
SANDIA REPORT
SAND2011-2969
Unlimited Release
Printed April 2011

Numerical Experiments on
Unstructured PIC Stability

David M. Day

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.



Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

• •U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2



SAND2011-2969
Unlimited Release
Printed April 2011

Numerical Experiments on
Unstructured PIC Stability

David M. Day
Applied Math and Applications Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-9999
dmday@sandia.gov

Abstract

Particle-In-Cell (PIC) is a method for plasmas simulation. Particles are pushed with Verlet time
integration. Fields are modeled using finite differences on a tensor product mesh (cells). The
Unstructured PIC methods studied here use instead finite element discretizations on unstruc-
tured (simplicial) meshes. PIC is constrained by stability limits (upper bounds) on mesh and
time step sizes. Numerical evidence (2D) and analysis will be presented showing that similar
bounds constrain unstructured PIC.
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Nomenclature

temperature 1 electron volt = 11605 Kelvin

electron density 1010cm−3

Debye length λD = .74339×10−2 cm

plasma frequency ωp = 5.6415×103/µsec

thermal velocity vT h = λDωp = 41.938 cm/µsec
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Introduction

The equations governing plasmas and standard Particle-Mesh [1, 5] numerical modeling meth-
ods are reviewed. Particle Mesh methods are sometimes called Particle in Cell (PIC) methods,
particularly for rectangular domains and tensor product meshes. The simulation methods dis-
cussed here involve a finite number of numerical particles at locations {xi} with velocities {vi}.
The plasmas considered here have ions (protons) of charge e and electrons of charge −e. The
particle weight is the number of particles per numerical particle.

The charge density field ρ averaged over each finite element K satisfies∫
K

ρ(x)d3x = ∑
xi∈K

qi. (1)

Gauss’ Law relates the electrostatic potential φ and the charge density ρ ,

divεE = ρ, E =−∇φ . (2)

And Coulomb’s force drives the particles,

mi d
dt

vi = qiE(xi). (3)

Experiments on the stability limits for unstructured particle in cell (UPIC) plasma simulations
are reported. A plasma in steady state is modeled. In these simulations collisions are ignored.
Instabilities may lead to spurious heating. The experiments on quasi-uniform meshes indicate that
the stability limits for unstructured meshes and structured unstructured meshes are similar.

The time integration is implemented using the Störmler-Verlet method. PIC uses a finite vol-
ume discretization [1]. The analogous discretization on an unstructured mesh uses the Delaunay-
Voronoi grids [10, 3]. The dependence of the stability limits on the mesh are not well understood.

Ordinary finite elements [11] are a simpler starting point. In the UPIC method here also uses a
finite element discretization on a simplicial mesh. Particle density is constant within each element.

The numerical experiments described here all start from a model of a plasma in a square do-
main. A tensor product mesh is a structured mesh. The structured mesh of interest here is the
triangle mesh derived from a tensor product quad mesh. Our domain is the unit square [0,1]2, un-
less stated otherwise. Particles reflect off the walls (specular boundary conditions). The potential
field vanishes at the boundary.

Each numerical particle represents many physical particles. The initial particle distribution is
approximately Maxwellian. The particle trajectories are stochastic. Results are presented here
in terms of the time evolution of the spatially averaged temperature. Though non-deterministic,
the qualitative properties of the spatially averaged temperature trajectories are consistent across
multiple runs.
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If the time step size or mesh size is too large, Te may increase spuriously. The Debye length
(see A) is given by λ =

√
εkT/(q2No), or in words

debyeLength2 =
permittivity boltzmann temperature
numberDensity elementaryCharge2 .

If we start out on a mesh with elements of diameter h, h > λ , the simulation becomes unstable.
This equation suggests that plasma will heat up by a factor of

(h/λ )2, (4)

and then reach a steady state.

The standard PIC methods are stable if certain stability constraints are satisfied including ele-
ment diameters h≤ λD, time step sizes dt ≤ 2/ωp and statistical constraints on the particle weight,
The plasma frequency in units of interest is determined in the Appendix. Our experiments indicate
that list does not include a crucial constraint.

PIC is connected to explicit methods for hyperbolic equations through particle wave speeds.
The number cdt/dx is called the Courant number. A Courant-Friedrichs-Lewy (CFL) condition is
a necessary condition of the form cdt ≤Cdx for the numerical stability of explicit time integration
methods for hyperbolic equations. The CFL condition, cdt ≤ dx is necessary for the stability of
the staggered leap-frog method (i.e. Verlet) applied to the second-order wave equation, utt = c2uxx.

Ideally particle wave speeds c are connected to vT h through the Maxwellian probability distri-
bution,

χ(c) =
4√
π

c2

2v2
T h

e−c2/(2v2
T h)

1√
2vT h

.

Set z = c/(
√

2vT h) and integrate by parts to find the cumulative distribution∫ a
√

2vT h

0
χ(c)dc =

4√
π

∫ a

0
z2e−z2

dz = erf(a)− 2√
π

ae−a2
.

It’s not known to the author how to choose a in general. However a so that
∫ a

√
2vT h

0 χ(c)dc = 9/10
is used in certain applications. In this way leap-frog is stable for 90 percent of the particles if the
time step satisfies if

CvT hdt ≤ dx, C = a
√

2. (5)

This corresponds to a ≈ 1.768, and C ≈ 2.500. The precise value of C is not known in general.
The important point is that as long as dx ≤ 2Cλ , the CFL condition more severely constrains the
time step size than the plasma frequency bound, dx/(Cωλ )≤ 2/ω .

