SANDIA REPORT

SAND2011-4129
Unlimited Release
Printed June 2011

JAGUAR DEVELOPER’'S MANUAL

Ethan Chan

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government, nor any agency thereof, nor any of their employees, nor any of
their contractors, subcontractors, or their employees, make any warranty,
express or implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product,
or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process,
or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government, any agency thereof, or any of their
contractors or subcontractors. The views and opinions expressed herein do
not necessarily state or reflect those of the United States Government, any
agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.qgov

Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd.
Springfield, VA 22161

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders@ntis.fedworld.gov

Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-
O#online

SAND2011-4129
Unlimited Release
Printed June 2011

JAGUAR DEVELOPER’S MANUAL
Ethan Chan

Quantitative Modeling and Analysis
Sandia National Laboratories
P.O. Box 969
Livermore, CA 94551-MS9155

Abstract

JAGUAR (JAva GUi for Applied Research) is a Java software tool providing an
advanced text editor and graphical user interface (GUI) to manipulate DAKOTA
(Design Analysis Kit for Optimization and Terascale Applications) input
specifications. This document focuses on the technical background necessary for a
developer to understand JAGUAR.

Contents

Chapter 1 INTrOTUCTIONooueeiiiiesie et st 5
Section 1.1 PaCKage OVEIVIEW.........ccuuiieiiiiieiieeie e siee ettt sneesre e 5
Section 1.2 Package hierarChy ... 5
Section 1.3 Reading iN gramiMar..........cccoveeieieeniieieseesieesie e see e sree e see e seeas 7
Section 1.4 Dissecting the grammar file ..o, 8

Chapter 2 TeXt EQITOF........ccviieiieiece sttt ae e s 13
SECLION 2.1 OVEIVIEW ...cviieiiieie ettt sttt enes 13
Section 2.2 AutOCOMPIELIONociiiiiecc s 17
SECtION 2.3 DAKIBOIUBTcuviieiiiieitee ettt 19

Chapter 3 Graphical INterface..........cccveveiieiiic e 21
SECHION 3.1 BASIC LY PES....eeciieirieiieieceesie et ettt ns 21
Section 3.2 GUI TOOIDANccoiiiiiiiecee s 24

3.2.1 DAKOLA CNECKovviiieiieieie et 24
3 2.2 PrEtlY NAIME ..ciiiiii ettt e e s 24
3.2.30N1INE FETEIENCEeeeieieeee e 24
32,4 COMIMENTS ...ttt et nae et e et e b e naeesnee 25
3.2.5PUSN UP CIEBMENTS ... s 26

Chapter 4 UL TranSITIONcooveiiiiiiiiieseseseee et 27

Chapter 5 WIZAIUS.oiiiiiieiee et 29

Chapter 6 WEICOME SCIEEN........cviiiiie e 29

Chapter 7 CheatSNEETS.eieiiieie e e 31

Chapter 8 TEMPIALESccueeeeieiee e e 33

CRAPLET O VIBWS....eeeeieei ettt ettt sbe e nnes 33
Section 9.1 OULHNE VIBWouiiiiiiie et 35
Section 9.2 CONSOIE VIBWooiuiiiiiiiiiece et s 36

Chapter 10 Creating BiNAri€S........ccucvveiiiieiieiiesie et 37
Section 10.1 EXporting in ECHPSEcvcvveiieiece e 37
Section 10.2 Creating Windows Installer............c.cccovvieiieie i 38
Section 10.3 Creating Mac Installer............cccooov i 41
Section 10.4 RElEASINGccveiieiieiie ettt 41

Chapter 1 INTRODUCTION

Welcome to the JAGUAR developer guide. We will go through the underlying architecture
so you can better understand how JAGUAR was built and how it works.

Section 1.1 PACKAGE OVERVIEW

JAGUAR 2.1 has been developed using Eclipse Helios 3.6.1, Windows 7 64-bit, JDK 6 64-
bit. Other configurations may also be compatible.

JAGUAR requires two projects to be checked out from the SVN repository located at
https://dta.ran.sandia.gov/svn/dart/DART-WB-Core/trunk/

1. /gov.sandia.dart.jaguar - The main project where JAGUAR lives.

2. [gov.sandia.dart.jaguar.feature - Used to build JAGUAR for different
platforms.

Section 1.2 PACKAGE HIERARCHY

The basic hierarchy structure:

e /gov.sandia.dart.jaguar/
0 src/gov/sandia/dart/jaguar/
= core
e form — graphical renderers of the internal model
e model - components that build up the model
representation

e parse — better parse text into syntactical objects

editors
e application — overrides menus/look & feel etc. A lot
of overrides.

e partition2 — Text editor core

intro — The welcome page

= wizard

e LHS - Latin Hypercube Sampling (aka Sensitivity
Analysis)

e newlnputDeck — Create new inputdeck

e newlnputDeckFromTemplate — Create new input
file from wuser created and JAGUAR standard
templates.

cheatsheet — cheatsheet definitions

doc — JAGUAR User’s Manual / documentation
files — dakreord, templates, dakota desc/nspec files
icons — the icon sets used in JAGUAR

sqa — released process and test process notes

jaguar.product — configurations used to build the binaries

©O 0O 0O o o o o

plugin.xml — defines the dependencies and plugin specifics

e /gov.sandia.dart.jaguar.feature/
O Dbuild.properties — controls setting the permissions (specifically for Linux)
and copying platform specific files to the generated binary.
COPYRIGHT, LICENSE & README - text files included in the binary.
Dakreorder, icons (and JRE (but unused)) — other necessary files included

in the binary.

