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Abstract

The Lightweight Integrating Multi-physics Environment (LIME) is a software package
for creating multi-physics simulation codes. Its primary application space is when computer
codes are currently available to solve different parts of a multi-physics problem and now need
to be coupled with other such codes. In this report we define a common domain language
for discussing multi-physics coupling and describe the basic theory associated with multi-
physics coupling algorithms that are to be supported in LIME. We provide an assessment
of coupling techniques for both steady-state and time dependent coupled systems. Example
couplings are also demonstrated.
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Chapter 1

Introduction

Many problems of great scientific and national interest involve complex systems with nu-
merous, sometimes disparate, interconnected components that involve many different phys-
ical processes that interact or couple in a variety of ways. Examples include the design,
safety analysis and licensing of current and future nuclear reactors, development of renew-
able energy technologies, vulnerability analysis of water and power supplies, understanding
of complex biological networks, and many others. As our ability to simulate such systems
using advanced computational tools has improved, our appreciation for the challenges asso-
ciated with predictive simulation has also deepened. Often these systems strongly couple
many different physical processes exhibiting phenomena at a diverse set of length and/or
time scales. These interacting, nonlinear, multiple time-scale physical mechanisms can bal-
ance to produce steady-state behavior, nearly balance to evolve a solution on a dynamical
time scale that is long relative to the component time-scales, or can be dominated by just
a few fast modes. These characteristics make the scalable, robust, accurate, and efficient
computational solution of these systems over relevant dynamical time scales of interest (or
to steady-state solutions) extremely challenging.

The Lightweight Integrating Multi-physics Environment (LIME) is a software package
being developed to help create multi-physics simulation codes. Its primary application space
is when computer codes are currently available to model and solve different parts of a multi-
physics problem and now need to be coupled with other such codes. Thus a sound under-
standing of the mathematical theory associated with multi-physics coupling is of fundamental
importance for potential users of LIME.

Because multi-physics coupling issues arise in many different scientific and engineering
arenas, they often involve multi-disciplinary teams. Our experience is that, without a com-
mon vocabulary and associated definitions, application development teams tend to talk past
one another, wasting significant time and effort trying to describe basic algorithms. Thus
the first purpose of this report is to define a common set of terms and associated defini-
tions for use as we describe multi-physics coupling. The second objective is to provide a
concise description and discussion of the mathematical theory associated with multi-physics
coupling algorithms. For many problems of interest, tremendous differences in performance
behavior can be observed when different coupling approaches are applied. Understanding
these differences, their characteristics, and the theory behind the different methods will en-
able potential users of LIME to make informed choices about how to couple their physics
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codes when leveraging the LIME package.

When discussing multi-physics simulation, one must distinguish between coupled physics
and coupled physics codes. So it is important to note that we will use the word “coupled”
in two related but different contexts; one with respect to computer codes, and one with
respect to physics. In principle, a single physics code can be written to simulate any coupled
multi-physics system, i.e. a single physics code is not restricted to a single-physics. Of
interest to LIME is the ability for multiple such physics codes to be coupled in some fashion
to simulate a multi-physics system. In this case each physics code separately approximates
the solution to one or more sets of physics in the overall coupled multi-physics system. This
document describes strategies for coupling multiple physics codes together to solve coupled
multi-physics problems.

This report is purposefully not specific to software implementation. While the algorithms
we target are associated with the LIME software suite [26], this document will only describe
the general theory. A companion report provides an introduction to LIME, its design and
its use.

This document is intentionally kept short so that users and developers alike can quickly
grasp the domain language.

The organization of this report is as follows. In the next section, we describe the basic
nomenclature used in multi-physics coupling. In chapter 2, a rigorous mathematical model
of multi-physics coupling is presented. This includes a section on what multi-physics cou-
pling strategies are available depending on how much information (i.e. how invasive the
interaction) each physics application code can expose. The final chapter shows examples for
steady-state and transient couplings.

1.1 Basic Definitions

Here we define a set of key terms used when describing multi-physics coupling.

• Coupled Physics: When the solution of one physics equation (set) is dependent upon
the solution of another different physics equation (set).

• Coupled System: Effectively synonymous with “coupled physics”, but used here
to emphasize the different components that make up a coupled physics problem (each
associated with different physical processes). Section 3.1 defines coupled systems with a
shared spatial domain, with interfacial coupling, and with what we call network
systems.

• Multi-Physics: A problem of interest modeled using more than one set of physical
processes (and associated equation sets). Here we are only interested in cases where
these physical processes are coupled.
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• Degree of Physics Coupling: The degree of physics coupling is the measure of how
much one physics set influences another physics set. If a change to a solution variable
in one physics set produces a comparable response in another physics set, then the
coupling is said to be “strong”. Conversely, if a change in the solution of one physics
set results in a negligible change in another physics set, then the coupling is said to
be “weak”. “Strong” and “weak” refer to the interdependence among the models (and
associated equation sets).

• Directional Coupling: In the spirit of the degree of coupling, coupling also has an
associated direction. “Two-way coupling” is where two physics sets that are coupled to-
gether each directly depend on the solution of the other set. In “one-way” or “forward”
coupling, one physics set depends on another but not vice-versa. This has implications
for coupling solution algorithms, e.g. one physics can be solved independent of the
other physics.

• Physics Code: Any computer code that solves a particular set of physics (or model)
equations. The terms “application”, or “physics application” will also be used here
to mean the same thing. A single physics code can be further classified as single-
physics in that it solves only one set of physics equations (e.g. heat conduction) or
multi-physics in that it internally solves more than one set of physics equations (e.g.
Navier-Stokes and energy conservation [4]).

• Coupled Physics Codes: Two or more physics codes that have been coupled together
to simulate a multi-physics system. Information is transferred between computer codes
during the solution process so that there is feedback between the components.

• Monolithic vs. Partitioned: Refers to algorithms used to effect a solution to a
multi-physics system comprising two or more physics codes. These terms come from
work done in the area of fluid/structure interaction [7, 15]. In this community, solu-
tion strategies are classified as either monolithic or partitioned. Monolithic refers to
using a single solver for the complete set of coupled physics equations with time step-
ping performed synchronously at each time step. Monolithic approaches to coupling
typically employ fully implicit Newton schemes. Partitioned methods refer to using
the individual solvers of each physics application in asynchronous time advancement
schemes. Partitioned solvers tend to be blocked systems that involve explicit time
integration and/or operator splitting. It is critical to note that different partitioning
methods will produce different numerical solutions for a given set of transient multi-
physics equations for a given selection of time steps, no matter how tight the linear
and nonlinear tolerances are set in the individual (single-physics) solution algorithms.

