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Abstract

As High-End Computing machines continue to grow in size, issues such as fault tolerance and relia-
bility limit application scalability. Current techniques to ensure progress across faults, like checkpoint-
restart, are unsuitable at these scale due to excessive overheads predicted to more than double an appli-
cations time to solution. Redundant computation, long used in distributed and mission critical systems,
has been suggested as an alternative to checkpoint-restart on its own. In this paper we describe the
rMPI library which enables portable and transparent redundant computation for MPI applications. We
detail the design of the library as well as two replica consistency protocols, outline the overheads of
this library at scale on a number of real-world applications, and finally outline the significant increase
in an applications time to solution at extreme scale as well as show the scenarios in which redundant
computation makes sense.






1 Introduction

Today’s large-scale parallel computers experience outages from a number of sources including failed compo-
nents, software bugs, and power disruptions. A common method to allow an application to compute longer
than the interval between faults is to checkpoint the application state at regular intervals and restart the
application from the most recent successful checkpoint after a fault occurs. Checkpoint/restart works but is
predicted to be inefficient in future machines [26, 14, 27].

Million-core machines for petascale computing will have so many parts that faults will be frequent.
The system-wide Mean Time Between Failures (MTBF) will become so small that more than 50% of an
application’s total execution time will be spent writing checkpoints and recovering from failures [26]. The
more failures occur during the execution time of an application, the longer it will take to finish its work. At
large node counts the application will spend more time writing checkpoints, restarting, and redoing work
than the actual work. This decreases the throughput of the machine: fewer applications finish in a unit of
time.

The cost of checkpoint/restart is dependent on a number of system parameters including the time to
write a checkpoint (d), the time to perform a restart (R), and the MTBF of the application (6). Daly [10]
presents an equation for calculating the total wall clock time (T, (7))) an application requires to complete a
fixed amount of work (7). In Equation 1, 7 is the optimal checkpoint interval. The MTBF of the application
is dependent on the number of nodes in a system and their individual MTBFs. We must consider all types of
failure that can interrupt an application: node hardware, external I/O systems, machine support; e.g., fans
and power supplies, environmental; e.g., operator error and power and colling failures, as well as software
failures.
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Figure 1 shows the time to solution using Daly’s equation for a million node application with a 168 hour
solve time. In this figure green (on the right) corresponds to a wall clock time of 168 hours, white to 252
hours (50% increase in wall time), and brown (on the left) to 336 hours (100% increase) or greater. There
are a number of routes that can be taken to make checkpointing more tractable at scale. For example, in our
million node application example, to keep checkpoint overhead to less than 50% (brown area in Figure 1) of
our application we need a node MTBF greater than 200 years and a checkpoint time less than 10 minutes. To
keep overhead less than 1/3 more demanding advances are needed. This situation worsens when node counts
exceed a million. Though there is ongoing active research in this area to increase node MTBF and decrease
checkpoint time, there is concern whether technological advances can deliver this required performance.

As an alternative, we present a method to increase resilience through redundant computation that places
no demands on advances in system reliability or reduced checkpoint time. Previously, this approach was
dismissed as being too expensive for the meager benefits seen at smaller machine scales. This approach
effectively increases the time between faults which results in fewer restarts, and less rework. All of these lead
to better system throughput. Additionally, this technique can be used in conjunction with other techniques
to reduce checkpoint overhead.

In redundant computing, each redundant node is coupled to an active node and continues the computation
should the active node fail, and vice versa. Since the application can continue to work in the presence of some
faults, it is now possible to increase the checkpoint interval and allow the application to make uninterrupted
progress for a longer slice of time. The cost is a small performance degradation and the overhead of using
more nodes than the application and problem would need otherwise.

Another critical issue is the overhead of redundant computing in a message-passing environment. Keeping
replica state consistent requires additional messaging that negatively impacts performance. To avoid sharing
a single point of failure between an active and a redundant node, such as a fan or power-supply in the chassis,
we would prefer the two nodes to be physically as far apart as possible from each other. This introduces
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Figure 1. Wall clock time evaluation using Daly’s equation for a 168
hour, one million node application given a node MTBF and checkpoint
time. Green (right) corresponds to a wall clock time equal to 168 hours,
white to 252 hours (50% increase in wall time), and brown (left) to 336
hours (100% increase) or greater.



additional delays and network congestion that slows down synchronizations and application performance.

