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Abstract

We develop a new formulation of the Control Volume Finite Element Method (CVFEM) with
a multidimensional Scharfetter-Gummel (SG) upwinding for the drift-diffusion equations. The
formulation uses standard nodal elements for the concentrations and expands the flux in terms of
the lowest-order Nedelec H(curl,Ω)-compatible finite element basis. The SG formula is applied to
the edges of the elements to express the Nedelec element degree of freedom on this edge in terms of
the nodal degrees of freedom associated with the endpoints of the edge. The resulting upwind flux
incorporates the upwind effects from all edges and is defined at the interior of the element. This
allows for accurate evaluation of integrals on the boundaries of the control volumes for arbitrary
quadrilateral elements.

The new formulation admits efficient implementation through a standard loop over the elements in
the mesh followed by loops over the element nodes (associated with control volume fractions in the
element) and element edges (associated with flux degrees of freedom). The quantities required for
the SG formula can be precomputed and stored for each edge in the mesh for additional efficiency
gains. For clarity the details are presented for two-dimensional quadrilateral grids. Extension to
other element shapes and three dimensions is straightforward.
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Nomenclature

Semiconductor equations

ψ - electric potential

n - electron concentration

p - hole concentration

C - doping profile

R - generation-recombination term.

λ - minimal Debye length of the device

Dn - electron diffusivity

Dp - hole diffusivity

µn - electron mobility

µp - hole mobility

E - electric field;

Jn - electron current density;

Jp - hole current density;

Discretization

Ω - computational domain in two dimensions.

Kh(Ω) - finite element mesh

Ks - finite element

bs - barycenter of element Ks

vi - a mesh vertex

eij - an edge with endpoints vi and vj

mij - midpoint of edge eij

K(vi) - the set of all elements Ks having a common vertex vi.

K(eij) - the set of all elements Ks having a common edge eij .

V (Ks) - the vertices of element Ks.

E(Ks) - the edges (sides) of element Ks

Ci - control volume associated with vertex vi

∂Cs
ij - the side of Ci contained in element Ks which intersects edge eij

ms
ij - the midpoint of side ∂Cs

ij

∂Cij - the union of the two sides of Ci which intersect edge eij , i.e.,
∂Cij = ∂Cs

ij ∪ ∂Ct
ij ; Ks,Kt ∈ K(eij)

Ni - C0 Lagrangian (nodal) basis function associated with vertex vi

~Wij - Lowest-order Nedelec edge element basis function associated with edge eij
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Introduction

Semiconductor devices are commonly modeled by Van Roosbroeck equations; see [6] or [5].
These equations are a coupled system of nonlinear PDE’s, which describe the motion of charges in
semiconductors. Accurate and stable numerical solution of the semiconductor equations requires
discretization methods that

• conserve electron and hole current density;

• employ upwinding to handle the advective character of the equations

The Control Volume Finite Element Method (CVFEM) [2] fulfills the first condition. The CVFEM
solution is expressed in terms of a finite element basis but the discrete equations are obtained
by integrating the conservative form of the differential equations on control volumes surrounding
the vertices of the finite element mesh. As a result, CVFEM is conservative with respect to the
control volumes. The CVFEM approach combines features from finite volume methods (the use of
a primal-dual grid complex) and finite elements (the use of piecewise polynomial basis functions
for the approximate solution).

The Scharfetter-Gummel (SG) scheme [9] is a classical approach to solve the one-dimensional
semiconductor equations, which satisfies the second requirement. The SG method is an expo-
nentially fitted upwind difference scheme for the current continuity equations. Extensions of the
SG scheme to unstructured grids usually follow two general paths. One path is to use exponen-
tially fitted shape functions [1, 13, 14]. The exponential shape functions can be used within the
CVFEM approach [12] in lieu of the standard nodal shape functions. However, exponential shape
functions are generally not known explicitly and their evaluation requires solution of two-point
boundary value problems on each element [13]. A second path is to extend SG by using methods
such as SUPG [4] together with numerical diffusion defined by application of the SG scheme along
local coordinate directions [11]. This approach is applicable to tensor product elements such as
quadrilaterals and hexahedrons, but not to simplicial elements

