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1 Introduction

Many commonly used algorithms for mathematical analysis do not scale well enough to accommo-
date the size or complexity of petascale data produced by computational simulations. The primary
goal of this project is thus to develop new mathematical tools that address both the petascale size
and uncertain nature of current data.

At a high level, our approach is based on the complementary techniques of combinatorial topology
and statistical modeling. In particular, we use combinatorial topology to filter out spurious data
that would otherwise skew statistical modeling techniques, and we employ advanced algorithms
from algebraic statistics to efficiently find globally optimal fits to statistical models. This document
summarizes the technical advances we have made to date that were made possible in whole or in
part by MAPD funding. These technical contributions can be divided loosely into three categories:
(1) advances in the field of combinatorial topology, (2) advances in statistical modeling, and (3)
new integrated topological and statistical methods.

Roughly speaking, the division of labor between the three institutions (Sandia National Laborato-
ries in Livermore, Texas A&M in College Station, and University of Utah in Salt Lake City) is as
follows:

• The Sandia group focuses on statistical methods and their formulation in algebraic terms,
and finds the application problems (and data sets) most relevant to this project.

• The group at University of Utah group develops new algorithms in computational topology
via Discrete Morse Theory.

• The Texas A&M group develops new algebraic geometry algorithms, in particular with
fewnomial theory.

In order to ensure a real synergy of ideas and convergence of efforts, three groups participating in
this joint project remain in tight contact, in particular with bi-monthly video-conferences.
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2 Contributions in Combinatorial Topology

2.1 Visualizing Morse Smale Complexes

Recent advances in practical algorithms for computing Morse-Smale (MS) complexes have made
possible multi-resolution analysis of volumetric scalar valued data. Although these approaches are
gaining popularity in analysis of scientific data, visualization techniques have not yet explored the
full potential of this technology. In [GKK+, GBP, WBGP], we present novel visualizations using
features extracted from MS complexes. We characterize possible visualizations enabled by the
robust computation of all dimensional manifolds of the MS complex, and present several examples
of these. Furthermore, we developed a framework for selecting features, assigning attributes, and
building complex and compelling visualizations. In Figure 1 we show examples of topology-based
techniques used to extract features that are hard to detect with more conventional methods not
making use of topologic information.

Figure 1. Left: Combinatorial computation of topological in-
variants results in robust identification of features, even in degen-
erate cases, such as topological pouches. Center: Using the ma-
chinery of topological persistence and simplification, we can vi-
sualize the 3-manifolds of the MS complex forming flow basins
in a manner oblivious to noise. Right: Derived structures, for ex-
ample, separating surfaces, can be used to represent non-physical
phenomena, such as the “outer surface” of a sponge-like material.

2.2 Unstructured Morse-Smale Complexes

Given the success of topological analysis tools in many domains, there is a need to compute MS
complexes for data that is defined on fully unstructured domains. Many of the first software mile-
stones were designed for gridded domains. We have developed software tools which implement
Gyulassy’s discrete gradient construction [GBHP08] on regular cell complexes. This resulted in
both a video tutorial as well as multimedia submission [GLP11]. The algorithm is illustrated in
Figure 2. This generic software allows the construction of MS complexes for multiple modalities
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of data. As a result, it will enable topological analysis in for many data sources, allowing for the
same demonstrated benefits we have already seen in gridded and piecewise-linear (PL) domains to
be leveraged for multiple types of data.

(a) (b) (c) (d) (e)

Figure 2. Assigning gradient arrows on a terrain (a). Scalar val-
ues (height) are encoded from cyan (low values) to magenta (high
values). (b) Boundary cells are paired first. (c) Pairing interior
cells finds a saddle (red edge). (d) As pairing continues, a maxima
is identified (red triangle). (e) Gradient construction is complete.
Ascending 1-manifolds shown as blue cells.

2.3 Edge Maps

Figure 3. The structure of an edge map of a regular triangle. (a)
The original triangle is represented as three vectors, which implies
a flow throughout the interior. (b) Our representation subdivides
the boundary into a set of intervals, which are broken at internal
transition points (white circles), external transition points (white
squares), and image points (grey circles). (c) Pairs of intervals
are grouped into maps which represent sources and destinations of
flow through the triangle intervals.

Robust analysis of vector fields has been established as an important tool for deriving insights from
the complex systems these fields model. Traditional analysis and visualization techniques rely pri-
marily on computing streamlines through numerical integration. The inherent numerical errors of
such approaches are usually ignored, leading to inconsistencies that cause unreliable visualizations
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and can ultimately prevent in-depth analysis. In [JBB+10, BJB+11a, JBB+11a, BJB+11b] we
propose an alternate representation for vector fields on surfaces that explicitly represents the flow
behavior of the field through each triangle. This representation, called edge maps, complements
the traditional approach of storing sample vectors on the vertices of the triangulation. Figure 3
shows the structure of an edge map of a regular triangle.

One piece of this work [JBB+10, JBB+11a] focuses on the mathematical properties of edge maps.
Edge maps allow for a multi-resolution approximation of flow by merging adjacent streamlines into
an interval based mapping. Consistency is enforced at any resolution if the merged sets maintain an
order-preserving property. At the coarsest resolution, we define a notion of equivalency between
edge maps, and show that there exist 23 equivalence classes (Figure 4) describing all possible
behaviors of piecewise linear flow within a triangle.

Figure 4. The 23 equivalent classes of mixed graphs that repre-
sent piecewise linear flow through a triangle, along with one possi-
ble rendition of the edge map. The ordering is of increasing num-
ber of links in the map.

A second branch of this work [BJB+11a, BJB+11b] focuses on encoding the spatial and temporal
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errors which we use to produce more informative visualizations. This work describes the construc-
tion of edge maps, the error quantification, and a refinement procedure to adhere to a user defined
error bound (Figure 5). Independent of this error all streamlines computed using edge maps are
guaranteed to be consistent, enabling the stable extraction of features such as the topological skele-
ton We introduce new visualizations using the additional information provided by the edge maps
to indicate the uncertainty involved in computing streamlines and topological structures (Figure 6).
[BJB+11a] received a best paper award at the 4th IEEE Pacific Visualization Symposium in Hong
Kong, China 2011.