Description of experiments

A set of experiments are reported that characterize the regions of instability for unstructured
PIC. Issues related to using computational resources efficiently are also mentioned.
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1. For fixed initial spatially averaged temperature (Te = 1 eV), electron density (1010), particle
weight (105), study mesh sizes near λD, and time step sizes near 2/ωp.

2. If Te increases, a time step that was initially PIC stable (e.g. ωpdt < 2) may become unstable.
The fixed time step may be stable at the beginning, but unstable at the end. However, we
want to run one (or a few) simulations that use a (much) smaller time step so that is PIC
stable throughout the run.

3. The mesh sizes used are approximately dx/λ = {1/16,1/4,1,4,16}, dx = dxmax.

The simulations involve different meshes of the same domain, typically a square centimeter.
However simulations on the finer meshes often use a fixed approximately structured mesh of
the domain [0,nλ ]2, where n∈{32,64,128}. The advantages of reducing the domain include
more efficient use of computational resources and simplification of the meshing problem. A
disadvantage of reducing the domain size is that it is necessary to demonstrate the extent to
which the temperature trajectory is independent of the domain size.

4. With explicit time integration the time step size is limited, but the precise form of the bound
is unknown. Results are reported for time step sizes dt = {1/100,1/10,1,10,100}2/ωp.

The spatially averaged temperature is compared to the temperature averaged both in space
and over a fixed number of time steps (100). Some unstable simulations terminate early.
Most simulations continue until the temperature increases above the theoretically maximum
heating, equation (4).

5. For the initial run-through, use a particle weighting of 105. If economical, compare particle
weights of 10{3,4,5,6,7} to confirm that particle weighting sensitivity disappears for dx < λ .
With large weights, e.g. 107, heating is expected.

The initial plan was to use the element temperatures to determine Te at a given time. However,
numerical evidence indicates that, with fixed weight, as the mesh size decreases, the number of
numerical particles per element decreases, and it becomes impossible to accurately determine an
element temperature. Here, element temperatures are used on the coarse meshes h/λ = 4,16
only. On the other meshes, Te is determined directly from the particles. Element temperatures are
reliable when there are 33 or more particles per element, on average. On the other hand, element
temperatures are unreliable when there are 1.5 or less particles per element, on average. Note also
that for large scale simulations writing all the particles to one file is not scalable.

The sensitivity of the results to the initial particle distribution. has not been quantified. Some
of the simulations reported here have been performed with different initial conditions, and in these
experiments the spatially averaged temperature was insensitive to the particle distribution.
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Meshes Used in the Study

In this section the structured and unstructured meshes of the unit square [0,1]2 used in the
simulations are described in detail.

The maximum edge length, h, is typically not much longer than the mean edge length. Max-
imum edge length is standard from the finite element theory for quasi-uniform meshes, but here
it is a conservative measure. The mean edge and the standard deviation in edge length are also
reported.

Table 1. The topology and diameter of the three coarsest pairs of
structured and unstructured meshes are tablated.

Name Structured? h number number number
elements vertices edges

squareL16 Yes .14 200 121 320
squareL16U No .14 150 92 241
squareL4 Yes .038 2738 1444 4181
squareL4U No .038 2668 1403 4070
squareL Yes .0074 72200 36481 108680
squareLU No .0073 88186 44486 132671
squareLm4 Yes 1.86e-3 1158242 580644 1738885
squareLm4U No 1.86e-3 1566338 784860 2351197

The number of elements in the structures meshes, K = 2n2, for n ∈ {10,37,190,761}. A mesh
for the unit square with h = λ/16 would have 2(3044)2 elements.

Table 2. Element areas for the structured mesh are more uniform
than for the unstructured mesh.

Name Structured? h min mean max std

squareL16 Yes .14 4.9925e-03 5.0000e-03 5.0068e-03 1.9755e-06
squareL16U No .14 4.5585e-03 6.6667e-03 8.2574e-03 9.5309e-04
squareL4 Yes .038 3.6474e-04 3.6523e-04 3.6562e-04 4.3852e-08
squareL4U No .038 2.5199e-04 3.7481e-04 5.5664e-04 2.3681e-05
squareL Yes .0074 1.3832e-05 1.3850e-05 1.3865e-05 3.2378e-10
squareLU No .0073 6.5645e-06 1.1340e-05 2.1014e-05 5.4564e-07
squareLm4 Yes 1.86e-3 8.6221e-07 8.6338e-07 8.6429e-07 5.0391e-12
squareLm4U No 1.86e-3 2.4586e-07 6.3952e-07 1.2365e-06 7.8002e-08

std is Matlab’s built in function for standard deviation. The documentation mentions some
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normalization which I have not yet figured out, so I’m not stating the definition here.

Edges for the structured mesh have a bimodal distribution, which makes the structured mesh
appear less uniform than for the unstructured mesh. in Table 3.

Table 3. Element edge lengths for the first six meshes.