Important files:

e editors/JaguarEditor.java
o0 Dynamically generates NIDR_guikeywds.h (used for grammar generation)
from internal files: dakota.input.desc and dakota.input.nspec

o Creates the instances of the 5 tabs (see addPages())

Source [Define Prablem Define Flow,Tteration Execute Problem Visualize Results

o Creates instance of JaguarTextEditor
e editors/partition2/JaguarSourceViewerConfiguration.java
0 Text editor magic: autocomplete, hover tool tip, and hyperlink
e editors/partition2/JaguarTextEditor.java
o0 Highlights element at cursor position (see updateHighlight())
0 SaveAs & SaveAsTemplate override

0 Updates model and error from text (see update())

Section 1.3 READING IN GRAMMAR

The grammar JAGUAR uses is a direct transfer from DAKOTA. This helps keep JAGUAR
always up to date with new DAKOTA releases. A key feature of JAGUAR is to dynamically
pull the grammar in and process the input deck according to the grammar specifications.

Relevant code can be found at:
/gov.sandia.dart.jaguar/src/gov/sandia/dart/jaguar/editors/JaguarEditor.java

In method: getGrammarModelNIDR()

Intenal External

nidrgen

dakota.input.desc

dakota.input.desc

dakota.input.nspec

dakota.input.nspec

NIDR_guikeywds.h

> Grammarparsing

nidrgen

dakota.input.nspec dakota.input.nspec

» Far dakreord

e Checks if dakota.input.desc and dakota.input.nspec exists in user given external
Dakota path, otherwise will use internal version.

0 Internal versions located at /files/dakota.input.desc and
/files/dakota.input.nspec

e Run nidrgen to generate guikeywds (used for reading in grammar)
O nidrgen -egG dakota.input.nspec dakota.input.desc
0 stdout pipes into NIDR_guikeywds.h (located in

e Generate specsum (used for dakreorder future runs):

0 nidrgen —jspecsum dakota.input.nspec

Section 1.4 DISSECTING THE GRAMMAR FILE

The NIDR grammar file looks something like this:
kw_1[3] = {
{"active_set _vector",8,0,1,0,1567%},
{"evaluation_cache",8,0,2,0,1569},
{"restart_file",8,0,3,0,1571}

}»
kw_2[1] = {

{"processors_per_analysis'",9,0,1,0,1551,0,0.,0.,0.,0,"{Number
of processors per analysis}
http://www.cs.sandia.gov/dakota/licensing/votd/html-
ref/InterfCommands.html#InterfApplicDF"}

3,
kw_3[4] = {

{"'abort",8,0,1,1,1557,0,0.,0.,0.,0,"@[CHOOSE failure
mitigation]"},

{"continuation",8,0,1,1,1563},

{"'recover',14,0,1,1,1561}%},

{"retry",9,0,1,1,1559}

}

To decode the grammar, we go through each parameter (not all parameters need to be
defined):

Parameters:
1: keyword name - The official name of this keyword
2: kind — The integer value of kind is the summation of the binary values of the below

representations:

512 256 128 64 32 16 8 4 2 1

Integer 0Ox1 0 1
Real 0x2 1 0
String 0x3 1 1
Array 0x4 1
Primary 0x8 1
StrictLB 0x10 0 1
CaneqlLB 0x20 1 0
LB 0x30 1 1
StrictUB 0x40 0 1
CaneqUB 0x80 1 0
uB OxcO 1 1

ToplLevelAtMostOnce 0x100 O 1
ToplLevelOnlyOnce 0x200 1 0

ToplLevelAtLeastOnce 0x300 1 1

Meaning:

e Integer, Real, String — Each keyword can be of anyone of these types of value,
or not specified at all (meaning no value).

e Array — Applied for keywords of type integer, real or string representing a list
of values (i.e. 1.4,2.5,3.6,4.7 or ‘a’,’b’,’y’, ‘Z’)

e Primary - If false, represents this keyword is instead an alias. Only primary
keywords are shown in JAGUAR GUI.

e StrictLB, CaneqLB, LB — Represents lower bound (<, <=) limits exist. See bound
values in later parameter definitions. Currently not fully utilized in JAGUAR.

e StrictUB, CaneqUB, UB — Represents upper bound (>, >=) limits exist. See
bound values in later parameter definitions. Currently not fully utilized in
JAGUAR.

o TopLevelAtMostOnce — Only applies for section keywords. Indicates only
allows 0 or 1 instances (at most once).

e TopLevelOnlyOnce — Only applies for section keywords. Indicates only allows 1
instances (only once).

e ToplLevelAtLeastOnce — Only applies for section keywords. Indicates only
allows 1 or more instances (at least once).

For example, 0x7 would represent the keyword as an array of strings -- String (0x3) and
Array (0x4).

For the developer’s convenience, in ModelElement.java, there are methods prepended
with “isKind” such as isKindPrimary() and isKindArray() used to query these values.

3: Number of keywords — Number of keywords contained in the pointer group.

4. Alternate Group - Specifies which ModelGroup in the ModelContainer this
element belongs to. This will not be referenced directly.

5: Required — Determines if this keyword is required to be valid

6: Alias Group — not used

7: Pointer Name — Refers to the keyword group (kw_#) containing the children
keywords.

8: Lower bound - defines lower bound (for numbers)

9: Upper bound — defines upper bound (for numbers)

10: Default Real — default number value (despite the internal name, it is for both real

and integer values).
11: Default String — default string value.