In this report we develop a new CVFEM-SG formulation for the semiconductor equations with
multidimensional upwinding based on the SG scheme. The key idea is to approximate the currents
in the semiconductor equations using the lowest-order Nedelec H(curl,Ω)-compatible finite element
space (edge elements) [8]. The SG scheme is applied to the edges eij of element Ks to express the
edge element degree of freedom for the current on eij in terms of the nodal degrees of freedom
associated with the endpoints vi and vj of that edge. The resulting upwind flux incorporates
the upwind effects from all edges in element Ks and is defined at any point in the interior of the
element. This allows for accurate evaluation of integrals on the boundaries of the control volumes
for arbitrary unstructured elements. In particular, accuracy is not lost when the part ∂Cij of the
control volume boundary, which intersects edge eij is comprised of two separate segments whose
normals are not parallel to the edge; see Fig. 1.

The new CVFEM-SG formulation admits efficient implementation through a standard loop over
the elements in the mesh followed by loops over the element nodes (associated with control volume
fractions in the element) and element edges (associated with flux degrees of freedom). The only
difference in the assembly process due to the use of edge elements for the flux is that the innermost
loop generates contributions to two, as opposed to one, matrix entries. These contributions are
scattered to entries with global column numbers corresponding to the global vertex numbers of
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the edge’s endpoints. Both entries have the same row number corresponding to the global vertex
number of the vertex associated with the control volume.

The quantities required for the SG formula, such as the edge Reynolds number, can be precom-
puted in advance and stored for each edge in the mesh for additional efficiency gains. Because the
new CVFEM-SG formulation uses Nedelec elements to represent the flux, it is applicable to any
two or three-dimensional finite element partition.

Notation

Let Ω denote a bounded region in <n with boundary ∂Ω. We assume that ∂Ω has two disjoint
pieces denoted by ΓD and ΓN .

We use standard notations for Sobolev spaces Hs(Ω) of order s with inner product (·, ·)s and
norm ‖ · ‖s, respectively. As usual, L2(Ω) and L2(Ω) denote the spaces of all square integrable
scalar and vector functions on Ω.

The drift-diffusion model

The nonlinear coupled drift-diffusion equations

∇ · (λ2E)− (p− n+ C) = 0 and E = −∇ψ in Ω (1)

∂n

∂t
−∇ · Jn +R(ψ, n, p) = 0 and Jn = µnnE +Dn∇n in Ω (2)

∂p

∂t
+∇ · Jp +R(ψ, n, p) = 0 and Jp = µppE−Dp∇p in Ω (3)

are a standard mathematical models for semiconductor devices [10]. The variables and material
parameters in (1)–(3) are as follows

• ψ scalar electric potential;

• n: electron concentration;

• p: hole concentration;

• E: electric field;

• Jn: electron current density;

• Jp: hole current density;

• λ: minimal Debye length of the device.

• Dn: electron diffusivity

• Dp: hole diffusivity

• µn: electron mobility

• µp: hole mobility

10



The system (1)–(3) is augmented with the boundary conditions

n = nD and p = pD on ΓD (4)

Jn · ~n = 0 and Jp · ~n = 0 on ΓN . (5)

Equation (1) is a simplified model of the electric field in the device and (2)–(3) are the continuity
equations for the electron and hole currents. The terms µnnE and µppE are advective fluxes, while
Dn∇n and Dp∇p are diffusive fluxes. When the electron and hole drift velocities

un = µnE and up = µpE (6)

dominate the diffusive fluxes, the continuity equations have a pronounced advection-dominated
character.

