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Abstract 

 
Design and operation of the electric power grid (EPG) relies heavily on 
computational models. High-fidelity, full-order models are used to study transient 
phenomena on only a small part of the network. Reduced-order dynamic and power 
flow models are used when analysis involving thousands of nodes are required due to 
the computational demands when simulating large numbers of nodes. The level of 
complexity of the future EPG will dramatically increase due to large-scale 
deployment of variable renewable generation, active load and distributed generation 
resources, adaptive protection and control systems, and price-responsive demand. 
High-fidelity modeling of this future grid will require significant advances in 
coupled, multi-scale tools and their use on high performance computing (HPC) 
platforms.  This LDRD report demonstrates SNL’s capability to apply HPC resources 
to these 3 tasks: 
 
•     High-fidelity, large-scale modeling of power system dynamics 
•     Statistical assessment of grid security via Monte-Carlo simulations of cyber 
attacks. 
•     Development of models to predict variability of solar resources at locations where 
little or no ground-based measurements are available. 
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1. INTRODUCTION 
 
Design and operation of the electric power grid (EPG) relies heavily on computational models.  
However, computational techniques in use today for modeling the EPG have not scaled beyond 
the workstation level.  Current modeling entails accepting tradeoffs between model fidelity and 
electrical grid size.  High-fidelity, full-order models are used to study transient phenomena and 
control interactions; computational limitations dictate that only a small part of the network be 
represented explicitly.  On the other hand, reduced-order dynamic and power flow models are 
used when analysis involving thousands of nodes are required.  The reduced order approach 
works, in part, because the system is normally operated with narrow voltage and frequency 
tolerances, where system behavior is approximately linear or well understood.   
 
The level of complexity of the future EPG will dramatically increase due to large-scale 
deployment of variable renewable generation, nonlinear controls, active load and distributed 
generation resources, adaptive protection and control systems, price-responsive demand, and full 
integration of information networks.  The additional complexity introduces a range of new 
forcing functions or system interactions, ranging from weather-driven generation variability to 
malicious cyber attacks, which can propagate through the system and degrade reliability over 
wide regions.  Modeling tools may require the simulation of increasingly complex scenarios with 
higher-fidelity models and much larger numbers of nodes; modeling of this future grid will 
require significant advances in the use of HPC for higher fidelity, coupled, multi-scale tools.   
 
This LDRD report demonstrates SNL’s capability to apply HPC resources, including Sandia’s 
Xyce software and the Red Mesa HPC platform, to three specific challenges related to power 
system modeling and simulation: :   
 

 High-fidelity, large-scale modeling of power system dynamics 
 Statistical assessment of grid security by evaluating impacts from cyber attacks on large 

networks, using Monte-Carlo techniques 
 Development and validation of PV output variability models that would extend the state 

of the art for solar resource modeling.  
 
Together, these three application areas represent fundamental challenges that need to be 
overcome to maintain system performance and reliability with increased complexity, high 
penetration of renewable resources, and full integration of information technology, which 
increases cyber-security concerns. 
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2.  SCALABLE HIGH FIDELITY ELECTRIC POWER GRID MODELING 
 
 
Traditional grid models for large-scale simulations assume linear and quasi-static behavior 
allowing very simple models of the systems.  In this section, a scalable electric circuit simulation 
capability is presented that can capture a significantly higher degree of fidelity including 
transient dynamic behavior of the grid as well as allowing scaling to a regional and national level 
grid.  A test case presented uses simple models, e.g. generators, transformers, transmission lines, 
and loads, but with the scalability feature it can be extended to include more advanced non-linear 
detailed models. The use of this scalable electric circuit simulator will provide the ability to 
conduct large-scale transient stability analysis as well as grid level planning as the grid evolves 
with greater degrees of penetration of renewables, power electronics, storage, distributed 
generation, and micro-grids. 
 
2.1. Introduction 

 
The scalability of simulation models for a wide range of power systems components has not been 
explored in significant detail. Dynamic models of the electric power grid (EPG) are divergent 
from the existing classes of electrical systems problems being solved in electric circuit 
simulators such as PSpice™.  The dynamic analysis of large-scale power grids needs an 
advancement of high fidelity scalable tools capable of addressing the future architecture of the 
EPG.  Currently, power grid models are either high level aggregated models (e.g. PSLF™, 
PowerWorld™) or low level high fidelity (e.g. Simulink™/SimPowerSystems™, PSpice™).  
The ability to analyze the impact of low level circuits (e.g. Photovoltaic arrays) on a large scale 
is missing. 
 
By using a parallel electric circuit simulator, developed at Sandia National Laboratories, Xyce™, 
the ability to model individual electric power grid components and group them into successively 
larger circuits that can replicate a large scale grid has been achieved.  This results in a unique 
analytical capability for the power grid simulation field.  Xyce™ has the ability to model highly 
complex circuits with very large numbers of nodes.  This ability is being leveraged to extend 
Xyce™ to the electric power grid by using electric circuit elements to model the various 
components of the power grid.  The ability to analyze the impact of high levels of penetration of 
solar PV, wind, fuel cells, and storage can be analyzed with such a tool.  This capability is 
needed to determine the impact of high levels of renewables, distributed generation, and storage 
in the future EPG. 
 
The use of electric circuit elements in Xyce™ for the EPG has some distinct advantages: 

--The ability to model EPG as a modular scale-up of electrical circuit components. 
--The ability to handle a very large scale network via parallelizable solvers. 
--The ability to interface with a graphical user interface to display simulation values on a    
grid map. 

Though some of the EPG components (specifically generators) are not easily modeled as 
electrical circuits, the re-use of models developed in other platforms (e.g. Matlab™) is currently 
being addressed. 
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The basic EPG components modeled consist of generators (including the prime mover, governor, 
and exciter circuit), transformers (three phase and single phase) transmission lines (both AC and 
DC), and loads (static and dynamic).  Constructing a power grid example begins with these basic 
components. To construct a realistic EPG, some assumptions were made on types of loads to be 
modeled as well as the size and types of neighborhood transformers, feeders, and substations to 
be represented. 
 
There are three different load types being modeled: residential, commercial, and industrial.  The 
only difference between the load types are the percentage of the load that is static vs. dynamic.  
Typically, residential loads are 80% static and 20% dynamic.  Commercial loads are 
approximately 50% static and 50% dynamic.  Industrial loads are generally 10% static and 90% 
dynamic.  Static loads are represented as variable resistors.  Dynamic loads are represented as 
induction motors.  More sophisticated load models can be designed as well.  Within each load 
type there are 3 residential sub-types: a medium home, a large home, and a medium apartment 
complex, 3 commercial sub-types: small, medium, and large, and 4 industrial sub-types: small, 
medium, large, and extra-large. For each of these sub-types, data for typical average power loads 
is used to determine how large the static and dynamic loads need to be in terms of power draw. 
 
The build-up of the substation circuits progresses from loads to the distribution transformer level 
to the feeder circuit then to the substation level.  For the higher levels, 9 distribution transformer 
types were defined, 6 feeder circuits were defined, and 7 substation types were defined.  Finally, 
at the grid level, the substations are connected to generators via transmission lines using the 
circuit models corresponding to these components.  A realistic EPG based on the state of New 
Mexico was constructed using the above procedure. 
 
Data visualization was accomplished by developing a Google™ map based graphical user 
interface (GUI). The GUI can display actual EPG nodes and edges (generators, substations, 
transmission lines) overlaid on a geographical map while displaying voltage and power time 
series data for selected nodes.  
 