12: Description

{"'num_least_squares_terms",0x29,6,3,1,1627,kw_173,0.,0.,0.,0,"[choose
response type]{{Least squares (calibration)} Number of least squares terms}
http://www.webaddress.com#RespFnLS"}

Default in Description: begin description with@: this specifies if this is in a group
that it is the default

Header in Description: contained in between []

Pretty subgroup: contained in between {}

10

{{A}B}C : A = pretty Subgroup name, B = prettyName, C=rest of description

{D}E: D = prettyName, E = rest of description

13: Group description

{"conmin_frcg",8,9,11,1,177,kw_31,0.,0.,0.,0,"[CHOOSE OPT
method]",""Optimization: Local, Derivative-based"}

Default in Group: begin description with @: this specifies it is the default

Header in Group: contained in between []

Group Name: rest of description

To clarify parameters 12 and 13, this is how they are used in the GUI:

b Monlinear Least Squares x: abort *
, Element Options * | | Element Opticns
- @ CHOOSE method category @— choose failure mitigation
Headerin Group Surr.og.atejbased Methods 3 ak:j.o?[.t’ : 0
Optimization: Global 5 / _<ontinuation 0
= Optimization: Local, Derivative-based 14 7 |Bl| | RSl recover 0
Default in Group undefined A 1 ety 0
(unused) eririon e AR Aol
Optimization: Local, Derivative-free 5.~
b Nonlinear Least Squares ~ 3 i
- Uncertainty Q_ganli[ication 2 10
- imizatiafe Plug-in il
G rou p N ame Optlmlz_gtlon ug lf.\“.’_ 1 |
1"“‘ "
” -

Headerin Description |~

”

Defaultin Description

P
1““
’

.
”
r

-
o

11

12

Chapter 2 TeXT EDITOR

Section 2.1 OVERVIEW

JAGUAR uses the generated guikeywds file as the DAKOTA grammar to understand the
input deck and to generate the graphical grammar interface.

The grammar is structured in a specific way which can be modeled this way:

ModeciContainer pointer

ModelContainer

ModelGrouping

Each ModalGrouping

ModelElement

ModelElement — the most important part of the grammar, containing essential metadata
(name, value type, limits, prettyName, pointer to ModelContainer etc.). The keywords in
the grammar are ModelElements. The pointer to a ModelContainer allows nested
behaviors

ModelGrouping — contains a list of ModelElement, but only one of them can be chosen. In
essence, a ModelGrouping can be viewed as a combo box, where only one item in the
group can be selected.

ModelContainer — contains a list of ModelGrouping, which each has at most one
ModelElement selected. This can be viewed as a list

This can be viewed in this way:

13

This is a view of a single ModelContainer node. In this example it has 3 ModelGroupings.
ModelGroupings by themselves are not useful, but each needs to have one of the
ModelElements selected. Notice it is often the case where a ModelGrouping only has one
ModelElement in it. Remember, the sole purpose of ModelGrouping is to have one
selected from possibly multiple ModelElement options.

Let’s explore the elements from this sample input deck:

strategy
single method
method pointer 'what'

strategy is a ModelElement. Let’s take a look at it through a debug run:

14

4 @ this ModelElement (id=351)

@ aliasGroup 1
g arrayLengthContainer null
- @ beforeComment " (id=366)
B changes null
@ defaultinDescription falze
@ defaultinGroup falze
= defaultReal 0.0
. o defaultString " (id=366)
. o description " The strategy specifies the top level technique w...
& elementkeywordLength -1
& elementKeyword Offset -1
& elementValueOffset -1
= grouping 1
o groupMame null
@ headerlnDescription null
@ headerlnGroup null
& inGUL true
» @ inlineComment " (id=366)
E instance_enabled falze
= instance_value null
& kind 264
= lowerBound 0.0
> & name "strategy” (id=353)
& numéElements 10
» @ parentGroupingReference ModelGrouping (id=368)
& pausePropChange falze
> & pointer ModelContainer (id=378)
. o prettyName "Strategy” (id=380)
o prettySubgrouphame null
& required 1
m toplevel true
® upperBound 0.0

Notice it has a pointer to a ModelContainer. That ModelContainer has a list of
ModelGrouping:

4 & pointer ModelContainer (id=378)
4 @ elementData Ohbject[10] (id=383)
- & [0] ModelGrouping (id=390)
| ModelGrouping (id=391)
> & [2] ModelGrouping (id=392)
» & [3] ModelGrouping (id=393)
» & [4] ModelGrouping (id=394)
: & [9] ModelGrouping (id=395)
- & [6] ModelGrouping (id=398)
- & [7] ModelGrouping (id=397)
a [8] null
a [9] null
< modCount g
» & parentElement ModelElement (id=351)
E size g

This is what the list looks like:

[, graphics , tabular_graphics_data , output precision ,
iterator_servers , iterator_self_scheduling ,
iterator_static_scheduling , hybrid multi_start pareto_set
single_method]

15

The ModelGrouping we are looking for that holds single_method is shown below. Notice it
contains the list of ModelElements:

a & [7] MedelGrouping (id=397)
a4 @ elementData Object[10] (id=422)
> & [0] ModelElement (id=423)
- & [1] ModelElement (id=424)
> & [2] MedelElement (id=425)
- & [3] ModelElement (id=426)
& [4] null
& [5] null
a [6] null
a [7] null
& [8] rull
& [9] null
< modCount 4
> & parentContainerReference ModelContainer (id=378)
& selectedElement null
B size 4

The ModelElement single_method:

a a |/ Modelarouping (id=34/)
4 @ elementData Object[10] (id=422)
> & [0] ModelElement (id=423)
- & [1] ModelElerent (id=424)
» a [2] ModelElement (id=425)
4 & [3] ModelElement (id=426)
= aliasGroup 55
o arrayLengthContainer null
> @ beforeComment " (id=366)
= changes null
m defaultinDescription true
= defaultinGroup false
= defaultReal 0.0
. o defaultString " (id=366)
> description " http:/fwww.cs.sandia.gov/dakota/licensing/vot...
& elementKeywordlengt -1
& elementKeywordOffse -1
& celementValueOffset -1
B grouping 7
o groupName null
@ headednDescription null
= headernGroup null
& inGUI true
> @ inlineComment " (id=366)
® instance_enabled false
® instance_value null
a kind g
= lowerBound 0.0
> A& name "single_method" (id=438)
& numElements 1
> @ parentGroupingRefere ModelGrouping (id=397)
& pausePropChange false
> & pointer ModelContainer (id=439)
. o prettyName "Single method strategy” (id=440)
o prettySubgreupMame null
& required 1
= toplevel false
= upperBound 0.0

