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Abstract 

 

Article 690.11 in the 2011 National Electrical Code
®
 (NEC

®
) requires new 

photovoltaic (PV) systems on or penetrating a building to include a listed arc fault 

protection device.  Currently there is little experimental or empirical research into the 

behavior of the arcing frequencies through PV components despite the potential for 

modules and other PV components to filter or attenuate arcing signatures that could 

render the arc detector ineffective.  To model AC arcing signal propagation along PV 

strings, the well-studied DC diode models were found to inadequately capture the 

behavior of high frequency arcing signals.  Instead dynamic equivalent circuit models 

of PV modules were required to describe the impedance for alternating currents in 

modules.  The nonlinearities present in PV cells resulting from irradiance, 

temperature, frequency, and bias voltage variations make modeling these systems 

challenging.  Linearized dynamic equivalent circuits were created for multiple PV 

module manufacturers and module technologies. The equivalent resistances and 

capacitances for the modules were determined using impedance spectroscopy with no 

bias voltage and no irradiance.  The equivalent circuit model was employed to 

evaluate modules having irradiance conditions that could not be measured directly 

with the instrumentation.  Although there was a wide range of circuit component 

values, the complex impedance model does not predict filtering of arc fault 

frequencies in PV strings for any irradiance level.  Experimental results with no 

irradiance agree with the model and show nearly no attenuation for 1 Hz to 100 kHz 

input frequencies. 
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1.  INTRODUCTION 

 

Sandia National Laboratories is researching the electromagnetic propagation characteristics of 

arcing signals through PV arrays in order to (a) inform arc fault detector designers of frequency-

dependent PV attenuation, electromagnetic noise, and radio frequency (RF) effects within PV 

systems, and (b) to determine if there are preferred frequency bandwidths for arc fault detection.  

In order to provide this information, the AC frequency response of PV modules, strings, and 

conductors is being characterized.  This paper specifically focuses on the filtering effects of PV 

modules. 

 

Modeling the frequency response of PV modules must account for unique PV cell responses at 

different irradiances, temperatures, currents, and voltages.  Modeling the dynamic (AC) 

equivalent circuit of modules helps to better understand when there is frequency-dependent 

attenuation through PV strings.  As illustrated in Figure 1, an arc generates a range of AC arcing 

noise on top of the PV DC current.  This signal travels down the PV string through the modules 

to the arc fault circuit interrupter (AFCI).  As the signal passes through the modules, the arc 

signature may be attenuated, which could result in inaccurate arc fault detection when a modified 

AC arcing signal reaches a remotely-located detector.   
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Figure 1. Propagation of arcing signal through a PV string. 
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2.  DYNAMIC PV MODULE MODELING 

 

AC models of PV systems have been previously studied to characterize their use as optical 

detectors [1], measure cell layers [2-3], determine charge densities [4], and to observe how the 

resistances and capacitances change with varying cell inputs such as illumination [5] and 

temperature [6-7].  The dynamic circuits have been developed based on different semiconductor 

models (e.g., carrier physics [1]), but to determine the values for the circuit components, time-

domain [7-10] or frequency domain techniques [9, 11-12] are used.  One dynamic equivalent 

circuit model and the simplified electrical circuit model are shown in Figure 2 [10-13], where: 

 

Imod    =    module current 

Rs   =   series resistance 

Rsh   =   shunt resistance 

Rd(V)   =    dynamic resistance of diode 

CD(V,ω)  =    diffusion capacitance 

CT(V)   =    transition capacitance 

Vac    =    dynamic voltage 

ω    =    signal frequency 

 

 
Figure 2.  Equivalent dynamic electrical circuit for a PV module[11]. 

 

 

This model can be simplified by combining electrical components, as shown in Figure 3. 

 

 
Figure 3. Simplified dynamic electric circuit for a PV module. CD || CT=Cp and Rd || Rsh= Rp. 
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Chenvidhya et al. [14] calculated the equivalent complex impedance to be 
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However, some of these electrical components are not static values with respect to frequency and 

bias voltage.  Chenvidhya et al. determined the circuit components were significantly affected by 

bias voltage [15] and Chayavanich et al. determined there was voltage and frequency 

dependence on the transition and diffusion capacitance [7].  Thus, resistance and reactance of Eq. 

(1) are functions of voltage and frequency. 

 

In order to determine the resistance and capacitance values, many researchers use impedance 

spectroscopy [9, 12].  The resistor values are determined by studying the dynamic impedance 

loci: Rs is the high frequency intercept and Rs + Rp intercept is at the minimum frequency [16].  

The combined capacitance, Cp, can be calculated from the measured reactance. 
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3.  DYNAMIC MODEL GENERATION 

 

 

Four polycrystalline-silicon (p-Si), one amorphous-silicon (a-Si), and three crystalline-silicon (c-

Si) modules were scanned with the frequency response analyzer from 1 Hz to 100 kHz to 

produce equivalent AC models.  The input sinusoid was 250 mV. Testing was conducted at room 

temperature, and there were no irradiance or bias voltage influences on the module.  A list of the 

tested modules and the measured resistance and capacitance values appear in Table 1. 

