
SANDIA REPORT
SAND2010-8709
Unlimited Release
Printed December 2010

Redundant Computing for Exascale
Systems

Rolf Riesen, Kurt Ferreira, Jon Stearley, Ron Oldfield, James H. Laros III, Kevin
Pedretti, Ron Brightwell, Sandia National Laboratories

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy

by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United

States Government. Neither the United States Government, nor any agency thereof, nor any

of their employees, nor any of their contractors, subcontractors, or their employees, make any

warranty, express or implied, or assume any legal liability or responsibility for the accuracy,

completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-

resent that its use would not infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,

does not necessarily constitute or imply its endorsement, recommendation, or favoring by the

United States Government, any agency thereof, or any of their contractors or subcontractors.

The views and opinions expressed herein do not necessarily state or reflect those of the United

States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best

available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401

Facsimile: (865) 576-5728

E-Mail: reports@adonis.osti.gov

Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce

National Technical Information Service

5285 Port Royal Rd

Springfield, VA 22161

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders@ntis.fedworld.gov

Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
EP

ARTMENT OF ENERG
Y

• •U
N

IT
ED

STATES OF AM

ER
I C

A

2

SAND2010-8709

Unlimited Release

Printed Deember 2010

Redundant Computing for Exasale Systems

Rolf Riesen

Kurt Ferreira

Jon Stearley

Ron Old�eld

James H. Laros III

Kevin Pedretti

Ron Brightwell

Salable Computing Systems Department

Sandia National Laboratories

P.O. Box 5800

Albuquerque, NM 87185-1319

Abstrat

Exasale systems will have hundred thousands of ompute nodes and millions of omponents

whih inreases the likelihood of faults. Today, appliations use hekpoint/restart to reover

from these faults. Even under ideal onditions, appliations running on more than 50,000 nodes

will spend more than half of their total running time saving hekpoints, restarting, and redoing

work that was lost.

Redundant omputing is a method that allows an appliation to ontinue working even when

failures our. Instead of eah failure ausing an appliation interrupt, multiple failures an be

absorbed by the appliation until redundany is exhausted. In this paper we present a method

to analyze the bene�ts of redundant omputing, present simulation results of the ost, and

ompare it to other proposed methods for fault resiliene.

3

4

Contents

1 Introdution . 7

1.1 Faults at exasale . 7

1.2 Other approahes . 8

2 Motivation . 10

2.1 Redundant omputing . 11

3 Chekpoint restart. 14

4 Validation . 17

4.1 Expeted appliation MTBI . 17

4.2 Interrupt-to-fault ratio . 17

4.3 Comparison to model . 18

4.4 Performane . 19

5 Results . 20

5.1 Appliation e�ieny . 20

5.2 Number of appliation interrupts . 20

5.3 Level of redundany . 21

5.4 Rebooting nodes . 23

6 Disussion and related work . 24

6.1 Implementing software redundany . 24

6.2 Lowering the ost of hekpoint/restart . 25

6.3 The need for a new solution . 25

6.4 Other work . 27

7 Summary. 28

Referenes . 29

Figures

1 Example of overhead for a 168-hour appliation run. 10

2 Number of faults (interrupts) for the example in Figure 1. The left y axis shows the

alulated system MTBF. 11

3 Number of faults before a redundant appliation gets interrupted. 12

4 Comparing system MTBF and appliation MTBI when using redundant omputing. . 13

5 State diagram of the appliation simulator. 14

6 Blok diagram of the simulator. 15

7 Example of overhead for a 168-hour appliation run with redundant nodes. The line

labeled �No redundany� orresponds to the total elapsed time of Figure 1. 16

8 Simulated interrupt-to-fault ratio ompared to expeted value for the birthday problem. 17

9 Observed number of faults leading to eah interrupt. The expeted average value for

200,000 nodes is 562.166. 18

10 Appliation e�ieny ts
tw

for three di�erent work sizes. Solid lines are non-redundant,

dashed lines use redundant nodes. 21

11 Level of redundany versus number of interrupts. 22

12 Level of redundany versus elapsed time. The dashed lines show appliation e�ieny
ts
tw
. 23

13 Redundant/none-redundant elapsed time ratio for various hekpoint times δ. 26

5

Tables

1 Number of faults and interrupts for a 5,000-hour appliation. 22

6

1 Introdution

Today's large-sale parallel mahines experiene outages from failed omponents, software bugs,

human errors, and power disruptions. A ommon method to allow sienti� appliations to om-

pute longer than the interval between interrupts is to hekpoint the appliation state at regular

intervals and restart the appliation from the most reent suessful hekpoint after a fault ours.

Chekpoint/restart works but is predited to be ine�ient in future mahines beause of the large

number of expeted faults [18, 37, 38℄.

Planing for exasale systems is under way and it is expeted that the �rst general sienti�

omputers operating at speeds faster than 10
18 �oating-point operations per seond (�ops) will

appear by the end of this deade. In order to reah this performane, tehnology has to advane.

For example, silion feature size and power onsumption has to derease, while transistor ount has

to inrease. Even with these predited tehnologial improvements, an exasale system will onsist

of a huge number of individual omponents, none of them more reliable than today's omponents,

but potentially worse [9℄.

We wrote a library whih allows MPI ranks to be repliated. Both ranks perform the same

omputation and if one of them fails, the other ontinues to funtion without foring the appliation

to restart [3℄. This approah e�etively inreases the time between interrupts whih results in fewer

restarts, and less rework. This leads to better system throughput. Sine the appliation an ontinue

to work in the presene of some faults, it is now possible to inrease the hekpoint interval and

allow the appliation to make uninterrupted progress for a longer slie of time. The ost is a small

performane degradation due to the repliation protool and, of ourse, the overhead of using more

nodes than the appliation and problem would need otherwise.

In this paper we look at redundant omputing as one of several approahes to isolate extreme-

sale appliations from failures in the underlying system. Redundant omputing has been employed

in mission-ritial systems for several deades; e.g, [7, 36℄ and many others. However, until now it

has not been onsidered a neessity for high performane omputing (HPC). We believe redundant

omputing has its plae and an improve the e�ieny of large-sale future mahines. In order to

quantify this belief, we wrote an analysis tool whih allows us to ondut various studies. This

paper desribes this tool and reports the results we have obtained using it.

1.1 Faults at exasale

Million-ore mahines for exasale omputing will have so many parts that faults will be frequent.

Studies have shown that the failure rate of a system is proportional to the number of proessor

hips, and that systems and their hardware do not grow more reliable as tehnology advanes [44℄.

Running interfaes at higher lok rates for improved bandwidth, �wear-out� mehanisms of new

devies; e.g., buildup of stray harges on a gate, smaller feature sizes, and using lower voltages with

dereased margins will further exaggerate the problem [9℄. That study looks at various approahes

of how an exasale system ould be built. Spei�ally, extrapolations of a �heavy-node� system,

suh as the urrent Cray XT series, a �light-node� system, suh as the IBM Blue Gene system,

and an �aggressive silion� system, whih assumes that a new system an be designed from srath

ombining the best new tehnologies urrently projeted. Given these di�erent senarios, prediting

7

what will be ontained in a node or soket, and how many of eah will be present in an exasale

system is somewhat di�ult. In this paper we use the term node as the unit of repliation and

failure. It should be understood that, depending on the arhiteture of these future systems, this

ould be a soket with multiple ores and integrated memory, or a node in the more traditional

sense of one or more CPUs oupled with memory hips and one or more NICs onneted to the

network.

