be shown [41] to be
equivalent to a stability criterion originally put forward by Wallace [198], but, to our knowledge,
never systematically developed by him. This criterion, which we will subsequently call the Wal-
lace criterion, states simply that a given atomic equilibrium configuration is stable if all admissible
infinitesimal displacements of an atom, or of a group of atoms, result in an increase in the system
energy. For an unstable state, in contrast, there exists a set of admissible atomic displacements
that leads to a system energy lower than that of the initial state. Such a definition is very much in
keeping with classical definitions of the stability of discrete systems. Wallace has, moreover, indi-
cated that this criterion is completely equivalent to the requirement that small phonon disturbances
decay with time. As we have noted, such a requirement is, at the continuum scale, the basis for the
strong ellipticity requirement of Hill [74]. The Wallace criterion thus appears to be the equivalent
of the strong ellipticity requirement at the atomic scale.

In principle at least, the Wallace stability criterion is easily implemented. The interatomic
potential energy associated with a selected group of atoms is expanded in a Taylor series in the
virtual atomic displacements and terms of up to quadratic order are retained. Because the system
is assumed to be in initial equilibrium, the linear terms vanish, and the result is a quadratic form in
the displacements. Instability is then signaled by the loss of positive definiteness of this quadratic
form. Computationally, this implies that the lowest eigenvalue of the matrix associated with the
quadratic form becomes negative. A valuable additional piece of information provided by the
Wallace criterion is that the eigenvector associated with this lowest eigenvalue yields directly the
magnitude and direction of the atomic motions associated with the instability mode, allowing ready
identification of the type of instability. This information is not always easy to isolate in large-scale
molecular static and dynamic simulations. For such calculations, the heterogeneity of the system
geometry and applied loading may result in a cascade of defects produced following the initial
instability that may obscure its nature. Thus, our method is useful in its ability to identify and
characterize the deformation mode associated with that initial instability.

The purpose of the present paper is to extend the Wallace criterion to a realistic multibody in-
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teratomic potential, the well-known embedded atom method (EAM) potential [57], of which there
exist a number of variants. We give detailed computational formulas for the resulting stability
criterion, and then apply the result to predict defect nucleation in several situations of interest. In
addition to the usefulness already mentioned, the Wallace stability criterion has more general ap-
plicability as it can be used for any method that provides interatomic distances. Although atomistic
simulation techniques are the most familiar means to generate these distances, alternative methods
exist such as the Cauchy-Born rule and lattice Green’s functions. This point will be elaborated on
in the Discussion section of this paper.

6.2 Analysis

We consider an atomic assemblage consisting of NA atoms, assumed to be in equilibrium and
at a sufficiently low temperature so that thermal atomic fluctuations may be neglected. As we
have noted above, the Wallace criterion involves the imposition of a set of arbitrary infinitesimal
displacements on a relatively small group of N atoms contained within some region Ω interior to
the ensemble, typically with N � NA. To be more precise, suppose that we impose infinitesimal
displacements uα, α = 1,2, · · · ,N, upon the atoms within Ω, so that these atoms move from an
initial equilibrium position Rα to position rα, so that rα = Rα +uα. The set of positions {Rα} does
not necessarily constitute a reference configuration in the continuum mechanical sense. Rather, it
is any configuration that represents a state of static equilibrium. This can include perfect single
crystals, polycrystals, materials with a distribution of defects, or crystals possessing free and/or
reconstructed surfaces. Here and subsequently, Greek letter superscripts denote atomic labels.
If β likewise denotes a member of the group of N atoms, then the change in relative interatomic
spacing between the two atoms is given by

rα− rβ ≡ rαβ = Rαβ +uαβ. (6.1)

Atoms exterior to this group of N atoms are assumed to be held fixed at their initial positions, so
that if atom γ is a member of this exterior group, then uγ = 0 and rαγ = Rαγ +uα.

Using the EAM potential, the total potential energy of our atomic system, Ψ, is given as the
sum of a two-body and an N-body term,

Ψ = Ψ2 +ΨN . (6.2)

The term Ψ2 is a two-body potential having the standard form

Ψ2 =
1
2

NA

∑
α=1

NA

∑
γ=1,γ6=α

ψ2

(
Rαγ2

)
. (6.3)

The N-body term is written in terms of a composite function F
(

ρδ

)
, known as the “embedding

function”, so that

ΨN =
NA

∑
δ=1

F
(

ρ
δ

)
, (6.4)
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where

ρ
δ =

NA

∑
ε=1,ε6=δ

f
(

Rδε2
)

. (6.5)

It is worth noting that, following Martin [122], we have assumed that the potential functions
depend upon the square of the relative interatomic spacings. Martin has shown that such a de-
pendence guarantees translational and rotational invariance of the potential functions. Equiva-
lently, as we will subsequently do when convenient, one could also consider a dependence upon
Rαβ =

√
Rαβ2

, so that, for example, f
(

Rαβ2
)

= f̂
(

Rαβ

)
. However the use of Rαβ2

makes it clear
that the argument is always positive and moreover considerably simplifies the resulting algebra.

We now perturb our system from a state of static atomic force equilibrium, thereby altering our
system’s energy by the quantity ∆Ψ = Ψ({rα})−Ψ({Rα}). We carry out a Taylor expansion of
the interatomic potential in terms of ∆Rδε2 ≡ rδε2 −Rδε2

= 2Rδε
i uαβ

i + uδε
i uδε

i from equation (6.1),
retaining terms of up to quadratic order in the displacement components. The details of this
expansion for a two-body potential have been given by Delph et al. [41], and we focus here upon
the expansion for the N-body term in equation (6.2). The composite nature of the embedding
function renders the expansion somewhat algebraically complicated, and the details are given in
Appendix E.

The linear term in the expansion vanishes from considerations of atomic equilibrium, and the
result, including both two- and N-body terms, can be placed in the standard quadratic form

∆Ψ =
3N

∑
k=1

3N

∑
`=1

Ak`vkv`, (6.6)

where uα
i = v3(α−1)+i. Explicit expressions for the elements of the matrix A are given in Ap-

pendix E. This matrix is, in general, nonsymmetric. However it may be decomposed into the sum
of symmetric and antisymmetric parts, A = B+C, where B = (A+AT )/2 and C = (A−AT )/2.
Then it is easy to see that the contribution to the quadratic form from the antisymmetric part van-
ishes identically, and we have

∆Ψ =
3N

∑
k=1

3N

∑
`=1

Bk`vkv`. (6.7)

We now seek a vector v so as to minimize ∆Ψ. Minimization of a quadratic form is a well-
known problem, e.g. [14], and we briefly sketch the procedure for the sake of clarity. Without
loss of generality, we can assume the vector v to be normalized to unity, so that v · v = 1. This
normalization represents a constraint upon the minimization, and we enforce it through a Lagrange
multiplier θ. Hence we seek to minimize

∆Ψ =
3N

∑
k=1

3N

∑
`=1

Bk`vkv`−θ

(
−1+

3N

∑
k=1

vkvk

)
(6.8)
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with respect to θ and v. Minimization with respect to θ yields the constraint equation, and mini-
mization with respect to v the symmetric eigenproblem

(B−θI)v = 0, (6.9)

where I is the identity matrix. If now we take v = vmin to be the eigenvector corresponding to
the lowest eigenvalue θmin, then substitution into equation (6.7) gives the absolute minimum of the
quadratic form as

∆Ψmin = θmin (6.10)

At this point, it is easy to see that ∆Ψmin = θmin > 0 represents the condition for stability,
whereas θmin < 0 signals an instability. By construction, the eigenvector corresponding to θmin,
vmin, represents the atomic displacement mode corresponding to the instability.

6.3 Implementation and examples

A number of variants of the EAM potential exist in the literature. The version that we have chosen
to implement here is the one originated by Voter and Chen [195] and later parameterized to model
gold [194]. This potential was recently modified by Foiles to improve its predicted values of
surface energies and stacking fault energy, as reported by Park and Zimmerman [146]. It is this
model that was used in the present study. In the Voter-Chen-Foiles potential, the two-body term
is taken to be a Morse potential of the form

ψ̂2(R) = D(1− exp(αm (R−Rm)))2−D, (6.11)

where D, αm, and Rm are constants. The values used in this study are D = 0.6569397 eV, αm =
1.2031576 Å−1, and Rm = 2.5471737 Å. For the N-body term, we take the components of the
atomic charge density function, the argument of the embedding function, to be

f̂ (R) = R8 (exp(−βmR)+211 exp(−2βmR)
)
, (6.12)

where βm = 3.18783126 Å−1.

Both ψ̂2 and f̂ have cutoffs at Rc = 5.6 Å. In order to insure that the cutoff leads to no
discontinuities either in the function or its first derivative, we replace ψ̂2 and f̂ by a smoothed
function hs (R), defined by

hs (R) = h(R)−h(Rc)+
Rc

20

[
1−
(

R
Rc

)20
](

dh
dR

)

R=Rc

, (6.13)

where h = ψ̂2 or h = f̂ , as appropriate.

A distinguishing feature of the EAM potential is that the embedding function F, as well as its
derivatives, is frequently unavailable in analytic form, but must be obtained by interpolation in
lookup tables. We briefly outline in Appendix F how these lookup tables are constructed.
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As a first example, we consider an FCC lattice subjected to uniform triaxial stretching along
the principal crystallographic directions, using the EAM potential for gold described above. The
atomic assemblage used here consisted of 8x8x8 unit cells, for a total of NA = 2048 atoms, sub-
jected to periodic boundary conditions on each of its sides. The values of critical stretch are de-
termined through calculation of the lowest eigenvalue of the matrix B using a computer program
developed by the lead author in which the expressions found in Appendices A and B have been
hard-coded. Figure 6.1 shows the predicted stretch ratio λ at instability versus the number of
atoms N contained in a spherical region Ω centered at the central atom in the 8x8x8 assemblage. It

N (number of atoms in Ω) 

0.081

0.082

0.083

0.084

0.085

0.086

0.087

0.088

λ-
1

0 20 40 60 20018016014012010080

Figure 6.1. Predicted stretch ratio λ at instability versus the num-
ber of atoms N contained in a spherical region Ω centered at the
central atom in the 2048 atom assemblage.

can be seen that the predicted stretch at instability decreases rather weakly with increasing N and
appears to tend towards a value of about λ = 1.081 as N becomes large.

Of particular interest is the fact that the lowest eigenvalue in this situation, which becomes
negative at the point of instability, is a triple root, and hence has three linearly independent asso-
ciated eigenvectors. By construction, the eigenvectors are the infinitesimal displacements leading
to a lower energy state, indicating that, at the point of instability, there exist at least three different
neighboring states having lower energies than the initial equilibrium state. In principle, inspection
of the eigenvectors allows a determination of the mode of instability, but in this case, the inter-
pretation is complicated by the fact that any arbitrary linear combination of the three eigenvectors
is likewise a valid eigenvector. Hence none of the eigenvectors is unique. With this in mind,
Figure 6.2 show vector plots, plotted on the atomic lattice, of the eigenvectors obtained for the
case N = 365 atoms, the largest value of N for which results were computed. The first two of these
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Figure 6.2. Vector plots of the eigenvectors corresponding with
the lowest eigenvalue at the point of instability in the triaxial
stretching calculation.

show a distinct circular pattern about the (110) axis, although in opposite directions, whereas the
third shows much the same circular pattern about the (001) axis. Mutual orthogonality of all three
eigenvectors was verified numerically.

A parallel molecular statics simulation of triaxial stretching using the same EAM potential
was conducted with the widely-used LAMMPS molecular dynamics code [168], using the same
assemblage of 2048 atoms. At a stretch level of λ = 1.085, the stretch value at instability for N =
365 atoms, the 365 atoms within Ω were perturbed in the direction indicated by the eigenvectors
from the Wallace analysis. In all three cases, an adjacent lower-energy state was found to exist.
The final equilibrium states corresponding to these lower-energy states are shown in Figures 6.3.
It can be seen that these correspond roughly to an orientated cavitation pattern consisting of four
cavities.

The next example is that of indentation of the (001) surface of an Au crystal by a rigid spherical
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(a)

(b)

(c)

Figure 6.3. Atomic configurations for post-cavitated states pro-
duced from energy minimization of a perfect lattice perturbed by
the three eigenvectors shown in Figure 6.2. For clarity, two views
are shown for each state, and atoms are shown only if they possess
a high value of centrosymmetry parameter [92].
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indenter with a radius of 40 Å. An initial simulation of this situation was carried out with the
LAMMPS code using an assemblage of 50x50x30 unit cells with 300,000 atoms. The assemblage
was subjected to periodic boundary conditions along its sides, and was restrained against vertical
(z-direction) motion along its bottom plane. The indentation was carried out in discrete steps
of 0.5 Å, with the assemblage being allowed to equilibrate on each step before proceeding to the
next. The results from the simulation indicate the nucleation of a dislocation at 5 atomic layers
underneath the surface at an indenter penetration depth of 3.2 Å. The nucleation and its precursor
instability event are shown in Figure 6.4. Subsequently, a V-type defect forms. The planes that

(a)

(b)

Figure 6.4. Dislocation nucleation below a nanoindented (001)
gold surface. (a) shows a precursor instability event that occurs at
an indentation depth of 3.2 Å. (b) shows a partial dislocation loop
that is fully formed at an indentation depth of 3.7 Å. For clarity,
atoms are shown only if they possess a high value of centrosym-
metry parameter [92], and each subfigure shows both full-range
(left) and close-up (right) views.

comprise the defect are (111) and (-1-11) planes, with the axis of the V oriented along [-1 1 0].
As the defect is small and the system is compressed, the slip vectors are somewhat distorted, but
appear to be pointing in <112> directions. Specifically, these would be [-1-12] on the (111) plane
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and [112] on the (-1-11) plane. The progression of defect growth is similar to that observed by
Rodrı́guez de la Fuente et al. [158].

The atomic coordinates taken from this simulation after each increment of indenter displace-
ment and subsequent equilibration were used as inputs to the stability analysis. Figure 6.5 shows
the variation of the lowest eigenvalue with indenter depth, where Ω was taken to be a rectangular
solid whose top surface was a square centered at the center of the indentation. It can be seen that,

indentation depth (Å)
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

lo
w

es
t e

ig
en

va
lu

e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N = 171

N = 486

N = 75

N = 45

Figure 6.5. Lowest eigenvalue as a function of increasing load
(step) for the nanoindentation simulation for analysis regions that
contain N number of atoms and enclose the contact area. For sys-
tems where N ≥ 75 the minimum of each curve is at an indentation
depth of 3.2 Å, which corresponds with the precursor event shown
in Figure 6.4(a).

at least for the larger values of N, the lowest eigenvalue remains constant until an indentation depth
of approximately 1.5 Å, at which point it begins to decrease with increasing indentation. The
minimum occurs at an indentation depth of 3.2 Å, a value that corresponds very well to the depth
at which dislocation nucleation occurred in the LAMMPS simulation. Past this point, the lowest
eigenvalue begins to increase.

Figure 6.6 shows a vector plot of the eigenvector corresponding to the lowest eigenvalue at the
point of dislocation nucleation. The view is from the surface looking directly downwards into the
crystal. A shearing motion is clearly visible in the center of the figure. This shearing motion
occurs at a depth of 6.2 - 6.3 Å below the surface, at the fifth atomic layer. This location accords
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Figure 6.6. Eigenvectors corresponding to the minimum eigen-
value at the point of instability during the nanoindentation simu-
lation. A shearing motion is clearly visible in the center of the
figure.

well with the results of the simulation, which indicates that the dislocation nucleates at 6.3 Å below
the surface.

6.4 Discussion

In this paper, we have extended the Wallace stability criterion to atomistic systems governed by the
well-known EAM family of interatomic potentials. In essence, the Wallace criterion tests the sta-
bility of a relatively small number of atoms contained within a region Ω embedded within a larger
atomic assembly. The measure of stability is whether or not arbitrary infinitessimal displacements
of these atoms lead to a higher or a lower system energy. In the former case the system is stable; in
the latter case, it is not. Computationally, this leads to an assessment of the lowest eigenvector of
a symmetric matrix. If the lowest eigenvector is positive, then the system is stable; if it is negative,
then instability is predicted.

One of the important ideas here is that accurate stability predictions can be obtained when the
number of atoms N contained within Ω is considerably less than the total number of atoms con-
tained within the assembly. In the examples considered both here and elsewhere, values of N < 500
have been found to suffice, even in rather complicated situations, e.g., Mode I crack growth [41].
Values of N that are too small, on the other hand, can lead to inaccurate results. It is interesting to
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note in this context that many of the prior results obtained using essentially similar stability criteria
have focused upon the extreme limits of the possible values of N, that is, N = 1 [4, 116, 117, 193]
and N = NA, where NA is the total number of atoms in the assemblage [96, 97, 144]. Apparently
Miller and Rodney [128] were the first to realize that the use of intermediate values of N, compar-
atively small with respect to NA, but not overly small, could lead to accurate and computationally
efficient stability predictions, a finding that we have confirmed here and elsewhere.

We have presented two examples here of the use of the Wallace criterion in conjunction with the
EAM potential, that of an FCC lattice subjected to equiaxed triaxial stretching and nanoindentation
of an FCC crystal. The material constants in both cases were appropriate to the behaviour of gold
[194]. In general, agreement between the Wallace stability analysis and the parallel LAMMPS
simulations was excellent for both examples considered. Moreover both examples indicated that
overly small values of N were likely to lead to inaccurate, or even erroneous, stability predictions.

The results from the triaxial stretching example were somewhat unexpected. A previous sim-
ulation of triaxial stretching of an FCC lattice described by a simple Lennard-Jones type of inter-
atomic potential [41] indicated that the instability in this case took the form of spherical cavitation.
Moreover the lowest eigenvalue for this case was a single root. In the present case, using the
EAM potential with material constants appropriate to gold, we observed a triple root for the lowest
eigenvalue. This indicates, in general, the formation of a defect with a specific orientation with
respect to the principal crystallographic directions. Because the stretching is uniform in all direc-
tions, the defect can have any of three mutually orthogonal orientations. Unfortunately, because
of lack of uniqueness, the three associated computed eigenvectors are not particularly helpful in
describing the nature of the defect. However companion LAMMPS molecular statics simulations,
when perturbed in the directions indicated by the eigenvectors, show the formation of a cellular
type of cavitation having a definite orientation.

We tentatively interpret this instability in light of a continuum stability analysis due to Wang,
Li, Yip, Phillpot, and Wolf [199]. These authors likewise considered the case of triaxial tensile
stretching and showed that, in addition to spherical cavitation, an additional directionally oriented
instability mode existed. The authors termed this instability “Born instability” and noted that it
was associated, at least at the onset of instability, with isovolumetric deformation. This feature is
in good agreement with the eigenvectors obtained from the Wallace analysis, for which the atomic
motions seem to likewise indicate isovolumetric motion. To test their analysis, Wang et al. [199]
carried out a series of molecular dynamics of an FCC lattice governed by the EAM potential using
constants appropriate for Au, although their EAM potential took on a somewhat different form
than that used here. They found that spherical cavitation was the dominant instability mode at
temperatures up to about 1000K. At temperatures above this value, the Born instability became
dominant. By contrast, we find that, at low temperatures, the Born instability is the dominant one.
We ascribe the dissimilarities in predicted cavitation modes to differences in the EAM interatomic
potential for Au used in the two studies.

In contrast to the triaxial stretching example, the Wallace stability analysis for dislocation nu-
cleation underneath an indenter and the accompanying LAMMPS simulation were not completely
independent, because the atomic coordinates required by the Wallace stability analysis were taken
from the LAMMPS simulation on each step. The LAMMPS code, by construction, will not con-
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verge to an unstable state, and hence the Wallace criterion will not yield negative values for the
lowest eigenvalue. However the rapid drop in the lowest eigenvalue for the larger values of N,
falling essentially to zero at a value of N = 486, clearly signals the onset of dislocation nucleation.
On the other hand, smaller values of N, e.g., N = 45, predict nucleation either poorly or not at all.
This is in agreement with the results of Miller and Rodney [128], who noted a similar finding. By
selecting the region Ω to be discs containing the planes of shearing, these authors were able to
obtain good results with relatively small values of N. We have not attempted any such degree of
sophistication here, but have, somewhat less efficiently, simply taken Ω to be a rectangular volume
beneath the indenter.

In closing, we want to point out that the Wallace stability criterion and other stability criteria
such as that of Miller and Rodney [128] depend crucially upon the equilibrium interatomic spacings
that serve as an input to the analysis. In the present case, these were obtained either from simple
geometric considerations or from a parallel molecular statics simulation. In cases other than
homogeneous deformation of a centrosymmetric crystal, geometric considerations will in general
not suffice to yield the equilibrium interatomic spacings. These may, of course, always be obtained
from large-scale molecular statics simulations, as we have done here and elsewhere. In such cases,
our instability analysis supplies additional information on the nature and characteristics of the
underlying mechanism leading to a loss of stability.

In order to be more generally useful, atomic stability criteria such as the Wallace criterion re-
quire a relatively simple means of generating the required interatomic spacings. There are several
possibilities for achieving this goal, most notably through the use of the Cauchy-Born rule and lat-
tice Green’s functions. The Cauchy-Born rule assumes simply that the atomic displacements are
given by the continuum displacement field. For homogeneous deformation of centrosymmetric
crystals, the Cauchy-Born rule is exact from simple geometric considerations. However it is of
uncertain applicability in situations involving inhomogeneous deformation, and is moreover likely
to break down completely in regions in which the deformation gradient is large. Lattice Green’s
functions [89, 182] offer a more attractive alternative, at the expense of somewhat increased com-
putational effort. Lattice Green’s functions are, as their name implies, equivalent to the familiar
continuum Green’s functions in the continuum limit. More to the point, they have been shown
to yield accurate atomic displacements in several circumstances involving extended defects, e.g. ,
Tewary and Thomson [183].

6.5 Appendix E

Let the system be perturbed from a state of static atomic force equilibrium. At the location of each
atom δ is an electron gas of density ρδ in the static equilibrium state and ρ̃δ = ρδ + ∆ρδ in the
perturbed state.
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By simple chain rule considerations,

∂F
∂Rδε2 = F ′
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)
f ′
(

Rδε2
)

(E.1)
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∂
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At this point, we make the observation that equation (E.2) involves the derivatives of f
(

Rδε2
)

.

This function is akin to a two-body potential, and in fact, in the current implementation, has the
same cutoff distance as does the two-body portion of the EAM potential. Hence it is meaningful
to speak of an annulus surrounding Ω that contains a total of M interacting atoms, so that the con-
tribution to the expansion of atoms lying outside this annulus may be ignored. Use the convention
that α,β ∈ Ω, and that γ /∈ Ω is an interacting atom. Thus only the quantities proportional to
∆Rαβ2

,∆Rαγ2 6= 0. Starting from equation (6.4) and including only the nonzero contributions, we

142



have
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Now in terms of the displacement components, ∆Rαβ2
= 2Rαβ

i uαβ

i +uαβ

i uαβ

i , ∆Rαγ2
= 2Rαγ

i uα
i +

uα
i uα

i , where uγ

i = 0 by hypothesis. Substitution into equation (E.3), gives:

∆ΨN =
N

∑
α=1

F ′ (ρα)

{
N

∑
β=1,β 6=α

[
f ′
(

Rαβ2
)(

2Rαβ

i uαβ

i +uαβ

i uαβ

i

)
+ (E.4)

1
2

f ′′
(

Rαβ2
)(

2Rαβ

i uαβ

i +uαβ

i uαβ

i

)2
]
+

M

∑
γ=1

[
f ′
(

Rαγ2
)(

2Rαγ

i uα
i +uα

i uα
i
)
+

1
2

f ′′
(

Rαγ2
)(

2Rαγ

i uα
i +uα

i uα
i
)2
]}

+

M

∑
γ=1

F ′ (ργ)
N

∑
α=1

[
f ′
(

Rαγ2
)(

2Rαγ

i uα
i +uα

i uα
i
)
+

1
2

f ′′
(

Rαγ2
)(

2Rαγ

i uα
i +uα

i uα
i
)2
]
+

1
2

N

∑
α=1

F ′′ (ρα)

[
N

∑
β=1,β6=α

f ′
(

Rαβ2
)(

2Rαβ

i uαβ

i +uαβ

i uαβ

i

)
+

M

∑
γ=1

f ′
(

Rαγ2
)(

2Rαγ

i uα
i +uα

i uα
i
)
]2

+

1
2

M

∑
γ=1

F ′′ (ργ)

[
N

∑
α=1

f ′
(

Rαγ2
)(

2Rαγ

i uα
i +uα

i uα
i
)
]2

+ · · ·

If we assume very small displacements (i.e. uαβ� Rαβ), then we can approximate ∆ΨN by ignor-
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ing terms higher than quadratic order in the displacement components,
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By assumption, the expansion is taken about a state in atomic force equilibrium, so that the linear
term in this expansion vanishes. Thus, to quadratic order in the displacement components, we have
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We note that in going from equation (E.5) to equation (E.6) we have expanded some of the
quadratic displacement terms to use both dummy coordinate indices i and j, but that this was
not done for the last few terms involving the square of sums of atoms. Our reasoning for doing so
will become apparent shortly.