2.2. Power Grid Component Models using PSpice Circuit Elements 
 
The basic model to be used for the electric power generators is based on [1]-[2] and depicted in 
Figs. 1-4. 
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Figure 1.  Equivalent circuit for d-axis of generator. 

 
Figure 2.  Equivalent circuit for q-axis of generator. 

The inductances and resistances Ra, Ll, Lad L1d, R1d, Lfd, Rfd, (Lfld – Lad), Laq, L1q, L2q, R1q, R2q, will 
be known a priori and are constant. 
 
Note that the currents id, i1d, ifd, iq, i1q, i2q are defined in the circuit diagrams as loop currents.  To 
determine the values of the dependent voltage sources in the above circuits, the following two 
equations are needed: 

 
ψd = - (Lad + Ll ) id + Lad ifd + Lad iid               (1) 
 

ψq = - (Laq + Ll ) iq + Laq i1q + Laq i2q               (2) 
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where ψd and ψq are the flux linkages of the d and q-axis circuits, respectively and the loop 
currents and inductances are as defined in Figs. 1-2. 
 
Then, the generator swing equations (equations of motion) must be solved to determine ωr, the 
angular swing velocity in rad/s to complete the expressions in the dependent voltage sources: 
  
pΔωr = ( 1/2H ) ( Tm – Te – KDΔωr )               (3) 

 
pδ = ω0 Δωr            
                   (4) 
 
where 
 
ω0 = 2π60                  (5) 
 
Δωr = ωr - ω0                  (6) 
 
with p being the derivative operator d/dt. 
 
Also needed is the generator output power.  The active power is given by 
 
Pt = edid + eqiq                                                              (7) 
 
and the reactive power is given by 
 
Qt = eqid – ediq .                                       (8) 
 
Te is the electromagnetic torque of the generator and is given by: 
 
Te = ψdiq - ψq id.                 (9) 
 

 
Figure 3.  Block diagram for the turbine with governor. 
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Tm is the generator input power and is the output of the prime mover model (e.g. turbine and 
governor).  It is being modeled as a non-reheat steam turbine with a proportional speed regulator 
governor and optional load reference setting as shown in Fig. 3 where 
 
(TCHTG)p2Tm  + (TCH + TG)pTm +  Tm  =  -(1/R)Δωr – (1/R)(LoadRef).            (10) 

 
Parameters and initial conditions for the above equation include: 
 
R=0.05, TCH  = 0.3 sec, TG  = 0.2 sec, LoadRef = 0.0, Tm(0) = 0.0, pTm(0) = 0.0. 
 
Finally, efd is the generator field voltage and is the output of the excitation system as shown in 
Fig. 4.  We’ll use an automatic voltage regulator (AVR) to determine efd.  In many large electric 
power generators, a power system stabilizer (PSS), may be incorporated, but we omit that here.  
The following equations describer the excitation system: 
 
pv1 + (1/TR)v1 = (1/TR)Et              (11) 
 

where Et = √(ed
2 + eq

2) and 
 
Efd = KA (Vref – v1)                (12) 
 
subject to saturation, e.g., if Efd ≥ EFMAX then Efd = EFMAX and if Efd ≤ EFMIN then Efd = EFMIN.  
Then 
 
efd = (Rfd/ Lad)Efd.               (13) 
 

 
Figure 4.  Block diagram for the excitation system. 

For this exciter, the following parameters and initial conditions are used: 
 
Vref = (1/KA)(Lad/ Rfd) efd(0)  + v1(0), TR = 0.015 sec, KA = 200, EFMAX = 7.0, EFMIN = -6.4, ed(0) 
= 0.631, eq(0) = 0.776, efd(0) = 0.000939, v1(0) = Et(0) = √(ed

2 + eq
2) at t=0. 
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The following are parameter values used in the testing of the generator equivalent circuit model, 
assuming a 60 Hz 3-phase round rotor (2 pole) synchronous generator rated at 555 MVA at 24 
kV, with a power factor of 0.9.  All of these values are in per unit, H = 3.5, KD = 0.3, Ra = 0.003, 
R1d = 0.0284, Rfd = 0.0006, R1q = 0.00619, R2q = 0.02368, Ll = 0.15, Lad = 1.66, L1d = 
0.1713, Lfd = 0.165, Laq = 1.61, L1q = 0.7252, L2q = 0.125, Lfld = Lad = 1.66 ==> the 
inductance in the d-axis subcircuit, Lfld - Lad = 0 (which is a typical assumption). 
 

2.3. Design of Example Power Grid 
 
In order to build up an example power grid from basic electric circuit components, the following 
four elements will form the basic building blocks of our example grid: loads, transformers, 
transmission lines, and generators as shown in Fig. 5.  Generators have already been defined 
from basic circuit elements in Sec. 1.2.  Transmission lines are often defined as basic circuit 
elements in circuit modeling software such as PSpice™.  More sophisticated transmission line 
models can be developed but are omitted here.  The basic three-phase transformer is modeled 
using the Y-Y connection as shown in Fig. 6 [3]-[4].  The loads are built up from static and 
dynamic load elements.  A static load is modeled here as a voltage controlled current source 
using PSpice™ 
 
gload n1 n2 value = {1/(RMIN/v(n1,n2) +  v(n1,n2)/PLOAD)}                               (14) 
 
which behaves like a resistor of value RMIN at low voltages and a constant power load of 
PLOAD at high voltages.  A very high percentage of industrial loads behave like induction 
motors, thus we model a dynamic load as an induction motor depicted in Fig. 7 [5]-[6]. 
 

 
Figure 5.  Block diagram relating different components of an example grid. 
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Figure 6.  Circuit diagrams for a Y-Y three phase transformer. 

 
Figure 7.  Equivalent circuit of an induction motor used to represent dynamic load 

elements. 
From (14) and Fig. 7, three different load types are defined: Residential, Commercial, and 
Industrial.  Subtypes are also defined within each type.  For instance, residential loads are 
defined as 20% dynamic and 80% static with an average power factor of 0.95.  Subtypes within 
the residential load include a medium-sized home (2300 sq. ft. with 1.75kW average power 
load), large-sized home (3000 sq. ft. with 2.25kW average power load), and a medium-sized 
apartment complex (75000 sq. ft. with 56.25kW average power load).  Commercial loads are 
defined as 50% dynamic and 50% static with an average power factor of 0.9.  Subtypes within 
the commercial load include a small load (1500 sq. ft. with 0.675kW average power load), a 
medium load (50000 sq. ft. with 22.5kW average power load), and a large load (200000 sq. ft. 
with 90kW average power load).  Examples of these sub-types include a gas station (small), a 
grocery store (medium), and a big box store (large).  Industrial loads are defined as 90% dynamic 
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and 10% static with an average power factor of 0.85.  Subtypes within the industrial load include 
a small load (200kW average power load), a medium load (500kW average power load), a large 
load (1MW average power load), and an extra-large load (3MW average power load).  The 
advantage of using circuit elements for these loads is that the only difference between the load 
types is the % of the load that is static vs. dynamic. 
 
The build-up of the substation circuits proceeds from load level to the distribution transformer 
level to the feeder level to the substation level as shown in Fig. 5.  In order to build up realistic 
power grids, we define multiple types for each level similar to what was done with loads.  That 
is, there are nine distribution transformer types, DTR1, DTR2, DTR3, DTC1, DTC2, DTC3, 
DTI1, DTI2, and DTI3, and six feeder types, Residential, Commercial, Industrial 1, Industrial 2, 
Industrial 3, and Mixed, and seven substation types, A, B, C, D, E, F, and G.  Details of how 
each of these levels is assembled from the lower levels are addressed in the Appendix. 
 

