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Abstract 

This report describes the Spherical Particle Exchange Model (SPEM), which simulates exchange 
of one hydrogen isotope by another hydrogen isotope in a spherical metal hydride particle. This 
is one of the fundamental physical processes during isotope exchange in a bed of spherical metal 
particles and is thus one of the key components in any comprehensive physics-based model of 
exchange. There are two important physical processes in the model. One is the entropy of mixing 
between the two isotopes; the entropy of mixing is increased by having both isotopes randomly 
placed at interstitial sites on the lattice and thus impedes the exchange process. The other 
physical process is the elastic interaction between isotope atoms on the lattice. The elastic 
interaction is the cause for -phase formation and is independent of the isotope species. 

In this report the coupled diffusion equations for two isotopes in the -phase hydride are solved. 
A key concept is that the diffusion of one isotope depends not only on its concentration gradient, 
but also on the concentration gradient of the other isotope. Diffusion rate constants and the 
chemical potentials for deuterium and hydrogen in the -phase hydride are reviewed because 
these quantities are essential for an accurate model of the diffusion process. Finally, a summary 
of some of the predictions from the SPEM model are provided. 
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Introduction 

Here, the Spherical Particle Exchange Model (SPEM) is described. The SPEM code simulates 
exchange of one hydrogen isotope for another hydrogen isotope in a spherical metal or metal 
hydride particle. This is one of the fundamental physical processes during isotope exchange in a 
bed of spherical metal particles and is thus one of the key components in a comprehensive 
physics-based model of exchange. 

There have been a number of models created for hydrogen exchange in a bed, but none of them 
treat the exchange process in the metal particles with the fidelity of this model [1-9]. In the 
SPEM model, the interaction between the two isotopes in the interstitial sites of the metal 
hydride is described with a fundamental physical model rather than with phenomenological 
parameters. The SPEM model includes the important fact that diffusion of one isotope (say 
hydrogen) depends not only on the concentration gradient of hydrogen, but also on the 
concentration gradient of deuterium. Thus for example the diffusion equations can be written: 

 
H HH H HD D

D DD D DH H

,

,

j D c D c

j D c D c

    
    

 (1) 

where jK (mol/cm2⋅s) is the flux of isotope K, KcÑ  (mol/cm4) is the concentration gradient, and 

the diffusion rates, DKK’ (cm2/s), include cross-terms [10]. SPEM solves this coupled diffusion 
equation subject to a boundary condition of the concentrations of the two isotopes in the near-
surface region. Here, slightly smoothed step functions are generally supplied for the boundary 
condition to avoid discontinuities. However, in a unified model of exchange, the boundary 
conditions would be coupled to models of gas flow, surface adsorption, and uptake of surface 
species in the near-surface region. 

In writing this report there are two primary goals: One is to derive the equations and detail the 
physical processes involved in the model; the other is to document the sources of experimentally 
known quantities, especially diffusion rates and chemical potentials of hydrogen isotopes in beta-
phase palladium hydride (-Pd) that are required as input to the model. A final goal is to identify 
conditions under which the exchange of isotopes by bulk diffusion in palladium may be a rate-
limiting process in a working exchange bed and to examine the “isotope effect” when hydrogen 
evolution (not exchange) by deuterium (H→D) could faster than deuterium evolution by 
hydrogen (D→H). 

Consider the interdiffusion of two species on a lattice; this provides the framework for the 
following sections that review the experimental data upon which SPEM is based. 

Interdiffusion of Two Species on a Lattice 

To generalize from the well-known case of a single species diffusing to the case of two or more 
interdiffusing species, the discussion is formulated in terms of the chemical potential and 
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mobility for each species. For a single diffusing species at moderate concentrations, the diffusion 
flux of hydrogen can be written in two different ways: 

 Fick
H H H H H H.j M c D c       (2) 

where µH (erg/mol) is the chemical potential of hydrogen, and MH (mol⋅s/g or mol⋅cm2/erg⋅s) is 

the mobility of hydrogen. Equation (2) defines the mobility for hydrogen as: 

 

1 1Fick
FickH H H

H H
H H H

.
ln

D
M D

c c c

 
 

    
        

 (3) 

A closely related concept is the dimensionless thermodynamic factor, , defined as the derivative 
of the activity of hydrogen in palladium: 

 
 H Pd

H

ln
,

ln

a

c






 (4) 

where the dimensionless activity is: 

 
0

H H H
H

( , ) ( )
ln ,

c T T
a

RT RT

 
   (5) 

and 0
Hm  is the chemical potential of a reference state, R (erg/mol⋅K) is the gas constant, and T (K) 

is temperature. 