• Numerical Solution Strategy: A general term that refers to the approach used
to obtain a solution to the combined physics equation sets. There are many different
facets to this topic and a host of related terms are used to describe different types or
different aspects of numerical solution strategies. Of particular interest here are terms
that describe specific strategies for solving coupled systems of algebraic equations, such
as “Newton” methods, “fixed-point” or “Picard” iteration, “coupled block techniques”,
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“nonlinear elimination”, “Multi-level Newton” methods, and “Jacobian-Free Newton-
Krylov (JFNK)” methods. It is critical to note that any of these methods will produce
the same numerical solution if the various solution tolerances are made tight enough
and the overall solution strategy is monolithic. Only the rates of convergence and the
cost per iteration vary between the different solution methods.

• Consistency: A consistent solution is one where all quantities of interest are eval-
uated using the same global state. Accurate determination of solution convergence
requires consistency. Consistency is automatic for fully coupled implicit methods but
must be enforced as an additional step for numerical solution strategies that lag or
asynchronously update pieces of the overall solution.

• Conservation: Most equation sets used as a basis for computing the state variables
in physics codes are derived as statements about the conservation of some important
quantity, e.g. mass, momentum, or energy. Here we are particularly interested in
the transfer of these conserved quantities between coupled physics codes. Different
ways of transferring data between coupled physics codes can preserve or corrupt these
quantities of interest which in turn affect the stability and accuracy of the coupling al-
gorithm [17]. For example, for heat transfer across a fluid/structure interface, the total
energy leaving the fluid domain should be equal to the total energy entering the solid
structure. This aspect of conservation should not be confused with the conservation
properties of discretization schemes used for solving the partial differential equations
within the physics codes themselves.

• State Variables: Refer to the solution variables of a physics code. Also called the
unknowns or degrees of freedom (DOFs) that the physics application is solving for.
The union of state variables from all physics codes represents the solution state of the
coupled multi-physics system. We sometimes refer to this as the composite solution.

• Residual or Constraint Function: Refer to the set of equations that are solved to
compute the state variables. The term constraint equation comes from the optimization
community where the equations are used to constrain the objective function. The term
residual comes from the nonlinear solution community and represents a set of equations
driven toward zero through nonlinear iterations to approach a solution.

• Response Function: Refers to a quantity of interest that a simulation is used to
predict. The response function can be the state variables themselves but is more
commonly a post-processed set of values derived from the state variables and other
independent application parameters (e.g. flux, lift, max stress, etc.).

• Transfer Function: Refers to a function (or set of equations) used to map data
(state, parameter and response function data) from one application into a form that is
accepted as input for another application. Transfer functions perform the process of
communication between different single-physics codes.
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Chapter 2

General Formulation for
Multi-physics Coupling

This chapter provides a rigorous general mathematical description of a multi-physics coupled
problem. Appendix A defines the relevant mathematical notation taken from set theory. The
first section describes a single-physics application and the second section expands on this to
describe an arbitrary set of physics applications coupled together. Chapter 3 will simplify
this model and give concrete examples of coupling strategies and solution techniques. If you
find yourself getting bogged down in the math in this chapter, we recommend you move on
to Chapter 3 to get a feel for the math from the simplified examples.

2.1 Single-physics Application

We start by defining a general expression for the mathematical equations in any nonlinear
single-physics application.

f(ẋ, x, {pl}, t) = 0 (2.1)

where

x ∈ Rnx is the vector of state variables (unknowns being solved for),
ẋ = ∂x/∂t ∈ Rnx is the vector of derivatives of the state variables with respect to time,
{pl} = {p0, p1, . . . , pNp−1} is the set of Np independent parameter sub-vectors,
t ∈ [t0, tf ] ∈ R1 is the time ranging from initial time t0 to final time tf ,

and where we will call

f(ẋ, x, {pl}, t) : R
(

2nx+
(∑Np−1

l=0 npl

)
+1
)
→ Rnx

the “residual” or “constraint” equations of the physics code.
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Equation 2.1 describes a set of nx nonlinear equations, f , that are used to solve for nx state
variables x. Users can set independent parameters listed here in the form of Np subvectors
{pl} in the simulation where npl is the size of parameter subvector pl. The simulation could
be transient, requiring information on the time and time derivative, t and ẋ, respectively, or
it could be steady-state.

For a steady-state simulation, equation 2.1 simplifies to

f(x, {pl}) = 0. (2.2)

In many situations the end use of a simulation is to compute one or more quantities of
interest, gj, here called a response function. For Ng response functions we can express the
associated set of response-functions as a vector:

gj(ẋ, x, {pl}, t) = 0, for j = 0, . . . , Ng − 1 (2.3)

where

gj(ẋ, x, {pl}, t) : R
(

2nx+
(∑Np−1

l=0 npl

)
+1
)
→ Rngj is the jth response function.

For example, suppose we want to find the total heat flux through a boundary Γ of a concrete
slab Ω. The physics of heat transfer in a solid is described by a partial differential equation
for energy conservation using a Fourier closure model [4] for the heat flux, q = −k∇T ,
where k is the thermal conductivity. After discretizing the partial differential equation over
domain Ω, we construct a set of nx nonlinear equations, f(x), in terms of nx temperatures
(i.e. the state variables) defined on Ω. After solving the equations for the temperatures, a
post processing step computes our quantity of interest, g, which is the total heat flux through
surface Γ by integrating the heat flux over the surface

g =

∫
Γ

n · (−k∇x). (2.4)

Typically, the response functions are calculated as a post processing step, but they can
also be added as extra state variables and computed as part of the solve. We will address
this more in the following sections.

2.2 Extension to Multi-physics

We now proceed to describe a coupled set of Nf single-physics applications. Here the inde-
pendent parameters for a single-physics application may now be dependent on state variables
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and parameters from other applications. To express this mathematically in a sufficiently gen-
eral way, the parameter vector from a single-physics application, {pl}, is now split into (a)
parameters that are dependent on other application data, {zk}, and (b) the remaining in-
dependent parameters, redefined now as {pl}. In the following, {zi,k} is the set of data (Nzi

sub-vectors) that is transferred to application i.

The constraint (or residual) equations for physics application i are now defined as

fi(ẋi, xi, {zi,k}, {pi,l}, t) = 0, for i = 0, . . . , Nf − 1, (2.5)

where

xi ∈ Rnxi is vector of state variables for application i,
ẋi ∈ Rnxi is vector of derivatives of the state variables for application i with respect to time,
{zi,k} = {zi,0, zi,1, . . . , zi,Nzi−1} is the set of Nzi coupling parameter sub-vectors for applica-

tion i,
{pi,l} = {pi,0, pi,1, . . . , pi,Npi−1} is the set of independent parameter sub-vectors for applica-

tion i,
t ∈ [t0, tf ] ∈ R1 is time ranging from initial time t0 to final time tf , and

fi(ẋi, xi, {zi,k}, {pi,l}, t) : R
(

2nxi+
(∑Nzi−1

k=0 nzi,k

)
+
(∑Npi−1

l=0 npi,l

)
+1
)
→ Rnxi is the constraint

equations for application i.

