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Abstract 
 

The CASL Level 2 Milestone VUQ.Y1.03, “Enable statistical sensitivity and UQ 
demonstrations for VERA,” was successfully completed in March 2011. The VUQ 
focus area led this effort, in close partnership with AMA, and with support from VRI. 
DAKOTA was coupled to VIPRE-W thermal-hydraulics simulations representing 
reactors of interest to address crud-related challenge problems in order to understand 
the sensitivity and uncertainty in simulation outputs with respect to uncertain 
operating and model form parameters. This report summarizes work coupling the 
software tools, characterizing uncertainties, selecting sensitivity and uncertainty 
quantification algorithms, and analyzing the results of iterative studies. These 
demonstration studies focused on sensitivity and uncertainty of mass evaporation rate 
calculated by VIPRE-W, a key predictor for crud-induced power shift (CIPS). 
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1.  OVERVIEW  
 
Analysis and improved scientific understanding of crud formation on nuclear fuel rod surfaces 
and its impact on operating light water reactors (LWRs), such as Crud-induced power shift 
(CIPS), are central to the mission of the Consortium for Advanced Simulation of LWRs (CASL) 
DOE Energy Innovation Hub. The CASL Level 2 Milestone VUQ.Y1.03, “Enable statistical 
sensitivity and UQ demonstrations for VERA,” executed jointly with the AMA and VRI focus 
areas, directly supports better understanding of these reactor performance-critical phenomena by 
performing DAKOTA studies on VIPRE-W thermal-hydraulics simulations of reactors of 
interest. 
 
This milestone primarily consists of a capability demonstration study focused on thermal 
hydraulics simulations of two Westinghouse-designed four-loop pressurized water reactors 
(PWRs) conducted with the VIPRE-W software. The first simulation, “PWR Plant A,” was the 
reference plant for the CASL project as defined by the AMA team. The second scenario, “PWR 
Plant B,” is targeted for a validation data study based on crud-related measurements from a plant 
similar to the reference plant, in which CIPS occurred in a previous operating cycle. While 
studies conducted with Plant A are exploratory, the Plant B scenario was selected as it will be the 
object of study in consequent calibration and validation exercises, demonstrating a complete 
VUQ workflow. 
 
DAKOTA algorithms assessed the influence of thermal hydraulic parameters on mass 
evaporation rate (a predictor for crud formation) throughout two quarter core models of Plants A 
and B. Sensitivity analysis (SA) determined the influence of thermal-hydraulic parameters on 
mass evaporation rate to rank their relative importance, while uncertainty quantification (UQ) 
assessed the mean and variance of the mass evaporation rate, with respect to input parameter 
uncertainties. Completion of this milestone required: 

 compiling VIPRE-W and requisite third-party libraries on SNL platforms; 
 developing job submission, execution, and post-processing scripts to couple DAKOTA to 

VIPRE-W; 
 characterizing the uncertainty in input parameters and creating corresponding DAKOTA 

input files for various SA and UQ methods; 
 performing sensitivity and uncertainty studies with various levels of refinement; and 
 analyzing and summarizing the results. 

 
In turn, this report summarizes the VIPRE-W simulations of interest, the DAKOTA algorithms 
applied for SA and UQ, the parameters studied and their characterizations of uncertainty, and 
prototypical results from the various algorithms used. 
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2.  COMPUTATIONAL MODELS AND ALGORITHMS 
 
This section offers an introduction to the VIPRE-W simulations for Plants A and B, the 
DAKOTA tool overall, and the specific algorithms applied for SA and UQ. Both software tools 
were executed on the Odin commodity cluster, housed in the Computer Science Research 
Institute at SNL. 
 
2.1. VIPRE-W Simulations 
 
VIPRE-W is a Westinghouse version of the VIPRE-01 code. VIPRE-01 is a thermal-hydraulic 
subchannel code based on the COBRA codes developed by Pacific Northwest National 
Laboratories under sponsorship of the Electric Power Research Institute (EPRI) [1]. VIPRE-W 
contains enhancements for PWR applications, including the mass evaporation and grid spacer 
heat transfer models required for CIPS risk assessment.  
 
VIPRE-W and its third-party libraries were compiled and installed on Odin, a computer cluster 
hosted on SNL’s restricted (non-public) network. The VIPRE-W installation as well as all 
analysis files and generated outputs associated with the study were protected with a UNIX group 
caslvuq, together with appropriate permissions, as demonstrated by the simulation output 
header shown in Figure 1. 
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Figure 1. VIPRE-W output demonstrating execution on Odin cluster at SNL with 

appropriate group ownership. 
 
Simulations for the two four-loop PWR cores were both based on the quarter core geometry 
shown in Figure 2, with 193 flow channels (shown) and 93 nodes with a nodal length of about 50 
mm (2 inches) in the axial direction (not shown).  Each flow channel represents a quarter of a 
fuel assembly.   Baseline VIPRE-W input decks were furnished by Westinghouse.  
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Figure 2. VIPRE-W quarter core geometry and channel layout. 

 
Post-cycle visual examinations have been performed on select fuel assemblies at plants that 
experienced CIPS, previously referred to as axial offset anomaly (AOA). The extent of crud 
observed on the fuel assemblies was quantified with a “crud index”, a numerical value from 0 to 
100% assigned to each grid span, corresponding to the percentage of the fuel length covered by 
crud [2]. VIPRE-W mass evaporation rate calculations were performed for the selected operating 
cycles of the four-loop plants. In order to compare the amount of boiling with the crud index, a 
“boiling index” was defined by assigning a numerical value from 0 to 100% to each grid span, 
corresponding to the percentage of the fuel length with the mass evaporation rate greater than 
zero [3]. The VIPRE-W output of interest is therefore the mass evaporation rate, also referred to 
as m-dot-e, which when positive indicates localized boiling and is a predictor for crud formation 
[4]. Mass evaporation rate is calculated at each of 193x93 = 17949 nodes in the simulation, but 
then aggregated to a few scalar metrics as described in Section 4. 
 
2.2 DAKOTA Overview 
 
DAKOTA (Design and Analysis ToolKit for Optimization and Terascale Applications) is a 
freely available, SNL-developed software package for sensitivity analysis, optimization, 
uncertainty quantification, and calibration with black-box computational models [5]. DAKOTA 
provides a flexible, extensible interface to any analysis code, includes both established and 
research algorithms designed to handle challenges with science and engineering models such as 
VIPRE-W, and manages parallelism for concurrent simulations. DAKOTA strategies support 
mixed deterministic/probabilistic analyses and other hybrid algorithms. The present work 
leveraged DAKOTA’s SA and UQ algorithms as well as its ability to schedule VIPRE-W runs to 
fully utilize the compute cluster at all times. 
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To perform optimization, uncertainty quantification, or sensitivity analysis in a loose-coupled or 
“black-box” mode, DAKOTA iteratively writes parameter files, invokes a script to run the 
computational model, and collects resulting responses from a results file. This overall execution 
process is depicted in Figure 3. The components in the dashed box, which include integrating 
parameters into the simulation, running the code, and post-processing the output, are unique to a 
particular application interface. These script elements were custom developed for VIPRE-W; 
examples are shown in Appendix A. Due to specific text formatting requirements of a VIPRE-W 
input file, a modified version of the DAKOTA pre-processor dprepro that allows precision 
control was used to insert DAKOTA parameters into VIPRE-W inputs. While creating 
application-specific scripts required some effort, once complete, various DAKOTA methods can 
be applied with only minor modification. 
 