Note that redundant computing is not a substitute for checkpoint/restart. It reduces the number of
interruptions an application experiences and therefore reduces the overhead of checkpointing but does not
eliminate it. Redundant computation also enables the detection of silent errors. These are errors that occur
in registers, caches, and data paths that are not protected by error detection or correction codes. These
errors are often silent because they produce a corrupted result but do not further disrupt the computation.
Most applications assume that calculations done by the hardware are correct and do not or cannot check
for invalid results. Double redundancy lets us flag silent errors, and triple redundancy would let us correct
these errors.

In this study, we directly quantify the cost of our redundant MPI library on a range of microbenchmarks
and real-world, large-scale applications. We have implemented this transparent user-level rank replication
library to hook in at the MPI profiling layer and have tested it with application running on the Sandia/Cray
Red Storm system [6]. The main contributions of this paper are:

e presentation of rMPI a portable, transparent user-level redundant MPI profiling library

e evaluation of the performance overhead of two consistency protocols each of which places different
demands on a RAS system

e given this overhead, a presentation of when redundant computation pays off in terms of the extra
resources used

To out knowledge, this is the first such empirical study on the cost of redundant computation for HPC.



2 Design

To evaluate the benefits and costs of redundant computing, we set out to design a portable user-level MPI
library that does redundant computation transparent to the user. The basic idea for the rMPI library is
simple: replicate each MPI rank in an application and let the replicas continue when an original rank fails.
As is common with checkpoint/restart, we assume that the application will restart on the same number of
nodes. This means spare nodes must be available or nodes must be repaired before a restart.

To ensure duplicate state across replicas, the library implements a protocol that enforces consistent state.
In MPI, state consists of both local memory state and the messages received by a node. The library must
balance keeping replica state consistent while keeping the overhead due to the protocol low. In this study
we focus on two protocols that »MPI contains. These protocols differ in the messages they send and the
demands they place of the RAS system. The two protocols, denoted mirror and parallel, are described in
the following sections.

2.1 Mirror Protocol

Figure 2 shows the message exchanges necessary to ensure consistency in the mirror protocol. In this figure
A and B represent distinct MPI ranks and A’ and B’ are A’s and B’s replicas respectively. In this protocol,
each sender transmits duplicate messages to each of the destinations. Similarly, receivers must post multiple
receives for the duplicate messages, but only require one of those messages to arrive in order to progress.
Special care and additional replica coordination is required for MPI_ANY_SOURCE operations. We describe these
operations in more detail below.
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Figure 2. FEach sender transmits the user messages twice and addi-
tional protocol exchanges are needed in the case of MPI_ANY_SOURCE

At job launch, a user-specified map which associates replicas with MPI ranks is distributed to each node.
When a node is believed to have failed, it is removed from the mapping and no further messages are sent to
it, or posted for it. If this happens during an operation in progress; e.g., while rMPI is waiting for a message
from a failed node, "MPI cancels the in-progress operation and updates its internal state so it will no longer
look for messages from that node.

Due to MPI message-passing semantics and the possibility of wildcard source receives, rank replicas
cannot be completely symmetrical. They need to coordinate on certain operations. For example, the order
in which unexpected messages arrive at rank B must match the order in which they arrive at rank B’. Since
some computations are message-order dependent, different arrival orders would lead to different computations
on the two nodes and therefore an inconsistent state across replicas. To handle this, the protocol uses the
notion of a leader (or active) node in an MPI rank bundle. Non-leader nodes are referred to as replicas or
redundant nodes. When a leader drops out of computation the protocol chooses a replica to take over as
leader. rMPI uses one high order bit in the tag to distinguish messages from leader and replica nodes.



Blocking operations The sequence of events depends on whether the receive request is for a specific
source or MPI_ANY_SOURCE. If the application has requested a specific source, let say for rank A, then the
protocol posts receives for both A and replica A’, assuming of course replica A’ exists. rMPI receives the
message from both A and A’ into the buffer provided by the user. Since the data in the two arriving messages
are identical, there is no danger in corrupting the user buffer. If multiple messages from the bundle B arrive
with the same tag, rMPI must make sure that the first active and first redundant arrive in the first buffer,
and the second active and second redundant in the second buffer. MPT achieves this by using one high-order
tag bit, setting it on all outgoing redundant messages and setting the same bit for all receives of redundant
messages.