The CVFEM for the drift-diffusion equations

The CVFEM is a hybrid method which combines representation of the discrete solution in terms
of a finite element basis with definition of the discrete equations through integration of conservative
form of the governing equations on dual volumes Ci associated with the vertices vi of the finite
element mesh Kh(Ω).

For clarity we present details when Ω is two-dimensional and Kh(Ω) is a conforming finite
element partition of Ω into quadrilateral elements. Extension to other element shapes and three
dimensions is straightforward. For quadrilateral grids the control volume Ci corresponding to
vertex vi is constructed as follows. For every element Kr which has vi as a vertex, i.e., for every
Kr ∈ K(vi), we connect its barycenter br with the midpoints mik and mil of the two edges coming
out of vi; see Fig. 1. This construction guarantees that vi ∈ Ci whenever the grid is comprised
of convex but not necessarily uniform quadrilaterals. We will require some additional notation for
the CVFEM method.

• ∂Ċi = ∂Ci ∩ Ω̇ is the intersection of the control volume boundary with the interior of Ω

• ∂CN
i = ∂Ci ∩ ΓN is the control volume boundary located on the Neumann portion of ∂Ω

The new CVFEM-SG formulation combines the CVFEM with a novel extension of the one-
dimensional SG upwind scheme to unstructured grids. To explain the key ideas it suffices to
consider a single continuity equation. We choose to work with the electron continuity equation

∂n

∂t
−∇ · Jn +R(ψ, n, p) = 0 and Jn = µnnE +Dn∇n

n = g on ΓD and Jn · ~n = h on ΓN

(7)

with the assumption that ψ and p are given functions and E = −∇ψ. For simplicity we will omit
the subscript n when there’s no danger of confusion.
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Figure 1: CVFEM is defined using an unstructured primal grid. The figure shows a typical
CVFEM control volume Ci when the primal grid is comprised of quadrilaterals. For such grids
the control volume Ci is a polygon. The number of sides in Ci depends on the number of primal
edges having vi as a vertex and can be as high as two times the number of these edges. Let ∂Cij

denote the union of the two dual sides (∂Cs
ij and ∂Ct

ij in the figure) which intersect edge eij . For
unstructured grids, the unit normals on these two sides are not guaranteed to be parallel to eij .

In the CVFEM approach we integrate the governing equation (7) over each control volume Ci

and apply the Divergence theorem to obtain the “weak” form∫
Ci

∂n

∂t
dV −

∫
∂Ċi

(µnnE +Dn∇n) · ~n dS =

∫
Ci

R(ψ, n, p)dV +

∫
∂CN

i

h dS . (8)

To derive the corresponding discrete equation we approximate n by the C0 nodal bilinear space
Q1. Let {Ni} be the standard Lagrangian basis for Q1 constructed on the mesh Kh(Ω). With some
abuse of notation we write i ∈ Ω̇ ∪ ΓN when vertex vi is in the interior of Ω or on the Neumann
portion of the boundary. Likewise, we write i ∈ ΓD if the vertex is on the Dirichlet part of the
boundary. Using these conventions the finite element solution can be expressed as two separate
sums over nodes associated with the unknowns and nodes on the Dirichlet boundary:

nh(x, t) =
∑

j∈Ω̇∪ΓN

nj(t)Nj(x) +
∑
j∈ΓD

g(vj , t)Nj(x) . (9)

After substituting (9) in (8) we obtain the semi-discrete in space problem∑
j∈Ω̇∪ΓN

∂nj(t)

∂t

∫
Ci

Nj dV −
∑

j∈Ω̇∪ΓN

nj(t)

∫
∂Ċi

(µnNjE +Dn∇Nj) · ~n dS

=

∫
Ci

R(ψ, nh, p)dV +

∫
∂CN

i

h dS +
∑
j∈ΓD

g(vj , t)

∫
∂Ċi

(µnNjE +Dn∇Nj) · ~n dS
(10)

Discretization of the time derivative yields the fully discrete problem.
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Remark 1. Similar to conventional finite elements, the CVFEM formulation (10) gives rise to
a linear system of algebraic equations for the unknown coefficients {nj}j∈Ω̇∪ΓN