16

Section 2.2 AUTOCOMPLETION

JAGUAR text editor’s biggest feature is autocompletion. Autocomplete is triggered by
pressing Ctrl-Space. However, there are two modes:

1. Autocomplete an existing word (character detected at cursor)

G‘_E stratl

. % strategy

e The suggestions will only list what is valid to complete the previous word

2. Autocomplete from scratch

& S =trategy
H = hybrid (a require
rrlti start (a ren

e The suggestions will list what is valid at the current position

To understand JAGUAR’s autocompletion features, we need to understand an important
point: since the grammar has variable-depth, autocompletion needs to work for even
elements listed earlier. For example:

method

dot_bfgs
optimization type

When autocompleting after optimization_type, we could be interested in options at the
following depths:

At optimization_type:

method
dot_bfgs
optimization_type
minimize
At dot_bfgs:
method
dot_bfgs
optimization type
linear inequality lower bounds
At method:

17

method
dot_bfgs
optimizartion type

model pointer =

As you can see, autocompletion can yield many options. Let’s take a look at the actual
options available after optimization_type:

3= method
4 dot_bfgs

& 5 optimization type
]

=7 maximize (a required option) - optimization_type

[55] I =]

minimize (a required option)

o] linear_inequality_constraint_matrix

o] linear_inequality_lower_bounds

[o5] linear_inequality_upper_bounds

[A]linear_inequality_scale_types
[o5] linear_inequality_scales
os] linear_equality_constraint_matrix
@Iinear_equality_targets
[A] linear_equality_scale_types
[o3] linear equality scales
Alid_method
Emodel_pninter

output
[1] max_iterations

[1] max_function_evaluations

speculative
@convergence_tnlerance
[o5] constraint_tolerance

scaling
ﬂﬁnal_mlutions

strategy

method

wvariables

interface

FEsSpOnses

Four groups of suggestions are presented in order of decreasing locality. Let’s take a closer
look:

1. First group (optimization_type in trailing gray)

The first thing to notice is the trailing keyword in italicized grey
(‘optimization_type’) which indicates the originator or parent, and is also
highlighted in the text prior. The asterisk on the left indicates one of these
required options should be selected (but currently none is selected).

18

Second group (dot_bfgs in trailing gray)

These are keywords that are valid and derived from optimization_type’s originator,
dot_bfgs. Notice the type icons on the left, e.g., ‘1, ‘0.5’, and ‘A’, indicating that
integer, real, and string values respectively are valid.

Third group (method in trailing gray)

These are keywords that are valid directly in a method specification. Notice some
have no type icons, representing keywords that do not require an associated value.
The keyword output has a green dot icon, representing it has derived (child)
keywords.

Since method is a top-level section keyword, all remaining section options appear
in the fourth group.

Fourth group (section)

These are the top-level DAKOTA input sections (strategy, method, variables,
interface, responses) that are applicable at the current context. Since main
sections can be inserted anywhere, these are usually available for autocompletion,
though DAKOTA syntax may restrict the number of them that can be created.

Section 2.3 DAKREORDER

Dakreorder processes an input deck and essentially returns a formatted version of it,

namely expanded abbreviations and cleaned up syntax. Since the formatting changes the

original text, dakreorder is only used on the inputdeck when going from text to Ul view.

The dakreorder execution can be found in Importer.java runDakotaReorder() method and

runs provided the pre-generated specsum file (See Section 1.3).

dakreord.exe specsum

It then accepts standard input, where the input deck is usually passed in. The standard

output is the formatted text.

19

20

Chapter 3 GRAPHICAL INTERFACE

Section 3.1 BASIC TYPES

The graphical interface reads off the model and depending on the type of ModelElement, it
will generate one of the following widgets:

FormRenderBaseClass

FormTextBaseClass

FormChoice2 FormLeafText FormPointer

e FormComment: If the element has comments (see 3.2.4)

e Forminstance: The selected section and the instances listed:

LR
Datine Flow/iteration
METHOD
D) There mut be o leaat et instance.
D Cumently. thave are 3 mctances.
S Yiooa con crene o o i 00 ke,
Wstincer
' method [semove]
 meingd] [remee]
- metngd J Lemiiel
Sewrce | Defins Problem | b (1) Define FlowRerstion | b (1 Execute Problem | b (1) Vinsslize Resulty

21

e FormTable: Whenever a field in section Variables is detected, its subelements will
be drawn as columns in a table:

continuous_design

{ @ http://www.cs.sandia.gov/daketa licensing/votd html-ref/VarC ommands.htm [ZVarC DV

continuous_design 2

[A] descripters [os] initial_point [o5] lewer_bounds [o5] upper_bounds [A] scale_types B scales
! 2 2
2! 2 2

O You can think of the keyword and values as transposed.

e FormChoice2: An updated dropdown using the opensource Nebula project’s
TableCombo
(http://www.eclipse.org/nebula/widgets/tablecombo/tablecombo.php) to render
images and multi-column dropdowns.

a

Sam Details: & direct i
Elerment Options v
direct 1
fork ™ 8
grid 0 3
system 8 8

To note, there are certain keywords that require more advanced dropdown
rendering:

I Details: Optimization: Plug-in = | o [A] di_soler -

Notice there’s a notion of category (the left dropdown), which is defined by the
grammar definition (See Section 1.4). Also there are a few definitions that require
a value, as shown as a text field on the right.

am Details: Optimizaticn: Plug-in - » bayes_calibration -|®

Element Op... “| | Element Options m
Optimization: Glebal 5 : @ bayes _calibration L
Optimization: Local, Derivative-based 14 @ dot 1
undefined 4 3 richardson_extrap i
Parameter Studies 4 ® stanford -
Optimization: Local, Derivative-free 5 =
Monlinear Least Squares 3
Uncertainty Quantification 10

: Optimization: Plug-in 1
DACE 4

22

o FormLeafText This is the most basic element where the keyword is displayed.
There are three main types:

graphics
[output_precision

0o tabular_graphics_file

0 No value: the element has no value.

0 Has value: the element has a value associated with it, either integer, real

or string.

