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Abstract

Tensors are multi-way arrays, and the CANDECOMP/PARAFAC (CP) tensor factorization
has found application in many different domains. The CP model is typically fit using a least
squares objective function, which is a maximum likelihood estimate under the assumption of
independent and identically distributed (i.i.d.) Gaussian noise. We demonstrate that this loss
function can be highly sensitive to non-Gaussian noise. Therefore, we propose a loss function
based on the 1-norm because it can accommodate both Gaussian and grossly non-Gaussian
perturbations. We also present an alternating majorization-minimization (MM) algorithm for
fitting a CP model using our proposed loss function (CPAL1) and compare its performance to
the workhorse algorithm for fitting CP models, CP alternating least squares (CPALS).
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1 Introduction

The CANDECOMP/PARAFAC (CP) tensor factorization [6, 11] can be considered a higher-order
generalization of the matrix singular value decomposition and has many applications. The canonical
fit function for the CP tensor factorization is based on the least squares error, meaning that it is a
maximum likelihood estimate (MLE) under the assumption of additive independent and identically
distributed (i.i.d.) Gaussian perturbations. It turns out, however, that this loss function can be
sensitive to violations in the Gaussian assumption. This is important to note because many other
types of noise are relevant for CP models. For example, in fMRI neuroimaging studies, movement
by the subject can lead to sparse high-intensity changes that can be confused with brain activity [9].
Likewise, in foreground/background separation problems in video surveillance, a subject walking
across the field of view represents a sparse high intensity change [20]. In both examples, there is a
relatively large perturbation in magnitude that affects only a small fraction of data points; we call
this artifact noise. These scenarios are particularly challenging because the perturbed values are on
the same scale as normal values (i.e., true brain activity signals and background pixel intensities).
Consequently, there is a need to explore factorization methods that are robust against violations
in the Gaussian assumption. In this paper, we consider a loss based on the 1-norm which is known
to be robust or insensitive to gross non-Gaussian perturbations [12].

Vorobyov et al. previously described two ways of solving the least 1-norm CP factorization
problem based on a linear programming and weighted median filtering [25]. We offer yet another
approach based on a majorization-minimization (MM) strategy [13]. Like both methods described
in [25] our method performs alternating minimization.

The rest of this paper is organized as follows. Section 2 describes the notation and common
operations used throughout the paper. Section 3 reviews probability basics needed to understand
maximum likelihood estimation. Section 4 introduces maximum likelihood estimation and discusses
several examples. Section 5 frames the CP tensor factorization problem as a maximum likelihood
estimation problem. Our robust iterative algorithm - CP Alternating Least 1-norm (CPAL1) - is
derived in Section 6. The global convergence of CPAL1 is proven in Section 7. In Section 8 we
compare CPAL1 and the standard CP factorizations by alternating least squares (CPALS) in the
presence of non-Gaussian perturbations on simulated data. Section 9 discusses related problems
and possible extensions. Concluding remarks are given in Section 10.
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2 Notation and Preliminaries

2.1 Tensors

We use the notation defined in [15]. The order of a tensor is the number of dimensions, also known
as ways or modes. Vectors (tensors of order one) are denoted by boldface capital letters, e.g., a.
All vectors are column vectors. Matrices (tensors of order two) are denoted by boldface capital
letters, e.g., A. Higher-order tensors (order three or higher) are denoted by boldface Euler script
letters, e.g., X. Scalars are denoted by lowercase letters, e.g., a.

The ith entry of a vector a is denoted by ai, element (i, j) of a matrix A is denoted by aij ,
and element (i, j, k) of a third-order tensor X is denoted by xijk. Indices typically range from 1 to
their capital version, e.g., i = 1, . . . , I. The nth element in a sequence is denoted by a superscript
in parentheses, e.g., A(n) denotes the nth matrix in a sequence. The transpose of the ith row of a
matrix A is denoted by a[i]. The jth column of a matrix A is denoted by aj .

Fibers are the higher-order analogue of matrix rows and columns. A fiber is defined by fixing
every index but one. Slices are two-dimensional sections of a tensor, defined by fixing all but two
indices. The mode-n matricization of a tensor X ∈ RI1×I2×···×IN is denoted by X(n) and arranges
the mode-n fibers to be the columns of the resulting matrix.

The Khatri-Rao matrix product is important in the sections that follow, so we define it here.
First recall that the Kronecker product of vectors a ∈ RM and b ∈ RN , denoted by a ⊗ b, is a
vector of length MN and is defined by

a⊗ b =
[
a1b

T a2b
T · · · aMbT

]T
The Khatri-Rao product [23] is the “matching columnwise” Kronecker product. Given matrices

A ∈ RI×K and B ∈ RJ×K , their Khatri-Rao product is denoted by A�B. The result is a matrix
of size (IJ)×K defined by

A�B =
[
a1 ⊗ b1 a2 ⊗ b2 · · · aK ⊗ bK

]
.

9
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3 Review of Probability Basics

Some basic fluency of random variables, probabilities, densities, and probability mass functions
will be necessary to understand the subsequent discussion on likelihood functions. A thorough
treatment of probability basics and likelihood functions can be found in, e.g., [22].

Random variables will be denoted by capital letters, e.g., X. The observed values they take on
will be denoted by lower case letters, e.g., x. The nth random variable in a sequence or set of them
is denoted by a subscript, e.g. Xi, and similarly the observed value of the nth random variable is
denoted by a subscript, e.g., xi.

For any random variable, X, its randomness is completely characterized by its associated cu-
mulative distribution function1 (CDF), denoted by FX which is defined as

FX(a) = P (X ≤ a),

i.e., the probability that the random variable X is less than or equal to a. We will be dealing
with only two kinds of random variables: continuous and discrete. We say X is a discrete random
variable if it can take on at most countably many values; for example, the value of a die toss is
a discrete random variable. Without loss of generality, we assume that discrete random variables
only take on nonnegative integer values. We say X is a continuous random variable if it can take
on uncountably many values.

Example 3.1 If X is distributed uniformly from zero to one, denoted as X ∼ U [0, 1], then its
CDF is

FX(a) = P (X ≤ a) =


0 if a < 0

a if 0 ≤ a ≤ 1

1 a > 1.

�

The CDF of every continuous random variable can be written as the integral of an almost
everywhere (a.e.) unique nonnegative function called the probability density function (PDF)2. The
PDF is denoted by fX and is related to the CDF by:

FX(a) =

∫ a

−∞
fX(x)dx.

Example 3.2 If X ∼ U [0, 1], then its PDF is

fX(x) =

{
1 x ∈ [0, 1]

0 otherwise.
�

The CDF of a discrete random variable, X, can be written as the partial sum of a unique
nonnegative sequence called the probability mass function (PMF) and denoted by fX(k). The

1Also commonly referred as probability distribution, distribution function, or simply distribution.
2Density, density function, and probability density function are synonymous.
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PMF is related to CDF by,

FX(a) =
a∑
k=0

fX(k)

where fX(k) = P (X = k).

Since the randomness of a random variable is completely characterized by its CDF, and a CDF
for a continuous (discrete) random variable has an a.e.-unique PDF (unique PMF), we can also
characterize the randomness of a continuous (discrete) random variable by its PDF (PMF).

3.1 Multivariate Probability Distributions

CDFs, PDFs, and PMFs can be defined for collections of random variables, X1, . . . , Xn. The joint
CDF of the collection of random variables X1, . . . , Xn is defined to be

FX1,...,Xn(a1, . . . , an) = P (X1 ≤ a1, . . . , Xn ≤ an).

If the variables are continuous, the joint PDF of X1, . . . , Xn is defined to be the a.e. unique non-
negative function fX1,...,Xn such that

FX1,...,Xn(a1, . . . , an) =

∫ a1

−∞
· · ·
∫ an

−∞
fX1,...,Xn(x1, . . . , xn)dx1 . . . dxn.

If the variables are discrete, the joint PMF is defined to be the unique nonnegative function fX1,...,Xn

such that

FX1,...,Xn(a1, . . . , an) =

a1∑
x1=0

· · ·
an∑

xn=0

fX1,...,Xn(x1, . . . , xn).

Given a joint CDF FX1,...,Xn , the marginal CDF of the random variable Xi is denoted FXi and
given by

FXi(ai) = lim
a1→∞

· · · lim
ai−1→∞

lim
ai+1→∞

· · · lim
an→∞

FX1,...,Xn(a1, . . . , an).