. Each row in the
CVFEM linear system corresponds to a control volume Ci, which surrounds a vertex vi associated
with an unknown nodal value ni. As a result, the CVFEM linear system has the same sparsity
pattern as the standard finite element system. For example, the second term in (10) defines a
CVFEM analogue of the finite element stiffness matrix with element ij given by

Kij =

∫
∂Ċi

(µnNjE +Dn∇Nj) · ~n dS ; i, j ∈ Ω̇ ∪ ΓN (11)

The vectors of unknown and Dirichlet nodal coefficients are ~n and ~g, respectively:

~n = {ni}; i ∈ Ω̇ ∪ ΓN and ~g = {g(vi, t); i ∈ ΓD .

The CVFEM formulation (10) employs the nodal numerical flux

Jh = µnENj +Dn∇Nj (12)

which acts on a single nodal value nj . This flux is not appropriate when electron drift velocity µnE
is much larger than electron diffusivity Dn. It is well-known that advection-dominated problems
require some form of upwinding for numerical stability. To this end we will replace the nodal
numerical flux Jh in (10) with an upwind numerical flux Ĵh(~n,~g), which acts on multiple nodal
values of the electron concentration:∑

j∈Ω̇∪ΓN

∂nj(t)

∂t

∫
Ci

Nj dV −
∫
∂Ċi

Ĵh(~n,~g) · ~n dS =

∫
Ci

R(ψ, nh, p)dV +

∫
∂CN

i

h dS . (13)

Below we develop a new CVFEM-SG formulation which extends the classical SG scheme to arbitrary
unstructured elements. The key idea is to use H(curl,Ω)-conforming edge elements for Ĵh to obtain
a multi-dimensional extension of the SG scheme. SG is applied to the edges of each element to
express edge degrees of freedom in terms of upwind nodal degrees of freedom.

The multi-dimensional CVFEM-SG formulation

In this section we formulate a multi-dimensional generalization of the SG scheme and use it to
define the new CVFEM-SG method. To motivate the approach we first examine the extension of
the one-dimensional Scharfetter–Gummel upwind scheme to the Box Integration Method (BIM) on
rectangular grids [3, 10]. This extension provides a useful template for the CVFEM because both
methods use primal-dual grids and define the discrete equations by integration over the control
(dual) volumes. As a result, both BIM and CVFEM require upwind fluxes on the boundary ∂Ci

of each control volume Ci.

The SG-BIM scheme

In the BIM the integral over ∂Ci is approximated by the midpoint rule applied to each side of the
control volume. Specifically, let ∂Cij be the side of Ci which intersects edge eij at its midpoint mij ;
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Figure 2: BIM is defined using structured grids. The figure shows a typical BIM control volume
Ci when the primal grid is comprised of rectangles. For such grids the control volume Ci is also a
rectangle and the number of sides in Ci is always four. Every primal edge (side) eij is intersected
by a single dual side ∂Cij and ∂Cij ⊥ eij . BIM can be defined on Voronoy-Delaunay grids in which
case the control volume Ci is a hexagon whose sides are perpendicular to the primal edges sharing
vertex vi.

see Fig. 2. Application of the midpoint rule for the integral on this side yields the approximation∫
∂Cij

J · ~n dS ≈ |∂Cij | 〈J · ~n〉ij . (14)

where 〈J · ~n〉ij is the normal component of J to ∂Cij , evaluated at the midpoint mij . Because
the normal to side ∂Cij of the control volume is parallel to edge eij , BIM approximates the value
of 〈J · ~n〉ij by the value of the outgoing current density Jij along edge eij at mij . To estimate
Jij at the midpoint mij BIM uses a procedure proposed by Scharfetter and Gummel [9]. The SG
approach estimates the edge current Jij along eij by solving a simplified version of the current
continuity equation (7) restricted to edge eij :

dn

dt
− dJij

ds
+R = 0; Jij = µnEijn+Dn

dn

ds
; Eij = −dψ

ds
. (15)

Problem (15) is an ordinary differential equation (ODE). The variable s is the edge parametrization
by length. The simplifications used by Scharfetter and Gummel allow to solve this ODE in closed
form and express Jij in terms of the nodal values at the endpoints of eij . The simplification steps
are as follows.