2.4. Data Visualization 
 
A graphical user interface (GUI) was developed using a graph structure with the edges 
representing transmission lines and the nodes representing substations, switching stations, and 
generators.  Fig. 8 depicts a screen shot of the GUI with node and edge data corresponding to 
power grid data from the State of New Mexico. 
 
To differentiate node types, generators are denoted as red squares, switching stations are 
depicted as blue triangles, and substations are drawn as yellow diamonds.  Each node has 
longitude and latitude coordinates allowing the nodes to be overlaid on a map application.  In 
this case, a Google™ map based application is employed. The topology information is input 
separately from the simulation variables, which will vary with different runs.  The simulation 
variables consist of 4 or 5 variables over time, with the duration being a couple of minutes 
sampled at sub-second intervals (potentially at much shorter sampling times).  The simulated 
variables at each node include real and reactive power, voltage magnitude and phase angle, and 
frequency. 



18 
 

 
Figure 8.  Screen shot of graphical user interface displaying power grid data for the State 

of New Mexico. 
 
In the screen shot of Fig. 8, the lower left portion of the GUI contains a legend for the nodes and 
for the transmission lines.  The transmission lines are color coded according to voltage category 
(e.g. 115 kV, 230 kV, 345 kV, etc.).  In addition, if the screen cursor hovers over an edge of 
interest, the voltage rating for that transmission line will be displayed on the screen.  The nodes 
are selectable, allowing one to display the time series plots in a control panel at the bottom of the 
screen.  In Fig. 8 above, nominal values for voltage magnitude and phase angle are displayed in a 
console format representing a nominal base case simulation. The GUI is still in a state of further 
development.  In the future, animation controls to view simulation values dynamically change 
over time will be added.  In addition, some of the simulation runs may want to remove edges and 
nodes and evaluate the impact of a transmission line outage or a generator failure.  Further, since 
the simulation captures detail down to the electric circuit level, a drill down capability will be 
added to the GUI allowing for time series values of individual loads and transformers. 
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2.5. Summary 
 
A modeling technique that combines the high fidelity of electric circuit models with the 
scalability of grid level elements was developed as a tool for the use of transient as well as steady 
state simulation of electric power grids.  Circuit simulation for electric power grid networks has 
some distinct advantages: 
 

 Ability to model grid as a modular scale-up of electrical components. 
 Ability to handle a very large scale network via parallelizable solvers using Xyce™ [7]. 
 Ability to interface with GUI to display simulation values on a grid map. 

 
Some disadvantages of using circuit simulation include: 
 

 Some of the components (e.g. generators) are not easily modeled as electrical circuits. 
 Models developed in other platforms (e.g. differential/algebraic equations or Matlab™) 

can be re-used here with some difficulty -- this is currently being addressed.  
 
The developed graphical user interface not only allows the representation of data over a 
geographic display but can also display time series values of selected nodes.  Further 
development will include the ability to run simulations with the user specifying which nodes and 
edges are to be removed (e.g. generator failure, transmission line outages, and substation 
blackouts). 
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3. USING HIGH-PERFORMANCE COMPUTING TO CALCULATE 
RELIABILITY IMPACTS FROM CYBER ATTACK ON ELECTRIC 

POWER SYSTEMS 
 

3.1. Introduction 
 
The goal of the work described here is to quantify the impact of cyber attack on the US electric 
power infrastructure. The approach is termed Reliability Impacts from Cyber Attack (RICA). 
RICA estimates the effect of cyber attack on reliability by computing reliability index values for 
simulated power system operation in two environments, one with cyber attack and one without, 
the difference in reliability being the impact of cyber attack. The work has aimed at producing 
results for the Western Electricity Coordinating Council (WECC) region. Significant effort was 
expended to accommodate the size of the WECC simulation by utilizing the Red Mesa high-
powered computing (HPC) platform at Sandia National Laboratories. The work reported here 
describes the results of running the RICA simulation for the standard IEEE reliability test 
systems (RTS-96) [31].  The Roadmap to Secure Control Systems in the Energy Sector [8] 
identifies a critical need to understand the possible impact of attacks on electric power systems in 
order to better prioritize mitigation investment to control risk. The approach taken in the 
Reliability Impacts from Cyber Attack (RICA) project provides a means to gauge the impact of 
cyber attacks independent of variations in weather, load, ordinary local outages, and time of day 
and year. The roadmap also points out that “asset owners are hard-pressed to justify control 
system security” because they are unable to “quantify and demonstrate the potential impacts of 
cyber attacks on energy sector control systems.” RICA analysis enables explicit quantification of 
cyber attack effects in terms of unserved load, enabling literal cost-benefit assessment of 
proposed cyber security measures. 
 
The goal of the RICA work is to usefully quantify the effects of security measures on grid 
reliability. This entails the subsidiary goal of harnessing sufficient computational power to 
enable production of RICA results for large-scale power grids. The work reported herein 
describes significant progress towards achieving these goals.  Current approaches to prioritizing 
security are weak because they rely on expert opinion and checklists to rank mitigation strategies 
and certify system security. These methods are flawed because they rely on untestable assertions, 
do not permit comparison among alternatives, and have been shown to overlook fundamental 
problems. The RICA approach provides testable, comparable, and comprehensive results 
concerning the efficacy of cyber security measures.  RICA results are intended to inform 
strategic decisions and have value to industry planners, investors, and other researchers 
deliberating among investments to improve cyber security. To isolate the effects of cyber 
security, outage metrics are reported on an annual basis to “average out” the effects of the time 
of year and local outages. 
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Figure 9. Possible states for grid elements using the RICA approach 

Observed changes in RICA-produced reliability results are due to cyber security measures (and 
not, for example, the fact that it is currently winter). 
 
Work described herein represents a significant capacity increase over our previous efforts, 
described in [9]: results therein were for a notional five-bus system, whereas the results reported 
here are for the IEEE RTS-96 72-bus system, and the utilized computing platform has the scaling 
capacity to produce results for the 30,000-bus Western Electric Coordinating Council (WECC) 
transmission grid.  Several researchers ([10], [11], [12], [13], [14]) consider the ability to 
quantify system availability crucial to determining what kind of cyber hardening is needed to 
protect critical infrastructures. These researchers have examined reliability analysis as an 
approach to security analysis because it does exactly that: the prominent reliability measures are 
essentially system availability and outage characterization. The literature on this subject provides 
examples ([15], [16]) that specifically apply Monte-Carlo (MC) analysis to information security 
issues in a manner very similar to the current RICA approach.  Although the analogy between 
reliability and security is not entirely apt, we note the repeated statement in the work cited above 
that the probabilistic framework of reliability analysis is particularly suited for critical 
infrastructure cyber security. 
 

3.2. Reliability Analysis for Cyber Attack 
 
3.2.1. RICA Approach 
 
Given a grid—an electric power system comprising transmission lines, breakers and other 
switches, generators, and loads—reliability is defined as the efficacy of the grid in delivering 
power to the loads. In the RICA approach, reliability is represented by reliability indices, such as 
Loss of Energy Expectation (LOEE) and Frequency of Interruption (FOI), calculated using data 
from a simulation of the grid. RICA determines the reliability of a grid as follows: The grid of 
interest is modeled by integrating model of individual power system elements and the load-
satisfying behavior of this grid model is observed over several thousand simulated years using 
probabilistically determined outages for each individual power system component and empirical 
demand patterns. Load flow, unserved load, and any additional outages (e.g., line tripping due to 
overload) are computed at each time step. The amount of unserved load (and other data needed 
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to compute the relevant reliability indices) is accumulated [17], [18] and, generally, averaged 
over time and reported per unit time. This approach is termed MC reliability analysis [19]. 
 