0 File value: this element has a string value, but also allows the GUI to

include a “Browse” button to easily select a file on the user’s system. This

is created by detecting the string “_file” at the end of the element name.

e FormPointer: In essence, this is a special type of FormLeafText since it is just a

string valued element. This is created by detecting the string “_pointer” at the end

of the element name.

method pointer test

W

Instance Options

test 0

The hyperlink allows the user to go directly to the pointer. If it is not
already defined, the user is prompted to create it:

r ~
rsl; Create new instance ﬁ

% Do youwant to create a new variables instance called 'new pointer'?

0K | [Cancel]

It is also noteworthy to mention the forms are laid out using TableWrapLayout since it is

able to maximize the width of the Ul. However, each element must call setLayoutData()

(otherwise unintuitive errors will arise!), namely setting how many columns each element

should span. By default each element takes only 1 of the 7 total columns. Below is a
picture showing how the 7 columns are set:

| gtinal_solutions

i Details: Optimization: Plug-in ~ |l @ [Aldisolver ~

[Biterater_servers

23

Notice dl_solver uses each column for a Ul widget. However, iterator_servers’s textfield
covers 3 columns and thus aligns correctly.

It is also important to mention the TableWrapData has two modes TableWrapData.FILL and
TableWrapData.FILL_GRAB, the latter grabs maximum horizontal spacing.

Section 3.2 GUI TOOLBAR

C1E)

._—@

The graphical editor has a toolbar on the top right for users to quickly toggle/execute
commands.

3.2.1 DAKOTA CHECK

A quick way to invoke DAKOTA to check the input deck for errors. This is
equivalent to running ‘Check’ via the Execute Problem tab.

3.2.2 PRETTY NAME

Each element in the grammar has a ‘name’ and a ‘pretty name’. The ‘name’ is
the actual text used in the input deck, whereas the pretty name is a user

=
friendly description of the element.
algebraic_mappings = Algebraic mappings file
analysis_components = Additional identifiers for use by the analysis_drivers

3.2.3 ONLINE REFERENCE

Each element usually has a description, often with a hyperlink to the
documentation. This is visible in the GUI on the right side when the button is
selected:

24

strategy

E] @ The strategy specifies the top level technique which will govern the management of iterators and models in the solution of the
problem of interest. http://www.cs.sandia.gov/DAKOTA/licensing/votd/html-ref/StratCommands.html

[C] graphics

©®

[tabular graphics data
#

[output_precision

[] iterator_servers

[T] iterator_self_scheduli ng

EEEE

] iterator_static_scheduling
dnd Details: * single_method * -
- Details
' [¥] method pointer _ what ()

3.2.4 COMMENTS

In this following example:
|

I_
-,'I METHCD HELDER CCMMENT ##

L}
method Fmethod inline comment
output #output inline comment

It should be noted there are 2 types of comments the above example:
1. Inline (on the same line as a keyword)
2. Before (standalone comments, multiple counts allowed)
To note, there is no trailing comment support at the moment.
In the GUI, the comments are rendered appropriately when the button is selected:

method

() A method specifies the name and controls of an iterative procedure, e.g., a sensitivity analysis, uncertainty quantification, or optimization method.
http:/fwww.cs.sandi ' i inasetd btonlerefbdeth odCommands.html

57 METHOD HEADER COMMENT

5 method inline comment

] id_method

[model pointer

¥ output
=l Details
s debug =
I':: output inline comment I

25

3.2.5 PUSH UP ELEMENTS

The JAGUAR GUI is simplified by pushup elements. These elements can be
displayed in the current pane instead diving deeper in the tree to see them.
This helps show the larger context in one view. Pushup elements can be

collapsed by clicking on ‘Details’. The images below show JAGUAR with
push-up elements on (default) and off, respectively.

interface

E’ @ Aninterface specifies how function evaluations will be performed in order to map a set of parameters into a set of responses. http://www.cssandia.gov/DAKOTA/licen
[id_interface
I algebraic_mappings
& analysis drivers ‘rosenbrock’
|| evaluation_servers

o @ choose evaluation sched. * -
[T analysis_servers

s H @ choose analysis sched. * >

In order to edit details within analysis_drives, we would normally need to go in and edit the
fields:

analysis_drivers

: @ http://www.cs.sandia.gov/dakota/licensing/votd/html-ref InterfCommands.htmiZInterf Applic

analysis_drivers ‘rosenbrock’

[C] analysis_components

[T input_filter

[T output_fitter
din Details: @ direct =
I failure capture

I”] deactivate

However with pushup elements, we get a hybrid view of subelements on the same page.
Notice the new section of analysis_drivers is now visible in the interface view:

26

interface

@ Aninterface specifies how function evaluations will be performed in order to map 2 set of parameters into a set of responses. http://www.cs.sandia.gov/DAKOTA/
E

] id_interface

[C] algebraic_mappings

[¥] analysis drivers 'rosenbrock'

= Details

analysis_components

]

input_filter

]|

| output_filter
s Details: @ direct =

= [failure capture

deactivate

asynchronous

¥

7] evaluation_servers

e @ @ choose evaluation sched. ™ =

[T] analysis_servers
0 ysis_

e [0 @ choose analysis sched, ™ x

By enabling pushup elements, elements one level deep will be pushed up into the current
view. To go into the subelements (level 2), the user will have to click the hyperlinks on the
pushed up element.