Our goal here is, by a series of algebraic manipulations, to place equation (E.6) in the quadratic
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form
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from whence it may be easily transformed into standard quadratic form.
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and substituting equations (E.8-E.9) into equation (E.6), we obtain
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Using the definition uαβ = uα−uβ and now expanding the terms involving the square of sums
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of atoms, the expression becomes
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In order to simply further, we exploit the symmetry of our quantities with respect to atomic indices,
α, β, etc., and coordinate indices i and j. In particular, Rαβ = Rβα, Uαβ = Uβα and W αβ = W βα.
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Similarly, Y αβ
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i j . Thus, simplifying our expression further we have
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Now collect these terms,

∆ΨN =
N

∑
α=1

{
N

∑
β=1,β6=α

[
Y αβ

i j +
1
2

(
F ′′ (ρα)+F ′′

(
ρ

β

))
UαβUαβRαβ

i Rαβ

j + (E.14)

1
2

F ′′ (ρα)
N

∑
η=1,η 6=α,β

UαβUαηRαβ

i Rαη

j +F ′′ (ρα)
M

∑
γ=1

UαβUαγRαβ

i Rαγ

j

]
+

M

∑
γ=1

(
Y αγ

i j +
1
2

F ′′ (ργ)UαγUαγRαγ

i Rαγ

j

)
+

1
2

F ′′ (ρα)
M

∑
γ=1

M

∑
ζ=1

UαγUαζRαγ

i Rαζ

j

}
uα

i uα
j +

N

∑
α=1

N

∑
β=1,β6=α

{
−Y αβ

i j −F ′′ (ρα)UαβUαβRαβ

i Rαβ

j −

F ′′ (ρα)
N

∑
η=1,η 6=α,β

UαβUαηRαη

i Rαβ

j +
1
2

N

∑
η=1,η6=α,β

F ′′ (ρη)UαηUβηRαη

i Rβη

j +

M

∑
γ=1

(
−F ′′ (ρα)UαβUαγRαγ

i Rαβ

j +
1
2

F ′′ (ργ)UαγUβγRαγ

i Rβγ

j

)}
uα

i uβ

j

Equation (E.14) has the desired form given by equation (E.7). It is now simple to place it in
the standard quadratic form

∆ΨN =
3N

∑
k=1

3N

∑
`=1

Ak`vkv`, (E.15)

where uα
i = v3(α−1)+i. From equation (E.14),

A3(α−1)+i,3(α−1)+ j =
N

∑
β=1,β6=α

[
Y αβ

i j +
1
2

(
F ′′ (ρα)+F ′′

(
ρ

β

))
UαβUαβRαβ

i Rαβ

j + (E.16)

1
2

F ′′ (ρα)
N

∑
η=1,η 6=α,β

UαβUαηRαβ

i Rαη

j +F ′′ (ρα)
M

∑
γ=1

UαβUαγRαβ

i Rαγ

j

]
+

M

∑
γ=1

(
Y αγ

i j +
1
2

F ′′ (ργ)UαγUαγRαγ

i Rαγ

j

)
+

1
2

F ′′ (ρα)
M

∑
γ=1

M

∑
ζ=1

UαγUαζRαγ

i Rαζ

j

and

A3(α−1)+i,3(β−1)+ j = −Y αβ

i j −F ′′ (ρα)UαβUαβRαβ

i Rαβ

j − (E.17)

F ′′ (ρα)
N

∑
η=1,η6=α,β

UαβUαηRαη

i Rαβ

j +
1
2

N

∑
η=1,η 6=α,β

F ′′ (ρη)UαηUβηRαη

i Rβη

j +

M

∑
γ=1

(
−F ′′ (ρα)UαβUαγRαγ

i Rαβ

j +
1
2

F ′′ (ργ)UαγUβγRαγ

i Rβγ

j

)
.
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To these must be appended the terms resulting from the two-body portion of the EAM potential.
These are [41]

A3(α−1)+i,3(α−1)+ j =
N

∑
β=1,β6=α

Xαβ

i j +
M

∑
γ=1

Xαγ

i j (E.18)

and
A3(α−1)+i,3(β−1)+ j =−Xαβ

i j , (E.19)

where

Xαβ

i j =
1
2

(
Pαβ

δi j +QαβRαβ

i Rαβ

j

)
, (E.20)

with

Pαβ = =
1

Rαβ

∂ψ̂2

∂Rαβ
(E.21)

Qαβ =
1

Rαβ2

(
∂2ψ̂2

∂Rαβ2 −
1

Rαβ

∂ψ̂2

∂Rαβ

)
.

The completed A matrix containing both the two-body and the N-body contributions is the sum of
the terms given by equations (E.16) and (E.18), and those given by equations (E.17) and (E.19).
It is worth pointing out that, in contrast to the two-body case [41], the resulting matrix is not
symmetric.

6.6 Appendix F

As noted previously, the EAM potential is given as the sum of a two-body and an N-body term,

Ψ =
NA

∑
δ=1

F(ρδ)+Ψ2 (F.1)

where the quantity ρδ is given by

ρ
δ =

NA

∑
γ=1,γ6=α

f̂ (Rαγ) . (F.2)

Both Ψ2 and f̂ (Rαγ) are known explicitly. This is, however, typically not the case with the
embedding function F as well as its derivatives. These values are instead obtained from lookup
tables.

To generate these tables, we consider the situation in which the crystal is subjected to homoge-
neous stretching along all three crystallographic axes, a situation that is equivalent to varying the
crystal lattice parameter a. In this case, each atom has the same environment, and the quantity
ρδ = ρ is the same for each atom, with the superscript merely denoting a typical atom. Note
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that for a homogeneously stretched perfect crystal, the interatomic spacings Rδγ are related to the
lattice constant a in simple linear form, i.e.,

Rδγ = bδγa, (F.3)

where bδγ is a constant. Then from equation (F.2),

ρ = ρ
δ =

NA

∑
γ=1,γ6=δ

f̂
(

bδγa
)

(F.4)

Hence equation (F.1) may be written as

Ψ = Ψ(a) = NAF(ρ)+
NA

2

N

∑
γ=1,γ6=δ

ψ̂2

(
bδγa

)
, (F.5)

so that

F(ρ) =
Ψ(a)
NA
− 1

2

N

∑
γ=1,γ6=δ

ψ̂2

(
bδγa

)
. (F.6)

The approach taken by Voter and Chen [195] is to equate Ψ(a)/NA to the per atom Rose energy
E(a) [160], so that

F(ρ) = E(a)− 1
2

N

∑
γ=1,γ6=δ

ψ̂2

(
bδγa

)
, (F.7)

Voter and Chen made use of a slightly modified form of E(a), which we adopt here. This is given
by

E(a) =−Ecohê(a∗) , (F.8)

where Ecoh = 3.93 eV is the per atom crystal cohesive energy for Au and a∗ is a nondimensional
lattice constant given by

a∗ =
(

a
a0
−1
)(

Ecoh

9BΩ

)1/2

. (F.9)

Here B = 1.67x105 J/cm3 is the bulk modulus for Au, Ω =1.698x10−23 cm3 the atomic volume,
and ao = 4.08 Å the equilibrium lattice constant. The function ê(a∗) is a modification of that
originally proposed by Rose et al. [160] so as to achieve E(a∗c) = 0, where a∗c =

√
2Rc is the value

of a∗ taken on when the nearest neighbor spacing between atoms in the FCC lattice reaches the
cutoff distance. It is given by

ê(a∗) =
f
(√

1− εa∗
)
− ε

1− ε
, (F.10)

where f (a∗) is the original function given by Rose et al. [160],

f (a∗) = (1+a∗)ea∗. (F.11)

The parameter ε in equation (F.10) is determined numerically so as to yield ê(a∗c) = 0.
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Our approach, then, is to systematically vary the lattice parameter a and to calculate ρ from
equation (F.4) and F(ρ) from equation (F.7). This allows us to generate the required lookup tables
for F(ρ). We also require lookup tables for F ′(ρ) and F ′′(ρ). We note that

da
dρδ

=

(
dρδ

da

)−1

=

(
NA

∑
γ=1,γ 6=δ

bδγ f̂ ′
)−1

. (F.12)

From equation (F.6),

dF
dρδ

= E ′(a)
da
dρδ
− 1

2

N

∑
γ=1,γ 6=δ

ψ̂
′
2

(
bδγa

)
bδγ da

dρδ
(F.13)

=

(
E ′(a)− 1

2

N

∑
γ=1,γ6=δ

ψ̂
′
2

(
bδγa

)
bδγ

)(
N

∑
γ=1,γ6=δ

bδγ f̂ ′
)−1

.

Likewise,

d2F
dρ2

h
=

(
E ′′(a)− 1

2

N

∑
γ=1,γ6=δ

ψ̂
′′
2

(
bδγa

)(
bδγ

)2
)(

da
dρδ

)2

+ (F.14)

(
E ′(a)− 1

2

N

∑
γ=1,γ6=δ

ψ̂
′
2

(
bδγa

)
bδγ

)
d2a

d
(
ρδ
)2 .

Let

ρ
δ =

NA

∑
γ=1,γ6=δ

f̂
(

bδγa
)
≡ g(a) (F.15)

Then

da
dρδ

=
1

g′(a)
(F.16)

d2a

d
(
ρδ
)2 = − g′′

(g′)2
da
dρδ

= − g′′

(g′)3 .

Hence
d2a

d
(
ρδ
)2 =−

(
dρδ

da

)−3
d2ρδ

da2 , (F.17)
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where
d2ρδ

da2 =
N

∑
γ=1,γ6=δ

bδγ2
f̂ ′′. (F.18)

From these expressions, we can construct lookup tables for F ′(ρ) and F ′′(ρ), and can interpo-
late the tables to the desired degree of accuracy. Simple chain rule relations then give

dF
dRαβ

=
dF
dρ

d f̂
dRαβ

(F.19)

d2F

d
(
Rαβ
)2 =

d2F
dρ2

(
d f̂

dRαβ

)2

+
dF
dρ

d2 f̂

d
(
Rαβ
)2 .
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Chapter 7

Molecular-dynamics-based cohesive zone
law for brittle interfacial fracture
Principal Authors: Xiaowang Zhou, Neville R. Moody, Reese E. Jones, Jonathan
A. Zimmerman, and E. David Reedy Jr.

One approach for performing a finite element simulation of interfacial fracture is to use a
cohesive zone model. The cohesive zone model defines the interfacial traction-separation relation.
Experimental determination of such a relation has been difficult. Most past work is confined to
tensile loading, and much less work is devoted to mixed-mode loading conditions. Even so, specific
laws are often assumed rather than predicted. Our recent work has used molecular dynamics (MD)
simulation methods to derive a general cohesive zone law for the fracture between two brittle
materials under any mix-mode loading conditions. Here we extend our method and use it to explore
the effect of elastic constant mismatch between the adjacent materials. In particular, we construct
two bilayer structures where the cohesive energies and lattice constants of the constituent materials
are kept the same, but the elastic constant mismatch of the two materials in one structure differs
from that in the other. We then use MD simulations to study the fracture and to derive the cohesive
zone laws for both structures. The effect of elastic constant mismatch on fracture will then be
discussed.

7.1 Introduction

Many modern technologies require the use of multilayered material structures to achieve desired
functionality. Examples include thermal [28] and chemical [147] protection systems, electronic
packaging [38], ceramic multilayer actuators [70], thermoelectric superlattices [112, 208, 209],
thermoelectrics and compliant substrate technologies [21]. As these structures become relatively
large and geometrically more complex as well as being required to survive harsh environments,
interfacial fracture is likely to occur, especially when at least one of the materials at the interface
is brittle. This presents a critical problem for the application of these systems [44, 50]. Modeling
of interfacial fracture is highly desired in order to design optimum systems.

Modern approaches to the modeling and simulation of fracture are typically based upon a
cohesive zone law that defines the relation between traction and crack opening displacement [204].
Construction of such a law has been a challenging exercise for the past decade and a half [190, 203,
204]. Most past work is limited to tensile loading, and much less work is devoted to mixed-mode
loading conditions. Because a direct experimental quantification is difficult, specific cohesive zone
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laws are often assumed rather than predicted. In recent years, there have been numerous efforts
aimed at studying fracture using atomistic simulations [61, 161, 162]. Advances in these areas have
begun to enable calculations that can be used to define a physics-based cohesive zone separation
model. For example, Spearot et al. [175] proposed interface separation constitutive laws based
upon molecular dynamics (MD) simulations of interfacial debonding between Cu grain boundaries,
although their work did not result in an explicit traction vs. displacement relation at the local
fractured surfaces. Yamakov et al. [206], on the other hand, did extract a qualitative local traction
vs. displacement relation from their MD simulations of intergranular fracture of an Al metal. Their
approach, however, is only applicable to far field tensile (mode I) loading conditions and cannot be
applied to mixed-mode loading conditions. They also did not give explicit functions for traction
vs. displacement relations. By extending Yamakov et al. ’s work, we recently developed an MD
model of fracture between two brittle materials under any combinations of far field tensile (mode
I) and shear (mode II) strains, and derived directly analytical functions relating local traction,
local displacement, and local loading mode mixity [218]. This new approach provides an effective
means to study the effects of material properties upon interfacial fracture.

Interfacial fracture is known to be sensitive to many material properties, most notably lattice
mismatch that causes mismatch stress, thermal expansion coefficient mismatch that causes thermal
and residual stresses, and cohesive (bonding) energy that may affect decohesion resistance. Other
properties may also affect fracture but are less understood. For instance, some multilayers of
practical interests, such as those with compliant substrates [211], are based upon materials with
vastly different elastic constants. It is known from continuum solutions that elastic mismatch can
have a significant effect on crack-tip stress fields. However, experimental studies that could help
clarify the role of elastic constant mismatch are difficult to perform since elastic constants cannot
be independently varied without concurrently changing other material properties (such as cohesive
energy and lattice constants) in real materials. Here we will perform MD simulations to extract
local traction-displacement-mixity relations during debonding between two brittle materials. The
purpose of our work is threefold: (i) test our previous approach [218] against a larger database
created through MD simulations; (ii) improve the analytical functions so that they better match the
MD traction-displacement data; and (iii) identify the effects of elastic constant mismatch on the
cohesive zone law.

7.2 Methods

This section presents our MD model of an interface between materials A and B. First, two binary
interatomic potentials are constructed for the A-B system. Each potential produces a different
elastic constant mismatch between the two materials, but both potentials predict the same lattice
constants and cohesive energies. Details regarding computational system size, crystal orientation,
geometry, and mixed-mode loading are also described.
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7.2.1 Interatomic potential

To be consistent with the previous work [218], body-centered-cubic (bcc) materials are used to
construct the brittle interfacial fracture model. To investigate the effect of a specific material prop-
erty, an ideal interatomic potential should allow the targeted property to change while fixing other
material properties. Here we develop a bcc pair potential model that allows independent change of
lattice constants, cohesive energies, and elastic constants. Note that in the present study, this poten-
tial model is parameterized to fit different elastic constants at fixed lattice constants and cohesive
energies. It can also be used to fit different lattice constants or cohesive energies while fixing other
properties. With the pair potential model, the total energy of a computational system is expressed
as

E = ∑
i, j 6=i

φi j(ri j) (7.1)

where φi j(ri j) is the pair energy between atoms i and j separated by a distance ri j. Our pair
potential between atom species pair i j is expressed using three splined cubic functions applied
respectively in three different distance ranges:

φi j(ri j) =





a1,i j +b1,i j
(
r− r1,i j

)
+ 1

2c1,i j
(
r− r1,i j

)2 + 1
6d1,i j

(
r− r1,i j

)3 0 < r ≤ r1,i j
a2,i j +b2,i jr + c2,i jr2 +d2,i jr3 r1,i j < r ≤ r2,i j

c3,i j
(
r− r3,i j

)2 +d3,i j
(
r− r3,i j

)3 r2,i j < r ≤ r3,i j
0, r > r3,i j

(7.2)
where parameters a1,i j, b1,i j, c1,i j and d1,i j are used for the short-range; a2,i j, b2,i j, c2,i j and d2,i j are
used for the mid-range; c3,i j and d3,i jare used for the long-range; r1,i j is the junction point between
the short- and mid-ranges; r2,i j is the junction point between the mid- and long-ranges; and r3,i j is
essentially the cutoff distance of the potential. As described in Appendix G, only four parameters,
a2,i j, b2,i j, c2,i j and d2,i j, are treated as independent and other parameters are determined from the
requirement that the function be continuous and physical. Five pair functions, notated as φa, φb, φc,
φd and φe, are derived from five sets of input properties summarized in Table G1. The parameters
of these five pair functions are listed in Table G2. For a bilayer system composed of species A and
B, three pair potentials are needed to define A-A, B-B, and A-B interactions. Here we assemble
two sets of A-B binary potentials P1 and P2 using the five pair functions. The correspondence of
the A-A, B-B, and A-B interactions to the φa, φb, φc, φd and φe functions are shown in Table 7.1.

To characterize the potentials, various properties were calculated based upon the bcc crystal and
the results are included in Table 7.1. Here single crystalline elastic constants Ci j were calculated
for the bcc crystal using the approach described in references [216, 217]. Work of adhesion, woa,
was calculated the same way as our previous work [218]. It is defined as woa(i-j) = Γi + Γ j -
Γi/ j, where i = A or B, Γi is the (001) surface energy of the bcc species i, and Γi/ j is the (001)
interfacial energy between two bcc species i and j. Following the method by Zotov and Ludwig
[225], Youngs modulus E, shear modulus G, and Poissons ratio ν were calculated respectively
using the following equations:

E =
9B ·G

3B+G
(7.3)
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Table 7.1. Lattice constant a (Å), cohesive energy Ec (eV
atom−1), elastic constants C11, C12 and C44 (eV Å−3), Young’s
and shear moduli E and G (GPa), Poisson’s ratio ν, and work of
adhesion woa (J m−2), predicted by potentials P1 and P2.

p py

and j. Following the method by Zotov and Ludwig [23],
Young’s modulus E, shear modulus G, and Poisson’s ratio
m were calculated respectively using the following
equations:

E ¼ 9B " G
3Bþ G

ð3Þ

G ¼ Gvoigt þ GReuss

2
ð4Þ

m ¼ 1

2

3B& 2G
3Bþ G

ð5Þ

where GVoigt ¼ 2C0þ3C44
5 ;GReuss ¼ 10C0 "C44

6C0þ4C44
; and C0 ¼ C11&C12

2 .

From Table 1 it can be seen that P1 and P2 potentials pre-
dict the same cohesive energy of &4.45 eV atom&1 for spe-
cies A and B, the same energy of &1.78 eV atom&1 for the
A–B interaction, and the same lattice constant of 3.162 Å
for all interactions. However, P1 predicts a zero elastic
constant mismatch between materials A and B, whereas
P2 predicts a significant elastic constant mismatch.

2.2. Molecular dynamics model

The MD model of fracture was detailed previously [19],
and is briefly described here. The geometry of the system
used in our MD simulations of the crack propagation is
shown in Fig. 1. Test runs were first carried out to deter-
mine a sufficiently large system dimension so that the cohe-
sive zone law extracted is independent of the crack length
during the steady-state crack propagation stage. The crys-
tal is in the cubic orientation (i.e. x [1 0 0], y [0 1 0] and z
[0 0 1]) and is composed of 253 unit cells in the x-direction,
206 unit cells in the y-direction, and 10 unit cells in the z-
direction, for a total of 1,042,360 atoms. Periodic boundary
conditions were used in both x- and z-directions, and non-
periodic boundary conditions were applied in the y-direc-
tion. As shown in Fig. 1, the crystal is divided into six
regions. The top half of the crystal is composed of atoms
A that fall into three regions marked respectively as 3, 1
and 3. The bottom half of the crystal is composed of atoms
B that fall into other three regions marked respectively as 4,
2 and 4. Note that due to the periodic boundary condition
used in the x-direction, the regions 3 and 4 at the left side
join the corresponding regions 3 and 4 at the right. As a
result, these contiguous regions are marked by the same
numbers. Atoms that are marked in black are boundary
atoms through which tensile and shear loads were applied.

A crack in the middle of the A–B interface was created
by omitting the interactions between atoms in region 1 and
atoms in region 2 while letting all other atoms interact. For
mode I crack simulation where a tensile load normal to the
crack plane is applied, crack propagation is associated with
separation of regions 1 and 2. For mode II crack simula-
tion where a shear load parallel to the crack plane is
applied, the initial crack may be healed when region 1 is
shifted to above region 4 or region 2 is shifted to below
region 3. To overcome this problem, we initiate atom
neighbors at the start of the simulations and do not rede-
termine neighbors. This means that atoms interact only
with the neighbors that are identified at the start of the
loading. It mimics the realistic scenario that once atoms
near the crack tips break their bonds with their neighbors
in the initial crystal configuration, they are quickly contam-
inated (e.g. via oxidation) so that they lose the ability to
reform bonds with new neighbors. We emphasize that the
approach is different from our early work [19] where only
interactions between atoms across the interface were not
redetermined whereas the neighbors of all the other atoms
were recalculated as in the conventional MD. Nonetheless,
we have performed numerous tests and discovered that for
the brittle interfacial model and the specific shear loading
algorithm we used, only atoms at crack tips change their
neighbors. As a result, not recalculating atom neighbors
is a sufficiently accurate approximation. Readers are cau-
tioned that this approximation cannot be applied to study
ductile phenomena because reneighboring is essential for
modeling dislocation formation and motion—the mecha-
nisms of plastic deformation. The only failure mechanism
permitted by this approach is the nucleation of a vacancy
when a bulk atom loses a neighbor without being replaced
by a new neighbor, and the growth of such vacancies into a
void, or a crack (as simulated in our work).

During MD simulations of mode I crack propagation,
the system is uniformly stretched (by moving each atom a
distance corresponding to a uniform normal strain incre-
ment) in the y-direction each time step. Numerical time inte-
gration approaches are then used to update the atom
positions based upon interatomic potential and Newton’s
equations of motion under the condition that the y-coordi-
nates of the top and bottom horizontal layers of boundary
atoms (marked black in Fig. 1) remain fixed. Unlike displac-
ing boundary atoms alone, a uniform stretching of the sys-
tem avoids the creation of shock wave during simulations.

Table 1
Lattice constant a (Å), cohesive energy Ec (eV atom&1), elastic constants C11, C12 and C44 (eV Å&3), Young’s and shear moduli E and G (GPa), Poisson’s
ratio m, and work of adhesion woa (J m&2), predicted by potentials P1 and P2.

Pair Function a Ec C11 C12 C44 E G m woa

P1 A–A /a 3.162 &4.45 3.25 1.15 1.15 444 177 0.25 5.968
B–B /a 3.162 &4.45 3.25 1.15 1.15 444 177 0.25 5.968
A–B /d 3.162 &1.78 1.26 0.48 0.48 177 71 0.25 2.336

P2 A–A /b 3.162 &4.45 3.41 1.21 1.21 466 186 0.25 5.968
B–B /c 3.162 &4.45 1.64 0.57 0.57 222 89 0.25 6.032
A–B /e 3.162 &1.78 0.46 0.33 0.33 72 28 0.30 2.400

X.W. Zhou et al. / Acta Materialia 57 (2009) 4671–4686 4673

G =
Gvoight +GReuss

2
(7.4)

ν =
1
2

3B−2G
3B+G

(7.5)

where Gvoight = (2C′+3C44)/5, GReuss = (10C′ ·C44)/(6C′+4C44), and C′ = (C11−C12)/2.
From Table 7.1, it can be seen that P1 and P2 potentials predict the same cohesive energy of -
4.45 eV/atom for species A and B, the same energy of -1.78 eV/atom for the A-B interaction,
and the same lattice constant of 3.162 Å for all interactions. However, P1 predicts a zero elastic
constant mismatch between materials A and B whereas P2 predicts a significant elastic constant
mismatch.

7.2.2 Molecular dynamics model

The MD model of fracture was detailed previously [218], and is briefly described here. The geom-
etry of the system used in our molecular dynamics simulations of the crack propagation is shown in
Fig. 7.1. Test runs were first carried out to determine a sufficiently large system dimension so that
the cohesive zone law extracted is independent of the crack length during the steady-state crack
propagation stage. The crystal is in the cubic orientation (i.e. x [100], y [010], and z [001]) and is
composed of 253 unit cells in the x-direction, 206 unit cells in the y-direction, and 10 unit cells in
the z-direction, for a total of 1,042,360 atoms. Periodic boundary conditions were used in both x-
and z-directions, and non-periodic boundary conditions were applied in the y-direction. As shown
in Fig. 7.1, the crystal is divided into six regions. The top half of the crystal is composed of atoms
A that fall into three regions marked respectively as 3, 1, and 3. The bottom half of the crystal is
composed of atoms B that fall into other three regions marked respectively as 4, 2, and 4. Note
that due to the periodic boundary condition used in the x-direction, the regions 3 and 4 at the left
side join the corresponding regions 3 and 4 at the right. As a result, these contiguous regions are
marked by the same numbers. Atoms that are marked in black color are boundary atoms through
which tensile and shear loads were applied.

A crack in the middle of the A/B interface was created by omitting the interactions between

156



Lx ~ 80 nm

L y 
~ 

65
 n

m

L
z ~ 3.2 nm

13 3

24 4

z  [001]
y  [010]y  [010]

normal loading

normal loading

sh
ea

r l
oa

di
ng

sh
ea

r l
oa

di
ng

sh
ea

r l
oa

di
ng

sh
ea

r l
oa

di
ng

shear component

x  [100]x  [100]

Fig. 1

normal component

Y

- Y- Y

XX

- X- X

B
A

Figure 7.1. Geometry of molecular dynamics simulation

atoms in region 1 and atoms in region 2 while letting all other atoms interact. For mode I crack
simulation where a tensile load normal to the crack plane is applied, crack propagation is associated
with separation of regions 1 and 2. For mode II crack simulation where a shear load parallel to the
crack plane is applied, the initial crack may be healed when region 1 is shifted to above region 4
or region 2 is shifted to below region 3. To overcome this problem, we initiate atom neighbors at
the start of the simulations and do not redetermine neighbors. This means that atoms interact only
with the neighbors that are identified at the start of the loading. It mimics the realistic scenario
that once atoms near the crack tips break their bonds with their neighbors in the initial crystal
configuration, they are quickly contaminated (e.g. via oxidation) so that they lose the ability to
reform bonds with new neighbors. We emphasize that the approach is different from our early
work19 where only interactions between atoms across the interface were not redetermined whereas
the neighbors of all the other atoms are recalculated as in the conventional MD. Nonetheless, we
have performed numerous tests and discovered that for the brittle interfacial model and the specific
shear loading algorithm we used, only atoms at crack tips change their neighbors. As a result,
not recalculating atom neighbors is a sufficiently accurate approximation. Readers are cautioned
that this approximation cannot be applied to study ductile phenomena because reneighboring is
essential for modeling dislocation formation and motion the mechanisms of plastic deformation.
The only failure mechanism permitted by this approach is the nucleation of a vacancy when a bulk
atom loses a neighbor without being replaced by a new neighbor, and the growth of such vacancies
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into a void, or a crack (as simulated in our work).

During molecular dynamics simulations of mode I crack propagation, the system is uniformly
stretched (by moving each atom a distance corresponding to a uniform normal strain increment)
in the y-direction each time step. Numerical time integration approaches are then used to update
the atom positions based upon interatomic potential and Newtons equations of motion under the
condition that the y coordinates of the top and bottom horizontal layers of boundary atoms (marked
black in Fig. 7.1) remain fixed. Unlike displacing boundary atoms alone, a uniform stretching of
the system avoids the creation of shock wave during simulations.

During molecular dynamics simulations of mode II crack propagation, the upper and lower
halves of the vertical layer of boundary atoms (marked black in Fig. 7.1) are displaced by a small
distance in opposite directions along the x axis each time step. Newtons equations of motion are
solved to update atom positions with the constraint that the x coordinates of the vertical layer of
boundary atoms remain fixed. Mixed loading can be simulated by simultaneously applying normal
and shear displacement. In all simulations, the rates at which the boundary atoms are displaced
are determined from the simulated strain rates, which are on the order of 108 s−1, characteristic of
MD simulation techniques. Our simulations were performed using MD package LAMMPS [168]
at a constant temperature of 300 K and fixed system dimensions in the x- and z-directions.

7.3 MD results

7.3.1 Simulation loading conditions

MD runs were carried out at constant boundary displacement rates, ∆Ẋ and ∆Ẏ , in the x- and
y-directions (see Fig. 7.1). These correspond to constant engineering (global) shear and normal
strain rates, ε̇xy = 2∆Ẋ/Ly and ε̇yy = 2∆Ẏ/Ly. The mixed loading condition can be approximately
described by a loading angle, θ = arctan

(
∆Ẋ/∆Ẏ

)
, Fig. 7.1. To extract the cohesive zone law as a

function of mode-mixity, MD simulations were carried out at seven selected loading angles. The
rates of boundary displacement in the x- and y-directions, ∆Ẋ and ∆Ẏ , the corresponding shear and
normal strain rates, ε̇xy and ε̇yy, and the loading angles, θ, are shown in Table 7.2.