The high-level diagram for constituent grid components is shown in Figure 9. Each grid element 
(generator, line, or shunt) starts the simulation in service, and failure may cause it to go out of 
service. Failure may be random or purposely caused, e.g., by an attack on the system. After 
failure, an element returns to service after an interval during which repair, forensics, and so on 
ostensibly occur. This presumably results in the protection scheme being restored or a 
workaround developed, after which the grid element is restarted and reconnected to the grid 
(which may involve an additional delay, such as for a warm restart of a generator). If a 
Supervisory Control and Data Acquisition (SCADA) attack causes de-energization of the 
component, then it enters the SCADA forensics interval, before being reconnected.  Several 
metrics based on unserved load and outage characteristics are computed. Overall, system 
reliability is measured  using indices, including FOI (in occurrences per year), Loss of Load 
Expectancy (LOLE) (in hours per year), LOEE (in  MW hr per year), Duration of Interruption 
(DOI) (in hours per  interruption), Energy Not Served per Interruption (ENSI) (in  MW hr per 
occurrence), Load Curtailed per Interruption (LCI)  (in MW per occurrence), and Energy Index 
of Reliability (EIR)  (the ratio of energy served to yearly demand). 
 
During MC simulation, unserved load is calculated once per simulated unit of time (every hour, 
in RICA; generally, times discussed herein refer to simulation time, not actual “wall clock” 
time). For each such calculation, each system element is independently determined to be in or 
out of service as follows: At the beginning of the simulation1, the time interval until the next 
failure of each piece of equipment is determined by scaling a sample from an exponential 
distribution by the relevant Mean Time to Failure (MTTF). This interval is added to the current 
simulation time to give the item’s “failure time”, i.e., the time at which it will fail. All active 
items whose failure time is less than or equal to the current time (i.e., whose failure time has 
passed) are marked “Failed” and do not contribute to generation or transmission. Failed 
equipment returns to service after an idle period (during which it is ostensibly being repaired) 
determined by a similar sample scaled by the equipment’s Mean Time to Recover (MTTR).  
Each type of equipment has its own MTTF and MTTR. This is conventional for reliability 
studies; note that there are no de-rated states used in this approach currently.)  Once it has been 
determined which elements are functioning, load flow is calculated based on the remaining 
transmission lines and their capacities, the structure of the remaining network (i.e., what’s still 
connected to what), the capacities and setpoints of the remaining generators, and the loads to be 
served at that moment. Load magnitudes are based on empirical demand statistics. If the load 
flow indicates possible line overloads or other violations of limits, then an optimization routine is 
applied to shift generation in order to maximize served load. (This last step mimics the realistic 
restorative actions that would be taken by system operators when presented by a contingency 
situation; failure to model this would result in unreasonably low reliability calculations.)  [15] 
calls the generation-transmission system, also referred to  as the bulk power system, the 
“Hierarchical Level II (HL-II)”;  HL-III includes distribution. 
 
Distribution is not included in the RICA model because aggregation of load at the substation 
level provides sufficient resolution to develop an informative load picture at the regional and 
national levels.  The approach as described so far provides a measure of system reliability that 
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accounts for random equipment failure and recovery on an item-by-item basis. We refer to such 
outages as natural to distinguish them from failures caused by cyber attack. To understand the 
impact of cyber attack, attacks and their effects must be modeled and added to the process of 
natural outages described above. Cyber attacks happen in addition to natural outages; both 
degrade grid performance, but they are represented independently in the model because they are 
expressed and mitigated in different ways. For each component the time until the next successful 
cyber attack is currently modeled using an exponentially distributed random variable that’s 
independent of the natural outage variable and a selected mean time to attack (MTTA). The 
MTTR for a cyber-attacked piece of equipment is based on the time required for cyber forensics, 
control system restoration, and device restoration.  The separate contributions of generation and 
transmission to whole-system reliability can be examined using RICA because both are explicitly 
represented. This means, for example, that RICA can be used to assess whether a cyber security 
budget would be better spent protecting generators or protecting transmission lines. 
Alternatively, the algorithm can show that sources would be best invested shortening the 
recovery time from cyber attacks, as opposed to potential modest improvements in prevention. 
 
3.2.2. Attacks against Protection 
 
To study protection attacks, we focus on attacks against three common types of protective 
relaying: Generator protection, Bus protection, and Line protection. Although generation 
protection attacks are generally unlikely, they are included since loss of generation is frequently 
modeled in reliability studies (although not, at least in the prior literature, from cyber attack). 
Based on a certain linked set of parameters from the Cyber-to-Physical (C2P) bridge, a 
successful attack is modeled as causing the generator to go offline as its breakers trip. The 
substation marks the boundary between “distribution” and “transmission”; power transport 
between generation and the substation is considered transmission, everything below the 
substation is distribution.  Mean time to attack is similar to mean time to failure, except that 
MTTA is the average interval between successful cyber attacks and MTTF is the average interval 
between random outages. Most generators reside in generating stations, where protection 
significantly limits the possible attack paths. The interval between successful attacks is modeled 
using an exponentially-distributed random variable and some selected MTTA.  The MTTR for 
the generator depends on the time required for cyber forensics and control system restoration, 
and the restart time for the generator, which depends on its classification as hydro, thermal, or 
nuclear (see Table II).  A successful bus protection attack will presumably activate the 
differential scheme and completely isolate all connected devices. Bus protection is also 
considered a difficult scenario for an attacker given limited connectivity of its constituent relays. 
However, the large loss in connectivity will likely cause significant losses in grid performance.  
Line protection attacks assume advanced relays that allow cyber control of the protective 
breakers at both ends of a transmission line. A successful cyber attack opens the breakers and 
removes the line from service. The line is successfully attacked at random intervals denoted by 
an MTTA and is out of service for an MTTR, as above. This is again similar to the process for 
natural outages, but with the recovery interval dependent on cyber remediation and line 
restoration. 
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3.2.3. Attacks against SCADA 
 
Adversarial penetration and use of a grid’s SCADA system to send trip signals to system 
breakers was also modeled. Open breakers can isolate generators, open lines, and disconnect 
shunts and loads. The interval between successful attacks is determined by sampling from an 
exponentially-distributed random variable scaled by a specified MTTA, in a manner similar that 
used in the protection modeling. The MTTR, or downtime, is in this case the duration of the 
interval during which the breaker is open. We assume the duration would accommodate the 
cyber forensics activity any component restoration time. Another parameter for analysis is the 
Average Percentage of Tripped Breakers (APTB) stemming from a successful attack, which is 
modeled using a Bernoulli random variable for each breaker with a selected mean value 
pSCADA.  The APTB parameter enables quantification of the concept that not all breakers will 
be sent a trip signal by the attack, not all breakers sent a trip signal will receive it, and not all 
breakers receiving a trip signal will trip. 

 

3.3. Rica Computation and Workflow 
 
The elements of RICA computation, shown in Figure 10, are: Load Flow Computation, 
Optimizer, Pre-processor, Scheduler, Database, Data Harvester, and Visualization. 
 