Figure 5. Reducing the mapping error (middle row: spatial error,
bottom row: temporal error) by refinement of edge maps (top row).
Level of refinement increases from left to right. The length of the
edge AC is 0.0354, and the average time taken by a particle to
travel across the triangle is 1.7. (a) No refinement. (b) Spatial
refinement with an error bound of 0.003 splits the green link into
two, creating two new links (green and blue) with smaller spatial
and temporal errors. (c) Temporal refinement with an error bound
of 0.06 splits the red link twice, creating three new links (red, cyan
and magenta) with even smaller spatial and temporal errors.

2.4 Quantized 2D Vector Fields

Visualization and analysis of vector fields often hinges on the robust identification of structures
such as critical points, separatrices, or closed orbits. Traditional techniques for computing these
features fall broadly into two categories: (1) those that use numerical integration and (2) those that
rely on purely combinatorial structures. However, the first set of tools often generate inconsistent
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Figure 6. Edge maps enable new views of vector field stability,
illustrated with a vector field on this wavy surface. Top row (mid-
dle right): A visualization of some colored regions where flow
shares the same source (green spheres) and sink (red spheres) is
augmented to show how these regions overlap when error is intro-
duced. Bottom row (middle right): Streamwaves (colored green to
red as they grow) show the advection of a single particle. In the
presence of error, waves can widen and narrow, and bifurcate or
merge.

results due to compounded approximation errors, while the second set often severely reduces the
accuracy of the results. Instead, we propose [JBB+11b] a new discrete representation of vector
fields that approximates the flow up to an arbitrary, user-defined error. By quantizing streamlines
along edges of a triangulation we create a graph-based representation of the flow with up to 232

nodes per edge. The graph is implicitly represented by a rasterization scheme and replaces stream-
line integration with a directed graph traversal. As a result, inherently unstable structures such
as separatrices and cycles can be computed exactly and correctly up to the given approximation
error. By varying the amount of discretization, we can provide a multi-resolution representation of
vector fields that allows for a balance between storage space, computational effort, and fidelity to
piecewise linear interpolation. Figure 7 shows our technique on ocean current data, illustrating a
more complete topological representation that includes separatrices, stable manifolds, and cycles
detected with our approach.

2.5 Fiedler Trees for Multiscale Surface Analysis

In [BNPS10] we introduce a new hierarchical decomposition method for multi-scale analysis of
surface meshes. In contrast to other multi-resolution methods, our approach relies on spectral
properties of the surface to build a binary hierarchical decomposition. Namely, we utilize the first
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Figure 7. The oceanic currents of the North Atlantic ocean. In
the center, we show a 600x600 vertex tile from a larger simula-
tion of oceanic currents. Each image on the side is a zoomed in
view visualizing the topology for the tile. Yellow lines are closed
streamlines, the colored regions are stable manifolds grown from
all the sinks (red balls), and the black lines are separatrices grown
from all saddles (blue balls).

nontrivial eigenfunction (the Fiedler vector) of the Laplace-Beltrami operator to recursively de-
compose the surface. For this reason we coin our surface decomposition the Fiedler tree. Using
the Fiedler tree ensures a number of attractive properties, including: mesh-independent decompo-
sition, well-formed and nearly equi-areal surface patches, and noise robustness. We show how the
evenly distributed patches can be exploited for generating multi-resolution high quality uniform
meshes. Additionally, our decomposition permits a natural means for carrying out wavelet meth-
ods, resulting in an intuitive method for producing feature sensitive meshes at multiple scales. The
method and its generalization to volumetric meshes will be a critical component in building the
hierarchical models needed in analysis of petascale data. Figure 8 shows the intrinsic nature of the
mesh decomposition.

Figure 8. Two input meshes with same shape and different
triangulation (left) yield the same sequence of decompositions (in
color).
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3 Contributions in Statistical Modeling

3.1 Faster Real Solving

The complexity of polynomial system solving is important because of its ancient roots, its numer-
ous connections to geometry and number theory, and the need for reliable large-scale numerical
computation, e.g., the problems arising from this project where we must fit petascale data to statis-
tical models. We thus henceforth focus on the numerical approximation of real solutions of large
systems of polynomial equations. Our key advance is a method to solve polynomial systems with
few real solutions and many complex solutions, using an effort logarithmic in the number of com-
plex solutions (Theorem 3.1 below). The best previous methods have complexity polynomial (or
worse) in the number of complex solutions.

Definition 3.1. We call an f ∈ IR[x1, . . . ,xn] (with f (x)=∑
n+k
i=1 cixai , ci 6=0 and xai =xa1,i

1 · · ·x
an,i
n for

all i, and the ai distinct) an nnn-variate (n+ k)(n+ k)(n+ k)-nomial. We also define Supp( f ) :={a1, . . . ,an+k}
to be the support of f . We denote the collection of n-variate (n + k)-nomials in IR[x1, . . . ,xn] by
Fn,n+k. Finally, if F :=( f1, . . . , fn) with fi∈Fn,n+k and Supp( fi)={a1, . . . ,an+k} for all i then we
call F a (real) (n+ k)(n+ k)(n+ k)-sparse n×nn×nn×n polynomial system. �

While our methods are completely general, a small example will help illustrate our central ideas.
Example 3.1. Let us start with the 6-sparse 2×2 polynomial system

F :=


x82

1 + 31
50x41

2 − x2

x82
2 +55x41

1 − x1

The classical Bézout’s Theorem [Har] implies that F has no more than 822 =6724 complex roots
(assuming F has only finitely many). A more recent fewnomial bound of Li, Rojas, and Wang
[LRW03, Thm. 1] tells us that F has no more than 5 roots in the positive quadrant IR2

+ (assuming
F has only finitely many). Counting the exact number of real roots for our example turns out to
be more subtle than one may expect: the usual methods of Gröbner bases or resultants (on the
well-known computer algebra systems Maple 13, Singular, and Macaulay2) result in “out of
memory” errors within either a few minutes or a few hours. (We briefly review these techniques in
the next section.) On the other hand, via a preliminary Matlab implementation of our techniques
here, we can determine within a few seconds that F has exactly 1 (resp. 2, 2, 0) root(s) in IR2

+ (resp.
IR−× IR+, IR2

−, IR+× IR−). �

Regardless of what polynomial system solving technique one ultimately favors, one is inevitably
led to consider certain intricate regions within certain families of polynomial systems. More pre-
cisely, let us now define

F(a,b) :=


x82

1 +ax41
2 − x2

x82
2 +bx41

1 − x1
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and let ∇ denote the closure of the set of all (a,b)∈C2 resulting in an F(a,b) with degenerate
roots. Our set ∇ is an example of a discriminant variety (or a collection of ill-posed problems).
Here, ∇ is a curve in C2, and the complement of the real part of ∇ in IR2 determines connected
regions (known as chambers) on which the number of real roots of F(a,b) is constant. (This is
detailed rigorously, and in greater generality, in the next section.) In particular, determining the
exact number of real roots of F can be reduced to determining the chamber containing F . More to
the point, it has long been known in numerical linear algebra and optimization that the complexity
of numerical problems depends critically on the distance to ill-posedness, i.e., how far one is from
an underlying discriminant variety.