Name Structured? min mean max std

squareL16 Yes 9.9913e-02 1.1294e-01 1.4147e-01 1.9219e-02
squareL16U No 9.1886e-02 1.2445e-01 1.4379e-01 1.0978e-02
squareL4 Yes 2.7003e-02 3.0692e-02 3.8237e-02 5.2538e-03
squareL4U No 2.1613e-02 2.9446e-02 3.8418e-02 1.2482e-03
squareL Yes 5.2584e-03 5.9873e-03 7.4462e-03 1.0268e-03
squareLU No 3.4207e-03 5.1179e-03 7.3207e-03 1.4342e-04
squareLm4 Yes 1.3129e-03 1.4953e-03 1.8591e-03 2.5653e-04
squareLm4U No 6.4303e-04 1.2153e-03 1.8599e-03 8.5331e-05

Simulations on a mesh of [0,1]2 with h = λD/16 were deemed unnecessary, for the following
reason, and were not performed. The reason is that simulations of equal fidelity are possible
on a smaller domain. In the figure captions, ”Domn” refers to a mesh that is scaled down to
[0,nλD]2 where typical values are n = 25,6,7. In Figures 11 and 12, ”Dom190” refers to the mesh
squareL. In Figures 13 and 14 ”Dom538” refers to the mesh squareLm4. The meshes ”Dom190”
and ”Dom538” are in fact not scaled down. Results are presented on these meshes for comparison
with smaller domains.

The meshes are quasi-uniform. An important issue not addressed here is the dependence on
mesh grading of quantities such as the Courant Friedrichs Lewy condition.
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Primary Results

In this section the results of the numerical experiments outlined in section are presented. The
meshes used are described in section . Structured and unstructured meshes were compared in a
mesh resolution study, Each figure depicts the average temperature as a function of time. Temper-
ature is averaged over the area from the element temperatures. and sometimes in time as well. For
finer meshes, temperature is computed from the particles directly. Time is measured in units of
2/ω . Note that 2/ω = .35×10−3µ sec.

The number of time steps was determined by trial and error. Total simulation times on the
order of one microsecond are expected. It is meaningless to continue a catastrophically unstable
simulation. But on the other hand, on coarse meshes it is important to determine the asymptotic
nature of the heating. When reading the figures, it’s important to bear in mind that the output
frequency is usually once per 1000 time steps. Many different time step sizes are compared in one
figure. Many figures use logarithmic time scales, which is unusual.

The spatially averaged temperature of the electrons is shown in electron volts. The initial
electron temperature is always 1 electron volt. Initially the ions are frozen. The spatially averaged
temperature of the ions is shown in Kelvins.

The first five figures show unstable simulations on a very coarse mesh, comparing different
ways to average particle temperatures, as well as comparing structured and unstructured simula-
tions. The next five figures concern a coarse mesh. These figures show three elemental quantities:
spatially averaged electron temperature T(em), electron temperature averaged in space and over a
window of 100 time steps, T(em) 100, and spatially averaged ion temperature, T(Hp). The last
three figures show simulations on a (barely) stable mesh.

The 2/ω time step stability limit is confirmed (approximately). The computations using un-
stable time steps heat catastrophically. Results are reported here for time step size 10 and 2000
iterations only on the coarsest mesh. The step size is much too large. For the other more compu-
tationally demanding problems, the simulation is halted once they become unstable. For the fine
meshes, simulations are smaller time step sizes are run first until significant heating is observed.
For the Debye stable meshes, the time steps are [.01, .1]2/ω .

A fundamental premise of these experiments is to hold the particle weight constant and refine
the mesh. As the number of particles per element decreases, the element temperatures become
meaningless. On the stable meshes temperature is determined directly from the particles. No
temporal averaging is done.

During the experiments, we made some major simplifications after completing the experiments
at 16,4 and most of 1. We stopped looking at several parameters: unstable time steps, time aver-
aging, and ”structured” versus ”unstructured” meshes. For the finer meshes, we concentrated on
stable or nearly stable time steps, no time averaging, and only ”structured” simplicial meshes.

The last four figures study the influence of the particle weight on the simulation. Unstable
simulations are sensitive to particle weight, with lower weights generally reducing the severity

14



of the instability. On the other hand, the figures presented here show how increasing the particle
weight can destabilize a stable simulation.
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Figure 1. Spatially averaged electron temperature is shown at
a function of time. The unstructured mesh contains elements of
diameter at most 16λD. The horizontal line marks the predicted
level of heating. Time is measured in units of 2/ωP. The simula-
tions with time step size dt = .01 and dt = .1 are run for 282000
time steps. Consistent numerical heating is observed with dt = .01
(solid black) and dt = .1 (dash-dot green). However the simula-
tions at dt = 1 (dashed magenta) and dt = 10 (dots red) heat up
severely.
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Figure 2. Instantaneous spatially averaged ion temperature (in
Kelvins) is shown for the unstructured mesh with element diam-
eters of at most 16λD. Time step sizes are measured in units of
2/ωP. From the left to the right, the triangles, circles, diamonds
and squares correspond to time step sizes of { 1