The situation is illustrated in Figure 3. Node A sends messages msgl and msg2 with the same tag to
node B. MPI message ordering semantics demand that msg! arrives in buf! and msg2 arrives in buf2. If the
redundant messages msgl’ and msg2’ had the same tags as the original messages, then it would be possible
for msgl and msg2 to both arrive in buf! or buf2, since rMPI posts two receives for each buffer. Using an
unused tag bit to mark redundant messages avoids the possible mix-up.
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Figure 3. Original and redundant messages with the same tag must
maintain the same order.

The situation gets more complicated when an application uses MPI_ANY_SOURCE to receive messages. For
example, if messages msgl and msg2 come from different nodes, they can each end up in buf! or buf2.
Whatever that order, it must be preserved on all rank within a replica bundle. To enforce this order, rMPI
performs the following steps: On the leader receive node B, only one receive with tag MPI_ANY_SOURCE is
posted. When a message arrives for bufl, node B sends the MPI envelope information to node B’ (if it
exists). Node B’ uses the envelope information to post a specific receive from the node that sent the first
message to node B. On all nodes in the receive replica bundle, if the received message has a redundant receive
that receive must also be consumed.

Non-blocking operations The situation described above is further complicated if the MPI_ANY_SOURCE
is a non-blocking receive operation. As soon as rMPI posts the first MPI_ANY_SOURCE non-blocking receive it
must wait to post any further receives (MPI_ANY_SOURCE or otherwise ) on replica nodes until all outstanding
MPI_ANY_SOURCE receives have been satisfied or the application waits on the receive operation. This is again to
enforce the same message ordering on all replicas This implies that applications with MPI_ANY_SOURCE receive
operations are likely to see many more unexpected messages then their leader node counterparts.

Since the user requested a non-blocking receive, both nodes must return at this point. The replica node
cannot post the receive until it has the envelope information from the leader. This means the replica node
must maintain a queue of receives the user has posted but that rMPI has not been able to submit to the
underlying MPT library.

During test and wait operations, the active node may complete receives and send the envelope information
to the redundant node. The redundant node compares these envelopes with the receives in its queue and
posts the matching ones to complete those operations.



MPI guarantees message ordering between node pairs. In addition, rMPI needs to ensure that all message
are received in the same order on an active and its redundant node. MPI_ANY_SOURCE makes this especially
difficult and introduces additional overhead. However, when the queue of posted receives on the redundant
node is empty, and while no further MPI_ANY_SOURCE receives are posted, new receive requests can be submitted
to the MPI library right away.

rMPI uses its own request handles to return to the user because many receives will not have been
submitted to the MPI library at the time rMPI needs to return a request handles to the user. This means
rMPI needs to maintain data structures that map its request handles to the ones used by the underlying
MPI implementation.

When the receive of a message is complete, the status information about the receive on node B and B’
must be updated such that both nodes report the same message source and tag, without the extra bit set,
to the user. In general, rMPI must carefully keep track of node rank information and always let replica
nodes return to the user the rank of the leader node in a bundle. For example, MPI_Comm_rank () must return
the same value on an leader node and its replica, similarly MPI_Comm_size() must return the number of the
unique ranks in the application. Message destinations and sources must be treated similarly.

Probe and test  Similar to the operations described above, replica nodes must return the same information
as their leader nodes for probe and test functions. Since receives on a redundant node may not be posted
with the MPI library yet, the implementation of these functions requires coordination between the active
and the redundant node.

An leader node must test for both the original message and the redundant message before it can report
positively to a user request. It then sends that information to the redundant node which waits for its message
with a specific tag and source.

These function are once again further complicated when MPI_ANY_SOURCE is used. Similar to receive op-
erations, MPI_ANY_SOURCE requires replica nodes to coordinate with their leader nodes on the function result,
ensuring all replica nodes return the same information as their leaders.

Other functions and groups Some applications and benchmarks make decisions based on elapsed time.
Therefore, MPI_Wtime () needs to return the same value on active and redundant nodes. The active node sends
its MPI_Wtime() value to the redundant node. As an option, rMPI can synchronize the MPI Wtime() clocks
across the nodes [23]. Collective operations in rMPI call the point-to-point operations internal to *MPI.

rMPI also needs to implement its own groups. Because rMPI re-maps ranks between the user level and
the underlying MPI implementation, rMPI needs to carefully track which nodes and redundant nodes belong
to which groups. This is necessary so that message transfer functions and function calls like MPI_Group_rank ()
work properly.

The same is true for communicators and functions like MPI_Comm_dup (). Implementing collectives, request
handles, groups, and communicators inside rMPI reduces the underlying MPI implementation to a simple
transport mechanism and increases the complexity of rMPI greatly.