Theorem 3.1. Fix n and let A ={ai}⊂ZZn have cardinality n + k. Then, in time polynomial in
the sparse encoding, we can determine the unique chamber cone (for the A -discriminant amoeba)
containing f (x)=∑

n+k
i=1 cixai , or obtain a true declaration that f lies in ≥2 chamber cones.

While the defining polynomial ∆ for our example discriminant ∇ has coefficients with over 6000
digits, we can nevertheless make considerable practical use of ∇. We describe later how we can
circumvent such bottlenecks.

A consequence of our notion of input size is that we have complexity polynomial in the logarithm
of the degree — a tremendous speed-up over earlier computational algebra methods. We conjecture
that a similar speed-up holds when we fix k and let n grow instead. We also point out that while
Theorem 3.1 does not appear to involve polynomial systems, the Cayley Trick [GKZ94] is a
simple construction that allows one to apply the theorem above to any `× n system of equations
with `≤n. (Indeed, our preceding construction of ∇ used the Cayley Trick, ultimately employing
a 6-variate trinomial.)

Our theorem above also refines an earlier tropical result where polynomial complexity is proved
for a similar membership problem involving a simpler complex of cones intersecting at the origin
[DFS07]. (Technically, the polyhedral complex defined by our chamber cones is more complicated
because our cones do not intersect at the origin.) A key trick also not present in earlier tropical
geometric or computational algebraic work is to observe that deciding chamber cone membership
involves checking the sign of a linear combination of logarithms. So one needs to avail to Baker’s
famous theorem on linear forms in logarithms [Nes03].

Some Additional Background

The Horn-Kapranov Uniformization [Kap91, PT05] yields, quite surprisingly, a succinct one-
line rational parametrization of any A -discriminant variety. Applied to our curve ∇ (which
has an unwieldy defining polynomial ∆), the Horn-Kapranov Uniformization results in a map ϕ :
P1

C× (C∗)4 −→ C6 defined explicitly via:

ϕ(λ, t) := [λ1,λ2]

−40 6723 −6683 −3280 0 3280

−40 163 −123 −80 80 0

�(1,
t41
2

t82
1

, t2
t82
1

,
t82
2 t3
t82
1

, t3
t41
1

, t3
t81
1

)
.

16



Quotienting out by certain natural homogeneities then results in a rational map (composed with
radicals) ϕ̃ : P1

C −→ C2 with ϕ̃(P1
C) = ∇. Letting Log : Cn −→ IRn denote the map defined by

(log |x1|, . . . , log |xn|), we define the image of the complex zero set of any polynomial g under Log
to be the amoeba of g, written Amoeba(g). Using ϕ̃ we can then easily plot Amoeba(∆), and
observe that the complement of Amoeba(∆) appears to consist of a finite union of convex sets.
This is in fact a special case of a more general theorem on amoeba complements [GKZ94]. What
is most remarkable, however, is that the map ϕ̃ allows us to easily plot Amoeba(∆) even when the
monomial term expansion of ∆ is beyond the range of any current computational algebra software.

Figure 9. Connected subsets of the chambers of corresponding
to the discriminant variety ∇.

For instance, as illustrated in Figure 9, we can restrict our parametrization ϕ̃ to P1
IR: the connected

components are actually images of connected subsets of the chambers of our discriminant variety
∇. We will then abuse notation slightly by referring to the unbounded connected components of
the complement of Amoeba(g) as outer chambers. The remaining connected components of the
complement of the contour of Amoeba(g) are called inner chambers.

Remark 3.1. The key observation at this stage is that (a) it appears to be more likely to lie in an
outer chamber than an inner chamber, and (b) the number of real roots of F(a,b) is constant for (a,b)
in a fixed (inner or outer) chamber. �

The outer chambers of ∇ in fact correspond to mixed subdivisions of the pair of supports coming
from F . Mixed subdivisions are a type of polyhedral complex that is essentially a triangulation of
a Minkowski sum of point sets, endowed with additional structure [HS95]. That outer chambers
of discriminant amoebae correspond to mixed subdivisions can then be derived via the theory in
[GKZ94].

The precise construction of these subdivisions need not concern us now, but a consequence of
the underlying theory is that one can associate a collection of lower binomial systems to each
such mixed subdivision. In particular, via a method we will describe shortly, we can determine
that

(
− log 31

50 ,− log55
)

lies exactly in the outer chamber of Figure 10, indicated by the single
remaining mixed subdivision.
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Figure 10. Connected subsets of the chambers of correspond-
ing to the discriminant variety ∇, and mixed subdivision for(
− log 31

50 ,− log55
)
.

For the indicated outer chamber and mixed subdivision, the resulting collection of lower binomial
systems for F is exactly the following:

x82
1 + 31

50x41
2

31
50x41

2 − x2 x82
1 − x2

x82
2 +55x41

1 x82
2 +55x41

1 55x41
1 − x1

Writing 4-tuples for the number of roots in IR2
+, IR−× IR+, IR2

−, and IR+× IR−, one can then easily
check that our 3 binomial systems respectively have the following distributions of roots in (IR∗)2:
(0,0,1,0), (0,1,1,0), and (1,1,0,0). In other words, we have just shown that the distribution of
roots for F is (1,2,2,0) as promised.

Even better, the construction of our mixed subdivisions also yields an explicit homotopy (or toric
deformation) that allows us to efficiently approximate the roots. To be precise, the construction of
the mixed subdivision above entails lifting the underlying support points and then finding certain
edge pairs from the lifted point sets [HS95]. The lifting values for our running example yield the
following lifted system with an extra parameter:

F̂t :=


x82

1 + 31
50t1t1t1x41

2 − x2

x82
2 +55t−8t−8t−8x41

1 − x1

(In particular, this system corresponds to assigning height 0 to all the points, save for a height
of 1 for (0,41) and a height of −8 for (41,0).) We then re-tailor the method of polyhedral
homotopy (normally used to find all complex solutions) as follows: use just the real roots of the
lower binomial systems as initial guesses for the real roots of F . Then, using standard numerical
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continuation with t going from 0 to 1, deform the initial guesses into approximations of the roots
of F .