100 , 1
10 ,1,10} respec-

tively. The simulations at dt = .01 and dt = .1 are run for 282000
time steps.
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Figure 3. Temporal averaging slightly decreases the spatially
averaged temperature. Here the mesh is unstructured with mesh
size h ≤ 16λ . The spatially averaged electron temperature, T(em)
(line plots) is compared to the spatial average of
the temporally averaged (100 time steps) electron
temperature T(em) 100 (symbols).
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Figure 4. Similar heating is observed with an unstructured sim-
plicial mesh and a structured simplicial mesh with the same maxi-
mum element diameter (here h = 16λ ). Spatially averaged elec-
tron temperatures (lines) for the structured mesh are shown in
black, with symbols used for the temperature averaged in both
space and time. The similar results for an unstructured mesh are
shown in green. Both the instantaneous and the time averaged
electron temperatures are shown. At dt = .1 the heating is slightly
worse on the unstructured mesh. In general qualitatively similar
results are obtained with structured and unstructured meshes.
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Figure 5. The heating of the spatially averaged ion temperature is
compared for structured (black) and unstructured (green) meshes
of element diameter h = 16λ . Initially the ions are cold. There is
no temporal averaging.
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Figure 6. For the unstructured with mesh with h ≤ 4λ the spa-
tially averaged electron temperature is shown The time step sizes
are { 1

100 , 1
10 ,1,10}. The corresponding numbers of time steps are

{282000,282000,2000,280}. The simulations at each time step
are, or appear to be, heating past the predicted heating threshold.
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Figure 7. For the unstructured mesh with h = 4λ , the spatially
averaged ion temperature is shown versus time. Note the heating
at dt = 1 (diamonds) compared to dt = 1/10 (circles).
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Figure 8. For the unstructured mesh with h ≤ 4λ the spatially
averaged electron temperature is compared to the electron temper-
ature averaged both spatially and over 100 time steps. The dotted,
dashed, dash-dot and solid lines show the temperature averaged
in space determined using time step sizes { 1

100 , 1
10 ,1,10} respec-

tively. The triangles, circles, diamonds and squares show the tem-
perature averaged in space and time determined using time step
sizes { 1

100 , 1
10 ,1,10} respectively.
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Te(100):dt = .01
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Te(100):dt = 10

Figure 9. Electron heating is insensitive to quasi-uniform un-
structured meshes and temporal averaging. Here simulations on a
structured (black) and unstructured (green) mesh both with h≤ 4λ

are compared. Electron temperature is shown using time step sizes
{ 1

100 , 1
10 ,1,10}, and averaged either in space (solid lines) or both

in space and time (triangle,circle, diamond, square).
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Figure 10. Simulations on a structured (black) and unstructured
(green) mesh both with h ≤ 4λare compared. Ion temperature is
shown using time step sizes { 1

100 , 1
10 ,1,10}.

24



0 500 1000 1500 2000 2500 3000
1

2

3

4

5

6

7

 

 
dt = .01 Dom32
dt = .01 Dom190
dt = .1 Dom32
dt = .1 Dom190

Figure 11. The spatially averaged electron temperature is shown
for both an unstructured and a structured mesh both with h ≤ λ .
Temperature and time are both shown on linear scales. Time in-
tegration using time step size 1

100 is shown in dotted (structured)
and dashed (unstructured). Time integration using time step size
1

10 is shown with circles (structured) and diamonds (unstructured).
Simulations with time step size 1

100 used 280000 time steps. Sim-
ulations with time step size 1

10 used 28000 time steps. Both simu-
lations heat up severely.
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Figure 12. The spatially averaged ion temperature is compared
on a structured (dots,solid) mesh to an unstructured(dash, dash-
dot) mesh, both satisfying the Debye stability criterion h ≤ λ .
Time integration with time step size 1

100 (dots structured, dashes
unstructured) is compared to time integration with time step size
1

10 (solid structured, dash-dot unstructured).
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Figure 13. The spatially averaged electron temperature is shown
for a structured mesh both with h≤ λ/4. Temperature and time are
both shown on linear scales. Four n by n meshes are used with n =
32,64,128,538. The spatially averaged electron temperature with
step size 1

10 and 2800 time steps is shown with down triangles, up
triangles, squares and circles for the small,medium, large and extra
large domains respectively. Time integration using time step size

1
100 and 28000 time steps is shown in dotted, dash-dot, dashed and
dotted lines for the small,medium, large and extra large domains
respectively. With step size 1

100 , the simulation appears stable. On
the small mesh, the initial temperature is higher than requested,
due to the small total number of particles.
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Figure 14. The spatially averaged ion temperature is compared
on four Debye stable structured meshes, h≤ λ/4. The meshes are
n by n for n = 32,64,128,538. Time integration with time step
sizes 1

10 produces similar spatially averaged ion temperatures to
time integration with time step size 1

100 . .
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Figure 15. The spatially averaged electron temperature is shown
for structured meshes each with h ≤ λ/16. Three n by n struc-
tured meshes are comppared with n = 32,64,128. Temperature
and time are both shown on linear scales. The dotted lines show
Time integration using time step size 1

100 and 28000 time steps.
Time integration using time step size 1

10 and 2800 time steps is
shown with down triangles (n = 32), up triangles (n = 64), and
squares (n = 128). Time integration using time step size 1