There now exists an extra set of requirements for transferring the parameter information,
zi,k, between codes. These transfer functions can be simple post-processing that uses solution
and parameter values from the other applications or it can be something as complex as a
complete nonlinear solve. We define the inter-application transfer functions, ri,k for physics
application i, as

zi,k = ri,k({xm}, {pm,n}), for i = 0, . . . , Nf − 1, k = 0, . . . , Nzi − 1, (2.6)

where

{zi,k} = {zi,0, zi,1, . . . , zi,Nzi−1} is the set of Nzi coupling parameter sub-vectors for physics
application i,

{xm} = {x0, x1, . . . , xNf−1} is the set of state variables for all applications,
{pm,n} = {p0,0, . . . , p0,Np0−1, . . . , pNf−1,0, . . . , pNf−1,Npn−1} is the set of all coupling parame-

ter sub-vectors for all applications, and

ri,k({xm}, {pm,n}) : R

(∑Nf−1

m=0

(
nxm+

∑Npm−1
n=0 npm,n

))
→ Rnzi,k is the transfer function for appli-

cation i for coupling parameter k.

In essence, for physics i we will have a number of transfer operators equal to Nzi . Each
transfer operator ri,k(. . .) evaluates single parameter sub-vector zi,k. Strategies on how to
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aggregate the evaluation of the transfer operators are usually dictated by software design con-
straints, data transfer requirements for the multiple code couplings supported, and efficiency
considerations.

Some brief comments about transfer functions:

• In terms of software implementation, there are many ways to handle transfers of in-
formation between codes. The transfer functions, r, are only a mathematical concept
that explicitly demonstrates the transfers. Software implementations could implement
this directly (we chose to show transfer in this fashion because it translates readily
to code). An alternative and equally valid way to transfer information is to directly
write the transfer functions into the residual operator f . We typically do this when
the code already does the post-processing during the solution step. Yet another way to
implement transfers is to treat the transfer operator as an entirely new single-physics
application by implementing an additional f . In this case, simple transfer mappings,
r, are used to copy the data between residual functions.

In our experience, we usually reserve the transfer operators r for simple mappings and
for anything that requires a linear or nonlinear solver, we implement the transfer as an
additional physics application f .

• In practice, the sets for {xm} and {zm,n} for a particular transfer function r are very
sparse. They usually take the solution and parameters from one physics application
and generate values for another physics application.

• The union of all transfer operators defines an implicit dependency graph between the
coupled physics applications. Explicitly exposing this information can help determine
nonzero sensitivity blocks for implicit solution techniques.

• We could extend the transfer operators r to be dependent on time (ẋm and t) as well.
We have chosen to avoid that for now as a number of complications arise.

We now define response functions for the multi-physics case. The jth response function
associated with the multi-physics system is defined as

gj({ẋi}, {xi}, {zi,k}, {pi,l}, t) = 0, for j = 0, . . . , Ng − 1 (2.7)

where {xi}, {zi,k}, {pi,l}, and t are defined in (2.5), (2.6), and

{ẋi} = {ẋ0, ẋ1, . . . , ẋNf−1} is the set of state variable time derivatives for all applications,

gj({ẋi}, {xi}, {zi,k}, {pi,l}, t) : R

(∑Nf−1

i=0

(
2nxi+

(∑Nzi−1

k=0 nzi,k

)
+
(∑Npi−1

l=0 npi,l

))
+1

)
→ Rngj is re-

sponse function j.

Note that in many cases, response functions, gj for a multi-physics system can correspond
exactly to the input parameters zm,n of one or more of the individual applications in the multi-
physics system. While we have explicitly differentiated between the response functions from
one or more codes and the inputs to another code, in practice they can be the same.
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The fully coupled set of physics applications can now be expressed with the following set
of equations

f̂(ˆ̇x, x̂, p̂, t) = 0, (2.8)

where

ˆ̇x =
[
ẋ0, . . . , ẋi, . . . , ẋNf−1

]
,

x̂ =
[
x0, . . . , xi, . . . , xNf−1

]
,

p̂ =
[
p0,0, . . . , p0,Np0−1, . . . , pi,0, . . . , pi,Npi−1, . . . , pNf−1,0, . . . , pNf−1,NpNf−1

]
,

f̂ =


f0(ẋ0, x0, {r0,k({xm}, {pm,n})}, {p0,l}, t))

...
fi(ẋi, xi, {ri,k({xm}, {pm,n})}, {pi,l}, t))

...
fNf−1(ẋNf−1, xNf−1, {rNf−1,k({xm}, {pm,n})}, {pNf−1,l}, t))

 .
(2.9)

We call these two equations the General Model for multi-physics coupling. This is the
most flexible model for multi-physics coupling supported in LIME and allows for any im-
plicit strongly coupled solution method for both transient and steady-state problems. Sim-
plifications of this model can be applied for weak couplings and/or explicit and semi-
implicit/operator split time stepping strategies.

If application codes cannot write to the general interface, the available solution methods
are limited by what the application can accept from and expose to the coupling driver. For
example if the application cannot accept ẋ, then the multi-physics coupling algorithm can
no longer drive the time integration algorithm and requires the internal application to use
its own internal time integrator. In this case, the general model reduces to f̃(x̃, p̃) = 0. The
driver can still pass in a time step size to take as a parameter, but the time integration is
now internal to the application.

Note that in the general model, the internal coupling parameters/transfer functions are
not exposed to the solvers. These are internal parameters and functions that handle the
coupling.

2.3 Solution Strategies for the General Model

This section describes the basic algorithms used to solve the general model assuming that it
is composed of nonlinear equations. The goal is not to present an exhaustive list of solution
strategies, but to describe the typical requirements that a physics code must support for
a particular solution method. For a thorough analysis of nonlinear solution techniques see
[6, 11, 19]. The information in this section should be used to help determine the best
coupling strategy for a particular set of applications or to select the most practical approach
given current legacy software constraints. Specific examples of coupling methods are given
in section 3.2.
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The equations that compose the general model can be generated from any number of
sources. For example, it could be a set of ordinary differential equations (ODEs), a discretized
set of partial differential equations (PDEs), a set of algebraic equations, or a set of differential
algebraic equations (DAEs). Once the spatial and temporal discretizations are applied,
equation 2.8 (for a single time step) reduces to a simpler set of nonlinear equations expressed
entirely in terms of the state variables and the independent parameters.

f̄(x̄, p̄) = 0

where x̄ ∈ Rnx̄ is the state vector consisting of the union of all application state vectors
that are exposed through the general model interface, p̄ ∈ Rnp̄ is the independent parameter
vector consisting of the union of all application parameter vectors that are exposed through
the general model interface, and f̄ : Rnx̄+np̄ → Rnx̄ is the residual of the nonlinear equations.