Remark 3.2. Our method thus complements the known technique of polyhedral homotopy by pro-
viding canonical liftings for a given F . Indeed, to this day, polyhedral homotopy methods always
employed random liftings. Furthermore, by restricting to just the real roots of the lower binomial
systems, we obtain a simple and substantial computational speed-up. �

The resulting speed-ups are significant, even when applied in a preliminary way to numerical code
written before this project. For example, using Jan Verschelde’s PHC code, the lifting found by
knowledge of the outer chamber containing F allows us to numerically solve F (and detect our
5 real roots in the correct quadrants) within 10 seconds. In contrast, allowing random liftings
results in a slow-down by a factor of 2.8, and frequent miscounting of (or complete failure to
find) real roots. We also point out that T. Y. Li’s HOM4PS2 code (slightly modified to allow user-
specified liftings) successfully detected the real roots of F (in their correct quadrants) within 0.87
seconds, apparently independent of the chosen lifting. (There was a mild speed-up, under 1%,
when HOM4PS2 was given the lifting corresponding to the chamber containing F .) However, both
software packages worked with all 6724 complex solution paths, so there is still a significant
speed-up that we have not yet tapped: following just the 5 real homotopy paths. We are currently
working on incorporating the latter speed-up as well.

Remark 3.3. Finding homotopy algorithms preserving the number of real roots was an open prob-
lem. Part of our work on this proposal thus provides a solution. �

Algorithm in detail

To illustrate the algorithm we have derived during Year 2, we will discuss a particular family of
3×3 polynomials as a running example.

Example 3.2. Consider the family of polynomial system obtained by setting certain coefficients to
zero in a 3×3 unmixed 9-nomial system:

F :=


x6 +ay3− z

y6 +bz3− x

z6 +bx3− y

where a,b,c are real constants to be specialized later. The classical Bézout’s Theorem [Har] im-
plies that F has no more than 62=216 complex roots, assuming F has only finitely many. However,
the number of positive roots is, with high probability, no greater than 2. Moreover, we can effi-
ciently determine the exact number of positive roots (given real a, b, and c) via linear programming.
How we accomplish the last two claims is described below. �

Using our example above, let us now summarize the general technique we used to determine the
sharper count for the number of positive roots:
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1. Form a single lifted support set Â via the Cayley Trick: For our preceding example, this
means we replace the 3 sets of exponent vectors {(6,0,0),(0,3,0),(0,0,1)}, {(6,0,0),(0,3,0),(0,0,1)},
and {(6,0,0),(0,3,0),(0,0,1)} by the following single matrix:

Â :=



1 1 1 1 1 1 1 1 1

6 0 0 0 0 1 0 3 0

0 3 0 6 0 0 0 0 1

0 0 1 0 3 0 6 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1



.

2. Construct the Gale Dual of A : Letting UÂ > = H denote the Hermite
Factorization [Sto00, Ch. 6, Table 6.2, pg. 94] of the transpose of Â , suppose Â has
dimensions (n + 1)× (n + k) and consider the matrix B that is the transpose of the bottom k− 1
rows of U . For instance, in our running example, we obtain this matrix:

B :=



3 −1 0

−6 1 −6

3 0 6

2 0 3

1 −6 0

−3 6 −3

−1 3 −1

−5 0 1

6 −3 0



.

3. Define a hyperplane arrangement from certain rows of B Suppose the rows of B are
b1, . . . ,bn+k. Call radiant any set of indices I ⊂{1, . . . ,n+ k} satisfying the two conditions:
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(a) [bi]i∈I is a maximal rank 1 sub-matrix of B,

(b) ∑i∈I bi is not the zero vector.

We then let H ⊂Pk−2
IR denote the union of hyperplanes that are perpendicular to the line generated

by ∑i∈I bi for some radiant subset I . For our example, H is the arrangement of 9 green lines to
the right; and there are exactly 9 radiant subsets, each with cardinality 1. One then needs to find
every index set J of a set of hyperplanes defining an angle cone of some vertex of H .

Figure 11. The set J corresponding to Example 3.2. Some lines
are close together.

For instance, one can see with our running example 17 vertices, and a triplet of parallel lines
yielding an 18th vertex at infinity, as illustrated in Figure 11. One can also see that there are 33
such sets J visible from the illustration, and another 3 coming from a triple intersection of lines
at infinity. More precisely, each red (resp. blue) vertex defines one (resp. a triplet of) such index
set(s).

4. Collections of hyperplanes at an angle cone generate new cones For each J found in the
last step, we obtain the (k− 2)-dimensional cone WJ generated by the vectors {−b j} j∈J . The
union of these cones then defines a new polyhedral complex C ′ in Pk−2

IR which we call a (pointed)
cone arrangement. For our example, our 36 cones intersect to form exactly 53 top-dimensional
cells in C ′.

5. Shift the walls to get chamber cones For any t≥0 and y=(y1, . . . ,yN)∈CN let us define log+ t
to be 0 or log t according as t is 0 or not; and set log+ |y|:=(log+ |y1|, . . . , log+ |yN |). We then define
a new (non-pointed) cone arrangement C from C ′ by shifting the facets of top-dimensional cells.
In particular, expressing each top-dimensional cell σ′∈C ′ in the form

T
J HJ where HJ is the
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half-space uniquely determined by the index set J and the cell σ′, we define the (not necessarily
pointed) cone σ :=

T
J (HJ − log+ |vJ BT |B). C is then the polyhedral complex defined by the

intersection of all such σ. (Note that while every cell of C ′ is unbounded in IRk−1, C may possess
bounded cells.) We call the co-dimension 1 cells of C walls. We also call the top-dimensional cells
of C intersecting infinity chamber cones. The chamber cones of C are in bijective correspondence
with the top-dimensional cells of C ′. Figure 12 illustrates our example.

Figure 12. Example of chamber cones, limited by walls. Note
that the “inner” cells are obscured.

6. Final preprocessing for fast counting Via the computational geometry technique of ε-
cuttings [Cha01] (a higher-dimensional analogue of sorting), we build a data structure that allows
us to decide which chamber cone contains a given polynomial system within a number of arith-
metic operations polynomial in n and k.