100 is
shown with dotted lines (n = 32), dash dot (n = 64), and dashed
lines (n = 128). The n = 32 mesh is much too small. The time step
1
10 is too large, violating a CFL condition. The simulation on the
n = 128 mesh with the small time step is stable.
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Figure 16. The spatially averaged ion temperature is compared
on n by n structured meshes with h ≤ λ/16 for n = 32,64,128.
Temperature and time are both shown on linear scales. The time
step is small enough to resolve the ions. However, the number of
particles is too low to produce mesh independent trajectories over
long times.
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Figure 17. The spatially averaged electron temperature is shown
for simulations using meshes are Debye stable, h ≤ λ/4. There
are 9 simulations, with three different numerical particle weights
105:7 and three different domain sizes h25:7. The simulations with
weight 105 on the 64×64 and 128×128 domains do not heat up.
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Figure 18. The spatially averaged ion temperature is shown on
Debye stable meshes, h ≤ λ/4, for different numerical particle
weights, 105:7, and different domain sizes h25:7.
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Figure 19. The spatially averaged electron temperature is shown
for meshes that are Debye stable, h ≤ λ/16, but for numerical
particle weights 103:5 and for domain sizes h25:7.. The simulations
with weight 103 on the 64×64 and 128×128 domains do not heat
up.
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Figure 20. The spatially averaged ion temperature is shown for
meshes that are Debye stable, h≤ λ/16, but for numerical particle
weights 103:5 and domain sizes h25:7. For the apparently stable
simulations, weight 103 and either 64×64 or 128×128 domains,
the ion temperature is lower here than with h = λ/4.
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Heating Rates

It is well known that particle models of a plasma grossly exaggerate the collision
rate of the system they simulate, due to the small number of particles used in the
model compared with the real system. Such models also invariably heat up due to the
presence of stochastic error fields arising from the finite size of the space and time
steps [6].

In this section a heating rate for the spatially averaged temperature T (t) is determined. If
T (t) = T (0)eat , then the heating rate is a. After preliminary comments, Figures 21, 22, and 23 are
presented showing the results of numerical experiments in which the initial temperature is varied.
These figures show that the heating rate decreases as the initial temperature increases. Figures 24,
25 and 26 compare the heating rate to the mesh size, CFL number and an estimate of the overall
computational cost. The section concludes with Table 4 documenting the mesh resolution, CFL
condition, numerical particle density and the heating rates the rates the 20 most stable simulations
of the test problem, all starting from the same initial λ , ωp, temperature and electron density.

For (structured) PIC, the heating rate depends on mesh size, Debye length, and time step size.
For sufficiently small time step size, the growth rate varies with dx/λ . Due to λ = C

√
T , non-

trivial models of T (t) are anticipated. For many simulations T (t) is nearly a curve of the form
T (0)eat−bt2

with positive a and b over specific interval [0, t f ]. This narrows the uncertainty in the
growth rate, a, by more precisely fitting T (t) over meaningful time spans, t f ≤ a

2b .

The interpolation scheme used for all simulations is T (t)≈ Tmineat−bt2
. For reasons not known

to the author, when dx � λ , T (t) sometimes decreases for the first few time steps. The interpola-
tion scheme uses the minimum observed value Tmin instead of T0.

Table 4 the growth rates for all the heating curves (for structured meshes) the were approxi-
mately exponential. The CFL condition is dtvT h ≤Cdx for C to be determined. While small values
of dx/λ and dtvT h/dx are necessary for a small growth rate, these values do not alone predict the
growth rate. Recall that dtvT h ≤Cdx = dt ωp

2
λ

dx . No simple universal model predicting the growth
rate is apparent.

The runs with shown in Figure 11 with dx = λ , numerical particle weight 105, on the 32 by 32
domain with time step size .1 and .01 are also included. These simulations have 1.38 particles per
element. Heating curves for the simulations with larger particle weights (fewer numerical particles)
were not of the form eat−bt2

, and no rate could be determined.

Runs with dx = λ/4 with high numerical particle weights were also too poorly resolved to
determine a heating rate. The two that are the best resolved are included. These have weight 105

and the mesh is 128 by 128. The time step sizes are .1 and .01 respectively. Additional simulations
with numerical particle weights weights 103:4 were included for completeness.

Runs with dx = λ/16 and weights 103:5 are included. The 32 by 32 domain is adequate for the
growth rates above .2 at time step size .1, even though the domain diameter is only 2λ . The 128
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Figure 21. Spatially averaged electron temperature is studied for
simulations with initial temperatures T (0) of {1,16,256} electron
volts. Each simulation uses the same structured mesh, time step
size 1/10 (in units of 2/ω) and numerical particle weight 105. For
the simulation with T (0) = 1 eV, the mesh is Debye unstable, h =
16λ . Three simulations take 282000 time steps, with output stride
1000. A fourth simulation with T (0) = 1 eV with output stride
100 and 2000 time steps is also shown.
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Figure 22. Spatially averaged electron temperature is studies for
simulations with initial temperatures T (0) of {1,16,64,256} elec-
tron volts. Each simulation uses the same structured mesh, time
step size 1/10 (in units of 2/ω) and numerical particle weight 105.
For the simulation with T (0) = 1 eV, the mesh is Debye unstable,
h = 16λ . The simulations take 282000 time steps, with output
stride 1000.
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Figure 23. The spatially averaged electron temperature is shown
for simulations using meshes with h≤ λ . There are 8 simulations.
Each simulation has numerical particle weights 104 and domain
size 32h. The time step sizes used are {.01, .02, .05, .1} in units of
2/ω . The initial temperature is either one or four electron volts.
The simulations starting from 1eV use 282000 time steps. The
simulations starting from 4eV are run out to 10 uSec.
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h=λ/16
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Figure 24. The heating rate per microsecond is shown (y-axis)
versus dx/λ for 20 simulations with the smallest heating rates.
The circle, up triangle, down triangle, square and diamond denote
simulations with dx/λ of 16, 4, 1, 1/4 and 1/16 respectively. The
dotted line shows the minimum heating observed as a function of
dx/λ . The parameters λ , ωp, temperature and electron density
are the same initially. The corresponding parameter and heating
values are documented in Table 4.
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Figure 25. The heating rate per microsecond (y-axis) is com-
pared to the Courant number vT hdt/(dxλ ) for 20 simulations with
the smallest heating rates. The circle, up triangle, down triangle,
square and diamond denote simulations with dx/λ of 16, 4, 1,
1/4 and 1/16 respectively. Each simulation uses the same λ , ωp,
temperature and electron density (see Nomenclature). The corre-
sponding parameter and heating values are documented in Table 4.
The dotted line shows the minimum heating observed as a function
of the Courant number. The maximum Courant number among the
20 best simulations is 1.6. On the other hand, further reductions in
Courant number do not appear to significantly reduce heating.
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Figure 26. The heating rate per microsecond is shown (y-axis) is
compared to the “cost”, given by (K +P)/dt where K is the num-
ber of elements, P is the total number of numerical particles, and
dt is the time step size measured in units of ωp/2. The values of K
and P correspond to the 1cm2 domain; these values are estimated
for the scaled down domains. The circle, up triangle, down tri-
angle, square and diamond denote simulations with dx/lambda of
16, 4, 1, 1/4 and 1/16 respectively. Each simulation uses the same
values of λ , ωp, temperature and electron density. The dotted line
interpolates the most effective parameters as a function of “cost”.