7.3.2 Stress strain curves and crack propagation dynamics

Selected examples were examined to characterize stress-strain curves and crack propagation dy-
namics. Average atomic stresses based on the Virial theorem [222] were used to estimate global
normal (yy) and shear (xy) stresses applied to the system. Corresponding engineering strains were
calculated from the boundary displacement in the x- and y-directions, ∆X and ∆Y . The results are
used to map the stress vs. strain curves. To reduce thermal oscillation, values of stress, displace-
ment, and strain are averaged over 10 time steps (each time step is 0.001 ps). A short averaging
time of 0.01 ps was used to retain the time dependence of the properties. While this averaging time
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Table 7.2. Boundary displacement rates ∆Ẋ and ∆Ẏ (Åps−1),
strain rates ε̇xy and ε̇yy (108 s−1), and loading angle θ(◦).

p py

During MD simulations of mode II crack propagation,
the upper and lower halves of the vertical layer of bound-
ary atoms (marked black in Fig. 1) are displaced by a small
distance in opposite directions along the x axis each time
step. Newton’s equations of motion are solved to update
atom positions with the constraint that the x coordinates
of the vertical layer of boundary atoms remain fixed.
Mixed loading can be simulated by simultaneously apply-
ing normal and shear displacement. In all simulations,
the rates at which the boundary atoms are displaced are
determined from the simulated strain rates, which are of
the order of 108 s!1, characteristic of MD simulation tech-
niques. Our simulations were performed using the MD
package LAMMPS [24] at a constant temperature of
300 K and fixed system dimensions in the x- and z-
directions.

3. MD results

3.1. Simulation loading conditions

MD runs were carried out at constant boundary dis-
placement rates, D _X and D _Y , in the x- and y-directions

(see Fig. 1). These correspond to constant engineering (glo-
bal) shear and normal strain rates, _exy ¼ 2D _X=Ly and
_eyy ¼ 2D _Y =Ly . The mixed loading condition can be approx-
imately described by a loading angle, h ¼ ArcTanðD _X=D _Y Þ
(Fig. 1). To extract the cohesive zone law as a function of
mode-mixity, MD simulations were carried out at seven
selected loading angles. The rates of boundary displace-
ment in the x- and y-directions, D _XandD _Y , the correspond-
ing shear and normal strain rates, _exy and _eyy , and the
loading angles, h, are shown in Table 2.

3.2. Stress–strain curves and crack propagation dynamics

Selected examples were examined to characterize stress–
strain curves and crack propagation dynamics. Average
atomic stresses based on the Virial theorem [25] were used
to estimate global normal (yy) and shear (xy) stresses
applied to the system. Corresponding engineering strains
were calculated from the boundary displacement in the x-
and y-directions, DX and DY. The results were used to
map the stress–strain curves. To reduce thermal oscillation,
values of stress, displacement and strain were averaged
over 10 time steps (each time step is 0.001 ps). A short aver-

Fig. 1. Geometry of the MD simulation.

Table 2
Boundary displacement rates D _Y and D _Y ðÅ ps!1Þ, strain rates _exy and _eyyð108 s!1Þ, and loading angle h(!).

MD run D _X=D _Y _exy=_eyy h

Potential P1 Potential P2 Potential P1 Potential P2

1 0.0000/0.0351 0.0000/0.0434 0.000/1.078 0.000/1.333 0.0
2 0.0098/0.0364 0.0113/0.0421 0.301/1.118 0.347/1.293 15.0
3 0.0210/0.0364 0.0237/0.0410 0.645/1.118 0.728/1.259 30.0
4 0.0279/0.0279 0.0336/0.0336 0.857/0.857 1.032/1.032 45.0
5 0.0390/0.0225 0.0441/0.0255 1.197/0.691 1.354/0.783 60.0
6 0.0510/0.0140 0.0560/0.0150 1.566/0.430 1.719/0.461 75.0
7 0.0646/0.0000 0.0630/0.0000 1.984/0.000 1.934/0.000 90.0

4674 X.W. Zhou et al. / Acta Materialia 57 (2009) 4671–4686

is small, it still helps mitigate thermal noises as the averaging is performed over many atoms. Ex-
ample of a normal stress vs. normal strain curve obtained from a pure mode I (θ = 0◦) simulation
is shown in Fig. 7.2(a), and example of a shear stress vs. shear strain curve obtained from a pure
mode II (θ = 90◦) simulation is shown in Fig. 7.2(b).
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(b) shear test (  = 90o)
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Figure 7.2. Stress and crack length as a function of strain. (a)
tensile test (θ = 0◦); and (b) shear test (θ = 90◦).

Fig. 7.2(a) indicates that during the tensile test, the normal stress initially linearly increases as
the normal strain is increased, corresponding to an elastic deformation of the system. To examine
the effect of the presence of the crack, a similar normal stress vs. normal strain curve obtained
from the P1 potential during a mode I loading of a crack-free sample is included in Fig. 7.2(a).
The overall tensile elastic modulus of this crack-free sample is seen from Fig. 7.2(a) to be about
520 GPa. For a bilayer system with two equal-sized materials A and B, the overall elastic modulus
can be calculated as M = 2MAMB/(MA +MB), where M can be tensile (e.g., C11, E etc.) or shear
(e.g., C44, G) modulus and the subscripts A and B refer to the materials. Using the C11 values listed
in Table 7.1, we obtain an overall tensile elastic modulus of the crack-free, P1 prescribed sample
as 3.25 eV/Å3 = 520 GPa, which agrees well with Fig. 7.2(a). Fig. 7.2(a) clearly shows that the
introduction of the crack significantly changes the overall compliance of the system. However,
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these changes appear to be well correlated. For example, Fig. 7.2(a) shows that the stiffness of the
cracked system using potential P1 is about 45% higher than that using P2. Interestingly, Table 7.1
indicates that the average C11 value of the bilayer is also about 45% higher for potential P1 than
for P2.

After the normal stress reaches the maximum, it starts to decrease towards zero as the strain
further increases. As will be discussed below, this decrease in stress was found to correlate well
with the propagation of the crack. It can be seen that the maximum stress is about σmax ≈ 4.7 GPa
for potential P1 and about σmax ≈ 4.1 GPa for potential P2, and the critical strain at which the
maximum stress occurs is about εc ≈ 0.0122 for potential P1 and εc ≈ 0.0154 for potential P2.
The stored elastic energy prior to the fracture, defined as E f = σmax · εc/2, was calculated to be
0.03 GJ m−3 for both potentials. Although P1 potential predicts a higher maximum stress, it also
predicts a lower critical strain. As a result, both P1 and P2 potentials predict about the same stored
energy.

According to Griffith theory [64], the critical stress of fracture of brittle materials can be ex-
pressed as

σmax =
√

E ·woa
π ·ah

(7.6)

where ah is half of the crack length and woa is work of adhesion. Using the Youngs modulus
evaluated from Fig. 2 and an initial crack length of 278 Å, Eq. (7.6) predicts a fracture stress of
σmax ≈ 4.6 GPa for potential P1 and σmax ≈ 3.9 GPa for potential P2. According to linear elastic
equation, these stresses give a critical strain of εc ≈ 0.0118 for potential P1 and εc ≈ 0.0144 for
potential P2. It can be seen that the results obtained from atomistic simulations agree quite well
with Griffith theory.

A similar trend can be found in Figs. 7.2(b) for the shear test. Essentially an initial linear
increase in the shear stress characteristic of the elastic deformation occurs as the shear strain begins
to be applied. The overall shear modulus is seen to be about 128 GPa for potential P1 and about
87 GPa for P2, consistent with the C44 values listed in Table 7.1 as they both predict that the shear
modulus is about 45% higher for potential P1 than for P2. Once the shear stress linearly increases
to the maximum value, it starts to decrease as the shear strain further increases, signifying the
fracture. The maximum stress is about σmax ≈ 2.1 GPa for potential P1 and about σmax ≈ 1.5 GPa
for potential P2, and the critical strain at which the maximum stress occurs appears to be about
εc ≈ 0.0192 for both potentials. The higher maximum stress for P1 potential than for P2 potential
is consistent with the tensile test and Griffiths theory described above. It should be noted that our
shear loading is applied through the displacement of the vertical layer of boundary atoms as shown
in Fig. 7.1. Such an approach can cause a stress concentration at the crack tip, and is necessary in
order to isolate the crack phenomenon from slip. While the way in which the stress is introduced
does not affect the local traction vs. crack opening displacement relation, the calculated global
shear strain differs from the conventional definition. As a result, Fig. 7.2(b) should not be used to
estimate the elastic energy prior to the fracture.

To examine the correlation between the observed stress vs. strain curves and fracture, the dy-
namic variation of crack length was monitored during simulations. It was recognized that atoms at
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the cracked surface have significantly higher energy than those in the bulk. A threshold energy was
then used to determine the crack length. Here we chose an atomic plane of “A” atoms immediately
above the A/B interface and divided it evenly into ∼253 regions along the x-direction. An aver-
age potential energy was calculated over all atoms in each of the regions. If this average energy
was larger than the threshold energy, the corresponding region was counted as cracked. The crack
length was calculated as the sum of the width of all cracked regions. To reduce the statistical error
due to dynamics, each crack length was averaged over 10 time steps that are centered at the time of
crack length output. The results for crack length as a function of strain are included in Fig. 7.2 for
both tensile and shear tests. It can be seen that crack did not propagate during the linear elastic de-
formation stage. When the stress reached the maximum value, the crack propagation is also seen to
begin. A long steady-state crack propagation period is observed for the tensile case. Approximate
steady-state (i.e. near-linear) crack propagation is observed for the shear case. We extract local
traction and crack opening displacement data during these steady-state crack propagation periods
to construct accurate cohesive zone laws.

7.3.3 Local traction and crack opening displacement

To quantify the cohesive zone law, stresses and displacements at local positions are analyzed in
detail. As shown in Fig. 7.3, a horizontal layer that is centered at the crack (interface) plane but
only has a height of δy∼±10 Å was used for the analysis. The use of a small δy∼±10 Å has been

y

x

y

yx

Fig. 3

material B

material A

Figure 7.3. Schematic of regions used to calculate local traction
and local displacement.

shown to represent well the local traction and displacement measurements [218]. The horizontal
layer was further divided into regions with width δx. In this work, we used a constant δx of about
9.486 Å. This includes three {100} planes, dividing the entire width of the system into about 84
regions. Normal and shear tractions at a local position (x coordinate) defined by a region were
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calculated as the average atomic stresses of all atoms in that region, and the normal and shear
components of the crack opening displacement, ∆x and ∆y, were calculated as the corresponding
components of the average atom displacement in the upper half of the region with respect to that
of the lower half. The total magnitude of the crack opening is defined as ∆r =

√
∆x2 +∆y2. Stress

and crack opening are calculated every 0.45 ps, which provides sufficient data for the analysis.
Again to reduce dynamic statistics, stress and crack opening are averaged over 10 time steps that
are centered at the time of output.

A large number of stress vs. crack opening data points (measured at different locations and
times) are obtained during the steady-state crack propagation of each MD run. These data points
are sorted according to the opening displacement. They are then binned with a bin size of 0.2 Å.
The average traction and opening displacement associated with each bin were calculated using all
the points in the bin. This effectively reduces the scatter of the data. Fig. 7.4 shows some examples
of the traction as a function of displacement obtained using such an approach from both potentials,
where Figs. 7.4(a) and 7.4(b) are the results of normal traction vs. displacement at two remote
loading angles of θ = 0◦ and θ = 60◦, and Figs. 7.4(c) and 7.4(d) are the results of shear traction
vs. displacement at two remote loading angles of θ = 45◦ and θ = 90◦.

Fig. 7.4 generally agrees well with the previous results [218]. It indicates that the stresses
initially increased as the crack opening distance was increased until they reached a peak value. The
stresses then decreased as the crack opening was further increased. For near normal tests such as
Figs. 7.4(a) and 7.4(c), the stresses directly decayed to zero. However, when the tests are associated
with a strong shear component, such as Figs. 7.4(b) and 7.4(d), a second stress peak occurred
before the stress decayed to zero. Comparison of the stress vs. displacement curves between tensile
(θ = 0◦) and shear (θ = 90◦) tests, Figs. 7.4(a) and 7.4(d), further indicates that the shear stress
during shear loading has a considerably longer decaying tail than the normal stress during tensile
loading whereas the peak stress is only slightly less. This suggests that shear fracture may be
associated with a higher fracture toughness. Fig. 7.4 also shows that at least when the loading
contains a high shear component [Fig. 7.4(d)], potential P1 predicts a higher shear stress than
potential P2. Because the displacement is seen to be about the same, this suggests that potential
P2 has a lower toughness when the loading is primary shear.

There is a plausible explanation for the occurrence of double peaks under near-shear loading
conditions. Fig. 7.5(a) shows that during a tensile test along the vertical axis, atom B is pulled
away from atom A until it moves to position B′. It can be seen that the bond between atoms A and
B is constantly stretched until it is broken. Contrarily, Fig. 7.5(b) shows that during a near-shear
loading test, atom B moves toward position B′ through an intermediate position B′′. It can be seen
that during this process, the bond between A and B can be shortened initially before it is stretched.
Some bonds that undergo initial shortening before being stretched contribute to the second peak
observed in Fig. 7.4.
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Fig. 4

(a) normal stress at  = 0o (b) normal stress at  = 60o
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Figure 7.4. Traction as a function of displacement obtained from
MD simulations. (a) normal stress at θ = 0◦; (b) normal stress at
θ = 60◦; (c) shear stress at θ = 45◦; and (d) shear stress at θ = 90◦.
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Fig. 5

(a) bond stretching at  = 0o (b) bond shortening-and-stretching at  > 0o
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Figure 7.5. Change of bond length during test. (a) bond stretch-
ing during tensile loading; and (b) bond shortening-and-stretching
during mixed mode loading.

7.4 Analytical cohesive zone law

The utility of the traction-displacement-loading angle data revealed from MD simulations can be
greatly increased if these data can be described by analytical equations. Previous work has devel-
oped an algorithm to derive such equations [218]. Based upon a larger amount of MD data created
in the present work, we seek to improve the analytical functions and their associated parameters
over the previous work so that the analytical equations better reflect the MD data.

Detailed derivation of the analytical functions for traction-displacement-mixity relations is pre-
sented in Appendix H. The final traction as a function of displacement and mixity is described by
Eq. (H.3). Since separate equations are used to describe normal and shear stresses and we have two
potentials, four sets of parameters are needed. All four sets of parameters are given in Table H1.

To test the accuracy of the analytical equation, traction as a function of displacement was
calculated using Eq. (H.3) for both normal and shear stresses and both potentials at a variety of
loading angles, and the results are compared with the data obtained from the MD simulations in
Fig. 7.6. It can be seen that the analytical prediction agrees very well with the MD data. In addition,
the present analytical equation captures the second peak when the loading angles are high.

With accurate analytical equations for tractions as functions of displacement and mixity, three
dimensional normal and shear stresses as functions of local normal (y) and shear (x) components
of the crack opening displacement can be calculated. Results for normal and shear stresses are
shown in Figs. 7.7(a) and 7.7(b) respectively, where the left column was obtained from potential
P1 and the right column was obtained from P2. Fig. 7.7 gives insights on how local mixity affects
traction. It can be seen that the trends predicted by both potentials are quite similar. When the local
displacement is dominated by the shear component ∆x (i.e. ∆y = 0), the normal stress is negligible
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Fig. 6
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(c) normal stress at  = 74.4o
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(g) shear stress at  = 83.9o
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(e) shear stress at  = 45.0o
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(b) normal stress at  = 31.5o
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(d) normal stress at  = 72.8o
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(h) shear stress at  = 83.8o

1510 200

7.5

5.0

-5.0

10.0

12.5

15.0

sh
ea

r s
tre

ss
 

xy
 (G

Pa
)

-2.5

0.0

5

2.5

(f) shear stress at  = 44.6o
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Figure 7.6. Comparison of traction as a function of displace-
ment between MD data and fitted curves. (a) normal stress at
ψ∼ 29.9◦ using potential P1; (b) normal stress at ψ∼ 31.5◦ using
potential P2; (c) normal stress at ψ∼ 74.4◦ using potential P1; (d)
normal stress at ψ ∼ 72.8◦ using potential P2; (e) shear stress at
ψ ∼ 45.0◦ using potential P1; (f) shear stress at ψ ∼ 44.6◦ using
potential P2; (g) shear stress at ψ ∼ 83.9◦ using potential P1; and
(h) shear stress at ψ ∼ 83.8◦ using potential P2. ψ is defined as
arcsin

(√
∆x2/(∆x2 +∆y2)
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Figure 7.7. Stress as a function of crack opening displacement
components ∆x and ∆y. (a) normal stress; and (b) shear stress.
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and the shear stress is at maximum. On the other hand, when the local displacement is dominated
by the normal component ∆y (∆x = 0), the shear stress is negligible and the normal stress is at
maximum. Fig. 7.7 can also be used to identify the critical mixity angle at which the second stress
peak starts to occur. The shear stress predicted by potential P1, for example, appears to introduce
the second peak at a smaller loading angle than that by potential P2.

7.5 Work of separation

Fracture toughness can be measured by the work of separation defined as follows:

w = w(ψ) =
Z

∞

0
σyy ·d (∆y)+

Z
∞

0
σxy ·d (∆x) (7.7)

By integrating Eq. (7.7) at constant loading angle ψ, the work of separation was calculated as a
function of ψ. The results of this calculation are shown in Fig. 7.8. As has been shown previously
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Figure 7.8. Work of separation as a function of loading angle ψ.

[218], Fig. 7.8 indicates that work of separation due to the normal stress is high when the loading
angle is low, and it decreases to zero as the loading changes from tensile (ψ = 0◦) to shear (ψ =
90◦). The work of separation due to the shear stress is high when the loading angle is high, and
it decreases to zero when the loading changes from shear to normal. The total work of separation
composed of both normal and shear stress contributions exhibits some oscillations in Fig. 7.8.
While these may be an artifact of the error of the fitted functions, the general trend is clear that the
total work of separation increases as the loading becomes increasingly dominated by shear. Most
interestingly, Fig. 7.8 clearly shows that potential P1 predicts a higher work of separation than
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potential P2 at least for shear loading condition. This means that compared with an interface where
the two materials have identical elastic constants, fracture is more likely to occur at the interface
during a shear loading when the elastic modulus of one of the materials is reduced. Finally, the
total work of separation roughly stays between 3.21 J m−2 and 4.84 J m−2 for potential P1 and
between 2.92 J m−2 and 4.15 J m−2 for potential P2. The work of adhesion listed in Table 7.1 is
in the 2.33 - 2.40 J m−2 range for both potentials. As expected, work of separation is higher than
work of adhesion, and can vary as a function of elastic properties even work of adhesion remains
fixed.

7.6 Discussion

The results presented above indicated that when the elastic constant of one material is decreased
while the elastic constant of the other material is kept about the same or slightly increased, the work
of separation between the two materials clearly decreases under the near-shear loading condition.
This observation is further explored.

It is possible to calculate traction and crack opening displacement separately for materials A
and B. For instance, tractions for A and B surfaces can be defined as the average atomic stresses for
the lower and upper halves of the local unit shown in Fig. 7.3. Similarly, opening displacements
for A and B surfaces can be derived from the average atomic displacement for the lower and
upper halves of the local unit with respect to a reference point far away from the crack. Spatial
distributions of such decomposed shear traction and shear displacement as well as the overall shear
traction and shear displacement were calculated for shear tests using both potentials, and the results
are shown in Fig. 7.9, where Fig. 7.9(a) is at a shear strain of 0.023 and Fig.7.9(b) is at a shear
strain of 0.026. Numerous observations can be made from Fig. 7.9: (i) The traction distributions
are consistent with classic continuum theories, namely, traction decays to zero (oscillates around
zero due to thermal noise) for completely fractured surface sections where crack openings are large,
and traction is largest near the crack tips and drops off away from the crack tips. (ii) Individual
decomposed tractions and overall traction are about the same. In addition, the traction distributions
near the crack tips do not have significant difference between the two strains (or equivalently, crack
displacements), consistent with the steady-state condition achieved in the simulations. (iii) The
total cracking opening displacement equals the sum of the displacements from surfaces A and B.
For potential P1 where both materials have the same elastic modulus, displacements of surfaces A
and B are equal within statistical errors. For potential P2 where the two materials have different
elastic modulus, the material with the higher elastic modulus displaced significantly less than the
one with the lower elastic modulus. (iv) Traction distributions near the crack tips are noticeably
lower for potential P2 than potential P1, whereas the total displacements are about the same. It is
therefore likely that the crack propagation was determined by the displacement during the shear
loading. Because at a given displacement, a reduction in elastic modulus causes a reduction in
stress. This reduced traction then resulted in a lower work of separation observed for the elastically
mismatched system.

For comparison, spatial distributions of normal traction and normal displacement were also
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Figure 7.9. Spatial distributions of shear traction and shear open-
ing displacement obtained from shear tests with both potentials.
(a) at shear strain 0.023; and (b) at shear strain 0.026.
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calculated for tensile tests using both potentials. Selected results are shown in Fig. 7.10 where
Fig. 7.10(a) is obtained from potential P1 at a tensile strain of 0.013, and Fig. 7.10(b) is from
potential P2 at a tensile strain of 0.017. These strains were chosen so that the crack lengths are
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(b) tensile test at yy = 0.017 with potential P2

(b)

Figure 7.10. Spatial distributions of normal traction and normal
opening displacement obtained from tensile tests with both poten-
tials. (a) at tensile strain 0.013, potential P1; and (b) at tensile
strain 0.017, potential P2.

about the same (around 400 Å) for Figs. 7.10(a) and 7.10(b). While the trend is very similar to the
shear cases, Fig. 7.10 indicates that the traction distributions near the crack tips are very similar for
the two potentials. As a result, the work of separation predicted by potential P2 is not significantly
lower than that predicted by potential P1 during the tensile loading condition.

7.7 Conclusions

Molecular dynamics simulations have been carried out to study interfacial crack growth between
two brittle materials with zero and large elastic constant mismatch at fixed lattice constants and
cohesive energies. The dependence of local traction (both normal and shear stresses) and local
crack opening displacement data was fully determined for a variety of remote loading angles.
Analytical fits of these results are also presented. Work of separation was calculated as a function
of mixity using these fits. The following conclusions were obtained:

1. The newly developed analytical fits of the calculated dependency of tractions on displace-
ment and mixity accurately represent the MD data.

2. Normal traction vs. displacement relationships have a higher peak stress than the shear trac-
tion vs. displacement relationships, but they have a shorter tail.

3. Traction vs. displacement curves have a second peak under near-shear loading conditions
that is thought to be due to the bond shortening-and-stretching mechanism.
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4. As loading angle increases, the normal stress contribution to the work of separation decreases
whereas shear stress contribution increases. The total work of separation remains between
2.92 N m−1 and 4.84 N m−1 and appears to be relatively high under the near-shear conditions
compared with that under the near-normal conditions.

5. Under the conditions that materials have the same lattice constant, the same cohesive energy,
the same surface energy or work of adhesion, and that the fracture occurs at the interface, the
work of separation was found to vary as a function of elastic constant mismatch between the
two materials. In particular, a decrease in the elastic constant of one material would result
in a decrease in the work of separation especially under the shear loading condition. This
was found to originate from a reduction in the traction near the crack tips during shearing
loading.

7.8 Appendix G: Potential parameterization

In our pairwise potential functions, we constrain the radial parameters so that r1 is shorter than
the nearest neighbor distances of both bcc and face-centered-cubic (fcc) crystals, r2 is longer than
the second nearest neighbor distance of the bcc structure and the first nearest neighbor distance
of the fcc structure, and r3 is shorter than the third nearest neighbor distance of the bcc structure
and the second nearest neighbor distance of the fcc structure. With these constraints, the model
is essentially a second-nearest neighbor model for bcc and a first-nearest neighbor model for fcc,
and the bulk properties are dependent only upon the mid-range function. The short- and long-range
functions, therefore, are used for extrapolation purposes and can be determined after the mid-range
function is fitted to material properties.

All pair functions, including those between similar species and those between dissimilar species,
are parameterized to fit the properties of elemental bcc and fcc crystals [218]. The use of elemen-
tal structures to approximate interaction between dissimilar species greatly simplifies the problem
and yet enables the characteristics of the interaction to be continuously adjusted. In this work, the
mid-range function is fitted to four input properties: (i) bcc lattice constant, a; (ii) bcc cohesive
energy, Ec; (iii) bcc bulk modulus, B; and (iv) relative cohesive energy difference between fcc and
bcc crystals, ∆E

(
= E f cc

c −Ec

)
. Here the superscript “bcc” is omitted for the bcc properties. With

the constraint ∆E > 0, we can ensure a stable bcc structure.

Using Eqs. (7.1) and (7.2) and the constraints described above, the energy (per atom) of the
bcc structure as a function of its nearest neighbor distance r can be expressed as E(r) = 7a2 +
2
(
2+
√

3
)
· b2 · r + 8c2 · r2 +

(
4+ 8

√
3

3

)
d2 · r3. The condition to fit the cohesive energy can then

be expressed as

Ec = E(re) (G.1)

where re is the equilibrium nearest neighbor distance in the bcc structure. The condition to fit the
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lattice constant is equivalent to fit a zero pressure P at r = re, which can be written as

P =−dE(r)
dΩ

=−
√

3
4r2

e

dE(r)
dr

∣∣∣∣
r=re

(G.2)

where Ω is atomic volume. The condition to fit the bulk modulus B is essentially the definition of
bulk modulus:

B = Ω
d2E(r)

dΩ2

∣∣∣∣
r=re

=
√

3
12r2

e

d2E(r)
dr2

∣∣∣∣
r=re

(G.3)

Again using Eqs. (7.1) and (7.2) and the constraints, the energy of the fcc structure as a function
of its nearest neighbor distance r can be expressed as E f cc(r) = 6

(
a2 +b2 · r + c2 · r2 +d2 · r3).

We do not have an input value of the (local) minimum energy nearest neighbor distance of the fcc
structure, r f cc

0 . As a result, r f cc
0 is solved from the minimum energy condition dE f cc(r)

dr

∣∣∣
r=r f cc

0

= 0.

The condition to fit the energy difference can then be expressed as

∆E = E f cc(r f cc
0 )−Ec (G.4)

Eqs. (G.1)-(G.4) provide four conditions to fit the four model parameters, a2, b2, c2 and d2. How-
ever, these conditions alone do not necessarily yield physically meaningful parameters. A physical
pair function is repulsive at a short distance, reaches a minimum at an intermediate positive dis-
tance, and then smoothly decays to zero at the cutoff distance. Our analysis indicated that these
conditions can be satisfied by the following constraints:

a2 > 0,b2 < 0,c2 > 0,d2 < 0,−3d2 · r3rd > c2 >−3d2 · r2nd (G.5)

where r2nd and r3rd are the second and the third nearest neighbor distances of the bcc structure.