 
Table 1. Modules and equivalent circuit values 

 

Module  Cell Type  Pmax (W)  Rp (k)  Rs

 

()  Cp (F)  
Minimum Reactance 

Frequency
 

 

 Module A  p-Si  72.0  4.27  0.50  1.8  355 kHz  

 Module B  
p-Si  47.8  2.10  0.83  1.6  328 kHz  

 Module C  
p-Si  72.3  1.08  1.02  4.0  194 kHz  

 Module D  
c-Si  175  13.2  6.81  0.5  118 kHz  

 Module E  c-Si  75.0  3.65  0.31  1.8  188 kHz  

 Module F  
c-Si  200  5.60  1.29  2.4  576 kHz  

 Module G  
a-Si  43.0  348  13.8  3.4  666 kHz  

 Module H  
p-Si  93.6  17.3  2.21  2.2  531 kHz  

 

 

In order to determine the circuit element parameters, the complex impedance of the modules was 

recorded with an AP Instruments Model 300 Frequency Response Analyzer.  The complex 

impedance plot for Module H is shown in Figure 4.  The intercepts along the resistance axis 

correspond to Rs when the frequency approaches infinity (ω  ∞) and Rs + Rp when the 

frequency is 0 (ω = 0), as shown in Figure 5. 
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Figure 4.  Complex impedance for Module H with the equivalent circuit model. 

 

 
Figure 5.  Complex impedance for Module D with frequencies labeled in Hz.  For 

increasing frequency, the impedance spectroscopy plot is traced from the right to the 
left.  (Note the 120 Hz noise from the instrument is visible in the trace.) 
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To determine the value of Cp, the error between the model and the experimental results were 

minimized, shown in Figure 6.  The minimization can be performed in a number of different 

ways but the technique used here was a minimizing routine based on the difference between the 

reactance of the model and the data for all frequencies for which data were collected, given by 

  

     








 


finalf

ff

Data

PV

Model

PVPV fZfZZ
1

ImImmin  (2) 

 

where f is the frequency in Hz, f1 is the first experimentally measured frequency, ffinal is the last 

measured frequency,    fZ Model

PVIm  is the reactance of the model at frequency f, and   fZ Data

PVIm  is 

the reactance of the data at frequency f.  

 

 
Figure 6.  Reactance vs frequency for Module D and reactance models with Cp = 0.2, 0.5, 

and 1 F.  Cp = 0.5 F minimized the error between the model and the experimental data. 

 

The large variability in module impedances for different PV technologies and manufacturers is 

seen in the comparison in Figure 7.  This is expected as CD, CT, and Rd are known to vary with 

temperature, light, voltage and cell materials [9].  The Rp resistance varies significantly between 

each of the modules, shown by the difference in the low frequency intercepts.  The amorphous 

silicon module had much larger Rs and Rp values in comparison to the other modules, shown in 

Figure 8.  The series resistance for each of the modules is more than three orders of magnitude 

smaller than the combined dynamic and shunt resistances.  There was also significant variability 

between the modules for the parallel capacitance (Cp) values. 
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Figure 7.  Complex impedance of multiple modules. 

 

 
Figure 8.  Amorphous Si module impedance compared to crystalline Si modules. 

-8.00E+03

-7.00E+03

-6.00E+03

-5.00E+03

-4.00E+03

-3.00E+03

-2.00E+03

-1.00E+03

0.00E+00

0.00E+00 5.00E+03 1.00E+04 1.50E+04

Im
ag

in
ar

y 
Im

p
ed

an
ce

 (


)

Real Impedance ()

Impedance Spectroscopy of Multiple Modules

Module A Module B Module C Module D

Module E Module F Module G Module H

-1.60E+05

-1.40E+05

-1.20E+05

-1.00E+05

-8.00E+04

-6.00E+04

-4.00E+04

-2.00E+04

0.00E+00

0.00E+00 5.00E+04 1.00E+05 1.50E+05 2.00E+05 2.50E+05 3.00E+05 3.50E+05

Im
ag

in
ar

y 
Im

pe
da

nc
e 

(
)

Real Impedance ()

Impedance Spectroscopy of Multiple Modules

Module A Module B Module C Module D

Module E Module F Module G Module H



14 

 

 
Figure 9.  Complex impedance of a large number of p-Si modules with a 250 mV input. 

 

In order to quantify the variability in module impedances for the same PV production process 28 

80-W p-Si modules were analyzed.  Repeatability was good. The large range of impedance 

spectroscopy results shown in Figure 9 was due to cell binning [17], bypass diode variability, 

and manufacturing variability. 
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Figure 10. Complex impedance of multiple p-Si modules with a 1.50 V input. 
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4. MODELING ARC FAULT FREQUENCY RESPONSE 

 

Simulations of the equivalent dynamic models were performed with MATLAB
®
/Simulink

®
 to 

identify the attenuation effects of the PV modules.  The different module circuits were analyzed 

for filtering effects using the circuit parameters determined from the impedance spectroscopy 

measurements in Table 1.  In order to generate the attenuation data for the modules, the circuit 

shown in Figure 11, was built using Simscape™ components in Simulink, as shown in Figure 12.  