41



Table 4. The growth rates for the spatially averaged temperature
for structured meshes are tabulated for the 20 simulations shown
in Figures 24-26. The parameters λ , ωp, temperature and electron
density are the same initially. The third column is the number of
numerical particles per element. Increasing the number of numer-
ical particles per cell consistently reduces the heating rate.

dx/λ dt vT h/dx NumPartPerCell Growth Rate
1.88e+01 5.31e−03 5.00e+02 7.50e+01
5.11e+00 1.96e−02 3.65e+01 1.07e+00
9.95e−01 1.00e−02 1.60e+01 1.70e−01
9.95e−01 2.16e−02 1.60e+01 1.71e−01
9.95e−01 4.66e−02 1.60e+01 2.00e−01
9.95e−01 1.00e−01 1.60e+01 2.87e−01
9.95e−01 1.00e−02 7.24e−01 1.51e+00
9.95e−01 1.00e−01 7.24e−01 3.06e+00
2.50e−01 4.00e−02 8.64e−02 1.25e+00
2.50e−01 4.00e−01 8.64e−02 1.21e+01
2.50e−01 4.00e−02 8.64e−01 1.45e−02
2.50e−01 4.00e−01 8.64e−01 8.19e−01
2.50e−01 4.00e−02 8.63e+00 5.66e−03
2.50e−01 4.00e−01 8.63e+00 6.72e−02
6.25e−02 1.60e+00 5.37e−01 2.41e−01
6.25e−02 1.60e+00 5.27e−02 8.18e−01
6.25e−02 1.60e+00 5.86e−03 3.94e+01
6.25e−02 1.60e−01 5.40e−01 9.54e−03
6.25e−02 1.60e−01 5.40e−02 1.12e−01
6.25e−02 1.60e−01 5.40e−03 7.73e−01

by 128 domain is needed for runs with time step size .01.
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Conclusions

Our primary conclusion concerns the Debye mesh constraint. The plasma Debye length im-
poses a constraint on the maximum element diameter, h. All simulations with h≥ λ heated up. No
simulation with h ≤ λ/4 and time step size that satisfies the CFL condition, equation (5), heated
up. For h ≈ 16λ , it was unclear whether the heating would level off once the spatially averaged
temperature had increased the effective Debye length to h. For h ≈ 4λ and h ≈ λ , the heating
continued even after the effective Debye length exceeded h.

A plasma in a postage stamp problem, 1cm by 1cm, with specular boundary conditions is
considered. The numerical particle weight are always ≥ 103. The meshes are all quasi-uniform.
Heating rates for the spatially averaged electron temperature, T (time)≈ T (0)exp(rate∗ time) are
determined. The precise relationship between the heating rate and the input parameters is complex.
If dx < λ , dtvT h < .2dx, and the number of particles is adequate, heating rates near 1/10 are
observed. If dx is nearly λ , then a small time step and a small weight may be needed to achieve
the desired heating rate. Meshes with dx ≤ λ/4 appear to be the most economical overall.

Similar results for the PIC method are reported in [6]. A natural follow on problem is to make
more detailed comparisons between PIC and unstructured PIC.

Other conclusions and observations are ordered chronologically.

Simulation Time. The time step size influences the total simulation time in many ways. Simula-
tions with fixed number of time steps and the largest proposed time step sizes are computationally
prohibitive.

If a simulation is unstable, and heats up disastrously, the computation time also increases. For
example Table 5 shows the total run times for eight simulations, all with 2000 time steps. The
domain is [0,1]2 in all cases. The element size and the time step size vary. The explosion of com-
putation time is more severe here than it would be for a structured PIC code. The corresponding
times for the linear systems are given in Table 6 A structured PIC code would, at the end of a
time step, determine the new particle position, and then look up the new element that contains
the particle. An unstructured PIC code moves particles only using element adjacency. An option
if simulation time has ballooned is to visualize the simulation so far, and manually terminate the
simulation if it has become unstable.