3.3.1. Load Flow Computation 

 
The general relevance of the RICA analytical tool stems from the notion that the load-flow 
simulation determines fairly accurately the degree to which the modeled power grid satisfies a 
given set of loads.  The load-flow calculation is an iterative algorithm based on Kirchoff’s laws, 
and takes as input a grid, a maximum generation level at each power-producing node, and a 
requested load at each power-using node. The algorithm determines the amount of power carried 
by each line in the modeled grid, up to its capacity, as generated power is transported to the 
loads.  Note that any network, whether real or simulated, may be unable to satisfy a given set of 
loads because of failures and/or lack of transport capacity (it may not be possible to supply a 
given set of loads no matter how much power is being generated if lines have failed, because 
every line has a maximum capacity). In general, a real power grid will have evolved specifically 
to supply the loads encountered in everyday operation, bringing effectively to zero the 
probability an expected load will not be satisfied under normal conditions.  To accommodate 
new loads, either generation and transport capacity is added or the network structure is altered. 
And, of course, in a real power system, loads can simply disappear for any number of reasons, 
e.g., by being satisfied from a non-grid power source, or when the building housing the load 
burns down, or when the company using the energy goes out of business. 
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Figure 20. Executing RICA on the Red Mesa HPC 

 
3.3.2. Optimizer 
 
In a simulated power system, there is no foreknowledge that the network is capable of satisfying 
a given set of loads. In RICA, an optimization process acts to maximize the percentage of 
requested load that is satisfied. RICA optimization is based on the idea that generation can be 
adjusted within some capacity range to supply additional power to loads that are undersupplied 
because of power transport limitations.  In RICA, if significant load is unsatisfied after load flow 
calculation, the optimizer adjusts generation to maximize the amount of satisfied load. This is 
understood to be a fairly realistic simulation of human power system operators, who attempt to 
do the same thing in real life when elements of a power system fail. 
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3.3.3. Pre-Processor 
 
The pre-processor parses power system data provided in multiple formats, conditions the power 
system initial state to avoid a large difference in generation and consumption, calculates the 
outage and repair times for each power system component based on its MTTF and MTTR, stores 
the resulting power system and outages in the RICA database, and dumps the outage data to files 
for use by the optimizer.  The pre-processor places object models in the RICA database for each 
power system component (bus, branch, generator, load, and shunt) along with object models that 
represent simulations and outages. As power system data input files are parsed, models are 
created and placed in the database for each element of the power system. These are then used to 
construct scenarios, which consist of outages for the different power system components.  Once 
the power system models are created from the input files, the pre-processor creates a new 
simulation object, which includes a length of time for which the simulation is to conduct Monte 
Carlo Analysis. It then loops over all the generators and  branches in the power system and, 
given the length of time for  the simulation, calculates outage and repair times for each of  the 
generators and branches using a uniform random variable  based on MTTF and MTTR values. 
For each of the outage instances calculated, a record is saved to the database using the outage 
object model.  Once the simulation is configured with outage and repair times, the outages are 
analyzed to determine ranges of hours where at least one component is out of service, an overall 
range file is created with the given ranges, and a config file containing which components are 
coming on or off line at each hour within a range is generated for all the ranges detected.  The 
pre-processor makes it possible to regenerate the outage files described above (i.e., a file of 
ranges with a config file for each range) using data in the database and different MTTF and 
MTTR values. 
 
3.3.4. Scheduler 
 
The scheduler assigns processing tasks to Red Mesa processors.  In RICA, each processing task 
is a time interval during which a particular set of outages, loads, and generation holds.  The 
percent of load being satisfied, having been maximized by the optimizer, does not vary over the 
time interval since the network configuration (outages, nodes, and generation), and therefore the 
maximized load flow, do not change. The  larger the power network, the less likely it is that there  
will be no changes in load, generation, or outage conditions, which implies a greater number of 
scheduled calculations.  Thus, the larger the network the more separate tasks need to be 
scheduled. The scheduler acts to distribute computational burden efficiently to the available 
processors. 
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Figure 31. Network diagram of the 300-bus system 

 
3.3.5. Database 
 
The database stores all the input network/outage data and all output in the form of network load 
flow. The relevant output from a reliability perspective is the amount of requested load service 
that is actually provided by the network. RICA runs on the 180-teraflop Red Mesa6 HPC 
platform at Sandia National Laboratories (see Figure 11). RICA has  successfully run a 300-node 
(see Figure 11), 1000-year hourly-  hour simulation, which required a minimum of 8,760,000  
one-hour load flow calculations, not counting the multiple  load-flow computations needed for 
each optimization, and processed  the output to obtain visualization images (see Figures 12, 13, 
and 14). RICA on Red Mesa also has calculated optimal load flow for the 30,000-bus model of 
the WECC power grid.  Database population is automatic using data produced during RICA 
operation. Construction of database entries can be turned on and off to avoid data records during 
acceptance testing. Current database entries have been produced from the IEEE test suites. The 
largest RICA outputs demand more disk space (non-volatile memory) than is currently available 
on the database server. This could be alleviated by providing additional storage or output 
postprocessing.  A web interface enables simulation results to be viewed and provides summary 
statistics and visualization to allow comparison of database entries. The web interface allows 
ready visualization of data in the database in near-real time following code execution. Figures 
11, 12, 13, and 14 are taken directly from the website. The visual output is a starting point for 
further visualization work. Note that Red mesa is a subset of the Red Sky High-Powered 
Computation (HPC) platform, as indicated in Figure 10. 
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Figure 42. Histogram showing number of cases for served-load percentage  intervals for 

the 300-bus system 

 
Figure 53. Pie chart showing fraction of cases of served-load percentage for the  300-bus 

system   
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Figure 64. Line showing served-load percentage from simulation from beginning to end 

for the 300-bus system 
 

Table 7.  Device Forensics Intervals For Cyber Attack 

 
Table 2.  Restart Delays For Generators After Cyber Attack 

 
Table 3.  Restart/Reconnection Delays For Grid Elements After Cyber Attack 
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Table 4.  Change In WECC Reliability Indices, With Cyber Attack (Forensics Intervals As 
Shown In Table I) 

 
Table 5.  Change In WECC Reliability Indices, With Cyber Attack (Forensics Intervals 

Halved Compared To Table IV 

 
 

3.4. Rica Simulations and Results 
 
The three-area RTS-96 system was simulated according to its given parameters (loading, 
topology, non-cyber outages rates) and augmented by cyber attacks against generator, line, and 
bus protection as well as SCADA. The additional cyber parameters are shown in Tables 1-5. 
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4.  PV OUTPUT VARIABILITY MODELING USING SATELLITE 
IMAGERY 

 

4.1. Introduction 
 
One barrier to adding large amounts of photovoltaic (PV) solar energy to the electrical grid is the 
current uncertainty about the level of variability in power generation that large PV systems may 
introduce.  Variability at unacceptable levels might threaten the stability of the electrical grid, 
decrease reliability, and possibly damage expensive equipment (e.g., transformers).   
 
Utilities are required to match load with generation or risk being fined or causing damage to their 
grid.  Because load is variable and not entirely predictable, utilities have methods to maintain 
balance, including running fast ramping generator units under a control scheme called automatic 
generation control (AGC), contracting for interchanges with neighboring balancing authorities, 
among others.  It is unknown how these control methods will be affected by the presence of large 
PV plants on the grid.   
 
Methods for controlling the variability introduced by large PV plants could be studied using 
models to simulate output of PV plants.  However, current models are constrained by the lack of 
irradiance data with appropriate temporal and spatial resolution.  Data from single irradiance 
sensors show that irradiance at a point can change from full sunshine to about 20% of full 
daylight within a few seconds.  However, it is unclear how rapidly the output from a large PV 
plant will change.  Studies have shown that the output of a PV plant changes more slowly than 
does the output from a single PV module (e.g., Mills et al. 2009).  It is commonly accepted, 
however, that irradiance changes on the order of one minute may be significant when simulating 
a PV plant.  Irradiance measurements at one minute or shorter intervals are generally available 
only at a few locations within a utility service area (if at all).  Satellite data is currently used to 
estimate irradiance in places with no sensors, but the spatial and temporal resolution of this data 
is generally quite coarse.  For example, the SUNY database supplies irradiance estimates for a 10 
km grid at 1- hour intervals (Perez et al., 2002) and 3Tier advertises hourly irradiance data at ~3 
km resolution (www.3tier.com).  These datasets currently provide no information about 
irradiance within the hour or at a significantly finer spatial scale.  There is no general consensus 
on how to estimate irradiance with high temporal and spatial resolution at locations where there 
are no sensors. 
 
