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Abstract

This reports describes the limitations to parallel scalability which we have encountered
when applying our otherwise optimally scalable parallel statistical analysis tool kit to large
data sets distributed across the parallel file system of the current premier DOE computational
facility.
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1 Introduction

This report describes our study to evaluate the effect of parallel I/O on the overall scalability of
a parallel data analysis pipeline using our scalable parallel statistics tool kit [PTBM11]. In this
goal, we tested it using the Jaguar-pf DOE/ORNL peta-scale platform on a large combustion
simulation data under a variety of process counts and domain decompositions scenarios.

1.1 Background

In earlier work [BPRT09a, PTB10, PTBM11], we have presented a consistent design pattern, called
Learn-Derive-Assess, and a programmatic interface for a wide range of data analysis methods,
specifically aimed at data sets distributed on parallel computational platforms at peta-scale and
beyond. We have described how each of the available algorithm fits the pattern and how its imple-
mentation scales in a distributed-memory parallelism context. The design decisions made during
development were motivated by two primary factors:

(i) We wanted to mimic the predominant types of data analysis workflows, so that a data analyst
using our framework would find it natural and intuitive to use.

(ii) The design had to be conducive to embarrassingly parallel implementations when possible.

This was accomplished by isolating those parts of the analysis which by construction are not em-
barrassingly parallel (due to the mathematics of the statistical analysis itself, not due to our design)
so that parallel design trade-offs are limited to those components where embarrassingly parallel
implementations are not viable.

In addition, we have provided production level implementation of this design pattern as C++
classes in VTK [P1́0], itself part of the Titan Informatics Toolkit [tit]; specifically the following
7 parallel statistics workflows are implemented at the time of writing:

• descriptive statistics,

• histograms and order statistics,

• bivariate linear correlation and regression,

• contingency statistics and information entropy,

• multi-variate linear correlation,

• principal component analysis,

• k-means clustering.
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This list will most likely be expanded in the near future.

The source code is freely and publicly available as part of VTK, along with its test harness covering
most of its features, which can be found in the VTK/Infovis/Testing/Cxx/ sub-directory of
VTK, version 5, with the additional benefit that all performance and reliability results which we
claim can be independently verified. For additional usage details, the reader is invited to refer to
the VTK User’s Guide [P1́0], specifically §8.6 (“Statistics”), pp. 192–198.

Regarding performance, we have provided detailed parametric studies conducted on several par-
allel computational clusters, and in particulier at DOE’s premier computing facility, with up to
10,000 processes.

1.2 Summary

In Section §2, we briefly recall the key performance findings of the parallel data analysis algo-
rithms which are implemented under our Learn-Derive-Assess design pattern. In Section §3, we
first describe the data and the test platform used in our experiments, followed by results and con-
clusions.
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2 The Learn-Derive-Assess Pattern: Design and Performance

In this section, we briefly recall how our design constraints have resulted in the splitting of the
statistical analysis workflow into 4 distinct operations. In this report we only explain the generic
principles of each operation, illustrating it with the case of descriptive statistics for ease of under-
standing. For details as to how the operations are articulated for each of the 7 currently available
parallel statistical engines, we refer to [PTBM11]. In addition, we explain how we implemented
these algorithms in the context of data parallelism to achieve as much parallel speed-up and scala-
bility as possible.

2.1 Operations

Figure 1. The 4 operations of statistical analysis and their inter-
actions with input observations and models. When an operation is
not requested, it is eliminated by connecting input to output ports.

In order to meet the two overlapping but not exactly congruent design requirements outlined in § 1,
we partition the statistical analysis workflow into 4 disjoint operations:

• Learn a model from observations,

• Derive statistics from a model,

• Assess observations with a model, and

• Test a hypothesis.

These operations, when all are executed, occur in order as shown in Figure 1. However, it is also
possible to execute only a subset of these, for example when it is desired that previously computed
models, or models constructed with expert knowledge, be used in conjunction with existing data.
Note that in earlier publications (e.g., [BPRT09a, PTB10, P1́0]) only the first 3 operations are
mentioned; the Test operation, which we initially saw as a part of Derive, was separated out for
reasons we discuss in § 2.2. These operations, performed on a request comprising a set of columns
of the input observations table, are further explicated as follows:
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Learn

Calculate a primary statistical model from an input data set. By primary, we mean the minimal (in
particular, non-redundant) representation of the desired model for a given statistical technique.