An objective function, is defined as the sum of the weighted square deviation of Eqs. (G.1)-
(G.4). Subject to the constraining conditions, Eq. (G.5), the fitting was carried out to minimize the
objective function. Once the parameters of the mid-range function are known, the junction points
can be chosen through visual judgment of the pair potential curves. The two parameters (c3,d3) of
the long-range function are determined by matching the value and slope of the mid- and the long-
range functions at r2. The three parameters (a1,b1,c1) of the short-range function are determined
by matching the value, slope, and second derivative of the short- and the mid-range functions at
r1. This leaves the parameter d1 undetermined. We arbitrarily chose d1 to be a negative number
of -150. It does not affect the equilibrium properties, but can be used to adjust the short-range
repulsion.

With this process, we parameterized five pair potential functions according to five different sets
of input properties shown in Table G1. These five pair functions are notated as φa, φb, φc, φd and
φe, and their parameters are listed in Table G2. These functions exactly reproduce the targeted
properties. The curves of the five functions are shown in Fig. 7.1(a). The curves for the energy of
the bcc structure as a function of the nearest neighbor distance predicted by the five functions are
shown in Fig. 7.1(b). Both pair function and bcc energy curves are seen to be fairly smooth.
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Table G1. Targeted lattice constant a (Å), cohesive energy Ec (eV
atom−1), bulk modulus B, and structure energy difference ∆E (eV
atom−1) for five pair energy functions φa, φb, φc, φd and φe.

p py

tion points can be chosen through visual judgment of the
pair potential curves. The two parameters (c3, d3) of the
long-range function are determined by matching the value
and slope of the mid- and the long-range functions at r2.
The three parameters (a1, b1, c1) of the short-range function
are determined by matching the value, slope and second
derivative of the short- and the mid-range functions at r1.
This leaves the parameter d1 undetermined. We arbitrarily
chose d1 to be a negative number of !150. This does not
affect the equilibrium properties, but can be used to adjust
the short-range repulsion.

With this process, we parameterized five pair potential
functions according to five different sets of input properties
shown in Table A1. These five pair functions are notated as
/a, /b, /c, /d and /e, and their parameters are listed in
Table A2. These functions exactly reproduce the targeted
properties. The curves of the five functions are shown in
Fig. A1. The curves for the energy of the bcc structure as
a function of the nearest neighbor distance predicted by
the five functions are shown in Fig. A2. Both pair function
and bcc energy curves are seen to be fairly smooth.

Appendix B. Analytical formulation of traction–
displacement–mixity relation

In this work, we have carried out seven MD simu-
lations corresponding to seven remote loading angles

h ¼ ArcTanðD _X=D _Y Þ = 0!, 15!, 30!, 45!, 60!, 75! and
90!. We can also define a local loading angle

w ¼ ArcSin
ffiffiffiffiffiffiffiffiffiffiffiffiffi

Dx2
Dx2þDy2

q" #
¼ ArcTanðDx=DyÞ, where Dx and

Dy are the shear and normal opening displacements mea-
sured within the volume unit used to calculate local prop-
erties. Alternatively, it is convenient to use a unitless

local mode-mixity parameter m ¼ sinw ¼
ffiffiffiffiffiffiffiffiffiffiffi
Dx2

D2þDy2

q
. During

the steady-state crack propagation, the points of the x-
and y-components of the crack opening displacement,
(Dx, Dy), were found to roughly fall on a straight line in
each of these MD simulations. The MD run can therefore
be characterized by an average ‘‘measured” mode-mixity

angle, !w ¼ Arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffi

Dx2
Dx2þDy2

q$ %
, or mixity parameter,

!m & sin!w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

Dx2
Dx2þDy2

q
, where

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2

Dx2þDy2

q
is the average

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2

Dx2þDy2

q
value calculated from all the (Dx, Dy) points

obtained during the steady-state crack propagation in an
MD run. Values of h and !w are not exactly equal, but they
are close. We found that for h = 0!, 15!, 30!, 45!, 60!, 75!

Table A1
Targeted lattice constant a (Å), cohesive energy Ec (eV atom!1), bulk
modulus B, and structure energy difference DE (eV atom!1) for five pair
energy functions /a, /b, /c, /d and /e.

Pair functions a Ec B DE

/a 3.162 !4.45 1.85 0.053
/b 3.162 !4.45 1.94 0.023
/c 3.162 !4.45 0.93 0.344
/d 3.162 !1.78 0.74 0.020
/e 3.162 !1.78 0.37 0.127

Table A2
Parameters for the five pair functions /a, /b, /c, /d and /e.

Short-range a1,ij (eV) b1,ij (eV Å!1) c1,ij (eV Å!2) d1,ij (eV Å!3) r1,ij (Å)

/a !0.21656 !2.40149 6.10379 !150 2.46454
/b !0.19531 !2.52481 6.42549 !150 2.46454
/c !0.42714 !1.18974 2.99591 !150 2.46454
/d !0.08249 !1.00621 2.67350 !150 2.46454
/e !0.15169 !0.68749 2.27443 !150 2.46454

Mid-range a2,ij (eV) b2,ij (eV Å!1) c2,ij (eV Å!2) d2,ij (eV Å!3) r2,ij (Å)

/a 33.05711 !28.178498 7.407284 !0.5890754 3.34511
/b 34.88508 !29.734689 7.827824 !0.6241984 3.32580
/c 15.72496 !13.590189 3.533603 !0.2753255 3.35507
/d 15.23574 !13.339492 3.667550 !0.3152450 3.34357
/e 15.62658 !15.028706 4.681823 !0.4794156 3.34180

Long-range – – c3,ij (eV Å!2) d3,ij (eV Å!3) r3,ij (Å)

/a – – !0.00882 1.13265 4.02937
/b – – !0.03408 1.05933 4.02917
/c – – !2.02171 !1.39366 4.03080
/d – – !0.06216 0.38287 4.02207
/e – – !1.22058 !1.12393 3.97111
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Table G2. Parameters for the five pair functions φa, φb, φc, φd
and φe.
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tion points can be chosen through visual judgment of the
pair potential curves. The two parameters (c3, d3) of the
long-range function are determined by matching the value
and slope of the mid- and the long-range functions at r2.
The three parameters (a1, b1, c1) of the short-range function
are determined by matching the value, slope and second
derivative of the short- and the mid-range functions at r1.
This leaves the parameter d1 undetermined. We arbitrarily
chose d1 to be a negative number of !150. This does not
affect the equilibrium properties, but can be used to adjust
the short-range repulsion.

With this process, we parameterized five pair potential
functions according to five different sets of input properties
shown in Table A1. These five pair functions are notated as
/a, /b, /c, /d and /e, and their parameters are listed in
Table A2. These functions exactly reproduce the targeted
properties. The curves of the five functions are shown in
Fig. A1. The curves for the energy of the bcc structure as
a function of the nearest neighbor distance predicted by
the five functions are shown in Fig. A2. Both pair function
and bcc energy curves are seen to be fairly smooth.
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. During

the steady-state crack propagation, the points of the x-
and y-components of the crack opening displacement,
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obtained during the steady-state crack propagation in an
MD run. Values of h and !w are not exactly equal, but they
are close. We found that for h = 0!, 15!, 30!, 45!, 60!, 75!

Table A1
Targeted lattice constant a (Å), cohesive energy Ec (eV atom!1), bulk
modulus B, and structure energy difference DE (eV atom!1) for five pair
energy functions /a, /b, /c, /d and /e.

Pair functions a Ec B DE

/a 3.162 !4.45 1.85 0.053
/b 3.162 !4.45 1.94 0.023
/c 3.162 !4.45 0.93 0.344
/d 3.162 !1.78 0.74 0.020
/e 3.162 !1.78 0.37 0.127

Table A2
Parameters for the five pair functions /a, /b, /c, /d and /e.

Short-range a1,ij (eV) b1,ij (eV Å!1) c1,ij (eV Å!2) d1,ij (eV Å!3) r1,ij (Å)

/a !0.21656 !2.40149 6.10379 !150 2.46454
/b !0.19531 !2.52481 6.42549 !150 2.46454
/c !0.42714 !1.18974 2.99591 !150 2.46454
/d !0.08249 !1.00621 2.67350 !150 2.46454
/e !0.15169 !0.68749 2.27443 !150 2.46454

Mid-range a2,ij (eV) b2,ij (eV Å!1) c2,ij (eV Å!2) d2,ij (eV Å!3) r2,ij (Å)

/a 33.05711 !28.178498 7.407284 !0.5890754 3.34511
/b 34.88508 !29.734689 7.827824 !0.6241984 3.32580
/c 15.72496 !13.590189 3.533603 !0.2753255 3.35507
/d 15.23574 !13.339492 3.667550 !0.3152450 3.34357
/e 15.62658 !15.028706 4.681823 !0.4794156 3.34180

Long-range – – c3,ij (eV Å!2) d3,ij (eV Å!3) r3,ij (Å)

/a – – !0.00882 1.13265 4.02937
/b – – !0.03408 1.05933 4.02917
/c – – !2.02171 !1.39366 4.03080
/d – – !0.06216 0.38287 4.02207
/e – – !1.22058 !1.12393 3.97111
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Figure G1. (a) Pair energy as a function of atomic spacing. (b)
bcc cohesive energy as a function of the nearest neighbor distance.

7.9 Appendix H: Analytical formulation of traction-displacement-
mixity relation

In this work, we have carried out seven MD simulations corresponding to seven remote load-
ing angles θ = arctan

(
∆Ẋ/∆Ẏ

)
= 0◦, 15◦, 30◦, 45◦, 60◦, 75◦ and 90◦. We can also define

a local loading angle ψ = arcsin
(√

∆x2/(∆x2 +∆y2)
)

= arctan(∆x/∆y), where ∆x and ∆y are
the shear and normal opening displacements measured within the volume unit used to calculate
local properties. Alternatively, it is convenient to use a unitless local mode mixity parameter
m = sin(ψ) =

√
∆x2/(∆x2 +∆y2). During the steady-state crack propagation, the points of the x

and y components of the crack opening displacement, (∆x, ∆y), were found to roughly fall on a
straight line in each of these MD simulations. The MD run can therefore be characterized by an
average “measured” mode mixity angle, ψ = arcsin

(√
∆x2/(∆x2 +∆y2)

)
, or mixity parameter,

m ≈ sin(ψ) =
√

∆x2/(∆x2 +∆y2), where
√

∆x2/(∆x2 +∆y2) is the average
√

∆x2/(∆x2 +∆y2)
value calculated from all the (∆x, ∆y) points obtained during the steady-state crack propagation in
an MD run. Values of θ and ψ are not exactly equal, but they are close. We found that for θ = 0◦,
15◦, 30◦, 45◦, 60◦, 75◦ and 90◦, ψ approximately equals 5.5◦, 15.8◦, 29.9◦, 45.0◦, 59.9◦, 74.4◦ and
83.9◦ for the simulations using potential P1, and 5.4◦, 16.0◦, 31.5◦, 44.6◦, 58.5◦, 72.8◦ and 83.8◦

for the simulations using potential P2.

Our purpose is to derive separate analytical functions that relate respectively the normal and
shear components of local traction to local crack opening displacement and local mode mixity (m).
Our approach involves two steps: (i) derive independent normal and shear stresses as functions of
displacement at a fixed mixity (m≈ m) for each of the MD runs; and (ii) consolidate the resultant
array of traction vs. displacement functions through the dependence of the function parameters
upon mixity.
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Examination of results from individual MD runs indicates that regardless of mixity, the stress
(either normal or shear) always initially increases to a peak when the magnitude of the crack
opening, ∆r =

√
∆x2 +∆y2, increases from zero. Stress always decays to zero when the opening

∆r becomes large. The features of all traction vs. displacement relations appear to be sufficiently
captured by four quantities: (i) the peak stress σp; (ii) the displacement ∆rp at which the peak stress
occurs; (iii) the critical displacement ∆rc above which stress is negligible; and (iv) relative decay
rates before and after the peak stress. We propose the following function F(α,β,σp,∆rp,∆rc,∆r)
that can capture all these features:

F(α,β,σp,∆rp,∆rc,∆r) =
∆rβ−α

p ββ ·σp ·∆rα

[∆rp · (β−α)+α ·∆r]β
· fc(∆rp,∆rc,∆r) (H.1)

with

fc(∆rp,∆rc,∆r) =
1
2
· erfc

[
ζp +

ζc−ζp

∆rc−∆rp
· (∆r−∆rp)

]
(H.2)

where fc(∆rp,∆rc,∆r) is a function defining the critical displacement ∆rc, and the known parame-
ters ζp =−1.64498 and ζc = 1.45222 were solved from erfc [ζp]/2 = 0.99 and erfc [ζc]/2 = 0.02
respectively. It can be seen that when ∆r is less than ∆rp, fc(∆rp,∆rc,∆r) is constantly close to
one and therefore does not contribute to the value defined by Eq. (H.1). However, when ∆r is close
to ∆rc, fc(∆rp,∆rc,∆r) decays to near zero and therefore effectively enables Eq. (H.1) to become
negligible at ∼ ∆rc. Once α,β,σp,∆rp,∆rc are known, Eq. (H.1) is a function of displacement
∆r. An advantage of Eq. (H.1) is that the parameters σp, ∆rp, and ∆rc are actually the physical
quantities described above, and parameters α, β are two additional parameters that allow control
of the decaying rate around the stress peak.

To capture the double peak phenomenon, we superimpose Eq. (H.2) with another similar func-
tion that is shifted in ∆r. The resulting general traction function T (can be normal σ and shear τ

stress) is expressed as:

T (α,β,σp,∆rp,∆rc,σp2,∆rp2,∆rc2,∆rs,∆r)
=F(α,β,σp,∆rp,∆rc,∆r)+F(α,β,σp2,∆rp2,∆rc2,∆r−∆rs) ·δ(∆r−∆rs)

(H.3)

where δ(x) is a Heaviside step function. Eq. (H.3) involves nine parameters α, β, σp, ∆rp, ∆rc,
σp2, ∆rp2, ∆rc2 and ∆rs The additional parameters σp2, ∆rp2, ∆rc2, which have similar meaning
to σp, ∆rp, ∆rc, are used to define the second peak. The parameter ∆rs is essentially the shifted
distance between the two F functions.

Eq. (H.3) was parameterized against the data obtained at fixed mixity from each MD run (see,
for example, Fig. 7.4). Examination of our fitted parameters at the seven MD runs with different
mixity values indicated that there are well-defined trends between these parameters and m. This
is not surprising because the nine parameters α, β, σp, ∆rp, ∆rc, σp2, ∆rp2, ∆rc2 and ∆rs are
all physical quantities rather than arbitrary parameters used to assist the fitting. Incorporation of
the mixity dependence can therefore be achieved by identifying analytical equations of these nine
parameters as a function of m. We found that σp and ∆rp can be well described by the polynomial
function ∑

4
i=0 ciṁi, σp2 and ∆rs can be well described by another function c0 ·mc1 · (1−m)c2 + c3,

and all the other parameters can be treated as constants. By fitting to the parameter (α, β, σp, ∆rp,
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Table H1. Parameters of analytical traction-displacement-mixity
functions (stress in GPa and distance in Å).

p py

and 90!, !w approximately equals 5.5!, 15.8!, 29.9!, 45.0!,
59.9!, 74.4! and 83.9! for the simulations using potential
P1, and 5.4!, 16.0!, 31.5!, 44.6!, 58.5!, 72.8! and 83.8!
for the simulations using potential P2.

Our purpose is to derive separate analytical functions
that relate respectively the normal and shear components
of local traction to local crack opening displacement and
local mode-mixity (m). Our approach involves two steps:
(i) derive independent normal and shear stresses as func-
tions of displacement at a fixed mixity (m ! !m) for each
of the MD runs; and (ii) consolidate the resultant array
of traction–displacement functions through the dependence
of the function parameters upon mixity.

Examination of results from individual MD runs indi-
cates that regardless of mixity, the stress (either normal
or shear) always initially increases to a peak when the mag-
nitude of the crack opening, Dr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þ Dy2

p
, increases

from zero. Stress always decays to zero when the opening
Dr becomes large. The features of all traction–displacement
relations appear to be sufficiently captured by four quanti-
ties: (i) the peak stress rp; (ii) the displacement Drp at which
the peak stress occurs; (ii) the critical displacement Drc
above which stress is negligible; and (iv) relative decay rates
before and after the peak stress. We propose the following

Table B1
Parameters of analytical traction–displacement–mixity functions (stress in GPa and distance in Å).

Normal stress parameters predicted by potential P1

a b rp Drp

c0 c1 c2 c3 c4 c0 c1 c2 c3 c4

1.1800 8.0000 14.6974 $17.1730 49.4803 $47.0047 0.0000 1.0000 2.5885 $9.1000 21.4763 $15.7740

Drc rp2 Drp2 Drc2 Drs

c0 c1 c2 c3 c0 c1 c2 c3

5.2400 207.9726 12.9073 1.0000 0.0000 1.3600 4.3800 0.0000 – – 2.8200

Shear stress parameters predicted by potential P1

a b rp Drp

c0 c1 c2 c3 c4 c0 c1 c2 c3 c4

1.1800 8.0000 0.0000 $4.6725 86.4059 $148.1626 78.7212 0.7831 0.009410 2.3414 $5.3128 3.5079

Drc rp2 Drp2 Drc2 Drs

c0 c1 c2 c3 c0 c1 c2 c3

8.5600 4.3025 7.4069 0.0000 0.0000 0.9800 4.4000 2.0535 8.6867 0.0000 2.0016

Normal stress parameters predicted by potential P2
a b rp Drp

c0 c1 c2 c3 c4 c0 c1 c2 c3 c4

1.1800 8.0000 14.0959 $16.9131 45.0036 $42.1864 0.0000 1.0146 1.6267 $8.8837 23.2643 $16.0450

Drc rp2 Drp2 Drc2 Drs

c0 c1 c2 c3 c0 c1 c2 c3

5.3200 201.2781 19.0041 1.0000 0.0000 1.4600 3.4700 0.0000 – – 3.2200

Shear stress parameters predicted by potential P2
a b rp Drp

c0 c1 c2 c3 c4 c0 c1 c2 c3 c4

1.1800 8.0000 0.0000 $3.0601 56.6927 $91.5108 47.3412 0.9833 $0.1565 1.3510 $1.9656 1.3420

Drc rp2 Drp2 Drc2 Drs

c0 c1 c2 c3 c0 c1 c2 c3

11.0900 2.6918 26.8255 0.0000 0.0000 1.0800 2.8800 0.0000 – – 4.2410
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Fig. A2. bcc Cohesive energy as a function of the nearest neighbor
distance.
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∆rc, σp2, ∆rp2, ∆rc2 and ∆rs) data derived from MD, we determined all these functions and the
results are shown in Table H1.

Note that in Table H1, some ∆rs values may reduce to constants at the parameters used. The
non-constant parameters are plotted in Fig. H1 as a function of m and are compared with the data
derived from MD. It can be seen that the trends for the parameters as a function of mixity parameter
m are very consistent for both normal and shear stresses and both potentials. As expected, σp de-
creases from the maximum value to zero for normal stress and increases from zero to the maximum
value for shear stress as m is increased from 0 to 1. In addition, it is seen that σp2 is negligible at
small m values and becomes large at relatively large m values, consistent with the occurrence of the
second peak when the loading involves a significant shear component. For normal stress, however,
σp2 drops again to zero at m = 1. This is because the normal stress vanishes during a shear loading.
The analytical equations, therefore, quite well capture the traction-displacement-mixity relations
revealed in the MD simulations.
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Fig. B1
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Chapter 8

Finite element analysis of an
atomistically-derived cohesive model for
brittle fracture
Principal Authors: Jeffrey T. Lloyd, Jonathan A. Zimmerman, Reese E. Jones,
Xiaowang Zhou, and David L. McDowell

In order to apply information from Molecular Dynamics (MD) simulations in problems gov-
erned by engineering length and time scales, a coarse graining methodology must be used. In
Chapter 7, a traction-separation cohesive model was developed using results from MD simulations
with atomistic-to-continuum measures of stress and displacement. Here, we implement this co-
hesive model within a combined finite element / cohesive surface element framework (referred to
as a finite element approach or FEA), and examine the ability for the atomistically-informed FEA
to directly reproduce results from MD. We find that FEA shows close agreement of both stress
and crack opening displacement profiles at the cohesive interface, although some differences do
exist that can be attributed to the stochastic nature of finite temperature MD. The FEA method-
ology is then used to study slower loading rates that are computationally expensive for MD. We
find that the crack growth process initially exhibits a rate-independent relationship between crack
length and boundary displacement, followed by a rate-dependent regime where, at a given amount
of boundary displacement, a lower applied strain rate produces a longer crack length. Our method
is also extended to larger length scales by simulating a compact tension (CT) fracture mechan-
ics specimen with sub-micron dimensions. Such a simulation shows a computational speedup of
approximately four orders of magnitude over conventional atomistic simulation, while exhibiting
the expected fracture mechanics response. Finally, differences between FEA and MD are explored
with respect to ensemble and temperature effects in MD, and their impact on the cohesive model
and crack growth behavior. These results enable us to make several recommendations to improve
the methodology used to derive cohesive laws from MD simulations. In light of this work, which
has critical implications for efforts to derive continuum laws from MD simulations, it is shown
care must be taken when using a similar approach, and effects of ensemble, temperature, and strain
rate must be considered.
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8.1 Introduction

A key challenge to material modeling and simulation is incorporating atomic-level physics into
models that can be used at larger scales. One such example is the modeling of multilayered mate-
rial structures in order to predict their performance and reliability in micro- and nano-scale devices.
Often these materials exhibit brittle deformation behavior and failure mechanisms, making them
attractive to model with a combined finite element (FE) / cohesive surface element (CSE) method-
ology. In such an approach, one constitutive relation is used to represent bulk deformation of
the materials involved, while another complementary relation is used to model interfacial delam-
ination. Historically, these relations have been phenomenological in their construction, fitted to
experimentally determined values of cohesive strength and work of adhesion. At the nano-scale,
however, the need arises for including atomic behavior in order to enhance the fidelity of predictive
models.

To address this need, much research has recently been done to use atomistic simulations (either
molecular dynamics (MD) simulations or quasistatic energy minimization analyses) to motivate
the key features of traction-separation laws used with CSE analysis. For example, Spearot et al.
[175] proposed an internal state variable (ISV) framework that uses interface separation constitu-
tive laws motivated by MD simulations of materials modeled with embedded-atom method [59]
(EAM) potentials. These authors considered both normal and tangential displacement loading, and
developed a nonlinear elastic separation potential that included path-history dependent effects with
active and passive ISV’s.

Yamakov et al. [206] developed a cohesive surface model using MD simulations of inter-
granular fracture in an fcc metal, which displays both brittle and ductile fracture mechanisms.
These authors developed a robust method to combine estimates of crack opening displacement
with normal stress to construct a qualitative model of traction-separation for both mechanisms.
This approach was later combined with a statistical method developed by Saether et al. [166] to
couple an atomistic domain (106 atoms, MD, 300 K) that is embedded within a continuum do-
main [207]. The resulting coupled system was used to derive a cohesive zone model (CZM) for
interface debonding via moving averages of stress and opening displacement. While the coupling
and averaging methods were quite sophisticated, the resulting CZM consisted of a parameterized
bilinear curve fitted only to peak stress and the amount of displacement at full debonding. This
work leads one to speculate whether more complex traction-separation laws could be developed
using MD simulation results.

These early efforts by Spearot et al. and Yamakov et al. also set a precedent for using atom-
istic simulation to derive cohesive laws for fcc metals, known to exhibit ductile behavior in most
cases. Others have continued on this path such as Choi and Kim [29], who constructed a co-
hesive model for single crystal gold, and Krull and Yuan [102], who designed an exponential
traction-separation law using parameters derived from MD simulations of crack tip blunting and
void initiation. However, it is not clear whether this use of cohesive surface elements is appropriate
as the methodology was originally developed to model fracture of brittle material interfaces. This
point was recently underscored in work by Fan and Yuen [52], who performed MD simulations
and parameterized a cohesive model of an epoxy network material / Cu interface. Their model of
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a polymer-ductile metal interface showed poor agreement between simulation and experiment for
the force-displacement curve of a deformed tapered double cantilever beam (TDCB). In particu-
lar, the so-called valve effect in ductile fracture underscores the importance of modeling cascade
effects of crack tip dislocation nucleation [32, 153, 192, 220]. Further complicating this issue is
recent work by Song et al. [174], who found that dislocation-crack tip interactions do not signifi-
cantly affect the overall traction-separation response, i.e. stress-field interactions with other nearby
defects do not alter the cohesive relation measured at the crack tip. Given this uncertainty when
dealing with cohesive behavior of ductile materials, we therefore limit consideration here to brittle
fracture processes.

Reconsidering cohesive models for fracture of brittle materials (and mindful of the aforemen-
tioned models for ductile materials), we note that Coffman et al. [33] compared atomistic simula-
tion of Si polycrystal with a CSE simulation using piecewise, bilinear cohesive laws determined
from atomistics. Although more appropriate, the application of a CSE to a brittle polycrystalline
material showed that matching cohesive properties of interfaces (grain boundary energy and co-
hesive strength) with a cohesive law of simple form was insufficient to match the failure stresses
predicted by atomistic simulation. In an attempt to increase the fidelity of an atomistically-derived
cohesive law, Zhou et al. [218, 219] used the methodology of Yamakov et al. [206] to develop a
model for an ‘ideal’ bcc metal subject to mixed mode loading conditions. This model is innovative
as it predicts a mode-mixity dependent work of adhesion, a feature not common to phenomeno-
logical cohesive laws.

One issue not addressed in many of the efforts discussed above (including [218] and [219]) is
assessing how an atomistically-derived cohesive law behaves once implemented within a pure finite
element (FE) / cohesive surface element (CSE) framework. This includes verification analyses
that confirm that the law accurately reflects the originating atomistic results. In addition, little
has been done to characterize the developed relations in time and length regimes that are at best
computationally expensive, and at worst inaccessible, to MD simulation.

In this chapter, we implement one of the cohesive models developed in [219] within a com-
bined finite element / cohesive surface element framework (referred to as a finite element approach
or FEA), and verify its performance by examining the original geometry and loading rate used in
MD to derive the traction-separation relation. Our analyses show close agreement of both stress
and crack opening displacement profiles at the cohesive interface, although some differences do
exist that can be attributed to the stochastic nature of finite temperature MD. Our FEA method-
ology is then used to study slower loading rates that are computationally expensive for MD. We
find that the crack growth process initially exhibits a rate-independent relationship between crack
length and boundary displacement, followed by a rate-dependent regime where, at a given amount
of boundary displacement, a lower applied strain rate produces a longer crack length. We further
find that crack velocity at all times remains below the limiting speed above which unstable crack
behavior is often noticed, e.g.branching. Our method is also extended to a larger length scale by
simulating a compact tension (CT) fracture mechanics specimen with sub-micron dimensions. Our
simulation shows a computational speedup of approximately four orders of magnitude over con-
ventional atomistic simulation, while exhibiting the expected fracture mechanics response. Finally,
differences between FEA and MD are explored with respect to ensemble and temperature effects
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in MD, and their effect on the cohesive model and crack growth behavior. These results enable us
to make several recommendations to improve the methodology used to derive cohesive laws from
MD simulations.