The first solution method we mention is a stationary iterative method whose variants
are known by multiple names: Picard iteration, nonlinear Richardson iteration, successive
substitution or fixed-point iteration. Here we do not discuss differences among these variants
and will refer to them collectively as Picard iteration methods. The general procedure is
shown in Algorithm 1, where G : Rnx̄ → Rnx̄ is what we call a contraction mapping on x̄. The

Algorithm 1 Picard iteration for a single-physics.

Require: Initial guesses x̄
(0)
0 :

k = 0
while not converged do
k = k + 1
x̄(k) = G(x̄(k−1))

end while

contraction mapping is only a function of the previous iterate value. k is the iteration count
in the algorithm. The algorithm is generally simple to implement and the mapping is usually
very cheap to perform, typically only requiring an evaluation of the constraint equations,
f̄(x̄). In practice this method is usually very robust, although there are requirements for
stability of the algorithm [14, 19] that can be violated in some settings. The major drawback
is that the convergence rate is q-linear in the norm [6]. Thus it may take many iterations to
converge to a stringent tolerance.

The primary alternative to the Picard iteration class of methods are various methods
based on Newton’s method. The basic algorithm for a Newton method is described by
Algorithm 2, where J̄(x̄(k)) is the Jacobian matrix, J̄ = ∂f̄

∂x̄
, evaluated using the state variables

x̄(k) at iterate k. The advantages of Newton methods include a q-quadratic convergence rate
in the error norm and the stability of the algorithm [11]. Although robustness issues can
arise, these can be addressed by leveraging globalization techniques such as line search and
trust region methods [5, 6, 18, 21].

The primary drawback to Newton’s method is the cost and difficulty of computing the
full Jacobian matrix. In the context of LIME and the general model expressed above, we
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Algorithm 2 Newton’s method.

Require: Initial guesses x̄
(0)
0 :

k = 0
while not converged do
k = k + 1
x̄(k) = x̄(k−1) − J̄−1(x̄(k−1))f̄(x̄(k−1))

end while

note that the Jacobian matrix requires model sensitivities for each application with respect
to the state variables for each other application, as well as its own

J̄ =


J̄0,0 . . . . . . . . . J̄0,Nf−1

...
. . .

...
...

J̄i,0 . . . J̄i,i . . . J̄i,Nf−1
...

...
. . .

...
J̄Nf−1,0 . . . . . . . . . J̄Nf−1,Nf−1

 (2.10)

where

J̄i,i =
∂f̄i
∂x̄j

=
∂fi
∂zi,k

∈ Rnxi×nxi , for i = 0 . . . Nf − 1

J̄i,j =
∂f̄i
∂x̄j

=

Nzi−1∑
k=0

∂fi
∂zi,k

∂ri,k
∂xj

∈ Rnxi×nxj , for i = 0 . . . Nf − 1, j = 0 . . . Nf − 1, i 6= j,

and the diagonals J̄i,i are typically nonsingular matrices (but may not always be) but the
non-diagonal blocks J̄i,j (i 6= j) are typically rectangular matrices.

Note that even if each individual application were to implement a Newton-based solve,
this would only supply the Jacobian diagonal blocks J̄i,i in equation 2.10. The off-diagonal
sensitivities provided by the transfer functions would still be missing. One way to address the
off-diagonal blocks is to leverage an approximate Newton-based method called the Newton-
Krylov approach. When using Newton-Krylov solvers [12] we avoid the cost of constructing
an explicit Jacobian. Newton-Krylov solvers build up an approximation to the solution of
the Newton system by applying Jacobian-vector products to construct a Krylov subspace,
K(J̄ , v) ≡ span{v, J̄v, J̄2v, . . .}. By requiring only the Jacobian-vector products, J̄v, to solve
the Newton system, the Jacobian need not be explicitly formed. While an explicit Jacobian
matrix could be used, the Jacobian-vector product can be computed to machine precision
using automatic differentiation [3, 9] or approximated by directional differences using only
residual evaluations

J̄v =
f̄(x̄+ εv)− f(x̄)

ε
. (2.11)

Here, v ∈ Rnx̄ is a Krylov vector and ε ∈ R1 is a perturbation parameter. This method elim-
inates the burdensome and error-prone procedure of hand coding an analytic Jacobian and
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reduces the runtime memory footprint since the Jacobian is not explicitly stored. Example
applications using Jacobian-free Newton-Krylov can be found in [10] and [12].

2.4 Classification of Code Coupling Capabilities

This section ties the general model described in the previous section (equations 2.5, 2.6, and
2.7) to actual application couplings. The goal here is to provide a common language that
can be used to describe how a particular application code can interact with a multi-physics
coupling framework. Each coupling classification can support a specific set of algorithms
based on how much information can be passed between the application and coupling driver.
As more information is exposed between the application and coupling driver a wider variety
of coupling algorithms can be applied. The various levels of classification are now listed
progressing from least invasive to most invasive (where p is an aggregation of coupling vari-
ables z to other physics as well as other general non-coupling parameters p used to drive
optimization, UQ and other parameter studies).

• Time-step (or Steady-state) coupling elimination model: Elimination of the
entire state only exposing information for coupling in the form of a response func-
tion, p→ g(p). This is how standard “Black-Box” optimization software interfaces to
applications [2].

• Time-step (or Steady-state) state elimination model: Elimination of time-step
nonlinear system p→ x̂(p). This method does not assume ∂x̂

∂p
is available. The coupling

equation/function to other physics is externally defined. Could be coupled to other
physics with nonlinear Gauss-Seidel (i.e. Picard iteration) [14]. Works for implicit
and explicit internal time integration methods (internally implemented in the closed
application code).

• Time-step (or Steady-state) fully implicit model: Exposes the time-step (or

steady-state) nonlinear system f̂(x̂, p) = 0. We assume that ∂f̂
∂x̂

exists and we have an
operator (does not have to be explicitly formed) and a preconditioner for it. Allows
full Newton (and variations thereof) to be used in time-step. If transient, the time
step size is passed in as a parameter, but the time derivative cannot be supplied by
the coupling driver. Therefore, only an internally defined time integrator can be used
with the application for transient simulations. This works for implicit time integration
methods only.

• Transient explicitly defined ODE model: The transient model equations are
exposed explicitly as a set of ordinary differential equations (ODEs) of the form ẋ =
f(x, p, t) where the user evaluates f given the values of x, t, and p from the multi-
physics driver. The multi-physics driver code performs the time integration using any
explicit or implicit time integration strategy available. The basic call-back routine
minimally requires the computation of f . If implicit methods are used, the Jacobian,
W = αI + β ∂f

∂x
, must also be supplied as well as its preconditioner (in operator form).
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Name Required Required Optional Time Integration
Inputs Outputs Outputs Control

Coupling elimination p g or z Internal
model

State elimination p x Internal
model

Fully implicit x, p f W , M Internal
time-step model

Transient explicitly x, p, t f W , M External
defined ODE model

Transient fully ẋ, x, p, t f W , M External or
implicit DAE model Internal

Table 2.1. Classifications of code couplings. Table pro-
gresses from least invasive (top) to most invasive interface
(bottom).