DAKOTA Input File
• Commands
• Options
• Parameter definitions
• File names

DAKOTA Output Files
• Raw data (all x- and f-values)
• Sensitivity info
• Statistics on f-values
• Optimality info

mechanics, thermal, circuit,
plasma physics, climate,

biology, chemistry, materials,
Matlab, etc. simulation

(your code here)

Code
Input

Code
Output

mechanics, thermal, circuit,
plasma physics, climate,

biology, chemistry, materials,
Matlab, etc. simulation

(your code here)

mechanics, thermal, circuit,
plasma physics, climate,

biology, chemistry, materials,
Matlab, etc. simulation

(your code here)

Code
Input
Code
Input

Code
Output
Code

Output

DAKOTA Parameters File
{x1 = 123.4}
{x2 = -33.3}, etc.

Use APREPRO/DPREPRO 
to cut-and-paste x-values 
into code input file

User-supplied automatic 
post-processing of code 
output data into f-values 

DAKOTA executes 
sim_code_script

to launch a 
simulation job

DAKOTA Results File
999.888 f1
777.666 f2, etc.

DAKOTA Executable
Sensitivity Analysis, 

Optimization, Uncertainty 
Quantification, Parameter 

Estimation

 
Figure 3. Loose (“black-box”) coupling of DAKOTA to a generic application.  

 
 
2.3. DAKOTA Algorithms Applied 
 
This section summarizes the key features of the DAKOTA algorithms applied to the thermal-
hydraulics models. For sensitivity analysis (SA), three methods were compared: 

 Latin hypercube sampling, together with partial correlation coefficients and scatter plots; 
 Morris one-at-a-time (MOAT), as implemented in PSUADE distributed with DAKOTA; 

and 
 Polynomial chaos expansions (PCE), together with analytic Sobol’ indices. 

For uncertainty quantification (UQ), we considered  
 Latin hypercube sampling to compute sample means, standard deviations, and empirical 

output histograms, to which distributions were fitted; and 
 Polynomial chaos expansions (PCE) which yield analytic mean and standard deviations. 
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DAKOTA’s SA strength is in global sensitivity analysis methods. The goal of such global 
analysis is to assess the influence of input parameters, considered over their whole possible 
range, on output responses. Such an approach is typically used to rank the importance of the 
input factors, determine the effect of their variance on the variance of the output, or assess 
whether higher-order interactions between parameters affect output responses [6]. Global 
sensitivity and uncertainty analysis methods may offer additional problem insight when response 
linearity as a function of input variables is violated (and local and/or linear approaches might not 
be valid). Sampling-based approaches to sensitivity and uncertainty analysis, such as Latin 
hypercube sampling (LHS), can be very robust even in the presence of strong nonlinearity, but 
can be computationally expensive for screening studies, where (10 x number of input variables) 
evaluations of the model are typically used. An advantage of sampling, however, is that it can be 
applied without modifying the solver (simulator); this favorable characteristic is also true for 
other “black-box” approaches to sensitivity and uncertainty analysis, such as design and analysis 
of computer experiments (DACE), reliability analysis, and stochastic expansion methods such as 
polynomial chaos and stochastic collocation. Global sensitivity analysis methods typically 
identify an ensemble of well distributed points in the input variable space, evaluate the 
computational model at these points, and perform analysis of the resulting function values. 
Global SA is typically performed with uniform distributions of parameters in a range (assuming 
that all values are equally likely), however that need not be the case. Here, distributions 
corresponding to the assumed parametric uncertainty were used for SA as well.  
 
Approaches to UQ are similar, in terms of typically wanting well-distributed evaluations of the 
model, though the goals are different. Uncertainty quantification, or forward propagation of 
parametric uncertainty through a computational model, is predicated on a specific 
characterization of uncertain inputs. While these characterizations can be epistemic (lack-of-
knowledge and typically interval-characterized), we focus here on aleatory, or probabilistic, 
characterizations. The analysis goal is to assess the resulting uncertainty of model outputs 
induced by the input uncertainties. For example one might want to assess the typical (mean) 
response, its variability, or the probability of remaining below or above some critical threshold.  
 
SA/UQ: Latin hypercube sampling (LHS) is among the most robust, ubiquitous, and accepted 
global sampling and analysis techniques, which include other sampling methods such as standard 
Monte Carlo, quasi-Monte Carlo, orthogonal arrays, and jittered sampling. It relies on a 
probabilistic characterization of input uncertainties (thermal-hydraulic parameter uncertainties in 
the present context), from which realizations of the input variables are generated for model 
evaluation, and then statistical analysis on the corresponding response values can be performed. 
LHS typically resolves statistics with fewer samples than standard Monte Carlo and if needed, 
can generate sample designs respecting input variable correlation structure [7]. DAKOTA reports 
the mean, standard deviation, and coefficient of variation of each response (together with 
confidence intervals based on the number of samples used) and correlation coefficients (both on 
the data and on their ranks). For example, a simple (Pearson) correlation between output y and 
input x is given by 
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whereas partial correlation coefficients adjust for the effects of other variables. The results 
presented here focus on the simple and partial correlation coefficients, which are scaled between 
-1 and 1. Larger absolute magnitudes indicate a stronger linear relationship between the input 
and output (see [5]). Additional statistical techniques (such as regression analysis or distribution 
fitting) can also be used to analyze the parameter/response pairs resulting from an LHS study [8] 
as demonstrated in Section 4. 
 
SA/UQ: Variance-based decomposition (VBD) summarizes how model output variability can be 
attributed to variability in individual input variables. This relationship is captured in a main 
effect sensitivity index 

  
  ,
YVar

xYEVar
S ix

i
i  

which reflects the fraction of output uncertainty attributable to input xi alone, and the total effect 
index 
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xYVarE
T ii

i
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where x-i indicates variable i is omitted from the vector of input variables, which accounts for 
variability due to xi and its interactions with other input variables. Larger values of these Sobol’ 
indices indicate a stronger influence of an input on variance of the output. The sum of main 
effect indices is less than or equal to 1 (and equal to 1 for a linear model), whereas the total 
effect indices need not be. See [6] and [9] for further information. 
 