MPI_ANY_TAG receives Above we describe the difficulty in handling MPI_ANY_SOURCE receives. It requires that
replica nodes wait until the leader node has completed a receive and can tell the redundant node to post a
receive for that specific source and tag. It also requires posted receive queues on redundant nodes to keep
track of receives that cannot be submitted to the MPI library yet.

Receives using MPI_ANY_TAG are also problematic. Redundant messages use an extra tag bit to identify
them so that messages with the same tag will not mix with the corresponding redundant messages. Using
an extra tag bit assumes the underlying MPI implementation provides a larger tag space than the 2!° range
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mandated by the MPI standard. Most MPI implementations provide a much larger tag space and rMPI can
easily reserve one of those bits.

The problem with this approach is that of course we cannot post a receive with a tag of MPI_ANY_TAG and
set the bit, which *MPI needs, at the same time. A similar scheme is needed where redundant nodes wait
to post MPI_ANY_TAG receives until such messages have arrived at the active node. Due to this complexity, the
mirror protocol currently does not support receives that use MPI_ANY_TAG and MPI_ANY_SOURCE simultaneously.

2.2 Parallel Protocol

From the discussion in the previous section, we see that while the mirror protocol requires very little from a
RAS system the duplicate messages can severely degrade application performance in scenarios where frequent
large messages are sent. With this in mind we set out to design a second protocol such that a node will
usually only send each application message once. Additional protocol messages are needed among the senders
to coordinate in case of failures. This protocol, which we refer to as parallel, is diagramed in Figure 2.2. In
the remainder of this section we outline the similarities and differences from the mirror protocol.
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Figure 4. Parallel protocol both with and without a failed node

The main difference to mirror is the decreased need for network bandwidth. Excluding protocol messages,
if no nodes have failed and the user has specified full redundancy, all leader nodes communicate as one copy of
the application and all the replica nodes communicate as another copy. In this optimal scenario only protocol
packets cross our two parallel versions of the application. A second difference is that on send operations, the
nodes in a replica bundle must synchronize to ensure that both the original and the redundant message are
sent; even if one of the senders has failed: Figure 4(b). In contrast to mirror, this protocol requires querying
the RAS system to determine if the source or destination rank has failed.

This means that, compared to the mirror protocol, the parallel protocol will initiate approximately double
the number of messages for each send operation. These extra messages contain MPI envelope information
and are small. Therefore, the parallel protocol trades bandwidth for an increased number of short messages.
It is also important to note that as nodes begin to fail with this protocol and replicas must take over the
active sender’s message responsibilities, this protocol essentially degenerates to mirror.

Another key difference to mirror is what happens on a send. In mirror, as long as the application has
enough nodes to continue, there is always a destination node to send to; not so in parallel. For example, in
parallel it is possible for a destination node B to fail but computation to continue if at least one replica of B
still exists. In that case, node A sending to B does not actually perform the send operation. If send timing

consistency is necessary, parallel can delay send functions by a typical send delay or the average amount the
replicas spent inside the function.

Similar to the mirror protocol, special care must be taken to enforce message order on all replicas in the
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case of MPI_ANY_SOURCE. On the other hand, the parallel protocol does not require the special tag bit handling
we describe in the previous section. It is not needed since a receiver only receives from one source node and
the underlying MPI message ordering guarantees are enough to main consistency.

2.3 Dependence on RAS system

rMPT’s requirements of the RAS system are modest. Both mirror and parallel protocols require that messages
from failed nodes will be consumed and do not deadlock the network or cause other resources, such as status
in the underlying MPI implementation, to be consumed. Furthermore, failing nodes must not corrupt state
on other nodes. Le., corrupted or truncated messages in flight must be discarded. Most systems already do
this using CRC or other mechanisms to detect corrupt messages. The RAS system is responsible that the
machine stops the retry of messages from and to failed nodes.

For the parallel protocol we expect that there is a method to learn whether a given node is available or
has failed. This could be a table which rMPI consults, and the RAS system updates, when a node’s status
changes. Or it could be an event mechanism that informs rMPI whenever the RAS system detects a failed
node.
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3 Implementation

The rMPI library is implemented as a library at the MPI profiling layer between an application and an MPI
implementation. In this section we list some things that are specific to our current implementation.