The exasale study [9℄ also looks at resiliene. Taking the number of omponents in an exasale

system into aount and using the appropriate Failure In Time (FIT) number (Errors per 10
9 hours

of use) for the di�erent types of omponents, the study omputes that an exasale system will fail

one every 35 to 39 minutes. These times inlude the assumption that about half of the failure

will ome from software. In this paper we do not onsider the soure of a failure. The impat on

an appliation is the same whether the failure ame from hardware, software, human intervention,

or the environment. Any failure that interrupts an appliation auses lost work and a setbak in

ompletion time.

Note that the estimated Mean Time Between Failures (MTBF) of 35 to 39 minutes in [9℄ may be

optimisti. It assumes 5 FITs per 1 GB DRAM hip, but [45℄ found that the observed unorretable

error rate is muh, muh higher than that: 0.22% unorretable errors per DIMM, 25,000 � 75,000

FIT per Mbit = 55 - 165 FIT per Mbit. Other soures also indiate a higher FIT for DRAM

hips [46℄ and an MTBF of about 20 minutes for an exasale system [19℄.

The system-wide MTBF will beome so small that muh more than 50% of an appliation's

total exeution time will be spent writing hekpoints and reovering from failures [3, 37℄.

In addition, appliations are also suseptible to software errors whih may also inrease in

these omplex systems due to the inrease in parallelism, the possibility of deadlok, and new rae

onditions.

The more failures our during the exeution time of an appliation, the longer it will take to

�nish its work. This dereases the throughput of the mahine: fewer appliations �nish in a unit of

time.

1.2 Other approahes

In the previous subsetion we made the ase that extreme-sale appliations will have to ontend

with a higher failure rate. We now brie�y look at two other approahes that are being onsidered.

The �rst approah is to improve �le systems and the storage system to enable faster hekpoints

and reovery. In [44℄ the authors explain that for storage bandwidth to grow at the same rate as the

number of proessors, more storage devies will be needed sine the bandwidth per disk drive grows

muh more slowly. That in turn inreases the number of omponents in a system and, therefore, the

number of failures. It also means that a higher portion of the system ost will need to be devoted

to storage than has been traditionally the ase.

In this paper we evaluate redundant omputing in the ontext of oordinated hekpoint/restart

beause this method is widely deployed, easy to implement, and a natural �t for many sienti�

appliations that have periodi synhronization points in their algorithms. In addition to speialized

�le systems [8℄ and improved non-volatile storage, more sophistiated hekpoint/restart methods

8

are often suggested to solve the problem of higher failure rates in exasale systems. Some of them

may not help with self-synhronizing appliations that are often run on high-end systems. Suessful

approahes will lower the hekpoint and restart time. A similar e�et an be obtained by using Non-

Volatile Read-Only Memory (NVRAM) in the form of Solid State Disks (SSD) [39℄. In Setion 6.3

we evaluate lowered hekpoint and restart times and ompare it with redundant omputing.

This paper makes the following ontributions: A). We reated an open-soure tool that mimis

an appliation's work, hekpoint, restart, and rework yles and allows the modeling of various

ombinations of node ount, MTBF, and work to be performed (Setion 3). We desribe and

validate this tool in Setion 4. B.) The results of these simulations let us determine when it might

be bene�ial to use redundant omputing (Setion 5). The paper loses with a related work setion

(Setion 6), and a summary (Setion 7).

9

2 Motivation

In today's large parallel systems, whenever a omponent fails that an appliation is urrently using,

the appliation is interrupted and aborts. At a later time, after the system has been repaired or

enough resoures are available again, the appliation is restarted. During the restart an earlier

hekpoint is read in from stable storage that lets the appliation ontinue from the point in time

when the last suessful hekpoint was written. In addition to the time the appliation needs

to solve a partiular problem, Ts, there is the overhead of oasionally writing hekpoints to

stable storage, restarting when neessary, and redoing work that was lost sine the last suessful

hekpoint.

In this paper we ignore the time an appliation spends in the bath queue after it has been

interrupted and before it is restarted. Although this time inreases the time to solution, it is

very unpreditable and depends very muh on the queuing poliies in plae and the load of the

system. Furthermore, we only onsider oordinated hekpoint/restart. Other methods exist, but

are rarely used in pratie, and oordinated hekpointing is easy to implement and natural for self-

synhronizing appliations. Assuming that other methods might be able to write hekpoints more

quikly and restart faster, we will look at these bene�ts in Setion 6.3. However, evaluating the full

impat of di�erent hekpoint methods, suh us unoordinated with message logging or RAID-style

writes to other node's memories, is beyond the sope of this paper. Improving hekpoint and

restart times is learly bene�ial, but the exat method and time requirements do not alter the

fundamental results presented in this paper.

Let Figure 1 motivate our disussion. It has been generated from numbers omputed by the

analysis tool desribed in Setion 3 and shows the overhead an appliation experienes. The ap-

pliation needs to �nish Ts = 168 hours of work per node (weak saling). For several node sizes

we ompute the overhead whih is broken down into restart time, lost work, and time to write

hekpoints. The graph in this example learly shows that beyond 50,000 nodes the appliation

spends only a fration of the elapsed time doing the atual omputation it was designed for. The

MTBF of an individual node in this example is 43,800 hours (5 years).

E
la

ps
ed

 ti
m

e

Number of nodes

Work
Checkpoint

Rework
Restart

0.0 h

200.0 h

400.0 h

600.0 h

800.0 h

1.0 kh

1.2 kh

1.4 kh

1.6 kh

10 20 50 100
200

500
1,000

2,000
5,000

10,000

20,000

50,000

100,000

200,000

Figure 1. Example of overhead for a 168-hour appliation run.

10

The reason for the rapidly inreasing overhead in Figure 1 is the lost work and number of restarts

the appliation experienes as the number of faults inreases. The right y-axis of Figure 2 shows

the number of interrupts the appliation in this example experienes. While manageable to about

10,000 nodes, the number of faults inreases exponentially for larger systems. Unless otherwise

noted, all experiments in this paper were onduted seven times. The error bars show minimum,

average, and maximum values. The error bars in these �rst two examples are barely visible due to

their small spread.

Given a node MTBF Θnode and the assumption that all nodes have the same MTBF and inde-

pendent failure behavior, it is easy to ompute the MTBF Θsys for an entire system onsisting of n

nodes [30℄:

Θsys =
1

1
Θ1

+ 1
Θ2

+ . . . + 1
Θn

=
1

n 1
Θ

=
Θnode

n
(1)

The result of this alulation for a 5-year node MTBF and the number of nodes varying from 10

to 200,000 is shown using the left side y-axis in Figure 2. The two �gures in this setion make lear

that large-sale appliations running on future systems will have to ontend with a lot of overhead,

a large number of faults, and a low system MTBF.