For d input parameters, VBD requires the evaluation of d-dimensional integrals and, when 
implemented with replicates in sampling, typically requires d + 2 replicates of N LHS samples. 
As this can be prohibitively expensive, even for tens of variables, the sensitivity indices are often 
calculated based on a surrogate model or polynomial chaos approximation. Global surrogate 
models (or response surfaces or meta-models) are typically constructed from a modest number of 
evaluations (typically on the order of two to ten times the number of input variables) of the 
computational model. The can be used to train, for example, a Kriging (Gaussian process), 
MARS, or artificial neural network model [10]. This surrogate model is comparatively 
inexpensive to evaluate and can be sampled tens or hundreds of thousands of times to calculate 
correlation coefficients or Sobol’ sensitivity indices. 
 
SA/UQ: Polynomial chaos expansions (PCE) globally approximate the output y as a function of 
input random variables x: 
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where orthogonal polynomials φi(x) are selected to yield optimal convergence of the 
approximation [11]. Specifically, they are chosen to be orthogonal with respect to the probability 
distribution of the inputs x with the same support, e.g., Hermite polynomials are used with 
normal random variables whereas a Legendre basis is optimal for uniform. The coefficients αi 
can be calculated with spectral projection and multi-dimensional integration or regression. Here, 
tensor product and sparse-grid quadrature techniques for PCE are considered. Once constructed, 
a PCE can again be inexpensively exhaustively sampled, but often statistics of interest can be 
calculated analytically using the structure of the approximation. Sudret [12] demonstrated that 



17 

Sobol’ sensitivity indices can be calculated directly from a PCE, and that approach, as 
implemented in DAKOTA [13], is used here. When the response is a smooth function of the 
inputs, this approach can be considerably more computationally efficient at resolving statistics 
than sampling. 
 
SA only: The Morris one-at-a-time (MOAT) method, originally proposed by Max Morris [14], is 
a screening method, designed to explore a computational model to distinguish between input 
variables that have negligible, linear and additive, or nonlinear or interaction effects on the 
output. The computer experiments performed consist of individually randomized designs which 
vary one input factor at a time to create a sample of its elementary effects. The elementary 
effects are estimated essentially by large step finite-difference approximations 
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computed r times in the input space by walking in coordinate directions. Summary statistics are 
then computed, including the modified mean and standard deviation of the elementary effects: 
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The mean and modified mean indicate the overall effect of each input on an output. This 
standard deviation indicates nonlinear effects or interactions, since it is an indicator of 
elementary effects varying throughout the input space. 
 
Each of these iterative analysis approaches has method controls affecting its fidelity: number of 
samples for LHS, number of samples or quadrature order for PCE, and number of replicates or 
sample paths for MOAT. The particular method controls used will be discussed along with the 
results in Section 4. 



18 



19 

3.  UNCERTAINTY CHARACTERIZATIONS AND DAKOTA 
SPECIFICATIONS 

 
This section summarizes the model input parameters used in the sensitivity analysis and 
uncertainty quantification studies, including their nominal values and uncertainties. The 
corresponding translations of these to DAKOTA uncertain variables are shown. The mapping 
from VIPRE-W terminology to DAKOTA parameter names is given in Table 1. The DAKOTA 
names are used in the analysis process for automatic parameter manipulation and post 
processing. 
 

Table 1. DAKOTA variable names associated with VIPRE-W operating and model 
parameters. 

System Parameter DAKOTA Name 
assembly power power 
coolant plow (gpm) flow 
inlet temperature (⁰F) temperature 
pressurizer pressure (psia) pressure 
axial friction correlation coefficient AFCCoeff 
heated length (inches) HtdLen 
lateral resistance correlation coefficient LRCCoeff 
lead coefficient of Dittus-Bolter correlation DBCoeff 
lead coefficient of grid heat transfer model GHTCoeff 
exponent of partial boiling model ExpPBM 

 
The following conventions guided the translation of Westinghouse-provided uncertainty 
specifications into uncertain distributions for use with DAKOTA: 

 Cases with prescribed nominal values and uncertainties were treated with a truncated 
normal distribution, with mean equal to the bias-adjusted nominal value and standard 
deviation equal to half the specified uncertainty value. The distribution was bounded 
(truncated) at nominal ± uncertainty, unless the bound exceeded the provided parameter 
ranges, in which case the more restrictive range bound took precedence. 

 Cases with prescribed uncertainty, but no nominal value, were treated as uniform over the 
provided range of uncertainty. 

 Cases with only simple bounds were assumed uniformly distributed over the bounds. 
 
The two plants, Plant A and Plant B, selected for the study are similar. Both are four-loop 
Westinghouse-designed PWRs that used the 17x17 VANTAGE 5H (V5H) fuel design with a 
fuel rod outside diameter of 0.374 inches and a reference active heated length of twelve feet. The 
V5H fuel design contains six mixing vane grid spacers with additional three Intermediate Flow 
Mixer grids as an option for enhanced thermal performance.  
 
3.1 PWR Plant A Parameters and Uncertainties 
 
The Plant A (exploratory) scenario involves four key parameters: reactor core power, flow, 
temperature, and pressure. Typical nominal values and associated uncertainties for the type of 
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the plant provided by Westinghouse are shown in Table 2. Negative bias indicates that the 
instrument reading is lower than actual value. 
 

Table 2. Plant A, typical core operating parameter uncertainties. 
Parameter Bias-adjusted 

Nominal Value 
Uncertainty 

(bias) 
Distribution 

 core power 67.88742  +/- 0.6% normal 
coolant flow 15.93387  +/- 2.0% normal 

inlet temperature 556.4  +/- 5.0 °F (- 1.0 °F) normal 
pressurizer pressure 2270  +/- 50.0 psia (- 20 psia) normal 

 
This information, together with the translation conventions above yield the DAKOTA input 
characterizations shown in Table 3.  
 

Table 3. Plant A, corresponding DAKOTA normal distributions. 
Parameter Mean Standard 

Deviation 
Lower Bound 
(truncation) 

Upper Bound 
(truncation) 

power 67.88742  0.20366226  67.48009548  68.29474452 

flow 15.93387  0.1593387  15.6151926  16.2525474 

temperature 556.4  2.5  551.4  561.4 

pressure 2270  25  2220.0  2330.0 

 
3.2 PWR Plant B Parameters and Uncertainties 
 
Plant B is targeted for extensive follow-on calibration and validation studies as it experienced 
CIPS in a previous operating cycle and crud measurements were taken after the cycle operation. 
In addition to the four key operating parameters considered for Plant A, the Plant B analysis 
considered several additional model parameters together with their uncertainty characterizations. 
Table 4 lists the typical or assumed values of the Plant B parameters and the associated 
uncertainties considered for the SA and UQ studies. The general conventions stated above were 
again used to define the DAKOTA distributions. Ultimately, several model form parameters will 
be calibrated and therefore not treated the same as uncertain operating conditions. 
 