• Transient fully implicit DAE model: A fully implicit differential algebraic equation
(DAE) model (the general model) of the form f(ẋ, x, t, p) = 0 is supported by the
application code. Here we assume that the code can supply f and W where W =
α∂f

∂ẋ
+ β ∂f

∂x
and a preconditioner M for use in the resulting Newton iterations. This

allows for any implicit or explicit solution method. This is the absolute most flexible
code integration model. The coupling driver can choose any external time integration
technique and any nonlinear solution technique since it can provide ẋ, x, and t to the
application. The application provides the necessary state sensitivity information for a
Newton-based approach.

The levels of invasiveness are summarized in Table 2.1 by classification. Note that ap-
plications can support multiple levels of invasiveness (the software implementation of the
ModelEvaluator concept - see LIME users guide - was designed to support all levels). Typ-
ically, applications start with the coupling elimination model and then expand down the
chain as needed to balance convergence robustness with computational efficiency.
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Chapter 3

Example Couplings and Solution
Strategies

This chapter discusses several examples of coupled systems and the solution techniques
that can be applied in each case. The first section shows simple couplings where the time
integration is handled by the application and only the coupled nonlinear equations for a
given time-step are solved.

3.1 Examples of Mathematical Models for Different

Types of Coupling

Broadly speaking there are three types of coupled systems that are widely studied through
the scientific community: multi-physics systems within a shared spatial domain, interfacially
coupled systems, and network systems. Of course real physical systems may consist of a
combination of more than one of these types. Our description of the coupled systems in
this section is for illustration purposes only and is but one of a myriad of possibilities. A
very simplified model is used to demonstrate shared spatial domains, a more complex model
is used to demonstrate interfacially coupled systems and a fairly complex model is used to
demonstrate network systems. In this way we can progress from simple examples to more
complex couplings.

The examples in this section are limited to either steady-state problems or transient
problems where a suitable implicit time discretization method has been chosen. In the latter
case, the methods discussed here are then applicable to the implicit nonlinear equations
produced for each time step. For simplicity in introducing multi-physics coupling, we will
assume the transient terms are already discretized.

3.1.1 Shared Spacial Domain Model Example

The first class of coupled multi-physics systems discussed here consist of multiple interacting
physics in a shared spatial domain. A familiar example is fluid flow and heat transfer (see
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Figure 3.1(a)), where several conservation laws (i.e. mass, momentum and energy) simulta-
neously govern the evolution of the state variables (e.g. pressure, velocity, and temperature).
Because the equations for conservation of momentum and mass are so strongly coupled, fluid
flow problems are almost universally solved within one code, even though several distinct
equation sets are being solved. However, this is not a requirement and there are other
problems of interest where having separate application codes for the different physics is the
norm.

Systems of this type are often modeled by a set of coupled, possibly nonlinear, partial
differential equations over a given domain. Although each application shares the same phys-
ical domain, they could potentially have a completely different spatial discretization. After
discretization in space, a generic two-component multi-physics system can be represented by
the coupled nonlinear equations

f0(x0, z0,0) = 0

f1(x1, z1,0) = 0

z0,0 = r0,0(x1) = x1

z1,0 = r1,0(x0) = x0

⇒

f̄(x̄) =

[
f0(x0, r0,0(x1))
f1(x1, r1,0(x0))

]
=

[
f0(x0, x1)
f1(x1, x0)

]
= 0.

(3.1)

Here x0 ∈ Rnx0 and x1 ∈ Rnx1 represent the discretized solution variables for each physical
system, and f0 : Rnx0+nx1 → Rnx0 and f1 : Rnx1+nx0 → Rnx1 represent the corresponding
discretized residuals. Here we have assumed that the equations have the same spatial dis-
cretization, and thus the transfer functions, ri,0(. . .), are trivial transfers (direct copies) of
the solution (state variables) from one application to another (i.e. ri,0(xj) = xj). Here nx0

and nx1 are the number of state variables for physics 0 and physics 1 respectively.

3.1.2 Interface Coupling Model Example

A second type of coupling is interfacial coupling. Here we have two or more physical
domains each containing different physical processes, but which share a common interfacial
surface. (Note that coupling through separate surfaces at a distance - e.g. radiation heat
transfer, can be considered a variation of this type of coupling, but is not discussed here). The
physical processes are independent in each domain apart from the interaction at the interface.
One example is the modeling of a reentry vehicle as it travels through the atmosphere (see
Figure 3.1(b)). The flight of the vehicle through the atmosphere creates a pressure load on
the shell of the vehicle which in turn affects the structural dynamics of the interior of the
vehicle. Here the two domains are the fluid exterior to the vehicle (compressible, turbulent
fluid flow) and the interior of the vehicle (structural dynamics) coupled through the shell of
the vehicle (interface).

In systems of this type the physics in each domain is typically modeled as a set of
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partial differential equations that are coupled through boundary conditions. Although the
applications share a common interfacial surface, the interface could have different spatial
discretizations for each. After spatial discretization, a generic two-component interfacially
coupled system can be represented as

f0(x0, z0,0) = 0,

f1(x1, z1,0) = 0,

z0,0 = r0,0(x1) 6= x1,

z1,0 = r1,0(x0) 6= x0,

⇒

f̄(x̄) =

[
f0(x0, r0,0(x1))
f1(x1, r1,0(x0))

]
= 0.

(3.2)

Here the transfer functions r0,0(. . .) : Rnx1 → Rnz0,0 and r1,0(. . .) : Rnx0 → Rnz1,0 represent
the interfaces between systems 0 and 1 and typically map their argument to a much lower
dimensional space, i.e., nz1,0 � nx0 and nz0,0 � nx1 . In this case the discrete residuals
f0(. . .) : Rnx0+nz0,0 → Rnx0 and f1(. . .) : Rnx1+nz1,0 → Rnx1 only depend on the other solution
variables through the transfer functions r0,0 and r1,0.

3.1.3 Network Systems Model Example

The third type of coupling considered here is that of network systems. In this case
a collection (possibly a large number) of separate domains are coupled together through a
series of low-dimensional (typically lower fidelity) interactions. This is a remarkably common
type of problem that appears in many different technical settings when modeling large or
complex engineering systems. One example of particular relevance to the authors is the
systems-level analysis of an operating nuclear power plant. As conceptually illustrated in
Figure 3.1(c), the overall plant can be modeled as consisting of many distinct components
(pumps, reactors, turbines, heat exchangers, etc.) that are coupled together through a series
of connections (or vertices). The state of each unit evolves according to the particular nature
of its own physics, but also according to the mass and energy balances at its connections.
These connections in turn are assumed to satisfy a small number of consistency constraints,
such as overall mass, momentum, and energy conservation.