S
ys

te
m

 M
T

B
F

N
um

be
r

of
 fa

ul
ts

 (
in

te
rr

up
ts

)

Number of nodes

Faults
System MTBF

0.0 h

200.0 h

400.0 h

600.0 h

800.0 h

1.0 kh

1.2 kh

1.4 kh

1.6 kh

10 20 50 100
200

500
1,000

2,000
5,000

10,000

20,000

50,000

100,000

200,000

0

1 k

2 k

3 k

4 k

5 k

6 k

7 k

8 k

Figure 2. Number of faults (interrupts) for the example in Fig-

ure 1. The left y axis shows the alulated system MTBF.

2.1 Redundant omputing

When two nodes are used to represent the same MPI rank, as our repliation library does, then the

failure of one or the other node does not interrupt the appliation. Only when both nodes fail does

the appliation need to restart. The frequeny of that ourring is muh lower than the ourrene

of a single node fault and an be haraterized using the birthday problem.

One version of the birthday problem asks how many people need to be brought together until

there are enough to have a 50% or better hane that two of them share the same birth month

11

and day. If we equate days in a year with nodes and let the number of people represent the faults

ourring in a parallel system, we an use the birthday problem to alulate how many faults an

our until both nodes in a pair are damaged and ause an appliation interrupt.

The equation to alulate the birthday problem is shown in Equation 2 [25, 35℄. This equation is

the so alled Q-funtion desribed in [20℄ and examined by Knuth in [31℄ in the ontext of hashing.

The answer for a n = 365-day year, and all days equally likely, is 24.6 people.

F (n) = 1 +
n

∑

k=1

n!

(n − k)! · nk
(2)

The above equation is time onsuming to ompute sine it requires an arbitrary preision al-

ulator. Equation 3 is an approximation that an be alulated muh more quikly and provides

good results [25℄.

F̃ (n) =

√

πn

2
+

2

3
(3)

In Figure 3 we alulate, using Equation 2, the expeted number of faults that an our before

an appliation is interrupted. The total number of faults ourring in a system is still the same;

atually it doubles, sine we are using twie as many nodes. But redundant omputing ats as

a �lter, absorbing many of the faults and lets the appliation progress uninterrupted for a longer

period of time.

N
od

e
fa

ilu
re

s
un

til
 a

pp
lic

at
io

n
in

te
rr

up
t

Number of nodes

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

10 20 50 100
200

500
1,000

2,000
5,000

10,000

20,000

50,000

100,000

200,000

500,000

24.16

365

Figure 3. Number of faults before a redundant appliation gets

interrupted.

Due to the absorption of faults, the Mean Time Between Interrupts (MTBI) Θapp whih the

appliation experienes is larger than the MTBF of the system it is running on: Equation 4. F () is
the expeted number of faults the appliation an absorb: Equation 2 or Equation 3 depending on

12

your patiene. Note that we now need 2n nodes.

Θapp =
Θnode

2n
F (2n) (4)

Note that we are not interested in the probability of a node failing. We want to know the time

between interruptions of an appliation in ase of redundant and non-redundant omputing.

In Figure 4 we ompare system MTBF Θsys with the appliation MTBI Θapp when individual

nodes have an MTBF Θnode of 5 years. Even though both urves tend downward, the appliation

MTBI at 200,000 nodes is still about 100 hours, while the system MTBF has dropped to 13 minutes.

M
T

B
F

Number of node pairs

Application MTBI
System MTBF

100.0 mh

1.0 h

10.0 h

100.0 h

1.0 kh

10.0 kh

100.0 kh

10 20 50 100
200

500
1,000

2,000
5,000

10,000

20,000

50,000

100,000

200,000

Figure 4. Comparing systemMTBF and appliation MTBI when

using redundant omputing.

Sine redundant omputing inreases the MTBI, an appliation running on suh a system an

inrease its hekpoint interval; making it more e�ient.

13

3 Chekpoint restart

In the previous setion we have seen that redundant omputing redues the number of interrupts

an appliation experienes. In this setion we desribe a tool that mimis an appliation yling

through its work, hekpoint, restart, and rework phases. The tool randomly generates node faults

and determines whether the appliation has been interrupted. There are a slew of on�guration

parameters that determine how long the appliation needs to do its work, how many nodes have

redundany, the MTBF of a node, and so on.

Our simulation tool mimis an appliation by assuming it is always is in one of four states: work

(making progress towards a solution), kpt (writing state information to stable storage), restart

(reover from an interrupt, and rework (reompute lost work). The state diagram in Figure 5 illus-

trates these phases. Appliation interrupts an our during any of the phases, and the simulation

ontinues until a �xed amount of work has been ompleted.

Figure 5. State diagram of the appliation simulator.

The simulator urrently assumes oordinated hek-pointing and a �xed amount of time to write

hekpoints and restart. While more sophistiated hekpoint methods exist, they are seldom used

in pratie and would not hange the basi results presented here. At best, they redue the time

needed to reate hekpoints and would allow for a longer hekpoint interval. We explore the

impat of hekpoint time in Setion 6.3.

Our simulations assume a perfetly, weak-saling appliation; i.e., all nodes perform the same

amount of work, independent of the number of nodes used. The amount of work to be done is

an input parameter to our tool. Our deision to simulate a weak-saling appliation simpli�es our

experiments and makes the answers easier to understand.

When an interrupt ours during any of the phases, a restart from the last suessful hekpoint

is initiated. The work that was lost sine the last hekpoint has to be redone in the rework phase.

After that, the regular yle of work and hek-pointing ontinues.

The transitions to the hekpoint state our whenever the hekpoint interval timer expires.

That timer is reset in the hekpoint state. Our simulator uses Equation 5 from [16℄ to alulate

the optimal hekpoint interval. In this equation δ is the (�xed) amount of time it takes to write a

14

hekpoint, R is the time required to perform a restart, and Θ is the MTBI seen by the appliation.

τ̃opt =

√
2δΘ

[

1 + 1
3

(

δ

2Θ

)
1

2

+1
9

(

δ

2Θ

)]

− δ for δ < 2Θ

Θ for δ ≥ 2Θ

(5)

For all of our work, we assume that the hekpoint interval τopt is alulated using Equation 5.

The hekpoint interval applies to work and rework phases. If the rework phase does not onsume

the entire interval, then the remaining time until the next hekpoint is used to ontinue regular

work. When all the suessfully ompleted work phases add up to the total work time an appliation

needs to perform, then the appliation will end.

One of the parameters to ontrol the simulator is the node MTBF of the simulated system. The

simulator generates random events that are exponentially distributed around the node MTBF. Eah

event is a fault that we feed into a model of our repliation library. The model determines whih

node has failed and whether the appliation reeives an interrupt or an ontinue doing its work.

If the model determines that an appliation interrupt should our, it fores a transition to the

restart state in the state diagram in Figure 5. These transitions are indiated by the exlamation

point signs in the diagram. We are assuming that for a restart, the same number of nodes will be

available again. This is the same assumption that is made for appliations using hekpoint/restart

running without redundant nodes.

The MTBF parameter for the appliation simulator is the MTBF of a single node. The fault

generator within the simulator uses that MTBF to generate exponentially distributed faults for

the individual nodes. This is shown in Figure 6. The state mahine requests the next time an

appliation interrupt will our from the repliation model. The repliation model then determines

at what time to ause an appliation interrupt. If redundant omputing is used, it will be the

earliest time both nodes in a bundle have failed. When there are no redundant nodes, eah node

fault auses an appliation interrupt.

Figure 6. Blok diagram of the simulator.