Chapter 4 Ul TRANSITION

In the text editor, there are 3 main panels to manipulate the input deck:

| 23 id responses 'responses 1°'

ISource 1 | Define Problem | |» (2) Define Flow,/Tterationl |» (2) Execute Problem | » (4) Visualize Results

1. Source —the raw text input deck
2. GUI - graphical representation of input deck

3. Execute/Visualize — post processing of input deck

When JAGUAR is switching from text to GUI view, the source text must be parsed, validated
and inserted into the model before generating the graphical view. As such, any erroneous
keywords must be removed before rendering, otherwise they will be lost forever. JAGUAR
prevents accidental deletion by prompting the user:

27

F B
m Invalid keywords E@g
Warning! Can not proceed unless these invalid keyword(s) are deleted:

invalue value;
invalid_keyword
[(& Delete invalid keywords] ’ 2 Go back to source]

The user has a choice to fix the keyword, or to continue with the invalid keywords
removed.

28

Chapter 5 WizARDS

File | Edit Window Help

Mew # DAKOTA input file from template

Open File,.. # Sensitivity Analysis Wizard

Close cirlew 1| # DAKOTA input file

Close All Ctrl+Shift+W | T Other... Ctrl+N

The wizards can be found in /gov.sandia.dart.jaguar/src/gov/sandia/dart/jaguar/wizard

Chapter 6 WELCOME SCREEN

This is the screen that users see by default and is a quick way to introduce the options.

Relevant files can be found at: /gov.sandia.dart.jaguar/src/gov/sandia/dart/jaguar/intro

1 Welcome &3

[

Welcome to Jaguar 2.1, the graphical user interface for creating, editing, and running DAKOTA studies.

@ Start Jaguar
& Confioure Jagnar Before starting, set vour preferences including the location of @ DAKOTA executable (required for many features)

Tours

JAGUAR is built on the Eclipse Workbench. Before starting. use these guides to orient yourself first to key Eclipse features and then to Jaguar specifics.

& Eclipse Workbench Tour
& Guided Tour: Jagnar 101 Quick tour of key user interface elements
& Guided Tour: Create a DAKOTA Parameter Studv A step-by-step guide to create a simple DAKOTA input file

Common JAGUAR/DAKOTA tasks

#" Create new DAKOTA input file Build your DAKOTA study from a basic outline
#" Create input file from template Choose from the most common DAKOTA studies to create your input
#" Launch Sensitivity Analvsis Wizard Quickly create a parameter screening study

Beta Testing Troubleshooting

4 Email vour feedback or get help (jaguar-help(@sandia gov)
@ Browse known Jaguar issues (real time JIRA tracking)

Always show Welcome at start up

The welcome screen (main.html) is an html page with special tags that map to actions:

29

Additionally to note, the checkbox at the bottom “Always show Welcome at start up” is
added through introContent.xml with this code:

<contentProvider id="gov.sandia.jaguar.alwaysdisplaycheckbox"
class="org.eclipse.ui.intro.contentproviders.AlwaysWelcomeCheckbox" >

<text>AlwaysWelcomeCheckbox will not be displayed in Eclipse pre-3.5 binary....</text>

</contentProvider>

30

Chapter 7 CHEATSHEETS

Cheat sheets definitions can be found in /gov.sandia.dart.jaguar/cheatsheet and enabled
in plugins.xml

For quick tutorials, Help -> Cheat Sheets

Help

Welcome

Key Assist.., Ctrl+5Shift+L
Cheat Sheets...

About Jaguar

[R
(") Cheat Sheet Selection —c

Select the cheat sheet te cpen:

(@ Select a cheat sheet from the list:

4 [= Jaguar Cheetsheets
U Creating a DAKOTA Study from Scratch
["] Getting arcund Jaguar

Creating a DAKOTA Study from Scratch

() Select a cheat sheet from a file: L

[
Browse...

|) Enterthe URL of a cheat sheet:

@ [ok][conca |

Cheatsheets are basically guided tutorials for the user to follow.

31

B [de Jfndow L
et 1

Detna Froblam

= Interiace

D Femiaig [8t part:
EEW e ciandian DAKTTAS sesg et/ rat IntadCemmandiio
medel i inensce

naties | oo . 8
& mrssact # aoebos dnon reserdrock
i inmerface frtertece) = Detain
* anadysia_drven
& arlyis_cemponents
) RESPONSES
3 resmonies (s e
gL S
[T gt -
" lahre copturs.
deranne
. mmsteeys

walation_sanan

Q0 chotie evabiaton sched. ™ -

acabysis_sarcars

O choow analyss sched. * -

There are plans later on to incorporate dynamic help.

32

Creating a DAKOTA
Paramater Study
¥ Intreduction
¥ Croste s DAKOTA ingust fie
<0 Netiee
¥ Define Prablem

= Refing Few/Meration

B8 el raspaatar

» Otern

¥ Evecute Frobbem
.

.

Mo changs b he Define Fiow!
Earaton b whare wall ety 8
mathod that il Rerate on the problem

the Detms, specify § patsticns per
vamakle L4,

£ Chck whan complete

Visuslze Besuity
Sowree

Chapter 8 TEMPLATES

To help users effectively create input decks, DAKOTA includes templates that can be used
to quickly create standardized input decks that can later be edited. In addition, user-
created templates can also easily be saved and restored.