In initial set of experiments included unstable simulations that were not practical. Recall that
there are 86400 seconds in a day. Ignoring the time spent pushing particles changes the bottle
necks.

In Table 6 the solve time per element actually decreases as number of elements increases. The
linear solver used in all of these experiments (for consistency) is efficient only for sufficiently large
linear systems.

Physical Time. For the simulations, the time interval of interest turned out to be roughly one µ

second. This is 28208 time steps at dt = .2/ω , that is dt = 1/10 in units of 2/ω . The plasma
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Table 5. Particle calculation time (seconds) for simulations with
2000 time steps

Mesh Structured? num dt = .01 dt = .1 dt = 1 dt = 10
core

squareL16 Yes 2 317 314 724 36414
squareL16U No 2 303 316 534 44750
squareL4 Yes 4 182 184 944 94624
squareL4U No 4 165 181 919 85146
squareL Yes 8 164 190 6606 620173
squareLU No 8 180 200 6828 na
squareLm4 Yes 8 403 505 na na
squareLm4U No 8 180 200 na na

Table 6. Solve time (seconds) for simulations with 2000 time
steps

Mesh Structured? num dt = .01 dt = .1 dt = 1 dt = 10
core

squareL16 Yes 2 70 68 62 63
squareL16U No 2 65 65 64 63
squareL4 Yes 4 97 93 83 310
squareL4U No 4 83 88 78 183
squareL Yes 8 342 358 388 436
squareLU No 8 370 383 404 na
squareLm4 Yes 8 10224 7526 na na
squareLm4U No 8 9281 9419 na na

frequency is derived under the assumption that the plasma state is a small sinusoidal oscillation
about a uniform plasma. For the simulations that were stable (did not heat up), the oscillations
in the spatially averaged ion temperature were within an order of magnitude of the ion plasma
frequency.

Time step stability. The time step size for Stormler - Verlet is bounded in terms of a different
mesh dependent frequency, ωmax, the maximum normal mode frequency of the linearized system
of equations [4] If dt > 2/ω , the time integration is unstable. For dt � 2/ω , the growth rate per
iteration is large and the particle positions are mesh dependent after only a couple iterations. We
have not yet calculated ωmax.

Numerical particle per cell. Increasing the average number of numerical particles per cell con-
sistently reduces the heating rate. This is in contrast to decreasing the time step size and the mesh
size, which are only helpful near to the critical thresholds.
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Another issue that is sensitive to the number of particles per cell is the information determined
from a simulation. Element based quantities are accurate if the average number of numerical
particles per element is high. Otherwise the initial spatially averaged temperature is typically not
the requested temperature. We observed accurate temperatures for at least 33 particles per element,
and inaccurate temperatures for less than 1.4 particles per element.

Debye mesh constraint. The plasma Debye length imposes a constraint on the maximum element
diameter, dx. In Figure 24 the most efficient simulations have dx/λ of either 1 or 1/4, depending
on precisely how much heating is acceptable.

In Table 1 as the number of elements increases, the unstructured meshes use more elements to
achieve a given maximum element diameter than the structured meshes. On the other hand, for
example in Figure 11, the maximum element diameter appears to be the best predictor of heating.
This issue needs to be studied more thoroughly.

Numerical particle weights. The plasma parameter, ND = (4/3) πλ 3n = 1.4e + 4 is the number
of physical particles in a sphere of radius λD. Weights below ND are needed in many simulations.

In these experiments numerical heating is defined subjectively. Figure 15 shows no heating
with numerical particle weight 105 and time step size 1/100. On the other hand Figure 19 shows
heating with numerical particle weight 105 and time step size 1/100. In Figure 15 the simulation
with time step size 1/10 heats severely, and by comparison there is no heating at the smaller time
step. And decreasing the particle weight does reduce the heating, as in Figure 19. The heating
in Figure 19 appears to reflect the resolution of the particle distribution. Stable simulations are
insensitive to the numerical particle weight as long as there is an adequate number of numerical
particles. For the simple problem considered here, around 100 numerical particles suffice.

For the variable domain sizes with particle number density and constant particle weight, the
domain size is proportional to the total number of particles. Table 7 gives the number of particles
per species for the meshes with either h = λ/16 or h = λ/4. For h = λ/4, 178 particles per species
are enough for the electron temperature, to be constant, but at least 709 particles per species are
needed to resolve the ion heating.

Table 7. Reduced or scaled down domains were used in simula-
tions with mesh size dx � λ . For fixed numerical particle weight,
the reduction in the total number of particles becomes significant.

dx Weight Domain32 Domain64 Domain128
λ/16 103 1094 4422 17684
λ/16 104 107 428 1716
λ/16 105 12 46 177
λ/4 105 178 709 2830
λ/4 106 18 71 283
λ/4 107 2 7 28
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Benign warning During the weight 106 and 107 runs with < 28 numerical particles, the warning
message ”Aztec status AZ loss: loss of precision” is printed to the screen at certain time steps.
It is surprising that in this case these warning messages are benign. The warning messages are
due to the simple convergence criterion of the iterative linear solver for the potential equation. At
each step, the initial guess is the solution from the previous iteration. In simulations with so few
numerical particles on some time steps no particles leave their elements. On such time steps, the
right-hand side is the same as at the previous iteration. The initial guess is an approximate solution.
However, the iterative method is asked to decrease the relative residual norm by a second factor of
10−9, for a total of 10−18, which is not in general possible in double precision (typically machine
precision is 2−54).
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A Physical Constants

In this section, the conversion of temperature to Debye length, and electron density to plasma
frequency are worked out in fine detail.

debyeLength2 = λ
2 =

permittivity boltzmann temperature
numberDensity elementaryCharge2

where
permittivity = ε0 = const ampere second/(volt meter),

for
const = 8.854187817×10−12.