The fidelity of the components in a network system can vary, from high-fidelity single
and multi-physics models to low fidelity compact models. Thus the overall mathematical
structure of such systems can take many forms, but have the unifying feature that the
network model must be discrete in space, i.e., either a system of ordinary or differential-
algebraic equations (for time-dependent problems) or a system of algebraic equations (for
steady problems). The models for each system component could be a single or multi-physics
system of partial differential equations or a set of algebraic/ordinary-differential/differential-
algebraic equations. To mathematically represent such a system, consider the simple network
schematic described by Figure 3.2, consisting of three vertices (or nodes) connecting together
two components or devices.
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Component 0 will be assigned as physics application 0 and component 1 will be assigned
as physics application 1. The network vertices are used to couple the components together
by enforcing conservation between components. For example, vertex 1 could enforce that
the total energy leaving component 0 is equal to the total energy entering component 1. For
demonstration purposes assume that the equation sets at vertices 0, 1, and 2 are non-trivial
and therefore are each assigned as an individual physics application. Vertex 0 is assigned as
physics application 2, vertex 1 is assigned as physics application 3, and vertex 2 assigned as
physics application 4. Each vertex in the network is thus associated with its own set of state
variables (x2, x3, and x4). In a plant balance, these might represent, for example, species
mass flow rates (or concentrations), pressure, and temperature (or enthalpy).

Each component in the network will have dependencies on the state variables of the
vertices connected to that particular component. For example, the constraint equations
for component 0, f0 are dependent on the state variables of the vertices 0 and 1 (e.g.
f0(x0, z0,0, z0,1)). Similarly, each vertex equation set will have dependencies on the compo-
nents connected to that vertex. For example, vertex 0 will have a dependency on component
0 (i.e. f2(x2, r2,0(x0))). In terms of the general model, the coupled system of constraint
equations, is represented mathematically as

f0(x0, z0,0, z0,1) = 0,

f1(x1, z1,0, z1,1) = 0,

f2(x2, z2,0) = 0,

f3(x3, z3,0, z3,1) = 0,

f4(x4, z4,0) = 0.

(3.3)

The coupling parameters are determined from the network connectivity as described above.
One extra assumption is made in that the transfer functions for the components are usually
trivial and that they map directly into the state variables at the vertices (e.g. r0,1(x2) = x2).
No simplifying assumptions are made for transfer functions from used in the vertex equation
sets. This results in the following set of transfer functions

z0,0 = r0,0(x2) = x2,

z0,1 = r0,1(x3) = x3,

z1,0 = r1,0(x3) = x3,

z1,1 = r1,1(x4) = x4,

z2,0 = r2,0(x0),

z3,0 = r3,0(x0),

z3,1 = r3,1(x1),

z4,0 = r4,0(x1).

(3.4)

Inserting the coupling parameter equations 3.4 into the general model 3.3 yields the final
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set of equations

f0(x0, x2, x3) = 0,

f1(x1, x3, x4) = 0,

f2(x2, r2,0(x0)) = 0,

f3(x3, r3,0(x0), r3,1(x1)) = 0,

f4(x4, r4,0(x1)) = 0.

(3.5)

These equations could, for example, represent high-fidelity PDE models of process operations
equipment which determine for example the outlet species mass flow rates as a function of
supplied inlet mass flow rates supplied as boundary conditions.

3.1.4 Summary of Coupling Model Examples

The above models demonstrate how to map some generic multi-physics couplings (shared
domain, interfacial, and network) to the general model. We stress that these are only exam-
ples and that the mapping to the general model is one of many choices we could have used.
The mapping is very problem specific. Each coupling is unique.

Often in computational settings, all three types of coupled systems may occur in a given
coupled system simulation. Therefore it is important to leverage nonlinear solution algo-
rithms that are optimized for each type of coupled system and strength of coupling. An
overview of available approaches is provided in the following section.
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(a) Multi-physics coupling in a shared spatial domain

(b) Interfacial coupling (c) Network coupling

Figure 3.1. Three types of coupled systems. (a) Multi-
physics coupling of two-dimensional fluid flow (black stream-
lines) and temperature (color gradient). (b) Interfacial cou-
pling between turbulent air flow and structural dynamics
through the shell of the vehicle (reprinted with permission
from [8]). (c) Network coupling of a nuclear plant simulation.
Each unit operation (turbine, pump, reactor core, etc...) is ei-
ther a low-fidelity lumped parameter model or a high-fidelity
PDE simulation.

Figure 3.2. A simple two component network example.
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3.2 Various Solution Strategies Demonstrated on Model

Examples

When discussing solution strategies for the types of coupled systems presented in the pre-
vious section, one must distinguish between coupled physics and coupled simulation codes.
In principle, a single simulation code could be written to simulate any of these types of
coupled multi-physics systems. However, an important alternative is for multiple simulation
codes to be coupled in some fashion to simulate the multi-physics system. In this case each
simulation code separately approximates the solution to one or more sets of physics in the
coupled system. This is the situation that is of particular relevance to LIME. When devel-
oping a new multi-physics application there is an important advantage of this approach: it
enables one to leverage existing simulation code technology that may represent many man-
years of development work. Furthermore, in many cases domain-specific knowledge is built
into existing simulation codes for specialized physics that may be difficult or impossible to
generalize when incorporating new physics. However, there are problems that can arise with
this approach. For example, it may be difficult to extract the relevant derivative informa-
tion needed for Newton-based solution algorithms (which, as mentioned in section 2.3, have
convergence properties that are important for many problems). For this reason, numerous
nonlinear solution strategies that try to obtain Newton-like efficiency and robustness (while
minimizing the amount of derivative information necessary) have been studied [10]. In this
section we provide a brief overview of some of these methods that are more strongly suited
to the types of coupled systems discussed previously.

3.2.1 Forward Coupling

A significant simplification occurs for coupled systems when the system is only forwardly
coupled, i.e., the two-component shared-domain multi-physics system (3.1) becomes

f0(x0) = 0,

f1(x1, x0) = 0,
(3.6)

while the two-component interfacially coupled system (3.2) becomes

f0(x0) = 0,

f1(x1, r1,0(x0)) = 0.
(3.7)

In both cases, the solution to the first application x0 can be solved for independently and
substituted into the remaining equations. This allows any nonlinear solver method to be
separately applied to the first and remaining systems with no solver communication between
them. Of course, this setting is clearly not generic, but forms the basis of the Picard method
when treating the fully coupled system.
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3.2.2 Picard Iteration

Picard iteration, also known as successive substitution, is a simple numerical method for ap-
proximating the solution to a fully coupled system (3.1), (3.2) or (3.5). It works by solving
each component in the coupled system for its solution variables, treating the other variables
as fixed quantities. This is repeated in a round-robin fashion until some measure of conver-
gence is achieved (typically when the size of the change is small for the solution variables
from iteration to iteration, and/or the size of the residual of each component evaluated at
the most current solution values). For example, an algorithm for applying this technique to
the two-component interfacially coupled system (3.2) is displayed in Algorithm 3. As with

Algorithm 3 Picard iteration for the two-component interfacially coupled system (3.2)

Require: Initial guesses x
(0)
0 and x

(0)
1 for x0 and x1:

k = 0
while not converged do

k = k+1
Solve f0(x

(k)
0 , r0,0(x

(k−1)
1 )) = 0 for x

(k)
0

Solve f1(x
(k)
1 , r1,0(x

(k)
0 )) = 0 for x

(k)
1

end while

forward coupling, any solver method can be used for each of the single-component solves
in Algorithm 3. The problem with this approach is that the convergence rate is slow (lin-
ear), and needs additional requirements on f0 and f1 to converge [10]. Picard methods are
attractive when the different components are only weakly coupled or when there is a very
good initial guess and/or only an approximate solution is needed. For example, a Picard
method would tend to work well to solve for the implicit time-step update in a transient
predictor/corrector method (where the explicit predictor gives a good initial guess and the
implicit corrector system only needs to be converged a little to guarantee stability).