Classically, Morse theory tells us that the number of roots of F is constant within any A -discriminant
chamber (see, e.g., [GKZ94]). So counting the number of real solutions of a polynomial system F
is can be accomplished by deciding which chamber contains F (and knowing the correct count for
the chamber).

The chamber cones we have constructed are in fact “outer” approximations of certain A -discriminant
chambers. Each chamber cone contains a unique A -discriminant chamber, and the corresponding
chamber is called an outer chamber. In particular, within each outer chamber, combinatorics rules:
the number of positive roots is exactly the number of alternating mixed cells in a mixed subdivision
uniquely defined by the corresponding chamber cone.

The case of Example 3.2 is illustrated in Figure 13, with a 2-dimensional slice of the discriminant
variety (left) and the mixed subdivisions (right). In particular, no mixed subdivision has more than
2 mixed cells, thus implying that no F in an outer chamber has more than 2 positive roots.
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Figure 13. A 2-dimensional slice of the discriminant variety (left)
and mixed subdivisions (right) for Example 3.2.

Our technique for fast real root counting is then to determine which outer chamber contains our
given polynomial system F . Furthermore, the corresponding mixed subdivision contains additional
data we can use to efficiently numerically approximate the real roots of F . (Computing mixed
cells can in fact be embedded in our earlier pre-processing, and is another standard computational
geometry task.) With respect to certain probability measures, random polynomial system lie in
outer chambers with high probability: our recent paper [BHPR11] proves this in an important
family of examples.

Remark 3.4. We emphasize that the 6 steps we have just described are preprocessing that need
only be done once per set of supports. Once the resulting data structure is in place, querying how
many real roots a system has is extremely efficient. �

Much of our work this year consisted in pinning down the preceding structure of our algorithm,
and implementing it in various special cases. In particular, we have implemented the cases k≤3
(with n arbitrary) in Matlab, and are currently completing a version in Sage. The latter version
will be useful for further open-source dissemination and error-checking against our earlier version.

New Directions

The theory of chamber cones is actually closely related to certain investigations into algorithmic
arithmetic geometry by Rojas. In particular, the papers [nIRR10, nIRRar] (which deal with poly-
nomials over the p-adic rational numbers) arose from this work, and in turn helped clarify the
structure of our algorithms over IR.

Rojas’ Ph.D. student Rusek has also extended the quantitative aspects of fewnomial theory in a
new direction: polynomials supported on structured point sets. In particular, he has succeeded in
considerably sharpening Khovanski’s famous upper bounds on the number of real roots for certain
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specially structured polynomial systems [RSST].

Closer to real polynomial system solving, Rojas has also investigated alternative strategies from
semidefinite programming. In particular, with Ph.D. student Rohun Kshirsagar, Rojas investigated
the fraction of nonnegative polynomials expressible as sums of squares of polynomials. (The latter
polynomials are called sos.) The motivation is that semidefinite programming can be used to
efficiently optimize polynomials that are sos. In particular, should most nonnegative polynomials
be sos, semidefinite programming would then be applicable to most polynomials. (It should be
mentioned that Hilbert’s 17th Problem concerned the expression of nonnegative polynomials as
sums of squares of rational functions.)

It is known from work of Blekherman [Ble06] that for fixed degree, the fraction of nonnegative
polynomials that are sos tends to 0 as the number of variables goes to infinity — a negative result.
Rojas’ investigation with Kshirsagar concerns a different but practically important setting: fixing
the number of variables. During Year 2, Rojas and Kshirsagar found a Markov chain method
to compute this fraction for low degree and a small number of variables (a setting which is still
completely unexplored). This will lead to a new paper in Year 3.

Finally, we mention that Hauenstein has continued advancing his C code for numerical homotopy
and, through the funding from this project, he has written a new paper on approximating points on
real algebraic hypersurfaces [Hau11].

3.2 Scalable Parallel Statistical Analysis

Design Trade-Offs and Limiting Cases for Computing Quanta-Based Statistics in Parallel

Statistical analysis is typically used to reduce the dimensionality of and infer meaning from data. A
key challenge of any statistical analysis package aimed at large-scale, distributed data is to address
the orthogonal issues of parallel scalability and numerical stability. Many statistical techniques,
e.g., descriptive statistics or principal component analysis, are based on moments and co-moments
and, using robust online update formulas, can be computed in an embarrassingly parallel manner,
amenable to a map-reduce style implementation.

In [PTB10] we focus on contingency statistics, one case of the more general class of quanta-
based statistical methods. By the means of a primary models consisting of a contingency tables,
several derived quantities, such as joint and marginal probability, point-wise mutual information,
information entropy, and χ2 independence statistics can be directly obtained. However, contin-
gency tables can become large as data size increases, requiring a correspondingly large amount of
communication between processors. This potential increase in communication prevents optimal
parallel speed-up and is the main difference with moment-based statistics, where the amount of
inter-processor communication is independent of data size. We therefore present the design trade-
offs which we made to implement the computation of contingency tables in parallel and study the
parallel speed-up and scalability properties of our open source implementation. In particular, we
observe optimal speed-up and scalability when the contingency statistics are used in their appropri-
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Figure 14. A set of 6 two-way contingency tables marginalized
from a single four-way contingency table, taken from simulated
combustion of a lifted ethylene jet. Plots in each row have an x
axis showing concentrations of the chemical species to the left and
plots in each column have a y axis showing concentrations of the
species to the top. Color is used to indicate the number of times
each set of concentrations were observed simultaneously at one
point in the simulation domain. Only 4 of the 21 different species
concentrations tracked were used to build the four-way table.

ate context, namely, when the data input is not quasi-diffuse. Figure 14 shows a set of 6 two-way
contingency tables, marginalized from a single four-way contingency table, taken from a simulated
combustion of a lifted ethylene jet.

In [PTBM11] we extend and generalize these results for another case of quanta-based statistics,
namely, order statistics, where the primary model is represented by histogram, whereby the input
data is also quantized. In particular, we establish that when used in their proper context, that is,
when the input data is honestly discrete (as opposed to quasi-diffuse), then our parallel design
trade-offs allow for near-optimal scalability, demonstrated with up to 10,000 processes of jaguar,
the premier computing facility of DOE, as illustrated in Figure 15.