If the random variables are continuous then,

FXi(ai) =

∫ ∞
−∞
· · ·
∫ ai

−∞
· · ·
∫ ∞
−∞

fX1,...,Xn(x1, . . . , xn)dx1 . . . dxn.

If they are discrete, then

FXi(ai) =
∞∑

x1=0

· · ·
ai∑

xi=0

· · ·
∞∑

xn=0

fX1,...,Xn(x1, . . . , xn).

Definition 3.3 (Independence) Suppose the random variables X1, . . . , Xn have a joint CDF
FX1,...,Xn and each Xi has marginal CDF FXi. If

FX1,...,Xn(x1, . . . , xn) =
n∏
i=1

FXi(xi),

12



then X1, . . . , Xn are said to be independent.

If the Xi are all continuous (discrete) random variables with joint PDF (PMF) fX1,...,Xn and
marginal PDFs (PMFs), fXi , then they are independent if and only if

fX1,...,Xn(x1, . . . , xn) =

n∏
i=1

fXi(xi).

Definition 3.4 (Independent and Identically Distributed) We say that X1, . . . , Xn are in-
dependent and identically distributed (i.i.d.) random variables if they are independent and FX1 =
FX2 = · · · = FXn.

3.2 Common Distributions

We will be using the following PDFs in our tensor factorizations.

Normal or Gaussian

A continuous random variable X has a Normal or Gaussian distribution with mean µ ∈ R and
standard deviation σ > 0, denoted X ∼ N(µ, σ2), if it has the PDF

fX(x) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
.

Laplace or Double exponential

A continuous random variable X has the Laplace or double exponential distribution with mean
µ ∈ R and scale parameter γ > 0, denoted X ∼LAPLACE(µ, γ), if it has the PDF

fX(x) =
1

2γ
exp

(
−|x− µ|

γ

)
.

Poisson

A discrete random variable X has the Poisson distribution with rate or intensity parameter λ > 0
denoted X ∼ POISSON(λ), if it has the PMF

fX(k) =

{
λk exp(−λ)

k! if k ∈ Z+

0 otherwise.

13



3.3 Parametric Families

All the distributions given in the previous section are completely specified by a finite number of
parameters. A Poisson distribution is specified by its intensity parameter which is a positive real
number. So, the set of all Poisson distributions can be indexed by positive reals. The following
definition formalizes the idea that families of related distributions can be indexed by a finite number
of parameters.

Definition 3.5 (Shao [22]) A set of CDFs {Pθ} indexed by a parameter θ ∈ Θ is said to be a
parametric family if Θ ⊆ Rd for some fixed positive integer d and each Pθ is a known CDF when θ
is known. The set Θ is called the parameter space and d is called its dimension.

Note that if a continuous random variable X has a PDF fX(·; θ) that is from a parametric
family indexed by θ ∈ Θ, then we can view fX(x; θ) as a mapping from R×Θ into R. If we observe
the value of X to be x, then fX(x; θ) maps θ ∈ Θ to a point in R. This mapping, fX(x|·) : Θ→ R,
is called the likelihood function and is denoted by ` : Θ → R. The likelihood function is similarly
defined for the discrete random variable with a parametric distribution, viewing its PMF as a
function of its parameter given the data.

We are now ready to pose the following question: Given some observations or data and assuming
the data has been generated from a parametric family (e.g., the family of all Poisson distributions),
which member of the family is most consistent with the data? Since each member of a given
parametric family is indexed by its parameter, this problem is referred to as estimation since
we are using the data and assumptions about its distribution to estimate the parameter of the
distribution that best agrees with the observed distribution of the data. Best can be interpreted in
many ways, but we will discuss in the next section one of the most widely used notions of best in
statistics: the estimate that maximizes the likelihood.

14



4 Maximum Likelihood Estimation

Let Θ̄ denote the closure of Θ. Then the maximum likelihood estimate (MLE) is a parameter value
θ∗ ∈ Θ̄ that maximizes the likelihood function

`(θ∗) = max
θ∈Θ̄

`(θ).

Example 4.1 (The Sample Mean) Suppose X1, . . . , Xn are i.i.d. random variables with shared
distribution N(µ, 1) and observed values x1, . . . , xn. We will show that the MLE of µ is the unique
solution to a least squares problem. Since the random variables are independent, the likelihood
function is the product of the marginal densities of each Xi:

`(µ) =

n∏
i=1

1√
2π

exp(−(xi − µ)2/2).

Often we will maximize the log of the likelihood, the log-likelihood. Since the log function is
monotonically increasing, an argument that a maximizes the log-likelihood is an MLE. Maximizing
the log-likelihood turns the product of marginal likelihoods into the sum of marginal log-likelihoods:

max
µ∈R

log `(µ) = max
µ∈R

log

(
n∏
i=1

1√
2π

exp(−(xi − µ)2/2)

)
,

= −
n∑
i=1

log(
√

2π)− 1

2
min
µ∈R

n∑
i=1

(xi − µ)2,

The unique stationary point is the global minimizer and is given by the sample mean:

µ∗ =
1

n

n∑
i=1

xi. �

Example 4.2 (Linear Regression) Building on the previous example, we next show that the
ordinary least squares problem is equivalent to a maximum likelihood estimation problem. Suppose
X ∈ Rn×p and Y1, . . . , Yn are independent random variables and Yi ∼ N(xT

[i]b, 1) where b ∈ Rp.
We calculate the MLE of b. Since the random variables are independent, the likelihood function
is the product of the marginal densities of each Yi:

`(b) =

n∏
i=1

1√
2π

exp(−
(
yi − xT

[i]b
)2
/2).

15



Maximizing the log-likelihood function yields

max
b∈Rp

log `(b) = max
b∈Rp

log

(
n∏
i=1

1√
2π

exp(−
(
yi − xT

[i]b
)2
/2)

)

= max
b∈Rp

n∑
i=1

(
− log(

√
2π)−

(
yi − xT

[i]b
)2
/2

)
.

= −
n∑
i=1

log(
√

2π)− 1

2
min
b∈Rp

‖y −Xb‖2 .

If X is full rank, then the MLE is unique and is given by:

b∗ =
(
XTX

)−1
XTy.

If X is not full rank, then the MLE is not unique, but the MLE with the least 2-norm is given by:

b∗ =
(
XTX

)†
XTy,

where
(
XTX

)†
denotes the Moore-Penrose pseudoinverse of XTX [10]. �

Example 4.3 (Principal Components) We next show that the optimization problem behind
the principal components decomposition of X is equivalent to a maximum likelihood estimation
problem. Suppose we observe a two-way array of independent random variables {Xij} where
i = 1, . . . , n; j = 1, . . . , p; and Xij ∼ N(aT

i bj , 1) with ai,bj ∈ Rk, k = min(n, p) and both {ai} and
{bj} are sets of pairwise orthogonal vectors. Let xij denote the observed value of Xij , and let X
denote the matrix of observed values. We calculate the MLE of (A,B) where the ith column of
A ∈ Rk×n is ai and the jth column of B ∈ Rk×p is bj . Let C denote the set of matrices that have
pairwise orthogonal columns. Since the random variables are independent the likelihood function
is the product of the marginal densities of each Xij :

`(A,B) =

n∏
i=1

p∏
j=1

1√
2π

exp(−
(
xij − aT

i bj

)2
/2).

We then maximize the log-likelihood function:

max
A,B∈C

log `(A,B) = max
A,B∈C

log

 n∏
i=1

p∏
j=1

1√
2π

exp(−
(
xij − aT

i bj

)2
/2)


= max

A,B∈C

n∑
i=1

p∑
j=1

(
− log(

√
2π)−

(
xij − aT

i bj

)2
/2

)
.

= −
n∑
i=1

p∑
j=1

log(
√

2π)− 1

2
min

A,B∈C

∥∥∥X−ATB
∥∥∥2

F
.

The MLE is not unique, but an MLE can be obtained from the SVD. Let UΣVT denote the SVD
of X, then an MLE is given by (A∗,B∗) = (UT,ΣVT). �
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Example 4.4 (nonnegative matrix factorization) In nonnegative matrix factorization (NNMF),
the goal is to approximate a nonnegative matrix by nonnegative components. One way of obtaining
an NNMF is by finding a nonnegative factorization that minimizes the generalized Kullback-Liebler
divergence loss [18, 19]. We show that that a solution that minimizes a popular loss function for
nonnegative matrix factorization is an MLE under a Poisson model for uncertainty. Suppose we
observe a two-way array of independent random variables {Xij} where i = 1, . . . , n; j = 1, . . . , p;
and Xij ∼Poisson(aT

i bj) where ai,bj ∈ Rk+ and k ≤ min(n, p). We calculate the MLE of (A,B)

where the ith column of A ∈ Rk×n+ is ai and the jth column of B ∈ Rk×p+ is bj . Since the random
variables are independent, the likelihood function is the product of the marginal densities of each
Xij :

`(A,B) =
n∏
i=1

p∏
j=1

(aT
i bj)

xij exp(−aT
i bj)

xij !
.