Substituting (5) into (4) yields: 

 H

H

,
ln

RT
c

 



 (6) 

and substituting the preceding equation into (3) specifies that 

 
Fick
H

H .
D

M
RT

  (7) 

The Einstein diffusion rate is a concentration independent diffusion rate (e.g., used to describe 
self diffusion) related to the Fickian diffusion rate by 

 Fick Ein
H H .D D  (8) 

The Einstein diffusion rate obeys an Arrhenius law and may be written as: 
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0,HEin

H 0,H exp .
E

D D
RT

 
  

 
 (9) 

Finally, at higher concentration in -Pd, site-blocking becomes increasingly important as the 
number of vacancies in the lattice becomes small. Site blocking reduces the overall diffusion 
rate, but does not affect the Einstein diffusion rate or the mobility. The Fickian diffusion rate at 
high concentrations is: 

 Fick* Fick Ein
H V H V H .D c D c D   (10) 

For high concentrations and a single diffusing species, Fick’s law becomes: 

 Fick* Fick Ein
H H H V H H V H H.j D c c D c c D c          (11) 

The alternative formulation in terms of chemical potentials is: 

 H V H H H.j c c M     (12) 

The preceding equation is adopted because it is readily adapted to the case of two isotopes. For 
two isotopes, the concentration of vacancies is replaced by cV = (1 − cH − cD). The mobility term 
is unchanged. 

For two interdiffusing species, the important point is that the chemical potential of H depends not 
only on the concentration of H, but also on the concentration of D. The chemical potential is 
H(cH,cD) and the diffusion equations for the two isotopes become coupled: 

 

H H
H H D H H H D

H D

D D
D H D D D H D

H D

(1 ) ,

(1 ) .

j c c c M c c
c c

j c c c M c c
c c

 

 

  
         

  
         

 (13) 

Next, the experimental estimation of the chemical potentials and the mobilities for hydrogen and 
deuterium in the -Pd are described. 

Chemical Potentials of Hydrogen and Deuterium 
Fugacity of Hydrogen Gas 

At high pressures and at low temperatures, hydrogen, deuterium and tritium depart from the ideal 
gas law. This behavior is not a direct component in this model, however it is important when 
estimating chemical potentials and mobilities, which are inputs to SPEM. The ranges of pressure 
and temperature where non-ideal gas behavior becomes significant are identified. For such 
pressures and temperatures, the activities of hydrogen and deuterium will no longer equal the 
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partial pressures of the gases. This would affect the boundary conditions for the SPEM model if 
it this behavior is incorporated into a multi-physics simulation of a system at high pressures and 
low temperature.  

Because the SPEM model is concerned only with solid-state diffusion, fugacity enters only 
indirectly. However, state-of-the-art measurements of diffusion rates and of pressure, 
composition, and temperature (PCT) curves generally include pressures and temperatures for 
which hydrogen isotopes depart from ideal gas behaviors. To reach high stoichiometries, for 
PdH, high pressures must be applied and under these conditions the gas-phase equation of state 
deviates significantly from the ideal gas law. The conditions for which fugacity is not equal to 
pressure and in which non-ideal gas behavior must be included in a physical model of exchange 
are identified. Figure 1 summarizes the range of pressure and temperature for which non-ideal 
gas behavior must be incorporated in the exchange process. 

 

Figure 1: Fugacity non-ideality, f(P,T)/P, as a function of pressure and temperature. 

Fisher [11] defined the range of temperatures and pressures for which non-ideal gas behavior 
becomes important by fitting compressibility with a virial expansion. For a mole of an ideal gas, 
PV = RT; however, for a real gas PV = ZRT where Z is the dimensionless compressibility, which 
is estimated using a series expansion: 

          
2 3 4

, 1 .P P P P

P P P P
Z P T B T C T D T E T

T T T T
               
     

  (14) 

Fugacity is computed as: 
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  2 3 4, 1 1 1

ln .
2 3 4P P P P

f P T P P P P
B C D E

P T T T T

                  
      

  (15) 

A contour plot of the fugacity of hydrogen as a function of pressure and temperature is shown in 
Figure 1. The contours indicate the degree to which the range of pressures and temperatures yield 
non-ideal behavior. 