8.2 Methodology

8.2.1 Cohesive law derived from molecular dynamics simulations

The cohesive model used was developed by Zhou et al. [219]. In that work, the authors used
two sets of interatomic potentials to model a ‘weak’ interfacial plane between two halves of a bcc
(body-centered-cubic) crystal. Here, we consider only the model based on potential ‘P1’ [219]
for which the two halves of crystal possess the same lattice spacing, cohesive energy and elastic
moduli. The weak interface has the same lattice spacing as the bulk material, but lower values of
cohesive energy, elastic moduli, and work of adhesion. The geometry modeled is that of a rect-
angular plate of width (x-direction) 800 Å, height (y-direction) 650 Å, and thickness (z-direction)
32 Å. To study the fracture response, a two dimensional crack of length 280 Å was introduced
along the center line with the crack tips pointing in the ±x-directions and crack plane normal in
the y-direction (as shown in Figure 1 of [219]). MD simulation is used to equilibrate the cracked
system at a temperature of 300 K using a Nosé-Hoover thermostat, thereby creating an NVT en-
semble. Designated boundary regions were used to induce tensile and shear displacements leading
to extension of the center crack, and combinations of these displacements were used to prescribe
specific mode mixities. The NVT thermostat continues to enforce a system temperature (excluding
boundary regions) of 300 K during this deformation process. Averages of stress and displacement
components were calculated within localized volumes adjacent to the interfacial plane at positions
behind, at, and in front of the propagating crack tips. Further details regarding the simulations
performed and averaging process used to construct a cohesive law can be found in [219]. It should
be noted that while the MD simulations performed by Zhou et al. did not explicitly prohibit crack
tip instability behavior such as oscillations and branching, the design and use of a weak inter-
atomic potential across the interfacial plane may have contributed significantly to enforcing planar
propagation.

After a suite of simulations at various mode mixities had been performed in which the traction-
separation response along the interface was measured, analytical functions were fit for the nor-
mal stress σyy and shear stress τxy in terms of the magnitude of crack opening displacement

δ =
√

δ2
x +δ2

y and a mode-mixity parameter m≡
√

δ2
x/δ2:

σyy(δ,m) =F(α,β,σp(m),δp(m),δc,δ)
+F(α,β,σp2(m),δp2,δc2,δ−δs(m)) ·H(δ−δs(m))

(8.1)

τxy(δ,m) =F(α,β,τp(m),ζp(m),ζc,δ)
+F(α,β,τp2(m),ζp2,ζc2,δ−ζs(m)) ·H(δ−ζs(m)),

(8.2)
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where we have assumed the cohesive interface has a normal in the y-direction and undergoes
normal (y) or transverse (x) displacement. Here,

F(α,β,σ,δa,δb,δ) =
ββ ·δβ−α

a ·σ ·δα

[(β−α) ·δa +α ·δ]β
· fc(δa,δb,δ) (8.3)

fc(δa,δb,δ) =
1
2
· erfc

[
3.0972 · δ−δa

δb−δa
−1.64498

]
(8.4)

σp(m) = 13.4738
(
1−m4) (8.5)

δp(m) = 1+2.5885m−9.1m2 +21.4763m3−15.774m4 (8.6)

σp2(m) = 207.9726m12.9073 (1−m) (8.7)

δs(m) = 2.83 (8.8)

τp(m) =−4.6725m+86.4059m2−148.1626m3 +78.7212m4 (8.9)

ζp(m) = 0.7831+0.00941m+2.3414m2−5.3128m3 +3.5079m4 (8.10)

τp2(m) = 4.3025m7.4069 (8.11)

ζs(m) = 2.0535m8.6867 +2.0016 (8.12)

α = 1.18, β = 8, δc = 5.24, δp2 = 1.36, δc2 = 4.38, ζc = 8.56, ζp2 = 0.98, ζc2 = 4.4, H(x) is the
Heaviside function, and where all stresses (σ and τ) are in GPa and all displacements (δ and ζ) are
in Å.

All functions and parameter values are the same as those given in [219], with the exception
of the function given for σp(m). Refitting of σp(m) was performed as the existing function from
[219] appears to not fit the MD data well at very low mode mixities. Contour plots of Equations
(8.1) and (8.2) (as functions of δx and δy instead of δ and m) are shown in Figure 8.1.

8.2.2 Implementation of cohesive law into a finite element / cohesive surface
element framework

The cohesive traction-separation law given in the previous section was implemented in an Abaqus
[172] UMAT (User-defined MATerial) for COH2D4 two-dimensional, zero thickness cohesive el-
ements. Because the stress state is directly calculated from the displacements passed into the
UMAT from Abaqus, arbitrarily complicated traction-separation laws derived from MD can be
implemented with relative ease, making this approach appealing to fitting complex crack tip be-
havior.

For the finite element model of the bulk material, two-dimensional continuum CPE4 (plane
strain) elements were used with isotropic material properties to represent the bulk elastic behav-
ior. Isotropic elastic constants were given in [219] as Young’s modulus E = 444 GPa, Poisson’s
ratio ν = 0.25, and shear modulus G = 177 GPa. The assumption of isotropic behavior closely
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Figure 8.1. Contour plots of (a) normal and (b) shear stress for
mixed-mode traction-separation law

approximates single crystal properties as determined from the elastic constants given in [219]. For

example, for tension along a 〈100〉 direction, E = C11− 2C2
12

C11+C12
= 424 GPa. Likewise, for pure

shear G = C44 = 184 GPa. The isotropic moduli suggested by Zhou et al. differ by less than 5%
from these single crystal equivalents. Use of the isotropic assumption is also validated by calculat-
ing the anisotropy ratio A = 2C44

C11−C12
= 1.095, a value close to unity.

Zero thickness cohesive elements were used along the predefined crack path along the mid-
plane. An implicit dynamic analysis was used in order to ensure conditional stability, in which
the loading rate of the boundary corresponded to exactly the same loading rates used in the MD
simulations from [219] (∼ 108 s−1). We used an equivalent density of 10.505 g/cm3, based on
the atomic weight of 100 amu and a lattice spacing of 3.162 Å for a bcc crystal structure, as was
used in [219]. We note that since the same mass density is used in both FEA and MD, and as the
elastic moduli are very close between the two analysis methods, by using the same loading rate
differences in interfacial behavior due to elastic wave propagation are minimized.

For the cohesive law described in the previous section, the normal opening displacement δy
is assumed to be positive. In the case of compressive loading, an elastic penalty an order of
magnitude larger than E is used to prevent surface-surface penetration. In the case of shear loading,
the response is not modified with regard to the sign of δx, other than producing a shear traction of
opposite sign. The contact is assumed “frictionless” in that the shear response does not alter in the
case of negative δy.
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8.3 Results

8.3.1 Crack growth analysis of FEA and MD: direct comparison

Our first objective is to compare the crack opening behavior observed in MD with the analytical
relationship implemented into Abaqus. The geometry considered is a rectangular plate of width
800 Å and height 650 Å. Unlike the MD system shown in Figure 1 of reference [219], which was
three-dimensional of thickness 32 Å with periodic boundary conditions in the thickness direction,
our FEA system is two-dimensional. Our continuum constitutive description is isotropic, with zero
thickness cohesive elements inserted along the interface and represented by the dotted red lines in
Figure 8.2(b) and 8.3(b). In contrast, the MD system utilized a non-local interatomic potential with
a separate potential used for interactions across the cohesive interface of approximate range 4 Å.
Both MD and FEA geometries contained a center crack of length 280 Å across which material
does not interact (traction free). For our comparison, the system is loaded in pure normal (mode I)
or pure shear (mode II) boundary displacement.

For normal loading, the displacement boundary conditions are slightly different in FEA than
in MD. In the original MD simulations, loading was applied via a ramped displacement (i.e. ho-
mogeneous strain) field applied to the entire domain consistent with the boundary conditions in
order to mitigate the effects of dynamic wave propagation through the material, as shown in Fig-
ure 8.2(a). In contrast, a uniform displacement is applied to nodes at the top and bottom boundary
of the FEA system, as shown in Figure 8.2(b). For the horizontal direction boundaries, the MD
system is subject to periodic boundary conditions while the FEA system is subject to symmetry
boundary conditions. The differences in loading between MD and FEA for normal loading were
determined to be negligible, as the MD simulation was re-run with comparable normal direction
boundary conditions as the FEA analysis with little difference to the crack propagation response,
as will be shown later. This result is anticipated as the velocity of the boundaries, approximately
±0.0325 Å/ps, is far smaller than the elastic wave speed of the bulk material, about 65 Å/ps. We
note that in Figure 8.2, the symbol ∆y represents the amount of normal displacement applied to the
system boundary in contrast to δy, which denotes the normal opening displacement at the crack
plane. This notation style is also used for transverse displacements (∆x and δx) associated with
shear loading, as shown in Figure 8.3.

For shear loading, in order to most easily replicate the boundary conditions of uniform loading
along the center of the crack as was done in MD (shown in Figure 8.3(a)), an FEA model was
constructed as seen in Figure 8.3(b) where uniform loading was applied to the edges, and two
half cracks exist at the geometry side edges with cohesive elements defining the interface in the
middle of the model. For post-processing, the FEA crack geometry is converted back to the same
geometry that was used in the MD case using the symmetry of the boundary conditions in order to
make a direct comparison between FEA and MD results.

For both normal and shear loading, a time increment of 2.0 ps is used for the implicit analy-
ses performed. At the boundary displacement rate of 0.0325 Å/ps, this produces a displacement
increment of 0.065 Å per analysis step.
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(a) (b)

Figure 8.2. Geometry and boundary conditions for (a) MD and
(b) FEA analyses - Normal loading.

(a) (b)

Figure 8.3. Geometry and boundary conditions for (a) MD and
(b) FEA analyses - Shear loading.
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The FEA system analyzed consists of a regular grid of linear quadrilateral elements 10 Å in
height. Two meshes were considered: one with bulk and cohesive elements of width 1 Å, and
one with elements of width 10 Å. Both of these meshes satisfy the instability criteria discussed
by Foulk [80], namely that the mesh size h must be less than the quantity hmax = Mφ/

(
2σ2

max
)
,

where M is the relevant elastic modulus, φ is the energy required for fracture, and σmax is the peak
stress of the traction-separation law. Violation of this condition results in an inability to simulate
stable crack growth. For normal loading of our system, M = E = 444 GPa, φ = 2.98 J/m2 and
σmax = 13.47 GPa, giving hmax = 36.5 Å. For shear loading, M = G = 177 GPa, φ = 4.75 J/m2

and σmax = 12.29 GPa resulting in hmax = 27.8 Å. In addition to ensuring stability, these meshes
must be capable of resolving the cohesive zone length. Visual and numerical analysis of the normal
loading case reveals an approximate cohesive zone length of 30 Å, whereas for the shear loading
case it is closer to 50 Å. Thus, consideration of both resolution and stability predict that both
meshes should produce the same stable cohesive behavior. This was verified, as the stress and
displacement profiles across the interface were the same for both mesh sizes.

Figure 8.4 shows the crack opening displacement and stress profiles for the case of mode I (nor-
mal) loading, where FEA (solid lines) denotes quantities from cohesive and finite elements along
the crack plane and MD (dotted lines) denote results taken from the MD simulations performed
in [219]. Note that for FEA, only stresses along the cohesive elements are shown as the stress
across the cracked region not meshed by cohesive elements is always zero, whereas in MD thermal
fluctuations can cause a non-zero measured stress across the crack face. Before the crack begins
to grow at an applied remote loading of ∆y = 3.250 Å there is very close agreement between both
MD and FEA for the displacement and stress profile distributions across the specimen. After the
crack grows in MD at ∆y = 4.225 Å, however, the crack has not yet grown significantly in FEA
for this same loading, and requires a larger remote applied loading of ∆y = 4.980 Å in order to
grow approximately the same amount. For each case in which the crack lengths are similar, the
stress distribution across the interface is very similar, which gives confidence that the MD sim-
ulations are being replicated by our FEA model. Nevertheless, we note that the two simulation
methods show some disagreement with regard to the amount of boundary displacement at which
crack propagation initiates.

Figure 8.5 shows the crack opening displacement and stress profiles for the case of mode II
(shear) loading. Here, both the stress and displacement profiles match closely for the case in
which the crack has grown by approximately 130 Å (∆x = 7.59 Å), as well as for the case in
which the crack has grown about 270 Å (∆x = 8.45 Å), almost doubling its initial length. For the
left-hand side of the stress profile distribution, there is small disagreement between the FEA and
MD; however, this can be clearly attributed to the stochastic nature of MD simulations resulting
in the left crack tip initiating propagation earlier (i.e. at a slightly smaller boundary displacement)
than the right crack tip. We note that stress profile shown in Figure 8.5(b) indicates that material
points pass through a local maximum after reaching the peak stress value. This behavior reflects
the secondary, lower maximum in the cohesive relation as shown in Figure 8.1.

Our FEA simulations show close agreement with the MD data with regards to both stress and
crack opening displacement profiles at the cohesive interface. Simulation of mode I (tensile) load-
ing displays the same stress profile when the crack length is aligned between the two simulation
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FEA: ∆y = 4.225 Å
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Figure 8.4. (a) Crack opening displacement and (b) normal
stress for mode I loading (pre- and post-crack propagation initi-
ation shown).
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Figure 8.5. (a) Displacement and (b) shear stress for mode II
loading (pre- and post-crack propagation initiation shown).
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methods, and has reasonable agreement in the crack opening displacement profile. A discrepancy
does exist in that crack propagation begins at a lower boundary displacement in the MD simu-
lation than in the FEA simulation. This type of discrepancy also appears for the left crack tip
when the system undergoes mode II (shear) loading, albeit to a lesser degree and of opposite trend.
That aside, the stress and crack opening displacement profiles for this case show good quantitative
as well as qualitative agreement between the two simulation methods. Our results thus far indi-
cate that while some discrepancies exist, there is potential that the FEA can be used to accurately
coarse-grain MD behavior of brittle fracture at cracked interfaces.

8.3.2 Analysis of inertial effects

With some confidence that the atomistically informed FEA simulations are modeling the crack
opening behavior observed in MD, we now examine simulations in which the computational
speedup of FEA is exploited in order to better understand the role of loading rate on the crack
growth process. In addition, such a study will hopefully help illuminate if the high loading rate
at which the MD simulations were performed affected the parameterization of the cohesive law
derived by Zhou et al. .

We repeat the FEA simulations discussed in section 8.3.1 with boundary displacement rates
varied over two orders of magnitude (106/s - 108/s) and examine their consequence on the in-
terfacial crack growth behavior. Because the shear loading case showed the best qualitative and
quantitative agreement with MD simulations as shown in Figure 8.5, it will be used to examine
whether or not rate effects are pertinent when deriving the cohesive law from a high strain rate MD
simulation.

Figures 8.6 and 8.7 show crack opening displacement and stress profiles for several strain
rates both before and after (respectively) crack propagation begins to occur. Here, strain rate
is determined by dividing the boundary loading rate by the half-height of the simulation region.
This strain rate represents an average quantity over the simulation region, noting that strain rate
actually varies inhomogeneously throughout the system. In Figure 8.6, the profiles for a quasistatic
analysis, i.e. strain rate of zero, are also shown.

Figure 8.6 clearly shows that there are no significant inertial effects introduced over multiple
orders of magnitude. As mentioned earlier, the rates used in the MD simulations (108 sec−1)
and the others examined here result in boundary displacement velocities that are much lower than
the relevant elastic wave speeds of the bulk material. As such, the same displacement and stress
profiles are observed at all rates simulated. However, once the crack has started propagating, as
shown in Figure 8.7, it is clear that significant inertial effects are introduced and that the crack
growth behavior is affected by the loading rate applied.

In order to more directly quantify loading rate effects on crack growth, the crack length is plot-
ted as a function of remote applied displacement for different strain rates in Figure 8.8(a). We note
that in Figure 8.8 data is not plotted for crack lengths exceeding a ‘threshold’ value of 550 Å. This
is done as beyond this threshold value, crack growth rate is influenced by the symmetric boundary
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Figure 8.6. (a) Displacement and (b) shear stress profile for mode
II loading before crack propagation ∆y = 4.0 Å.
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Sh
ea

r
st

re
ss

τ x
y

(G
P

a)

 

 
γ̇xy = 108 / s
γ̇xy = 107 / s
γ̇xy = 106 / s

(b)

Figure 8.7. (a) Displacement and (b) shear stress profile for mode
II loading after crack propagation at ∆x = 7.475 Å.
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conditions in the x-direction. Figure 8.8(a) shows that when crack propagation first begins, its rate
is not largely affected by strain rate. However, at a boundary displacement of about ∆x = 7.0 Å,
smaller loading rates result in a larger crack length for the same remote applied displacement. This
trend qualitatively agrees with intuition that as the time that forces have to equilibrate increases (i.e.
at lower strain rates), the crack growth behavior approaches that of quasistatic loading in which
failure occurs immediately after some minimal extent of crack extension.
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C
ra

ck
le

ng
th

2a
(Å
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Figure 8.8. (a) Crack length and (b) growth rate for FEA cal-
culations of mode II loading at various loading rates. Subfigure
(a) shows that crack propagation begins at a boundary displace-
ment of 4 Å, when the stress within the cohesive elements exceeds
the peak stress of the traction-separation law. Crack extension is
nearly linear up to a displacement of about 7 Å, after which load-
ing rate-dependent behavior is evident.

Work by Gao [62] and others suggests that cracks in a cohesive medium (such as that modeled
by our traction-separation law) will reach a limiting speed of propagation, vlim, above which cracks
cease to propagate along a straight line and instead propagate in an oscillatory manner and/or
result in branching. Such behavior is not enabled in our FEA, and was not observed to occur in
the original MD simulations (as noted in section 8.2.1). The question arises as to whether this
observed (for MD) / assumed (for FEA) behavior is physically valid. Figure 8.8(b), which also
uses a threshold crack length cutoff of 550 Å, shows the rate of crack growth as a function of
amount of boundary displacement. We note here that crack tip speed is half the growth rate for the
double-tipped crack.

As suggested by Gao [62], the value of vlim is typically found to be 30-40% of the Rayleigh
wave speed, vR. For our material, vR = 37.77 Å/ps [151], making vlim in the range 11.3-15.1 Å/ps.
Gao also derived an estimate of vlim as equal to

√
σmax/ρ, where σmax is the cohesive strength of

the solid and ρ is its mass density. For our cohesive model subjected to mode II loading, σmax =
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12.29 GPa and vlim = 10.82 Å/ps. Using either criteria, Figure 8.8(b) shows that crack growth in
our simulations does not exceed these limits, thereby validating the observed behavior in MD and
excusing our FEA from having to add cohesive zone elements along potential branching paths, a
complex task. One might ask whether crack speed falling below vlim is a direct consequence of
constraining the crack to planar growth, as done in our FEA simulations. However, Abraham and
Gao [1] showed that in such cases crack speed can surpass the limiting speed and even reach the
longitudinal wave speed of the bulk material.

From the above analysis of Figures 8.6 - 8.8, we note that no rate effects are observed before
crack propagation, and only after some threshold amount of crack propagation are rate effects evi-
dent. These effects may have some bearing on the traction-separation law derived from MD; how-
ever, Zhou et al. [219] remarked that local traction and crack opening displacement data used to
parameterize the cohesive law were extracted only from a crack propagation length-displacement
domain in which the shear crack exhibits approximate steady-state behavior (i.e. a nearly linear
relationship exists between crack length and boundary displacement). As this domain coincides
with the pre-threshold region shown in Figure 8.8(a), we conclude that the cohesive law displays
appropriate rate-independent behavior in our FEA simulations. Certainly, more investigation is
warranted to understand and verify the correctness of the post-threshold crack propagation behav-
ior observed. For a deeper understanding of brittle fracture rate effects, the reader is referred to the
comprehensive review by Marder and Gross [120].

8.3.3 Simulation of compact tension (CT) fracture test

Similar exploitation of the computational efficiency of our FEA can be used to analyze the exten-
sion of cohesive behavior derived from MD towards greater length scales. Additionally, in order to
model stable crack growth under quasistatic loading, it is necessary to examine a scenario in which
the effective stress intensity factor alters as crack growth occurs. Thus, we perform a simulation
of crack growth for a compact tension (CT) specimen [11] subject to displacement loading via
prescribed motion of loading pins. Fracture of a CT specimen serves as a good proof-of-concept
problem to verify that the atomistically-derived cohesive law displays behavior consistent with
linear elastic fracture mechanics, while simultaneously showing how much computational savings
can be obtained over conventional atomistic simulation.

The geometry and mesh of our CT specimen is shown in Figure 8.9. The specimen is 384 nm
wide by H = 369 nm tall, with an effective width (the distance between the pin holes and the
uncracked edge) of W = 307 nm, an initial crack length of a = 155 nm (a/W ≈ 0.5), and pin
holes of radius 38.4 nm. Our initial geometry contains a zero-width crack rather than the finite-
width notch and fatigue-induced crack used in a conventional CT specimen. Cohesive elements are
placed along the pre-defined crack path, and are 1 Å wide. This element size enables the cohesive
zone to be resolved over a length of approximately 45 Å (45 elements), and satisfies the stability
criterion discussed earlier [80]. The specimen was loaded under displacement control with the
pins fixed in the x-direction, and displacements in the ±y-directions of up to 0.5 Å/step applied
to the outer nodes of the top and bottom pin holes, respectively. The computational time for this
simulation was 12 minutes on a 3.6 GHz Pentium (R) processor with 2 MB of RAM. This speedup
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is approximately four orders of magnitude (104) faster than a similar MD simulation of the same
size, assuming computational cost of the previously mentioned MD simulations is proportional to
the number of atoms.

W

a

H

Figure 8.9. FEA mesh of Compact Tension specimen. The spec-
imen’s height H = 369 nm, its effective width W = 307 nm, and
its initial crack length a = 155 nm (a/W ≈ 0.5).

The crack opening behavior due to displacement of the top and bottom pins is observed in
Figure 8.10. In this figure, the elements are colored according to their values of σyy as shown in
the attached legend. Before crack propagation begins to occur, the cohesive zone begins to form,
as seen in Figures 8.10(a) and 8.10(b). Once a critical displacement is reached crack propagation
occurs and the mesh resolves the cohesive zone as well as the crack extension behavior as seen in
Figures 8.10(c) and 8.10(d).

Figure 8.11 shows the loading-displacement trajectory seen by the top pin. We observe a linear
regime before crack propagation, and once crack propagation begins to occur the unloading is
reflected in the decrease in force with further displacement. This same trend of linear loading until
crack extension is seen in traditional fracture-mechanics tests of brittle specimens and is evidence
that there are no significant geometric non-linearities in this system.

We can further verify our analysis by taking the value of peak load in Figure 8.11, 66.21 N/m,
and combining it with geometric dimensions of the system to obtain the stress intensity factor,
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(a) (b)

(c) (d)

σyy(GPa)

Figure 8.10. Quasistatic crack growth in the CT geometry.
Loading-pin displacements of (a) 12.5 Å, (b) 24.0 Å, (c) 35.0 Å,
and (d) 36.0 Å are shown. Plots are colored according to element
values of σyy in units of GPa as shown in the legend.
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Figure 8.11. Reaction force vs loading-pin displacement for
Compact Tension specimen.
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KI = 1.154 MPa · √m [6]. Using the linear elastic fracture mechanics relation between energy
release rate and stress intensity factor, J = K2

I /E ′ where E ′ = E/(1− ν2), we obtain a value for
fracture toughness of J = Jc = 2.813 J/m2. This value lies close to the mode I work of separation,
calculated analytically using the relations in section 8.2.1 to be 2.984 J/m2 (a difference of 5.7%).

Our analysis shows that the atomistically-derived cohesive law gives good agreement with pre-
dictions from linear elastic fracture mechanics. It shows the expected linear relationship between
loading-pin displacement and reaction force. In addition, the observed peak load results in a frac-
ture toughness estimate close to the work of separation predicted directly from the cohesive model
for mode I loading. While certainly more complex fracture geometries can be analyzed (i.e. one
without a solution known from linear elastic fracture mechanics), our analysis of the CT specimen
verifies the correct behavior of both the cohesive law and our finite element implementation.

8.4 Discussion

In our earlier comparison between MD and FEA, we noted that some discrepancies existed in
predicting crack propagation with the two methods. For the case of mode I (tensile) loading,
crack propagation begins at a smaller boundary displacement in the MD simulation than in the
FEA simulation. For mode II (shear) loading, this type of discrepancy also appears for the left
crack tip although to a lesser degree and with an opposite trend (i.e. the FEA simulation initiates
propagation at a smaller boundary displacement than for MD). As thermal effects are absent from
the FEA simulations, it is tempting to attribute these discrepancies to such effects. However, it is
not sufficient to leave this as simple conjecture. In this section, we present results from additional
MD simulations conducted in order to develop some insights on how thermal aspects may affect
the derivation of the cohesive law.

MD simulations were performed in a similar manner as described in [219], and the reader is
referred to that work for further details. However, for the mode I loading case a uniform displace-
ment is applied to atomic regions at the top and bottom of the system rather than in the ramped
fashion previously used. This method of loading is more consistent with that used in our FEA
simulations, as noted earlier. As well as performing isothermal (an NVT ensemble) simulations at
300 K, we also conducted isothermal calculations at 100 K. As use of a constraining thermostat to
simulate NVT ensembles adds or subtracts energy directly to individual atoms, we also examined
the response of constant energy (an NVE ensemble)1 MD simulations at initial temperatures of
0 K, 100 K and 300 K. As in [219], our simulations were performed using the open-source MD
package LAMMPS [168].

Figure 8.12 shows how temperature, ensemble type, and the use of a ramped displacement
field (as done in the original MD simulations in [219] and shown in Figure 8.2(a)) affect the crack
opening displacement and stress profiles for the normal (mode I) loading case. Note that the

1These simulations are not truly constant energy, as work is being done on the system through the displacing
boundary regions. However, the equations of motion solved are those for an NVE ensemble, as is customary in much
of the molecular dynamics literature.
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ramped simulations are labeled as such. This figure shows three trends emerging for the same
applied boundary displacement of ∆y = 4.225 Å:

1. Ramping has no significant effect on the interfacial separation behavior.

2. The crack opens in the NVT ensemble before the NVE ensemble regardless of temperature.

3. As temperature decreases, crack opening is retarded for the same applied boundary displace-
ment.

We note that at the chosen displacement of 4.225 Å, crack propagation had already begun in the
original NVT-300 K simulation performed in [219].
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Figure 8.12. (a) Displacement and (b) normal stress profile for
mode I loading at ∆y = 4.225 Å for various MD ensembles.

Shear simulations were run with the same variations to temperature and ensemble type and
are shown in Figure 8.13 at the applied boundary displacement of ∆x = 7.59 Å. The ensemble
and temperature affect the crack growth behavior in a similar fashion as noticed in the tensile
simulations, where decreasing temperature retards crack growth and the use of NVT promotes
crack growth compared with NVE. However, these figures also show that the FEA response for
mode I loading is most similar to the MD simulation for the NVE-0 K system whereas the response
for mode II loading is most similar to the MD simulation for the NVT-300 K system. In this regard,
the behavior of the shear and normal cases are quite different.

