
SANDIA REPORT
SAND2010-8709
Unlimited Release
Printed December 2010

Redundant Computing for Exascale
Systems

Rolf Riesen, Kurt Ferreira, Jon Stearley, Ron Oldfield, James H. Laros III, Kevin
Pedretti, Ron Brightwell, Sandia National Laboratories

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy

by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United

States Government. Neither the United States Government, nor any agency thereof, nor any

of their employees, nor any of their contractors, subcontractors, or their employees, make any

warranty, express or implied, or assume any legal liability or responsibility for the accuracy,

completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-

resent that its use would not infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,

does not necessarily constitute or imply its endorsement, recommendation, or favoring by the

United States Government, any agency thereof, or any of their contractors or subcontractors.

The views and opinions expressed herein do not necessarily state or reflect those of the United

States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best

available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401

Facsimile: (865) 576-5728

E-Mail: reports@adonis.osti.gov

Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce

National Technical Information Service

5285 Port Royal Rd

Springfield, VA 22161

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders@ntis.fedworld.gov

Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
EP

ARTMENT OF ENERG
Y

•
 •
U
N

IT
ED

STATES OF AM

ER
I C

A

2

SAND2010-8709

Unlimited Release

Printed De
ember 2010

Redundant Computing for Exas
ale Systems

Rolf Riesen

Kurt Ferreira

Jon Stearley

Ron Old�eld

James H. Laros III

Kevin Pedretti

Ron Brightwell

S
alable Computing Systems Department

Sandia National Laboratories

P.O. Box 5800

Albuquerque, NM 87185-1319

Abstra
t

Exas
ale systems will have hundred thousands of
ompute nodes and millions of
omponents

whi
h in
reases the likelihood of faults. Today, appli
ations use
he
kpoint/restart to re
over

from these faults. Even under ideal
onditions, appli
ations running on more than 50,000 nodes

will spend more than half of their total running time saving
he
kpoints, restarting, and redoing

work that was lost.

Redundant
omputing is a method that allows an appli
ation to
ontinue working even when

failures o

ur. Instead of ea
h failure
ausing an appli
ation interrupt, multiple failures
an be

absorbed by the appli
ation until redundan
y is exhausted. In this paper we present a method

to analyze the bene�ts of redundant
omputing, present simulation results of the
ost, and

ompare it to other proposed methods for fault resilien
e.

3

4

Contents

1 Introdu
tion . 7

1.1 Faults at exas
ale . 7

1.2 Other approa
hes . 8

2 Motivation . 10

2.1 Redundant
omputing . 11

3 Che
kpoint restart. 14

4 Validation . 17

4.1 Expe
ted appli
ation MTBI . 17

4.2 Interrupt-to-fault ratio . 17

4.3 Comparison to model . 18

4.4 Performan
e . 19

5 Results . 20

5.1 Appli
ation e�
ien
y . 20

5.2 Number of appli
ation interrupts . 20

5.3 Level of redundan
y . 21

5.4 Rebooting nodes . 23

6 Dis
ussion and related work . 24

6.1 Implementing software redundan
y . 24

6.2 Lowering the
ost of
he
kpoint/restart . 25

6.3 The need for a new solution . 25

6.4 Other work . 27

7 Summary. 28

Referen
es . 29

Figures

1 Example of overhead for a 168-hour appli
ation run. 10

2 Number of faults (interrupts) for the example in Figure 1. The left y axis shows the

al
ulated system MTBF. 11

3 Number of faults before a redundant appli
ation gets interrupted. 12

4 Comparing system MTBF and appli
ation MTBI when using redundant
omputing. . 13

5 State diagram of the appli
ation simulator. 14

6 Blo
k diagram of the simulator. 15

7 Example of overhead for a 168-hour appli
ation run with redundant nodes. The line

labeled �No redundan
y�
orresponds to the total elapsed time of Figure 1. 16

8 Simulated interrupt-to-fault ratio
ompared to expe
ted value for the birthday problem. 17

9 Observed number of faults leading to ea
h interrupt. The expe
ted average value for

200,000 nodes is 562.166. 18

10 Appli
ation e�
ien
y ts
tw

for three di�erent work sizes. Solid lines are non-redundant,

dashed lines use redundant nodes. 21

11 Level of redundan
y versus number of interrupts. 22

12 Level of redundan
y versus elapsed time. The dashed lines show appli
ation e�
ien
y
ts
tw
. 23

13 Redundant/none-redundant elapsed time ratio for various
he
kpoint times δ. 26

5

Tables

1 Number of faults and interrupts for a 5,000-hour appli
ation. 22

6

1 Introdu
tion

Today's large-s
ale parallel ma
hines experien
e outages from failed
omponents, software bugs,

human errors, and power disruptions. A
ommon method to allow s
ienti�
 appli
ations to
om-

pute longer than the interval between interrupts is to
he
kpoint the appli
ation state at regular

intervals and restart the appli
ation from the most re
ent su

essful
he
kpoint after a fault o

urs.

Che
kpoint/restart works but is predi
ted to be ine�
ient in future ma
hines be
ause of the large

number of expe
ted faults [18, 37, 38℄.

Planing for exas
ale systems is under way and it is expe
ted that the �rst general s
ienti�

omputers operating at speeds faster than 10
18 �oating-point operations per se
ond (�ops) will

appear by the end of this de
ade. In order to rea
h this performan
e, te
hnology has to advan
e.

For example, sili
on feature size and power
onsumption has to de
rease, while transistor
ount has

to in
rease. Even with these predi
ted te
hnologi
al improvements, an exas
ale system will
onsist

of a huge number of individual
omponents, none of them more reliable than today's
omponents,

but potentially worse [9℄.

We wrote a library whi
h allows MPI ranks to be repli
ated. Both ranks perform the same

omputation and if one of them fails, the other
ontinues to fun
tion without for
ing the appli
ation

to restart [3℄. This approa
h e�e
tively in
reases the time between interrupts whi
h results in fewer

restarts, and less rework. This leads to better system throughput. Sin
e the appli
ation
an
ontinue

to work in the presen
e of some faults, it is now possible to in
rease the
he
kpoint interval and

allow the appli
ation to make uninterrupted progress for a longer sli
e of time. The
ost is a small

performan
e degradation due to the repli
ation proto
ol and, of
ourse, the overhead of using more

nodes than the appli
ation and problem would need otherwise.

In this paper we look at redundant
omputing as one of several approa
hes to isolate extreme-

s
ale appli
ations from failures in the underlying system. Redundant
omputing has been employed

in mission-
riti
al systems for several de
ades; e.g, [7, 36℄ and many others. However, until now it

has not been
onsidered a ne
essity for high performan
e
omputing (HPC). We believe redundant

omputing has its pla
e and
an improve the e�
ien
y of large-s
ale future ma
hines. In order to

quantify this belief, we wrote an analysis tool whi
h allows us to
ondu
t various studies. This

paper des
ribes this tool and reports the results we have obtained using it.

1.1 Faults at exas
ale

Million-
ore ma
hines for exas
ale
omputing will have so many parts that faults will be frequent.

Studies have shown that the failure rate of a system is proportional to the number of pro
essor

hips, and that systems and their hardware do not grow more reliable as te
hnology advan
es [44℄.

Running interfa
es at higher
lo
k rates for improved bandwidth, �wear-out� me
hanisms of new

devi
es; e.g., buildup of stray
harges on a gate, smaller feature sizes, and using lower voltages with

de
reased margins will further exaggerate the problem [9℄. That study looks at various approa
hes

of how an exas
ale system
ould be built. Spe
i�
ally, extrapolations of a �heavy-node� system,

su
h as the
urrent Cray XT series, a �light-node� system, su
h as the IBM Blue Gene system,

and an �aggressive sili
on� system, whi
h assumes that a new system
an be designed from s
rat
h

ombining the best new te
hnologies
urrently proje
ted. Given these di�erent s
enarios, predi
ting

7

what will be
ontained in a node or so
ket, and how many of ea
h will be present in an exas
ale

system is somewhat di�
ult. In this paper we use the term node as the unit of repli
ation and

failure. It should be understood that, depending on the ar
hite
ture of these future systems, this

ould be a so
ket with multiple
ores and integrated memory, or a node in the more traditional

sense of one or more CPUs
oupled with memory
hips and one or more NICs
onne
ted to the

network.