We then maximize the log-likelihood function:

max log `(A,B) = −
n∑
i=1

p∑
j=1

log xij ! + max
n∑
i=1

p∑
j=1

{
(xij log(aT

i bj)− aT
i bj)

}
,

where the A and B are required to have strictly positive entries. �
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5 Tensor Factorizations as Maximum Likelihood Estimates

The CANDECOMP/PARAFAC (CP) tensor factorization [6, 11] can be considered a higher-order
generalization of the matrix singular value decomposition (SVD). Just as the SVD of rank R
approximates a matrix as the sum ofR rank-1 matrices, the CP factorization of rankR approximates
a tensor as the sum of R rank-1 tensors. For example, given a 3-way tensor X ∈ RI×J×K , we seek
factor matrices A ∈ RI×R,B ∈ RJ×R,C ∈ RK×R such that

xijk ≈
R∑
r=1

airbjrckr.

Following Kolda [14] (see also Kruskal [16]), the CP model can be concisely expressed as

X ≈ JA,B,CK ≡
R∑
r=1

ar ◦ br ◦ cr.

A CP factorization is often unique up to a scaling indeterminacy and permutations; see [15] for a
review of conditions for uniqueness. The scaling indeterminacy can be addressed by requiring that
the columns of A,B, and C have unit Euclidean norm and introducing a scaling constant, λr ≥ 0,
for r = 1, . . . , R. Under these constraints the CP factorization becomes:

X ≈ Jλ; A,B,CK ≡
R∑
r=1

λr ar ◦ br ◦ cr.

Determining the rank of a tensor is NP-hard [24] and is beyond the scope of this report; see
[15] for discussion on the rank of a tensor. Instead our attention is on how to compute a CP
factorization given a rank R. Thus, given a rank R and a tensor X, our goal is to find A,B,C, and
λ. Clearly we would like

∑R
r=1 λrairbjrckr to be “close” to xijk. The standard loss function used to

measure closeness is the 2-norm of the difference and the “workhorse” algorithm is alternating least
squares (CPALS) which was proposed in the original CP papers [6, 11]. Specifically the objective
function used in CPALS is

min
I∑
i=1

J∑
j=1

K∑
k=1

(
xijk −

R∑
r=1

λrairbjrckr

)2

. (1)

For computational expediency, in CPALS the objective function is minimized with respect to one
factor matrix at a time holding all other factor matrices constant. Each update of a factor matrix
is a least squares problem, hence the name.

Another loss function is given by 1-norm sense. Finding the least 1-norm factorization yields
the following problem

min
I∑
i=1

J∑
j=1

K∑
k=1

∣∣∣∣∣xijk −
R∑
r=1

λrairbjrckr

∣∣∣∣∣ . (2)
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Both least 1-norm and 2-norm solutions are equivalent to maximum likelihood estimation as-
suming i.i.d. additive noise. That is

xijk =
R∑
r=1

λrairbjrckr + eijk,

where eijk are i.i.d. N(0,1) for the 2-norm and i.i.d. LAPLACE(0, 1) for the 1-norm.

The relationship between the loss function and assumptions about the statistical behavior of
the residuals is important because the fitted factorization can be sensitive to differences between
the true behavior of the residuals and the assumed behavior.
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6 Majorization Solution to `1 Minimization

MM algorithms have been applied to factorization problems previously [19, 5, 8]. The basic idea of
an MM algorithm is to convert a hard optimization problem (e.g., non-convex, non-differentiable)
into a series of simpler ones (e.g., smooth convex), which are easier to minimize than the original.
To do so, we use majorization functions.

Definition 6.1 Suppose g and h are real-valued functions on Rn. We say that h majorizes g at
x ∈ Rn if h(u) ≥ g(u) for all u ∈ Rn and h(x) = g(x).

Thus if h majorizes g at some point, then the graph of h lies above the graph of g everywhere except
where the graph of h touches the graph of g. Algorithm 1 outlines a simple iterative strategy for
finding the minimizer of a function g. It is easy to see that Algorithm 1 always takes non-increasing
steps with respect to g for the following reason. Consider the iteration starting at x(k). Since x(k+1)

minimizes h(·|x(k)), we have

g(x(k)) = h(x(k)|x(k)) ≥ h(x(k+1)|x(k)) ≥ g(x(k+1)).

Algorithm 1 Majorization-Minimization for minimizing a function

x(0) ← random point in Rn
h(·|x(0))← majorization of g at x(0).
k ← 0
repeat

x(k+1) ← argmin
x

h(x|x(k))

h(·|x(k+1))← majorization of g at x(k+1)

k ← k + 1
until convergence
return x(k+1)

We now derive a majorization for use in an MM algorithm for `1 regression as originally sug-
gested in [17] for use in our basic robust tensor factorization introduced in the next section.

Proposition 6.2 (Majorizing the square root function) Given ε > 0, let gε(u) =
√
u+ ε for

u ≥ 0. If ũ ≥ 0, then the following function majorizes gε at ũ:

hε(u|ũ) =
√
ũ+ ε+

u− ũ
2
√
ũ+ ε

.
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Proof. It is immediate that gε(ũ) = hε(ũ|ũ). We show that the required inequality holds by
rearranging a well chosen initial inequality:

0 ≤ (
√
u+ ε−

√
ũ+ ε)2

0 ≤ (u+ ε)− 2
√
u+ ε

√
ũ+ ε+ (ũ+ ε),

2
√
u+ ε

√
ũ+ ε ≤ (u+ ε) + (ũ+ ε),

√
u+ ε ≤ (u+ ε) + (ũ+ ε)

2
√
ũ+ ε

,

√
u+ ε ≤ (u+ ε)− (ũ+ ε) + 2(ũ+ ε)

2
√
ũ+ ε

,

√
u+ ε ≤

√
ũ+ ε+

u− ũ
2
√
ũ+ ε

,

gε(u) ≤ hε(u, ũ).

�

6.1 Solving the `1 Regression Problem by an MM Algorithm

We now show how to use the majorization derived in Proposition 6.2 to perform robust linear
regression using the `1 norm. Given a vector y ∈ RI and a matrix M ∈ RI×J . We would like to
find a vector u ∈ RJ such that Mu is a good approximation to y in a least `1 sense. Recall that
m[i] denotes the transpose of the ith row of M. We search for the vector u that minimizes the loss:

min
u∈RJ

L(u) = min
u∈RJ

I∑
i=1

∣∣∣yi −mT
[i]u
∣∣∣ = min

u∈RJ

I∑
i=1

|ri(u)|, (3)

where ri(u) = yi −mT
[i]u.

Our MM algorithm will minimize the following smooth approximation to L(u):

Lε(u) =

I∑
i=1

√
ri(u)2 + ε,

where ε is a small positive number. We apply this approximation to curb potential numerical
instability if a residual gets close to zero. There is little downside from a robustness perspective to
making this approximation. The 1-norm loss is statistically robust because it is less influenced by
unusually large residuals, and Lε(u) is a good approximation of L(u) for large values of ri(u). We
now use Proposition 6.2 to derive a majorization for Lε(u).

Proposition 6.3 The function Lε(u) is majorized at a point ũ ∈ RJ by the function

hε(u|ũ) =

I∑
i=1

{√
ri(ũ)2 + ε+

ri(u)2 − ri(ũ)2

2
√
ri(ũ)2 + ε

}
. (4)
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The proof follows immediately from Proposition 6.2.

The majorization in equation (4) allows us to solve the minimization problem (3) by solving a
sequence of weighted least squares problems. Given the mth iterate, u(m), the next iterate, u(m+1),
is set to be the minimizer of the majorization of Lε(u) at u(m):

u(m+1) = argmin
u

I∑
i=1

{√
ri(u(m))2 + ε+

ri(u)2 − ri(u(m))2

2
√
ri(u(m))2 + ε

}
. (5)

Note that only terms that depend on u are relevant to the minimization in equation (5); thus

u(m+1) = argmin
u

I∑
i=1

ri(u)2√
ri(u(m))2 + ε

. (6)

Let W(m) ∈ RI×I be the diagonal matrix defined by (W(m))ii = 1/
√
ri(u(m))2 + ε for i = 1, . . . , I.