In order to understand the discrepancies between FEA, NVT, and NVE simulations, multiple
factors must be considered. It is clear that ensemble type and temperature lead to stress fluctuations
that do not exist in FEA. Qualitatively, by looking at the stress distribution across the cracked and
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Figure 8.13. (a) Displacement and (b) shear stress profile for
mode I loading at ∆x = 7.59 Å for various MD ensembles.

uncracked interfaces in Figures 8.12(b) and 8.13(b), regardless of the two temperatures, the NVT
case has larger stress fluctuations than the NVE case. Also, as temperature is lowered, stress
fluctuations decrease accordingly for each ensemble. It is clear that these fluctuations play a role
in opening the crack that are absent in FEA, but this is not the only contribution. As can be seen
from the crack opening stress profile in Figure 8.13(b), the traction profile is also dependent on
the ensemble and temperature. The dual maxima observed in the NVT-300 K simulations is not
present at lower temperatures or for the NVE ensembles. This observation indicates that the “dual
hump” feature of the fitted traction-separation law from reference [219] may have been influenced
by the choice of temperature and the use of an NVT ensemble.

Clearly, this analysis shows us that further examination is needed to definitively pinpoint the
sources of discrepancy between FEA and MD, and to determine the relationship between temper-
ature, fluctuations of stress and displacement fields, and the functional form and parameterization
for a cohesive law. Our findings thus far suggest two possible options to undertake this task. One
strategy would be to fit the cohesive law to low/zero temperature simulations to reflect the underly-
ing athermal activation energy barriers for separation and introduce thermally-induced fluctuations
as a temperature field in the FEA framework. Recent work by Ryu et al. [165] suggests that such
energy barriers may include a temperature-dependent entropic contribution. However, using an
athermal barrier that can be breached by thermally-induced fluctuations in stress fields would be
a significant first step in constructing a more accurate model. Alternatively, one could incorporate
temperature dependence into the cohesive law itself, and fit parameters using results from a series
of isothermal (NVT) simulations of the temperature range of interest. Both of these strategies try
to tackle fundamental discrepancies between aspects that exist in FEA and MD that clearly do not
have a one to one correspondence. While further work is warranted, our efforts here have shown
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that these issues must be considered when extracting information from MD and using it in any
coarse-grained method such as was done with FEA in this work.

8.5 Conclusions and Future Work

In this work, an atomistically-derived cohesive traction-separation relation was implemented in
a finite element / cohesive surface approach via an Abaqus [172] UMAT subroutine. The FEA
model was compared against the original MD simulations used to design the cohesive relation for
simulations of normal (mode I) and shear (mode II) loading of the same center-cracked specimen
geometry with similar elastic properties. It shows close agreement with regard to both the stress
and crack opening displacement profiles across the interface for the similar externally applied dis-
placements. This reproduction and comparison of MD behavior with FEA has not been commonly
done for other atomistically-derived cohesive relations, and presents both a methodology as well
as an impetus for doing so. Our analysis also shows that certain discrepancies exist that limit the
ability of our FEA model to reflect what happens in finite temperature MD simulations, which are
most likely connected to thermal fluctuations of stress and displacement fields that cause the onset
of crack propagation in a non-deterministic fashion.

Larger time scales were explored using an FEA model by examining the effect strain rate has on
crack growth behavior. An acceptable regime that is relatively strain rate-insensitive was identified,
and, since the traction-separation laws from MD were derived in this regime, it is reasonable to
use these same laws for stable crack growth problems at lower strain rates. We also verified that
while our FEA system is constrained against non-planar crack growth behavior (e.g.branching),
crack speeds calculated fall below the limiting speed above which such behavior is expected. We
acknowledge that more investigation is needed to verify that our model behaves correctly within a
regime of displacements that shows a sensitivity to strain rate.

The applicability of this method to larger-than-atomistic length scales was also investigated
using simulations of a compact tension fracture test. These simulations show a computational
speedup of approximately four orders of magnitude, and produce results consistent with expecta-
tions from traditional fracture mechanics analysis. Thus, we believe our approach to be a viable
coarse graining methodology. This said, one limitation apparent in our approach is that the cohe-
sive zone length of our model is ∼ 10 Å due to its atomistic origins. Further, a stability analysis
shows that use of our model to represent stable crack growth requires cohesive surface element
sizes no larger than ∼ 30 Å. These requirements may induce a heavy computational burden for
complex fracture problems with multiple crack paths as compared with phenomenologically-based
cohesive laws used in finite element analysis. However, we maintain that the computational cost
would still be far less than that for performing full-scale atomistic simulations, while hopefully
incorporating the fidelity gained through such simulations.

Several paths and recommendations for future work are apparent based on the work presented
here. First and foremost, an examination is warranted of how temperature, ensemble type, and
loading rate affect the functional form and parameters of an atomistically-derived cohesive law.
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More information regarding the sensitivity of the cohesive law fitting process to these factors is
needed. Second, aspects that are not present in conventional finite element / cohesive surface
element simulations but are present in MD simulations, such as thermal vibrations and material
diffusion, should be incorporated into the FEA depending on the system being modeled. Third,
features of material microstructure including crystal orientation and the differentiating structure of
grain boundaries have not been considered in the development of the cohesive law. Information
on how these features affect cohesion should be included in any advanced models. In addition,
the methodology of our finite element approach can be used to compare atomistically-derived
cohesive laws with traditional phenomenological relations. On this point, the FEA is best used to
investigate brittle fracture phenomena in nanoscale devices. In particular, bcc metals, silicon and
other materials commonly used in nanotechnology can be examined with regards to reliability and
performance.

8.6 Appendix I: UMAT of atomistically-derived cohesive zone
model

SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD,
& RPL,DDSDDT,DRPLDE,DRPLDT,
& STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME,
& NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT,
& CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC)

C
INCLUDE ’ABA_PARAM.INC’

C
CHARACTER*80 CMNAME
DIMENSION STRESS(NTENS),STATEV(NSTATV),
& DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS),
& STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1),
& PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3)

DIMENSION
& STRESS0(NTENS) !Stress at beginning of time step

STRESS0(1) = STRESS(1) !STORE INITIAL STRESSES AT START OF TIME STEP
STRESS0(2) = STRESS(2) !STORE INITIAL STRESSES AT START OF TIME STEP
EPS = PROPS(1) !READ IN THE CHARACTERISTIC EPSILON FOR CALCULATING

!THE TANGENT STIFFNESS MATRIX. A RULE OF THUMB FROM
!ALEJANDRO WAS TO USE ˜ (10E-6 * ELEMENT LENGTH)

!SNPX = NORMAL STRESS AT (DX + EPS,DY)
!THINK STRESS NORMAL PERTURBED IN THE POSITIVE X
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!SNMX = NORMAL STRESS AT (DX - EPS,DY)
!SNPY = NORMAL STRESS AT (DX,DY+EPS) .... ETC
!STPX = TANGENT STRESS AT (DX+EPS,DY)

IF ((TIME(2).EQ.0).AND.((DSTRAN(1).EQ.0).AND.
& (DSTRAN(2).EQ.0))) THEN !FIRST TIME STEP

C CALCULATE TANGENT STIFFNESS MATRIX USING NUMERICAL PERTURBATION
CALL CALC_STRESS_NORM(0+EPS,0,SNPX)
CALL CALC_STRESS_NORM(0-EPS,0,SNMX)
CALL CALC_STRESS_NORM(0,0+EPS,SNPY)
CALL CALC_STRESS_NORM(0,0-EPS,SNMY)

CALL CALC_STRESS_SHEAR(0+EPS,0,STPX)
CALL CALC_STRESS_SHEAR(0-EPS,0,STMX)
CALL CALC_STRESS_SHEAR(0,0+EPS,STPY)
CALL CALC_STRESS_SHEAR(0,0-EPS,STMY)

DDSDDE(1,1) = (SNPY-SNMY)/(2*EPS)
DDSDDE(1,2) = (SNPX-SNMX)/(2*EPS)
DDSDDE(2,1) = (STPY-STMY)/(2*EPS)
DDSDDE(2,2) = (STPX-STMX)/(2*EPS)

C PRINT*,"TIME:", TIME(2)

STRESS(1)=0
STRESS(2)=0

C PRINT*,"SYY:", STRESS(1)
C PRINT*,"SXX:", STRESS(2)
C PRINT*,"DX:", DX
C PRINT*,"DY:", DY

ELSE !NOT FIRST TIME STEP

DX = STRAN(2) + DSTRAN(2)
DY = STRAN(1) + DSTRAN(1)

C CALCULATE TANGENT STIFFNESS MATRIX USING NUMERICAL PERTURBATION
CALL CALC_STRESS_NORM(DX+EPS,DY,SNPX)
CALL CALC_STRESS_NORM(DX-EPS,DY,SNMX)
CALL CALC_STRESS_NORM(DX,DY+EPS,SNPY)
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CALL CALC_STRESS_NORM(DX,DY-EPS,SNMY)

CALL CALC_STRESS_SHEAR(DX+EPS,DY,STPX)
CALL CALC_STRESS_SHEAR(DX-EPS,DY,STMX)
CALL CALC_STRESS_SHEAR(DX,DY+EPS,STPY)
CALL CALC_STRESS_SHEAR(DX,DY-EPS,STMY)

DDSDDE(1,1) = (SNPY-SNMY)/(2*EPS)
DDSDDE(1,2) = (SNPX-SNMX)/(2*EPS)
DDSDDE(2,1) = (STPY-STMY)/(2*EPS)
DDSDDE(2,2) = (STPX-STMX)/(2*EPS)

C PRINT*,"TIME:", TIME(2)

CALL CALC_STRESS_NORM(DX,DY,STRESS(1))
CALL CALC_STRESS_SHEAR(DX,DY,STRESS(2))

C PRINT*,"SYY:", STRESS(1)
C PRINT*,"SXX:", STRESS(2)
C PRINT*,"DX:", DX
C PRINT*,"DY:", DY
C PRINT*,"DDSDDE(1,1):", DDSDDE(1,1)
C PRINT*,"DDSDDE(1,2):", DDSDDE(1,2)
C PRINT*,"DDSDDE(2,1):", DDSDDE(2,1)
C PRINT*,"DDSDDE(2,2):", DDSDDE(2,2)

END IF

RETURN
END

SUBROUTINE CALC_STRESS_NORM(X,Y,SY)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DELTA_R = SQRT(X**2+Y**2)
IF(X.EQ.0) THEN
TT = 0.0

ELSE
TT = (X**2/(X**2+Y**2))**(0.5)

END IF

C PRINT*, "TT:", TT
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IF(Y.LT.0) THEN
SY = 532.8*Y

ELSE
PSI_C = 1.45222
PSI_P = -1.64498
ALPHA_N = 1.18
BETA_N = 8.00
SIGP_N = 13.4738-13.4738*TT**4 !UPDATED NORMAL STRESS FIT
SIGP2_N = 207.9726*(TT**12.9073)*(1-TT)
DELRP_N = 1+2.5885*TT-9.1*TT**2+21.4763*TT**3-15.774*TT**4
DELRS_N = 2.82
DELRP2_N = 1.36
DELRC_N = 5.24
DELRC2_N = 4.38

TERM1_N = (DELRP_N**(BETA_N-ALPHA_N)*BETA_N**BETA_N*SIGP_N*
& DELTA_R**ALPHA_N)/((DELRP_N*(BETA_N-ALPHA_N)+ALPHA_N*DELTA_R)
& **BETA_N)

TERM2_N = 0.5*ERFC(PSI_P+(PSI_C-PSI_P)/(DELRC_N-DELRP_N)*
& (DELTA_R-DELRP_N))

IF(DELTA_R-DELRS_N.GE.0) THEN
TMULT_N = 1

ELSE
TMULT_N = 0

END IF

IF(DELTA_R.GE.DELRS_N) THEN
TERM3_N = (DELRP2_N**(BETA_N-ALPHA_N)*BETA_N**BETA_N*SIGP2_N*

& (DELTA_R-DELRS_N)**ALPHA_N)/((DELRP2_N*(BETA_N-ALPHA_N)+
& ALPHA_N*(DELTA_R-DELRS_N))**BETA_N)

TERM4_N = 0.5*ERFC(PSI_P+(PSI_C-PSI_P)/(DELRC2_N-DELRP2_N)*
& (DELTA_R-DELRS_N-DELRP2_N))

ELSE
TERM3_N = 0
TERM4_N = 0

END IF

SY = TERM1_N*TERM2_N+TERM3_N*TERM4_N*TMULT_N
END IF
!CHANGE SIGN IF NORMAL LOADING IS COMPRESSIVE
!THIS IS NOT USED IF ELASTIC COMPRESSION IS USED

C IF (Y.LT.0) THEN
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C SY = -1*(EXP(-10*Y-2)+1)*SY
C SY = -1*(EXP(-100*(Y+.03))+1)*SY
C END IF

RETURN
END

SUBROUTINE CALC_STRESS_SHEAR(X,Y,SX)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DELTA_R = SQRT(X**2+Y**2)

IF(X.EQ.0) THEN
TT = 0.0

ELSE
TT = (X**2/(X**2+Y**2))**(0.5)

END IF

PSI_C = 1.45222
PSI_P = -1.64498

ALPHA_T = 1.18
BETA_T = 8.00
SIGP_T = -4.6725*TT+86.4059*TT**2-148.1626*TT**3+78.7212*TT**4
SIGP2_T = 4.3025*(TT**7.4069)
DELRP_T = .7831+.009410*TT+2.3414*TT**2-5.3128*TT**3+3.5079*
& TT**4
DELRS_T = 2.0535*(TT**8.6867)+2.0016
DELRP2_T = 0.980
DELRC_T = 8.56
DELRC2_T = 4.40

TERM1_T = (DELRP_T**(BETA_T-ALPHA_T)*BETA_T**BETA_T*SIGP_T*
& DELTA_R**ALPHA_T)/((DELRP_T*(BETA_T-ALPHA_T)+ALPHA_T*DELTA_R)
& **BETA_T)

TERM2_T = 0.5*ERFC(PSI_P+(PSI_C-PSI_P)/(DELRC_T-DELRP_T)*
& (DELTA_R-DELRP_T))

IF(DELTA_R-DELRS_T.GE.0) THEN
TMULT_T = 1

ELSE
TMULT_T = 0

END IF
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IF(DELTA_R.GE.DELRS_T) THEN
TERM3_T = (DELRP2_T**(BETA_T-ALPHA_T)*BETA_T**BETA_T*SIGP2_T*

& (DELTA_R-DELRS_T)**ALPHA_T)/((DELRP2_T*(BETA_T-ALPHA_T)+
& ALPHA_T*(DELTA_R-DELRS_T))**BETA_T)

TERM4_T = 0.5*ERFC(PSI_P+(PSI_C-PSI_P)/(DELRC2_T-DELRP2_T)*
& (DELTA_R-DELRS_T-DELRP2_T))
ELSE
TERM3_T = 0
TERM4_T = 0

END IF

SX = TERM1_T*TERM2_T+TERM3_T*TERM4_T*TMULT_T

!CHANGE SIGN IF DISP IN SHEAR IS NEGATIVE
IF(X.LT.0) THEN
SX = -1*SX

END IF

RETURN
END
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Chapter 9

An efficient non-reflecting boundary
condition constructed via optimization of
damped layers
Principal Authors: Reese E. Jones and Christopher J. Kimmer

In this chapter we use analytic and numerical techniques to construct optimal, nearly reflec-
tionless boundary layers for lattice dynamics by tuning the mass, stiffness and damping of those
layers. Using a one-dimensional, nearest-neighbor chain as a model system, we obtain new ana-
lytical results for the low and high frequency behavior of such boundary conditions, as well as a
continued fraction solution for the reflection coefficient of multiple layers. In addition, we obtain
optimal parameters for the one-dimensional system and a three dimensional system using wave-
packets with normal incidence and compare the results to an implementation of the exact boundary
condition in one dimension and optimal versions of the commonly used ramped damping in three
dimensions.

9.1 Introduction

The need for reflectionless boundary conditions is clear in any simulation involving waves in a
domain that is necessarily finite due to computational resources. Many treatments have been devel-
oped for waves in continuous media, e.g. acoustics and elasticity [45] as well as electromagnetics
[15]. Here, we are concerned specifically with discrete lattice dynamics and our goal is to de-
velop tuned, computationally inexpensive, easy-to-implement non-reflecting boundary conditions
for molecular dynamics (MD) and MD-based multiscale applications that avoids storage of the
history of the atomic trajectories and the computation of convolution integrals.

The form of an exact reflectionless boundary condition is known. Adelmann and Doll [2] de-
rived a generalized Langevin equation based on a continued fraction representation [133] that is the
exact solution to the problem of reflectionless wave propagation in a semi-infinite one dimensional
(1D) chain of atoms. This treatment involves a convolution of a system-dependent kernel with
the history of atomic displacements or velocities near the boundary of the system and was subse-
quently called the time history kernel (THK) when used in multiscale applications [196]. The THK
is the optimal solution for propagation in linear media and, with perfect precision arithmetic and an
arbitrarily long history, it is reflectionless. For more complex, three-dimensional (3D) systems the
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kernel can be determined numerically [22] or analytically [91], although evaluation of the analyt-
ical expressions for typical 3D systems remains a challenge. In all cases, the kernel unfortunately
has a very slow and oscillatory decay in time and therefore is very expensive computationally.

E and co-workers were apparently the first to form an optimal approximate boundary condition
in order to increase efficiency [43]. With their variational boundary condition (VBC), they gener-
alized the problem to finding the optimal coefficients of a finite kernel. The particular form of the
VBC subsumes the THK and allows for trade-offs in the length of kernel history versus the number
of boundary layers [114]. The coefficients of the terms that comprise the kernel, which is non-
local in time and space, are derived based on the minimization of the reflection coefficient across
the Brillouin zone. In their perfectly-matched multiscale simulation (PMMS) method [113, 185],
Li and co-workers took an alternate approach by forming the discrete analog to the well-known
perfectly matched layer (PML) of continuum wave propagation [15]. The discrete PML [113],
and its extension MD-PML [65], attempt to create a reflectionless boundary layer by employing
complex-valued elastic constants that vary in space. The change in elastic properties allows one to
tune the impedance of the boundary condition while introducing dissipation through the damping
caused by the imaginary parts of the constants. In the simplest versions of the PMMS method, the
impedance matching is not exact although the boundary condition is local in time and consequently
relatively simple to implement in existing MD frameworks. However, the method is predicated on
determining an optimal damping function which, to date, has not been determined; only ad hoc
forms of this function have been used. The MD-PML method more closely matches the impedance
of the original MD system at the cost of a considerably more complicated, coupled dynamics in
the region where the boundary condition is applied. Comparative studies of the various methods
can be found in the literature [113, 114, 210].

Our proposed method is also motivated by finding an efficient, optimal approximate boundary
condition using essentially the same objective function as Li and E [114], namely the obvious one
of minimum average reflection coefficient over a range of frequencies.1 Unlike E and co-workers
we limit ourselves to multi-layer treatments that are local in time, i.e. no storage of history nor
convolution, in an effort to produce a method that could be applied in an MD simulation without
modification of the underlying code. For instance, the proposed method was constructed in the
well-known LAMMPS code [150] without modification. It relies on treating the mass, damping
constant and stiffnesses of atoms participating in the boundary condition as parameters which
may be varied to optimize the reflection coefficient. The optimization process we employed is
a combination of analytical and numerical methods for simpler systems and is fully numerical
for more complex systems. To this end, we present new results yielding an analytic expression
for the reflection coefficient as a function of frequency for an arbitrary boundary condition in
a 1D harmonic chain. Moreover, we introduce the use of multiple Gaussian wave-packets in a
single MD simulation as a new method for determining the frequency response of the boundary
condition. Given the free parameters and dynamics of our simple one-dimensional model system,
the boundary layer can be interpreted as a sequence of second order filters. In this context, we
observe that the optimal layer is constructed by evenly spacing the zeros of the reflection function

1This approach differs from the original work of E and Huang [43] where only the reflection coefficient in the
neighborhood of zero frequency was used to determine the damping coefficients.
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in the frequency range of interest.2 This effects a collocation of the reflection function to zero at
specific frequencies.

In Section 9.2 we summarize early results for reflection in 1D systems and present new ana-
lytical results that represent a considerable generalization of the previous analysis [176]. These
expressions are used to derive the behavior of a general boundary condition in the high- and low-
frequency limits. In Section 9.3 we put the boundary treatment into practice and apply our numeri-
cal optimization scheme. We give some rationale for choosing among the various permutations the
modified damped layer can have, i.e. modification of mass; spring stiffness, either per atom or per
bond; and damping, either per atom or per bond. With 1D simulation results based on a discrete
sampling of the reflection spectrum using wave packets, we are able to show good correspondence
with the novel analytical results. Then we apply the same methodology to a 3D system with a
more complex lattice and introduce the multiple wave-packet method for MD as a novel means to
efficiently quantify the behavior of a specific boundary condition. We conclude with discussion of
future work including the treatment of general three-dimensional problem where normal incidence
on a planar boundary is not assumed.

9.2 1D chain analysis

The model system we consider for analytical treatment is a monatomic, harmonic 1D chain with
mass m, nearest-neighbor interactions and spring constant κ. The equation of motion for atom n in
the chain, with displacement un, is given by

mün = κ(un+1 +un−1−2un) (9.1)

whose Fourier transform determines the dispersion relation

ω(k)2 = 2ω
2
0(1− cos(ka)) = ω

2
max sin2

(
1
2

ka
)

(9.2)

with the maximum frequency twice the natural frequency of a bond: ωmax = 2
√

κ

m ≡ 2ω0. Here
a is the lattice constant. Periodic boundary conditions allow one to guess that the steady state
solution is the real part of

un = Aiei(kna−ωt) (9.3)

where Ai is a complex amplitude determining the overall phase of the wave and the energy in the
wave (which is proportional to |Ai|2ω2). The velocity is simply the real part of vn =−iωun.

2By looking at the reflection minimization problem as a generic optimization problem, this behavior can be under-
stood. An unmodified, fixed boundary gives a reflection function of one for all frequencies. When zeros are added by
damping/stiffness/mass modification, these zeros act as collocation points for the reflection function. Since it appears
that each damping element adds a single zero at an independent frequency, the optimal solution for a finite number of
collocations in minimizing a function that responds in a regular and uniform fashion is to have those collocation points
be regularly spaced across the function’s finite range.
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9.2.1 Reflectionless boundary condition

As mentioned in the Introduction, the time history kernel (THK) [2] is a linear operator on the
velocity or displacement history. It effects the linear response of semi-infinite lattice and, conse-
quently, it is a perfectly reflectionless boundary condition for small amplitude waves. The THK
is derived by separating an infinite one-dimensional chain into two parts, the explicit (n ≤ 0) and
the implicit (n > 0); solving, with transforms, for the trajectories of the implicit half in terms of
the trajectories of the explicit half; and then substituting these equations in the equations of motion
of the explicit atoms to eliminate unwanted degrees of freedom as in the Mori-Zwanzig formal-
ism [132]. For a nearest-neighbor one dimensional chain, the equation for the last explicit atom
(index n = 0) is

mü0 = κ(u−1−u0)+
Z t

0
θ(t− τ)u0(t)dτ+ r

= κ(u−1−u0)+κu0−
Z t

0
β(t− τ)u̇0(t)dτ+ rβ

(9.4)

where the kernels are: θ(t) = −2κ

t J2(2ω0t) = β̇(t), and β(t) = κ

ω0t J1(2ω0t). Here, J1 and J2 are
the first order and second order Bessel functions of the first kind, respectively. Note that the
terms, r = θ(t)u̇1(0)− θ̇(t)u1(0) and rβ(t) = r(t) + β(t)ü1(0), that collect the initial conditions
are zero if the removed part of the chain is quiescent at t = 0.3 The approach we consider in this
work essentially amounts to simplifying the history kernel while not treating the initial conditions,
which are temperature-dependent. Consequently, any available method in the literature of treating
the finite-temperature effects in these terms could potentially be used without modification in our
method. Here we define

β̄ =
Z

∞

0
β(t)dt =

κ

ω0
(9.5)

and note that β(0) = κ. For a linear chain with a quiescent start, (9.4) reduces to

mü0 = κ(u1−u0)− β̄

Z t

0

1
t− τ

J1(2ω0(t− τ))u̇0(τ)dτ . (9.6)

It is often approximated as
mü0 = κ(u1−u0)− β̄ u̇0 (9.7)

to avoid the convolution integral.

In practice, the integral in (9.4) needs to be approximated by a quadrature based on the discrete
time history of the numerical integrator

mü0(i∆t) = κ
(
u1(i∆t)−u0(i∆t)

)
− β̄

min(N, i−1)

∑
j=0

1
i− j

J1(2ω0∆t(i− j))u̇0( j∆t) (9.8)

where ∆t is the time step and the current time t = i∆t. As we see in Figure 9.1, the performance of
the THK truncated at a finite length degrades with decreasing kernel size N and eventually behaves

3We are not considering thermalized lattices in this work.
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like a simple damped boundary condition. Here we have defined the reflection coefficient as the
ratio of reflected energy to incident energy as a function of frequency of the incident waveform. It
is also noteworthy that the high-frequency response is considerably worse than the low-frequency
response. Finally, we remark that this boundary condition in 1D requires storage of order N and
additional floating point operations of order N at each timestep. Moreover, as the timestep ∆t is
decreased, N must be increased in inverse proportion to ∆t in order to achieve similar performance
to the N = 2000 case pictured here. In three dimensions, the scaling is the same, although the
absolute storage required and computational expense is greater. In contrast, the method we propose
below is independent of the time-step and requires additional storage and computation of order the
number of boundary layers used, which will typically be a much smaller integer than the history
kernel length.
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Figure 9.1. (Color online) Comparison of the (energy) reflection
coefficient as a function of frequency for truncated, finite THKs of
varying convolution length. Frequencies have been normalized by
ω0.