Derive

Calculate a more detailed statistical model from a primary model. By ”more detailed”, we mean
a model which includes the primary model along with additional, derived or redundant statistics,
generally more commonly used for analysis purposes than the primary statistics from which they
derive.

Assess

Annotate each observation with a number of quantities relative to a given a statistical model. These
quantities generally measure how well the particular observation coincides with the model. Note
that the model used to annotate an observation need not have been calculated from the same data.

Test

Given a statistical model, and possibly a data set, calculate at least one test statistic so at least one
hypothesis can be tested. For descriptive statistics, a Jarque-Bera test of goodness of fit [JB87]
is performed, calculating the test statistic with the skewness and kurtosis, and then retrieving the
corresponding p-value from the χ2 distribution with 2 degrees of freedom by a single call to R for
all variables at once; therefore, a second pass through the data is not needed.

Table 1. Left: A table of observations used as input data by a
statistics algorithm. Right: the same observations, annotated by
the Assess operation of descriptive statistics engine with the model
obtained with the Derive and Assess operations.

row A
1 1
2 2
3 3
4 5
5 7
6 11

row A d(A)
1 1 1.03315
2 2 0.76363
3 3 0.49411
4 5 0.04492
5 7 0.58395
6 11 1.66202
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Example 2.1. In order to illustrate this general design pattern for data analysis methods, consider
what is probably the most widely used, at least for the Learn and Derive operations, namely,
descriptive statistics. Specifically, consider the univariate observations given in Table 1, left, which
has 6 observations of variable (column) A.

Our primary model for descriptive statistics, calculated by the Learn operation, comprises the
sample size, minimum, maximum, mean, and centered M2, M3 and M4 aggregates (cf. [BPRT09a])
of the data. In our case of variable B in Table 1, these statistics are 6, 1, 11, 4.83̄, 68.83̄, 159.4̄,
and 1759.8194̄, respectively.

The additional statistics calculated from the primary model by the Derive operation are: variance,
standard deviation, skewness, kurtosis, and sum, with various estimators being offered for these
statistics, save for the sum. In our running example, the respective values of these derived statistics
are 13.76̄, 3.7103, 0.52025, −1.4524, and 29. Note that there is now redundancy in the derived
model, meaning that there is potential for inconsistency if one decides to modify some entries of
the derived model, while this cannot happen with the primary model. For instance, the standard
deviation, variance, and M2 aggregate can be mutually inconsistent.

The Assess operation of the descriptive statistics engine marks each datum with its relative devia-
tion with respect to the model mean and standard deviation, i.e., the one-dimensional Mahalanobis
distance [Mah36]. In addition, our implementation allows for the use of signed deviations in this
one-dimensional case, should the user prefer this over the positive-definite Mahalanobis distance.
The result of this operation can be seen in Table 1, right, where a new column d(A) had been
appended with the corresponding assessment for each input datum.

Last, the Test operation for the observations of variable A yields a test statistic of 0.79803 for a
corresponding p-value of 0.67098, meaning, e.g., that the null hypothesis of normality cannot be
rejected at the significance level of, e.g., 5%.

2.2 Parallelism

While the first of our design goals for partitioning the workflow into 4 operations was to mimic
the typical use patterns of statistical analysis, the second design goal was the enabling of scalable
parallelization on distributed data. And indeed, from the parallelism standpoint, the partition re-
duces two operations to the map-reduce pattern [DG04] and the remaining two are embarrassingly
parallel.

Specifically, Learn is essentially a special case of the map-reduce pattern [DG04], a framework
within which the map function generates a set (key,value) pairs in parallel. All intermediate values
associated with the same intermediate key are then merged by the reduce function to compute the
final solution of interest. In some of our statistical algorithms, it is not necessary to communicate
the keys for there is a fixed number of them, identical across all processes, and these keys may be
ordered uniquely, so sending values alone is unambiguous. However, for other algorithms, tables
with an arbitrary number of key-value pairs must be communicated and different keys may be
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present on each process.

Figure 2. Example showing parallel execution of the Learn, De-
rive, and Assess operations of order statistics on 3 processes.