3.2.3 Newton’s Method

Due to the slow rate of convergence and lack of robustness of Picard iteration, Newton’s
method is often preferred for simulating coupled systems. However its implementation is
significantly more complicated and potentially costly. At each iteration, it requires solving
the following Newton systems:[

∂f0

∂x0

∂f0

∂x1
∂f1

∂x0

∂f1

∂x1

][
∆x

(k)
0

∆x
(k)
1

]
= −

[
f0(x

(k−1)
0 , x

(k−1)
1 )

f1(x
(k−1)
1 , x

(k−1)
0 )

]
(3.8)

for shared-domain multi-physics coupling,[
∂f0

∂x0

∂f0

∂z0,0

∂r0,0

∂x1
∂f1

∂z1,0

∂r1,0

∂x0

∂f1

∂x1

][
∆x

(k)
0

∆x
(k)
1

]
= −

[
f0(x

(k−1)
0 , r0,0(x

(k−1)
1 ))

f1(x
(k−1)
1 , r1,0(x

(k−1)
0 ))

]
(3.9)
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for interfacial coupling, and

∂f0

∂x0
0 ∂f0

∂x2,0

∂f0

∂x2,1
0

0 ∂f1

∂x1
0 ∂f1

∂x2,1

∂f1

∂x2,2
∂f2

∂z2,0

∂r2,0

∂x0
0 ∂f2

∂x2
0 0

∂f3

∂z3,0

∂r3,0

∂x0

∂f3

∂z3,1

∂r3,1

∂x1
0 ∂f3

∂x3
0

0 ∂f4

∂z4,0

∂r4,0

∂x1
0 0 ∂f4

∂x4




∆x

(k)
0

∆x
(k)
1

∆x
(k)
2

∆x
(k)
3

∆x
(k)
4

 =

−


f0(x

(k−1)
0 , x

(k−1)
2 , x

(k−1)
3 )

f1(x
(k−1)
1 , x

(k−1)
3 , x

(k−1)
4 )

f2(x
(k−1)
2 , r2,0(x

(k−1)
0 ))

f3(x
(k−1)
3 , r3,0(x

(k−1)
0 ), r3,1(x

(k−1)
1 ))

f4(x
(k−1)
4 , r4,0(x

(k−1)
1 ))

 (3.10)

for network coupling, where x
(k)
0 = x

(k−1)
0 +∆x

(k)
0 , and so on. Numerous methods are available

for estimating the cross-physics derivatives appearing in these systems [10].

3.2.4 Nonlinear Elimination

The disadvantage of the full Newton approach is that it requires forming and solving the
fully-coupled Newton systems (3.8), (3.9), and (3.10), making it very difficult to use nonlinear
solvers, linear solvers, and preconditioners that are specialized to each system component.
An alternative approach that maintains the quadratic convergence of Newton’s method, but
allows for greater flexibility in the choice of solver for each system component is nonlinear
elimination. Nonlinear elimination has been used in circuit simulation [16, 23] (also called the
“Two-level Newton” technique in the circuit community), aerostructures [29], and chemically
reacting flows [28]. A theoretical analysis with convergence proofs can be found in [13, 27].

The nonlinear elimination approach works by eliminating solution variables from each
system component, relying on the Implicit Function Theorem. For example, the equation
f0(x0, z0,0(x1)) = 0 for an interfacially coupled system can be thought of as an implicit
equation defining x0 as a function of x1, which can be numerically evaluated using any
appropriate nonlinear solver method. We then apply a nonlinear solver method to the
reduced system

f1(x1, z1,0(x0(x1))) = 0. (3.11)

Applying Newton’s method to this system requires computation of the sensitivity ∂x0/∂x1,
which by the Implicit Function Theorem is

∂x0

∂x1

= −
(
∂f0

∂x0

)−1
∂f0

∂z0,0

∂r0,0

∂x1

. (3.12)

Note this linear system involves the same matrix as Newton’s method applied to the system
f0(x0, z0,0(x1)) = 0 with x1 held fixed, with nz0,0 right-hand-sides. Clearly this approach

23



is only effective when nz0,0 is reasonably small, and therefore is typically not appropriate
for shared-domain multi-physics problems such as (3.1). The Newton system required for
Newton’s method applied to the reduced system (3.11) is(

∂f1

∂z1,0

∂r1,0

∂x0

∂x0

∂x1

+
∂f1

∂x1

)
∆x

(k)
1 = −f1(x

(k−1)
1 , z1,0(x

(k)
0 )). (3.13)

The complete algorithm for a Newton-based nonlinear elimination method for interfacial
coupling is displayed in Algorithm 4. Note that one could avoid the sensitivity computations

Algorithm 4 Newton-based nonlinear elimination for two-component interfacial coupling.

Require: Initial guesses x
(0)
0 and x

(0)
1 for x0 and x1

k = 0
while not converged do

k = k+1
Solve f0(x

(k)
0 , r0,0(x

(k−1)
1 )) = 0 for x

(k)
0

Compute
∂x

(k)
0

∂x
(k−1)
1

= − ∂f0

∂x0

−1 ∂f0

∂r0,0

∂r0,0

∂x
(k−1)
1

Solve

(
∂f1

∂r1,0

∂r1,0

∂x
(k)
0

∂x
(k)
0

∂x
(k−1)
1

+ ∂f1

∂x
(k−1)
1

)
∆x

(k)
1 = −f1(x

(k−1)
1 , r1,0(x

(k)
0 ))

x
(k)
1 = x

(k−1)
1 + ∆x

(k)
1

end while

of 3.12 by applying a Jacobian-free Newton-Krylov method [12] to the outer solve 3.13.

Nonlinear elimination is also effective for network problems such as (3.5). In this example,
both components will be eliminated (i.e. both x0 and x1 are eliminated), leaving just the
network vertex solve. More precisely, the equations f0(x0, x2, x3) = 0 and f1(x1, x3, x4) = 0
implicitly defines x0 as a function of x2, x3 and x1 as a function of x3, x4. This results in
the following reduced system to solve with Newton’s method

f2(x2, z2,0(x0(x2, x3))) = 0,

f3(x3, z3,0(x0(x2, x3)), z3,1(x1(x3, x4))) = 0,

f4(x4, z4,0(x1(x3, x4))) = 0.