Chemical Potential of Mixing 

Other inputs required for SPEM are the chemical potentials for H and D in Pd, which are 
composed of two contributors: that due to mixing, and that from elastic and electronic 
interactions. Recall that three species are considered on the lattice, hydrogen, deuterium, and 
vacancies. Denote the total number of hydrogen atoms occupying sites as NH, with the numbers 
of deuterium atoms and vacancies being ND and NV, respectively. The total number of sites is 
N = NH +ND +NV. Boltzmann’s equation gives the entropy of mixing as [12]: 

 ln( ),m BS k    (16) 

where  is the total number of atomics permutations corrected for the fact that hydrogen atoms 
are indistinguishable (and likewise for ND and NV): 

 
H D V

!
.

! ! !

N

N N N
   (17) 

    

Applying Stirling's approximation, ln(n!) ≈ nln(n) − n − 1, results in: 

 

     

VH D
m B H V

H H D D D V

ln ln ln ,

ln ln ln .

D

NN N
S k N N N

N N N

nR c c c c c c

                     
     

 (18) 

The gas constant is equal to Boltzmann’s constant, kB (erg/K), times Avogadro’s number and nH , 
nD and nV are the number of moles of hydrogen, deuterium, and vacancies. The total number of 
moles of lattice sites is n = nH + nD + nV. 

The Gibbs free energy of mixing is: 

        m H H D D H D H Dln ln 1 ln 1 .G nRT c c c c c c c c           (19) 

The mixing components of the chemical potential for the isotopes are obtained by differentiating 
the Gibbs free energy with respect to isotope concentration: 
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   
   

mix
H H H D

mix
D D H D

ln ln 1 ,

ln ln 1 .

RT c c c

RT c c c





     
     

 (20) 

The mobilities are defined in terms of partial derivative of the chemical potential with respect to 
concentrations as in (12) above. The following partial derivatives result: 

 

mix
H

H V H

mix mix
H D

D H V

mix
D

D V D

1 1
,

1
,

1 1
.

RT
c c c

RT
c c c

RT
c c c



 



 
    

  
      

 
    

 (21) 

Chemical Potential due to Elastic and Electronic Interactions 

The second factor affecting the chemical potential of hydrogen isotopes in Pd is the excess 
chemical potential due to electronic and elastic effects. The quantity of interest is the excess 
chemical potential for hydrogen in -Pd (or deuterium in palladium deuteride), which can be 
obtained from PCT measurements [11, 13]. 

Wolfer et al. [14] present a detailed analysis based on the work of Lässer and Powell [15]. For -
PdH, the chemical potential for hydrogen isotopes in the metal is: 

      eeH
H H H H H

H

, ln , .
1

c
c T G T RT c T

c
   

    
 (22) 

The partial Gibbs free energy at infinite dilution, ( )HG T¥  (erg/mol), is known from experimental 

work measuring PCT curves in the dilute -Pd. Lässer and Powell [15] provide an analytical fit 
for this quantity. Because only the composition derivative of the chemical potential is needed for 
SPEM, ( )HG T¥  is not discussed further. The second term in (22) is the mixing contribution to the 

chemical potential for mixing of hydrogen atoms and vacancies at interstitial sites. The 
remaining term, the excess chemical potential, is obtained by fitting to PCT data. Wolfer et al. 
[15] present a plot of this quantity in erg/mol, which depends linearly on stoichiometry: 

 ee 12 12
H H H( , ) 1.595 10 1.772 10 .c T c       (23) 

They also concluded that the excess chemical potential is independent of both temperature and 
isotope. Thus, (23) is applicable to hydrogen, deuterium, and tritium. Based on this result, we 
assume that the elastic and electronic interactions are also independent of isotope, thus  
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      ee ee 12 12
H H D D H D H D, , , , 1.595 10 1.772 10 .c c T c c T c c         (24) 

It is also important to verify that this expression is in agreement with earlier investigations. 
Majorowski and Baranowski [16] give a value for lnaH(Pd) based on the work of Tkacz and 
Baranowski [17] and Wicke and Nernst [13]: 

  
2

12 12 9
H H H

H Pd
H

ln 2.1 10 1.886 10 2.227 10
ln ln .

2 1

a c c
a

RT R c

    
       

 (25) 

Because the definition of chemical potential is 0
H H HlnRT am m= + , the relevant derivative is 

 
12H

H H

d
1.886 10 .

d 1

RT

c c


  


 (26) 

The first term is from the excess chemical potential, the second represents the entropy of mixing. 
The agreement with Wolfer et al. [13] is within experimental error. Majorowski and Baranowski 
[14] comment on the fact that (26) also holds for deuterium in agreement with the findings of 
Wolfer et al. [16] that it is isotope independent. Using (6), (26) yields the following value for the 
thermodynamic constant of hydrogen: 

 
12

H

H

1.886 10 1
.