The exas
ale study [9℄ also looks at resilien
e. Taking the number of
omponents in an exas
ale

system into a

ount and using the appropriate Failure In Time (FIT) number (Errors per 10
9 hours

of use) for the di�erent types of
omponents, the study
omputes that an exas
ale system will fail

on
e every 35 to 39 minutes. These times in
lude the assumption that about half of the failure

will
ome from software. In this paper we do not
onsider the sour
e of a failure. The impa
t on

an appli
ation is the same whether the failure
ame from hardware, software, human intervention,

or the environment. Any failure that interrupts an appli
ation
auses lost work and a setba
k in

ompletion time.

Note that the estimated Mean Time Between Failures (MTBF) of 35 to 39 minutes in [9℄ may be

optimisti
. It assumes 5 FITs per 1 GB DRAM
hip, but [45℄ found that the observed un
orre
table

error rate is mu
h, mu
h higher than that: 0.22% un
orre
table errors per DIMM, 25,000 � 75,000

FIT per Mbit = 55 - 165 FIT per Mbit. Other sour
es also indi
ate a higher FIT for DRAM

hips [46℄ and an MTBF of about 20 minutes for an exas
ale system [19℄.

The system-wide MTBF will be
ome so small that mu
h more than 50% of an appli
ation's

total exe
ution time will be spent writing
he
kpoints and re
overing from failures [3, 37℄.

In addition, appli
ations are also sus
eptible to software errors whi
h may also in
rease in

these
omplex systems due to the in
rease in parallelism, the possibility of deadlo
k, and new ra
e

onditions.

The more failures o

ur during the exe
ution time of an appli
ation, the longer it will take to

�nish its work. This de
reases the throughput of the ma
hine: fewer appli
ations �nish in a unit of

time.

1.2 Other approa
hes

In the previous subse
tion we made the
ase that extreme-s
ale appli
ations will have to
ontend

with a higher failure rate. We now brie�y look at two other approa
hes that are being
onsidered.

The �rst approa
h is to improve �le systems and the storage system to enable faster
he
kpoints

and re
overy. In [44℄ the authors explain that for storage bandwidth to grow at the same rate as the

number of pro
essors, more storage devi
es will be needed sin
e the bandwidth per disk drive grows

mu
h more slowly. That in turn in
reases the number of
omponents in a system and, therefore, the

number of failures. It also means that a higher portion of the system
ost will need to be devoted

to storage than has been traditionally the
ase.

In this paper we evaluate redundant
omputing in the
ontext of
oordinated
he
kpoint/restart

be
ause this method is widely deployed, easy to implement, and a natural �t for many s
ienti�

appli
ations that have periodi
 syn
hronization points in their algorithms. In addition to spe
ialized

�le systems [8℄ and improved non-volatile storage, more sophisti
ated
he
kpoint/restart methods

8

are often suggested to solve the problem of higher failure rates in exas
ale systems. Some of them

may not help with self-syn
hronizing appli
ations that are often run on high-end systems. Su

essful

approa
hes will lower the
he
kpoint and restart time. A similar e�e
t
an be obtained by using Non-

Volatile Read-Only Memory (NVRAM) in the form of Solid State Disks (SSD) [39℄. In Se
tion 6.3

we evaluate lowered
he
kpoint and restart times and
ompare it with redundant
omputing.

This paper makes the following
ontributions: A). We
reated an open-sour
e tool that mimi
s

an appli
ation's work,
he
kpoint, restart, and rework
y
les and allows the modeling of various

ombinations of node
ount, MTBF, and work to be performed (Se
tion 3). We des
ribe and

validate this tool in Se
tion 4. B.) The results of these simulations let us determine when it might

be bene�
ial to use redundant
omputing (Se
tion 5). The paper
loses with a related work se
tion

(Se
tion 6), and a summary (Se
tion 7).

9

2 Motivation

In today's large parallel systems, whenever a
omponent fails that an appli
ation is
urrently using,

the appli
ation is interrupted and aborts. At a later time, after the system has been repaired or

enough resour
es are available again, the appli
ation is restarted. During the restart an earlier

he
kpoint is read in from stable storage that lets the appli
ation
ontinue from the point in time

when the last su

essful
he
kpoint was written. In addition to the time the appli
ation needs

to solve a parti
ular problem, Ts, there is the overhead of o

asionally writing
he
kpoints to

stable storage, restarting when ne
essary, and redoing work that was lost sin
e the last su

essful

he
kpoint.

In this paper we ignore the time an appli
ation spends in the bat
h queue after it has been

interrupted and before it is restarted. Although this time in
reases the time to solution, it is

very unpredi
table and depends very mu
h on the queuing poli
ies in pla
e and the load of the

system. Furthermore, we only
onsider
oordinated
he
kpoint/restart. Other methods exist, but

are rarely used in pra
ti
e, and
oordinated
he
kpointing is easy to implement and natural for self-

syn
hronizing appli
ations. Assuming that other methods might be able to write
he
kpoints more

qui
kly and restart faster, we will look at these bene�ts in Se
tion 6.3. However, evaluating the full

impa
t of di�erent
he
kpoint methods, su
h us un
oordinated with message logging or RAID-style

writes to other node's memories, is beyond the s
ope of this paper. Improving
he
kpoint and

restart times is
learly bene�
ial, but the exa
t method and time requirements do not alter the

fundamental results presented in this paper.

Let Figure 1 motivate our dis
ussion. It has been generated from numbers
omputed by the

analysis tool des
ribed in Se
tion 3 and shows the overhead an appli
ation experien
es. The ap-

pli
ation needs to �nish Ts = 168 hours of work per node (weak s
aling). For several node sizes

we
ompute the overhead whi
h is broken down into restart time, lost work, and time to write

he
kpoints. The graph in this example
learly shows that beyond 50,000 nodes the appli
ation

spends only a fra
tion of the elapsed time doing the a
tual
omputation it was designed for. The

MTBF of an individual node in this example is 43,800 hours (5 years).

E
la

ps
ed

 ti
m

e

Number of nodes

Work
Checkpoint

Rework
Restart

0.0 h

200.0 h

400.0 h

600.0 h

800.0 h

1.0 kh

1.2 kh

1.4 kh

1.6 kh

10 20 50 100
200

500
1,000

2,000
5,000

10,000

20,000

50,000

100,000

200,000

Figure 1. Example of overhead for a 168-hour appli
ation run.

10

The reason for the rapidly in
reasing overhead in Figure 1 is the lost work and number of restarts

the appli
ation experien
es as the number of faults in
reases. The right y-axis of Figure 2 shows

the number of interrupts the appli
ation in this example experien
es. While manageable to about

10,000 nodes, the number of faults in
reases exponentially for larger systems. Unless otherwise

noted, all experiments in this paper were
ondu
ted seven times. The error bars show minimum,

average, and maximum values. The error bars in these �rst two examples are barely visible due to

their small spread.

Given a node MTBF Θnode and the assumption that all nodes have the same MTBF and inde-

pendent failure behavior, it is easy to
ompute the MTBF Θsys for an entire system
onsisting of n

nodes [30℄:

Θsys =
1

1
Θ1

+ 1
Θ2

+ . . . + 1
Θn

=
1

n 1
Θ

=
Θnode

n
(1)

The result of this
al
ulation for a 5-year node MTBF and the number of nodes varying from 10

to 200,000 is shown using the left side y-axis in Figure 2. The two �gures in this se
tion make
lear

that large-s
ale appli
ations running on future systems will have to
ontend with a lot of overhead,

a large number of faults, and a low system MTBF.