Since impedance spectroscopy and frequency response analysis of the modules were performed 

with no irradiance on the module, the DC Current Source was removed from the model for tests 

without irradiance.  The simulation was run with and without bypass diodes, and probe resistance 

and capacitance.  The model was then linearized with Simulink Control Design using the input 

sinusoid and output voltage as control points.  Bode plots were generated for frequencies from 1 

Hz to 100 kHz for each of the modules.  The Bode plots for all simulated modules show no 

attenuation or filtering.  The Bode plot for Module D is shown in Figure 13.  The results show no 

filtering for all simulated modules. 

 

 
 

Figure 11. Frequency response configuration with an equivalent PV model with no 
irradiance. 

 

 
Figure 12. Dynamic PV model in Simulink. 
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Rs 

Vinput 
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Figure 13. Bode plot of Module D from 1 Hz to 100 kHz using the equivalent dynamic 
circuit values from impedance spectroscopy. None of the simulated modules show 

filtering. 
 

For further study, simulations of three sets of 24 PV cells in series (each set with a bypass diode) 

were modeled with equivalent single cell circuit parameters to those of Module D.  The purpose 

of these simulations was to determine if the explicit modeling of interconnections between the 

PV cells would change the frequency response of the modules.  Figure 14 shows the Simscape™ 

components in Simulink needed to produce the model.  Each PV array series string contains 24 

circuits connected as in Figure 3.  The simulations were performed with no irradiance on any of 

the PV cells with the exact same values for the probe resistance and capacitance.  Figure 15 

illustrates the Bode plots which show no filtering until very large signal frequencies (10s of GHz 

range) at which point the nonzero probe capacitance (25 pF in this case) and finite probe 

resistance (100kΩ in this case) begin to show a 20 dB/decade rolloff.  This frequency range is 

generally well beyond the frequency range of interest. 
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Figure 14. Dynamic PV model of 72 PV cells in series (3 sets of 24 cells) in Simulink. 

 

 
 

Figure 15. Bode plot of 72 PV cells in series from 1 Hz to 100 GHz. The simulated array 
panel shows no filtering effects until very high frequencies. 
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The results from the MATLAB/Simulink simulations were compared to frequency response data 

collected for the modules using the AP Instruments Frequency Response Analyzer.  The 

experimental data, shown in Figure 16, was collected under the same conditions as the 

impedance spectroscopy data—at room temperature with no irradiance. There was agreement 

between the simulations and the frequency response data.  The equivalent circuitry does not filter 

the passing arc fault frequencies for all the crystalline and polycrystalline modules.  However, 

there is a small amount of high-pass filtering for the amorphous-Si module.  The cause of this 

filtering effect is unknown, but it may be a result of bypass diodes or other nonlinearities that 

were not captured in the dynamic PV model. 
 

 
Figure 16. Experimental frequency responses for the eight modules. 

 

Due to limitations of the instrumentation, frequency response characterization of the modules 

with irradiance was not possible without using DC blocking hardware.  This hardware 

unfortunately interferes with the data collection as it introduces additional electrical components 

through which the signal must be transmitted.  However, using the Simulink model, it was 

possible to simulate varying degrees of irradiance by increasing the value of the DC Current 

Source.  For all irradiance values, there was no attenuation for frequencies between 1 Hz and 100 

kHz. 
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5. CONCLUSIONS 

 
Equivalent AC circuits were created for modeling the frequency response of PV modules.  This 

study employed a theoretical framework using impedance spectroscopy to determine the 

equivalent circuit models that were then used to model the dynamic effects present in PV arrays.  

The numerical simulation results matched experimental frequency response data for the zero 

irradiance case.  The simulations were then expanded to situations with higher irradiances for 

which impedances could not be directly measured.  The circuit models determined that arcing 

frequencies in PV systems would not be attenuated prior to reaching a remotely located arc fault 

detector.  In all simulations there was no appreciable filtering or attenuations through the PV 

module models.   

 

The following recommendations and observations are made: 

 

1. Impedance spectroscopy is helpful in matching module behavior to the equivalent circuit 

models. 

2. A small database of equivalent circuits is now available for modeling the frequency response 

of modules. 

3. Dynamic PV models can be used in MATLAB/Simulink, SPICE, or other analog circuit 

modeling software package. 

4. Simulated circuits can be used to determine if arcing frequencies in PV systems are being 

filtered by the PV components prior to reaching a remotely located arc fault detector. 

5. There is significant impedance variability between PV module manufacturers, technologies, 

and modules in the same module family. 

6. Voltage and frequency dependencies are difficult to model.  (A transmission line model may 

be used to account for these dependencies.) 

 

Further study is needed in evaluating other influences of the propagation of arcing frequencies 

through PV systems.  There are many other components in PV systems that could attenuate the 

arc fault signal.  Furthermore, at higher frequencies there are antenna effects, crosstalk, and other 

RF effects that become a factor in the signal quality. 
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