Table 4. Plant B, typical parameters for SA, UQ, calibration, and validation studies. 
Parameter 

 
Range Calibrated? Uncertainty Continuous? VIPREW 

Input 
assembly power < 1.46* no +/- 6% 

normal 
yes OPER.5  

(for 
simplicity) 

coolant flow (gpm) 0.975 – 
1.025* 

no +/- 2.5% 
normal 

yes OPER.5 

inlet temperature 
(⁰F) 

554.4 – 
566.4 

no +/- 6 ⁰F 
normal 

+1.5 ⁰F bias 

yes OPER.5 
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Parameter 
 

Range Calibrated? Uncertainty Continuous? VIPREW 
Input 

system pressure 
(psia) 

2185 - 2315 no +/- 50 psi 
Normal 

+15 psi bias 

yes OPER.5 

lead coefficient of 
Dittus-Bolter 
Correlation 

0.019 – 
0.033 

yes n/a yes CORR.7 

lead coefficient of 
grid heat transfer 

model 

2.0 – 6.0 yes n/a yes GRID.7 

axial friction 
correlation 
coefficient 

0.10 – 0.25 yes +/-20% yes DRAG.2 

heated length 
(inches) 

144 - 145 no +/-0.01” yes GEOM.3 
RODS.2 

lateral resistance 
correlation 
coefficient 

1.5 – 4.0 yes +/-20% yes DRAG.8 

exponent of partial 
boiling model 

1 - 4 yes n/a no (integer) CORR.19 

subcooled void 
model 

N/A yes n/a no (discrete) CORR.2 

*fractional value of nominal 
 
The four core operating parameters are again treated as normal distributions as shown in Table 5, 
while the remaining six parameters summarized in Table 6 are handled with uniform 
distributions. Per guidance from Westinghouse, the exponent of the partial boiling model was 
relaxed and treated as a continuous variable. The subcooled void model parameter is a discrete 
variable, and as such, was not considered in these studies. The power and flow parameter ranges 
were specified in terms of fraction of nominal. Therefore, nominal values from the VIPRE-W 
input file were used to infer the parameter bounds. 
 

Table 5. Plant B, corresponding DAKOTA normal distributions. 
Parameter Mean Standard 

Deviation 
Lower Bound 
(truncation) 

Upper Bound 
(truncation) 

power 66.9454  2.008362  62.928676  70.962124 

flow 16.4665874  0.2058323  16.054928  16.8782521 

temperature 558.76  3.0  554.4  564.76 

pressure 2270  25  2220  2315 

 
Table 6. Plant B, corresponding DAKOTA uniform distributions. 

Parameter Lower Bound Upper Bound 
AFCCoeff 0.1472  0.2208 

HtdLen 144.21  144.23 

LRCCoeff 2.128  3.192 
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Parameter Lower Bound Upper Bound 
DBCoeff 0.019  0.033 

GHTCoeff 2  6 

ExpPBM 1  4 
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4.  SENSITIVITY AND UNCERTAINTY RESULTS 
 
This section demonstrates sensitivity and uncertainty calculations for the two model problems. 
Recall that sensitivity studies are typically performed to understand how a system or model’s 
responses are related to its inputs. Such techniques can provide insight on how parameters are 
correlated and to what degree. These techniques are effective in screening and ranking model 
parameters to see which have significant influence on specific response quantities. An 
uncertainty analysis takes some understanding of the uncertainty in a model’s input parameters 
and maps it through to its responses, thereby, providing a distribution of possible response 
quantities. These can be used to answer questions like “What is the typical (mean) system 
response?” “What is its variability?” or “What is the probability of exceeding some critical 
response threshold?” 
 
Three different DAKOTA-provided techniques (Latin hypercube sampling (LHS), polynomial 
chaos expansion (PCE) and PSUADE’s Morris one-at-a-time (MOAT)), described in Section 
2.3, were used to iteratively analyze the model relationships between system parameters and 
responses for both SA and UQ analyses. Samples of results from each technique are shown with 
conclusions in the following sections for both the Plant A and B models. The samples presented 
are not exhaustive, but rather representative of the kinds of results, analyses, and insights one can 
expect from these methods. 
 
Each of the SA and UQ techniques provides related, but slightly different information, as 
summarized in Table 7. The LHS option in DAKOTA provides moment-based statistics and 95% 
confidence intervals for each response function, and simple, partial, simple rank, and partial rank 
correlation matrices between input and output variables. The samples can also be exported to 
statistical software such as Minitab, SAS JMP, or Matlab for further analysis. The PCE option in 
DAKOTA reports the polynomial chaos coefficients for each response, along with estimated 
(both numerically and from the expansion) moment-based statistics for each response. Also, both 
local and global sensitivities as well as VBD Sobol’ indices are reported. MOAT provides the 
modified means and standard deviations of the elementary effects (EE) of each response variable 
with respect to each input parameter. The modified mean of the EE is a good indicator of a 
variable’s main effect, while the EE standard deviations indicate interaction or higher order 
effects for a particular input. 
 

Table 7. Summary of SA and UQ metrics reported for each method type. 
Method Name Select Metrics for SA Select Metrics for UQ 

LHS simple and partial correlation coefficients, 
scatter plots 

mean, standard 
deviation 

PCE Sobol’ indices (main and total effects of inputs) mean, standard 
deviation 

MOAT modified mean and standard deviation of 
elementary effects 

n/a 

 
For each plant, four aggregate system response metrics were derived from output of each 
simulation run: maximum of the mass evaporation rate m-dot-e and mean of m-dot-e (each taken 
over all 193 channels and all 93 axial nodes), the number of nodes with nonzero m-dot-e (thus 
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indicating boiling), and the mean of m-dot-e taken strictly over the nonzero nodes. The 
associated response variable names used in DAKOTA are given in Table 8. 
 

Table 8. DAKOTA response names corresponding to derived VIPRE-W system 
responses. 

System Response Dakota Name 
m-dot-e, maximum ME_max 

m-dot-e, mean ME_mean 
number nodes with 

nonzero m-dot-e 
ME_nnz 

m-dot-e, mean over 
nonzero nodes 

ME_meannz 

 
4.1. Results for Plant A 
 
This section summarizes exploratory studies conducted with DAKOTA and VIPRE-W for the 
Plant A model. A total of four uncertain parameters, treated as truncated, normally distributed 
variables as described in Section 3.1, were studied. 
 
4.1.1. Comparison of Sensitivity Analysis Techniques 
 
The variable-response pairs resulting from a LHS study can be used to visually investigate the 
sensitivity relationship between inputs and outputs. Such analysis yields an expedient, if coarse, 
determination of if and how factors relate. Scatter plots between the input and response variables 
for the 400 sample LHS case are shown in Figure 3. (The plots were generated with Matlab using 
the DAKOTA-produced dakota_tabular.dat file, but can be generated with many readily 
available statistics software packages.)  The scatter plots indicate a strong positive correlation 
between temperature and all four responses. They also demonstrate a weaker, inverse correlation 
between all responses and the pressure parameter.  
 
Omitted: Input-input scatter plots can also visually affirm that the input parameter sample sets 
look normally distributed within the parameter space as prescribed. DAKOTA also reports the 
input-input correlations of the sample set for verification purposes. Investigation of response-
response inter-relationships revealed a nearly deterministic relationship between all response 
pairs. (ME_max, ME_meannz), and (ME_nnz, ME_mean) exhibited a strong linear relationship, 
whilst the other pairs showed clear non-linear relationships. This is likely an artifact of the 
derived metrics used in post-processing (smooth mean vs. truncation-like Boolean or max).  
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Figure 4. Matrix of scatter plots for parameters versus responses; based on the 400 

sample LHS study of the Plant A model. 
 