S
ys

te
m

 M
T

B
F

N
um

be
r

of
 fa

ul
ts

 (
in

te
rr

up
ts

)

Number of nodes

Faults
System MTBF

0.0 h

200.0 h

400.0 h

600.0 h

800.0 h

1.0 kh

1.2 kh

1.4 kh

1.6 kh

10 20 50 100
200

500
1,000

2,000
5,000

10,000

20,000

50,000

100,000

200,000

0

1 k

2 k

3 k

4 k

5 k

6 k

7 k

8 k

Figure 2. Number of faults (interrupts) for the example in Fig-

ure 1. The left y axis shows the
al
ulated system MTBF.

2.1 Redundant
omputing

When two nodes are used to represent the same MPI rank, as our repli
ation library does, then the

failure of one or the other node does not interrupt the appli
ation. Only when both nodes fail does

the appli
ation need to restart. The frequen
y of that o

urring is mu
h lower than the o

urren
e

of a single node fault and
an be
hara
terized using the birthday problem.

One version of the birthday problem asks how many people need to be brought together until

there are enough to have a 50% or better
han
e that two of them share the same birth month

11

and day. If we equate days in a year with nodes and let the number of people represent the faults

o

urring in a parallel system, we
an use the birthday problem to
al
ulate how many faults
an

o

ur until both nodes in a pair are damaged and
ause an appli
ation interrupt.

The equation to
al
ulate the birthday problem is shown in Equation 2 [25, 35℄. This equation is

the so
alled Q-fun
tion des
ribed in [20℄ and examined by Knuth in [31℄ in the
ontext of hashing.

The answer for a n = 365-day year, and all days equally likely, is 24.6 people.

F (n) = 1 +
n

∑

k=1

n!

(n − k)! · nk
(2)

The above equation is time
onsuming to
ompute sin
e it requires an arbitrary pre
ision
al-

ulator. Equation 3 is an approximation that
an be
al
ulated mu
h more qui
kly and provides

good results [25℄.

F̃ (n) =

√

πn

2
+

2

3
(3)

In Figure 3 we
al
ulate, using Equation 2, the expe
ted number of faults that
an o

ur before

an appli
ation is interrupted. The total number of faults o

urring in a system is still the same;

a
tually it doubles, sin
e we are using twi
e as many nodes. But redundant
omputing a
ts as

a �lter, absorbing many of the faults and lets the appli
ation progress uninterrupted for a longer

period of time.

N
od

e
fa

ilu
re

s
un

til
 a

pp
lic

at
io

n
in

te
rr

up
t

Number of nodes

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

10 20 50 100
200

500
1,000

2,000
5,000

10,000

20,000

50,000

100,000

200,000

500,000

24.16

365

Figure 3. Number of faults before a redundant appli
ation gets

interrupted.

Due to the absorption of faults, the Mean Time Between Interrupts (MTBI) Θapp whi
h the

appli
ation experien
es is larger than the MTBF of the system it is running on: Equation 4. F () is
the expe
ted number of faults the appli
ation
an absorb: Equation 2 or Equation 3 depending on

12

your patien
e. Note that we now need 2n nodes.

Θapp =
Θnode

2n
F (2n) (4)

Note that we are not interested in the probability of a node failing. We want to know the time

between interruptions of an appli
ation in
ase of redundant and non-redundant
omputing.

In Figure 4 we
ompare system MTBF Θsys with the appli
ation MTBI Θapp when individual

nodes have an MTBF Θnode of 5 years. Even though both
urves tend downward, the appli
ation

MTBI at 200,000 nodes is still about 100 hours, while the system MTBF has dropped to 13 minutes.

M
T

B
F

Number of node pairs

Application MTBI
System MTBF

100.0 mh

1.0 h

10.0 h

100.0 h

1.0 kh

10.0 kh

100.0 kh

10 20 50 100
200

500
1,000

2,000
5,000

10,000

20,000

50,000

100,000

200,000

Figure 4. Comparing systemMTBF and appli
ation MTBI when

using redundant
omputing.

Sin
e redundant
omputing in
reases the MTBI, an appli
ation running on su
h a system
an

in
rease its
he
kpoint interval; making it more e�
ient.

13

3 Che
kpoint restart

In the previous se
tion we have seen that redundant
omputing redu
es the number of interrupts

an appli
ation experien
es. In this se
tion we des
ribe a tool that mimi
s an appli
ation
y
ling

through its work,
he
kpoint, restart, and rework phases. The tool randomly generates node faults

and determines whether the appli
ation has been interrupted. There are a slew of
on�guration

parameters that determine how long the appli
ation needs to do its work, how many nodes have

redundan
y, the MTBF of a node, and so on.

Our simulation tool mimi
s an appli
ation by assuming it is always is in one of four states: work

(making progress towards a solution),
kpt (writing state information to stable storage), restart

(re
over from an interrupt, and rework (re
ompute lost work). The state diagram in Figure 5 illus-

trates these phases. Appli
ation interrupts
an o

ur during any of the phases, and the simulation

ontinues until a �xed amount of work has been
ompleted.

Figure 5. State diagram of the appli
ation simulator.

The simulator
urrently assumes
oordinated
he
k-pointing and a �xed amount of time to write

he
kpoints and restart. While more sophisti
ated
he
kpoint methods exist, they are seldom used

in pra
ti
e and would not
hange the basi
 results presented here. At best, they redu
e the time

needed to
reate
he
kpoints and would allow for a longer
he
kpoint interval. We explore the

impa
t of
he
kpoint time in Se
tion 6.3.

Our simulations assume a perfe
tly, weak-s
aling appli
ation; i.e., all nodes perform the same

amount of work, independent of the number of nodes used. The amount of work to be done is

an input parameter to our tool. Our de
ision to simulate a weak-s
aling appli
ation simpli�es our

experiments and makes the answers easier to understand.

When an interrupt o

urs during any of the phases, a restart from the last su

essful
he
kpoint

is initiated. The work that was lost sin
e the last
he
kpoint has to be redone in the rework phase.

After that, the regular
y
le of work and
he
k-pointing
ontinues.

The transitions to the
he
kpoint state o

ur whenever the
he
kpoint interval timer expires.

That timer is reset in the
he
kpoint state. Our simulator uses Equation 5 from [16℄ to
al
ulate

the optimal
he
kpoint interval. In this equation δ is the (�xed) amount of time it takes to write a

14

he
kpoint, R is the time required to perform a restart, and Θ is the MTBI seen by the appli
ation.

τ̃opt =



















√
2δΘ

[

1 + 1
3

(

δ

2Θ

)
1

2

+1
9

(

δ

2Θ

)]

− δ for δ < 2Θ

Θ for δ ≥ 2Θ

(5)

For all of our work, we assume that the
he
kpoint interval τopt is
al
ulated using Equation 5.

The
he
kpoint interval applies to work and rework phases. If the rework phase does not
onsume

the entire interval, then the remaining time until the next
he
kpoint is used to
ontinue regular

work. When all the su

essfully
ompleted work phases add up to the total work time an appli
ation

needs to perform, then the appli
ation will end.

One of the parameters to
ontrol the simulator is the node MTBF of the simulated system. The

simulator generates random events that are exponentially distributed around the node MTBF. Ea
h

event is a fault that we feed into a model of our repli
ation library. The model determines whi
h

node has failed and whether the appli
ation re
eives an interrupt or
an
ontinue doing its work.

If the model determines that an appli
ation interrupt should o

ur, it for
es a transition to the

restart state in the state diagram in Figure 5. These transitions are indi
ated by the ex
lamation

point signs in the diagram. We are assuming that for a restart, the same number of nodes will be

available again. This is the same assumption that is made for appli
ations using
he
kpoint/restart

running without redundant nodes.

The MTBF parameter for the appli
ation simulator is the MTBF of a single node. The fault

generator within the simulator uses that MTBF to generate exponentially distributed faults for

the individual nodes. This is shown in Figure 6. The state ma
hine requests the next time an

appli
ation interrupt will o

ur from the repli
ation model. The repli
ation model then determines

at what time to
ause an appli
ation interrupt. If redundant
omputing is used, it will be the

earliest time both nodes in a bundle have failed. When there are no redundant nodes, ea
h node

fault
auses an appli
ation interrupt.

Figure 6. Blo
k diagram of the simulator.