9.2.2 Interfaces

An imperfect boundary condition will inevitably create a change of impedance at the interface
between the explicit region n < 0 where the dynamics are important and the implicit region n ≥
0 which tries to mimic a semi-infinite chain. Scattering off an interface between regions with
different force constants has been solved algebraically. For an interface at n = 0 between regions
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with force constants κ and κ+ Eq. 9.1 becomes

mün = κ(un+1 +un−1−2un), n < 0 (9.9)
mü0 = κ(u−1−u0)+κ+(u1−u0) (9.10)
mün = κ+(un+1 +un−1−2un), n > 0. (9.11)

The solution to these equations was first presented in the literature by Steinbrüchel [176], whose
approach we summarize here. For an incident wave traveling from negative n in the direction of
increasing n, the ansatz is

un = ei(kina−ωit) +Rei(krna−ωrt),n < 0 (9.12)

un = T ei(ktna−ωtt), n≥ 0. (9.13)

Continuity of displacement and its time derivatives for all times yields the condition

ωi = ωr = ωt ≡ ω (9.14)

while the dispersion relation for n < 0 yields

kr =−ki. (9.15)

The wave vector of the transmitted wave is determined by the condition of equal frequencies using
the dispersion relations of the two semi-infinite crystals so that we finally have

un = ei(kina−ωt) +Rei(−kina−ωt), n < 0 (9.16)

un = T ei(ktna−ωt), n≥ 0. (9.17)

Using Eq. 9.9 for n = −1, substituting in the ansatz of Eqs. 9.16 and 9.17, and using mω2 =
κ(eikia + e−ikia−2) yields a statement of displacement continuity at the interface

1+R = T. (9.18)

Eq. 9.10 with similar substitutions of the ansatz and the dispersion relation for the semi-infinite
crystal with force constant κ+ yields

T
[
κ+

(
eikta−1

)
+κ

]
= κ

(
e−ikia +Reikia

)
. (9.19)

There are now two equations (9.18) and (9.19) in two unknowns, T,R, which give the amplitude
of the reflected wave

R =
κ
(
1− e−ikia

)
+κ+

(
e−ikta−1

)

κ
(
eikia−1

)
−κ+

(
e−ikta−1

) . (9.20)

9.2.3 A Single Boundary Layer

A central idea of non-reflecting methods is that the response of a large, effectively semi-infinite re-
gion n≥ 0 to incoming waves can be approximated by an appropriate boundary condition acting on

212



a small portion of this region. To this end, we consider the effect of replacing the semi-infinite re-
gion with force constant κ+ (i.e all n≥ 0) by a series of so-called “boundary layers” with modified
mechanical and elastic properties, see Figure 9.2. When these modifications yield linear equations
of motion, a similar method to Steinbrüchel’s allows the determination of the reflections from this
boundary region. For instance, if viscous damping only is applied to this terminating atom at n = 0
Eq. 9.10 becomes

m0ü0 = κ(u−1−u0)− γu̇0 (9.21)

On the other hand, if the boundary atom is also bonded rigidly to a fixed atom, i.e. to maintain the
lattice constant and prevent relaxation at the terminating layer, Eq. 9.10 becomes

m0ü0 = κ(u−1−2u0)− γu̇0 (9.22)

Indeed, these equations are specific cases of the general equation of motion

m0ü0 = κ(u−1−u0)+λu0− γu̇0, (9.23)

where an elastic force with force constant λ and a viscous damping force with damping constant γ

acts on the boundary particle.

m!

-1 0 1 2-2-3-4-5

! !

m m m

" " "

# # #

01 12

0 1 2

0 1 2

0 1 2

Figure 9.2. (Color online) 1D chain of atoms with nearest neigh-
bor interactions where properties of the atomic layers for n ≥ 0
have been modified.

To determine R for these boundary conditions, one recognizes that for an incident wave travel-
ing in the direction of increasing n, the ansatz is unchanged from Eqs. 9.12 and 9.13. Substituting
the ansatz into the equation of motion for n =−1 yields Eq. 9.18 again so that the displacement of
atom 0 is now known in terms of R. Substituting into the equation of motion for n = 0 and solving
for R yields:

R =
κ
(
1− m0

m

)(
1− e−ikia

)
+κ

m0
m

(
eikia−1

)
−λ− iωγ

κ
(
1− m0

m

)(
eikia−1

)
+κ

m0
m

(
1− e−ikia

)
+λ+ iωγ

. (9.24)

In the case where m0 = m and for the specific ω that satisfies λ + iωγ = −κ+(e−ikta− 1), the
boundary condition has matched the impedance of the semi-infinite region with lattice constant
κ and Eqs. 9.20 and 9.24 are equivalent expressions. Only for this particular frequency will the
boundary condition have a zero reflection coefficient R(ω) = 0.

For a multiscale simulation, the response of the boundary to long wavelength (i.e. continuum-
scale) excitations may be of particular concern. In the limit of zero frequency, e±ikia ∼ 1± iωca
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where c≡ aω0 is the speed of sound in the 1D material. Eq. 9.24 becomes

R = lim
ω→0

iκωca−λ− iωγ

iκωca+λ+ iωγ
, (9.25)

indicating that the presence or absence of an elastic force at the boundary governs the long-
wavelength response of the boundary irrespective of the value of the mass m0. Specifically, a
non-zero elastic force λu0 leads to R(ω = 0) = −1 indicating an inversion of the wave at the
boundary while λ = 0 yields a value less than 1 for γ > 0 (i.e. for dissipative damping). Similarly,
the short-wavelength, high-frequency limit occurs when kia =−π and ω = ωmax yielding

R = lim
ω→ωmax

2κ−4κ
m0
m −λ− iωγ

−2κ+4κ
m0
m +λ+ iωγ

=−1. (9.26)

This result shows that complete reflection (accompanied by inversion) of the highest-frequency
waves occurs independently of the parameters chosen for the boundary condition.

Figure 9.3 shows the frequency response of a chain of atoms where the addition of a harmonic
well, λ > 0, at the end of the chain creates a zero in R2(ω) ≡ |R(ω)|2 near the middle of the
Brillouin zone. We also see that R2(0) = 1 and R2(ωmax) = 1, as predicted. By examining the
form of the THK (9.6), we see that the stiffness of the THK goes to zero for slow disturbances, i.e.
ω→ 0. Clearly, the addition of a harmonic well at the end of the chain does not have this property.
The choice of what modifications to the boundary layers are optimal will be treated more fully in
Section 9.3.

9.2.4 Multiple Boundary Layers

A straightforward extension of Steinbrüchel’s method can be used to determine the reflected am-
plitude for a more general, and more typical, system with a multiple-layer boundary region termi-
nating the chain. However, the algebra quickly becomes cumbersome as the number of boundary
layers increases, and one must consider the different dispersion relations accompanying any change
in the elastic properties of a layer in the boundary region. Here we show that a simpler method
may be used to solve the general problem when one need only determine the value of the reflection
coefficient R.

For a series of N damped layers, take the interface between the undamped and damped layers
once again to be at n = 0. The boundary region is specified by the N equations of motion

m0ü0 = κ(u−1−u0)+κ0,1(u1−u0)+λ0u0− γ0u̇0 (9.27)
...

mnün = κn,n+1(un+1−un)+κn−1,n(un−1−un)+λnun− γnu̇n (9.28)
...

mN−1üN−1 = κN−2,N−1(uN−2−uN−1)+λN−1uN−1− γN−1u̇N−1. (9.29)
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tion of frequency for a chain with a terminal spring λ = 0.4235κ

and damper γ = 0.8866 β̄, which happens to be the optimal bound-
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The N layers are considered to have arbitrary bond stiffnesses κi, j = κ j,i as well as arbitrary single-
body forces (elastic + viscous) and arbitrary masses mi. In this manner, one has considerable
freedom to optimize the boundary condition with respect to these parameters, tailoring it to the
desired properties.

For the Steinbrüchel method the ansatz of Eq. 9.12 is unchanged, recognizing that R is the
superposition of the waves reflected at the interface between atom -1 and 0, 0 and 1, 1 and 2, . . .
N−2 and N−1. Eq. 9.13 is correct for only the terminating atoms and is consequently generalized
to the following N ansatzes

un = Tnei(knna−ωt) +Rnei(−knna−ωt), 0≤ n < N−1 (9.30)
uN−1 = TN−1ei(kN−1(N−1)a−ωt). (9.31)

where it should be noted that the wave with amplitude Tn propagates in the positive x direction and
the one with amplitude Rn propagates in in negative x. These equations can be solved algebraically;
simplifications abound because the phase factors e±knna always occur as a factor with Tn (upper
sign) or Rn (lower sign). However, if one is only interested in R, as is the case here, then the
displacements un may simply be eliminated beginning with uN−1 and ending with u0 to determine
R. For this solution, the initial relation of Eq. 9.18 is replaced by

1+R = R0 +T0 (9.32)

when Eqs. 9.16 and 9.30 for n = 0 are substituted into Eq. 9.9. Rewriting uN−1 in terms of uN−2
via Eq. 9.29 yields

uN−1 =
κN−2,N−1

(κN−2,N−1−mN−1ω2−λN−1− iωγN−1)
uN−2 ≡ GN−1uN−2. (9.33)

Indeed, un may generally be written in terms of un−1 as

un = Gnun−1, 0≤ n≤ N−1. (9.34)

The functions Gn are determined from the recurrence relation

Gn =
κn−1,n

(κn−1,n +κn,n+1(1−Gn+1)−mnω2−λn− iωγn)
,0≤ n < N−1 (9.35)

which is a continued fraction in the functions G. The recursion is terminated using GN−1 given in
Eq. 9.33 or alternatively by defining GN ≡ 1 and using Eq. 9.35. Finally, given u0 = G0u−1 along
with u0 and u−1 being known in terms of R, one has

R =
G0e−ikia−1
1−G0eikia

. (9.36)

In the high-frequency limit ω→ ωmax we have exp±ikia→−1 once again yielding R→−1 irre-
spective of the parameters used for the boundary region.
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9.3 Optimization of damped layers

The analytical results from the previous section can be used to study the 1D chain in great detail,
but their applicability to typical 3D systems of interest is more limited. In this section we determine
the optimal parameters for various types of boundary conditions using our analytical results as well
as numerical techniques that will be introduced in this section.

We first apply the purely analytical results of the previous section to the PMMS/PML method [113,
185] in order to determine optimal damping functions for that method. We then turn to molecular
dynamics (MD) [5] simulations in both one (1D) and three dimensions (3D). We employ Gaus-
sian wave-packets to sample R(ω) and then use this information to optimize the parameters of a
particular boundary treatment. Our technique uses wave-packets at many frequencies in the same
simulation for efficient sampling.

Briefly, MD uses Newtonian dynamics with a numerical integration (in our case velocity Ver-
let) to simulate the particle trajectories subject to interatomic forces, see e.g. Frenkel and Smit’s
text [60]. The first MD system we consider is a simple chain with a monatomic basis. The sec-
ond system is a 3D silicon crystal with a “long” direction along the x-axis and periodic boundary
conditions in the y− and z− directions. The interface between atoms of interest and the atoms
for the boundary condition lies in the y− z plane at the high x end of the simulation cell. For the
excitations studied here, the 3D system is analogous to the 1D system although its dynamics are
more complex.

Each optimization is used to validate the next. We use the optimal, analytically derived 1D
damped boundary condition to validate the numerical results that are derived independently using
the wave-packet method. With the wave-packet method we treat a richer set of configurations of
the boundary layer and we carry over the best of these treatments to the 3D system. The 3D system
is then used to test the applicability of this method to a more typical system of interest.

9.3.1 Minimization of the reflection coefficient

Here we define the optimum set of parameters P to be that set which minimizes R2, the average
value of R2(ω) over the Brillouin zone. This is certainly not the only possible definition; but it
is the simplest which incorporates information about the performance of the boundary condition
across the entire frequency spectrum. Alternatively, one may wish to focus on performance in a
specific frequency band or one may consider thermal systems where it may be more appropriate to
compute thermodynamic averages and incorporate the density of states.

Although R(ω) is known analytically for the 1D case, the integral of R over frequency is not,
so we use numerical integration to determine R2 and to optimize this value as a function of the free
parameters. The actual values of R for any frequency ω may be determined directly from analytical
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expressions or using wave-packet MD simulation. Formally, the optimization problem is given by

min
P

R2 ≡min
P

1
ωmax

Z
ωmax

0
R2(ω)dω≈min

P

1
∑i ∆ωi

∑
i

R2(ωi)∆ωi (9.37)

where the rightmost expression is appropriate for the discrete sampling inherent in numerical in-
tegration methods. This is a nonlinear optimization which we perform with a local optimizer (a
Newton-Raphson variant with a finite-difference Hessian). The solution to any local optimization
scheme depends on the starting set of parameters. Hence, as we determine the optimal solutions
for a sequence to treatments of increasing number of layers, we use the previous solution for a
similar treatment with fewer layers (and parameters) which is subsumed in the current treatment.
In addition, we bound the range of the parameters so that the critical time step of the explicit time
integration is not affected by the boundary treatment.

Specifically, we can optimize with respect to a subset of the free parameters treated in Section
9.2.4: (a) damping only P = {γi}, (b) interatomic spring plus per-atom damping P = {γi,κi j}, (c)
mass modification plus damping P = {γi,mi}, and (d) mass, stiffness and damping modification
P = {γi,mi,κi j}. Since the harmonic oscillators representing the motion of the atoms in the lattice
are coupled, each of these parameters, namely mass, damping and stiffness, are independent. In
terms of the linear system, mass scales the diagonal of the dynamical matrix, i.e. the left-hand side
of Eqs. (9.27-9.29) reduced by mass and in matrix form, whereas interatomic spring stiffness also
scales off-diagonal entries. We did not investigate the addition of harmonic well stiffness since
it precludes R2(0) < 1, as discussed in Section 9.2.3, nor the addition of interatomic dampers.
Interatomic dampers were discarded as a candidate modification mainly due to the fact they were
not available in our target 3D code LAMMPS [150] and are also relatively complex to implement
due to the dependence on neighbor lists.

9.3.2 Perfectly Matched Layers

The free parameters of masses, stiffnesses, and damping constants provide considerable freedom
in constructing a boundary condition. Indeed, the perfectly-matched multiscale (PMMS) method
using discrete PML [113, 185] for the boundary region is a special case of this method. For the 1D
chain, the PMMS boundary condition can be addressed analytically using the results of Section
9.2. Following To and Li [185], we use a so-called “damping function” di to define the parameters
for layer i. Li et al. [113] present two possible boundary conditions that are local in time (and one
that is non-local in time that we will not treat here). The boundary conditions differ by the choice
of exponent in a scaling function used to modify the dynamics of the atoms in the boundary layer.
For the simplest case, each boundary atom experiences a viscous force with damping constant
γi = mdi, and we refer to this PMMS model as the “linear model.” In the “quadratic model” the
scaling is the square of that in the linear model and one has the nonzero parameters λi = md2

i and
γi = 2mdi. The mass is not considered variable in the PMMS method, so only a single mass m is
defined for the chain. Likewise, the bond stiffness is held constant so that κi j = κ for all layers.
Given these definitions, the reflection coefficient as a function of the damping function is given by
substitution into Eq. 9.36.
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Given the analytical expression for R(ω), the ad-hoc expressions for the damping function
used in PMMS may be critically evaluated. The damping function di = d i2 used in PMML in the
literature is due to Collino and Tsogka (CT) [34], and has a single free parameter d. We optimize
this semi-empirical damping function with respect to its free parameter for both the linear and
quadratic stretching functions. An optimization is also carried out for each stretching function
where no functional form is imposed on the damping function, i.e. each {di, i = 1...N} is treated
as a free parameter. The results of this optimization are shown in Fig. 9.4, and for comparison we
show the optimal result for “ramped damping” where the damping constant varies linearly from the
first to the last boundary atom γi = γi. As seen in the Figure, PML outperforms ramped damping,
and the simplest method with linear stretching, which corresponds to each atom being damped with
no other modification, yields the overall minimum of R2. As the number of layers N increases, we
observe a power-law decay in R2 with R2∼N−0.76. For comparison, the CT damping function with
linear stretching decays as N−0.58, while the quadratic stretching decays as N−0.64 in the optimal
case and as N−0.54 using the semi-empirical damping function.

The optimal damping parameters as a function of the number of boundary layers N are shown in
Fig. 9.5. Interestingly, the optimal damping constants approach β̄ for the last (rightmost) boundary
atom and approximately follow a linear, ramped damping profile for the rest of the boundary
atoms. Alternately, it is apparent from Figure 9.5b that the locus of damping values decays with
nearly power law trend from the free end to the interface. However neither approximation is
sufficiently accurate to allow us to ascertain the exact functional form of the optimal damping
profile. The amplitude of the reflection coefficient as a function of frequency R2(ω) is shown
in Fig. 9.6. The effect of increasing N is to introduce additional local minima into the reflection
coefficient, thereby lowering the average over frequency. Also, as N increases zeros in R(ω) appear
near the high frequency end of the Brillouin zone, as evidenced by the cusp-like minima above
normalized frequency 1.8.

9.3.3 Wavepackets

For more complicated systems, the frequency response of the boundary can be determined via MD
simulations using the multiple wave-packet method [94]. In this method, a set of wave-packets,
each with a central wave-vector ~ki and central frequency ωi, propagate at their group velocities
∂ω

∂~k
|~k=~ki

. In particular for a central wave-vector~ki, normal mode amplitudes ξ~kζ
given by

ξ
i
ζ
(~ki +(δkx)x̂) = Aie−η2

0δk2
x e−i(~ki+(δkx)x̂)·~Ri (9.38)

are combined to generate a single wave-packet [169]. The subscript ζ labels the phonon branch,
which is fixed for a given simulation. The arbitrary complex amplitude Ai determines the overall
energy in the wave-packet, and the δkx–dependent phase shifts yield non–zero displacements and
velocities localized about ~Ri in real space. The spatial extent of the localization varies inversely
with η0, which is chosen so that the wave-packets do not overlap in frequency content. The initial
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atomic displacements are given by

~uil(t = 0) = Re ∑
i

∑
~k,ζ

ξ
i
ζ
(~k)~εiζ(~k)e

i~k·~Rl−iωζ(~k)t
∣∣∣∣
t=0

(9.39)

where ~uil(t) represents the displacement for atom i in the unit cell labeled by l. The polarization
vector~εiζ(~k) is determined by diagonalizing the dynamical matrix of the bulk perfect crystal, as
are the frequencies ωζ(~k), i.e. they are the eigenvectors and corresponding eigenvalues. The initial
velocities~vil are given by the time derivative of Eq. 9.39 at t = 0.

To determine the energy transmission coefficients as a function of branch and frequency, the
final displacements and velocities after transmission through the interface are analyzed in terms
of the normal modes of the perfect crystal lattice. The inverse of Eq. 9.39 is used to calculate the
normal mode amplitudes ξζ(~k) after reflection from the boundary condition. Frequency space is
binned with a bin centered on each central frequency of the multiple wave-packets. The ratio of
the energy reflected by the boundary in a given frequency bin to the initial energy in the same bin
yields the discrete approximation to R2(ω) sampled over branch ζ. Given that the group velocities
of the wave-packets depend on their central frequencies, care was necessary in assuring that the
reflected packets all returned from the boundary within a given time window. In the following, the
number of wave-packets employed will be apparent from the number of points used in the graphs
of R2(ω).

9.3.4 Optimal damped layers

As mentioned at the beginning of this section, we use 1D MD together with the wave-packet
method validated with analytical results in order to have a fully tested numerical optimization
algorithm for our 3D system. To this end, we use a 1000 atom chain interacting with a Lennard-
Jones (LJ) potential ( ε = 1.0 and σ = 1.0 ) as an efficient test case for optimizing boundary
treatments of fixed type and given number of layers. It is also an analogous system in all but the
non-linearity to the one analyzed in Section 9.2 and identical to the one treated in Section 9.3.2.
The mass of all the atoms in the unmodified part of the chain was m = 1.0. The zero temperature
stiffness of the chain κ = 72.0 gives a natural frequency ω0 =

√
72.0 and ω0/100 ≈ 0.0012 was

chosen as a suitable time-step. Wave packets with positive propagation directions were generated
at the negative end of the (non-periodic) chain, please refer again to the schematic in Figure 9.2.

Optimal solutions

Figure 9.7 shows the spectral response of the optimal boundary conditions for the four types of
damping layers described in Section 9.3.1, namely : (a) damping only, (b) interatomic spring plus
per-atom damping, (c) mass modification plus damping, and (d) mass, stiffness and damping mod-
ification. Corresponding analytical solutions for some of the treatments are plotted for comparison
and to show the behavior at the ends of the Brillouin zone. It is evident from Figure 9.7 that the
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numerical scheme replicates the analytical results in an acceptable fashion given the discrete fre-
quency sampling. The error is seen to be negligible in most cases and greatest when the function
being sampled has a large derivative with respect to frequency. This trend can be attributed to the
finite spread in frequencies comprising a single wave packet, and the error may be reduced by re-
ducing this spread at the expense of a larger MD system size. For reference, the response of THK
with a 2000 step history and total reflection coefficient of R2 = 0.0031 is also shown. Clearly,
the addition of stiffness or mass allows the optimal placement of zeros in the reflection spectrum
R2(ω) as evidenced by the cusp-like minima. As more layers are added the zeros appear to be
approximately evenly spaced across the Brillouin zone which effects a collocation of the reflection
response to zero at discrete frequencies. For this particular system there appears to be a one-to-one
correspondence with the number of zeros and the number of layers.

Table 9.1 summarizes the actual values determined by MD and numerical optimization for
the various boundary treatments considered. As observed in Section 9.3.2, the set of parameters
{γi} for the damping-only optimal solutions does not display the linearity of a ramp but there is a
marked increase in γi from nearly zero to a value nearly equal to β̄ as the layer index i increases
away from the interface and toward the free end. Comparing with Sec. 9.3.2, it is evident that
the fully numerical approach has independently determined the optimal damping function for the
linear PML stretching function, which provides validation of the MD wave-packet approach in the
present context. The monotonic trend of {γi} can also be seen in the mass-damping and mass-
spring-damping treatments but not in the mass-spring boundary condition. From the data in Table
9.1, we can see that the trend is nearly a power-law in the damping-only and damping with mass
adjustment, which is consistent with the findings of Sec. 9.3.2. From Figure 9.8 we can see that,
for the mass-damping treatment, as N increases the damping per layer approaches a similar power
law trend to a damping alone treatment albeit with a slightly faster decay. The mass, although
clearly showing a smooth decay, is not well approximated by a power law (nor an exponential).

The table shows that the optimal solution for a single layer of damping is γ = β̄, the velocity
coefficient in the approximate β form of the THK, Eq. (9.7). It is also apparent from the table that
changing the mass to (approximately) half the normal mass (and the damping to approximately 3

4 β̄)
leads to about five times better reflection coefficient than an optimal single layer treatment with
damping alone. Consequently, the optimal PMMS methods treated here are not globally optimal,
i.e. the variation of additional free parameters such as mass leads to significantly less reflection.

Figure 9.9 shows the convergence of R2 with increasing number of layers for the four types of
treatments. It is apparent that the convergence rate of spring-damping is comparable to damping
alone and, similarly, mass-spring-damping is comparable to just mass-damping, albeit with better
leading coefficients. This observation is corroborated by fact that the optimal modified stiffnesses
are near the value κ of the unmodified part of the chain. This first result is quite surprising since
spring-damping clearly affords the optimal placement of zeros in R2(ω) that are absent in damping
alone for a small number of boundary layers. Lastly, it is interesting to note that total reflection
coefficient for the THK with a 2000 sample kernel is higher than the N > 2 layer mass-damper
and mass-spring-damper solutions mainly due to the high frequency behavior which has been
manipulated by placing a zero near ωmax.
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N R2 γ0 m0 κ0,1 γ1 m1 κ1,2 γ2 m2 κ2,3 γ3 m3
1 0.1476 1.000 - - - - - - - - - -
2 0.0650 0.288 - - 1.059 - - - - - - -
3 0.0424 0.164 - - 0.282 - - 1.114 - - - -
4 0.0311 0.122 - - 0.172 - - 0.303 - - 1.167 -
1 0.1476 1.000 - - - - - - - - - -
2 0.0434 0.420 - 1.167 1.121 - - - - - - -
3 0.0265 0.508 - 1.188 0.140 - 0.767 1.185 - - - -
4 0.0189 0.376 - 1.148 0.349 - 0.896 0.129 - 0.743 1.317 -
1 0.0316 0.749 0.504 - - - - - - - - -
2 0.0068 0.066 0.856 - 0.799 0.412 - - - - - -
3 0.0021 0.004 0.938 - 0.114 0.823 - 0.789 0.351 - - -
4 0.0008 0.000 0.967 - 0.028 0.927 - 0.140 0.790 - 0.772 0.307
1 0.0316 0.749 0.504 - - - - - - - - -
2 0.0040 0.168 0.893 1.086 0.823 0.392 - - - - - -
3 0.0013 0.000 0.985 1.039 0.199 0.843 1.086 0.798 0.328 - - -

Table 9.1. Optimal non-dimensional parameters per layer.
Masses mi have been divided by the mass of a regular atom m,
damping constants γi by β̄ =

√
mκ and the stiffnesses κi j by the

zero temperature stiffness of the LJ bonds κ. For comparison, a
THK with a kernel of size 2000 has R2 = 0.0031.
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Figure 9.7. (Color online) Reflection coefficient as a function
of frequency for optimal damping and stiffness compared to the
THK: (a) damping only, (b) spring and damping, (c) mass and
damping, and (d) mass spring and damping. The curves that extend
from normalized frequency 0 to 2 were generated from the analytic
solution which was optimized independently.
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Figure 9.8. (Color online) Optimal values of damping and mass
for a mass-damper boundary layer counting from the free end.
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comparison with Fig. 9.5.
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Shock

We tested our tuned boundary conditions with a broadband disturbance created by a large am-
plitude velocity impulse in the nonlinear regime, where the amplitude of the resultant shock was
roughly one hundred times that of the wave-packets. This simulation was chosen over, for exam-
ple, a fracture simulation since it was much simpler to construct and analyze while at the same
time replicating most of the qualitative features of an isolated fracture event. We compared the op-
timal N = 3 layer mass-spring-damper treatment (refer to Table 9.1) to a THK with a 2000 sample
kernel.

Figure 9.10a shows the frequency response of the THK and optimal damping. A fast Fourier
transform (FFT) of the incident velocity waveform was taken after shock developed but before it
interacted with the boundary. Similarly, FFTs of the reflected waveform were taken after all the
significant part of the wave form had left the vicinity of the boundary. Figure 9.10a clearly reflects
the relationship Ere f lected(ω) = R2(ω)Eincident(ω) and that both treatments are ineffective at remov-
ing the high frequency content with nearly zero group velocities.4 Figure 9.10b shows the temporal
response of the THK and damped layers to the velocity impulse, where both are characteristic of
the THK’s β kernel (9.4) damped oscillations. Clearly, the exponential envelope of the layer so-
lution falls inside the envelop of the THK. As a point of reference for this particular system, the
THK treatment took 2.941 seconds to complete 100,000 time steps, compared to 0.990 seconds for
the layers solution which represents approximately a factor of 3 speed-up for essentially the same
performance.

9.3.5 Optimal layers in a three dimensional system

In this simulation we employ a 500× 1× 1 unit cell silicon system with Stillinger-Weber inter-
actions [177]. Although the long direction of the system draws comparison to the 1D chain, the
potential includes three body interactions and the silicon lattice has a polyatomic basis, leading to
the presence of optical branches in the phonon spectra. We consider the response of the boundary
to longitudinal acoustic (LA) wave packets which have normal incidence on the y− z boundary
plane, i.e. the incident wave packets have central wave vectors of the form (kx00), yielding a dis-
persion relation functionally equivalent to the 1D chain. Although the dispersion relation of the 3D
system is much richer than the 1D system, we optimize R2 only over the LA branch ω(kx00) and
note that we do not observe conversion between branches as wave packets scatter off the boundary.
In this case we only consider damping or mass and damping modification per quarter cell layer,
since these boundary treatments are as effective as those that modify the stiffness and required no
modification of LAMMPS [150].