By construction, Learn is the only operation which always requires inter-process communication;
for instance, in the case of descriptive statistics, cardinality, extremal values, and centered aggre-
gates up to the fourth order must be exchanged and updated to assemble a global model. The Test
operation may, for some types of analyses, also require inter-process communications when the
type of statistical test being performed necessitates a second pass through the data. As mentioned
in § 2.1, we separated Test from our original design of Derive because:

(i) Test tends to be more computationally intensive and in our current implementation relies
in some cases on calls to the R library [R] for p-value retrieval (but in an embarrassingly
parallel way as explained below),
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(ii) For some statistics algorithms it requires a second pass through the data in order to compute
per-observation quantities involving derived model information that cannot be obtained in
an on-line fashion1, henceforth requiring a second step of parallel updates, and

(iii) it rests on assumptions which are not accepted by all statisticians, namely statistical signifi-
cance.

Figure 2 shows the communication patterns and parallel computations performed when calculating
order statistics on simple character data distributed across 3 processes; note that the Test operation
is not depicted here as its implementation is not complete yet for all statistical engines and some
changes are to be expected in the near future.
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Figure 3. Parallel order statistics: weak scaling (at constant work
per core), synthetic data of size 2×107, no I/O calls.

We note that the Learn (and Test) operations of most of the currently implemented statistical algo-
rithms demonstrate optimal parallel scaling properties. Specifically, in [BPRT09a] we have shown
how to perform these updates in a numerically stable – yet single-pass – way for all statistics al-
gorithms which make use of moments and co-moments, hence resulting in optimal parallel scaling
for the Learn and Test operations for such statistics.

On the other hand, in [PTB10], we discussed the design trade-offs and limitations encountered
when computing contingency tables in parallel, which resulted in our choosing of what we called
the Full-reduce+broadcast approach; in this case, the Learn operation of the algorithm is difficult

1For example, the multi-variate normality test requires that multi-skewness and multi-kurtosis be computed, but
those estimators in turn need each observation to be projected to the eigenvectors of the data set, which cannot be
computed incrementally and thus are not available until after all observations have been processed.
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to characterize because its parallel scaling properties range from embarrassingly parallel to serial,
depending on the distribution of the input data. Nevertheless, we established showed that the case
where our parallel design does not scale well exactly corresponds to the class of problems for which
contingency tables are not suited for analysis, hence validating our design pattern even for non
moment-based algorithms. In [PTBM11] we extended and generalized these results for another
case of quanta-based statistics, namely, order statistics, where the primary model is represented
by histogram, whereby the input data is also quantized. In particular, we establish that when
used in their proper context, that is, when the input data is honestly discrete (as opposed to quasi-
diffuse), then our parallel design trade-offs allow for near-optimal scalability, demonstrated with
up to 10,000 processes of Jaguar-pf, the premier computing facility of DOE, as illustrated in
Figure 3.

For the Test operation of those engines which currently rely on R for the retrieval of the p-values
corresponding to calculated χ2 statistics, it is important to note that the invokation of R is done by
each process independently from all other processes, each one retrieving the same p-value from
a previously globally calculated χ2 statistic. Therefore, the use of the (serial) R package does not
invalidate the embarrassingly parallel nature of this operation.

On the other hand, the Derive and Assess operations are always embarrassingly parallel, by con-
struction: deriving additional statistics from a primary statistical model always need only be exe-
cuted locally, without communication, after all parallel updates of the primary model. Likewise,
the Assess operation annotates only the observations in the portion of the data residing on the local
process, and thus no communication is required. This results in a new data set distributed in the
same way across processes but with additional columns for the annotations.

2.3 Code Structure

Each statistics algorithm is first implemented in C++ in a serial fashion as a subclass of a base
statistics algorithm class that provides virtual methods for each of the 4 phases (Learn, Derive,
Assess, and Test). Each serial implementation then serves as a base class for a parallel implemen-
tation which overrides Learn and, optionally, Test as well, as shown in Figure 4. These methods
invoke the implementation of the serial superclass and then use an abstract communication-class
instance to perform the inter-process communication required for the reduction operation. This
separation between serial and parallel implementations also allows for experiments with differ-
ent programming models: e.g., one where a full reduction operation might not be necessary to
sufficiently, in some sense, approximate the global model.