Then the minimization problem (6) is a weighted least squares problem with weight matrix W(m):

u(m+1) = argmin
u

(y −Mu)TW(m)(y −Mu). (7)

The minimization problem (7) will have multiple solutions if M is not full rank. There is a unique
solution with the least `2 norm among all solutions, however, and it is given by

u(m+1) = (MTW(m)M)†MTW(m)y. (8)

The relationship between the `1 regression fit and ordinary least squares (OLS) regression fit
can be understood through the effect of the weight matrix W. If the ith data point has a poor
fit in iteration m, then ri(u

(m))2 will large and its contribution to the optimization problem at
iteration m+1 will be downweighted by the factor 1/

√
ri(u(m))2 + ε. Conversely the contributions

of data points with small residuals, or good fits, in the mth iteration will be upweighted in the
optimization problem at iteration m + 1 by a factor of 1/

√
ri(u(m))2 + ε. In contrast, OLS can

be thought of as a weighted least squares problem with the identity matrix as the weight matrix.
Since OLS weights all residuals equally, the resulting fit can be significantly influenced by a single
outlier.

6.2 Robust Tensor Factorization with Alternating Least `1 Regression

We now show how the preceding `1 regression solution can be used to perform robust CP factoriza-
tion. Consider a 3-way tensor, X, of dimensions I1, I2, and I3. We propose to perform a robust CP
factorization of rank R by minimizing the total `1 loss, L(A,B,C,λ), where A ∈ RI1×R,B ∈ RI2×R,
and C ∈ RI3×R have columns with unit Euclidean norm, and λ ∈ RR+ and

L(A,B,C,λ) =

I1∑
i1=1

I2∑
i2=1

I3∑
i3=1

∣∣∣∣∣xi1i2i3 −
R∑
r=1

λrai1rbi2rci3r

∣∣∣∣∣ .
This minimization problem is nonlinear and non-convex. Instead of simultaneously solving for
A,B, and C, we can instead resort to minimizing A,B, and C in turn while holding the other
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two fixed. This is an `1 equivalent version of alternating least squares (CPALS), which we call CP
alternating least 1-norm (CPAL1). Each subproblem is a convex minimization problem. Let us
consider the subproblem where B and C are fixed in the alternating `1 minimization. The mode-1
matricization of the rank-R approximation Jλ; A,B,CK is Â(C�B)T where Â = A · diag(λ); see
[15]. Thus, we search for Â that minimizes

‖X(1) − Â(C�B)T‖`1

where
‖M‖`1 =

∑
ij

|mij |.

Upon finding such an Â, we normalize the columns of Â to get A; in other words, let λr = ‖âr‖
and ar = âr/λr.

We proceed using the mode-1 matricization. Let Z = X(1) and Q = C �B. So, Z ∈ RI1×I2I3

and Q ∈ RI2I3×R. Recall that â[i] ∈ RR and q[j] ∈ RR denote the transposes of the ith row of Â
and the jth row of Q respectively. The minimization can then be expressed as

min
Â

I1∑
i=1

I2I3∑
j=1

∣∣∣zij − qT
[j]â[i]

∣∣∣ .
This minimization problem is separable by rows. So, for each row i of Â, we minimize

L(â[i]) =

I2I3∑
j=1

∣∣∣zij − qT
[j]â[i]

∣∣∣ . (9)

Note that this minimization problem is a least `1 regression problem where we are looking for the
best linear predictor Qâ[i] of z[i] in a least `1 sense. Compare equation (9) with equation (3) and
note that n = I2I3,y = z[i],M = Q, and u = â[i].

We solve the neighboring problem with small ε > 0, minimizing the following loss

Lε(â[i]) =

I2I3∑
j=1

√(
zij − qT

[j]â[i]

)2
+ ε,

and apply the iterative update rule derived in equation (8) from section 6.1, to get the following
iterative update for the ith row of Â

â
(m+1)
[i] = (QTW

(m)
i Q)†QTW

(m)
i z[i],

where W
(m)
i ∈ RI2I3×I2I3 is a diagonal matrix whose jth diagonal entry is the inverse of the jth

residual from the mth iteration for the ith row regression, i.e.,(
W

(m)
i

)
jj

=

[(
zij − qT

[j]â
(m)
[i]

)2
+ ε

]− 1
2

.

We have I1 independent `1 regressions to solve to obtain one iterate of A. Similarly we wil have
I2 independent `1 regressions to solve to obtain one iterate of B, and I3 independent `1 regressions
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Algorithm 2 CP using alternating 1-norm minimization (CPAL1)

1: initialize A(n) ∈ RIn×R for n = 1, . . . , N .
2: repeat
3: for n = 1, . . . , N do
4: repeat

5: Q←
(
A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1)

)‡
6: Z← X(n)

7: for i = 1, . . . , Ii do
8: for j = 1, . . . ,

∏
k 6=i Ik do

9: wj ←
[(
zij − qT

[j]a
(n)
[i]

)2
+ ε

]− 1
2

10: end for
11: W← diag(w)

12: a
(n)
[i] ← (QTWQ)†QTWz[i]

13: end for
14: until fit for A(n) ceases to improve or maximum iterations exhausted
15: normalize columns of A(n) (storing norms as λ)
16: end for
17: until fit ceases to improve or maximum iterations exhausted
18: return λ,A(1),A(2), . . . ,A(N)

to solve to obtain one iterate of C. Algorithm 2 outlines pseudocode for the CPAL1 decomposition
with R components for the Nth-order tensor X of size I1 × I2 × · · · IN . The symbol ‡ denotes the
transpose pseudoinverse. Note that in line 5 the transpose pseudoinverse has a special form which
facilitates efficient computation. See [15] for details.
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7 Global Convergence

We prove that iterates generated by a Tychonoff regularized version of CPAL1 globally converge
to stationary points of the penalized loss. The proof relies on piecing together global convergence
results for the nonlinear Gauss-Seidel (GS) method and for MM algorithms. We begin by reviewing
the GS method. Let f : Rn → R and partition the vector x ∈ Rn so that

x = (x1,x2, . . . ,xm),

where xi ∈ Rni and n1 + n2 + · · ·+ nm = n. Suppose for every x ∈ Rn and every i = 1, . . . ,m, the
optimization problem

minimize f(x1, . . . ,xi−1,u,xi+1, . . . ,xm)

subject to u ∈ Rni ,

has at least one solution. Then the GS method generates a sequence of iterates {x(k)} with the
following update rule for the ith coordinate block

x
(k+1)
i ∈ argmin

u∈Rni

f(x
(k+1)
1 , . . . ,x

(k+1)
i−1 ,u,x

(k)
i+1, . . . ,x

(k)
m ), (10)

where x(k) = (x
(k)
1 , . . . ,x

(k)
m ). The following proposition gives conditions for convergence of the GS

iterates.

Proposition 7.1 (Proposition 2.7.1 in [4]) Suppose that f is continuously differentiable on Rn.
Furthermore, suppose that for each i and x ∈ Rn, the minimum below

min
u∈Rni

f(x1, . . . ,xi−1,u, . . . ,xm)

is uniquely attained. Let {x(k)} be the sequence generated by the GS method (10). Then, every
limit point of {x(k)} is a stationary point.

If each GS block coordinate update (10) is accomplished through an MM algorithm, as in
CPAL1, then we need to ensure that the MM algorithm has a unique global minimizer for the
block minimization problem. The following proposition gives conditions under which this is true.

Proposition 7.2 (Proposition 15.4.3 in [17]) Let g : Rp → R denote the objective function
to be minimized and h(x|y) be a majorization of g at the point y. Suppose g is continuously
differentiable, coercive in the sense that all its level sets are compact, and is strictly convex. Suppose
further that h(x|y) is jointly twice continuously differentiable in (x,y) ∈ R2p and is strictly convex
in x with y fixed. Let {x(k)} denote a set of iterates generated by the MM algorithm

x(k+1) = argmin
u∈Rp

h(u|x(k)).

Then limk→∞ x(k) exists and is the unique global minimizer of g.
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Recall that a given block coordinate minimization problem for updating a factor matrix in
CPAL1 can be solved row-by-row by minimizing the following loss function

Lε(â) =

I2I3∑
j=1

√(
zij − qT

[j]â
)2

+ ε.