(3.14)

The resulting Newton system at the kth iterate is
∂f2

∂x
(k−1)
2

+ ∂f2

∂z
(k)
2,0

∂z
(k)
2,0

∂x
(k−1)
2

∂f2

∂z
(k)
2,0

∂z
(k)
2,0

∂x
(k−1)
3

0

∂f3

∂z
(k)
3,0

∂z
(k)
3,0

∂x
(k−1)
2

∂f3

∂x
(k−1)
3

+ ∂f3

∂z
(k)
3,0

∂z
(k)
3,0

∂x
(k−1)
3

+ ∂f3

∂z
(k)
3,1

∂z
(k)
3,1

∂x
(k−1)
3

∂f3

∂z
(k)
3,1

∂z
(k)
3,1

∂x
(k−1)
4

0 ∂f4

∂z
(k)
4,0

∂z
(k)
4,0

∂x
(k−1)
3

∂f4

∂x
(k−1)
4

+ ∂f4

∂z
(k)
4,0

∂z
(k)
4,0

∂x
(k−1)
4


∆x

(k)
2

∆x
(k)
3

∆x
(k)
4

 =

−

 f2(x
(k−1)
2 , z

(k)
2,0 )

f3(x
(k−1)
3 , z

(k)
3,0 , z

(k)
3,1 )

f4(x
(k−1)
4 , z

(k)
4,0 )

 , (3.15)
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where the derivatives of the transfer functions, ∂z
∂x

, are needed. Using the transfer function
relations 3.4 along with the implicit function theorem, the required derivatives are given by

∂z2,0

∂x2

= −∂r2,0

∂x0

(
∂f0

∂x0

)−1
∂f0

∂x2

,

∂z2,0

∂x3

= −∂r2,0

∂x0

(
∂f0

∂x0

)−1
∂f0

∂x3

,

∂z3,0

∂x2

= −∂r3,0

∂x0

(
∂f0

∂x0

)−1
∂f0

∂x2

,

∂z3,0

∂x3

= −∂r3,0

∂x0

(
∂f0

∂x0

)−1
∂f0

∂x3

,

∂z3,1

∂x3

= −∂r3,1

∂x1

(
∂f1

∂x1

)−1
∂f1

∂x3

,

∂z3,1

∂x4

= −∂r3,1

∂x1

(
∂f1

∂x1

)−1
∂f1

∂x4

,

∂z4,0

∂x3

= −∂r4,0

∂x1

(
∂f1

∂x1

)−1
∂f1

∂x3

,

∂z4,0

∂x4

= −∂r4,0

∂x1

(
∂f1

∂x1

)−1
∂f1

∂x4

.

(3.16)

Note that z generally is a vector not a scalar. This implies that multiple inversions of
the application Jacobian are necessary to generate these derivative blocks. Codes could
leverage multivector support for inverting multiple right-hand-sides simultaneously. The
complete algorithm for a Newton-based nonlinear elimination method for network coupling
is displayed in Algorithm 5.

The above example shows only a single type of nonlinear elimination. Given a group of
multi-physics applications to couple, many variations and combinations of nonlinear elimi-
nation and other solution strategies can be employed to achieve a convergent system. The
approximate block Newton methods analyzed in [28] are a good example.
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Algorithm 5 Newton-based nonlinear elimination for two-component network coupling.

Require: Initial guesses x
(0)
0 , x

(0)
1 , x

(0)
2 , x

(0)
3 , and x

(0)
4 for x0, x1, x2, x3, and x4.

k = 0
while not converged do

k = k+1
Solve f0(x

(k)
0 , x

(k−1)
2 , x

(k−1)
3 ) = 0 for x

(k)
0

Solve f1(x
(k)
1 , x

(k−1)
3 , x

(k−1)
4 ) = 0 for x

(k)
1

Evaluate z
(k)
2,0 = r2,0(x

(k)
0 )

Evaluate z
(k)
3,0 = r3,0(x

(k)
0 )

Evaluate z
(k)
3,1 = r3,1(x

(k)
1 )

Evaluate z
(k)
4,0 = r4,0(x

(k)
1 )

Compute ∂z(k)/∂x(k−1) via (3.16)

Solve Newton system (3.15) for ∆x
(k)
2 , ∆x

(k)
3 , and ∆x

(k)
4

x
(k)
2 = x

(k−1)
2 + ∆x

(k)
2

x
(k)
3 = x

(k−1)
3 + ∆x

(k)
3

x
(k)
4 = x

(k−1)
4 + ∆x

(k)
4

end while

26



Chapter 4

Stability of Multi-physics Coupling
Algorithms

Coupling multiple physics applications can result in unexpected convergence behavior. Even
if the individual applications use stable discretizations and stable and robust solution tech-
niques, there is no guarantee that the coupled system, even when using something as simple
as Picard iteration, will be stable. The use of operator splitting methods is a classic example
of this. It has recently been shown that even simple 1D PDE models can exhibit complex
numerical instabilities [24, 25]. In fact such phenomena are not limited to operator splitting.
Something as simple as a steady-state two equation diffusion/reaction model with interfacial
coupling can exhibit instabilities when coupled [20]. In light of this, before performing a
multi-physics coupling, the coupling algorithm should be clearly defined and analyzed for
stability.
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Appendix A

Mathematical Notation

Symbol Definition Example

:= definition. x := y means that x cosh(x) := ex+e−x

2

is defined to be another name for y.
{ai} set of objects. A list of {ai} is the set consisting

elements defining a set. of the elements a0, a1, . . .
∈ set membership. a ∈ S means Given the set S := {1, 2, 3}, 2 ∈ S.

a is an element of the set S.
R the set of real numbers. R5 is a set of 5 real numbers

Rnx is a set of nx real numbers where
nx is a positive integer
R(nx+nx) is a set of 2nx real numbers
where nx is a positive integer
R(nx×ny) is a set of nx times ny real
numbers with positive integers nx, ny

N the set of natural numbers, {0, 1, 2, 3, ...}.
( ) function application. f(x) If f(x) := x2, then

means the value of the f(2) = 22 = 4.
function f at the element x.

{ : } set builder notation. {x : P (x)} {n ∈ N : n2 < 20} = {1, 2, 3, 4}
means the set of all x for which
P (x) is true.

[ ] closed interval. 0 and 1/2 are in the interval [0,1].
[a, b] = {x ∈ R : a ≤ x ≤ b}.

→ function arrow. f : X → Y
means the function f
maps the set X into the set Y

⇒ material implication. A⇒ B
means if A is true then B is also
true; if A is false then nothing is
said about B.

Table A.1. Mathematical notation used in this manual.
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