The appli
ation interrupt times are fed into a analysis module whi
h
omputes various values

and
ompares them to simulation results. That module also prints various statisti
s about the run.

15

Any attempt at redundant
omputing has some overhead in addition to using twi
e the resour
es.

We have evaluated this overhead in [3℄ and found it to be minimal for a
tual appli
ations. The over-

head is appli
ation-spe
i�
 and dwarfed by the potential savings o�ered by redundant
omputing.

Therefore, our simulation tool does not
onsider that small overhead. Our tool has been released

as open sour
e and is available from the authors [4℄.

Using this tool we
an now
ondu
t experiments with redundant
omputing. Figure 7 shows

the result for the same
on�guration we used for Figure 1 but adding an additional n nodes for

ba
kup. We keep the y-s
ale the same for both plots to illustrate the dramati
 savings in elapsed

time o�ered by redundant
omputing.

E
la

ps
ed

 ti
m

e

Number of node pairs

No redundancy

Work
Checkpoint

Rework
Restart

0.0 h

200.0 h

400.0 h

600.0 h

800.0 h

1.0 kh

1.2 kh

1.4 kh

1.6 kh

10 20 50 100
200

500
1,000

2,000
5,000

10,000

20,000

50,000

100,000

200,000

Figure 7. Example of overhead for a 168-hour appli
ation run

with redundant nodes. The line labeled �No redundan
y�
orre-

sponds to the total elapsed time of Figure 1.

16

4 Validation

4.1 Expe
ted appli
ation MTBI

In Se
tion 3 we explained that the appli
ation simulator takes the node MTBF as one of its input

parameters. It simulates node failures over the time an appli
ation needs to
omplete its task. We

an output the time of ea
h appli
ation interruption and
al
ulate the mean. When we do that for

simulations without redundant nodes we get the appli
ation MTBF as
al
ulated by Equation 1.

This is a good indi
ation that the repli
ation model within the simulator is doing its job
orre
tly.

The simulation is within 1% of the
al
ulated value, as long as the work time is long enough to

allow for enough interrupts to o

ur to make the average
al
ulation meaningful.

Similarly, we
an use Equation 4, whi
h uses the system MTBF and the birthday problem to

predi
t the appli
ation MTBI, to evaluate our simulation for the
ase where ea
h node is part of a

redundant bundle.

4.2 Interrupt-to-fault ratio

Based on our dis
ussion of the birthday problem in Se
tion 2.1, the simulator must for a given

number of nodes show the same ratio of appli
ation interrupts to node faults as is the expe
ted

value of the birthday problem. We ran 500,000 hour workload simulation to let enough interrupts

o

ur to get meaningful results. We ran ea
h experiment seven times and show the minimum,

average, and maximum as error bars in Figure 8.

S
im

ul
at

ed
 F

au
lts

 to
 In

te
rr

up
t R

at
io

R
el

at
iv

e
to

 B
irt

hd
ay

 P
ro

bl
em

n

0 %

20 %

40 %

60 %

80 %

100 %

120 %

10 20 50 100
200

500
1,000

2,000
5,000

10,000

20,000

50,000

100,000

200,000

500,000

PSfrag repla
ements

F̃ (n) approximation (Equation 3)

Expected value F (n) (Equation 2)

Simulation

Figure 8. Simulated interrupt-to-fault ratio
ompared to ex-

pe
ted value for the birthday problem.

We normalize against he expe
ted value of the birthday problem from Equation 2. The plot

shows that the simulator slightly underestimates the interrupt/fault ratio for smaller number of

nodes, but mat
hes the expe
ted value very
losely starting with a few thousand nodes. The reason

for that is that with fewer nodes, even with a 500,000 hour workload, the number of interrupts is

small. That also explains the larger error bars when simulating fewer nodes.

17

For referen
e, Figure 8 also shows the value of Equation 3 normalized against the expe
ted value

from Equation 2.

We ran an experiment for a 5,000-hour workload on 200,000 nodes (half of them redundant). The

appli
ation experien
ed 43 interrupts during that run. At ea
h interrupt we
ounted the number

of faults that had o

urred sin
e the last interrupt. Figure 9 shows the result. While the number

of faults leading up to an interrupt varies
onsiderably, the �gure
learly shows that they
luster

around the expe
ted value of 561.166
al
ulated using Equation 3 for 200,000 nodes. The average

number of faults per interrupt for this experiment was 567.093, just 1% above the expe
ted value.
F

au
lts

 p
er

 In
te

rr
up

t

Interrupt Time

Faults
Expected average

200

400

600

800

1000

1,200

PSfrag repla
ements

Figure 9. Observed number of faults leading to ea
h interrupt.

The expe
ted average value for 200,000 nodes is 562.166.

4.3 Comparison to model

John Daly presents Equation 6 in [16℄, from whi
h he derives an optimal
he
kpoint interval τ̃opt

(Equation 5). In Equation 6, Tw(τ) is the total wall
lo
k time the appli
ation needs to
omplete

its assigned task. The
he
kpoint interval τ is
al
ulated using Equation 5. Θ is the MTBI for the

appli
ation and Ts is the solve time, the amount of time the appli
ation needs to
omplete its work.

R is the time needed to restart an appli
ation, and δ is the time it takes to write a
he
kpoint.

Tw(τ) = Θe
R

Θ (e
τ+δ

Θ − 1)Ts

τ
for δ << Ts (6)

Using the model from Equation 6 we should be able to validate our simulator. In Figures 3, 4,

and 5 of [16℄ Daly plots the total elapsed time of an appli
ation and varies the
he
kpoint interval.

He does this for MTBF of 24, 6, and 0.25 hours. The work time is 500 hours, restart time is 10

minutes, and the
he
kpoint time δ is 5 minutes. Using these parameters we
an re
reate Daly's

experiment.

Initial tests show that for an MTBF of 6 hours our simulation predi
ted an average elapsed time

that was 11.65% higher, and 5.88% higher for the 24-hour MTBF. Unfortunately, for the 0.25 hour

18

MTBF it was 51.7% higher. When the MTBF is that small it is near the
he
kpoint time δ. At

that point even very small
hanges in δ or the appli
ation MTBI
ause very large
hanges in the

total elapsed time Tw(τ).

When using redundant
omputing, but otherwise the same system
on�guration as above, and

re
al
ulating τ a

ordingly, simulation results agree with the model very ni
ely. We get -.28%,

1.27%, and 3.14%. Of
ourse, the appli
ation MTBI is mu
h higher now due to the redundan
y

and, sin
e we kept δ at 5 minutes, mu
h larger than δ.

For an additional test we
ompare the model and the simulator for a 700-hour appli
ation and a

�ve-year node MTBF for in
reasing number of nodes. The two nearly overlapping lines are shown

in [Figure omitted for spa
e in draft℄. We run our simulator 200 times for ea
h simulation point.

For this paper we
hose simulation over an analyti
al model be
ause it is easier to adapt to new

onditions, su
h as
hoosing a di�erent random distribution, and varying the level of redundan
y;

e.g., triple redundan
y for soft-error
orre
tion or only a portion of the nodes repli
ated. A limitation

of our simulator is that we assume the appli
ation will
he
kpoint at the pre
ise moment the optimal

he
kpoint interval (τ̃opt) indi
ates. For real appli
ation this is sometimes di�
ult to a
hieve be
ause

they have to be in a
onsistent state and network a
tivity has to be quies
ent. Self-syn
hronizing

appli
ations usually use the granularity of a time step
omputation to sele
t the time when to

he
kpoint.

Although our paper fo
uses on s
ienti�
 exas
ale
omputing systems, the results presented here

may be appli
able to large data
enters as well. Non-s
ienti�
 appli
ations may not have the long

exe
ution times that some s
ienti�
 appli
ations have, but a lower number of system interruptions

should result in a higher system throughput and in
rease produ
tivity of su
h
enters.

4.4 Performan
e

Simulation performan
e depends on the number of nodes we simulate and how many appli
ation

interrupts we have to pro
ess. For most simulation results presented in this paper, simulator exe
u-

tion time was less than one se
ond on a desktop PC. Only when the node
ount ex
eeds a million

does the simulator need more than a few se
onds; espe
ially in non-redundant experiments when

many more appli
ation interrupts need to be pro
essed.