1

c

RT c
 
 


 (27) 

Diffusion Rates for Single Isotopes in -phase Pd Hydride 

Finally, to quantify diffusion rates in -Pd, the measured Fick*
HD  (cm2/s) of Majorowski and 

Baranowski [16] are used. Using (8), (9), (10), and (26), the Fickian diffusion constant (with site 
blocking) is written as: 

  
12

0,HFick* Ein H
H V H H 0,H

H

1.886 10 1
1 exp .

1

Ec
D c D c D

RT c RT


   
          

 (28) 

Unknown parameters D0,H (cm2/s) and E0,H (erg/mol), were fit to the log data (to apply suitable 
weighting to the errors) of Majorowski and Baranowski [16, Figures 1 and 3]. Table 1 lists the 
best-fit values. Figure 2 plots the digitized data along with the fitted rates from (28). The reader 
will notice that measured diffusion rates actually decrease for lower stoichiometry and 
temperature. This observation is not well understood by the original authors or by the present 
authors. Equation (28) is identical to the equations used by Majorowski and Baranowski [16, 
Eqns. 12, 13, 15, and 16] to analyze their data. It would, of course, be possible to simply fit the 
data with an arbitrary curve, but it would then not be possible to extend the model to the case of 
mixed isotope diffusion and the equation would lose its physics-based meaning. Note that the 
maximum error in the fitted diffusion rates is approximately a factor of 10 , which is roughly 
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equivalent to how the diffusion rate changes with a 20-K change in temperature. Although such 
temperature changes are possible in actual exchange reactions, this physics-based fit should 
provide acceptable results in a multiphysics simulation. 

Table 1: Best-fit diffusivities and activation energies for H and D. These fitting parameters should 
only be used with (28) to obtain Fickian diffusion rates. 

Isotope D0 (cm2/s) E0 (erg/mol) 
H 5.470×10−3 2.604×1011 
D 2.103×10−2 2.818×1011 

 

Figure 2: Data and fit for hydrogen diffusing into -Pd [16, Eqns. 12, 13, 15, and 16]. 

Calculation Coupled Diffusion Rates 

There is now sufficient information to calculated the coupled diffusion rates DHH(cH,cD), 
DDD(cH,cD), and DHD(cH,cD) = DDH(cH,cD) in (1). Substituting the definition of MH from (7) into 
(8) and then into (9) yields the mobility of hydrogen as: 

 
0,H 0,H

H exp .
D E

M
RT RT

 
  

 
 (29) 

Now, the partial diffusion rates found in (1) can be calculated. Equating (1) and (13) produces: 
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mix ee mix ee
Ein EinH H H H

HH V H H HD V H H
H H D D

mix ee mix ee
Ein EinD D D D

DH V D D DD V D D
H H D D

, ,

, .

D c c D D c c D
c c c c

D c c D D c c D
c c c c

   

   

      
            

      
            

 (30) 

In the preceding equations, the following values for the various terms are: concentration of 
vacancies is cV = 1 − cH − cD; the Einstein diffusion rates are from the Arrhenius equation (9) 
with fitting parameters given in Table 1; the partial derivatives of the mixing chemical potentials 
are given by (21); and the partial derivatives of the excess chemical potential are given by (24). 

Diffusion in Spherical Coordinates 

SPEM assumes rotational symmetry of a spherical particle so that the concentration of the 
isotope is a function only of the radial distance from the center (r = 0). The model calculates two 
transient concentration profiles, cH(r,t) and cD(r,t). Of course, initial conditions are required 
i.e., cH(r,t = 0) and cD(r,t = 0). One boundary condition is the concentration of the isotopes in the 
near-surface region as a function of time, cH(r = r0,t) and cD(r = r0,t). Here r0 is the radius of the 
particle. The other boundary condition is zero flux at the sphere’s center, ∂c(r = 0,t)/∂r = 0. For a 
complete multi-physics simulation of a working exchange bed, the interaction between the gas 
phase and the bulk would be incorporated by coupling the near-surface concentrations or the 
surface flux using a surface model for adsorption and uptake. 