The appliation interrupt times are fed into a analysis module whih omputes various values

and ompares them to simulation results. That module also prints various statistis about the run.

15

Any attempt at redundant omputing has some overhead in addition to using twie the resoures.

We have evaluated this overhead in [3℄ and found it to be minimal for atual appliations. The over-

head is appliation-spei� and dwarfed by the potential savings o�ered by redundant omputing.

Therefore, our simulation tool does not onsider that small overhead. Our tool has been released

as open soure and is available from the authors [4℄.

Using this tool we an now ondut experiments with redundant omputing. Figure 7 shows

the result for the same on�guration we used for Figure 1 but adding an additional n nodes for

bakup. We keep the y-sale the same for both plots to illustrate the dramati savings in elapsed

time o�ered by redundant omputing.

E
la

ps
ed

 ti
m

e

Number of node pairs

No redundancy

Work
Checkpoint

Rework
Restart

0.0 h

200.0 h

400.0 h

600.0 h

800.0 h

1.0 kh

1.2 kh

1.4 kh

1.6 kh

10 20 50 100
200

500
1,000

2,000
5,000

10,000

20,000

50,000

100,000

200,000

Figure 7. Example of overhead for a 168-hour appliation run

with redundant nodes. The line labeled �No redundany� orre-

sponds to the total elapsed time of Figure 1.

16

4 Validation

4.1 Expeted appliation MTBI

In Setion 3 we explained that the appliation simulator takes the node MTBF as one of its input

parameters. It simulates node failures over the time an appliation needs to omplete its task. We

an output the time of eah appliation interruption and alulate the mean. When we do that for

simulations without redundant nodes we get the appliation MTBF as alulated by Equation 1.

This is a good indiation that the repliation model within the simulator is doing its job orretly.

The simulation is within 1% of the alulated value, as long as the work time is long enough to

allow for enough interrupts to our to make the average alulation meaningful.

Similarly, we an use Equation 4, whih uses the system MTBF and the birthday problem to

predit the appliation MTBI, to evaluate our simulation for the ase where eah node is part of a

redundant bundle.

4.2 Interrupt-to-fault ratio

Based on our disussion of the birthday problem in Setion 2.1, the simulator must for a given

number of nodes show the same ratio of appliation interrupts to node faults as is the expeted

value of the birthday problem. We ran 500,000 hour workload simulation to let enough interrupts

our to get meaningful results. We ran eah experiment seven times and show the minimum,

average, and maximum as error bars in Figure 8.

S
im

ul
at

ed
 F

au
lts

 to
 In

te
rr

up
t R

at
io

R
el

at
iv

e
to

 B
irt

hd
ay

 P
ro

bl
em

n

0 %

20 %

40 %

60 %

80 %

100 %

120 %

10 20 50 100
200

500
1,000

2,000
5,000

10,000

20,000

50,000

100,000

200,000

500,000

PSfrag replaements

F̃ (n) approximation (Equation 3)

Expected value F (n) (Equation 2)

Simulation

Figure 8. Simulated interrupt-to-fault ratio ompared to ex-

peted value for the birthday problem.

We normalize against he expeted value of the birthday problem from Equation 2. The plot

shows that the simulator slightly underestimates the interrupt/fault ratio for smaller number of

nodes, but mathes the expeted value very losely starting with a few thousand nodes. The reason

for that is that with fewer nodes, even with a 500,000 hour workload, the number of interrupts is

small. That also explains the larger error bars when simulating fewer nodes.

17

For referene, Figure 8 also shows the value of Equation 3 normalized against the expeted value

from Equation 2.

We ran an experiment for a 5,000-hour workload on 200,000 nodes (half of them redundant). The

appliation experiened 43 interrupts during that run. At eah interrupt we ounted the number

of faults that had ourred sine the last interrupt. Figure 9 shows the result. While the number

of faults leading up to an interrupt varies onsiderably, the �gure learly shows that they luster

around the expeted value of 561.166 alulated using Equation 3 for 200,000 nodes. The average

number of faults per interrupt for this experiment was 567.093, just 1% above the expeted value.
F

au
lts

 p
er

 In
te

rr
up

t

Interrupt Time

Faults
Expected average

200

400

600

800

1000

1,200

PSfrag replaements

Figure 9. Observed number of faults leading to eah interrupt.

The expeted average value for 200,000 nodes is 562.166.

4.3 Comparison to model

John Daly presents Equation 6 in [16℄, from whih he derives an optimal hekpoint interval τ̃opt

(Equation 5). In Equation 6, Tw(τ) is the total wall lok time the appliation needs to omplete

its assigned task. The hekpoint interval τ is alulated using Equation 5. Θ is the MTBI for the

appliation and Ts is the solve time, the amount of time the appliation needs to omplete its work.

R is the time needed to restart an appliation, and δ is the time it takes to write a hekpoint.

Tw(τ) = Θe
R

Θ (e
τ+δ

Θ − 1)Ts

τ
for δ << Ts (6)

Using the model from Equation 6 we should be able to validate our simulator. In Figures 3, 4,

and 5 of [16℄ Daly plots the total elapsed time of an appliation and varies the hekpoint interval.

He does this for MTBF of 24, 6, and 0.25 hours. The work time is 500 hours, restart time is 10

minutes, and the hekpoint time δ is 5 minutes. Using these parameters we an rereate Daly's

experiment.

Initial tests show that for an MTBF of 6 hours our simulation predited an average elapsed time

that was 11.65% higher, and 5.88% higher for the 24-hour MTBF. Unfortunately, for the 0.25 hour

18

MTBF it was 51.7% higher. When the MTBF is that small it is near the hekpoint time δ. At

that point even very small hanges in δ or the appliation MTBI ause very large hanges in the

total elapsed time Tw(τ).

When using redundant omputing, but otherwise the same system on�guration as above, and

realulating τ aordingly, simulation results agree with the model very niely. We get -.28%,

1.27%, and 3.14%. Of ourse, the appliation MTBI is muh higher now due to the redundany

and, sine we kept δ at 5 minutes, muh larger than δ.

For an additional test we ompare the model and the simulator for a 700-hour appliation and a

�ve-year node MTBF for inreasing number of nodes. The two nearly overlapping lines are shown

in [Figure omitted for spae in draft℄. We run our simulator 200 times for eah simulation point.

For this paper we hose simulation over an analytial model beause it is easier to adapt to new

onditions, suh as hoosing a di�erent random distribution, and varying the level of redundany;

e.g., triple redundany for soft-error orretion or only a portion of the nodes repliated. A limitation

of our simulator is that we assume the appliation will hekpoint at the preise moment the optimal

hekpoint interval (τ̃opt) indiates. For real appliation this is sometimes di�ult to ahieve beause

they have to be in a onsistent state and network ativity has to be quiesent. Self-synhronizing

appliations usually use the granularity of a time step omputation to selet the time when to

hekpoint.

Although our paper fouses on sienti� exasale omputing systems, the results presented here

may be appliable to large data enters as well. Non-sienti� appliations may not have the long

exeution times that some sienti� appliations have, but a lower number of system interruptions

should result in a higher system throughput and inrease produtivity of suh enters.

4.4 Performane

Simulation performane depends on the number of nodes we simulate and how many appliation

interrupts we have to proess. For most simulation results presented in this paper, simulator exeu-

tion time was less than one seond on a desktop PC. Only when the node ount exeeds a million

does the simulator need more than a few seonds; espeially in non-redundant experiments when

many more appliation interrupts need to be proessed.