The loss function Lε(â) does not meet all the conditions specified in Proposition 7.2. Specifically,
while Lε(â) is convex, it cannot be guaranteed to be coercive and strictly convex in â. The
following proposition, however, shows that coerciveness and strict convexity can be enforced through
Tychonoff regularization.

Proposition 7.3 If f : Rp → R is convex and differentiable then g(x) = f(x) + µ‖x‖2 is strictly
convex and coercive for any µ > 0.

Proof. It is immediate that g is strictly convex from the definition of strict convexity. We show
that g is coercive. Fix arbitrary points x, z ∈ U and x 6= z. Since f is differentiable and convex

f(z) ≥ f(x) + df(x)(z− x).

Adding µ‖z‖2 to both sides we get

g(z) ≥ f(x) + df(x)(z− x) + µ‖z‖2.

Therefore, g(z)→∞ when ‖z‖ → ∞. Thus, for all α ∈ R, the corresponding level set {x|g(x) ≤ α}
is compact. �

We now describe the regularized version of CPAL1 for a three-way tensor. Let X ∈ RI1×I2×I3 .
Let λ ∈ RR+, and A ∈ RI1×R,B ∈ RI2×R, and C ∈ RI3×R have columns with unit Euclidean norm.
Fix ε, µ > 0. We wish to minimize the Tychonoff penalized loss

Lε,µ(A,B,C,λ) = Lε(A,B,C,λ) +
µ

2
‖λ‖2 (11)

where

Lε(A,B,C,λ) =

I1∑
i1=1

I2∑
i2=1

I3∑
i3=1

√√√√(xi1i2i3 − R∑
r=1

λrai1rbi2rci3r

)2

+ ε.

Consider the following alternating algorithm. Generate iterates using the GS method. The first
block minimization consists of fixing B and C and searching for Â that minimizes

I1∑
i1=1


I2I3∑
j=1

√(
zij − qT

[j]â[i]

)2
+ ε+

µ

2
‖â[i]‖22

 ,

where Z = X(1) and Q = C�B. As in the unregularized version, this problem is separable in the

rows of Â. For each i we use an MM algorithm to update the estimate for the ith row with the
following majorization
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h(â|ã) =

I2I3∑
j=1

{√
rj(ã)2 + ε+

rj(â)2 − rj(ã)2

2
√
rj(ã)2 + ε

}
+
µ

2
‖â‖2, (12)

where rj(â) = zj − qT
[j]â. After obtaining Â, and consequently A and λ, we update the other

factors analogously in cyclic order until convergence. We now prove the global convergence of a
Tychonoff regularized version of CPAL1 for a three-way tensor. The proof for higher order tensors
is essentially the same. The proof does not depend on the algorithm used to solve the subproblems
provided the subproblems are solved to optimality.

Proposition 7.4 Perform the GS method with (11) as the objective function updating one factor
matrix at a time holding the other two fixed. Then the limit points of the sequence of factorizations
are stationary points of (11). Moreover, every sequence has at least one limit point.

Proof.

Note that Lε,µ can be viewed as a function of the rows of A,B, and C and consequently we
seek to apply Proposition 7.1. Since Lε,µ is a continuously differentiable function, we just need to
show the block minimization problem has a unique solution. Fixing B and C and we search for Â
that minimizes

I1∑
i=1

I2I3∑
j=1

√(
zij − qT

[j]â[i]

)2
+ ε+

µ

2
‖â[i]‖22.

We focus on calculating the update for Â[i], the ith row of Â. For readability we suppress the sub-

scripts denoting the row index. Let g(â) = f(â) + 1
2µ‖â‖

2 where f(â) =
∑I2I3

j=1

√
(zj − qT

[j]â)2 + ε.

Thus, it suffices to show that g has a unique global minimum.

First, note that f is convex. The gradient of f is given by

∇f(â) = −
I2I3∑
j=1

(zj − qT
[j]â)√

(zj − qT
[j]â)2 + ε

q[j].

The Hessian, ∇2f(â) is given by

∇2f(â) =

I2I3∑
j=1

√
(zj − qT

[j]â)2 + ε−
(zj−qT

[j]
â)2√

(zj−qT
[j]

â)2+ε

(zj − qT
[j]â)2 + ε

q[j]q
T
[j]

= ε

I2I3∑
j=1

[
(zj − qT

[j]â)2 + ε
]−3/2

q[j]q
T
[j]

= εQTWQ,

where W is diagonal and wii =
[
(zj − qT

[j]â)2 + ε
]−3/2

. Therefore, ∇2f(â) is positive-semidefinite

for all â ∈ Rp, and consequently f is convex. By Proposition 7.3 g is coercive and strictly convex
and therefore has a unique global minimum.
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Algorithm 3 CP using alternating regularized 1-norm minimization (CPAL1)

1: initialize A(n) ∈ RIn×R for n = 1, . . . , N .
2: repeat
3: for n = 1, . . . , N do
4: repeat

5: Q←
(
A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1)

)‡
6: Z← X(n)

7: for i = 1, . . . , Ii do
8: for j = 1, . . . ,

∏
k 6=i Ik do

9: wj ←
[(
zij − qT

[j]a
(n)
[i]

)2
+ ε

]− 1
2

10: end for
11: W← diag(w)

12: a
(n)
[i] ← (QTWQ + µI)−1QTWz[i]

13: end for
14: until fit for A(n) ceases to improve or maximum iterations exhausted
15: normalize columns of A(n) (storing norms as λ)
16: end for
17: until fit ceases to improve or maximum iterations exhausted
18: return λ,A(1),A(2), . . . ,A(N)

By Proposition 7.1 the limit points of the sequence of iterates generated by the Tychonoff
regularized CPAL1 algorithm are stationary points. Furthermore, every sequence has at least one
limit point since Lε,µ is coercive. This is true because Lε is bounded below and the sum of a coercive
function and a continuous function that is bounded below is coercive. �

Finally we use Proposition 7.2 to show that the subproblem can be solved to optimality with an
MM algorithm using the majorization (12). Note that g is continuously differentiable. Since rj(â)2

is convex in â, by Proposition 7.3, h(â|ã) is a strictly convex function of â with ã fixed. Lastly note
that h(a|ã) is twice differentiable with respect to (a, ã). To see this, recall that if two functions are
twice continuously differentiable, their product, ratio, and sum are twice continuously differentiable.
If ψ : R → R and ϕ : Rn → R are twice continuously differentiable then the composition ψ ◦ ϕ is
twice continuously differentiable.

With regularization the update for the ith row at iteration m + 1 is only slightly different
from the original update rule. Algorithm 3 outlines the pseudocode for the regularized CPAL1
decomposition with R components for the Nth order tensor X of size I1× I2× · · · × IN . Note that
Algorithm 3 differs from Algorithm 2 only in the row estimate in line 14

â
(m+1)
[i] = (QTW

(m)
i Q + µI)−1QTW

(m)
i z[i].

For the rest of the paper, CPAL1 will refer to the regularized version outlined in Algorithm 3.
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8 Simulations

We compare CPAL1 (from Algorithm 2) with CPALS (as implemented in the Tensor Toolbox [2]) on
two sets of simulated data. The purpose of the first set is to demonstrate the qualitative differences
in solutions between CPAL1 and CPALS. The purpose of the second set is to quantitatively assess
those differences.

8.1 Qualitative Comparisons between CPALS and CPAL1

We construct a 3-way tensor X with dimensions 25 × 25 × 25 and rank two as follows. Let φ :
Rn → Rn denote the mapping φ(a) = (φ1(a1), . . . , φn(an)) where φi is the standard univariate
Gaussian PDF for all i. We choose σ1 = 0.75, σ2 = 0.5, σ3 = 0.25, σ4 = 0.1. Define ω ∈ R25 with
ωi = −1 + (i− 1)/12. Then we set

a1 =
1

σ1
φ

(
ω

σ1

)
,

a2 =
1

2

1

σ2
φ

(
ω − 1

σ2

)
+

1

2

1

σ2
φ

(
ω + 1

σ2

)
,

b1 =
1

σ1
φ

(
ω

σ1

)
, and

b2 =
1

4

1

σ3
φ

(
ω − 1

σ3

)
+

1

2

1

σ4
φ

(
ω

σ4

)
+

1

4

1

σ3
φ

(
ω + 1

σ3

)
.