19

5 Results

In this se
tion we
ondu
t parameter studies using the simulator des
ribed in the �rst part of this

paper.

For the experiments in this se
tion, unless we state otherwise, we use the following parameters

for our simulation runs: Che
kpoint time δ = 5 minutes, restart time R = 10 minutes, a work time

Tw of 168 hours (one week), and a node MTBF Θ = 43,800 (�ve years).

Manufa
turers often
laim a higher MTBF for their produ
ts. However, [43℄ found an MTBF

of about four years more realisti
 for a large high-performan
e-
omputing site. The MTBF we

are
onsidering is not purely due to hardware faults. Any interruptions that
auses an appli
ation

restart adds to the overhead an appli
ation experien
es. Even s
heduled maintenan
e is not handled

properly by many appli
ations and
auses work to be lost. For
omparisons we also in
lude some

results assuming an MTBF of one year. While probably not
ommon, it has been used in the

literature [18℄, and provides a lower bound on what to expe
t.

Note that in the data we present in this se
tion, we are not
onsidering the slowdown our

repli
ation library introdu
es, sin
e it is appli
ation spe
i�
 and dwarfed by the time savings when

running on large numbers of nodes.

5.1 Appli
ation e�
ien
y

Comparing Figure 1 and Figure 7 shows that redundant
omputing
an make a signi�
ant di�eren
e

at large s
ale. Be
ause of the time it takes to write
he
kpoints, restart, and rework, an appli
ation's

e�
ien
y ts
tw

su�ers.

Figure 10 shows three workloads with and without redundant
omputing. The amount of work

an appli
ation needs to
omplete: 168 hours (a week), 700 hours (a month), and 5,000 hours (seven

months) in Figure 10 has no impa
t on appli
ation e�
ien
y. Whether redundant
omputing is used

or not, has a huge impa
t. Even at 500,000 nodes, e�
ien
y only drops to 90% when redundant

nodes are used (one million in this
ase), while appli
ations running without redundan
y drop below

2% (below 11% at 200,000 nodes).

Appli
ation e�
ien
y impa
ts system throughput. If an appli
ation o

upies n nodes ten to

forty times longer in order to
omplete its job, that appli
ation is taking resour
es away from other

appli
ations. An ine�
ient appli
ation takes longer to
omplete and lowers system throughput.

Using redundant
omputing we
an bring e�
ien
y up to 90% and even though it requires 2n

nodes,
an
omplete tens of jobs in the time it takes to �nish a single non-redundant job.

5.2 Number of appli
ation interrupts

The reason redundant
omputing o�ers better e�
ien
y is be
ause the number of appli
ation inter-

rupts is signi�
antly redu
ed. Table 1 illustrates this for a 5,000-hour appli
ation.

When redundant
omputing is not used, ea
h fault
auses an appli
ation interrupt. This
an be

seen in
olumns two and three of Table 1. Be
ause redundant
omputing in
reases resilien
e, the

20

A
pp

lic
at

io
n

ef
fic

ie
nc

y

Number of nodes (pairs)

168 hours work
700 hours work

5000 hours work
0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

10 20 50 100
200

500
1,000

2,000
5,000

10,000

20,000

50,000

100,000

200,000

500,000

PSfrag repla
ements

Figure 10. Appli
ation e�
ien
y ts

tw

for three di�erent work

sizes. Solid lines are non-redundant, dashed lines use redundant

nodes.

number of interrupts an appli
ation experien
es is drasti
ally redu
ed:
olumn 5. Sin
e redundant

omputing uses twi
e as many nodes, the number of faults also doubles:
olumn 4. Note, however,

that this is not true for larger node
ounts: A larger non-redundant appli
ation will take mu
h

longer to
omplete and experien
es more faults and interrupts due to remaining in the system for a

longer time period.

The last few rows of Table 1 exemplify why redundant
omputing is so e�
ient at high node

ounts. While a non-redundant appli
ation has to restart four million times, using twi
e as many

nodes requires just over 100 restarts. A sensible
he
kpoint/restart strategy is still ne
essary to

re
over from these interrupts, but it does not dominate anymore the time the appli
ation uses the

system.

5.3 Level of redundan
y

Sometimes it may be desirable to use less than twi
e the number of nodes for redundant
omputing.

The repli
ation library supports this and we
an evaluate whether it makes sense to use only a few,

half, or almost twi
e the nodes required by the appli
ation.

Figure 11 shows the impa
t of partial redundan
y on the number of interrupts an appli
ation

sees. The longer an appli
ation runs, the more impa
t even a small in
rease in redundan
y has. For

example, going from using 50% more nodes for redundan
y to 60% redu
es the number of interrupts

a 720-hour job sees from 6,709 to 4,427; a 34% improvement. Sin
e we ran these experiments for

200,000 nodes, that 34% improvement
omes at a
ost of an additional 20,000 nodes.

The same 20,000-node investment for a 24-hour job is less bene�
ial in the number of interrupts

saved. At a 50% redundan
y level, a 24-hour job takes 231 interrupts and at the 60% redundan
y

level it takes 167 interrupts; a savings of 64 interruptions.

21

Table 1. Number of faults and interrupts for a 5,000-hour appli-

ation.

nodes not redundant redundant

(pairs) faults interrupts faults interrupts

100 11 11 24 1

200 27 27 45 1

500 60 60 117 3

1,000 126 126 231 3

2,000 264 264 447 5

5,000 739 739 1,153 9

10,000 1,653 1,653 2,384 13

20,000 3,902 3,902 4,784 19

50,000 14,228 14,228 11,973 30

100,000 46,565 46,565 24,304 43

200,000 209,909 209,909 48,930 62

500,000 4,031,114 4,031,114 125,811 101

N
um

be
r

of
 in

te
rr

up
ts

Level of redundancy

720-hour job
168-hour job

24-hour job

0

2,000

4,000

6,000

8,000

10,000

0% 10%
20%

30%
40%

50%
60%

70%
80%

90%
100%

PSfrag repla
ements

Figure 11. Level of redundan
y versus number of interrupts.

22

In Figure 12 we show the same experiment but plot the elapsed time on the left y-axis. The larger

savings in number of interrupts for a 10% in
rease in the level of redundan
y translates dire
tly

into a larger savings of elapsed time. The right y-axis and the dashed lines show the impa
t on

appli
ation e�
ien
y, ts
tw
, for the three jobs. When we in
rease the level of redundan
y, we in
rease

appli
ation e�
ien
y. With full redundan
y (100%) we a
hieve almost 100% e�
ien
y be
ause very

little time is wasted on writing
he
kpoints and, more importantly, re
overing from failures.

E
la

ps
ed

 ti
m

e

A
pp

lic
at

io
n

ef
fic

ie
nc

y

Level of redundancy

720-hour job
168-hour job

24-hour job

0 h

2,000 h

4,000 h

6,000 h

8,000 h

10,000 h

0% 10%
20%

30%
40%

50%
60%

70%
80%

90%
100%

0%

20%

40%

60%

80%

100%

PSfrag repla
ements

Figure 12. Level of redundan
y versus elapsed time. The dashed

lines show appli
ation e�
ien
y ts

tw

.

5.4 Rebooting nodes

Future systems will try to address fault resilien
e during the design stage. One approa
h that might

help, is hot-swappable nodes. When a node goes down it
an be repla
ed, rebooted, and reintegrated

into the running appli
ation. Another approa
h that is available today, ex
ept for the re-integration

part, is to simply reboot failed nodes. Very often the faults that brought them down are so
alled

soft-faults, and a reboot brings the node ba
k into operation.

This is espe
ially useful for redundant
omputing. If one of the two node fails and
an be

rebooted and reintegrated into the appli
ation before the other node fails, that node bundle will be

fully restored and
an absorb another fault.

Ane
dotal eviden
e suggests that rebooting a failed node in a produ
tion system su

eeds about

50% of the time. We further assume that a node requires �ve minutes to reboot. The simulator

will interrupt the appli
ation only, if the se
ond node in the bundle fails during that �ve minute

window. However, if the se
ond node
omes ba
k online (with our
hosen 50% probability), both

nodes in that bundle will have to fail before it
auses another appli
ation interrupt.