This section describes work building towards a method to estimate high frequency (i.e., one 
minute) irradiance values from satellite imagery for places at which ground measurements are 
not available.  In concept, this method would estimate irradiance from satellite imagery that is 
available approximately every 15 minutes.  Cloud patterns in each image would be used to 
determine the variability of irradiance within each 15 minute period between images.  Here, we 
document analysis of satellite imagery, including jitter correction and cloud recognition 
algorithms, in preparation for training a neural network to simulate irradiance between images.  
Ultimately this work might provide the ability to predict one-minute PV plant output at these 
locations. 
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We focused the study on a small region in southern Nevada, where ground measurements of 
irradiance are available at a one-minute time resolution.  Satellite data from the Geostationary 
Operational Environmental Satellite 11 (GOES-11) was downloaded from the National Oceanic 
and Atmospheric Administration (NOAA) web site for the study area for most of calendar year 
2008.  The GOES 11 was launched in June 2006 and provides imagery of the western North 
America and the Pacific Ocean.  
 
Because the satellite imagery pixel size is approximately one square kilometer, satellite imagery 
does not offer sufficient resolution to estimate the exact time that a specific location within a 
square kilometer is occluded by cloud shadows.  Consequently it is considered impossible to 
predict to the nearest minute when a cloud shadow will reach a certain location.  However, we 
believe it may be possible to predict the number and severity of ramps within the hour based on 
the type of clouds and their spatial patterns as seen in the satellite imagery. 

4.2. Modeling Approach 
 
Figure 85 illustrates the modeling approach.  The GOES 11 imagery is prepared for analysis by 
identifying cloudy and clear areas by means of a neural network, as discussed in the remainder of 
this section.  The model would next use a second neural network to generate irradiance at a 
location for every minute between successive pairs of images.  The second neural network would 
be calibrated with sample irradiance measurements from other ground locations.  Although we 
were able to make preliminary tests of this second approach, these efforts will be further 
developed before irradiance results are reported in a later report. 
 

 
Figure 85. Modeling approach for generating irradiance from two images 15 minutes 

apart. 
 
The basis for this modeling approach is illustrated in 16, which shows three successive images of 
the same region around Las Vegas, NV, , and the corresponding irradiance profile from two 
ground measurement sites.  In the first image, clouds cover both sites, and the measured 
irradiance at both sites is low.  In the second image, Fort Apache (blue) is no longer covered and 
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its measured irradiance has increased.  In the final image, both Fort Apache and UNLV (red) are 
not covered by clouds in the satellite image. 
 

 
Figure 16. GOES 11 images of Las Vegas region for 6/04/2008 around 4PM (PST) with 

corresponding measured irradiance at two ground locations. 

4.3. Sources of Ground Measurements of Irradiance 
 
Within the Las Vegas, NV, region there are eight ground stations where measurements of global 
horizontal irradiance are available at one minute intervals (Figure 19).  The stations are located 
within the Las Vegas metropolitan area.  Six of the stations are collocated with PV generation 
plants operated by the Las Vegas Valley Water District (LVVWD) and two stations (UNLV and 
Clark Station) are operated by the National Renewable Energy Laboratory (NREL).  Table 6 
provides information on these monitoring sites. 
 
One minute data available at these sites include measurements of global horizontal (GHI), direct 
normal (DNI), and diffuse horizontal irradiance (DHI).  In addition, standard meteorological data 
such as temperature, relative humidity, wind speed, etc., are also available.  

 
 
 

Table 6. Irradiance Monitoring Stations used in this Study 
Site Latitude Longitude Operator Start Date 

LVSP 36.17° N 115.19° W LVVWD 7/26/2007 
Luce 36.2° N 115.26° W LVVWD 5/2/2007 
Spring Mountain 36.12° N 115.29° W LVVWD 11/30/2006 
Grand Canyon 36.22° N 115.31° W LVVWD 9/30/2006 
Fort Apache 36.22° N 115.3° W LVVWD 8/23/2006 
Ronzone 36.19° N 115.23° W LVVWD 4/27/2006 
UNLV 36.06° N 115.08° W NREL 3/18/2006 
Clark Station 36.09° N 115.05° W NREL 3/27/2006 
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Figure 19.  Close-up of the Las Vegas Metropolitan Area showing the location of 1-minute 

irradiance sensors. 
 
Figure 18 shows GHI data from the Fort Apache station for a two day period (April 15-16, 
2007). 
 

 
Figure 110.  Global horizontal irradiance measured at 1-minute intervals at Fort Apache 

station over a two day period. 
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4.4. Sources of Satellite Imagery 
 
Satellite data from the Geostationary Operational Environmental Satellite 11 (GOES-11) was 
downloaded from the National Oceanic and Atmospheric Administration (NOAA) web site for 
the study area for the calendar year 2008.  The GOES 11 was launched in June 2006 and 
provides imagery of the Pacific United States (PACUS), northern hemisphere, southern 
hemisphere, and the full visible earth.  The satellite has a geostationary orbit at 35,790 km above 
the equator at 135 deg W longitude.  The satellite has a 5-channel imager, each connected to a 
different radiation detector (Table 7).  Imagery is produced by scanning different parts of the 
Earth at different times.  The scan schedule is shown in Table 8.  The various image frames take 
different amounts of time to perform a scan (Duration).   
 
The Study Area in Southern Nevada (Figure 111) is included in the Full Earth, Northern 
Hemisphere, and PACUS frames and therefore images of the Study Area are available 
approximately every 15 minutes with a gap every three hours when the Full Earth frame is 
scanned.  Figure 12 provides an example image of the Study Area showing the location of two 
ground irradiance monitoring stations.  Note that the image is distorted due to the angle of the 
satellite, which causes the resolution in the N-S direction to be different than in the E-W 
direction. 
 

Table 7.  List of available data from GOES Satellites 

Channel Number Wavelength Range (µm) Detector Type
Nominal Square 
IGFOV at nadir 

 1  0.55 to 0.75 Silicon 1 km 

 2 (GOES 8/9/10) 
 2 (GOES 11/12) 

3.80 to 4.00
3.80 to 4.00 

InSb  
4km  
4km  

 3 (GOES 8/9/10/11) 
 3 (GOES 
12/13/14/15) 

6.50 to 7.00
5.77 to 7.33 

HgCdTe  
8 km 
4 km  

 4  10.20 to 11.20 HgCdTe  4 km 

 5 (GOES 8/9/10/11) 
 5 (GOES 
12/13/14/15) 

11.50 to 12.50 
12.96 to 13.72 

HgCdTe  
HgCdTe  

4 km 
4 km 

 
Table 8. Image Scan Routine for GOES-11 

Frame Name Boundaries Duration
(mm:ss)

Scan Times 
(UTC) 

Full Earth Earth Edge 26:10 0000, 0300, 0600, etc 
Northern Hemisphere 0-66N/90W-170E 9:00 xx00, xx30 
Southern Hemisphere 0-45S/115W-170E 7:00 xx22, xx52 
PACUS 12-60N/90-175W 5:00 xx15, xx45 
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Figure 111.  Map of Study Area.  State boundaries in white, locations of irradiance 

stations in the Las Vegas area are shown. 