In spherical coordinates the standard diffusion equation for a single isotope is: 

 2H H
2

1
,

c c
Dr

t r r r

        
 (31) 

where the Fickian diffusion rate, D, is a function of cH and temperature. For two diffusing 
species, the coupled diffusion equations become: 
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              
              

 (32) 

These coupled equations are solved numerically (subject to appropriate boundary and initial 
conditions) using a predictor-corrector method. The FORTRAN code for solution of this set of 
differential equations is given in Appendix A. Alternately, they could be solved using 
Mathematica or any other packaged program for solution of partial differential equations. Recall 
that the diffusion constants depend on both cH and cD. 
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SPEM Modeling of Isotope Effects in Exchange 
Boundary and Initial Conditions 

To use the SPEM code, the initial isotope loading of the spherical hydride particle must be 
specified. To avoid numerical problems, isotope loadings must not be set to zero; instead use a 
small positive concentration (e.g., 0.001). Typical initial loadings are PdD0.649 and PdH0.001 
although Santandrea and Behrens [18] provide the details on how to calculate H and D loadings 
in Pd as a function of pressure and temperature. These starting concentrations are uniform 
(independent of the radial position, r). At t = 0, the near surface concentrations are changed to 
PdD0.001 and PdH0.699 and held constant (this assumes that the surface kinetics are instantaneous 
and that the hydrogen goes to its equilibrium concentration in -Pd hydride at 298 K and 
689,475 barye (10 psi). Similarly, PdD0.649 corresponds to the equilibrium concentration of 
deuterium in -Pd deuteride at 298 K and 689,475 barye. 

When solving partial differential equations numerically, it is good practice to avoid 
instantaneous changes in concentration boundary conditions. In reality, instantaneous changes in 
concentrations are not possible in a physical experiment: computationally they lead to numerical 
instabilities, particularly for large time steps. To avoid problems with the numerical solution, we 
sometimes used a linear ramp in concentration vs. time boundary condition. In all cases for 
which a linear ramp was used, the ramp time was several orders of magnitude shorter than the 
exchange time. 

Another issue in any finite element numerical solution is selection of an appropriate time step. If 
the time step is too large, numerical instabilities result. If the time step is too small, the problem 
can be computationally burdensome. Because diffusion rates are an exponential function of 
temperature, small changes in temperature often produce large changes in the optimum time step. 
An appropriate time step is selected based on the following simple calculation. Solving the 
characteristic diffusion length [19] for time yields t = L2/4D where L (cm) is the characteristic 
length equal to the finite difference cell size and D (cm2/s) is the diffusion rate. The maximum 
time step for the model should be no more than t/10. 

Predicting Exchange Rates as a Function of Temperature and Particle Size 

One important question that the SPEM code can resolve is whether, for a given exchange time 
and temperature, when is bulk diffusion in β-Pd likely to be a rate limiting step? Figure 3 shows 
contour plots of deuterium remaining in a spherical particle during D→H exchange. The three 
contour plots corresponding to one, two, and three seconds of total exchange time. The particle 
size (x-axis) is from 1 to 25 m. The temperature (y-axis) ranges from 200 to 400 K. The contour 
corresponding to 50% exchange is highlighted in pink and labeled “0.5.” The bulk diffusion is 
likely to be rate limiting for large particle sizes and/or low temperatures. 
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Figure 3: Contour plots of the fraction of deuterium remaining during a D→H exchange after 1, 2, 
and 3 seconds. The white space is where full exchange was essentially completed and the code was 

not asked to make calculations there. 

Calculations for Analysis 

One of the challenges in modeling exchange is to understand the “isotope effect.” This refers to 
the experimental observation that D→H exchanges are faster than H→D exchanges. In other 
words, the evolution of hydrogen from a bed loaded with hydrogen and dosed with deuterium is 
faster than the evolution of deuterium from a bed dosed by hydrogen [5]. The purpose of this 
study was to determine whether the simulated exchange process in a single spherical Pd particle 
could produce the observed effect. In this study, the two relevant inputs to SPEM are 
systematically manipulated to determine their effect on exchange. 
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Within the framework of the SPEM code there are two isotope-dependent input variables. The 
first is the difference in the bulk diffusion rates of the two isotopes, hydrogen in -Pd hydride, 
and deuterium in -Pd deuteride. The Einstein diffusion constant data of Majorowski and 
Baranowski [16, Fig. 10] suggests that diffusion of deuterium is about 1.7 times faster than the 
diffusion of hydrogen at temperatures near room temperature (see also Figure 2). 

The other isotope-dependent variable is the solubility (or stoichiometry) of each isotope in the 
hydride at the relevant operating pressure of the device. The difference in solubility of the two 
isotopes (at the same overpressure) is illustrated by Figure 1 of Wolfer et al. [14]. For pressures 
less than about 68,947,573 barye (1,000 psi), the solubility of hydrogen is about 5% larger than 
the solubility of deuterium. 