19

5 Results

In this setion we ondut parameter studies using the simulator desribed in the �rst part of this

paper.

For the experiments in this setion, unless we state otherwise, we use the following parameters

for our simulation runs: Chekpoint time δ = 5 minutes, restart time R = 10 minutes, a work time

Tw of 168 hours (one week), and a node MTBF Θ = 43,800 (�ve years).

Manufaturers often laim a higher MTBF for their produts. However, [43℄ found an MTBF

of about four years more realisti for a large high-performane-omputing site. The MTBF we

are onsidering is not purely due to hardware faults. Any interruptions that auses an appliation

restart adds to the overhead an appliation experienes. Even sheduled maintenane is not handled

properly by many appliations and auses work to be lost. For omparisons we also inlude some

results assuming an MTBF of one year. While probably not ommon, it has been used in the

literature [18℄, and provides a lower bound on what to expet.

Note that in the data we present in this setion, we are not onsidering the slowdown our

repliation library introdues, sine it is appliation spei� and dwarfed by the time savings when

running on large numbers of nodes.

5.1 Appliation e�ieny

Comparing Figure 1 and Figure 7 shows that redundant omputing an make a signi�ant di�erene

at large sale. Beause of the time it takes to write hekpoints, restart, and rework, an appliation's

e�ieny ts
tw

su�ers.

Figure 10 shows three workloads with and without redundant omputing. The amount of work

an appliation needs to omplete: 168 hours (a week), 700 hours (a month), and 5,000 hours (seven

months) in Figure 10 has no impat on appliation e�ieny. Whether redundant omputing is used

or not, has a huge impat. Even at 500,000 nodes, e�ieny only drops to 90% when redundant

nodes are used (one million in this ase), while appliations running without redundany drop below

2% (below 11% at 200,000 nodes).

Appliation e�ieny impats system throughput. If an appliation oupies n nodes ten to

forty times longer in order to omplete its job, that appliation is taking resoures away from other

appliations. An ine�ient appliation takes longer to omplete and lowers system throughput.

Using redundant omputing we an bring e�ieny up to 90% and even though it requires 2n

nodes, an omplete tens of jobs in the time it takes to �nish a single non-redundant job.

5.2 Number of appliation interrupts

The reason redundant omputing o�ers better e�ieny is beause the number of appliation inter-

rupts is signi�antly redued. Table 1 illustrates this for a 5,000-hour appliation.

When redundant omputing is not used, eah fault auses an appliation interrupt. This an be

seen in olumns two and three of Table 1. Beause redundant omputing inreases resiliene, the

20

A
pp

lic
at

io
n

ef
fic

ie
nc

y

Number of nodes (pairs)

168 hours work
700 hours work

5000 hours work
0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

10 20 50 100
200

500
1,000

2,000
5,000

10,000

20,000

50,000

100,000

200,000

500,000

PSfrag replaements

Figure 10. Appliation e�ieny ts

tw

for three di�erent work

sizes. Solid lines are non-redundant, dashed lines use redundant

nodes.

number of interrupts an appliation experienes is drastially redued: olumn 5. Sine redundant

omputing uses twie as many nodes, the number of faults also doubles: olumn 4. Note, however,

that this is not true for larger node ounts: A larger non-redundant appliation will take muh

longer to omplete and experienes more faults and interrupts due to remaining in the system for a

longer time period.

The last few rows of Table 1 exemplify why redundant omputing is so e�ient at high node

ounts. While a non-redundant appliation has to restart four million times, using twie as many

nodes requires just over 100 restarts. A sensible hekpoint/restart strategy is still neessary to

reover from these interrupts, but it does not dominate anymore the time the appliation uses the

system.

5.3 Level of redundany

Sometimes it may be desirable to use less than twie the number of nodes for redundant omputing.

The repliation library supports this and we an evaluate whether it makes sense to use only a few,

half, or almost twie the nodes required by the appliation.

Figure 11 shows the impat of partial redundany on the number of interrupts an appliation

sees. The longer an appliation runs, the more impat even a small inrease in redundany has. For

example, going from using 50% more nodes for redundany to 60% redues the number of interrupts

a 720-hour job sees from 6,709 to 4,427; a 34% improvement. Sine we ran these experiments for

200,000 nodes, that 34% improvement omes at a ost of an additional 20,000 nodes.

The same 20,000-node investment for a 24-hour job is less bene�ial in the number of interrupts

saved. At a 50% redundany level, a 24-hour job takes 231 interrupts and at the 60% redundany

level it takes 167 interrupts; a savings of 64 interruptions.

21

Table 1. Number of faults and interrupts for a 5,000-hour appli-

ation.

nodes not redundant redundant

(pairs) faults interrupts faults interrupts

100 11 11 24 1

200 27 27 45 1

500 60 60 117 3

1,000 126 126 231 3

2,000 264 264 447 5

5,000 739 739 1,153 9

10,000 1,653 1,653 2,384 13

20,000 3,902 3,902 4,784 19

50,000 14,228 14,228 11,973 30

100,000 46,565 46,565 24,304 43

200,000 209,909 209,909 48,930 62

500,000 4,031,114 4,031,114 125,811 101

N
um

be
r

of
 in

te
rr

up
ts

Level of redundancy

720-hour job
168-hour job

24-hour job

0

2,000

4,000

6,000

8,000

10,000

0% 10%
20%

30%
40%

50%
60%

70%
80%

90%
100%

PSfrag replaements

Figure 11. Level of redundany versus number of interrupts.

22

In Figure 12 we show the same experiment but plot the elapsed time on the left y-axis. The larger

savings in number of interrupts for a 10% inrease in the level of redundany translates diretly

into a larger savings of elapsed time. The right y-axis and the dashed lines show the impat on

appliation e�ieny, ts
tw
, for the three jobs. When we inrease the level of redundany, we inrease

appliation e�ieny. With full redundany (100%) we ahieve almost 100% e�ieny beause very

little time is wasted on writing hekpoints and, more importantly, reovering from failures.

E
la

ps
ed

 ti
m

e

A
pp

lic
at

io
n

ef
fic

ie
nc

y

Level of redundancy

720-hour job
168-hour job

24-hour job

0 h

2,000 h

4,000 h

6,000 h

8,000 h

10,000 h

0% 10%
20%

30%
40%

50%
60%

70%
80%

90%
100%

0%

20%

40%

60%

80%

100%

PSfrag replaements

Figure 12. Level of redundany versus elapsed time. The dashed

lines show appliation e�ieny ts

tw

.

5.4 Rebooting nodes

Future systems will try to address fault resiliene during the design stage. One approah that might

help, is hot-swappable nodes. When a node goes down it an be replaed, rebooted, and reintegrated

into the running appliation. Another approah that is available today, exept for the re-integration

part, is to simply reboot failed nodes. Very often the faults that brought them down are so alled

soft-faults, and a reboot brings the node bak into operation.

This is espeially useful for redundant omputing. If one of the two node fails and an be

rebooted and reintegrated into the appliation before the other node fails, that node bundle will be

fully restored and an absorb another fault.