3 DAKOTA Templates e B [

=il

DAKOTA input file templates
Choose a template for the basis of the DAKOTA input file:

Pick a template:
type filter text
4 User-created (DAKOTA templates) -
dudd3
dude
dude2
resenbrock

m,

resenbrockwhatever
Rosenbrock Fixed
sample template
test
testagain
4 [Jaguar standard templates
Calibration Local Datafile Example
Calibration Local NL250OL
Calibration Local OPTPP
Cintimizatinn Ffficient Glnhal
Preview template content:
#2 DAKOTA INPUT FILE - dakota_rosenbrock_2d.in -
strategy
single_method
graphics
tabular_graphics_data
method
multidim_parameter_study
partitions 8 8
model
single
variables
continuous_design 2
lower_bounds -2 -2
upper_bounds 2 2
descriptors W' %2
interface
analysis_drivers 'rosenbrock'
direct B

m

F E—
@ < Bac Mext » Finish Cancel

[[=

This is the template wizard. At the top half are the available templates, both user-created
and JAGUAR’s built-in templates. And at the bottom half a preview of the selected file.

The user templates can be found through PreferenceStore’s template_path, whereas the

JAGUAR built-in templates can be found /gov.sandia.dart.jaguar/files/templates.

Chapter 9 VIEws

Views in JAGUAR are single-purpose windows. The default JAGUAR has 3 views, the main
editor (top left), Outline View (right) and Console View (bottom left).

33

ag ersec]

Eile Edit Window Help

EE Cutline &3

1~ method

2 id method 'method 1°'
ll 3 sanpling
4 sample type
B 5 lhs
3 zeed 12345
8 samples 4 L
5 £
lo=variables
| 11 id wariables 'warizkbles 1"
2 uniform uncertain 1
I 13 lower_bounds 2
i @14 upper bounds 3x
15 descriptors '1"'

le= interface
17 id_interface 'interface 1°'
18 algebraic mappings '3x'

13 analysis drivers 'text book’
20 direct
asynchronous

) method_1 (method)
id_method
saw sampling
o sample_type
iaw lhs
seed
samples
@ variables_1 (variables)
id_variables
ﬁ uniform_uncertain
lower_bounds
@ upper_bounds
descriptors
l'f") interface_1 (interface)
id_interface

algebraic_mappings

®

analysis_drivers
oy direct
@ asynchronous
9 responses_1 (responses)
id_responses

1) Define Problem | [» 'IE:Z' Define Flow,/Ttera...

a .
sam hum_response_functions

saw No_gradients

[= - T e = 1 ~
& Console 2 E” EE| a2 i o (50 interface_2 (interface)
Jaguar Console I id_interface
———— ORIGINAL ———— -
This is a basic DAKOTA input file. H
At a minimum, provide details for the following sec
variables
interface
responses
method
———— RUNNING DAKRECRD--—--
"nC:\Uzers\echan\workspace\gov.sandia.dart.jaguari\fil:
Process has ended, but waiting to finish capturing all
stderr: Input line 6: Cne of the following 4 entities .
| m | s
Additional Views can be added through Window—>Show View.
Iﬂinduw Help
New Window
Mew Editor
Show View b | B Consocle Alt+5hift+0), C
O=— . -
. = Cutline Alt+Shift+Q, O
Reset Window Layout = Q
[2 Problems Alt+Shift+Q, X
Preferences
Other... Alt+5Shift+Q, Q

34

Section 9.1 OUTLINE VIEW

The Outline View strips the input deck leaving only the keywords behind. This aids the user
with a view of the input deck without values, comments and textual cosmetics.

Clicking into the tree allows quick reference to the Source View.

The source code can be found:

/gov.sandia.dart.jaguar/src/gov/sandia/dart/jaguar/editors/partition2/JaguarEditorOutli
nePage.java

== Outline &2
4 method_1 (method)
id_method

4 o sampling
4 o sample type
am Ihs
seed
samples
4 variables_1 (variables)
id_variables
4 || uniferm_uncertain
lower_bounds
upper_bounds
descriptors
4 interface_1 (interface)
id_interface
algebraic_mappings
4 © analysis_drivers
o direct
' asynchronous
4 responses_1 (responses)
id_responses
=u num_response_functions
=u no_gradients
w no_hessians
4 interface 2 (interface)
id_interface

It shares the same code used in the GUI view’s left sidebar, except it is configured to
display all leaf nodes and only sections that are defined (Note: GUI view shows all sections
(enabled or not) and only nodes with children).

35

Section 9.2 CONSOLE VIEW

The Console View shows supplemental information on what JAGUAR is running, which is

usually dakreorder. This view is not required, and is most helpful when determining
problems.

El Console £3 % of | = -
Jaguar Censele

F--- oRIGINAL --—-

[
.|
L

hi=z i= a baszic DAKCTA input fil

Bt a minimum, provide details for
variables

m
H
)
)

ollowing sections:

ot

»

|.m

36

Chapter 10 CREATING BINARIES

Section 10.1 EXPORTING IN ECLIPSE

JAGUAR is able to export to multiple platforms: Windows, Mac OSX and Linux. Assuming all
dependencies and fragments are configured correctly in
/gov.sandia.dart.jaguar.feature/feature.xml, creating the binaries is as follows:

In /gov.sandia.dart.jaguar/Jaguar.product, under “Exporting”, select “Eclipse Product
export wizard”.

Under Destination, Select “Directory” for creating the actually files/directories, or “Archive
file” for a compressed form. For creating binaries, we usually use the “Archive file” option.

@ Export | ==

1

Sebect All

Dgsebect A1l

Next screen allows the user to select available platforms. JAGUAR 2.1 is tested on linux
(gtk/x86), linux (gtk/x86_64), macosx (cocoa/x86), win32 (win32/x86), win32/x86_64).