The varying linear trends apparent in the visual analysis can be corroborated by correlation 
coefficients. The simple input-output correlation matrix for the 4000 sample case is shown in 
Table 9, which confirms the visually observed relationships. Temperature has the strongest linear 
effect; positively and highly correlated to all 4 responses (all above 0.75), whilst pressure is the 
second most influential parameter. It is slightly less strongly and inversely correlated to each of 
the responses (all approximately -0.5). The correlations between each of the responses was also 
strong (nearly unity) as was observed in the scatter plots (omitted for brevity). 
 

Table 9. Simple correlations between inputs and outputs for Plant A, 4000 sample LHS 
analysis. 

Response pressure temperature flow power 
ME_mean ‐0.503  0.763  ‐0.294  0.094 

ME_nnz ‐0.540  0.766  ‐0.289  0.089 

ME_meannz ‐0.464  0.812  ‐0.323  0.112 

ME_max ‐0.464  0.806  ‐0.316  0.117 

 
Table 10 summarizes the partial correlation coefficients, which can adjust for the effects of other 
variables. Here, temperature and pressure appear similarly influential, while flow is secondary. 

 
Table 10. Partial Correlation Matrix for Plant A, 4000 Sample LHS Analysis. 

Response pressure temperature flow power 
ME_mean ‐0.890  0.947  ‐0.749  0.344 

ME_nnz ‐0.955  0.977  ‐0.863  0.472 

ME_meannz ‐0.985  0.995  ‐0.969  0.811 

ME_max ‐0.957  0.985  ‐0.913  0.644 
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Variable sensitivities and interactions can also be analyzed through use of polynomial chaos 
expansions, from which analytic Sobol’ indices can be computed. Table 11 is based on tensor-
product PCE with increasing quadrature order and shows main and total effects for the 
ME_mean response. The main indices measure the effect of a parameter alone, whereas the total 
indices include interactions of the parameter with other factors. In this example, variability in 
ME_mean is again primarily influenced by temperature and secondarily by pressure. The 3rd 
order quadrature seemed adequate for converged statistics. DAKOTA reports these Sobol’ 
sensitivity indices for each response with respect to each input variable and each of the possible 
variable combinations; all interaction terms were insignificant and therefore not reported. 

 
Table 11. PCE-based Sobol’ Indices for Plant A ME_mean response. 

Variable 

2nd Order 
Quadrature 

3rd Order 
Quadrature 

4th Order 
Quadrature 

(16 evaluations) (81 evaluations) (256 evaluations) 
Main Total Main Total Main Total 

pressure 2.670e‐01  2.975e‐01  2.626e‐01  2.922e‐01  2.625e‐01  2.921e‐01 

temperature 5.960e‐01  6.317e‐01  6.052e‐01  6.397e‐01  6.054e‐01  6.399e‐01 

flow 8.787e‐02  9.936e‐02  8.480e‐02  9.592e‐02  8.467e‐02  9.582e‐02 

power 9.596e‐03  1.101e‐02  9.130e‐03  1.049e‐02  9.115e‐03  1.049e‐02 

 
Table 12 provides the Sobol’ indices for all four responses for the 3rd order quadrature case. 
Temperature was consistently the most influential input parameter to all four responses with 
pressure as the second most influential. The results are relatively (though not entirely) insensitive 
to the choice of derived response metric. 
  

Table 12. 3rd order PCE-based Sobol’ indices for all Plant A responses. 

Variable 
ME_mean ME_nnz ME_meannz ME_max 

Main Total Main Total Main Total Main Total 
pressure 2.626e‐01  2.922e‐01  2.975e‐01 3.113e‐01 2.147e‐01 2.193e‐01  2.170e‐01 2.272e‐01
temperature 6.052e‐01  6.397e‐01  5.978e‐01 6.128e‐01 6.576e‐01 6.620e‐01  6.560e‐01 6.676e‐01

flow 8.480e‐02  9.592e‐02  8.044e‐02 8.477e‐02 1.079e‐01 1.101e‐01  9.995e‐02 1.044e‐01

power 9.130e‐03  1.050e‐02  7.586e‐03 7.967e‐03 1.431e‐02 1.470e‐02  1.379e‐02 1.419e‐02

 
The PSUADE MOAT results for the 4000 sample case are given in Table 13. These results 
support earlier conclusions that temperature is a dominant factor, while pressure is a secondary 
influence. There are no significant outliers in terms of elementary effect standard deviations, 
though indication of nonlinear or interaction effects roughly increases across power, through 
flow and pressure, to temperature. The results differ depending on the response metric 
considered; this method does not scale responses, so care is needed when interpreting. Figure 5 
plots the modified mean versus the standard deviations of the elementary effects for each of the 
four parameters. This visual representation is often a useful diagnostic for identifying clusters of 
variables with minimal, linear, or higher-order effects, but here we observed that the most 
influential factors also have the highest variability in their influence throughout the parameter 
space. 
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Table 13. PSUADE/MOAT results for 4000 sample study (statistics on elementary effects). 

Response 

pressure temperature flow power 
Mod 
Mean 

Std 
Dev 

Mod 
Mean 

Std 
Dev 

Mod 
Mean 

Std 
Dev 

Mod 
Mean 

Std 
Dev 

ME_mean 7.893  4.052  11.718  5.182  4.491  2.468  1.486  0.869 

ME_nnz 748.98  263.62  1052.3  319.34  394.58  145.46  125.16  49.371 

ME_meannz 53.987  12.375  94.187  13.735  37.261  8.307  12.991  3.273 

ME_max 110.34  38.885  189.71  45.873  75.682  25.244  28.094  7.579 

 
std dev vs. mod mean

mod mean

0 2 4 6 8 10 12 14

st
d

 d
e

v

1

2

3

4

5

 
Figure 5. PSUADE/MOAT modified mean versus standard deviation in elementary effects 

for ME_mean response. 
 
4.1.2. Comparison of Uncertainty Quantification Techniques 
 
Three LHS studies with increasing numbers of samples (40, 400 and 4000) were performed to 
assess convergence of moment statistics. The same was done using 3 different tensor product 
quadrature orders (2nd, 3rd and 4th) for the PCE technique, requiring 16, 81, and 256 model 
evaluations, respectively. The moments calculated by DAKOTA for each study are presented in 
Table 14. Convergence of mean statistics typically requires fewer samples than that required to 
estimate standard deviations. In the three cases studied, there is a slight convergence trend for 
estimated means and standard deviations for all four of the responses with increasing sample size 
(formal convergence study not conducted). Therefore, the 4000 sample case for LHS is analyzed 
and presented here. Results from the PCE study show a more striking convergence with 
increasing quadrature order. The 3rd and 4th order studies yield nearly indistinguishable statistics, 
suggesting that a 3rd order quadrature suffices. The responses all have a large standard deviation 
relative to the mean. 
 