Anedotal evidene suggests that rebooting a failed node in a prodution system sueeds about

50% of the time. We further assume that a node requires �ve minutes to reboot. The simulator

will interrupt the appliation only, if the seond node in the bundle fails during that �ve minute

window. However, if the seond node omes bak online (with our hosen 50% probability), both

nodes in that bundle will have to fail before it auses another appliation interrupt.

We assumed that this should further redue the number of interrupts an appliation experienes.

However, our simulations show no signi�ant di�erene, and appliation exeution time remains

about the same, with or without node reboots.

23

6 Disussion and related work

6.1 Implementing software redundany

Using our repliation library, we evaluated empirially the ost of implementing redundant om-

puting [3, 5℄, while in this paper we analyze the impat of redundant omputing at exasale on the

throughput of a system and the appliation e�ieny.

The repliation library implements redundant omputing transparently to the appliation at the

pro�ling layer of the MPI library. At start time the user hooses how many ranks of the appliation

should be repliated. The repliation library then uses these additional MPI ranks and assigns

them as redundant partners to the initial set of ranks in a one-to-one fashion, or aording to some

permutation hosen by the user. The later feature is used to evaluate the impat of distributing

ranks and their redundant partners aross the nodes of a system. To inrease fault independene,

the two ranks should be physially as far apart from eah other as possible; hopefully using di�erent

power supplies, olling systems, and network omponents. This inreases ommuniation lateny

between a rank and its redundant partner whih ould impat the e�ieny of the repliation

protool needed between the ranks to maintain repliation state. It turns out that on a system with

more than 10,000 nodes plaing of replias has very little impat on appliation performane.

When we �rst implemented the repliation library we assumed that it would need to reside

at a very low layer in the ommuniation stak and be thoroughly integrated into the Reliability,

Availability, and Seurity (RAS) system. In the end it was possible to implement the library in user

spae between an appliation and the MPI library. Its requirements of the RAS system are rather

minimal. It needs to be informed in one fashion or another about ranks that have experiened

faults and have beome unresponsive. Furthermore, the system must be able to disard messages in

�ight to disabled nodes; i.e., even messages to dead nodes must be onsumed and must not deadlok

ommuniation hannels. Sine the repliation library relies on the underlying MPI implementation,

that library must be able to survive the loss of individual ranks without stopping the appliation.

The repliation library supports several repliation protools to maintain state of the ompu-

tation and the availability of individual ranks. The most e�ient of these protools has a very

low impat on appliation performane. The overhead of repliating messages and synhronizing a

rank and its redundant partner is easily measurable with miro-benhmarks. However, the impat

of that overhead is greatly diminished for real appliations whih perform enough ompute work

between ommuniations to mask most of this overhead. We measured an overhead of well below

10% for several sienti� appliations and appliation benhmarks, and saw a worst ase of 20% for

one appliation in one spei� ase. These overheads are easily dwarfed by the performane gains

of redundant omputing.

A major ontributor to overhead is the handling of any-soure MPI reeives. The library must

ensure that these messages arrive at a redundant rank in the same order as they did on the original

rank. This requires tight synhronization between these two ranks and inreases lateny greatly.

The library detets any-soure reeives and uses the more expensive synhronization protool only

in those ases where appliation behavior mandates it.

The urrent implementation of the repliation library is a prototype and has several limitations,

the main one being that it does not handle I/O. It also repliates a large portion of the MPI library

24

itself in order to stay informed about the state of ommuniation. Integrating repliation into the

MPI library would be bene�ial.

6.2 Lowering the ost of hekpoint/restart

Redundant omputing is a ostly approah to appliation resiliene at the exasale. We have seen

in Setion 5 that it an pay o� at large number of nodes and that it is not too di�ult to implement

for MPI in [3℄. However, it is somewhat ontroversial in HPC and researhers are looking at other

methods to make appliations more resilient to faults.

In Setion 1.2 we disussed other hekpoint/restart shemes, and improvements to �le and

storage systems that are alternatives to redundant omputing. [17℄ is a good survey of hekpoint

restart methods and [34℄ looks at seven spei� implementations for lusters. Although some of

these methods promise better performane than oordinated hekpointing, very few of them have

been implemented and used by sienti� appliations at large sale. Many sienti� appliations

are self-synhronizing and oordinated hekpointing is a natural �t for these appliations. For

other types of appliations, unoordinated (asynhronous) hekpointing has been proposed; e.g.,

[47℄. The issue for large-sale systems is that a onsistent-state reovery line has to be established

after a fault whih may be prone to rollbak propagation. Rollbak may be worse at larger sales,

although we have not investigated that yet. Communiation-indued hekpointing [1℄ allows for

some hekpoints to be loal, but does not sale well.

Message logging shemes in onjuntion with unoordinated hekpointing may be good andi-

dates for larger systems [17, 26�28, 32, 33℄. Most of them are di�ult to implement and have not

been evaluated using real appliations at large sale.

Several hybrid approahes, improvements, and alternate methods have also been proposed. Us-

ing inremental hekpoints to redue the hekpoint overhead is desribed in [40, 41℄. Our ex-

periments show that at large sale in systems with many faults the main ontributor to overhead

is restart time. It is therefore very important to improve restart times along with hekpointing

performane.

New tehnologies expeted to be available in future exasale systems inlude node-loal NVRAM

and SSD whih promise faster aess times and higher bandwidth. One way of using these devies

would be to hekpoint loally to NVRAM and then trikle the data in the bakground to stable

storage o�-node (either SSD or spinning media). Until data reahes o�-node storage, it may not

be available to a restarting proess. One interesting idea is to use intermediate nodes in a system

to oordinate hekpointing to external storage and thereby better utilize a system's resoures and

improve hekpoint and restore times [37℄.

6.3 The need for a new solution

Appliations will need to adapt to exasale systems [2℄. Conerns inlude billion-fold parallelism,

loality, and a simple, understandable exeution model. While dealing with these di�ult hallenges,

the idea of adapting appliations to an environment with a higher fault rate is rarely mentioned.

Therefore, systems researhers need to �nd ways to isolate appliations from the faults that our

in the underlying system.

25

There is a ost assoiated with that. Hardware manufaturers ould make their omponents

more reliable, perhaps using redundany at the hardware level; mahine owners ould buy addi-

tional resoure to allow for software redundany, as proposed in this paper; or, advanes in new

tehnologies, suh as NVRAM, advaned hekpointing methods, or faster �le systems might o�er

a solution. Transation-based systems require a lower error rate than the underlying hardware pro-

vides. For these systems, users are paying a performane penalty that would not be aeptable in

a HPC system [10℄.

Whih method, or ombination of methods, will prevail remains to be seen. We an use the

simulator desribed in this paper to set limits on when a method beomes more ost-e�etive than

redundant omputing. Until now we have used a �xed hekpoint time of δ = 5 minutes and a �xed

restart time of R = 10 minutes for all of our experiments. While these values may be unrealistially

low for today's tehnology extrapolated to the exasale, newer tehnologies and approahes to fault

resiliene aim to lower the hekpoint and restart times.

In Figure 13 we look at hekpoint times δ of �ve minutes or less. We assume a restart time of

R = 2δ. We simulate four large node ounts, with and without redundant omputing. For eah run

we alulate and use the optimal hekpoint interval τ . To obtain a y-axis value, we ompute the

ratio of the average of seven redundant runs and the average of seven non-redundant runs. As long

as this ratio remains below 0.5, redundant omputing is more ost e�etive.