To understand the role of these two variables, the eight simulations listed in Table 2 were 
conducted. Each cell in the table represents two exchanges, H→D and D→H. Case 1 is a trivial 
case in which both the diffusion rates and the stoichiometries of the two isotopes are identical. 
This verified that, with identical inputs for H and D, H→D and D→H runs are identical. This 
also provided a simple reference case for quantitative comparison to the other cases. Figure 4 
shows the total quantities of hydrogen and deuterium present in a 10-m sphere at 300 K during 
the Case-1 exchange event. 

Table 2: Test-run summary. For each case, both an H→D and a D→H exchange were simulated. 
The particle radius was 10 m, the temperature was 300 K and the simulation spanned ten seconds. 

 Stoichiometry 
PdH0.7 and PdD0.7 

Stoichiometry 
PdH0.7 and PdD0.65 

Diffusion rate: 
DD = DH 

Case 1 
Release of H = Release of D 

Case 3 
Release of H > Case 1 

Diffusion rate: 
DD = 1.7DH 

Case 2 
Release of D > Release of H 

Case 4 
Release of H > Case 1 

 

Figure 4: Case 1. Because H and D are assigned identical diffusion rates and stoichiometries, there 
is no “isotope effect.” 
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Case 2 involved changing the diffusion rate of deuterium to be 1.7 times the diffusion rate of 
hydrogen. Calculated are: the isotope release of H in an H→D simulation and the release of D in 
a D→H simulation. The results are shown in Figure 5. The biggest effect is that release of D in a 
D→H exchange becomes faster than the release of H in an H→D exchange. As demonstrated 
later, the faster release of deuterium due to the higher deuterium diffusion rate appears to be the 
biggest contributor to the “isotope effect.” 

 

Figure 5: Case 2. For this run the deuterium diffusion rate was increased to 1.7 times the hydrogen 
diffusion rate. Deuterium leaves the sphere in a D→ H exchange faster  (solid blue curve) than 

hydrogen leaves in a H→D exchange (dashed red curve).  

Case 3 examines effects of different stoichiometries. For this case, the diffusion rates were reset 
to those used in Case 1, but the stoichiometry was reduced from Pd D0.70 to PdD0.65, which 
correspond to the stoichiometries at 299 K and 689,475 barye given by Wolfer et al. [14, Fig. 1]. 
The different stoichiometries for hydrogen and deuterium make it more difficult to compare the 
exchange rates because the quantity of one isotope released in an exchange is no longer equal to 
the amount of the other isotope consumed by the exchange. To facilitate comparison to the first 
two cases, the release of hydrogen in Cases 3 and 4 is highlighted. In other words, we compare 
the H→D reactions for Cases 3 and 4 to the reactions in Cases 1 and 2. Figure 6 shows the 
amounts of H and D in a -Pd sphere for Case 3. 



 

21 

 

Figure 6: Case 3. For the D→H run, initially there is PdD0.65 while for the H→D run, initially there is 
PdH0.70 (hence the unequal end points in the upper right side of the figure). Note that the H release 

in the H→D reaction is faster  than the D release in the D→H reaction.  

Case 4 assigns different diffusion rates for H and for D along with different stoichiometries for 
PdH and PdD. Here we have two competing effects. The higher diffusion rate of D increases the 
rate at which D can leave the lattice in the D→H reaction: however, the lower stoichiometry of D 
in the pre-loaded PdD is decreased thereby reducing the quantity of D to be released. 

 

Figure 7: Case 4. Stoichiometry are PdD0.65 and PdH0.70 with diffusion rate for deuterium 1.7 times 
the diffusion rate for hydrogen (most applicable to a real exchange system). Due to the difference in 

starting stoichiometry for the red and blue curves it is difficult to define the relative rates. 
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To quantitatively compare the four cases, the rate of evolution of the initially loaded isotope is 
plotted in Figure 8. For the H→D reaction, the rate of H2 evolution is plotted and for the D→H 
reaction, the rate of D2 evolution is plotted. Case 1 is the black curve in all three plots to serve as 
reference. 

Consider first the H→D reaction. For Case 2, increasing the deuterium diffusion rate 
(DD = 1.7DH) notably increases the deuterium release rate, allowing faster H→D exchanges. For 
Case 3, decreasing the initial deuterium loading, PdD0.65, decreases the deuterium release rate. 
For Case 4, which is most representative of a real system, the two competing effects (higher 
diffusion rate increases release but reduced deuterium loading decreases release) largely cancel 
leaving the rate of deuterium evolution for Case 4 essentially equal to Case 1. 

Now consider the D→H reaction. For Case 2, increasing the deuterium diffusion rate has only a 
slight effect on the hydrogen release rate. For Case 3, decreasing the final deuterium loading 
allows the uptake of deuterium to occur more rapidly thereby increasing the rate at which 
hydrogen in released. For Case 4, the evolution of hydrogen is essentially identical to Case 3. 