 
 

temperature 

pressure 

power 

flow
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Table 14. Comparison of response means and standard deviations calculated by 
DAKOTA LHS and PCE methods for the Plant A model. 

Method 

ME_mean ME_nnz ME_meannz ME_max 
Mean Std 

Dev 
Mean Std 

Dev 
Mean Std 

Dev 
Mean Std 

Dev 
LHS (40) 5.069  3.263  651.225  297.039  127.836  27.723  361.204  55.862 

LHS (400) 5.006  3.131  647.33  286.146  127.796  25.779  361.581  51.874 

LHS (4000) 5.354  3.206  688.261  292.687  129.175  25.450  364.317  50.884 

PCE (Θ(2)) 5.353  3.130  687.875  288.140  129.151  25.7015  364.366  50.315 

PCE (Θ (3)) 5.355  3.202  688.083  292.974  129.231  25.3989  364.310  50.869 

PCE (Θ (4)) 5.355  3.203  688.099  292.808  129.213  25.4491  364.313  50.872 

 
Recall that the input parameters were characterized by normal distributions. The corresponding 
response (model output) distributions resulting from the UQ process are displayed in Figure 6. 
SAS JMP was used to analyze each response distribution to determine which analytical statistical 
distribution best fit the data. The results and data fits to each response are also shown in Figure 6. 
None of the response distributions are best fit by a normal distribution, underscoring the 
importance of not assuming normal inputs give rise to normally distributed model outputs. 
ME_mean and ME_nnz are best fit by Gamma distributions, whereas Weibull distributions best 
fit ME_meannz and ME_max. The validity of a normality assumption on the responses was 
assessed by a goodness of fit test. Figure 7 displays the test results for the ME_mean response, 
indicating that the output distribution is not normal. 
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Figure 6. Plant A response distribution fits to analytical statistical distributions. 
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Figure 7. Goodness of fit test of normality on ME_mean. 

 
 
4.2. Results for Plant B 
 
This section summarizes sensitivity and uncertainty studies conducted with DAKOTA and 
VIPRE-W for the Plant B model, which will be used in future calibration and validation 
activities. The investigation involved a total of ten parameters treated as either truncated, 
normally distributed or bounded, uniformly distributed variables, as described in Section 3.2. 
The system response metrics studied are as in the Plant A example. 
 
4.2.1. Comparison of Sensitivity Analysis Techniques 
 
Figure 8 shows a scatter plot matrix of the 4 response variables against the 10 input variables, 
with linear regression lines superimposed. Overall the trends are less striking than for Plant A, 
perhaps due to the new model form variables dominating the analysis. The DBCoeff (lead 
coefficient of the Dittus-Bolter correlation) has the clearest influence, while the four reactor 
operating parameters again exhibit some correlation to the responses (see linear regression lines). 
The m-dot-e means over non-zeros and maximum both exhibit strong trend with the exponent of 
the partial boiling model (ExpPBM). 
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Figure 8. Scatter plots of inputs versus responses for Plant B, LHS 1000 samples. 

 
The correlation data summarized in Table 15 give more insight into inter-variable relationships 
potentially difficult to characterize visually. The most influential parameter is confirmed as 
DBCoeff, which has a strong negative correlation (around -0.7 for simple and -0.9 for controlled 
partial correlation) with all four responses (also visible in the scatter plots). Westinghouse 
affirmed that the boiling surface is highly sensitive to this coefficient. Considering the partial 
correlations, temperature, power, and ExpPBM are the next most influential inputs. These 
correlations can be harder to discern directly from scatter plots. 
 

Table 15. Correlations for Plant B 1000 sample LHS analysis. 

Variable 
ME_mean ME_nnz ME_meannz ME_max 

simple partial simple partial simple partial simple partial 
pressure ‐0.167  ‐0.306  ‐0.217  ‐0.509  ‐0.152  ‐0.404  ‐0.166  ‐0.450 

temperature 0.304  0.512  0.343  0.691  0.294  0.658  0.301  0.683 

flow ‐0.111  ‐0.214  ‐0.126  ‐0.336  ‐0.133  ‐0.368  ‐0.142  ‐0.403 

power 0.329  0.534  0.355  0.693  0.343  0.705  0.357  0.735 

AFCCoeff ‐0.038  ‐0.066  ‐0.028  ‐0.067  ‐0.015  ‐0.027  ‐0.016  ‐0.031 

HtdLen ‐0.013  ‐0.031  ‐0.013  ‐0.044  0.003  0.003  0.009  0.021 

LRCCoeff ‐0.010  0.005  ‐0.005  0.020  ‐0.016  ‐0.003  ‐0.012  0.009 

DBCoeff ‐0.662  ‐0.789  ‐0.743  ‐0.898  ‐0.704  ‐0.900  ‐0.688  ‐0.904 

GHTCoeff ‐0.025  ‐0.045  ‐0.055  ‐0.147  0.010  0.041  ‐0.017  ‐0.041 

ExpPBM 0.226  0.394  0.021  0.043  0.378  0.739  0.393  0.766 
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Sobol’ indices derived from PCE yield similar conclusions to the LHS studies. Table 16 shows 
the main and total effect indices for the ME_mean response for 2nd and 3rd order sparse grid 
quadrature, whereas Table 17 focuses on the 3rd order case, showing the main and total effects 
for all responses. In all cases, the DBCoeff is the most sensitive parameters, with temperature, 
power, and ExpPBM playing crucial secondary roles. Again, the parameter interactions are 
reported in the DAKOTA results file, but were all small, so are omitted. The absence of any 
strong interactions suggests that for these parameters, performing sensitivity analysis with a 
modest number of samples might suffice.  
 

Table 16. PCE Sobol’ indices for ME_mean response for varying quadrature order. 

Variable 

2nd Order Quadrature 3rd Order Quadrature 
327 Evaluations 2987 Evaluations 
Main Total Main Total 

pressure 2.062e‐02  4.268e‐02  3.164e‐02  5.218e‐02 

temperature 8.217e‐02  1.442e‐01  9.305e‐02  1.515e‐01 

flow 1.012e‐02  2.261e‐02  1.710e‐02  2.868e‐02 

power 1.012e‐01  1.768e‐01  1.051e‐01  1.773e‐01 

AFCCoeff 1.975e‐04  5.102e‐04  4.877e‐04  7.460e‐04 

HtdLen 1.691e‐07  4.121e‐07  2.883e‐07  5.153e‐07 

LRCCoeff 1.709e‐07  4.225e‐07  8.986e‐06  5.152e‐05 

DBCoeff 5.361e‐01  6.881e‐01  5.118e‐01  6.617e‐01 

GHTCoeff 4.589e‐03  1.012e‐02  4.562e‐03  1.218e‐02 

ExpPBM 5.032e‐02  1.097e‐01  4.834e‐02  1.141e‐01 
 

Table 17. Sobol’ indices for all responses, 3rd order quadrature PCE case. 