For i = 1, . . . , 25 the elements of C are set to be c1,i = (i − 1)/24 and c2,i = 1 − (i − 1)/24. The
columns of A and B are the values of mixtures of scaled and shifted Gaussian PDFs evaluated
over 25 evenly spaced points between −1 and 1. We set X = JA,B,CK. The first frontal slice
is X1 = a1 ◦ b1; the last frontal slice is X25 = a2 ◦ b2; and all other frontal slices are convex
combinations of X1 and X25.

We performed a rank two factorization using the two different algorithms. For all CPAL1
computations we used set ε = 10−1 and µ = 10−8. Let the fit of the model, JA,B,CK, to X be
defined as

1−
‖X− JA,B,CK ‖F

‖X ‖F
.

Both algorithms were run until the absolute value of the difference between a current fit and the
last fit fell below 10−5.

Figure 1a shows the frontal slices of X. Figure 1b shows the true factors for each mode in the
left column; the factors for each mode estimated by CPALS in the second column; and factors for
each mode estimated by CPAL1 in the third column. The fitted values of a1,b1, c1 are in red;
fitted values of a2,b2, c2 are in blue. The color coding is the same for all plots in the qualitative
comparisons between CPALS and CPAL1.

We then added Gaussian noise to every element in the tensor X. Let N denote a tensor of the
same size as X where nijk ∼ N(0, 1) and let η = 0.2. We created a noisy version of X, X̃ as follows:
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(a) Visualization of the tensor X: Twenty five frontal slices size 25 × 25
(Intensity of pixel ijk is log(1 + xijk)). True rank is 2.
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(b) Rank two CP factorizations by CPALS and CPAL1 agree with each
other and the true generative factorization.

Figure 1: Comparison on noise-free data

32



X̃ = X + η
‖X ‖F
‖N ‖F

N.

Figure 2a and Figure 2b show the frontal slices X̃ and resulting rank two factorizations by CPALS
and AL1. Both factorizations recover the generative model.

We then added artifact noise to X consisting of a single 5 × 5 square to each frontal slice
(Figure 3a). For k = 1, . . . , 25 we make two independent uniformly random draws Uk and Vk from
the set {3, 4, . . . , 22, 23}. We created an artifact noise contaminated tensor X′ from X as follows:

x′ijk =

{
0.75 i ∈ {Uk − 2, . . . , Uk + 2} and j ∈ {Vk − 2, . . . , Vk + 2}
xijk otherwise

Note that the largest value of X is 0.7961. So, the intensity of the artifact noise is within the
range of the true signal. Figure 3b shows the resulting factorizations. We see that the CPALS
factorization gives less accurate answers, while the CPAL1 factorization is unaffected.

We then considered a combination of the dense Gaussian errors and sparse non-Gaussian per-

turbations. We constructed X̃
′

as follows,

X̃
′
= X′ + η

‖X ‖F
‖N ‖F

N.

We constructed two more noisy tensors, X̃
′′

and X̃
′′′

in a similar manner. The resulting frontal
slices are shown in Figures 4a, 5a, and 6a. The resulting factorizations are shown in Figures 4b, 5b,
and 6b. Again we see that both computations handle the presence of dense Gaussian noise about
equally well but that CPALS struggles with the sparse non-Gaussian perturbations in the tensor
while CPAL1 does not.

We then considered more subtle artifact noise. We add to each slice pyramids of random size
and location. Let g be the real valued function,

g(x, y, s, h) = max(smin{x, y}+ h, 0).

Let Ni denote the number of outlying pyramids on the ith slice. For the ith slice and nith pyramid
on it, we generate random variables that specify the height, Hx,ni and Hy,ni , slope, Sx,ni and Sy,ni ,
and location, Ux,ni and Uy,ni , of a pyramid.

Hx,ni , Hy,ni

iid∼ U [0.2, 1]

Sx,ni , Sy,ni

iid∼ U [0.2, 0.6]

Ux,ni , Uy,ni

iid∼ UNIFORM{1, 2, . . . , 23, 24, 25},

where UNIFORM{1, 2, . . . , 23, 24, 25} denotes the discrete distribution where the integers between
1 and 25 are drawn with equal probability. We constructed a sparse pyramid noise tensor P as
follows:

pijk = max
ni=1,...,Ni

{g(Sx,ni , j − Ux,ni , j + Ux,ni , Hx,ni)× g(Sy,ni , k − Uy,ni , k + Uy,ni , Hy,ni)}.
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(a) Visualization of the tensor X̃: Twenty five frontal slices size 25 × 25
with Gaussian noise (Intensity of pixel ijk is log(1 + xijk)).
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(b) Rank two CP factorizations of X̃ by CPALS and CPAL1 agree with
each other and the true generative factorization.

Figure 2: Comparison on data with Gaussian noise
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(a) Visualization of the tensor X′: Twenty five frontal slices size 25×25 with
artifact noise (5×5 block) in each slice (Intensity of pixel ijk is log(1+xijk)).
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(b) The rank two CPALS factorization displays sensitivity to non-Gaussian
perturbations. The rank two CPAL1 factorization still agrees with the true
factorization.

Figure 3: Comparison on data with artifact noise
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(a) Visualization of the tensor X̃
′
: combined artifact and Gaussian noise in

each slice (Intensity of pixel ijk is log(1 + xijk)).
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(b) The rank two CPALS factorization displays sensitivity to sparse non-
Gaussian perturbations and dense additive Gaussian noise. The rank two
CPAL1 factorization still agrees with the true factorization.

Figure 4: Comparison on data with artifact (1 block per slice) and Gaussian noise
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(a) Visualization of the tensor X̃
′′
: combined artifact and Gaussian noise in

each slice (Intensity of pixel ijk is log(1 + xijk)).
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(b) The rank two CPALS factorization continues to diverge from the true
factorization as more non-Gaussian perturbations add added and Gaussian
noise is also added to all entries. The two CPAL1 factorization still agrees
with the true factorization.

Figure 5: Comparison on ata with artifact (2 blocks per slice) and Gaussian noise
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(a) Visualization of the tensor X̃
′′′

: combined artifact and Gaussian noise
in each slice (Intensity of pixel ijk is log(1 + xijk)).
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(b) The rank two CPALS factorization disagrees quite a bit from the true
factorization as even more non-Gaussian perturbations add added. The
rank two CPAL1 factorization still agrees with the true factorization.

Figure 6: Comparison on data with artifact (3 blocks per slice) and Gaussian noise
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The sparse perturbations were superposed onto the data tensor X by taking element-wise maxima
to generate the tensor X′:

x′ijk = max{pijk, xijk}.

Gaussian noise was then added as before, with η = 0.2:

X̃
′
= X′ + η

‖X ‖F
‖N ‖F

N.

The resulting frontal slices are shown in Figure 7a. The resulting factorizations are shown in
Figure 7b. We see that CPAL1 produces a rank two factorization in better agreement with the
true generative model. The differences with the rank two CPALS factorization, however, are less
pronounced. In these examples, the story is that the greatest differences between CPALS and
CPAL1 occur when the outlier signal is sparsely distributed over the tensor and the magnitude of
outlying entries is very large compared to the underlying signal.

8.2 Quantitative Comparisons between CPALS and CPAL1

We create 3-way tensors X′ ∈ R50×50×50 of rank-5 as follows.

X′ = X + γ
‖X‖F
‖P‖F

P + 0.1
‖X‖F
‖Q‖F

Q

for η = 0.1, 0.2 and γ = 0.5, 1.0, 1.5 and 2.0. For all combinations of η and γ the scaled values of
qijk were less than the largest value of X.

We first generated random factor matrices A,B,C ∈ R50×5 where the matrix elements were the
absolute values of i.i.d. draws from a standard Gaussian. The ijkth entry of the noise free tensor X
was then set to be

∑R
r=1 ai1rbi2rci3r. Then to each X we added dense Gaussian noise and artifact

outliers. All random variables we describe were independently drawn. We generated an artifact
tensor P as follows. A fraction η of the tensor entries was selected randomly. We then assigned
to each of the selected entries a value drawn from a Gamma distribution with shape parameter 50
and scale parameter 1/50. All other entries were set to 0. For the dense Gaussian noise tensor Q,
the entries qijk were i.i.d. draws from a standard Gaussian. The tensor X′ was obtained by adding
the noise and artifact tensors to X.

For every pair (η, γ) we performed 100 rank-5 factorizations under the two methods. For CPAL1
computations we set ε = 10−10 and µ = 10−8. Initial points for all tests were generated using the
n-mode singular vectors of the tensor (i.e., the nvecs command in the Tensor Toolbox). To assess
the goodness of a computed factorization we calculated the factor match score (FMS) between the
estimated and true factors [1]. The FMS ranges between 0 and 1; an FMS of 1 corresponds to a
perfect recovery of the original factors.