The rMPI library is activated during MPI_Init() at which time it partitions MPI_COMM_WORLD into a set
of active and redundant nodes. We performed this work on a Cray XT4 Red Storm system which uses
MPICH [18, 17] for message transport. Although the design described in the previous section is agnostic of
the underlying MPI implementation, our current implementation of rMPI is not. To accelerate prototyping
we used several functions from MPICH, such as the MPT collective functions which call our protocol aware
point-to-point functions. While doing this we left several low-level, MPICH internal, function calls in place.
Examples include MPICH error handling and reporting functions, checking for thread-safety, and dealing
with heterogeneous systems. This means rMPI will currently only work running on top of our specific
MPICH version. We are in the process of removing this MPICH specific dependency.

Since few machines actually provide a RAS system that gives us the minimal set of functions we need,
we had to improvise. "MPI maintains a table of all nodes in the application and their status. We use signals
and messaging to update this table and can thus simulate the failure of nodes for testing purposes. However,
since all nodes still are part of a complete MPI application and due to the way MPICH interacts with Red
Storm, simulated failed nodes cannot simply exit. They enter MPI Finalize() and wait for all other nodes
to finish. This also means that if we failed a node during an rMPI operation that involves several MPI
messages, we could get MPICH into an inconsistent state. Proper integration of rMPI, a RAS system, and
MPI would solve this problem.

When users start an application linked with rMPI they select how many redundant nodes to allocate
and how to map them to the active nodes. An environment variable specifies this mapping. The rMPI
implementation imposes some restrictions on these mappings. The redundant nodes must always be at end
of the MPI_COMM_WORLD rank list. Not every active node needs to be assigned a redundant partner. If nodes
A, B, C, and D are active nodes, then ABCD|A’B’C’D’, ABCD|A’B’, ABCD|D’C’B’A’, and ABCDI|D’C’ are
some of the many valid mappings. For this testing at most one replica node is assigned to a leader node.

Lastly, to avoid using additional buffer space and to limit memory copies, rMPI receives both the original
and the redundant message into the same buffer. We assume that two identical messages arriving in the
same buffer will not “collide” and that, once both messages have been received, the buffer memory will be
in the same state it would have been had it received only one or the other message. We are not aware of any
system today which does not fulfill this requirement.
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4 Evaluation

From the discussion in the previous sections it should be clear that using rMPI will add overhead and lengthen
the execution time of an application. To measure this overhead we ran multiple tests with benchmarks and
applications on the Cray Red Storm system at Sandia National Laboratories. Red Storm is a XT3/4 series
machine consisting of over 13,000 nodes, with each compute node containing a 2.2 GHz quad-core AMD
Opteron processor and 8 GB of main memory. Additionally, each node contains a Cray SeaStar [4] network
interface and high-speed router. The SeaStar is connected to the Opteron via a HyperTransport link. The
current generation SeaStar is capable of sustaining a peak unidirectional injection bandwidth of more than
2 GB/s and a peak unidirectional link bandwidth of more than 3 GB/s. To ensure leader and replica are on
separate physical nodes, and to avoid memory and bandwidth bottlenecks on the nodes themselves, we only
used one CPU on each node.

Redundant nodes should be physically as far away from their active node as possible. The goal is to share
as few hardware resources between these nodes as possible. Co-locating an active and its redundant node on
two cores of the same CPU makes sense from a performance perspective, but not for reliability. Ideally, no
power-supplies, fans, communication channels to other nodes, boards, or chips are shared. However, that is
difficult to achieve in today’s machines. Furthermore, it is often impossible or difficult to assign MPI ranks
to specific nodes in the system.

Because of this and because of the impact a given allocation may have on the performance of an ap-
plication, we ran our tests in three different modes. The first mode, called forward, assigns rank n/2 as
a redundant node to rank 0, rank n/2 + 1 to rank 1, and so on resulting in a mapping like this: ABCD|-
A’B’C’D’. Reverse mode is ABCD|D’C’'B’A’, and shuffle mode is a random shuffle (Fisher/Yates) such as
ABCD|C'B'D’A’.

We expect that the rMPI library adds some overhead, even if no redundant nodes are used, due to the
checks whether there are redundant nodes available and the way we implemented the collective operations.
We compare this baseline overhead to the native performance when the rMPI library is not linked in at all.
To get a worst case bound on the cost of rank level replication a fully redundant configuration is used for
the forward, reverse, and shuffle mappings.