Based on this analysis, it would appear that the reason why H→D exchange is faster than D→H 
exchange is due to the difference in stoichiometry of PdH and PdD under the same pressure and 
temperature. 

 

Figure 8: H or D isotope evolution from all cases compared. Case 1 is the black curve on all three 
plots to provide reference. Case 2 (increased deuterium diffusion rate) shows an increased 

deuterium evolution rate (blue curve). Case 3 (decreased deuterium loading) shows a decreased 
deuterium evolution rate, but increased hydrogen evolution rate (red curve). Case 4 shows the 

result of the two competing changes and H evolves faster than D. 
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Conclusion 

A model for isotope exchange in palladium hydride spheres has been developed. It incorporates 
the most recent results for diffusion rates and for pressure-composition-temperature data 
available for H and D in Pd. An important part of this model is the interaction of the two isotopes 
on the interstitial sites of the Pd. This interaction is due both to the entropy of mixing and to 
elastic and electronic interactions between H and D. These effects are essential for any realistic 
model of isotope exchange in solid particles.  

The model was applied to two example problems. The first investigated the time required for the 
solid exchange reaction as a function of time and temperature. These data can be used to 
determine if solid-state exchange might be a rate limiting factor at a given temperature and 
particle size. The second application was to investigate the role that solid exchange might play in 
the “isotope effect.” Differing stoichiometry of PdH and PdD in equilibrium with gas at a given 
temperature and pressure was the largest contributor to the isotope effect in solid particles. 
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Appendix A: SPEM Code 
PROGRAM MAIN 
! Predictor Corrector Method for Coupled Diffusion in Sphere 
! Boundary conditions C(O)=C(1), C(N)=CHS or CDS 
! IMPLICIT REAL*8 (A-H),REAL*8 (P-Z) 
 DIMENSION CH(0:200),CD(0:200),CHM(0:200),CDM(0:200) 
 DIMENSION AHH(0:200),AHD(0:200),ADH(0:200),ADD(0:200) 
 DIMENSION CTEMP(0:200) 
 OPEN(UNIT=3,FILE='TEST1.OUT',FORM='FORMATTED',STATUS='UNKNOWN') 
 WRITE(*,*)'Input sphere radius (micron)' 
 READ(*,*)RADIUS 
 WRITE(*,*)'Input temperature (K)' 
 READ(*,*)T 
40 WRITE(*,*)'Input total exchange time(sec)' 
 READ(*,*)TIME 
 RADIUS=0.0001*RADIUS 
 N=199 
 NPO=N+1 
 DELR=RADIUS/(NPO) 
 DELT=.00001 
 DELTDT=DELT/2. 
 CHS=0.001 
 CDS=0.649 
 NTSTOP=TIME/DELT 
 DO 10 J=0,N 
 CH(J)=0.699 
10 CD(J)=0.001 
 CH(N+1)=CHS 
 CD(N+1)=CDS 
 DO 12 NT=1,NTSTOP 
! Perform Predictor Operation (half time step) 
 CALL DIFFXY(CH,CD,AHH,AHD,ADH,ADD,DELTDT,DELR,NPO,T) 
 CALL UPTWO(CH,CH,CHM,CD,AHH,AHD,N) 
 CALL UPTWO(CD,CD,CDM,CH,ADD,ADH,N) 
! Perform Corrector Operation (full time step) 
 CALL DIFFXY(CHM,CDM,AHH,AHD,ADH,ADD,DELT,DELR,NPO,T) 
 CALL UPTWO(CH,CHM,CTEMP,CDM,AHH,AHD,N) 
 CALL UPTWO(CD,CDM,CDM,CHM,ADD,ADH,N) 
 DO 14 J=0,NPO,1 
 CHM(J)=CTEMP(J) 
 CHM(J)=(CHM(J)+CH(J))/2. 
14 CDM(J)=(CDM(J)+CD(J))/2.  
 CALL DIFFXY(CHM,CDM,AHH,AHD,ADH,ADD,DELT,DELR,NPO,T) 
 CALL UPTWO(CH,CHM,CH,CDM,AHH,AHD,N) 
 CALL UPTWO(CD,CDM,CD,CHM,ADD,ADH,N) 
12 CONTINUE 
 DO 13 J=0,NPO,1 
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 POS=J*DELR*10000. 
 TEMP=CH(J)+CD(J) 
13 WRITE(3,202) POS,' ',CH(J),' ',CD(J),' ',TEMP 
202 FORMAT (1F7.2,A1,1F12.5,A1,1F12.5,A1,1F12.5) 
 STOP 
END 
 