We assumed that this should further redu
e the number of interrupts an appli
ation experien
es.

However, our simulations show no signi�
ant di�eren
e, and appli
ation exe
ution time remains

about the same, with or without node reboots.

23

6 Dis
ussion and related work

6.1 Implementing software redundan
y

Using our repli
ation library, we evaluated empiri
ally the
ost of implementing redundant
om-

puting [3, 5℄, while in this paper we analyze the impa
t of redundant
omputing at exas
ale on the

throughput of a system and the appli
ation e�
ien
y.

The repli
ation library implements redundant
omputing transparently to the appli
ation at the

pro�ling layer of the MPI library. At start time the user
hooses how many ranks of the appli
ation

should be repli
ated. The repli
ation library then uses these additional MPI ranks and assigns

them as redundant partners to the initial set of ranks in a one-to-one fashion, or a

ording to some

permutation
hosen by the user. The later feature is used to evaluate the impa
t of distributing

ranks and their redundant partners a
ross the nodes of a system. To in
rease fault independen
e,

the two ranks should be physi
ally as far apart from ea
h other as possible; hopefully using di�erent

power supplies,
olling systems, and network
omponents. This in
reases
ommuni
ation laten
y

between a rank and its redundant partner whi
h
ould impa
t the e�
ien
y of the repli
ation

proto
ol needed between the ranks to maintain repli
ation state. It turns out that on a system with

more than 10,000 nodes pla
ing of repli
as has very little impa
t on appli
ation performan
e.

When we �rst implemented the repli
ation library we assumed that it would need to reside

at a very low layer in the
ommuni
ation sta
k and be thoroughly integrated into the Reliability,

Availability, and Se
urity (RAS) system. In the end it was possible to implement the library in user

spa
e between an appli
ation and the MPI library. Its requirements of the RAS system are rather

minimal. It needs to be informed in one fashion or another about ranks that have experien
ed

faults and have be
ome unresponsive. Furthermore, the system must be able to dis
ard messages in

�ight to disabled nodes; i.e., even messages to dead nodes must be
onsumed and must not deadlo
k

ommuni
ation
hannels. Sin
e the repli
ation library relies on the underlying MPI implementation,

that library must be able to survive the loss of individual ranks without stopping the appli
ation.

The repli
ation library supports several repli
ation proto
ols to maintain state of the
ompu-

tation and the availability of individual ranks. The most e�
ient of these proto
ols has a very

low impa
t on appli
ation performan
e. The overhead of repli
ating messages and syn
hronizing a

rank and its redundant partner is easily measurable with mi
ro-ben
hmarks. However, the impa
t

of that overhead is greatly diminished for real appli
ations whi
h perform enough
ompute work

between
ommuni
ations to mask most of this overhead. We measured an overhead of well below

10% for several s
ienti�
 appli
ations and appli
ation ben
hmarks, and saw a worst
ase of 20% for

one appli
ation in one spe
i�

ase. These overheads are easily dwarfed by the performan
e gains

of redundant
omputing.

A major
ontributor to overhead is the handling of any-sour
e MPI re
eives. The library must

ensure that these messages arrive at a redundant rank in the same order as they did on the original

rank. This requires tight syn
hronization between these two ranks and in
reases laten
y greatly.

The library dete
ts any-sour
e re
eives and uses the more expensive syn
hronization proto
ol only

in those
ases where appli
ation behavior mandates it.

The
urrent implementation of the repli
ation library is a prototype and has several limitations,

the main one being that it does not handle I/O. It also repli
ates a large portion of the MPI library

24

itself in order to stay informed about the state of
ommuni
ation. Integrating repli
ation into the

MPI library would be bene�
ial.

6.2 Lowering the
ost of
he
kpoint/restart

Redundant
omputing is a
ostly approa
h to appli
ation resilien
e at the exas
ale. We have seen

in Se
tion 5 that it
an pay o� at large number of nodes and that it is not too di�
ult to implement

for MPI in [3℄. However, it is somewhat
ontroversial in HPC and resear
hers are looking at other

methods to make appli
ations more resilient to faults.

In Se
tion 1.2 we dis
ussed other
he
kpoint/restart s
hemes, and improvements to �le and

storage systems that are alternatives to redundant
omputing. [17℄ is a good survey of
he
kpoint

restart methods and [34℄ looks at seven spe
i�
 implementations for
lusters. Although some of

these methods promise better performan
e than
oordinated
he
kpointing, very few of them have

been implemented and used by s
ienti�
 appli
ations at large s
ale. Many s
ienti�
 appli
ations

are self-syn
hronizing and
oordinated
he
kpointing is a natural �t for these appli
ations. For

other types of appli
ations, un
oordinated (asyn
hronous)
he
kpointing has been proposed; e.g.,

[47℄. The issue for large-s
ale systems is that a
onsistent-state re
overy line has to be established

after a fault whi
h may be prone to rollba
k propagation. Rollba
k may be worse at larger s
ales,

although we have not investigated that yet. Communi
ation-indu
ed
he
kpointing [1℄ allows for

some
he
kpoints to be lo
al, but does not s
ale well.

Message logging s
hemes in
onjun
tion with un
oordinated
he
kpointing may be good
andi-

dates for larger systems [17, 26�28, 32, 33℄. Most of them are di�
ult to implement and have not

been evaluated using real appli
ations at large s
ale.

Several hybrid approa
hes, improvements, and alternate methods have also been proposed. Us-

ing in
remental
he
kpoints to redu
e the
he
kpoint overhead is des
ribed in [40, 41℄. Our ex-

periments show that at large s
ale in systems with many faults the main
ontributor to overhead

is restart time. It is therefore very important to improve restart times along with
he
kpointing

performan
e.

New te
hnologies expe
ted to be available in future exas
ale systems in
lude node-lo
al NVRAM

and SSD whi
h promise faster a

ess times and higher bandwidth. One way of using these devi
es

would be to
he
kpoint lo
ally to NVRAM and then tri
kle the data in the ba
kground to stable

storage o�-node (either SSD or spinning media). Until data rea
hes o�-node storage, it may not

be available to a restarting pro
ess. One interesting idea is to use intermediate nodes in a system

to
oordinate
he
kpointing to external storage and thereby better utilize a system's resour
es and

improve
he
kpoint and restore times [37℄.

6.3 The need for a new solution

Appli
ations will need to adapt to exas
ale systems [2℄. Con
erns in
lude billion-fold parallelism,

lo
ality, and a simple, understandable exe
ution model. While dealing with these di�
ult
hallenges,

the idea of adapting appli
ations to an environment with a higher fault rate is rarely mentioned.

Therefore, systems resear
hers need to �nd ways to isolate appli
ations from the faults that o

ur

in the underlying system.

25

There is a
ost asso
iated with that. Hardware manufa
turers
ould make their
omponents

more reliable, perhaps using redundan
y at the hardware level; ma
hine owners
ould buy addi-

tional resour
e to allow for software redundan
y, as proposed in this paper; or, advan
es in new

te
hnologies, su
h as NVRAM, advan
ed
he
kpointing methods, or faster �le systems might o�er

a solution. Transa
tion-based systems require a lower error rate than the underlying hardware pro-

vides. For these systems, users are paying a performan
e penalty that would not be a

eptable in

a HPC system [10℄.

Whi
h method, or
ombination of methods, will prevail remains to be seen. We
an use the

simulator des
ribed in this paper to set limits on when a method be
omes more
ost-e�e
tive than

redundant
omputing. Until now we have used a �xed
he
kpoint time of δ = 5 minutes and a �xed

restart time of R = 10 minutes for all of our experiments. While these values may be unrealisti
ally

low for today's te
hnology extrapolated to the exas
ale, newer te
hnologies and approa
hes to fault

resilien
e aim to lower the
he
kpoint and restart times.