The descriptive, correlative, multi-correlative, PCA, and k-means statistics algorithms perform
their respective parallel aggregations using the update formulas presented in [BPRT09a], cf. [PT08,
BPRT09b, BPT09] for implementation details. These moment-based parallel statistics classes
thus all have optimal parallel scalability properties. Similarly, the order and contingency statistics
classes respectively derive from the univariate and bivariate statistics classes and implement their
own aggregation mechanisms for the Learn operation. However, unlike moment-based statistics
(descriptive, correlative, multi-correlative, PCA, and k-means), these aggregation operations are

14



Figure 4. The inheritance pattern of the descriptive statistics imple-
mentation. This serves to illustrate how parallel communication is sepa-
rated into a subclass which may use its superclass’s implementation for
all but the reduction operation.

not, in general, embarrassingly parallel; as a result, these statistical methods scale sub-optimally
when used outside of their intended domain of applicability, as explained in [PTB10] for contin-
gency statistics, and in [PTBM11] for order statistics. However in this report it is assumed that
quantization-based statistics be used in their appropriate context, i.e., with honestly discrete data
sets, and as such do not exhibit any loss of parallel scalability due to misuse.
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3 Petascale Data Analysis with Parallel I/O

In this section, we first describe the parallel Lifted Ethylene data set used in our data analysis
pipeline scalability tests, followed by a brief description of the computation platform and our
evaluation criterion, and finally present the results of the tests.

3.1 Parallel Data Set

In turbulent non-premixed combustion, where the fuel and oxidizer reactant streams are segregated,
the reactant streams must be molecularly mixed before reaction can occur. Therefore, the turbulent
mixing rate is a key quantity in determining the overall burning rate and efficiency. Turbulent
mixing is characterized locally by the scalar dissipation rate, generally denoted χ.

OH

CH2O

zy

x

Figure 5. Lifted Ethylene flame shown with hydroxyl (OH) flame
marker, and formaldehyde (CH2O) upstream ignition marker. The
fuel is injected into the left plane and the flame develops along
the x-axis. The envelope lines are shown (white) to provide better
perspective.

The chosen test data set comes from the Lifted Ethylene Jet [YRSC09] simulation calculated on
Jaguar-pf, of which a volume rendering of two participating variables at one time-step is shown
in Figure 5. Specifically for this study, one time-step of the scalar dissipation rate field, denoted χ,
will be used; this field is further illustrated in Figures 6 and 7. From this field, two distinct test

17



Figure 6. Scalar dissipation rate field (χ) of the Lifted Ethylene
Jet: volume rendering with transfer function chosen to emphasize
the high χ values (left) and an iso-surface showing the structures
in the field (right).

cases are extracted:

• The full data set, distributed across the system by the parallel file system, with dimensions
of 2025×1600×400 per time step.

• For baseline comparison with a case which can be run on a single core (which is not the case
on the premier DOE test platform we use for the full data set), a subset of the above with
size 2003 per time step.

We store the χ field in a single file per time-step. In each file, the data consists of one 32-bit
floating point value per data point written in sequence such that the x-coordinates of the points
vary the fastest, the y-coordinates the next, and the z-coordinates vary the slowest. In other words,
the data organization corresponds to marching along the z-plane, and along the y-plane within each
z-plane. Because this organization impacts the read time during our analysis, we will test a variety
of processor configurations and domain decompositions in our experiments. These data sets are
computed and stored on the petascale test bed, which we are now briefly describing.

3.2 Evaluation Criterion

In order to assess the effect of the parallel I/O system when moving real data to the parallel analysis
engines, we build an analysis pipeline comprising:

18



Figure 7. Scalar dissipation rate field (χ) of the Lifted Ethylene
Jet: Slices normal to the three grid axes.

1. the parallel data reader required to access the distributed test data chosen for these tests and

2. a statistics engine from the parallel tool kit,

so that parallel I/O calls are included in the measured wall times, together with the analysis itself.

We run our tests on Jaguar-pf [Jag], the primary system of the National Center for Computational
Sciences at Oak Ridge National Laboratory. Jaguar-pf is a Cray XT5 system containing 224,256
compute cores in addition to dedicated login/service nodes. Each compute node contains two
hex-core AMD Opteron processors, 16GB memory, and a SeaStar 2+ router.