To evaluate the performance of the two rMPI protocols we will present results for MPI latency and band-
width micro-benchmarks, and four applications; CTH [12], SAGE [22], LAMMPS [31, 34], and HPCCG [35].
These application represent a range of computational techniques, are frequently run at very large scales,
and are key simulation workloads to both the US DOD and DOE. These four applications represent differ-
ent communication characteristics and compute to communication ratios. Therefore, the overhead of rMPI
affects them in different ways.

4.1 Micro-benchmark Performance

Because these benchmarks do nothing but transmit messages, we expect them to show greater overhead
than the full applications we tested. For the MPI latency tests we show the performance overhead for both
specific as well as MPTI_ANY_SOURCE receives as each scenario has different performance characteristics.

Our bandwidth experiment in Figure 5 shows that baseline (rMPT linked in, but no redundant nodes used)
for both protocols does not lower bandwidth appreciably compared to native; especially at larger message
sizes. The parallel protocol redundant runs, on the other hand, shows considerable overhead, especially at
smaller message sizes, showing 60% to 70% slowdown in comparison to native. This slowdown is identical
for each of the three tested mappings (shuffle, forward, and reverse). The overhead for the parallel runs is
due to the overhead of the increased number of messages required for bundle synchronization. As message
size increases the performance of parallel approaches that of native. The mirror protocol redundant run
performance is also identical among the three mappings, but its 60% slowdown over native remains nearly
constant through the range tested. This halving of bandwidth is expected and consistent with the fact that
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we are sending twice as much data through a given NIC.
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Figure 5. Bandwidth comparison. Native is benchmark without the
rMPI library. Base is with rMPI for each protocol, but no redundant
nodes. For this test the performance of forward, reverse, and shuffle fully
redundant runs are equivalent.

Figure 6 illustrates the overhead of our MPI latency tests without MPI_ANY_SOURCE. The baseline mapping
for the two protocols shows some overhead over native which is due to the accounting done in rMPI and
becomes negligible as message size increases. The latency overhead for the redundant runs is a factor of 1.5
over native for smaller messages. For parallel this latency increase is one third that of native and is due
to the extra messages used for synchronization on sends and decreases with message size. The reason the
latency is less than n extra message latencies is that, assuming no nodes have failed, a sender node first
performs the send operation and then performs the synchronization with replicas in its rank bundle to ensure
it does not need to fulfill another send. If a node has failed, the performance of parallel closely matches that
of mirror. For mirror, the slowdown with full redundancy is 3/4 that of native. The reason for this increased
slowdown is as follows. A receive in mirror can return once at least one of the two possible receives has
completed. Before the receive can return we must wait for the other receive or cancel it. MPI_Cancel() in our
MPICH implementation is an expensive and non-local operation. The current implementation waits twice a
measured round trip time for the other send to arrive. If it has not been received in that time, the library
cancels the other receive and then returns. Similar to our bandwidth tests, the overhead of the redundant
runs is identical for each of the three replica node mappings tested.

The coordination overhead between leader and replica nodes becomes more severe when MPI_ANY_SOURCE
is used. Recall from the discussion in Section 2, MPI_ANY_SOURCE causes replica nodes to delay the posting of
receives until the leader node has received its message and informed the redundant node. In Figure 7 we see
the result of this. Latency increases by a factor of 1.5 across the board over native.
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4.2 Application Performance

In the previous section we showed the overhead of our two rMPI consistency protocols to be quite large for the
two micro-benchmarks tested. In this section we investigate how the described protocols affect application
performance. For each of the applications tested we show plots with node counts up to 2,048 nodes. For the
native and baseline runs this means the application will use 2,048 nodes. For the redundant runs this means
the application will use a total 4,096 nodes, of which 2,048 are leader nodes and 2,048 replicas.

LAMMPS Figure 8 shows the performance impact of rMPI with both the mirror and parallel protocol.
The impact of each redundancy protocol is less than 5%, independent of the nodes used, while the baseline
overhead for each is negligible.
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Figure 8. LAMMPS rMPI performance comparison. For both mirror
and parallel baseline performance overhead is equivalent. For this appli-
cation the performance of forward, reverse, and shuffle fully redundant
is equivalent.

SAGE Figure 9 shows the rMPI performance for SAGE. Similar to LAMMPS, the baseline performance
degradation is negligible. Also similar to LAMMPS, the parallel protocol performance remains nearly con-
stant and performance decrease is negligible in the tested node range; with performance overhead generally
less than 5%. In contrast, full redundancy for the mirror protocol loses about 10% performance over native,
with performance increasing with scale. We attribute the performance degradation for SAGE to the factor
of two increase of large network messages sent by SAGE and the limited available network bandwidth.