Variable 
ME_mean ME_nnz ME_meannz ME_max 

Main Total Main Total Main Total Main Total 
pressure 3.164e‐02  5.218e‐02  3.805e‐02 6.435e‐02 4.034e‐02 9.328e‐02  1.305e‐02 5.330e‐02
temperature 9.305e‐02  1.515e‐01  1.413e‐01 1.852e‐01 7.856e‐02 1.621e‐01  1.205e‐01 1.840e‐01

flow 1.710e‐02  2.868e‐02  1.598e‐02 2.947e‐02 3.040e‐02 6.314e‐02  5.128e‐03 3.120e‐02

power 1.051e‐01  1.773e‐01  1.471e‐01 1.919e‐01 5.575e‐02 1.401e‐01  1.060e‐01 1.760e‐01

AFCCoeff 4.877e‐04  7.460e‐04  1.380e‐04 2.271e‐03 5.960e‐03 1.484e‐02  1.010e‐04 1.131e‐03

HtdLen 2.883e‐07  5.153e‐07  1.593e‐05 8.118e‐05 1.192e‐04 4.575e‐04  6.168e‐09 7.408e‐07
LRCCoeff 8.986e‐06  5.152e‐05  4.245e‐06 6.408e‐05 2.273e‐04 7.139e‐04  1.059e‐06 5.274e‐06

DBCoeff 5.118e‐01  6.617e‐01  5.548e‐01 6.175e‐01 4.397e‐01 5.743e‐01  4.353e‐01 5.368e‐01

GHTCoeff 4.562e‐03  1.218e‐02  5.686e‐03 1.299e‐02 1.722e‐03 1.273e‐02  9.058e‐04 5.740e‐03

ExpPBM 4.834e‐02  1.141e‐01  2.298e‐08 3.608e‐07 1.288e‐01 2.015e‐01  1.680e‐01 2.193e‐01

 
The MOAT modified mean and standard deviation of elementary effects are shown in Table 18. 
Similar conclusions arise from them, but Figure 9 gives a different perspective on the data. It 
plots the elementary effects summaries for the ME_max response to demonstrate a potential 
advantage of the MOAT method (though one that is also enabled by nonlinear regression 
approaches). In indicates that DBCoeff mainly has a linear or additive effect, while ExpPBM, 
power, and temperature have effects that deviate considerably from the mean effect in different 
regions of the input parameter space. Pressure and flow have both main and interaction effects, 
but of smaller magnitude. 
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Table 18. Plant B summary of elementary effects based on 990 MOAT evaluations. 

Variable 

ME_mean ME_nnz ME_meannz ME_max 
Mod 
Mean 

Std 
Dev 

Mod 
Mean 

Std 
Dev 

Mod 
Mean 

Std 
Dev 

Mod 
Mean 

Std 
Dev 

pressure 6.554  6.589  478.90  366.22  53.147  53.576  100.93  99.345 

temperature 12.594  11.717  815.23  542.05  104.26  87.435  209.01  178.18 

Flow 5.346  5.532  355.77  272.51  35.249  35.486  68.966  66.255 

Power 12.373  12.918  799.61  589.10  125.98  95.106  271.71  196.33 

AFCCoeff 0.514  0.455  27.028  18.764  6.063  5.994  8.895  9.073 

HtdLen 0.0168  0.0168  1.128  1.722  0.334  0.489  0.287  0.244 

LRCCoeff 0.0719  0.197  3.150  6.338  1.005  2.525  0.442  1.315 

DBCoeff 20.411  19.135  1314.5  844.56  213.17  132.71  412.33  255.43 

GHTCoeff 2.802  3.526  180.66  174.35  7.120  9.788  8.464  21.159 

ExpPBM 8.845  12.625  0.117  0.519  133.7  122.57  234.34  200.00 
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Figure 9. Plant B: MOAT statistics for ME_max response based on 990 model 

evaluations. 
 
4.2.2. Comparison of Uncertainty Quantification Techniques 
 
LHS and PCE methods propagated the uncertainties identified in Section 3.2. Sample sizes of 
100, 1000, and 10000 (10x, 100x, and 1000x the number of variables) were used with the LHS 
method. Sparse grid quadrature rules with orders 2 and 3 were used with PCE, requiring 327 and 
2987 model evaluations, respectively. PCE with 4th order quadrature runs did not finish in time 
to be included. 
 
Per Table 19, the means of the responses are similar to those for Plant A (Table 14), however the 
estimated variability (reported by standard deviation) is considerably larger. In many cases, it is 
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nearly the same magnitude as the mean value. This is likely a reflection of a large amount of 
uncertainty due to the model form parameters considered in this study. Should these predictions 
of uncertainty be unacceptably high, a decision should be made whether to better characterize 
them, reducing uncertainty, or consider them fixed parameters for a given analysis (or possibly 
treat them as epistemic uncertainties). As many of these parameters are likely to be calibrated to 
data, it is possible their uncertain range could be substantially reduced.  
 

Table 19. Comparison of Response Means and Standard Deviations Using Different UQ 
Techniques for Plant B Model 

Method 
ME_mean ME_nnz ME_meannz ME_max 

Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev
LHS(100) 5.919  7.822  485.020 463.892  140.776 102.468  311.099  199.434 

LHS(1000) 5.865  7.911  480.552 467.080  138.975 103.708  305.296  200.135 

LHS(10000) 5.848  7.719  481.643 464.996  139.114 102.983  304.626  199.451 

PCE(Θ(2)) 5.894  7.718  517.556 470.024  130.199 111.855  309.373  201.172 

PCE(Θ(3)) 5.830  7.713  455.964 480.917  151.293 109.538  304.074  213.559 

 
Figure 10 shows that the response distributions for Plant B differ substantially from those for 
Plant A, with most exhibiting a more exponential character. The probability mass near zero is a 
potential concern, as it may indicate simulation failures over some of the parameter ranges. 
Examination of the individual LHS samples revealed that many scenarios sampled exhibited no 
boiling. Further discussion with Westinghouse is needed on this issue. Figure 11 again rejects the 
hypothesis that the response data come from a normal distribution.  A follow on UQ study is 
likely warranted, considering a more plausible range on the calibration parameters related to 
model form. 
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Figure 10. Best-fit distributions for Plant B outputs, based on 1000 LHS samples. 
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Figure 11. Test for normality of response ME_max for Plant B, based on 1000 samples. 

 
Figure 12 and Figure 13 depict the mean of mass evaporation rate at each computational node in 
the simulation in 3D and overhead views, respectively (based on 100 LHS samples). Even these 
crude graphics demonstrate that there is considerable variation in m-dot-e at various locations in 
the reactor quarter core. Figure 14 and Figure 15 show similar plots, but instead for the standard 
deviation of m-dot-e at each node in the simulation. Again, variability across the domain is 
striking, and the areas of high variability do not necessarily correspond to areas of high mean 
performance.  
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Figure 12. Plot of mean of mass evaporation rate (taken over 100 LHS samples) at each 

node in the Plant B computational model. 
 