Step 1 Assume that n is time-independent and neglect the recombination term. This simplifies
equation (15) to

dJij
ds

= 0; Jij = µnEijn+Dn
dn

ds
,

and implies that Jij = const along the edge.
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Step 2 Assume that µn and Dn are connected through the Einstein relation

µn =
Dn

β
where β =

kT0

q
. (16)

This further simplifies the ODE for the edge current to

Jij = Dn

(
Eij

β
n+

dn

ds

)
. (17)

Step 3 Assume that the electric potential ψ varies linearly along eij so that

Eij = −(ψj − ψi)

|eij |
; ψi = ψ(vi); ψj = ψ(vj) ,

and solve (17) to express Jij in terms of the values ni, nj of n at the endpoints of eij . The result
is the SG formula:

Jij =
Dn

|eij |

[
njB(−2aij)− niB(2aij)

]
(18)

where

aij = −(ψj − ψi)

2β

is the edge Reynolds number, and

B(x) =
x

exp(x)− 1

is the Bernoulli function.

In summary, in the BIM using the SG procedure to estimate the normal flux at the midpoints
of the control volume sides yields the following formula for the integral on ∂Cij :∫

∂Cij

J · ~n dS ≈ Dn

|eij |

[
njB(−2aij)− niB(2aij)

]
|∂Cij | . (19)

Extension of SG upwinding to the CVFEM

The key difference that complicates the extension of the SG approach to the CVFEM case is
that BIM uses topologically dual grids1 for which the sides of Ci are perpendicular to the primal
edges, whereas in the CVFEM the grids are not topologically dual and the sides of Ci are not
necessarily perpendicular to the primal edges.

To explain the difficulties caused by the lack of topological duality in the CVFEM let ∂Cs
ij and

∂Ct
ij denote the two sides of Ci associated with the primal edge eij ; see Fig. 1 and set ∂Cij =

∂Cs
ij ∪ ∂Ct

ij . As a result, the CVFEM analogue of (14) is

1We remind that two grids in d-dimensions are topologically dual if there is one-to-one correspondence between
their k and d − k-dimensional entities. For example, in three dimensions (d = 3) every primal vertex (k = 0)
corresponds to a unique dual cell (3−0 = 3); every primal edge (k = 1) corresponds to a unique dual face (3−1 = 2),
every primal face (k = 2) corresponds to a unique dual edge (3 − 2 = 1), and every primal cell (k = 3) corresponds
to a unique dual vertex (3− 3 = 0). In two dimensions (d = 2) the correspondence is between primal vertices (k = 0)
and dual cells (2− 0 = 2), primal sides (k = 1) and dual sides (2− 1 = 2) and primal cells (k = 2) and dual vertices
(2− 2 = 0).
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∫
∂Cij

J · ~n dS =

∫
∂Cs

ij

J · ~n dS +

∫
∂Ct

ij

J · ~n dS ≈ |∂Cs
ij | 〈J · ~n〉

s
ij + |∂Ct

ij | 〈J · ~n〉
t
ij , (20)

where 〈J · ~n〉sij and 〈J · ~n〉tij are the normal components of J on ∂Cs
ij and ∂Ct

ij , evaluated at the

midpoints ms
ij and mt

ij of these sides, respectively.