Design and Performance of a Scalable, Parallel Statistics Toolkit

Most statistical software packages implement a broad range of techniques but do so in an ad hoc
fashion, leaving users who do not have a broad knowledge of statistics at a disadvantage since
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Figure 15. Parallel order statistics: weak scaling (at constant work per
process) on jaguar, with N(p)/p = 2×107.

they may not understand all the implications of a given analysis or how to test the validity of
results. These packages are also largely serial in nature, or target multicore architectures instead
of distributed-memory systems, or provide only a small number of statistics in parallel.

In [PTBM11] we survey a collection of statistics algorithm implementations developed as part of
a common framework that groups modeling techniques with associated verification and validation
techniques to make the underlying assumptions of the statistics more clear. Furthermore it employs
a design pattern specifically targeted for distributed-memory parallelism, where architectural ad-
vances in large-scale high-performance computing have been focused. Specifically, we partition
the statistical analysis workflow into 4 operations: Learn a model from observations, Derive statis-
tics from a model, Assess observations with a model, and Test the null hypothesis. Figure 16
contains an example that illustrates the parallel execution of Learn, Derive and Assess operations
of order statistics on 3 processes.

This parallel toolkit is released as open-source software (BSD-style license), as part of VTK [Kit10],
itself part of the Titan Informatics Toolkit [Ttn] developed jointly by Sandia and Kitware. It is pub-
licly available with Git; detailed instructions are provided by this webpage:

http://www.vtk.org/Wiki/VTK/Git

At the time of writing, the following 7 parallel engines workflows are implemented:

• descriptive statistics,

• histograms and order statistics,
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Figure 16. Example showing parallel execution of the Learn,
Derive, and Assess operations of order statistics on 3 processes.

• bivariate linear correlation and regression,

• contingency statistics and information entropy,

• multi-variate linear correlation,

• principal component analysis,

• k-means clustering.

The corresponding operations provided by each of these 7 engines are detailed in Table 1.

A number of programs which make use of the parallel statistics classes of Titan are available in
the VTK/Infovis/Testing/Cxx/ sub-directory of VTK and, as such, belong to the test harness of
VTK which is built and tested nightly on several systems, both serial and parallel. At the time of
writing, more than thirty different platforms, with various operating and scheduling systems, are
building the toolkit, running its test harness, and reporting the corresponding results to the Kitware
Dashboard each night at:
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http://www.cdash.org/CDash/

Moreover, most of the functionality of this toolkit is now available through the graphical user
interface of the ParaView parallel visualization application [Hen04], also a joint effort between
Sandia and Kitware, an application utilized by several thousands of users worldwide for scientific
visualization and data analysis.
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Table 1. The different operations currently made available by the
parallel statistics engines.

Learn Derive Assess Test

Descriptive Calculate minimum,
maximum, mean,
and centered M2,
M3 and M4 aggre-
gates [BPRT09]

Calculate variance,
standard deviation,
skewness, and kurtosis
(various estimators
available for each
statistic)

Mark with relative devi-
ation (one-dimensional
Mahalanobis dis-
tance [Mah36])

Calculate Jarque-Bera
statistic [JB87] and
perform χ2 goodness of
fit test

Order Calculate histogram Calculate arbitrary
quantiles (e.g., quar-
tiles, deciles, etc.)

Mark with quantile in-
dex

Calculate
Kolomogorov-Smirnov
test statistic [DCD86]

Correlative Calculate minima,
maxima, means, and
centered M2 aggre-
gates [BPRT09]

Calculate variances, co-
variance, Pearson corre-
lation r, and both linear
regressions

Mark with squared
two-dimensional
Mahalanobis dis-
tance [Mah36]

Calculate bivariate
Jarque-Bera-Srivastava
statistic [KOS09] and
χ2 goodness of fit test

Contingency Calculate the bivariate
contingency table (also
called a 2-dimensional
histogram)

Calculate joint, con-
ditional, and marginal
probabilities, as well as
information entropies

Mark with joint and
conditional PDF values,
as well as pointwise
mutual information

Calculate Pearson χ2

test of independence
without and with Yates
correction [Yat34]

Multi-
Correlative

Calculate means and
pairwise centered M2
aggregates [BPRT09]

Calculate covariance
matrix and its (lower)
Cholesky decomposi-
tion

Mark with squared
multi-dimensional
Mahalanobis dis-
tance [Mah36]

N/A

PCA Identical to the multi-
correlative algorithm

Identical to the multi-
correlative algorithm,
plus the eigenvalues and
eigenvectors of the co-
variance matrix [LV07]

Mark with coordinates
in basis of all, or only
first eigenvectors with
cumulative energy
above a given threshold

Calculate multivariate
Jarque-Bera-Srivastava
statistic [KOS09] and
perform χ2 goodness of
fit test

k-Means Compute k cluster cen-
ters given a positive in-
teger k [Mac67]

Calculate global and lo-
cal rankings amongst
sets of clusters, and to-
tal error [BPT09]

Mark with closest clus-
ter id and associated
distance for each set of
cluster centers

In progress
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4 New Integrated Topological and Statistical Methods

4.1 Exploring High dimensional Spaces for Uncertainty Quantification

An important goal of scientific data analysis is to understand the behavior of a system or process
based on a sample of the system. In many instances it is possible to observe both, input parameters
and outputs, and characterize the system as a high-dimensional function. Such data sets arise, for
instance, in understanding the uncertainty of large numerical simulations, energy landscapes in
optimization problems, or the statistical analysis of image data relating to biological or medical
parameters. In [GBPW10] we propose an approach that analyzes and visualizes such data sets. To
do so it combines topological and statistical geometric techniques to provide interactive visualiza-
tions of discretely sampled high-dimensional scalar fields. The method relies on a segmentation of
the parameter space using an approximate Morse-Smale complex on a cloud of point samples. For

Figure 17. The three distinct minima (blue spheres) correspond
to pure fuel, pure oxidizer and extinction/re-ignition. Graphs of
chemical composition plotted against temperature for the crystals
indicate that these three minima correspond to extinction (a), pure
oxidizer (b) and pure fuel (c). The global maximum (red sphere)
corresponds to efficient burning conditions.

each crystal of the Morse-Smale complex, a regression of the system parameters with respect to
the output yields a curve in the parameter space. The result is a simplified geometric representation
of the Morse-Smale complex in the high dimensional input domain. Finally, the geometric repre-
sentation is embedded in 2D, using dimensionality reduction, to provide a visualization platform.
The geometric properties of the regression curves enable the visualization of additional informa-
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tion about each crystal such as local and global shape, width, length, and sampling densities. The
method is demonstrated on several synthetic examples and several real scientific problems includ-
ing: the analysis of manufacturing parameters and their effect on the strength of concrete, the
parameters of climate simulations and their relationship to predicted global energy flux, the local
concentrations of chemical species in a combustion simulation and their integrations with temper-
ature, and the relationships between MRI brain images and measured clinical variables. Figure 17
shows our visualization technique applied to a high dimensional data set of chemical composition
in relation to heat released during a jet flame combustion simulation.