CTH In Figure 10 we see the impact of our consistency protocols for CTH at scale. Again, baseline
for both mirror and parallel shows little performance difference. For CTH, mirror has the greatest impact
on performance with full redundancy. This impact, which is nearly 20% at the largest scale, is due to
CTH’s known sensitivity to network bandwidth [29] (the greatest of each of the applications tested) and
the increased bandwidth requirements of the mirror protocol. Interestingly, the parallel protocol version of
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Figure 9. SAGE rMPI performance comparison. For both mirror and
parallel baseline performance overhead is equivalent. For this applica-
tion the performance of forward, reverse, and shuffie fully redundant is
equivalent.

CTH runs slightly faster then the native versions (around 5-8%). We see this increase for all three forward,
reverse, and shuffle replica node mappings. Though further testing is needed, current performance analysis
results suggest this decrease in application runtime is due to unexpected messages. A CTH run is known
to contain a large number of unexpected messages [3]. With parallel’s sender side synchronization protocol,
many of these unexpected messages will now arrive after the receive has been posted and therefore slightly
increase CTH’s performance.

HPCCG Figure 11 shows the performance impact of YMPI on the HPCCG mini-application. In contrast
to the other results presented in this section we present the mirror and parallel results separately. Though
the results presented in Figure 11(a) and Figure 11(b) represent the same computational problem, the native
results of each vary due to different node allocations between the two plots. Allocation issues aside we see
that mirror has very little impact. Parallel on the other hand shows a significant impact at higher node
counts, with slowdowns of around 10% at 1,024 nodes. Also, in contrast to all the other applications tested,
impact from the parallel protocol is greater than that of mirror. The reason for this slowdown for parallel is
due to the fact that at the largest node counts, HPCCG communication in addition to the synchronization
messages are hitting the maximum messaging rate of a node.

4.3 Evaluation summary

Results on different systems will vary with the capacity and performance of the network, application and
data sets used, as well as the parallelism and architecture of the individual nodes. Nevertheless, the numbers
presented here are representative for a large-scale machine and should be comparable to similar configurations
on other machines.
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While micro-benchmarks clearly show the overhead introduced by the two consistency protocols for rMPI,
the impact on applications is much less severe. It ranges from 20% overhead for the mirror protocol on CTH,
a communication intensive application, to almost no overhead for LAMMPS, to over 10% overhead for the
parallel protocol with HPCCG, a message rate intensive problem. For all tests except HPCCG, the parallel
protocol outperforms the bandwidth intensive mirror protocol. Though mirror has the advantage of virtually
no performance degradation as nodes fail, parallel performance will degrade proportionally to that of mirror
as nodes fail.
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5 Implications and trade-offs

In this section we discuss what we have learned from our experiments and analysis, and discuss some of the
implications and the trade-offs that need to be considered with regard to when redundant computing pays
off from a resource usage perspective as well as the system requirements for redundant computing.

5.1 RAS Requirements

Initially, we thought a library such as MPI would require substantial support from the underlying RAS
system. Our experience implementing *MPI has taught us that the requirements are relatively few (see
Section 2). Most existing RAS systems and current frameworks such as [19] provide the features necessary
for rMPI.

It would be beneficial if failed nodes could be repaired and reintegrated into the running application.
The latter would require changes to rMPI and the MPI library, and a mechanism for the RAS system to
inform the libraries about the availability of repaired nodes.

Given the extensive portion of MPI functionality inside the rMPI library, it would also make sense to
integrate it into an existing MPI implementation. This would reduce overhead and improve the performance
of may operations, especially collectives.

5.2 When does redundant computation make sense

There is an inherent trade-off between the cost of using additional resources for redundancy and the savings
of redundant computation by reducing the I/O required for checkpoint and restart. One way to evaluate
this trade-off is to approximate, through analytic modeling, the total execution time of applications with
and without redundant computation.

Figures 12 shows the approximate wallclock runtime of a fully-redundant and non-redundant application
that uses checkpoints to ensure resilience. For both cases, we use Daly’s equations [10] to calculate the
wallclock time Ty (7,n), Equation 1, and the optimal checkpoint interval 7,,,. For the fully-redundant
application, we use the Birthday Problem[24, 32] as a way to approximate the number of node failures the
application can survive without a restart. We then use this result to adjust the MTTI of the application, thus
increasing 7,,; and reducing the checkpoint/restart overhead. See [32] for details on applying the birthday
problem to redundant computation.