The plasmas simulated here are at

temperature = T = 11605 Kelvin

boltzmann temperature = electronVolt = eV = elemChargeC joule,

where elemChargeC = 1.60217646 10−19 is the elementary charge in Coulombs.

elementaryCharge = e = elemChargeC ampere second, volt = joule/(ampere second)

If numberDensity, n, is measured in cm3, then λ =
√

const/(100n elemChargeC). For n = 1010cm−3,
there holds λ = .74339424×10−2 cm.

plasmaFrequency2 =
electronDensity(elementaryCharge2)

ε0 electronMass
Expanding volts and elementary charge as above,

ε0 = const
amp sec

volt meter
= const

amp2sec2

joule meter

elementaryCharge2/ε0 =
elemChargeC2

const
joule meter

plasmaFrequency2 =
electronDensity
electronMass

elemChargeC2

const
joule meter

Using joule = kg meter2

sec2 , for electronMass in kg and electronDensity in meters3, plasmaFrequency
has units 1/sec. In cgs units, plasmaFrequency is measured in micro seconds. electronDensity =
1010cm−3 = 1016meter−3. Substituting electronMassKg = 9.10938188 10−31,

plasmaFrequency =
(
(electronDensity/electronMassKg)(elemChargeC2)/const)10−6

)1/2

= 5.6415 103/µsec
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B Conservation Laws

The equations modeling an electrostatic plasma presented in section are presented in a more
general framework. Issues related to the evaluation of discretization methods, such as conservation
laws and verification, are emphasized.

The simulation methods discussed here involve a finite number of numerical particles at loca-
tions {xi} with velocities {vi}. The plasmas considered here have ions (protons) of charge e and
electrons of charge −e. The particle weight is the number of particles per numerical particle.

The traditional (§5.5 in [5] and §10.5 of [1]) starting point of the analysis is the Action integral
for Vlasov’s equation with potential Φ, and Lagrangian L ,

I [Φ,x] =
∫ t1

t0
L dt (6)

Homogeneous Dirichlet boundary conditions apply on the volume element in phase space. The
particle Lagrangian is

L =
ε

2
〈E,E〉+ 1

2

np

∑
i=1

mi|vi|2−qi
Φ(xi) (7)

The charge qi of the ith numerical particle is product of the particle weight and ±e. The charge
density field ρ is ultimately a sum of delta functions at the particle positions each weighted by their
charge. Gauss’ Law, relating the electrostatic potential φ and the charge density ρ , equation (2),
is the Lagrange equation for variations of (7) with respect to Φ. Varying (7) with respect to po-
sition produces Coulomb’s Law, equation (3). A particle evolving according to Coulomb’s Law
conserves its energy,

d
dt

(
1
2

mi|vi|2 +qi
Φ(xi(t))

)
= 0.

The kinetic energy of the particles is essentially electron temperature,

me

2kB
∑

anions
|vi|2

Constants accounting for units and particle weight have been omitted for clarity. If the potential
energy is less than the maximum kinetic energy, then the temperature plots are essentially the
energy.

Other equations for particles, such as the potential energy of particles in free space

Uparticle =
1

4πε
∑
i< j

qiq j

ri j
,

motivate field equations.

The classical argument (§6.9 of [7]) for momentum conservation applies here using Coulomb’s
Law in the form d p(i)/dt = q(i)E, and only that the charge density field ρ averaged over each finite
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element K must satisfy equation (1). The sum of the momenta, pV , of all the particles in a given
volume V evolves according to

d pV

dt
=

∫
V

ρ(x)E(x)d3x. (8)

In the discrete case, V is a union of finite elements. Within each element E is constant, and
momentum is conserved as long as no particle trajectories intersect ∂V . It is traditional to express
the discrete equations in terms of the shape functions and particularly the discrete Green’s functions
[2]. The continuum case can be expressed in conservation form using the Maxwell stress tensor,
T. Thinking of E as a column vector and of divergence as transforming matrices to row vectors, in
the electrostatic (B = 0) case T = EET − I1

2 |E|
2, where I denotes a 3 by 3 identity matrix, and∫

V
ρ(x)E(x)d3x =

∫
V

divεTd3x =
∫

∂V
εT ·dS

This suggests many different ways to check conservation laws. Few of these have been pursued.
One that stands out is to account for particles crossing element boundaries. A framework that can
keep track of crossings was worked out in the heyday of PIC methods [8].

Based on Uparticle, in general the potential energy within a volume V

U = 1/2
∫

V
ρφ =

ε

2

∫
V

∇ · (Eφ)−E∇φ =
ε

2

∫
∂V

φE ·dS +
∫

V

ε

2
|E|2.

which depends on the electrostatic energy density u = ε

2 |E|
2 and a boundary term. The current

density (which here is displacement current) J = −∂tεE satisfies the continuity equation ∇ · J =
−∂tρ . And due to B = 0 Poynting’s Theorem states that ∂tu =−〈E,J〉.
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