4.2 Analysis of Large-Scale Scalar Data Using Hixels

One of the greatest challenges for todays visualization and analysis communities is the massive
amounts of data generated from state of the art simulations. Traditionally, the increase in spatial
resolution has driven most of the data explosion, but more recently ensembles of simulations with
multiple results per data point and stochastic simulations storing individual probability distribu-
tions are increasingly common. In [TLB+11] we introduce a new data representation for scalar
data called hixels that store a histogram of values for each sample point of a domain. The his-
tograms may be created by spatial down-sampling, binning ensemble values, or polling values
from a given distribution. In this manner, hixels form a compact yet information rich approxi-
mation of large scale data. In essence, hixels trade off data size and complexity for scalar-value
“uncertainty”. Based on this new representation we propose new feature detection algorithms
using a combination of topological and statistical methods. In particular, we show how to approxi-
mate topological structures from hixel data, extract structures from multi-modal distributions, and
render uncertain isosurfaces. In all three cases we demonstrate how using hixels compares to tradi-
tional techniques and provide new capabilities to recover prominent features that would otherwise
be either infeasible to compute or ambiguous to infer.

Fuzzy Isosurfacing When down-sampling larger data sets, hixels enable the preserving the pres-
ence of an isosurface within the data. In particular, when hixels store the counts of all function
values present within a block, we can use that to compute the likelihood of the presence of an
isosurface within that block. Figure 18 demonstrates the results of this technique for a large com-
bustion jet data set with half a billion grid points.

Sampling Topology Hixels encode the potential values along with their distributions at sample
locations, a fact that can be exploited in visualizing the uncertainty in topological segmentations of
down-sampled data. We use a sampling of the hixels to generate individual instances of the coarser
representation, compute the Morse complex on the instance, and aggregate multiple instances of
the segmentation to visualize its variability. We generate an instance Vi of the down-sampled data
by picking values at each sample from the co-located hixel. The value is picked at random from
the distribution encoded by the hixel. By picking values independently from neighboring values,
we can simulate any possible down-sampling of the data, assuming all are independent.

32



Figure 18. Volume rendering of the jet data set down-sampled
using hixels. We visualize the scalar field g that indicates the like-
lihood of isovalue κ = 0.506 lying at that position. From left-to-
right, we show hixels that block 23, 83, and 323 data values. Opac-
ity is a triangle function centered at g = 0 and color is a rainbow
map, red for high values, green for middle, and blue for low.

We perform convergence tests for a two-dimensional slice through a jet combustion simulation. In
this experiment, we computed a hixel representation for the slice with blocks of size 8x8 and 16x16.
We visualize in Figure 19 each aggregate slice for the 8x8 block size, as number of iterations
and topological persistence are varied. The convergence of these sequences indicates that the
distribution represented by the hixels produces implies stable modes of segmentation.

Extracting Structures from Multi-Modal Distributions As HPC resources increase, ensem-
bles of runs are being computed more frequently to explore the state space of phenomena of in-
terest. The resulting ensemble data comprises a collection of simulation results, each of which
represents a state in the system defined by different input parameters and/or models. While ensem-
ble data sets are hailed as a useful mechanism for characterizing the uncertainty in a system, their
large size and variability pose significant challenges for existing analysis and visualization tech-
niques. We developed a novel statistical technique for recovering prominent topological features
from ensemble data stored in hixel format. This computation is aided by the fact that ensemble
data has a statistical dependence between runs that allows us to build a structure representing a pre-
dictive link between neighboring hixels. Our algorithm identifies sub-regions of space and scalar
values that are consistent with positive association and we perform topological segmentation on
only those regions.

We demonstrate results on a mixture of 2 stochastic processes shown in Figure 20. This data
highlights the fact that individual hixels can be multi-modal and can behave as both a minimum and
maximum. A naive analysis that computes the mean or median of the hixels, followed by standard
topological segmentation would fail to incorporate the multi-modal nature of the data. Our method
addresses this issue by performing topological analysis directly on sheets of the domain that have
likely simultaneously observable sets of behavior. Our approach clearly extracts separate sheets
belonging to the two processes and identifies their prominent features.

To compare against down-sampling a large-scale data set, we also demonstrate results of this
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Figure 19. We sample the hixel data for an 8x8 blocking of
combustion data, and compute the aggregate segmentation for a
number of iterations, also varying the level of persistence simpli-
fication. Adjacent white pixels are identified in the interior of the
same basin in every single run. The images converge as the num-
ber of iterations increases left to right.

method on a hixelated data set generated from the logarithm of the χ field of a lifted ethylene
jet combustion data set with 1.3 billion grid points. The contingency tables between each pair
of hixels are computed using observations between neighboring vertices along shared hixel faces.
Figure 21 shows the number of buckets per hixel with block sizes of 16 (top-left), 32 (top-middle),
and 64 (top-right). The color map ranges from blue at 1 bucket per hixel to red with 27 buckets per
hixel and, as is to be expected, the number of buckets per hixel increases significantly as the block
size increases. On the right the basins of maxima are shown for corresponding block sizes.

4.3 Feature-Based Statistical Analysis of Large Data

In [BKL+11] we present a new framework for feature-based statistical analysis of large-scale sci-
entific data and demonstrate its effectiveness by analyzing features from Direct Numerical Simu-
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Figure 20. On the left, a volume rendering of a hixel data
set generated by sampling images 3200 samples of a Poisson dis-
tribution and 9600 samples from a normal distribution.There are
512x512 hixels in this data set, each with 128 bins. The shortest
axis in the images corresponds to histogram bins, thus a spatially
higher location along that axis indicates a higher function value.
Color and opacity are used to illustrate the density of samples.
Thus the lower, right corner of shows a hixel with 2 distinct prob-
able function values; the smaller function value is less probable
than the larger. The center image shows basins of minima and the
right image shows basins of maxima for this data set. By com-
puting basins on sheets we are able to identify prominent features
associated with each process in the mixture model.