 
 
 
SUBROUTINE DIFFXY(CH,CD,AHH,AHD,ADH,ADD,DELT,DELR,NPO,T) 
 DIMENSION CH(0:200),CD(0:200) 
 DIMENSION AHH(0:200),AHD(0:200),ADH(0:200),ADD(0:200) 
! These are Einstein diffusion constants for H and D 
 DEINH=10**(-2.2620-3132.07/T) 
 DEIND=10**(-1.6772-3389.46/T) 
 DEINHW=DEINH/(8.314*T) 
 DEINDW=DEIND/(8.314*T)  
! This is the derivative of excess chemical potential 
! (Majorowski)  
 BETA=45050 
 DMUEE=BETA 
 DO 10 J=0,NPO 
 TCH=CH(J) 
 TCD=CD(J) 
 R=TCH+TCD 
 TCV=1.-R 
 DMUMIXHH=8.314*T*(1.-TCD)/(TCH*TCV) 
 DMUMIXDD=8.314*T*(1.-TCH)/(TCD*TCV) 
 DMUMIXDH=8.314*T/TCV 
 DHH=(DMUEE+DMUMIXHH)*TCH*TCV*DEINHW 
 DDD=(DMUEE+DMUMIXDD)*TCD*TCV*DEINDW 
 DHD=(DMUEE+DMUMIXDH)*TCH*TCV*DEINHW 
 DDH=(DMUEE+DMUMIXDH)*TCD*TCV*DEINDW 
 AHH(J)=DHH*DELT/(2.*DELR*DELR) 
 ADD(J)=DDD*DELT/(2.*DELR*DELR) 
 AHD(J)=DHD*DELT/(2.*DELR*DELR) 
10 ADH(J)=DDH*DELT/(2.*DELR*DELR) 
 RETURN 
END 
 
 
SUBROUTINE UPTWO(CH,CHM,CHN,CDM,AHH,AHD,N) 
! This is version for coupled diffusion spherical coordinates 
! IMPLICIT REAL*8 (A-H),REAL*8 (P-Z) 
 DIMENSION CH(0:200),CHM(0:200),CHN(0:200),CDM(0:200) 
 DIMENSION AHH(0:200),AHD(0:200) 
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 DIMENSION A(199),B(199),R(199),UDAG(199) 
 DO 10 J=1,N 
 A(J)=-AHH(J) 
10 B(J)=1.+2.*AHH(J) 
 B(1)=1.+AHH(1) 
! Calculate R array at beginning of time step 
 DO 11 J=1,N 
 R(J)=CH(J)+AHH(J)*(CH(J-1)-2.*CH(J)+CH(J+1))  
 & +2.*AHH(J)*(CHM(J+1)-CHM(J-1))/J 
 & +(AHH(J+1)-AHH(J-1))*(CHM(J+1)-CHM(J-1))/2.  
 & +2.*AHD(J)*(CDM(J-1)-2.*CDM(J)+CDM(J+1))  
 & +2.*AHD(J)*(CDM(J+1)-CDM(J-1))/J  
 & +(AHD(J+1)-AHD(J-1))*(CDM(J+1)-CDM(J-1))/2. 
11 CONTINUE 
 R(N)=R(N)+AHH(N)*CH(N+1) 
 CALL TRIDAG (A,B,A,R,UDAG,N) 
 DO 12 J=1,N 
12 CHN(J)=UDAG(J) 
 CHN(0)=CHN(1) 
 CHN(N+1)=CH(N+1) 
 RETURN 
END 
 
 
 
SUBROUTINE TRIDAG (A,B,C,R,U,N) 
! This is from Numerical Recipes in Fortran 
! IMPLICIT REAL*8 (A-H),REAL*8 (P-Z) 
 PARAMETER (NMAX=200) 
 DIMENSION GAM(NMAX),A(N),B(N),C(N),R(N),U(N) 
! IF(B(1).EQ.0.)PAUSE 
 BET=B(1) 
 U(1)=R(1)/BET 
 DO 11 J=2,N 
 GAM(J)=C(J-1)/BET 
 BET=B(J)-A(J)*GAM(J) 
! IF(BET.EQ.0.)PAUSE 
 U(J)=(R(J)-A(J)*U(J-1))/BET 
11 CONTINUE 
 DO 12 J=N-1,1,-1 
 U(J)=U(J)-GAM(J+1)*U(J+1) 
12 CONTINUE 
 RETURN 
END 