In Figure 13 we look at
he
kpoint times δ of �ve minutes or less. We assume a restart time of

R = 2δ. We simulate four large node
ounts, with and without redundant
omputing. For ea
h run

we
al
ulate and use the optimal
he
kpoint interval τ . To obtain a y-axis value, we
ompute the

ratio of the average of seven redundant runs and the average of seven non-redundant runs. As long

as this ratio remains below 0.5, redundant
omputing is more
ost e�e
tive.

R
at

io
 r

ed
un

da
nt

/n
on

-r
ed

un
da

nt

Checkpoint time δ

50,000 nodes
100,000 nodes
200,000 nodes
500,000 nodes

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

12 sec

24 sec

36 sec

48 sec

1 m
in

2 m
in

3 m
in

4 m
in

5 m
in

PSfrag repla
ements

Figure 13. Redundant/none-redundant elapsed time ratio for

various
he
kpoint times δ.

Figure 13 lets us determine how low δ needs to be for a given number of nodes, to rule out

redundant
omputing as a feasible solution. For example, for 500,000 nodes, δ needs to be less than

24 se
onds in order to beat redundant
omputing. Spe
i�
ally, a typi
al 500,000-node job that does

168 hours of work (Ts) runs for about 370 hours without redundant
omputing and a
he
kpoint

time of 24 se
onds. Using the same parameters, but using twi
e as many nodes, the job
ompletes

in 170 hours. If we lower the
he
kpoint time some more to 12 se
onds, the non-redundant job

�nishes in 290 hours, while the redundant job still takes about 170 hours. At that point it is no

longer
ost-e�e
tive to use twi
e the number of nodes for redundant
omputing.

Therefore, te
hnologies and algorithms that lower the
he
kpoint time are worthwhile to inves-

26

tigate. However, the
ost of these methods need to be taken into
onsideration and
ompared to

redundant
omputing. For example, on a 200,000 node system with 16 or 64 GB of memory per

node, a 1 GB
he
kpoint size per node does not seem unreasonable. In order to write 200 TB of

data in less than one minute (the break-even point for 200,000 nodes in Figure 13), the system

aggregate bandwidth to stable storage needs to be 3,333 GB/s. That is unrealisti
, when
urrent

proje
tions are
loser to 50 GB/s [37℄.

Other ideas, su
h as
he
kpointing to the NVRAM of neighboring nodes, are more promising

be
ause of the higher bandwidth that
an be a
hieved. Note that this data still needs to be tri
kled

o� to stable storage, or some other method, su
h as using far-away neighbors, needs to be employed

to keep the
he
kpoint data available in
ase of a
abinet-wide failure. In the 500,000-node non-

redundant s
enario above, a
he
kpoint is written every 1.32 minutes, whi
h is not mu
h time to

tri
kle data to stable storage. Saving only a fra
tion of the
he
kpoints from NVRAM to stable

storage helps, but in
reases the risk of more lost work and makes this less e�
ient. Further studies

are needed to determine the break-even points for the various approa
hes at the exas
ale.

6.4 Other work

Extreme-s
ale resilien
y is an a
tive resear
h topi
. We dis
ussed in detail why a higher failure

rate is likely in exas
ale systems in Se
tion 1.1, and several papers show that future systems will

have a low system MTBF [18, 29, 37, 38℄, whi
h requires solutions that go beyond traditional

he
kpoint/restart.

The requirements for RAS systems have been studied before [6℄ and newer work more dire
tly

aimed at large-s
ale systems is under way [24℄. Integrating the RAS system with the repli
ation

library, or an MPI implementation that in
ludes redundant
omputing will be essential. Systems

that are spe
i�
ally built to redu
e the number of faults, and use redundan
y to do so, have been

available [7, 36℄ and designing hardware with fault resilien
y in mind has a long history [42℄. Software

solutions for redundan
y have also been proposed [11, 15℄. The issue with proposed large-s
ale

systems is that many of the
omponents are o�-the-shelf and not spe
i�
ally designed to operate at

that s
ale, and that these systems are spe
i�
ally pur
hased for their performan
e and
apa
ity.

Several groups are investigating appli
ation resilien
e in the
ontext of extreme-s
ale systems:

e.g., [12, 18, 34℄. Looking toward extreme s
ale in parti
ular are: [13, 14, 21, 38℄. Several of these

papers point at [43℄ whi
h shows that the observed system error rate is often mu
h higher than the

theoreti
al predi
tion for the hardware alone.

Large-s
ale and frequent faults are typi
al in distributed systems. Solutions in that domain are

interesting for exas
ale systems. For example, [22, 23℄. However, performan
e and throughput are

paramount in exas
ale systems, while they are less
riti
al in distributed systems.

27

7 Summary

Redundant
omputing has been used in mission-
riti
al systems but has been viewed as too ex-

pensive for large-s
ale HPC systems. This paper dis
usses a simulator for redundant
omputing in

large-s
ale systems. We show that redundant
omputing
an be more
ost e�e
tive at large s
ale.

Alternative methods that improve
he
kpoint and restart time need to improve by two orders of

magnitude before they approa
h the throughput improvements possible with redundant
omputing.

28

Referen
es

[1℄ Lorenzo Alvisi, E. N. Elnozahy, Sriram Rao, Syed Amir Husain, and Asanka De Mel. An

analysis of
ommuni
ation indu
ed
he
kpointing. In FTCS, pages 242�249, 1999.

[2℄ Saman Amarasinghe and et al. Exas
ale software study: Software
hallenges in extreme

s
ale systems. http://users.e
e.gate
h.edu/mri
hard/Exas
aleComputingStudyReports/

ECSS%20report%20101909.pdf, September 2009.

[3℄ Anonymous. Hidden for double blind review. Te
hni
al report ????, Some organization,

O
tober 2009.

[4℄ Anonymous. Hidden for double blind review. http://www..., Mar
h 2010.

[5℄ Anonymous. Hidden for double blind review. In Hidden, Le
ture Notes in Computer S
ien
e.

Springer Verlag, 2010.

[6℄ Mi
hael Barborak, Anton Dahbura, and Miroslaw Malek. The
onsensus problem in fault-

tolerant
omputing. ACM Comput. Surv., 25(2):171�220, 1993.

[7℄ Joel F. Bartlett. A nonstop kernel. In Symposium on Operating Systems Prin
iples (SOSP),

pages 22�29, 1981.

[8℄ John Bent, Garth Gibson, Gary Grider, Ben M
Clelland, Paul Nowo
zynski, James Nunez,

Milo Polte, and Meghan Wingate. Plfs: a
he
kpoint �lesystem for parallel appli
ations. In

ACM/IEEE Super
omputing Conferen
e (SC), 2009.

[9℄ Keren Bergman and et al. Exas
ale
omputing study: Te
hnology
hallenges

in a
hieving exas
ale systems. http://www.s
ien
e.energy.gov/as
r/Resear
h/CS/

DARPAexas
ale-hardware(2008).pdf, 2008.

[10℄ Ri
ardo Bian
hini and et al. System resilien
y at extreme s
ale. http://institute.lanl.gov/

resilien
e/do
s/IBM%20Mootaz%20White%20Paper%20System%20Resilien
e.pdf, 2009.

[11℄ Thomas C. Bressoud and Fred B. S
hneider. Hypervisor-based fault toleran
e. ACM Trans.

Comput. Syst., 14(1):80�107, 1996.

[12℄ G. Bronevetsky, R. Fernandes, D. Marques, K. Pingali, and P. Stodghill. Re
ent advan
es

in
he
kpoint/re
overy systems. International Parallel and Distributed Pro
essing Symposium

(IPDPS), 2006.

[13℄ Fran
k Cappello. Fault toleran
e in petas
ale/ exas
ale systems: Current knowledge,
hallenges

and resear
h opportunities. Int. J. High Perform. Comput. Appl., 23(3):212�226, 2009.

[14℄ Fran
k Cappello, Al Geist, Bill Gropp, Sanjay Kale, Bill Kramer, and Mar
 Snir. Toward exas-

ale resilien
e. Te
hni
al report TR-JLPC-09-01, Illinois-INRIA Joint Laboratory on PetaS
ale

Computing, 2009.