If the unit normals on ∂Cs
ij and ∂Ct

ij are nearly parallel to eij , they can be approximated by

the unit tangent ~tij to this edge. As a result,

|∂Cs
ij | 〈J · ~n〉

s
ij + |∂Ct

ij | 〈J · ~n〉
t
ij ≈ (|∂Cs

ij |+ |∂Ct
ij |)〈J ·~tij〉ij (21)

where, similar to the BIM case, 〈J ·~tij〉ij is evaluated at the midpoint mij of edge eij . In this case
the integrals on the sides of the control volumes in the CVFEM can be approximated using the
same edge values as in the BIM:∫

∂Cij

J · ~n dS ≈ Dn

|eij |

[
njB(−2aij)− niB(2aij)

] (
|∂Cs

ij |+ |∂Cs
ij |
)
. (22)

Multi-dimensional SG-upwind flux definition

When the normals on ∂Cs
ij and ∂Ct

ij deviate significantly from the unit tangent ~tij on eij , then
the right hand sides in (21) and (22) yield poor approximation of the integral on ∂Cij = ∂Cs

ij∪∂Ct
ij .

The key reason is that for such control volumes the tangential component of the current 〈J ·~tij〉ij
along eij is poor approximation of the normal components 〈J · ~n〉sij and 〈J · ~n〉tij on the sides of the
control volume.

A CVFEM formulation, which remains robust and accurate for a wide range of control volume
shapes, requires accurate estimates of the normal flux components 〈J · ~n〉sij on the sides ∂Cs

ij of the
control volumes. In the absence of topological duality it is clear that this cannot be accomplished
by using the SG current density estimates on eij alone, and that the estimates from all edges in
element Ks must be incorporated in the approximation of 〈J · ~n〉sij .

To this end, we propose to expand the current density on Ks in terms of the lowest-order
Nedelec edge element space [7, 8]

Ĵh =
∑

eij∈E(Ks)

αij
~Wij(x) . (23)

The multi-dimensional extension of the SG scheme results from its application to the edges of Ks

in order to express the flux coefficients αij in terms of the unknown nodal values ni, nij of the

electron concentration at the edge endpoints. We assume that the Nedelec basis function ~Wij for
edge eij is normalized to have a unit tangent component at the midpoint of eij and zero tangent
component on all other edges:

~Wij ·~tkl = δklij ; ~tkl = ekl/|ekl|

Using the basis normalization with (23) and accounting for the fact that J = µnEn+Dn∇n gives

αij = Ĵh ·~tij ≈ (µnEn+Dn∇n) ·~tij = µnEijn(s) +Dn
dn

ds
.
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In other words, the degrees of freedom in (23) approximate the outgoing current densities along
the edges of Ks. The key idea is to use the SG scheme (18) to estimate edge currents on the edges
of Ks, i.e., set the edge degrees of freedom in (23) according to (18):

αij =
Dn

|eij |

[
njB(−2aij)− niB(2aij)

]
.

As a result, the flux representation (23) for element Ks specializes to

Ĵh =
∑

eij∈E(Ks)

Dn

|eij |

[
njB(−2aij)− niB(2aij)

]
~Wij(x) . (24)

Formula (24) gives the multi-dimensional extension of the SG scheme. It defines a vector field
that can be evaluated at any point in element Ks. In the interior of Ks this field incorporates the
upwinding effect from all edges in Ks because the Nedelec basis functions do not vanish at the
interior points.

To obtain the new CVFEM-SG formulation we use the upwind flux defined by (24) in the
CVFEM “weak” equation (13):∑

j∈Ω̇∪ΓN

∂nj(t)

∂t

∫
Ci

Nj dV −
∑

ekl∈E(Ω)

[
Dn

|ekl|

[
nlB(−2akl)− nkB(2akl)

] ∫
∂Ċi

~Wkl · ~n dS
]

=

∫
Ci

R(ψ, nh, p)dV +

∫
∂CN

i

h dS ,

(25)

The second term in (25) incorporates the multi-dimensional SG upwinding. Note that while the
sum in this term is over the edges, it operates on the nodal degrees of freedom. As a result,
the CVFEM-SG “stiffness” matrix K̂ corresponding to the second term acts on the vector ~n of
the unknown nodal values of the electron concentration. This fact can be further elucidated by
rewriting the second term as double sum:

∑
j∈Ω̇∪ΓN

∂nj(t)

∂t

∫
Ci

Nj dV +
∑

j∈Ω̇∪ΓN

nj

 ∑
ekj∈E(vj)

[
σkjDn

|ekj |
B(2σkjakj)

∫
∂Ċi

~Wkj · ~n dS
]

=

∫
Ci

R(ψ, nh, p)dV +

∫
∂CN

i

h dS ,

(26)

where σkj = ±1 depends on the edge orientation:

σkj =

{
−1 if ekj is oriented vk → vj

+1 if ekj is oriented vk ← vj

Formulae (25) and (26) are completely equivalent but differ in the type of inner-most loops required
for assembly of the stiffness matrix K̂ and in the number of matrix entries they contribute to. If
assembly is performed using (25), then the inner-most loop is over the local element edges, and the
second term in (25) contributes simultaneously to

K̂ik =
Dn

|ekl|
B(2akl)

∫
∂Ċi

~Wkl · ~n dS and K̂il = − Dn

|ekl|
B(−2akl)

∫
∂Ċi

~Wkl · ~n dS . (27)
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If, on the other hand one assembles K̂ik using (26), the inner-most loop is over the local element
vertices and the second term in (26) contributes only to

K̂ij =
∑

ekj∈E(vj)

[
σkjDn

|ekj |
B(2σkjakj)

∫
∂Ċi

~Wkj · ~n dS
]

(28)

The matrix K̂ is an “upwind” version of the “stiffness” matrix (11), corresponding to the nodal flux
(12). This follows from the fact that bilinear nodal elements and the lowest order edge elements
on quadrilaterals belong to an exact sequence. As a result, gradients of nodal shape functions are
linear combinations of the edge element basis functions:

∇Nj =
∑
ekl

µkl ~Wkl

where µkl = ±1 depends on edge orientations.

Assembly of the CVFEM-SG stiffness matrix

For efficient assembly of the CVFEM stiffness matrix K̂ the edge Reynolds numbers akl can be
precomputed and stored in advance. Assembly of K̂ can then proceed according to the edge-based
formula (27) or the node-based formula (28). The first formula requires three nested loops over
the elements, the local element vertices and the local element edges. In the second formula the
inner-most loop is over the local vertices and is not much different (except for the actual formula
used) from the assembly of the “standard” CVFEM stiffness matrix (11)

For this reason we only review the assembly process using (27) because it requires inner loops
over different mesh entities. This is typical for mixed methods but is somewhat unusual for formu-
lations involving a single discrete field, such as the CVFEM or the Galerkin finite element method.

To assemble K̂ using (28) we first loop over all elements in the mesh. Given an element Ks we
then loop over its local vertices vi, i = 1, . . . , Nlv. This loop selects the control volume fraction
Ci ∩Ks of Ci, which is contained in the current element. The global index of the associated vertex
vi gives the global row number in K̂.

The inner-most loop is over the local edges ekl of Ks. In this loop we compute the contribution
to the integral over ∂Ci from element Ks

K̂ik +=
Dn

|ekl|
B(2akl)

∫
∂Ċi∩Ks

~Wkl · ~n dS and K̂il += − Dn

|ekl|
B(−2akl)

∫
∂Ċi∩Ks

~Wkl · ~n dS . (29)

The global numbers of the endpoints vk and vl of edge ekl give the global column numbers in the
discretization matrix. If one or both of the endpoints of ekl are on the Dirichlet boundary ΓD, the
contribution from this vertex times the boundary value is subtracted from the right hand side:

f i−= g(vk)
Dn

|ekl|
B(2akl)

∫
∂Ċi

~Wkl · ~n dS and/or f i−= −g(vl)
Dn

|ekl|
B(−2akl)

∫
∂Ċi

~Wkl · ~n dS .
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