Figure 8a shows boxplots of the FMS under both methods. The scores for CPALS decreased as
the contribution of non-Gaussian noise increased. In contrast regardless of the noise distributions
applied CPAL1 tended to recover the true factorization with the exception of occasionally finding
local minima,
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(a) Fifty pyramids with randomly assigned height, location, and base are
placed in each frontal slice of X and Gaussian noise superposed afterward
(Intensity of pixel ijk is log(1 + xijk)).
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(b) The rank two CPALS factorization is less sensitive to the presence of
the pyramid outliers. The rank two CPAL1 factorization has slightly better
aggreement with the true factorization.

Figure 7: Comparison on data with random-shaped artifacts and Gaussian noise
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(b) A comparison of a single recovered factor for a replicate when η = 0.2 and γ = 2. Here the
FMS was 0.91 and 0.64 for CPAL1 and CPALS respectively. Factor columns were normalized
for comparison.

Figure 8: Quantitative comparisons

Figure 8b compares an example factor (one column of a factor matrix) when η = 0.2 and γ = 2
for the two methods. We can see that CPAL1 is a much closer match to the true underlying factor.
Specifically, the FMS was 0.91 and 0.64 for CPAL1 and CPALS, respectively. The median CPALS
FMS was 0.7, so this is typical.
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9 Extensions to the Poisson Likelihood

The CP factorization can be extended to handle binary and nonnegative tensor entries through the
machinery of generalized linear models just as Principal Components Analysis has been extended
for matrices of binary and nonnegative matrices [7, 21, 18, 19]. Here, we consider nonnegative
factorization formulated as a Poisson likelihood maximization problem. We see again that if the
variation in the data violates the assumptions on the statistical model of the variation, the resulting
factorizations can be suboptimal. We show that using the 1-norm loss in the case of nonnegative
factorization is inadequate, motivating the need for different robust alternatives.

9.1 The Poisson Likelihood and Nonnegative Tensor Factorizations

When tensors consist of nonnegative integers or counts, a Gaussian likelihood model for the ran-
domness is a poor description for the observed data. Recall that for an order N tensor X the
best rank R CP decomposition Jλ; A(1),A(2), . . . ,A(N)K of X with respect to the Frobenius norm
corresponds to the MLE of (λ; A(1),A(2), . . . ,A(N)) where xi1,...,iN are independently distributed
and

xi1,...,iN ∼ N

(
R∑
r=1

λra
(1)
i1r
a

(2)
i2r
· · · a(N)

iNr
, 1

)
.

This model is inappropriate for count data in two ways; under this model xi1,...,iN can take
on negative values and/or non-integer values. To put it another way, if one were interested in
simulating multi-way data from the MLE of (λ; A(1),A(2), . . . ,A(N)) the generated samples would
be on the wrong scale; they would need to be transformed to create count data.

A more elegant alternative is to directly model the discrete nonnegative nature of the tensor
elements with a discrete distribution such as the Poisson distribution. In fact, the popular method
of minimizing the generalized Kullback-Leibler divergence introduced by Lee and Seung [18, 19] is
equivalent to maximum likelihood estimation under the assumption that xi1,...,iN are independently
distributed and

xi1,...,iN ∼ POISSON

(
R∑
r=1

λra
(1)
i1r
a

(2)
i2r
· · · a(N)

iNr

)
, (13)

and λ,A(1), . . . ,A(N) are all constrained to be nonnegative. To see, this note that the log-likelihood

log

 ∏
i1,...,iN

(∑R
r=1 λra

(1)
i1r
a

(2)
i2r
· · · a(N)

iNr

)xi1,...,iN
xi1,...,iN !

exp

(
−

R∑
r=1

λra
(1)
i1r
a

(2)
i2r
· · · a(N)

iNr

)
=
∑

i1,...,iN

{
xi1,...,iN log

(
R∑
r=1

λra
(1)
i1r
a

(2)
i2r
· · · a(N)

iNr

)
−

R∑
r=1

λra
(1)
i1r
a

(2)
i2r
· · · a(N)

iNr

}
−

∑
i1,...,iN

log (xi1,...,iN !)

43



equals the generalized Kullback-Leibler divergence up to a scalar shift. Note that (13) is the
generalization of the log-likelihood that is shown to be maximized in NNMF in Example 4.4.

An advantage of Lee and Seung’s factorization is that it tends to produce a “parts-based”
representation of the data. We can understand why this is so from the model (13). Recall that the
sum of independent Poisson random variables is also Poisson.

Proposition 9.1 Let Xi ∼ POISSON(λi), for i = 1, . . . , N , be independent random variables.
Then

N∑
i=1

Xi ∼ POISSON

(
N∑
i=1

λi

)
.

Proof. We show the claim is true for N = 2. The general case follows from an induction argument.

P (X1 +X2 = k) =

k∑
r=0

P (X1 = k − r,X2 = r)

=
k∑
r=0

P (X1 = k − r)P (X2 = r)

=
k∑
r=0

λk−r1

(k − r)!
e−λ1

λr2
r!
e−λ2

=
exp−(λ1+λ2)

k!

k∑
r=0

k!

(k − r)!r!
λk−r1 λr2

=
(λ1 + λ2)k exp−(λ1+λ2)

k!
.

The first equality follows from the law of total probability. The second equality follows from
the independence of X1 and X2. The last equality follows from the binomial theorem. �

Model (13) is equivalent to the following superposition model: X = X(1) + X(2) + · · · + X(R)

and the x
(r)
i1,...,iN

are independent Poisson random variables:

x
(r)
i1,...,iN

∼ POISSON
(
λra

(1)
i1r
a

(2)
i2r
· · · a(N)

iNr

)
.

So, model (13) expresses X as the sum of nonnegative tensors X(r) where

X(r) ∼ POISSON
(
Jλr; a(1)

r ,a(2)
r , . . . ,a(N)

r K
)

The next subsections review algorithms for computing the NNMF decomposition under the gen-
eralized Kullback-Leibler divergence. The algorithm for matrix and tensor factorizations amount to
solving alternating Poisson regression problems with an MM algorithm. The algorithm is identical
to the Lee and Seung algorithm and its tensor extension [26] except that for each subproblem it
iterates until convergence, whereas the Lee and Seung algorithm and its tensor extension complete
just a single iteration for each subproblem. We first review how to do Poisson regression.
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9.2 Poisson Regression

Let Yi be independent Poisson(xT
[i]b) for i = 1, . . . , N and X ∈ RN×P+ and b ∈ RP+. Let yi denote

the observed value of Yi. The negative log-likelihood is

− log `(b) = − log

 N∏
i=1

(
xT

[i]b
)yi

exp
(
xT

[i]b
)

yi!

 =

N∑
i=1

(
xT

[i]b− yi log
(
xT

[i]b
)

+ log(yi!)
)
.

Take the loss function L(b) to be

L(b) =

N∑
i=1

fi

(
xT

[i]b
)
,

where fi(t) = t− yi log(t). Since log is concave and yi ∈ Z+, fi is convex, L(b) is convex.

Proposition 9.2 The following function majorizes fi(x
T
[i]b) at b̃:

gi(b|b̃) =

P∑
j=1

αijfi

(
xT

[i]b̃

b̃j
bj

)
,

where αij = xij b̃j/x
T
[i]b̃.

Proof. It is immediate that gi(b̃|b̃) = fi

(
xT

[i]b̃
)

. We next need to verify the inequality. Since b has

positive elements and x[i] has positive elements for all i, we have that αij ∈ [0, 1] and
∑P

j=1 αij = 1.

We then make the inspired observation that the inner product xT
[i]b can be expressed in terms of

the αij :

xT
[i]b =

P∑
j=1

xijbj =

P∑
j=1

(
xij b̃j

xT
[i]b̃

)(
xT

[i]b̃

b̃j

)
bj =

P∑
j=1

αij

(
xT

[i]b̃

b̃j

)
bj .

To complete the proof use the convexity of fi to get

fi

(
xT

[i]b
)

= fi

 P∑
j=1

αij

(
xT

[i]b̃

b̃j

)
bj

 ≤ P∑
j=1

αijfi

(
xT

[i]b̃

b̃j
bj

)
= gi(b|b̃).