R
at

io
 r

ed
un

da
nt

/n
on

-r
ed

un
da

nt

Checkpoint time δ

50,000 nodes
100,000 nodes
200,000 nodes
500,000 nodes

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

12 sec

24 sec

36 sec

48 sec

1 m
in

2 m
in

3 m
in

4 m
in

5 m
in

PSfrag replaements

Figure 13. Redundant/none-redundant elapsed time ratio for

various hekpoint times δ.

Figure 13 lets us determine how low δ needs to be for a given number of nodes, to rule out

redundant omputing as a feasible solution. For example, for 500,000 nodes, δ needs to be less than

24 seonds in order to beat redundant omputing. Spei�ally, a typial 500,000-node job that does

168 hours of work (Ts) runs for about 370 hours without redundant omputing and a hekpoint

time of 24 seonds. Using the same parameters, but using twie as many nodes, the job ompletes

in 170 hours. If we lower the hekpoint time some more to 12 seonds, the non-redundant job

�nishes in 290 hours, while the redundant job still takes about 170 hours. At that point it is no

longer ost-e�etive to use twie the number of nodes for redundant omputing.

Therefore, tehnologies and algorithms that lower the hekpoint time are worthwhile to inves-

26

tigate. However, the ost of these methods need to be taken into onsideration and ompared to

redundant omputing. For example, on a 200,000 node system with 16 or 64 GB of memory per

node, a 1 GB hekpoint size per node does not seem unreasonable. In order to write 200 TB of

data in less than one minute (the break-even point for 200,000 nodes in Figure 13), the system

aggregate bandwidth to stable storage needs to be 3,333 GB/s. That is unrealisti, when urrent

projetions are loser to 50 GB/s [37℄.

Other ideas, suh as hekpointing to the NVRAM of neighboring nodes, are more promising

beause of the higher bandwidth that an be ahieved. Note that this data still needs to be trikled

o� to stable storage, or some other method, suh as using far-away neighbors, needs to be employed

to keep the hekpoint data available in ase of a abinet-wide failure. In the 500,000-node non-

redundant senario above, a hekpoint is written every 1.32 minutes, whih is not muh time to

trikle data to stable storage. Saving only a fration of the hekpoints from NVRAM to stable

storage helps, but inreases the risk of more lost work and makes this less e�ient. Further studies

are needed to determine the break-even points for the various approahes at the exasale.

6.4 Other work

Extreme-sale resilieny is an ative researh topi. We disussed in detail why a higher failure

rate is likely in exasale systems in Setion 1.1, and several papers show that future systems will

have a low system MTBF [18, 29, 37, 38℄, whih requires solutions that go beyond traditional

hekpoint/restart.

The requirements for RAS systems have been studied before [6℄ and newer work more diretly

aimed at large-sale systems is under way [24℄. Integrating the RAS system with the repliation

library, or an MPI implementation that inludes redundant omputing will be essential. Systems

that are spei�ally built to redue the number of faults, and use redundany to do so, have been

available [7, 36℄ and designing hardware with fault resilieny in mind has a long history [42℄. Software

solutions for redundany have also been proposed [11, 15℄. The issue with proposed large-sale

systems is that many of the omponents are o�-the-shelf and not spei�ally designed to operate at

that sale, and that these systems are spei�ally purhased for their performane and apaity.

Several groups are investigating appliation resiliene in the ontext of extreme-sale systems:

e.g., [12, 18, 34℄. Looking toward extreme sale in partiular are: [13, 14, 21, 38℄. Several of these

papers point at [43℄ whih shows that the observed system error rate is often muh higher than the

theoretial predition for the hardware alone.

Large-sale and frequent faults are typial in distributed systems. Solutions in that domain are

interesting for exasale systems. For example, [22, 23℄. However, performane and throughput are

paramount in exasale systems, while they are less ritial in distributed systems.

27

7 Summary

Redundant omputing has been used in mission-ritial systems but has been viewed as too ex-

pensive for large-sale HPC systems. This paper disusses a simulator for redundant omputing in

large-sale systems. We show that redundant omputing an be more ost e�etive at large sale.

Alternative methods that improve hekpoint and restart time need to improve by two orders of

magnitude before they approah the throughput improvements possible with redundant omputing.

28

Referenes

[1℄ Lorenzo Alvisi, E. N. Elnozahy, Sriram Rao, Syed Amir Husain, and Asanka De Mel. An

analysis of ommuniation indued hekpointing. In FTCS, pages 242�249, 1999.

[2℄ Saman Amarasinghe and et al. Exasale software study: Software hallenges in extreme

sale systems. http://users.ee.gateh.edu/mrihard/ExasaleComputingStudyReports/

ECSS%20report%20101909.pdf, September 2009.

[3℄ Anonymous. Hidden for double blind review. Tehnial report ????, Some organization,

Otober 2009.

[4℄ Anonymous. Hidden for double blind review. http://www..., Marh 2010.

[5℄ Anonymous. Hidden for double blind review. In Hidden, Leture Notes in Computer Siene.

Springer Verlag, 2010.

[6℄ Mihael Barborak, Anton Dahbura, and Miroslaw Malek. The onsensus problem in fault-

tolerant omputing. ACM Comput. Surv., 25(2):171�220, 1993.

[7℄ Joel F. Bartlett. A nonstop kernel. In Symposium on Operating Systems Priniples (SOSP),

pages 22�29, 1981.

[8℄ John Bent, Garth Gibson, Gary Grider, Ben MClelland, Paul Nowozynski, James Nunez,

Milo Polte, and Meghan Wingate. Plfs: a hekpoint �lesystem for parallel appliations. In

ACM/IEEE Superomputing Conferene (SC), 2009.

[9℄ Keren Bergman and et al. Exasale omputing study: Tehnology hallenges

in ahieving exasale systems. http://www.siene.energy.gov/asr/Researh/CS/

DARPAexasale-hardware(2008).pdf, 2008.

[10℄ Riardo Bianhini and et al. System resilieny at extreme sale. http://institute.lanl.gov/

resiliene/dos/IBM%20Mootaz%20White%20Paper%20System%20Resiliene.pdf, 2009.

[11℄ Thomas C. Bressoud and Fred B. Shneider. Hypervisor-based fault tolerane. ACM Trans.

Comput. Syst., 14(1):80�107, 1996.

[12℄ G. Bronevetsky, R. Fernandes, D. Marques, K. Pingali, and P. Stodghill. Reent advanes

in hekpoint/reovery systems. International Parallel and Distributed Proessing Symposium

(IPDPS), 2006.

[13℄ Frank Cappello. Fault tolerane in petasale/ exasale systems: Current knowledge, hallenges

and researh opportunities. Int. J. High Perform. Comput. Appl., 23(3):212�226, 2009.

[14℄ Frank Cappello, Al Geist, Bill Gropp, Sanjay Kale, Bill Kramer, and Mar Snir. Toward exas-

ale resiliene. Tehnial report TR-JLPC-09-01, Illinois-INRIA Joint Laboratory on PetaSale

Computing, 2009.

[15℄ J. Chapin, M. Rosenblum, S. Devine, T. Lahiri, D. Teodosiu, and A. Gupta. Hive: fault on-

tainment for shared-memory multiproessors. In Symposium on Operating Systems Priniples

(SOSP), pages 12�25, 1995.