 
Figure 12.  Example of GOES-11 Image with approximate state boundaries shown.  The 

locations of two irradiance sensors are shown for reference. 
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4.5. Image Stabilization 
 
NOAA geographically locates each pixel and calculates its closest latitude and longitude.  This 
georeferencing algorithm is not perfect due to slight vibrations and variations in camera and 
mirror parameters.  The result is that a visibly identifiable geographic location will not have a 
consistent latitude and longitude through time as calculated by NOAA.  If uncorrected, the 
variability in a location’s latitude and longitude would result in movement of the apparent 
position of objects in the geographically segmented image.  This image jitter is typically less 
than ±3 pixels (3km) in the x and/or y directions.  Location variability includes both major 
movement of the image (>1 pixel) as well as sub-pixel image jitter.  The images are processed 
through an image stabilization routine to correct for the jitter. 
 
4.5.1. Image Stabilization Algorithm 
 
Image stabilization is done by shifting an image to obtain the greatest correlation with a 
reference image constructed for each time.  Construction of the reference images begins by 
identifying all clear sky images in the data set by applying the movement detection algorithm 
(Section 3.6.2) to exclude images with clouds.  The brightest image as determined by average 
pixel intensity is selected from the identified clear sky images as the base reference image.  
Reference images at other times are constructed by scaling the image brightness and contrast by 
linear interpolation between clear sky images; scaling factors are determined by the neural 
network described in Section 3.6.3.  Images are stabilized to the concurrent reference image by 
first expanding each image’s resolution by four times by linearly interpolating in both x and y 
dimensions.  Next, the expanded resolution image is shifted by +/- 16 pixels in the x and/or y 
directions, and each shifted image is compared with the expanded resolution reference image.  
The shift exhibiting the best correspondence with the expanded resolution reference image is 
selected.  Correspondence is determined by calculating correlation coefficients between two 
images.  Finally, the shifted image is transformed to the original resolution through bilinear 
averaging and antialiasing.   
 
The MATLAB (Image Processing Toolbox) function normxcorr2 is used to compute the 
normalized cross-correlation of the two images using the following general procedure: 
 

1. Calculate cross-correlation in the spatial or the frequency domain, depending on 
size of images. 

2. Calculate local sums by pre-computing running sums. 
3. Use local sums to normalize the cross-correlation to get correlation coefficients.  

 
The implementation closely follows the following formula taken from the MATLAB 
documentation: 



38 
 

 
 
Figure 13 illustrates the results of the image correction process.  The effect of jitter correction 
can be illustrated by the distribution of differences in pixel intensities between two images 
(Figure 14).  Before correction, pixel intensity is biased compared to a reference image and 
exhibits wide variance; jitter correction results in unbiased pixel intensity with greatly reduced 
variance.  
 

 
Figure 13.  Illustration of image stabilization algorithm: (a) image after jitter correction; 

(b) difference between corrected and reference images; (c) difference between corrected 
and reference image. 
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Figure 14.  Histograms of difference in pixel values between reference image and 

uncorrected and corrected images. 
 
4.5.2. High Performance Computing for Image Stabilization 
 
Image stabilization is a great candidate for high-performance parallel computing because of the 
numerical requirements of the interpolation and cross-correlation, as well as the inherent 
parallelism in the algorithm.  Since the stabilization algorithm operates on each image 
independently, it is trivial to write a parallel code to process a large set of images. 
 
Our first implementation of a parallel stabilization code uses one process as a “task-manager” to 
keep track of the images that need to be processed.  The remaining “worker” processes execute 
the stabilization algorithm for the set of images requested by the task-manager.  This approach is 
more appealing than an evenly-distributed approach because some images take much less time to 
process.  The algorithm works as follows: 

 
Task Manager:  

 
1. Read list of files to process. 
2. Read reference image. 
3. Broadcast reference image to all workers. 
4. While image-list is not empty: 

a) Wait for a request from a worker; 
b) Pop an image file off the list; 
c) Send image file name to worker. 

 
 

Worker: 
 

1. While there are still images to process: 
a) Request an image file name from task-manager; 
b) Load image from file system; 
c) Perform stabilization algorithm on image. 
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Our implementation relies heavily on the Insight Segmentation and Registration Toolkit (ITK)1, 
an open-source suite of libraries for image processing.  ITK uses templated classes for 
registration, allowing rapid exploration of a variety of different distance metrics, interpolation 
methods, and optimization schemes.  While we chose standard approaches for this prototyping 
effort, to adapt for cloud effects and other application-specific issues, we will likely need to 
implement custom metrics and optimization schemes to provide the data quality required for 
accurate modeling. 
 
4.6. Cloud Detection 
 
Identification of visible clouds in the images is not a straightforward process.  Challenges 
include (1) variation in average image intensity with time of day and time of year due to the 
variable angle of the sun on the land surface and (2) variability of the brightness of ground 
features, such as dry lake beds, which can appear very similar to clouds. 
 
4.6.1. Thresholding 
 
One simple method of identifying clouds, called Thresholding, is based on simply finding pixels 
with intensity values above a certain value.  This can be accomplished with a fixed threshold 
intensity value or with a moving threshold that depends, for example, on features within the 
image.  A fixed threshold does not accurately represent the changes in brightness of the entire 
image throughout the day or seasonal variations.  A dynamically adjusted threshold value must 
either be based on a full understanding of all variations affecting the images, or be set by the 
image itself by finding groups of brightest pixels.  The brightest pixel method works well during 
any time or date, but only if there are clouds in the image.  Moreover, the brightest pixel method 
works better under some weather conditions than others.  For example, cumulous clouds are 
easily distinguished from the background because they are the brightest features in the image, 
whereas broad stratus clouds are more difficult to distinguish from background.  Figure 15 shows 
an example of cloud detection using a threshold determined by the brightest pixel technique. 

 
Figure 15.  Example of Cloud Detection using Thresholding: raw image (left) and detected 

clouds (colored features, right). 
 
 

                                                 
1 http://www.itk.org 
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4.6.2. Movement Detection 
 
Another method of detecting clouds is referred to as Movement Detection.  In this technique the 
intensity is compared between pairs of images at the pixel level.  Where the difference in 
intensity exceeds a certain threshold, it is assumed that movement has occurred at that pixel.  
With accurate jitter correction, the only features in the image that can move are clouds, therefore 
pixels with movement are assumed to be clouds.  One problem with this method is that it can 
only identify leading and trailing edges of clouds.  This is because the middle of the cloud may 
cover the same pixels in both images and therefore the difference between intensity at these 
pixels may not exceed the threshold.  Another problem with this method is that it depends on the 
accuracy of the image stabilization method, since errors in stabilization can lead to apparent 
movement of ground features and ensuant misidentification of these features as clouds.  Figure 
16 shows an example of cloud detection using the movement detection technique, and illustrates 
the main problem with this method.  Parts of the clouds recognized in the image are not 
identified as clouds by the movement detection technique.  Note how the large cloud in the 
center of the image appears thinner in the movement detection image.  Several shadows on the 
ground are also identified as clouds since they move between images. 

 
Figure 16.  Example of Cloud Detection using Movement Detection: raw image (left) and 

detected clouds (white features, right). 
 
Because of the challenges and the associated problems with thresholding and movement 
detection, we focused our attention on a third method called Background Subtraction.  This is 
discussed in the next section. 
 