[15℄ J. Chapin, M. Rosenblum, S. Devine, T. Lahiri, D. Teodosiu, and A. Gupta. Hive: fault
on-

tainment for shared-memory multipro
essors. In Symposium on Operating Systems Prin
iples

(SOSP), pages 12�25, 1995.

[16℄ J. T. Daly. A higher order estimate of the optimum
he
kpoint interval for restart dumps.

Future Gener. Comput. Syst., 22(3):303�312, 2006.

29

[17℄ E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. Johnson. A survey of

rollba
k-re
overy proto
ols in message-passing systems. ACM Comput. Surv., 34(3):375�408,

2002.

[18℄ E.N. Elnozahy and J.S. Plank. Che
kpointing for peta-s
ale systems: a look into the future

of pra
ti
al rollba
k-re
overy. Dependable and Se
ure Computing, IEEE Transa
tions on, 1(2):

97�108, 2004.

[19℄ Christian Engelmann and Frank Lauer. Fa
ilitating
odesign for extreme-s
ale systems through

lightweight simulation. In Workshop on Appli
ation/Ar
hite
ture Co-design for Extreme-s
ale

Computing (AACEC), 2010.

[20℄ Philippe Flajolet, Peter J. Grabner, Peter Kirs
henhofer, and Helmut Prodinger. On Ramanu-

jan's Q-fun
tion. J. Comput. Appl. Math., 58(1):103�116, 1995.

[21℄ Rahul Garg, Vijay K. Garg, and Yogish Sabharwal. S
alable algorithms for global snapshots

in distributed systems. In International Conferen
e on Super
omputing (ICS), pages 269�277,

2006.

[22℄ Stéphane Genaud, Emmanuel Jeannot, and Choopan Rattanapoka. Fault management in

p2p-mpi. International Journal of Parallel Programming, 37(5):433�461, 2009.

[23℄ Stéphane Genaud and Choopan Rattanapoka. P2p-mpi: A peer-to-peer framework for robust

exe
ution of message passing parallel programs on grids. Journal of Grid Computing, 5:27�42,

2007.

[24℄ Rinku Gupta, Pete Be
kman, Byung-Hoon Park, Ewing Lusk, Paul Hargrove, Al Geist, Dha-

baleswar Panda, Andrew Lumsdaine, and Ja
k Dongarra. CIFTS: A
oordinated infrastru
ture

for fault-tolerant systems. In International Conferen
e on Parallel Pro
essing (ICPP), pages

237�245, 2009.

[25℄ Lars Holst. The general birthday problem. In International seminar on Random graphs and

probabilisti
 methods in
ombinatori
s and
omputer s
ien
e, pages 201�208, 1995.

[26℄ Q. Jiang and D. Manivannan. An optimisti

he
kpointing and sele
tive message logging ap-

proa
h for
onsistent global
he
kpoint
olle
tion in distributed systems. International Parallel

and Distributed Pro
essing Symposium (IPDPS), 2007.

[27℄ Qiangfeng Jiang, Yi Luo, and D. Manivannan. An optimisti

he
kpointing and message

logging approa
h for
onsistent global
he
kpoint
olle
tion in distributed systems. J. Parallel

Distrib. Comput., 68(12):1575�1589, 2008.

[28℄ David B. Johnson and Willy Zwaenepoel. Re
overy in distributed systems using asyn
hronous

message logging and
he
kpointing. In ACM symposium on prin
iples of distributed
omputing,

pages 171�181, 1988.

[29℄ William M. Jones, John T. Daly, and Nathan A. DeBardeleben. Appli
ation resilien
e: Making

progress in spite of failure. In International Symposium on Cluster Computing and the Grid

(CCGRID), pages 789�794, 2008.

[30℄ Dimitri B. Ke
e
ioglu. Reliability Engineering Handbook, volume 2. DESte
h Publi
ations,

In
, 2002.

30

[31℄ Donald E. Knuth. The art of
omputer programming, volume 3: (2nd ed.) sorting and sear
h-

ing. Addison Wesley, 1998.

[32℄ Pierre Lemarinier, Aurelien Bouteiller, Geraud Krawezik, and Fran
k Cappello. Coordinated

he
kpoint versus message log for fault tolerant MPI. Int. J. High Perform. Comput. Netw., 2

(2-4):146�155, 2004.

[33℄ Kai Li, Je�rey F. Naughton, and James S. Plan
k. Che
kpointing multi
omputer appli
ations.

Reliable Distributed Systems, pages 2�11, 1991.

[34℄ Andrew Maloney and Andrzej Gos
inski. A survey and review of the
urrent state of rollba
k-

re
overy for
luster systems. Con
urren
y and Computation: Pra
ti
e and Experien
e, 2009.

[35℄ Frank H. Mathis. A generalized birthday problem. SIAM Review, 33(2):265�270, 1991.

[36℄ Dennis M
Evoy. The ar
hite
ture of tandem's nonstop system. In Pro
eedings of the ACM

onferen
e, 1981.

[37℄ Ron A. Old�eld, Sarala Arunagiri, Patri
ia J. Teller, Seetharami Seelam, Maria Ruiz Varela,

Rolf Riesen, and Philip C. Roth. Modeling the impa
t of
he
kpoints on next-generation

systems. In 24th IEEE Conferen
e on Mass Storage Systems and Te
hnologies, pages 30�46,

2007.

[38℄ A. J. Oliner, R. K. Sahoo, J. E. Moreira, and M. Gupta. Performan
e impli
ations of pe-

riodi

he
kpointing on large-s
ale
luster systems. In International Parallel and Distributed

Pro
essing Symposium (IPDPS) - Workshop 18, 2005.

[39℄ Xiangyong Ouyang, Sonya Mar
arelli, and Dhabaleswar K. Panda. Enhan
ing
he
kpoint per-

forman
e with staging IO and SSD. In International Workshop on Storage Network Ar
hite
ture

and Parallel I/Os (SNAPI), pages 13�20, 2010.

[40℄ Alessandro Pellegrini, Roberto Vitali, and Fran
es
o Quaglia. Di-DyMeLoR: Logging only

dirty
hunks for e�
ient management of dynami
 memory based optimisti
 simulation obje
ts.

InWorkshop on Prin
iples of Advan
ed and Distributed Simulation (PADS), pages 45�53, 2009.

[41℄ Yasushi Saito and Mar
 Shapiro. Optimisti
 repli
ation. ACM Comput. Surv., 37(1):42�81,

2005.

[42℄ Ri
hard D. S
hli
hting and Fred B. S
hneider. Fail-stop pro
essors: an approa
h to designing

fault-tolerant
omputing systems. ACM Trans. Comput. Syst., 1(3):222�238, 1983.

[43℄ Bian
a S
hroeder and Garth A. Gibson. A large-s
ale study of failures in high-performan
e

omputing systems. In International Conferen
e on Dependable Systems and Networks (DSN),

2006.

[44℄ Bian
a S
hroeder and Garth A Gibson. Understanding failures in petas
ale
omputers. Journal

of Physi
s: Conferen
e Series, 78(1), 2007.

[45℄ Bian
a S
hroeder, Eduardo Pinheiro, and Wolf-Dietri
h Weber. DRAM errors in the wild:

a large-s
ale �eld study. In International joint
onferen
e on Measurement and modeling of

omputer systems (SIGMETRICS), pages 193�204, 2009.

[46℄ Charlie Slayman. Impa
t and mitigation of DRAM and SRAM soft errors. http://www.ewh.

ieee.org/r6/s
v/rl/arti
les/Soft%20Error%20mitigation.pdf, 2010.

31

[47℄ Yi-Min Wang, Pi-Yu Chung, In-Jen Lin, and W. Kent Fu
hs. Che
kpoint spa
e re
lamation

for un
oordinated
he
kpointing in message-passing systems. IEEE Trans. Parallel Distrib.

Syst., 6(5):546�554, 1995.

32

DISTRIBUTION:

1 MS 0899 Te
hni
al Library, 9536 (ele
troni

opy)

1 MS 0359 D. Chavez, LDRD O�
e, 1911

33

34

v1.36

PSfrag repla
ements