 
Figure 13. Plot of mean of mass evaporation rate viewed from above the Plant B core.  
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Figure 14. Plot of standard deviation of mass evaporation rate (taken over 100 LHS 

samples) at each node in the Plant B computational model. 
 

 
Figure 15. Plot of standard deviation of mass evaporation rate viewed from above the 

Plant B core.  
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5.  DISCUSSION 
 
This VUQ milestone demonstrated statistical sensitivity and uncertainty quantification using 
VERA tools (VIPRE-W and DAKOTA) on PWR problems of interest to the AMA focus area. 
The tools were used to assess response metrics predictive of CIPS. While conducted with loose-
coupled simulation tools, similar studies will soon be conducted leveraging tightly integrated 
executables based on DAKOTA/LIME integration.  
 
For Plant A, the three SA techniques applied consistently rank temperature as the most 
influential parameter and pressure as second. Temperature exhibits positive correlation while 
pressure is negatively correlated. In follow-on studies, it might be possible to neglect the effect 
of power as it has comparably minimal effect on m-dot-e. As the VIPRE-W model appears to 
behave relatively linearly and smoothly with respect to these parameters, only a small number of 
model evaluations should typically be needed to make these sensitivity assessments. The 
sensitivity analysis for Plant B better demonstrates the power of these screening techniques. 
Here, the lead coefficient of the Dittus-Bolter correlation and the exponent of the partial boiling 
model are crucial model form parameters and the four operating parameters are again significant 
factors. However, the remaining model form parameters (due to be calibrated) have comparably 
little effect. 
 
In the uncertainty quantification studies, both LHS and PCE techniques yielded similar estimates 
for the response means and standard deviations. (In some scenarios, PCE could provide 
considerable cost savings over Monte Carlo methods to obtain similar results, though for high 
dimensional parameter spaces sampling may prove more effective). Considerable Plant B 
variability is likely attributable to model form parameters ExpPBM and DBCoeff; some 
consideration should be given to whether they should be considered in performing forward 
propagation of uncertainty. Simulation results indicate considerable variation in both mean and 
standard deviation of m-dot-e throughout the reactor quarter core. Better visualization tools 
would likely help make this information useful to engineering analysts. 
 
The studies conducted illustrate the kinds of algorithms available through DAKOTA for SA and 
UQ, the assumptions they make and input characterization they require, and the kinds of insights 
they can offer. The results presented are not exhaustive, but rather presented for purposes of 
capability demonstration in fulfillment of this milestone.  The study demonstrated a VUQ 
workflow and process that could be used with other multi-physics code systems for evaluating 
challenge problems for operating reactors. 
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APPENDIX A:  SAMPLE ANALYSIS FILES 
 
 

 
Figure 16. Representative DAKOTA input file for performing Latin hypercube sampling 

for Plant A.  
 
 
 
 

strategy, 
        single_method 
          tabular_graphics_data 
 
method, 
        nond_sampling                            
          samples = 4000         
          seed = 17              
          sample_type lhs 
 
model, 
        single 
 
variables, 
        normal_uncertain = 4                     
          # nominal: 2270.0, 556.4, 15.93387, 67.88742    
          # bias:      20.0,   1.0 
          # uncert:    50.0,   5.0,       2%,     0.6%   
          means           2270.0     556.4         15.93387    67.88742    
          std_deviations  25.0       2.5           0.1593387   0.20366226 
          lower_bounds    2220.0     551.4         15.6151926  67.48009548 
          upper_bounds    2320.0     561.4         16.2525474  68.29474452 
          descriptors     'pressure' 'temperature' 'flow'      'power'   
 
interface, 
        fork 
          analysis_driver = 'runvipre_massevap.sh' 
          asynchronous 
          evaluation_concurrency = 2 
          work_directory named 'workdir' 
            directory_tag 
            directory_save 
            file_save 
            template_files = 'wat7_epri.5806.inp.template' 
              copy 
            parameters_file = 'params.in' 
            results_file = 'results.out' 
 
responses, 
        num_response_functions = 4 
          descriptors = 'ME_mean' 'ME_nnz' 'ME_meannz' 'ME_max' 
        no_gradients                             
        no_hessians 
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Figure 17. Shell script runvipre_massevap.sh iteratively called by DAKOTA. 

 
 

#!/bin/sh 
 
# pre‐process with dprepro 
../dprepro.formatted params.in wat7_epri.5806.inp.template 
wat7_epri.5806.inp 
 
# run vipre 
R711.odin wat7_epri.5806.inp 
 
# post‐process 
massevap_stats.sh wat7_epri.5806.inp.out results.out 
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Figure 18. Shell script massevap_stats.sh used to post-process VIPRE-W output to 

generate metrics of interest for return to DAKOTA. 

#!/bin/sh 
 
infile=$1 
 
if [ $# ‐gt 1 ]; then 
  outfile=$2 
else 
  outfile="default.stats" 
fi 
 
# channel axial  axial    mass evap     local heat flux components       local  
# number   node  height    rate     forced conv  nuc boil  boil incept  pressure  
#                inches  lbm/hr‐ft2     <‐‐‐  MBTU/hr‐ft2   ‐‐‐>          psia  
 
# there are 
#  193 channels 
#  93  axial nodes 
 
# each header is followed by data for each of 93 axial nodes 
grep ‐A 96 "mass evap" $infile |  egrep "^[ ]+[0‐9]+" > wat7.5806.massevap.dat 
 
rows=`wc ‐l wat7.5806.massevap.dat | cut ‐f1 ‐d' '` 
if [ $rows ‐eq 17949 ]; then 
  echo "Mass evaporation data has correct number of rows." 
else 
  echo "WARNING: possible wrong number of rows in Mass evaporation data" 
fi 
 
# calculate mean of mass evaporation rate (column 4) 
massevap_mean=`awk 'BEGIN {sum=0.0 } {sum += $4} END {printf "%20f", sum/NR}' 
wat7.5806.massevap.dat` 
 
# calculate number of nodes in boiling 
massevap_nnz=`awk 'BEGIN {nnz=0; sum=0.0} {if ($4 > 0.0) nnz +=1; sum+=$4 } END 
{printf "%20d", nnz}' wat7.5806.massevap.dat` 
 
# calculate average over non‐zero nodes 
massevap_mean_nz=`awk 'BEGIN {nnz=0; sum=0.0} {if ($4 > 0.0) nnz +=1; sum+=$4 } END 
{printf "%20f", sum/nnz}' wat7.5806.massevap.dat` 
 
# calculate max 
massevap_max=`awk 'BEGIN {max=0.0} {if ($4 > max) max=$4 } END {printf "%20f", max}' 
wat7.5806.massevap.dat` 
 
echo "$massevap_mean ME_mean" > $outfile 
echo "$massevap_nnz ME_nnz" >> $outfile 
echo "$massevap_mean_nz ME_meannz" >> $outfile 
echo "$massevap_max ME_max" >> $outfile 
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