�

Note that L(b) is majorized at b̃ by
∑

i gi(b|b̃). To find the MLE of b, we minimize
∑

i gi(b|b̃).
Let us calculate the derivative with respect to bj :

∂

∂bj

N∑
i=1

gi(b|b̃) =

N∑
i=1

xijf
′
i

(
xT

[i]b̃

b̃j
bj

)
=

N∑
i=1

xij

(
1− yi

b̃j

bjxT
[i]b̃

)
.
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By setting the derivatives equal to zero we obtain a multiplicative relationship between bj and b̃j :

0 =
N∑
i=1

xij

(
1− yi

b̃j

bjxT
[i]b̃

)
N∑
i=1

xij =
b̃j
bj

N∑
i=1

(
yi

xT
[i]b̃

)
xij

bj = b̃j

[{
N∑
i=1

(
yi

xT
[i]b̃

)
xij

}/ N∑
i=1

xij

]

Note that when yi is close to xT
[i]b̃ for all i, b is very close to b̃. Recall that if yi ∼ Poisson

(
xT

[i]b̃
)

,

then the expected value of yi is xT
[i]b̃. So when yi is close to xT

[i]b̃ for all i, the parameter b̃ explains
the data well and the updates should be expected to be minor.

9.3 Poisson PCA using the Non-canonical link

We next show how our NNMF algorithm is equivalent to alternating Poisson regression and can be
solved using calls the algorithm described in Section 9.2. Let Yij be independent Poisson(aT

[i]b[j])

for i = 1, . . . ,M and j = 1, . . . , N and A ∈ RM×K+ and B ∈ RN×K+ . The negative log-likelihood is
given by

− log `(A,B) = − log

 M∏
i=1

N∏
j=1

(aT
[i]b[j])

yij exp(aT
[i]b[j])

yij !


=

M∑
i=1

N∑
j=1

(
aT

[i]b[j] − yij log(aT
[i]b[j]) + log(yij !)

)
.

Take the loss function L(A,B) to be

L(A,B) =

M∑
i=1

N∑
j=1

fij

(
aT

[i]b[j]

)
,

where

fij(t) = t− yij log(t).

We alternate minimizing A and B with the other fixed using the Poisson regression algorithm
described in Section 9.2. First fix B and minimize L(A,B) with respect to A. Note that L(A,B)
is separable in a[i]. Consequently if we find the a[i] that minimizes

N∑
j=1

fij

(
aT

[i]b[j]

)
(14)

46



Algorithm 4 Poisson PCA for Nonnegative Matrix Factorization (CPAPR)

1: repeat
2: repeat
3: for i = 1, . . . ,M , and k = 1, . . . , R do

4: aik ← aik

[{∑N
j=1

(
yij

bT
[j]a[i]+ε

)
bjk

}/(∑N
j=1 bjk + ε

)]
.

5: end for
6: until A converges
7: repeat
8: for j = 1, . . . , N , and k = 1, . . . , R do

9: bjk ← bjk

[{∑M
i=1

(
yij

aT
[i]
b[j]+ε

)
aik

}/(∑M
i=1 aik + ε

)]
.

10: end for
11: until B converges
12: until (A,B) converges
13: return A and B

for every i, then we have found the A that minimizes L(A,B). Since minimizing (14) is a Poisson
regression problem, we can use the MM algorithm introduced in Section 9.2 to obtain the following
update rule for aik

aik ← aik


N∑
j=1

(
yij

bT
[j]a[i]

)
bjk


/ N∑

j=1

bjk

 .
By symmetry, minimizing L(A,B) with respect to B with A fixed, gives the update rule for bjk

bjk ← bjk

[{
M∑
i=1

(
yij

aT
[i]b[j]

)
aik

}/ M∑
i=1

aik

]
.

Minimizing L(A,B) with respect to A with B fixed amounts to performing N independent Poisson
regressions. Similarly, minimizing L(A,B) with respect to B with A fixed amounts to performing
M independent Poisson regressions. We alternate updating A and B until convergence. Algo-
rithm 4 outlines pseudocode for the described algorithm for computing the decomposition with R
components for the two-way tensor tensor X of size M ×N . Note that to prevent potential division
by zero, we add a small positive value ε to all denominators. This is a heuristic, however, and the
updates no longer correspond to an MM algorithm.

Algorithm 4 can be generalized to handle factorizations of tensors of arbitrary number of modes.
Since the basic step in Algorithm 4 is Poisson Regression, we refer to the generalization to tensors
of arbitrary number of modes as CP Alternative Poisson Regression (CPAPR).

The effect of inliers

We consider the effect on CPAPR when some of the observations grossly violate the Poisson dis-
tribution assumptions. To establish a baseline comparison between the three methods we compare
their resulting factorizations on data that is generated according to the assumed Poisson likeli-
hood model. Specifically we generated a matrix Y ∈ N161×161 as follows. Define ω ∈ R161 with
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ωi = −4 + (i− 1)/20. Then we set

a1 = φ(ω)/ ‖φ(ω) ‖ ,
a2 = φ(ω − 1)/ ‖φ(ω − 1) ‖ ,
b1 = φ(ω)/ ‖φ(ω) ‖ , and

b2 = φ(ω + 1)/ ‖φ(ω + 1) ‖ .

Then we drew Yij independently as

Yij ∼ POISSON(200ai1 ◦ bj1 + 50ai2 ◦ bj2).

Figure 9a, Figure 9c, and Figure 9e show the factorization of a rank 2 nonnegative matrix
by CPAPR, CPAL1, and CPALS respectively. Only CPAPR comes close to recovering the true
underlying factors. Both CPAL1 and CPALS return factors that have negative elements. Moreover,
CPAL1 tends to assign more zeros to factor matrix elements when the data is sparse than CPAPR
and CPALS.

We next considered the effects of extreme inliers. An inlier is a data value within the nominal
range but incorrectly specified. In the following example we set a randomly selected half of the
values that are above 25 to 0. In this particular example, the observed data values ranged from 0
to 49. Figure 9b, Figure 9d, and Figure 9f show the factorization of a rank 2 nonnegative matrix
by CPAPR, CPAL1, and CPALS respectively. The presence of inliers only exacerbates the poor
performance of CPALS and CPAL1, but CPAPR is also adversely affected by the inliers. The inlier
experiment suggests the need for a robust version of CPAPR. On the other hand, both experiments
indicate that CPAL1 is not the solution.

One approach to making a robust version of CPAPR is to replace the loss function with a
member of the family of density power divergence associated with the Poisson distribution [3].
Members of this family of divergence measures are indexed by a parameter that explicitly trades
off statistical efficiency for robustness. Maximum likelihood estimation corresponds to minimum
Kullback-Leibler divergence. The Kullback-Leibler divergence in turn is the member of the family
with greatest efficiency and least robustness. Estimates using another member of the family in
contrast would be less efficient but would have greater robustness against non-Poisson variation.
The same strategy could be applied for other assumptions on the statistical behavior of the variation
(e.g., binary data).
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Figure 9: Example Poisson data (with and without inliers)
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10 Conclusion

We derived a robust tensor factorization algorithm, CPAL1, based on an approximate 1-norm loss.
We have shown that a Tychonoff regularized version of CPAL1 generates iterates whose limit points
are stationary points of the the regularized approximate 1-norm loss.

Our simulations demonstrated that there are scenarios in which CPAL1 outperforms CPALS
in the presence of artifact noise. Simulation studies also showed that not all non-Gaussian pertur-
bations cause noticeable degradation in the CPALS factorization. Conversely, there are situations
when CPAL1 struggles as much as CPALS in the presence of artifact noise, e.g. when the data
tensor is sparse as well as seen in the example of nonnegative factorization of sparse count data.
We conjecture that CPAL1 is most suited to handle artifact noise when the data tensor is dense.
Finding an alternative to the 1-norm loss for sparse data with non-Gaussian noise is a direction for
future research.

We also briefly reviewed nonnegative tensor factorization and derived a CP factorization based
on maximizing a Poisson likelihood with an alternating MM algorithm, CPAPR. In simulation
experiments, CPAPR was shown to be sensitive to the presence of inliers. But CPAL1 was shown to
perform poorly in the context of nonnegative tensor factorizations with or without inliers. Finding
a robust alternative loss for count tensor data is yet another direction for future research.

In summary CPAL1 is an algorithmically well-behaved and simple-to-implement method to
perform CP factorization when the data may include variations that violate the standard Gaussian
assumption. Cases where CPAL1 succeeds over CPALS and even when CPAL1 fails to correctly
recover generative factor models represent good first steps in improving the state of the art in tensor
factorizations.
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