A third line in Figure 12 shows the runtime of the redundant application as a percentage of the non-
redundant application. When the line falls below 50%, the benefit of redundant computation exceeds the
cost of non-redundant computation. For a system with MTTI/node of 5 year, redundant computation makes
sense for applications larger than 50,000 nodes. Figure 13 shows how the same plot for systems with different
MTTI/node.
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6 Related work

Redundant computation and process replication has a long history and is used extensively in both dis-
tributed [16, 8] and mission critical systems [25, 2, 28] as a technique to improve fault tolerance. Previously,
this idea had been dismissed in HPC as being too expensive for the meager benefits that are seen at present
machine scale. Recently, Schroeder & Gibson [36] and others [38] have suggested redundant computation
(also termed process pairs) as an alternative to standard checkpoint/restart fault-tolerance methods due to
the high predicted overhead of such methods on next-generation scale machines.

Recently, Engelmann et al. [15] make a case for double and triple modular redundancy for HPC in terms
of the increased availability of the system, outlining the dramatic increase with various levels of redundancy.
We instead explore mean time to job interrupt, since we believe this parameter is more useful as it allows
you to estimate the time to solution for an application, and optimal checkpoint interval [10].

There are a number of excellent studies investigating the efficiency of checkpoint/restart for large scale
systems [14, 27, 13]. Traditional checkpoint/restart breaks down into a number of areas based on: where
the checkpoints are written, what data is written, and if nodes coordinate when writing.

Where the data is written typically varies from writing checkpoints to various forms of stable storage [11]
or disk to diskless methods that write checkpoints to memory [9, 30, 37]. What data gets written varies from
checkpointing full memory images to incremental methods that write only data that has changed [33, 5].
Lastly, how nodes coordinate to write the checkpoint varies from full coordination with all nodes writing
concurrently, to uncoordinated approaches where each node checkpoints independently. Referring back
to Figure 1, in each of these checkpoint cases, to use less resources on a million nodes than redundant
computation the node MTTI checkpoint time must land on a green area on the plot.

In addition, several alternative approaches to checkpoint/restart are currently under investigation such
as the work done in [26] which uses overlay nodes to improve checkpoint writing. Other approaches include
optimistic checkpointing [20] and message logging [21, 7].

The requirements for RAS systems have been studied before [1] and newer work more directly aimed at
large-scale systems is under way [19].
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7 Summary and future work

In this paper we presented the tradeoffs of redundant computing for HPC. We describe the rMPI library
which inserts between an application and the native MPI library. rMPI enables redundant computation and
uses two separate consistency protocols to maintain consistency between rank replicas. In the description of
the design and implementation of rMPI we detailed these protocols and described the techniques that are
necessary to maintain MPI semantics, especially enforcing message ordering across replicas. We presented
experiential data from these two protocols and determined that rMPI’s overhead is quite small in most
cases but dependent on the protocol used with mirror showing the greatest overhead for bandwidth sensitive
applications and parallel showing greatest overhead to message rate sensitive applications. This library shows
that implementing a transparent, rank-level redundant, user-level library is possible. It is important to note
that this library represents a worst case overhead for redundancy as a lower level integration of rMPI with
a MPI library would reduce much of the overhead presented in this work.

In addition to the overheads, we briefly presented the possible benefits of redundant computation. Repli-
cation reduces the number of interrupts an application experiences. That means less time performing check-
point, restart, and the repeated work that was lost at the last interrupt. Reducing this overhead allows
more jobs to move through a system and increases throughput. We found that for large-scale systems with
redundancy enabled, it is often possible to move more than two jobs through a system in the time it takes a
job without redundant nodes to finish. In those cases the overhead of using twice as many nodes is justified.

Currently, we are using the rMPI library to investigate frequency of occurrence of silent data corruption
on a variety of different architectures. With rMPTI’s low run time overhead we can flag silent errors using full
dual redundancy and possibly correct these errors with triple redundancy. In addition, we are investigating
an alternative method to enable redundant computing that has a lower resource overhead then what is
presented here. Rather than having a replica specific to a particular rank we are looking into methods
that would aggregate a number of replicated ranks onto one node and spread state throughout all of these
aggregate replicas in a job. This would allow an aggregate replica, on demand, to replace a certain rank and
could possibly allow the application to avoid checkpointing altogether.
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