[16℄ J. T. Daly. A higher order estimate of the optimum hekpoint interval for restart dumps.

Future Gener. Comput. Syst., 22(3):303�312, 2006.

29

[17℄ E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. Johnson. A survey of

rollbak-reovery protools in message-passing systems. ACM Comput. Surv., 34(3):375�408,

2002.

[18℄ E.N. Elnozahy and J.S. Plank. Chekpointing for peta-sale systems: a look into the future

of pratial rollbak-reovery. Dependable and Seure Computing, IEEE Transations on, 1(2):

97�108, 2004.

[19℄ Christian Engelmann and Frank Lauer. Failitating odesign for extreme-sale systems through

lightweight simulation. In Workshop on Appliation/Arhiteture Co-design for Extreme-sale

Computing (AACEC), 2010.

[20℄ Philippe Flajolet, Peter J. Grabner, Peter Kirshenhofer, and Helmut Prodinger. On Ramanu-

jan's Q-funtion. J. Comput. Appl. Math., 58(1):103�116, 1995.

[21℄ Rahul Garg, Vijay K. Garg, and Yogish Sabharwal. Salable algorithms for global snapshots

in distributed systems. In International Conferene on Superomputing (ICS), pages 269�277,

2006.

[22℄ Stéphane Genaud, Emmanuel Jeannot, and Choopan Rattanapoka. Fault management in

p2p-mpi. International Journal of Parallel Programming, 37(5):433�461, 2009.

[23℄ Stéphane Genaud and Choopan Rattanapoka. P2p-mpi: A peer-to-peer framework for robust

exeution of message passing parallel programs on grids. Journal of Grid Computing, 5:27�42,

2007.

[24℄ Rinku Gupta, Pete Bekman, Byung-Hoon Park, Ewing Lusk, Paul Hargrove, Al Geist, Dha-

baleswar Panda, Andrew Lumsdaine, and Jak Dongarra. CIFTS: A oordinated infrastruture

for fault-tolerant systems. In International Conferene on Parallel Proessing (ICPP), pages

237�245, 2009.

[25℄ Lars Holst. The general birthday problem. In International seminar on Random graphs and

probabilisti methods in ombinatoris and omputer siene, pages 201�208, 1995.

[26℄ Q. Jiang and D. Manivannan. An optimisti hekpointing and seletive message logging ap-

proah for onsistent global hekpoint olletion in distributed systems. International Parallel

and Distributed Proessing Symposium (IPDPS), 2007.

[27℄ Qiangfeng Jiang, Yi Luo, and D. Manivannan. An optimisti hekpointing and message

logging approah for onsistent global hekpoint olletion in distributed systems. J. Parallel

Distrib. Comput., 68(12):1575�1589, 2008.

[28℄ David B. Johnson and Willy Zwaenepoel. Reovery in distributed systems using asynhronous

message logging and hekpointing. In ACM symposium on priniples of distributed omputing,

pages 171�181, 1988.

[29℄ William M. Jones, John T. Daly, and Nathan A. DeBardeleben. Appliation resiliene: Making

progress in spite of failure. In International Symposium on Cluster Computing and the Grid

(CCGRID), pages 789�794, 2008.

[30℄ Dimitri B. Keeioglu. Reliability Engineering Handbook, volume 2. DESteh Publiations,

In, 2002.

30

[31℄ Donald E. Knuth. The art of omputer programming, volume 3: (2nd ed.) sorting and searh-

ing. Addison Wesley, 1998.

[32℄ Pierre Lemarinier, Aurelien Bouteiller, Geraud Krawezik, and Frank Cappello. Coordinated

hekpoint versus message log for fault tolerant MPI. Int. J. High Perform. Comput. Netw., 2

(2-4):146�155, 2004.

[33℄ Kai Li, Je�rey F. Naughton, and James S. Plank. Chekpointing multiomputer appliations.

Reliable Distributed Systems, pages 2�11, 1991.

[34℄ Andrew Maloney and Andrzej Gosinski. A survey and review of the urrent state of rollbak-

reovery for luster systems. Conurreny and Computation: Pratie and Experiene, 2009.

[35℄ Frank H. Mathis. A generalized birthday problem. SIAM Review, 33(2):265�270, 1991.

[36℄ Dennis MEvoy. The arhiteture of tandem's nonstop system. In Proeedings of the ACM

onferene, 1981.

[37℄ Ron A. Old�eld, Sarala Arunagiri, Patriia J. Teller, Seetharami Seelam, Maria Ruiz Varela,

Rolf Riesen, and Philip C. Roth. Modeling the impat of hekpoints on next-generation

systems. In 24th IEEE Conferene on Mass Storage Systems and Tehnologies, pages 30�46,

2007.

[38℄ A. J. Oliner, R. K. Sahoo, J. E. Moreira, and M. Gupta. Performane impliations of pe-

riodi hekpointing on large-sale luster systems. In International Parallel and Distributed

Proessing Symposium (IPDPS) - Workshop 18, 2005.

[39℄ Xiangyong Ouyang, Sonya Mararelli, and Dhabaleswar K. Panda. Enhaning hekpoint per-

formane with staging IO and SSD. In International Workshop on Storage Network Arhiteture

and Parallel I/Os (SNAPI), pages 13�20, 2010.

[40℄ Alessandro Pellegrini, Roberto Vitali, and Franeso Quaglia. Di-DyMeLoR: Logging only

dirty hunks for e�ient management of dynami memory based optimisti simulation objets.

InWorkshop on Priniples of Advaned and Distributed Simulation (PADS), pages 45�53, 2009.

[41℄ Yasushi Saito and Mar Shapiro. Optimisti repliation. ACM Comput. Surv., 37(1):42�81,

2005.

[42℄ Rihard D. Shlihting and Fred B. Shneider. Fail-stop proessors: an approah to designing

fault-tolerant omputing systems. ACM Trans. Comput. Syst., 1(3):222�238, 1983.

[43℄ Biana Shroeder and Garth A. Gibson. A large-sale study of failures in high-performane

omputing systems. In International Conferene on Dependable Systems and Networks (DSN),

2006.

[44℄ Biana Shroeder and Garth A Gibson. Understanding failures in petasale omputers. Journal

of Physis: Conferene Series, 78(1), 2007.

[45℄ Biana Shroeder, Eduardo Pinheiro, and Wolf-Dietrih Weber. DRAM errors in the wild:

a large-sale �eld study. In International joint onferene on Measurement and modeling of

omputer systems (SIGMETRICS), pages 193�204, 2009.

[46℄ Charlie Slayman. Impat and mitigation of DRAM and SRAM soft errors. http://www.ewh.

ieee.org/r6/sv/rl/artiles/Soft%20Error%20mitigation.pdf, 2010.

31

[47℄ Yi-Min Wang, Pi-Yu Chung, In-Jen Lin, and W. Kent Fuhs. Chekpoint spae relamation

for unoordinated hekpointing in message-passing systems. IEEE Trans. Parallel Distrib.

Syst., 6(5):546�554, 1995.

32

DISTRIBUTION:

1 MS 0899 Tehnial Library, 9536 (eletroni opy)

1 MS 0359 D. Chavez, LDRD O�e, 1911

33

34

v1.36

PSfrag replaements