37

Section 10.2 CREATING WINDOWS INSTALLER

To create Windows executable installer, Under “Destination”, instead of archive, we export
to the “Directory”.

@ Expost g B

| Eclipse product

Use an exrstinng Echgrae produ in one of the svailable Tormats.

| Al b expart the prod - [

Product Configuration
Confgqueation: /gov.stndia.dartjaguar/Jagusr. preduct - [Browse.

Roc dwectory: Jaguar

Synchronization

| ization of the prod figuration with the product’s defining plugi that the plug-in
doet net ¢ ale dats.

V] gynchecrize belore mporting

Destination
& Dwoctory: EIIET) v [Browse. |
Arghive file: acguard 1 Gokd\laguarZ 1.1 zip

Expert Optiens.
Expact sourek: | Geresste source bundles
Generate metsdats repository

4 Export for multiple platforms

) Al bor binary cyehes in targel platform

@ o ets] [Chman][conce

= On the platform page, select only “win32 (win32/x86)”
Use Packlacket (http://packjacket.sourceforge.net/) or create an appropriate installation

XML for IzPack (http://izpack.org). I’'m assuming we’re using PackJacket.

Check the license file is in the correct place.

J Packlacket - Windows64bif
File Insert Help
General —T |
Che: HelloPanel
Biters _
InfoPanel Licence File |C:\lzPack'\Jaguarlicense, txt Browse
S (Lo
| Enabled
Panels PacksPanel
Packs | [TargetPanel
GUI InstallPanel
Packaging UserInputPanel
Shortcuts ProcessPanel
User Input | |SmPleFinishPanel I
Processes
[#] Show Optional [createsxmi | [create installer |

Check the Packs, especially check the “source Directory” matches where the exported
JAGUAR folder is located, because that’s where Packlacket is going to look to create the
installer binary.

38

(& Packlacket - Windowsd ="

File Insert Help

General

Authors !j Add] [m Edit] [[Remove] [f Up] [ﬁ Down]
=

Panels
Packs
GUI I
Packaging
Shortcuts
User Input

Processes

[#] show Optional [Create XML] [Create Installer I

-
File Insert Help

[Source File | | | Browse |
[¥] Source Directary |C:\12Pad<\wwn32.win32.x86\iaguar | [Browse]

[[=] Optional advanced features]

["] Rename Target File | |

Target Directory |SINSTALL_PATH/ |
Operating System

Family

MName

Version

Architecture

(e] v |

Check that the Shortcut is set correctly:

Pack)

File Insert Help

Genera
Authors | Group Structure |33quar]
Language | Location | Applications {recommended) v
?”:: Pre-select Desktop Shartcuts™ Checkbox
a
Ut Make current user default to install shortcuts on |
Packaging Add Edit [Delete
Sorcas | 5] Ei] 1
User Input

Processes | |Uninstall Jaguar

Show Optional Create XML Create Installer

Check icon and icon file path (make sure the paths after SINSTALL_PATH match the “Root
directory” you defined in the Export Wizard). Check “Place in” Program Group and Desktop
only.

39

& Packlacket - Windowsb4bil

File Insert Help

Name

Jaguar
[¥] Target File

SINSTALL_PATH/jaguar /Jaguar.exe
[F]URL (Unix Only)

Placein ...

Program Group] Desktop

[[] Startup
[7] Applications [[] Start Menu
I[[= Optional advanced features]I
Description Execute Jaguar

[£] Command Line Arguments

] working Directory

Icon File SINSTALL_PATHjaguar/instal Jaguar.ico
Tcon Index =
Initial State Narmal -
Unix Spedific
[Terminal

[F] Requires Sudo
[] Create shorteut for all Users

User with right permissions |root

Check icon and icon file path (make sure the paths after SINSTALL_PATH match the “Root
directory” you defined in the Export Wizard). Check “Place in” Program Group only.

1y Packlacket - Windo

File Insert Help

Name

Uninstall Jaguar
Target File

SINSTALL_PATH,Uninstaller Uninstaller . jar
[C]URL (Unix Only)

Placein ...

Program Group || Desktop

[T startup
[F] Applications [Start Menu
I[[=] Optional advanced features]I
Description Uninstall Jaguar
D Command Line Arguments
[Working Directory
Icon File SINSTALL_PATHfjaguar finstalljuninstallico
Icon Index 0f
Tnitial State Normal w
Unix Specific
[] Terminal [] Requires Sudo

[T] Create shortcut for all Users

User with right permissions ~ root

After all the settings are correctly configured, “Create Installer” and:
[)

For 32-bit, create .jar (will use izpack2exe to create 32-bit installer)
[]

For 64-bit, create .exe (creates a 64-bit installer if created in 64-bit environment)

40

.exe (Windows Native Executable)

.exe (7-Zip SFX Windows Native Executable)

For 32-bit, start a command prompt and go to \utils\wrappers\izpack2exe Sample
execution:

“izpack2exe.exe --File=c:\l1zPack\Jaguar2.1l.jar --output=c:\lzPack\Jaguar.exe”

Section 10.3 CREATING MAC INSTALLER

Export to Directory from Eclipse, and use DMG Canvas (www.araelium.com/dmgcanvas) to

create a Mac disk image (.dmg file) allowing users to easily install JAGUAR to their
Applications folder. Make sure JAGUAR's reference is to the exported directory from
Eclipse.

Jaguar: 2.1

& Jaguar 2.1 y

Section 10.4 RELEASING

Upload all the .zip archived files, .dmg installer and .exe installers to a new folder under
\\snl\Collaborative\DAKOTA\DART GUI\CurrentPrototype

41

42

Distribution

1 MS0899 Technical Library 9536 (electronic copy)

43

@ Sandia National Laboratories

44