With this setting, we use strong scaling, i.e., scaling at constant total work, as an evaluation cri-
terion. Hereafter p will denote the number of processes and N the size of the problem, which in
our case is the data set cardinality and remains constant for a given case of a strong scaling study.
The wall clock time measured to execute the calculation is denoted TN(p). Then, strong scaling is
defined as:

SN(p) =
TN(1)
TN(p)

.

Some authors prefer to write the numerator as Ts rather than TN(1) to make it clear that the parallel
algorithm should be compared to the most efficient serial implementation available and not just
the parallel algorithm run on a single process. Evidently, optimal (linear) scaling is attained when
SN(p) = p and, therefore, strong scaling results can be visually inspected by plotting SN versus the
number of processes: optimal scaling is revealed by a line, the angle bisector of the first quadrant.

3.3 Results with Parallel I/O

In this study, only Learn, Derive, and Assess operations are invoked, as Test relies on the external
calls to R, whose execution we want to keep aside from our study. As the main purpose is to
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evaluate the effect of parallel I/O on overall scalability, our timings naturally include execution
times of the entire pipeline including parallel read routines and statistical analyses themselves.
However, in order to be able to isolate the effect of the former, we also provide results obtained by
executing only the latter with perfectly load-balanced synthetic data, whose creation time on the
compute nodes is not included in the timings. Last, we make use of the type of statistical analysis
which probably appears as the simplest and most natural by data analysts in general, namely,
descriptive statistics, cf. [PT08] for details.
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Figure 8. Parallel descriptive statistics: strong scaling (at con-
stant total work) on Jaguar-pf, 200x200x200 case, including par-
allel I/O calls.

As illustrated in Figure 8 with the subset of size 2003, and even further with the full data set in
Figure 9, parallel (strong) scaling degrades rapidly, even though some improvements can be made
by ad-hoc data read strategies: specifically, it is possible to take advantage of the data layout when
it is known of time, as shown with the smaller subset. However, the effects of such ad hoc approach
quickly vanish as data set size increases, as the test with the full data set clearly reveals.

This is a clearly problematic finding regarding parallel I/O efficiency, especially when contrasted
with the results obtained with the same statistical engine but with synthetic data, generated on each
core and thus in absence of any I/O consideration, as shown for instance in Figure 10 with up to
64 processes: near-optimal strong scaling is maintained past 64 cores whereas by that point, when
parallel I/O calls to access a real data set were included, performance degradation was already
obvious.

20



5

10

15

40

100

400

2025

5 10 15 40 100 400 2025

S
tr

on
g

S
ca

li
n
g,

S
N

(p
)

Number of Cores, p

theoretical optimum
partition along z-axis
partition along y-axis
partition along x-axis

Figure 9. Parallel descriptive statistics: strong scaling (at con-
stant total work) on Jaguar-pf, 2025x1600x400 case, including
parallel I/O calls.
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Figure 10. Parallel descriptive statistics: strong scaling (at con-
stant total work), synthetic data of size 1.024×108, no I/O calls.
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4 Conclusion and Perspectives

In this report we have recalled the foundations of the parallel statistical analysis tool kit which
we have designed and implemented, with the specific double intent of reproducing typical data
analysis workflows, and achieving optimal design for scalable parallel implementations. We have
briefly reviewed those earlier results and publications which allow us to conclude that we have
achieved both goals.

However, in this report we have further established that, when used in conjuction with a state-of-
the-art parallel I/O system, as can be found on the premier DOE peta-scale platform, the scaling
properties of the overall analysis pipeline comprising parallel data access routines degrade rapidly.
This finding is problematic and must be addressed if peta-scale data analysis is to be made scalable,
or even possible.

In order to attempt to address these parallel I/O limitations, we will investigate the use the Adapt-
able IO System (ADIOS) [LZL+10] to improve I/O performance, while maintaining flexibility for
a variety of IO options, such MPI IO, POSIX IO. This system is developed at ORNL and other
collaborating institutions, and is being tested extensively on Jaguar-pf. Simulation code being
developed on these systems will also use ADIOS to output the data thereby making it easier for
other systems, such as ours, to process that data.
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