4In a finite temperature simulation these frequencies would be interpreted as thermal vibrations and arguably
demand separate treatment.
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Figure 9.10. (Color online) Shock incident and reflected en-
ergy normalized by the total energy of the incident waveform (a)
and temporal response (b) for the optimal three layer mass-spring-
damper boundary condition and a 2000 step long THK. Frequency
has been normalized by ω0.

Optimized layers

Figure 9.11 shows the frequency response of the optimal filters which are tuned for the full longi-
tudinal acoustic (LA) spectrum. From Figure 9.11 it is not apparent that the reflection coefficient
for any of the boundary layer treatments is approaching one at the high frequency end of the Bril-
louin zone as in the one-dimensional case without a basis, although this may just be an artifact
of our ability to resolve frequencies at the ends of the Brillouin zone with wave-packets. Clearly,
mass-damping is more effective across the full spectrum than damping alone due to adding zeros
of the reflection coefficient near the middle of the Brillouin zone. This fact is demonstrated by the
convergence rates shown in Figure 9.12. The mass-damping treatment is also more effective than
an optimized linearly ramped damping, which has a convergence rate comparable to optimal per
layer damping. However, unlike per-layer optimized treatments which tend to be more effective
at lower frequencies, ramped damping is particularly effective at damping high frequencies. Table
9.2 shows that the trends in the optimal parameters are similar but not quite the same as the 1D
system of Section 9.3.4 summarized in Table 9.1. In fact, the optimal damping for this system
is not always monotonic with increasing layer index i. Figure 9.12 also shows that the rates of
convergence for similar boundary treatments are also substantially lower in this quasi-3D setting.

Shock

As in Section 9.3.4, we generate a velocity impulse at the low x end of the system that propagates
toward the damped boundary at the high x end as a test of the ability our tuned layer to handle
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N R2 γ0 m0 γ1 m1 γ2 m2 γ3 m3
1 0.0412 1.000 - - - - - - -
2 0.0379 0.099 - 1.020 - - - - -
3 0.0286 0.164 - 0.084 - 1.000 - - -
4 0.0267 0.076 - 0.168 - 0.081 - 1.006 -
1 0.0035 0.917 0.555 - - - - - -
2 0.0015 0.073 1.031 0.936 0.575 - - - -

Table 9.2. Optimal non-dimensional parameters per layer.
Masses mi have been divided by the mass of a regular atom m,
damping constants γi by β̄. For reference, the optimal ramped
solution are: one layer γ = 1.000 with R2 = 0.0412, two lay-
ers γ = 0.8602 with R2 = 0.0664, three layers γ = 0.7493 with
R2 = 0.0578, four layers γ = 0.7234 with R2 = 0.0532.
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Figure 9.11. (Color online) Reflection coefficient as a function
of frequency for optimal damping and mass compared to ramped.
(a) damping only, (b) mass and damping.
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Figure 9.12. (Color online) Total reflection coefficient as a func-
tion of number of layers. Upper black trend line exponent −1

3 ,
lower trend line −1.

a broadband disturbance characteristic of a fracture event. Figure 9.13 shows discrete Fourier
transforms of the displacement waveform after it has reflected from the end for both: (a) an optimal
two layer mass-damper treatment and (b) a simple fixed end condition. The fixed end clearly
preserves the frequency content of the waveform whereas the damped layer decreases the main
displacement components significantly. The reflection coefficient obtained from this waveform is,
at least qualitatively, consistent with the frequency response obtained from the wave-packets, as
shown in Figure 9.11. Both the longitudinal optical (LO) and longitudinal acoustic (LA) branches
show similar behavior despite the fact that the boundary treatment was only tuned to LA wave-
packets. Another observation of interest is : there are many more zeros to the reflection response
than would be expected from the number of layers and the 1D results of Section 9.3.4 (In 1D we
observed one zero per layer for low number of layers of mass-damping).

9.4 Discussion

We have provided analysis and a numerical methodology to create efficient, effective, nearly reflec-
tionless boundary treatments. The methodology can be trivially extended to band-pass filtering for
the low frequency / high frequency split necessary for multiscale domain decompositions. The one
obvious downside to our approach is that it is apparently dependent on the particular impedance
properties of the system of interest and in principle requires an optimization step to determine
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Figure 9.13. (Color online) Shock in Si (a) longitudinal acous-
tic (LA) branch, (b) longitudinal optical (LO) branch. The wave
vector has been normalized by π over the lattice constant a =
5.43094 Å.

effective parameters for damping. However, this step may at worst be performed once for a sys-
tem which is used for many different simulations, i.e. for Stillinger-Weber silicon with an (001)
boundary plane. Also, effective but not optimal boundary conditions may be employed without
the optimization process, by applying known parameters from one system to a similar system.
Although we have not explored the sensitivity of the parameters in the optimal solutions, we con-
jecture that the reflection properties are not extremely sensitive to the exact values of damping,
additional mass and interatomic stiffness per layer. Moreover, the clear trend in optimal PMMS
solutions for the 1D system suggest a better-performing alternative to the current damping func-
tions commonly used in that method. With that being said it seems practical to construct a useful
damped boundary treatment by just understanding where added mass or stiffness places zeros in
the reflection spectrum in the frequency band of interest.

One perspective that may help in this endeavor is the idea that each of the damped boundary
layers governed by second order ordinary differential equations characteristic of coupled, damped
harmonic oscillators which can be interpreted in the context of a sequence of second order filters.
In the optimization problem, we adjust mass, damping and stiffness of the exterior layers in order
to effect zeros in the transfer function defined by the reflection coefficient R(ω) in analogy with the
design of a filter. Although there is no history or convolution explicitly in this type of treatment, the
propagation of a waveform through a finite number of layers adds delays that are also characteristic
of a sequential filter. Basic filter design relies on “zero-pole” analysis of the transfer function R(ω)
which starts with a factorization of the numerator and denominator of the transfer function. We
will pursue this analysis this in future work. Like all other treatments known to the authors, our
analysis is done in continuous time and connects to analog filters. In future work we intend to
explore the discrete time aspects of the MD reflectionless boundary condition problem.
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The analogy between wave propagation and signal propagation is actually an old one going
back to Brillouin [20, Chapter 3]. Specifically Brillouin states that a boundary layer with half
the mass of the normal chain leads to a vanishing real part of impedance, a fact that our results
corroborate, refer to Table 9.1. In the event that a full optimization is not warranted for the system
of interest, a single layer of damping with half the mass and a damping coefficient of approximately
the spring constant times the natural frequency should be effective as a non-reflecting boundary
condition. For a multiple-layer boundary condition, the optimal linear PML may be used where
the final damped atom is damped by the same value suggested for a single-layer and a ramped
damping profile is used for all other layers.

We have not touched on the issues implicit in truly three dimensional configurations with wave-
forms with non-normal incidence, nor on lattices with more than nearest neighbor interactions. We
leave these topics for future work. Extension of this work to finite temperature systems should
be relatively straightforward since the creation of the damping kernel or its efficient approxima-
tion, as in this work, is independent of the generation of the random force term used in general-
ized Langevin treatments to maintain the temperature at the boundary. Of course the fluctuation-
dissipation theorem does link the two together and establishing this connection precisely for the
proposed represents the primary challenge.
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Chapter 10

Publications and Presentations
This project has produced the following articles and presentations:

“A material frame approach for evaluating continuum variables in atomistic simulations”,
Jonathan A. Zimmerman, Reese E. Jones, and Jeremy A. Templeton, Journal of Computational
Physics, 229, pp. 2364-2389, 2010.

“Prediction of instabilities at the atomic scale”, T J Delph and J A Zimmerman, Modelling and
Simulation in Materials Science and Engineering, 18, p. 045008, 2010.

“The construction and application of an atomistic J-integral via Hardy estimates of continuum
fields”, Reese E. Jones and Jonathan A. Zimmerman, Journal of the Mechanics and Physics of
Solids, 58, pp. 1318-1337, 2010.

“An atomistic J-integral at nite temperature based on Hardy estimates of continuum fields”, Reese
E. Jones, Jonathan A. Zimmerman, Jay Oswald, and Ted Belytschko, Journal of Physics:
Condensed Matter, 23, p. 015002, 2011.

“Finite Element Analysis of an Atomistically-Derived Cohesive Model for Brittle Fracture”,
Jeffrey T. Lloyd, Jonathan A. Zimmerman, Reese E. Jones, Xiaowang Zhou, and David L.
McDowell, Modelling and Simulation in Materials Science and Engineering, 19, p. 065007,
2011.

“A Material Frame Approach for Evaluating Continuum Variables Within Atomistic
Simulations”, Presented at the International Symposium on Plasticity, St. Thomas, U.S. Virgin
Islands (January 3-8, 2009).

“Challenges of and Variations on Coupled Atomistic-Continuum Simulation”, Presented at the
Joint U.S. Russia Conference on Advances in Materials Science, Prague, Czech Republic (August
31 September 4, 2009).

“Extracting Continuum Variables from Atomistic Simulation”, J.A. Zimmerman, Presented at
Invited Seminars at Washington State University (July 9, 2009), the University of Houston
(October 29, 2009) and the University of Colorado at Boulder (April 8, 2010).

“Evaluating Continuum Variables Within Atomistic Simulations: A Material Frame Approach”,
J.A. Zimmerman, R.E. Jones and J.A. Templeton, 2009 MRS Spring Meeting, San Francisco, CA
(April 13-17, 2009).

“A Criterion for Predicting Instabilities in Nanostructures”, Jonathan A. Zimmerman and Terry J.
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Delph, Presented at the 16th US National Congress of Theoretical and Applied Mechanics
(USNCTAM 2010), State College, PA (June 27 - July 2, 2010).

“The construction of an atomistic J-integral via estimates of continuum fields”, R. Jones, J.
Zimmerman, J. Oswald, and T. Belytschko, Presented at the 2011 US National Congress of
Computational Mechanics (USNCCM 2011), Minneapolis, MN (July 25 - July 28, 2011).

“Application of an Atomistically-Derived Cohesive Model of Brittle Fracture”, Jeffrey T. Lloyd,
Jonathan A. Zimmerman, Reese E. Jones, Xiaowang Zhou, and David L. McDowell, Presented at
the 2011 US National Congress of Computational Mechanics (USNCCM 2011), Minneapolis,
MN (July 25 - July 28, 2011).

234



References

[1] F. F. Abraham and H. Gao. How fast can cracks propagate? Phys. Rev. Lett., 84(14):
3113–3116, 2000.

[2] S. A. Adelmann and J. D. Doll. Generalized Langevin equation approach for atom-solid
surface scattering: General formulation for classical scattering off harmonic solids. J. Chem.
Phys., 64(6):2375–2388, 1976.

[3] N.C. Admal and E.B. Tadmor. A unified interpretation of stress in molecular systems.
Journal of Elasticity, 2010. In Press.

[4] I. Alber, J. L. Bassani, M. Khantha, V. Vitek, and G. J. Wang. Grain boundaries as hetero-
geneous systems: atomic and continuum elastic properties. Phil. Trans. R. Soc. Lond. A,
339:555–586, 1992.

[5] M.P. Allen and D.J. Tildesley. Computer Simulation of Liquids. Clarendon Press, Oxford,
1989.

[6] T. L. Anderson. Fracture Mechanics: Fundamentals and Applications. CRC Press, Inc.,
Boca Raton, FL, 2nd edition, 1995.

[7] P C Andia, F Costanzo, and G L Gray. A lagrangian-based continuum homogenization
approach applicable to molecular dynamics simulation. International Journal of Solids and
Structures, 42:6409–6432, 2005.

[8] Pedro C Andia, Francesco Costanzo, and Gary L Gray. A classical mechanics approach to
the determination of the stress-strain response of particle systems. Modelling and Simulation
in Materials Science and Engineeing, 14:741–757, 2006.

[9] F. Armero and J. C. Simo. A new unconditionally stable fractional step method for non-
linear coupled thermomechanical problems. Int. J. Num. Meth. Eng., 35:737–766, 1992.

[10] N. W. Ashcroft and N. D. Mermin. Solid State Physics. Holt, Rinehart and Winston, New
York, NY, 1976.

[11] Standard test method for linear-elastic plane-strain fracture toughness KIc of metallic
materials. ASTM, E399-09 edition, 2009.

[12] T.H.K. Barron and M.L. Klein. Perturbation theory of anharmonic crystals. In G.K. Horton
and A.A. Maradudin, editors, Dynamical Properties of Solids, volume 1. North Holland,
Amsterdam, 1974.

[13] M. F. Beatty. Topics in finite elasticity: hyperelasticity of rubber, elastomers, and biological
tissues – with examples. Appl. Mech. Rev., 40:1699–1734, 1987.

235



[14] R. Bellman. Introduction to Matrix Analysis. McGraw-Hill, New York, 2nd edition, 1970.
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[176] C. Steinbrüchel. The scattering of phonons of arbitrary wavelength at a solid-solid interface:
Model calculation and applications. Zeitschrift fur Physik B Condensed Matter, 24:293–
299, 1976.

[177] F H Stillinger and T A Weber. Computer simulation of local order in condensed phases of
silicon. Physical Review B, 31:5262–5271, 1985.

[178] Arun K. Subramaniyan and C. T. Sun. Continuum interpretation of virial stress in molecular
simulations. Int. J. Solid Struct., 45(14-15):4340–4346, 2008.

[179] A. P. Sutton. Temperature–dependent interatomic forces. Phil. Mag. A, 60(2):147–159,
1989.

[180] J Tersoff. New empirical model for the structural properties of silicon. Physical Review
Letters, 56:632–635, 1986.

[181] J Tersoff. Modeling solid-state chemistry: interatomic potentials for multicomponent sys-
tems. Physical Review B, 39:R5566–R5568, 1989.

[182] V. K. Tewary. Green-function method for lattice statics. Adv. Phys., 22:757–810, 1973.

[183] V. K. Tewary and R. Thomson. Lattice statics of interfaces and interfacial cracks in bimate-
rial solids. J. Mater. Res., 7:1018–1028, 1992.

[184] R. Thomson, C. Hsieh, and V. Rana. Lattice trapping of fracture cracks. Journal of Applied
Physics, 42(8):3154–3160, 1971.

[185] A.C. To and Shaofan Li. Perfectly matched multiscale simulations. Phys. Rev. B, 72(3):
35414–1–8, 2005.

[186] Albert C. To, Wing Kam Liu, and Adrian Kopacz. A finite temperature continuum theory
based on interatomic potential in crystalline solids. Comput. Mech., 42(4):531–541, 2008.

[187] C. Truesdell and W. Noll. The non-linear field theories of mechanics. Encyclopedia of
Physics, III, 1965. S. Flugge, ed.

246



[188] D H Tsai. The virial theorem and stress calculation in molecular dynamics. J. Chem. Phys.,
70:1375–1382, 1979.

[189] J-L Tsai, S-H Tzeng, and Y-J Tzou. Characterizing the fracture parameters of a graphene
sheet using atomistic simulation and continuum mechanics. International Journal of Solids
and Structures, 47(3-4):503–509, 2010.

[190] V. Tvergaard and J.W. Hutchinson. The influence of plasticity on mixed mode interface
toughness. J. Mech. Phys. Solids, 41(6):1119–1135, 1993.

[191] R. Guido Della Valle and E. Venuti. Quasiharmonic lattice dynamics and molecular dynam-
ics calculations for the Lennard–Jones solids. Phys. Rev. B, 58:206–212, 1998.

[192] E. Van der Giessen and A. Needleman. Dislocation plasticity effects on interfacial fracture.
Interface Science, 11:291–301, 2003.

[193] K. J. VanVliet, J. Li, T. Zhu, S. Yip, and S. Suresh. Quantifying the early stages of plasticity
through nanoscale experiments and simulations. Phys. Rev. B, 67:104105, 2003.

[194] A Voter. Embedded atom method potentials for seven FCC metals: Ni, Pd, Pt, Cu, Ag, Au
and Al. Technical Report LA-UR 93-3901, Los Alamos National Laboratories, 1993.

[195] A. F Voter and S. P. Chen. Accurate interatomic potentials for Ni, Al and Ni3Al. volume 82
of MRS Symposium Proc., pages 175–180, 1987.

[196] G. J. Wagner and W. K. Liu. Coupling of atomistics and continuum simulations using a
bridging scale decomposition. J. Comp. Phys., 190:249–274, 2003.

[197] G J Wagner, R E Jones, J A Templeton, and Parks M L. An atomistic-to-continuum cou-
pling method for heat transfer in solids. Computer Methods in Applied Mechanics and
Engineering, 197:3351–3365, 2008.

[198] D. C. Wallace. Thermodynamics of Crystals. Dover, Mineola, NY, 1972.

[199] J. Wang, J. Li, S. Yip, S. Phillpot, and D. Wolf. Mechanical instabilities of homogeneous
crystals. Phys. Rev. B, 52:12627–12635, 1995.

[200] Edmund B Webb III, Jonathan A Zimmerman, and Steven C Seel. Reconsideration of
continuum thermomechanical quantities in atomic scale simulations. Mathematics and
Mechanics of Solids, 13:221–266, 2008.

[201] J H Weiner. Statistical Mechanics of Elasticity. Dover Publications, Inc., Mineola, New
York, 2nd edition, 2002.

[202] S. Xiao and W. Yang. Temperature–related Cauchy–Born rule for multiscale modeling of
crystalline solids. J. Comp. Phys., 36, 2006.

[203] X.-P. Xu and A. Needleman. Void nucleation by inclusion debonding in a crystal matrix.
Modelling Simul. Mater. Sci. Eng., 1:111–132, 1993.

247



[204] X.-P. Xu and A. Needleman. Numerical simulations of fast crack growth in brittle solids. J.
Mech. Phys. Solids, 42(9):1397–1434, 1994.

[205] YG Xu, K Behdinan, and Z Fawaz. Molecular dynamics calculation of the J-integral fracture
criterion for nano-sized crystals. Intl. J. Frac., 130(2):571–582, 2004.

[206] V. Yamakov, E. Saether, D. R. Phillips, and E. H. Glaessgen. Molecular-dynamics
simulation-based cohesive zone representation of intergranular fracture process in alu-
minum. J. Mech. Phys. Sol., 54:1899–1928, 2006.

[207] V. Yamakov, E. Saether, and E. H. Glaessgen. Multiscale modeling of intergranular fracture
in aluminum: constitutive relation for interface debonding. J. Mater. Sci., 43:7488–7494,
2008.

[208] B. Yang, J. L. Liu, K. L. Wang, and G. Chen. Measurements of anisotropic thermoelectric
properties in superlattices. Appl. Phys. Lett., 80(10):1758–1760, 2002.

[209] B. Yang, W. L. Liu, J. L. Liu, K. L. Wang, and G. Chen. Measurements of anisotropic
thermoelectric properties in superlattices. Appl. Phys. Lett., 81(19):3588–3590, 2002.

[210] JZ Yang and XT Li. Comparative study of boundary conditions for molecular dynamics
simulations of solids at low temperature. Phys. Rev. B, 73(22):224111, 2006.

[211] H. H. Yu and J. W. Hutchinson. Influence of substrate compliance on buckling delamination
of thin films. Inter. J. Fract., 113(1):39–55, 2002.

[212] L. Zhao, R. Najafabadi, and D. J. Srolovitz. Finite-temperature vacancy formation thermo-
dynamics - local harmonic and quasi-harmonic studies. Modell. Sim. Matls. Sci. Eng., 1(4):
539–551, 1993.

[213] M Zhou. A new look at the atomic level virial stress: on continuum-molecular system
equivalence. Proceedings of the Royal Society of London, Series A, 459:2347–2392, 2003.

[214] M Zhou. Thermomechanical continuum representation of atomistic deformation at arbitrary
size scales. Proceedings of the Royal Society of London, Series A, 461:3437–3472, 2006.

[215] M Zhou and D L McDowell. Equivalent continuum for dynamically deforming atomistic
particle systems. Philosophical Magazine A, 82:2547–2574, 2002.

[216] X. W. Zhou and H. N. G. Wadley. A potential for simulating the atomic assembly of cubic
elements. Comp. Mater. Sci., 39:340–348, 2007.

[217] X. W. Zhou and H. N. G. Wadley. A potential for simulating the atomic assembly of ab
compounds. Comp. Mater. Sci., 39:541–551, 2007.

[218] X. W. Zhou, J. A. Zimmerman, E. D. Reedy Jr., and N. R. Moody. Molecular dynamics
simulation based cohesive surface representation of mixed mode fracture. Mechanics of
Materials, 40:832–845, 2008.

248



[219] X. W. Zhou, N. R. Moody, R. E. Jones, J. A. Zimmerman, and E. D. Reedy. Molecular-
dynamics-based cohesive zone law for brittle interfacial fracture under mixed loading con-
ditions: Effects of elastic constant mismatch. Acta Materialia, 57:4671–4686, 2009.

[220] T. Zhu, W. Yang, and T. Guo. Quasi-cleavage processes driven by dislocation pileups. Acta
Mater., 44(8):3049–3058, 1996.

[221] J A Zimmerman. Continuum and Atomistic Modeling of Dislocation Nucleation at Crystal
Surface Ledges. PhD thesis, Stanford University, 2000.

[222] J A Zimmerman, E B Webb III, J J Hoyt, R E Jones, P A Klein, and D J Bammann. Calcu-
lation of stress in atomistic simulation. Modelling and Simulation in Materials Science and
Engineering, 12:S319–S332, 2004.

[223] Jonathan A Zimmerman, Douglas J Bammann, and Huajian Gao. Deformation gradients
for continuum mechanical analysis of atomistic simulations. International Journal of Solids
and Structures, 46:238–253, 2009.

[224] Jonathan A. Zimmerman, Reese E. Jones, and Jeremy A. Templeton. A material frame
approach for evaluating continuum variables in atomistic simulations. J. Comp. Phys., 229
(6):2364–2389, 2010.

[225] N. Zotov and A. Ludwig. First-principles calculations of the elastic constants of fe-pt alloys.
Intermetallics, 16(1):113–118, 2008.

249



DISTRIBUTION:

1 C.J. Kimmer, Indiana University Southeast, New Albany, IN 47150
1 T.J. Delph, Lehigh University, Bethlehem, PA 18015
1 J. Oswald, Northwestern University, Evanston, IL 60208
1 T. Belytschko, Northwestern University, Evanston, IL 60208
1 J.T. Lloyd, Georgia Institute of Technology, Atlanta, GA 30332
1 D.L. McDowell, Georgia Institute of Technology, Atlanta, GA 30332

1 MS 0110 J.M. Phillips, 1200
1 MS 0110 J.E. Johannes, 1220
1 MS 0346 R.S. Chambers, 1524
1 MS 0346 E.D. Reedy Jr., 1526
1 MS 0372 H.E. Fang, 1524
1 MS 0372 N.L. Breivik, 1524
1 MS 0372 E. Corona, 1524
1 MS 0372 J.M. Emery, 1524
1 MS 0372 J. Gorman, 1524
1 MS 0372 S. Grange, 1524
1 MS 0372 K.W. Gwinn, 1524
1 MS 0372 T.D. Hinnerichs, 1524
1 MS 0372 J. Koester, 1524
1 MS 0372 C.S. Lo, 1524
1 MS 0372 K.N. Long, 1524
1 MS 0372 K.E. Metzinger, 1524
1 MS 0372 S.T. Montgomery, 1524
1 MS 0372 W.M. Scherzinger, 1524
1 MS 0372 G.W. Wellman, 1525
1 MS 0376 J.M. Emery, 1524
1 MS 0384 D.B. Dimos, 1500
1 MS 0429 S.K. Griffiths, 2100
1 MS 0431 J. Pott, 0231
1 MS 0824 J.E. Bishop, 1525
1 MS 0824 J.V. Cox, 1524
1 MS 0824 J.M. Redmond, 1525
1 MS 0824 L.W. Tuttle, 1525
1 MS 0847 P.J. Wilson, 1520
1 MS 0885 T.L. Aselage, 1810
1 MS 0887 C.L. Jones Adkins, 1800
1 MS 0889 C.C. Battaile, 1814
1 MS 0889 T.E. Buchheit, 1814

250



1 MS 0889 M.E. Chandross, 1814
1 MS 0889 J.M. Lane, 1814
1 MS 1070 C.C Wong, 1526
1 MS 1070 J.E. Massad, 1526
1 MS 1070 H. Sumali, 1526
1 MS 1185 A.S. Gullerud, 5417
1 MS 1314 S. Cheng, 1814
1 MS 1315 A. Dickey, 1814
1 MS 1315 M.J. Stevens, 1814
1 MS 1322 J.B. Aidun, 1425
1 MS 1322 R.P. Muller, 1425
1 MS 1322 A.P. Thompson, 1425
1 MS 1411 A. Dickey, 1814
1 MS 1411 S.M. Foiles, 1814
1 MS 1411 A.L. Frischknecht, 1814
1 MS 1411 L.M. Hall, 1814
1 MS 1411 E.A. Holm, 1814
1 MS 1411 E. Homer, 1814
1 MS 1411 J.D. Madison, 1814
1 MS 1411 G.J. Tucker, 1814
1 MS 1411 F.B. Van Swol, 1814
1 MS 1411 C.R. Weinberger, 1814
1 MS 1411 R.A. Roach, 1823
1 MS 9001 R.H. Stulen, 8000
1 MS 9042 J.W. Foulk III, 8246
1 MS 9042 C.D. Moen, 8246
1 MS 9042 J. Ostien, 8246
1 MS 9042 T.J. Vogler, 8246
1 MS 9042 A.A. Brown, 8249
1 MS 9042 M.L. Chiesa, 8249
1 MS 9042 A. Lindblad, 8249
1 MS 9042 M. Yip, 8249
1 MS 9153 R.G. Miller, 8200
1 MS 9154 W.P. Ballard, 8200
1 MS 9154 M.E. Gonzales, 8240
1 MS 9402 D. Ward, 8131
1 MS 9403 B.M. Wong, 8223
1 MS 9403 L.M. Hale, 8246
1 MS 9404 T.E. Felter, 8222
1 MS 9404 H.F. Jackson, 8222
1 MS 9404 N.R. Moody, 8222

251



1 MS 9404 C.W. San Marchi, 8222
1 MS 9404 B.P. Somerday, 8222
1 MS 9404 H. Jin, 8246
1 MS 9404 R.E. Jones, 8246
1 MS 9404 A. Mota, 8246
1 MS 9404 X. Zhou, 8246
1 MS 9404 J.A. Zimmerman, 8246
1 MS 9409 N.R. Fornaciari, 8365
1 MS 9409 J. Deng, 8365
1 MS 9409 L. Crowl Erickson, 8365
1 MS 9409 P.E. Gharagozloo, 8365
1 MS 9409 J.A. Templeton, 8365
1 MS 9409 G.J. Wagner, 8365
1 MS 9161 R.H. Nilson, 8365
1 MS 9161 C.R. Tewell, 8222
1 MS 0899 Technical Library, 8944 (electronic copy)

252



v1.36