4.6.3.  Background Subtraction 
 
The method of background subtraction is, as its name suggests, simply the process of estimating 
what an image of the ground would look like and subtracting this image from the actual image.  
Areas with clouds should then show up as areas where the intensity difference is above a certain 
threshold.  Figure 17 shows an example of cloud detection by the method of background 
subtraction.  Note how the background has essentially disappeared (i.e., is colored black in the 
right panel of Figure 17) and all that remains in the subtracted image are the clouds. This method 
allows for better detection of clouds represented by pixels with lower intensity.  Even small 
changes in intensity can be detected between the image and the expected background.  For 
example, with background subtraction a pixel could be detected if it is just slightly brighter than 
normal, even if it is still darker than another geographical feature in the image.  As a result, 
image analysis depends only on the clouds in the image, and not any of the background content. 
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Figure 17.  Example of Cloud Detection using Background Subtraction: raw image (left) 

and detected clouds (white features, right) 
The method of Background Subtraction requires determination of a background image without 
the presence of clouds.  Pixel intensity in an image of the background would vary due to diurnal 
and seasonal changes in solar illumination.  Suitable background images are not available for all 
times of interest.  We developed and trained a neural network to produce reference background 
images.   
 
We first used Movement Detection to select a subset from available images that contain no 
clouds.  For each of the images with clear skies, we computed statistics (mean, minimum and 
maximum) of the pixel intensity within each image.  We noted that these statistics vary in a 
smooth manner during daylight hours and in a more complex but non-random manner annual.  
Figure 26 illustrates diurnal variation in minimum, average and maximum pixel intensity for one 
day of the year (left panel) as well as variation in average pixel intensity for different days of the 
year (right panel).  Figure 27 shows the average pixel intensity over the course of a year for 
images that are classified as clear sky days.  On each day, average pixel intensity begins low 
during morning hours, rises to a peak and then declines.  Due to the display of an entire year in 
Figure 27 and the particular plotting program in use, average pixel intensity for individual clear 
sky days appears as a spike, and straight lines connect average pixel intensity values from the 
end of a clear sky day to the beginning of the next clear sky day.  The variation of maximum 
average pixel intensity over the course of a year is visually indicated by the sequence of peaks. 
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Figure 26.  Diurnal variation in pixel intensity during clear skies. 
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Figure 27.  Annual variation in average pixel intensity during clear skies. 

 
 
Because the background image varies by season and time of day, and clear sky images are not 
available at all times, we use a neural network trained on the clear images throughout the year to 
generate images for all other times during the year.  Pixel intensities do not necessarily vary 
algebraically between clear sky images because of changes in earth’s albedo, the occurrence of 
snowfall, and atmosphere properties.  The trained neural network produces minimum, average 
and maximum pixel values for times when clear sky images are not available.  One image is 
manually selected as the baseline image.  A scaling algorithm is applied to adjust the pixels in 
the baseline image so that the synthetic image has the target minimum, average and maximum 
pixel intensities. 
 
Figure 28 compares pixel intensities for synthetic images to those from images during clear sky 
days.  The comparison shows that the neural network and scaling produce images for which the 
average pixel intensity follows the annual pattern.  Moreover, for one clear sky day, the neural 
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network was used to produce synthetic images which were compared to actual images; the 
comparison shows that the statistics for images produced by the neural network and scaling are 
reasonably close to the statistics for the actual clear day images.  Figure 29 compares one 
complete image from the GOES-11 satellite during clear sky conditions to the synthetic image 
generated by the neural network and scaling.  Figure 29 shows that the synthetic image retains 
the general structure and characteristics evident in the GOES-11 image. 
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Figure 28.  Comparison of statistics for pixel intensity between clear sky images and 

synthetic images: (a) annual average pixel intensity; (b) diurnal variation in pixel 
intensity. 

(a) 

(b) 
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Figure 29. Images for 8/19/07 at 11:00AM (PST) centered around Fort Apache on a clear 

day from a) GOES-11 and b) Neural Network Simulation of the background image 

 
4.7. Next Steps 
 
In the previous sub-sections of this section, we describe progress toward a method for simulating 
one-minute irradiance from satellite imagery.  We present a method for image analysis to 
identify and locate clouds in satellite imagery.  The next step is to use the identified cloud 
patterns as input to a neural network that simulates ground irradiance.  We began this effort by 
training a neural network to match cloud patterns observed in imagery with one-minute ground-
based measurements of irradiance.  Figure 30 shows a preliminary result of this effort.  Note that 
the temporal patterns of irradiance from the ground sensor show that in the beginning of the day 
the variability has a different character (rapid shallow changes) than at the end of the day (longer 
duration and larger magnitude changes).  It is also clear that this preliminary attempt at training a 
neural network to produce one-minute irradiance patterns worked quite well later in the day but 
was unable to match variability measured in the late morning.  However, the results shown in 
Figure 30 represent a day with the closest match between measured and simulated irradiance; for 
many other days, our simulation produced irradiance predictions that were not nearly as close to 
ground measurements. 
 
To further develop this approach we believe it would be more successful to train the neural 
network on the clearness index instead of irradiance.  Clearness index is a normalized measure of 
irradiance that is not affected by variations to the time of day or time of year.  By training the 
neural network on clearness index rather than irradiance we believe that we can arrive at more 
accurate irradiance predictions.  In addition, we are exploring ways to calculate summary 
statistics to describe different spatial patterns of the identified cloud fields.  For example, the two 
inset images in Figure 30 show the cloud conditions (imagery) during the beginning and end of 
the day shown.  The difference in the cloud patterns is clear from the images and it may be that it 
would be more successful to correlate one-minute irradiance patterns to categorical variables 
relating to the type of cloud pattern rather than to raw images.  We aim to investigate these ideas 
further in future work. 
 

a) b) 
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Figure 30.  Measured and Simulated Irradiance for Fort Apache at 1 minute resolution for 

May 27, 2008.  Note: Inset images illustrate cloud patterns in vicinity of Fort Apache 
during periods of variability in irradiance. 
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5.  CONCLUSIONS 

 
The scalable grid modeling task combines the high fidelity of electric circuit models with the 
scalability of grid level elements was developed as a tool for the use of transient as well as steady 
state simulation of electric power grids.  Circuit simulation for electric power grid networks has 
some distinct advantages such as the ability to model the grid as a modular scale-up of electrical 
components, and the ability to handle a very large scale network via parallelizable solvers using 
Xyce™ [7], and the ability to interface with the GUI to display simulation values on a grid map.  
The developed graphical user interface not only allows the representation of data over a 
geographic display but can also display time series values of selected nodes.  Further 
development will include the ability to run simulations with the user specifying which nodes and 
edges are to be removed (e.g. generator failure, transmission line outages, and substation 
blackouts). 
 
The Reliability Impacts from Cyber Attack (RICA) task utilizes a high-powered computing 
platform to determine reliability results for complex electric power grids affected by various 
classes of cyber attack. The computed reliability degradation from the base case is due solely to 
the level of cyber attack and the network architecture, and it is independent of any  particular 
outage, load, or calendar values. The RICA system has the capacity to generate results for the 
30,000-bus Western Electricity Coordinating Council (WECC) region transmission grid. Results 
are shown for the IEEE RTS-96 72-bus system. 
 
The PV output variability modeling task describes the preliminary steps of a method to estimate 
high frequency (i.e., one minute) irradiance values from satellite imagery in places where no 
ground measurements are available.  The method proposes to use cloud patterns in each image to 
characterize the variability of irradiance within each 15 minute period between images.  In this 
report, analysis methods are described to estimate cloud positions within images as a precursor to 
estimating high frequency irradiance. 
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