Figure 21. On the top the number of buckets per hixel is dis-
played for block sizes of 16 (left), 32 (middle) and 64 (right). Blue
regions have 1 bucket per hixel while the maximum number of
buckets per hixel is 27 and is shown in red. On the bottom the
basins of maxima are shown for corresponding block sizes.
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lations (DNS). Combustion scientists use DNS to study fundamental turbulence-chemistry inter-
actions such as extinction and auto-ignition in turbulent jet flames. Of particular interest is the
scalar dissipation rate, χ, which indicates the local rate of molecular mixing, which is enhanced
by turbulent flow. Turbulent flow strains fluids, creating thin pancake-like features of locally high
dissipation rate whose thickness provides a direct measure of the local mixing length-scale. Un-
derstanding the relationship between the thickness and the mean temperature within features is
of principal interest to study the relationship between mechanical strains and chemical processes.
This analysis is challenging due to the wide range of feature parameters that must be explored and
the massive sizes of the simulation.

In our approach we pre-compute merge trees of the χ field which encode the set of features for all
possible χ thresholds. Furthermore, we augment the merge trees with attributes, such as statistical
moments of various scalar fields, e.g. χ, temperature, etc., as well as length scales computed
via spectral analysis. The computation is performed in an efficient streaming manner in a pre-
processing step and results in a collection of meta-data that is orders of magnitude smaller than
the original simulation data. This meta-data is sufficient to support a fully flexible and interactive
analysis of the features, allowing for arbitrary χ thresholds, providing per-feature statistics, and
creating various global diagnostics such as cumulative density functions (CDFs), histograms, or
time-series. We combine the analysis with a rendering of the features in a linked-view browser
that allows scientists to interactively explore, visualize, and analyze the equivalent of one terabyte
of simulation data on a commodity desktop. While we have successfully deployed our framework
to analyze statistical properties of turbulent combustion, its design and implementation are general
and applicable to a wide range of scientific domains.

Figure 22. Our framework provides a natural and intuitive work-
flow for the exploration of global trends in feature-based statistics.
By efficiently encoding hierarchical meta-data in a pre-processing
step, interactive data exploration of the equivalent of one terabyte
of simulation data is performed on a commodity desktop.

36



5 Dissemination of results

Refereed Publications

• 1 proceedings volume: [GPRT11]
• 3 journal articles: [GBPW10, PRSar, PRT11].
• 11 conference proceedings: [nIRR10, BHPR11, RSST, BNPS10, WBGP, BJB+11a, GBP,

GLP11, JBB+11a, PTB10, PTBM11, BBC+11]. (1 best paper, [BJB+11a])
• 1 multimedia submission: [GLP11].
• 1 poster: [BBC+11]

Submitted to Refereed Venues

• 8 journal articles: [nIRRar, Hau11, Roj, RS10, BJB+11b, GKK+, BKL+11, JBB+11b]
• 1 conference proceedings: [TLB+11]

Technical Reports

• [JBB+10]

Presentations

• 9 refereed conference presentations: [nIRR10, BNPS10, WBGP, BJB+11a, GBP, GBPW10,
JBB+11a, PTB10, PTBM11].
• 7 invited plenary presentations:

– Rojas: Banff International Research Station (Mar. 1, 2010)
– Rojas: Notre Dame University (Aug. 4, 2010)
– Pascucci: at the SIBGRAPI 2010 conference
– Pascucci: IX Congress of the Peruvian Computing Society
– Pascucci: Institute for Science and Technology (IST), Austria, January 27, 2011.
– Pascucci: Commissariat à l’Énergie Atomique (CEA) TERA100 High Performance

Computing Center, Arpajon, France , February 3, 2011.
– Pascucci: Visualization in Computational Bioscience, February 24, 2011, Texas A&M

University, TX.
• 10 invited conference/workshop presentations:

– Rojas: AMS regional meeting in Waco, TX (Oct. 18, 2009)
– Rojas: (presented by postdoc Avendaño): International Symposium on Symbolic and

Algebraic Computation, Munchen, July 28, 2010
– Rojas: Toric Geometry and Applications, Leuven, Belgium (June. 6-11, 2011)
– Pascucci: SCIDAC 2010 conference
– Levine: IRTG meeting in Utah 2010
– Bennett: BASC meeting in Palo Alto, CA, 2011
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– Bennett: CScADS meeting in Lake Tahoe, CA, 2011
– Bennett: Grace Hopper Celebration of Women in Computing, Portland, Oregon, Nov.

2011
– Pascucci: 2nd National Conference in Advancing Tools and Solutions for Nuclear Ma-

terial Detection, May 3, 2011, Salt Lake City, UT.
– Pascucci: Dagstuhl seminar on Scientific Visualization, Germany, May, 2011.

Sofware Packages (SAGE, MATLAB, C, C++)

• Scalable parallel statistics toolkit added to VTK, available at git@vtk.org:VTK.git.
• Demonstration of uncertainty in vector fields.
• Visualization of the structure of 3D Morse-Smale complexes.
• Computation of contingency statistics in arbitrary dimensions.
• Visualization of fuzzy isosurface in large and/or uncertain data sets.
• Identification of prominent topological features in uncertain data.
• Distributed computation of global statistics.
• Interactive visualization of discretely sampled high-dimensional scalar fields.
• Aggregation and visualization of feature-based statistics (length scales, descriptive statis-

tics).
• Some preliminary code is available at www.math.tamu.edu/˜rojas/nearcircuits.html
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6 Planned Work

As we continue our work next year, we plan to investigate the following research activities:

• Build tools to support feature-based contingency statistics and demonstrate that they work at
petascale, e.g., using large-scale combustion data.
• Build tools to identify modes in higher-dimensional distributions using topological tech-

niques (begin with 2 and 3 dimensions, then extend to dimensions greater than 3).
• Turn select prototype implementations into reliable, scalable analysis tool kits for computa-

tional scientists to demonstrate generality of our approaches in an application-independent
way.
• Compare hixels to existing compression techniques (e.g. wavelets).
• Apply hixel analysis methods developed this year to ensemble data sets.
• Fit and test non-Gaussian statistical models on topologically segmented features.
• Explore persistence as it pertains to hixelated data.
• Fix family of examples for experimentation with real solving.
• Complete Matlab and SAGE implementations of univariate chamber cone method.
• Implement a simple homotopy solver tailored to lower binomial systems and perform speed

tests.
• Explore epsilon-cuttings for future speed-ups in the polyhedral portion of the chamber cone

algorithm.
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