SANDIA REPORT

SAND2010-8709
Unlimited Release
Printed December 2010

Redundant Computing for Exascale
Systems

Rolf Riesen, Kurt Ferreira, Jon Stearley, Ron Oldfield, James H. Laros Ill, Kevin
Pedretti, Ron Brightwell, Sandia National Laboratories

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering: http:/www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov

Online ordering: http:/www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

SAND2010-8709
Unlimited Release
Printed December 2010

Redundant Computing for Exascale Systems

Rolf Riesen
Kurt Ferreira
Jon Stearley
Ron Oldfield
James H. Laros III
Kevin Pedretti
Ron Brightwell
Scalable Computing Systems Department
Sandia National Laboratories
P.O. Box 5800
Albuquerque, NM 87185-1319

Abstract

Exascale systems will have hundred thousands of compute nodes and millions of components
which increases the likelihood of faults. Today, applications use checkpoint/restart to recover
from these faults. Even under ideal conditions, applications running on more than 50,000 nodes
will spend more than half of their total running time saving checkpoints, restarting, and redoing
work that was lost.

Redundant computing is a method that allows an application to continue working even when
failures occur. Instead of each failure causing an application interrupt, multiple failures can be
absorbed by the application until redundancy is exhausted. In this paper we present a method
to analyze the benefits of redundant computing, present simulation results of the cost, and
compare it to other proposed methods for fault resilience.

Contents

1 Introduction. 7
1.1 Faults at exascale 7
1.2 Other approaches 8

2 MOtIVALION .« oo 10
2.1 Redundant computing 11

3 Checkpoint restart. 14

4 Validationo 17
4.1 Expected application MTBI 17
4.2 Interrupt-to-fault ratio. 17
4.3 Comparison to model. 18
4.4 Performance 19

B RESUIES . . oo 20
5.1 Application efiCiencyo 20
5.2 Number of application interrupts 20
5.3 Level of redundancy 21
5.4 Rebooting nodes. 23

6 Discussion and related work 24
6.1 Implementing software redundancy 24
6.2 Lowering the cost of checkpoint/restart i 25
6.3 The need for a new solution 25
6.4 Other Worko 27

S 00 28

References 29

Figures
1 Example of overhead for a 168-hour application run. 10
2 Number of faults (interrupts) for the example in Figure 1. The left y axis shows the
calculated system MTBE. 11
3 Number of faults before a redundant application gets interrupted. 12
4 Comparing system MTBF and application MTBI when using redundant computing. . 13
) State diagram of the application simulator. o 14
6 Block diagram of the simulator. 15
7 Example of overhead for a 168-hour application run with redundant nodes. The line
labeled "No redundancy” corresponds to the total elapsed time of Figure 1.......... 16
8 Simulated interrupt-to-fault ratio compared to expected value for the birthday problem. 17
9 Observed number of faults leading to each interrupt. The expected average value for
200,000 nodes is DO2.166. ottt 18
10 Application efficiency f—; for three different work sizes. Solid lines are non-redundant,
dashed lines use redundant nodes. 21
11 Level of redundancy versus number of interrupts. 22
12 Level of redundancy versus elapsed time. The dashed lines show application efficiency
e 23
13 Redundant/none-redundant elapsed time ratio for various checkpoint times §. 26

Tables

1 Number of faults and interrupts for a 5,000-hour application. 22

1 Introduction

Today’s large-scale parallel machines experience outages from failed components, software bugs,
human errors, and power disruptions. A common method to allow scientific applications to com-
pute longer than the interval between interrupts is to checkpoint the application state at regular
intervals and restart the application from the most recent successful checkpoint after a fault occurs.
Checkpoint /restart works but is predicted to be inefficient in future machines because of the large
number of expected faults [18, 37, 38].

Planing for exascale systems is under way and it is expected that the first general scientific
computers operating at speeds faster than 10'® floating-point operations per second (flops) will
appear by the end of this decade. In order to reach this performance, technology has to advance.
For example, silicon feature size and power consumption has to decrease, while transistor count has
to increase. Even with these predicted technological improvements, an exascale system will consist
of a huge number of individual components, none of them more reliable than today’s components,
but potentially worse [9].

We wrote a library which allows MPI ranks to be replicated. Both ranks perform the same
computation and if one of them fails, the other continues to function without forcing the application
to restart |3]. This approach effectively increases the time between interrupts which results in fewer
restarts, and less rework. This leads to better system throughput. Since the application can continue
to work in the presence of some faults, it is now possible to increase the checkpoint interval and
allow the application to make uninterrupted progress for a longer slice of time. The cost is a small
performance degradation due to the replication protocol and, of course, the overhead of using more
nodes than the application and problem would need otherwise.

In this paper we look at redundant computing as one of several approaches to isolate extreme-
scale applications from failures in the underlying system. Redundant computing has been employed
in mission-critical systems for several decades; e.g, [7, 36] and many others. However, until now it
has not been considered a necessity for high performance computing (HPC). We believe redundant
computing has its place and can improve the efficiency of large-scale future machines. In order to
quantify this belief, we wrote an analysis tool which allows us to conduct various studies. This
paper describes this tool and reports the results we have obtained using it.

1.1 Faults at exascale

Million-core machines for exascale computing will have so many parts that faults will be frequent.
Studies have shown that the failure rate of a system is proportional to the number of processor
chips, and that systems and their hardware do not grow more reliable as technology advances [44].

Running interfaces at higher clock rates for improved bandwidth, “wear-out” mechanisms of new
devices; e.g., buildup of stray charges on a gate, smaller feature sizes, and using lower voltages with
decreased margins will further exaggerate the problem [9]. That study looks at various approaches
of how an exascale system could be built. Specifically, extrapolations of a “heavy-node” system,
such as the current Cray XT series, a “light-node” system, such as the IBM Blue Gene system,
and an “aggressive silicon” system, which assumes that a new system can be designed from scratch
combining the best new technologies currently projected. Given these different scenarios, predicting

what will be contained in a node or socket, and how many of each will be present in an exascale
system is somewhat difficult. In this paper we use the term node as the unit of replication and
failure. It should be understood that, depending on the architecture of these future systems, this
could be a socket with multiple cores and integrated memory, or a node in the more traditional
sense of one or more CPUs coupled with memory chips and one or more NICs connected to the
network.

The exascale study [9] also looks at resilience. Taking the number of components in an exascale
system into account and using the appropriate Failure In Time (FIT) number (Errors per 109 hours
of use) for the different types of components, the study computes that an exascale system will fail
once every 35 to 39 minutes. These times include the assumption that about half of the failure
will come from software. In this paper we do not consider the source of a failure. The impact on
an application is the same whether the failure came from hardware, software, human intervention,
or the environment. Any failure that interrupts an application causes lost work and a setback in
completion time.

Note that the estimated Mean Time Between Failures (MTBF) of 35 to 39 minutes in [9] may be
optimistic. It assumes 5 FITs per 1 GB DRAM chip, but [45] found that the observed uncorrectable
error rate is much, much higher than that: 0.22% uncorrectable errors per DIMM, 25,000 — 75,000
FIT per Mbit = 55 - 165 FIT per Mbit. Other sources also indicate a higher FIT for DRAM
chips [46] and an MTBF of about 20 minutes for an exascale system [19].

The system-wide MTBF will become so small that much more than 50% of an application’s
total execution time will be spent writing checkpoints and recovering from failures [3, 37|.

In addition, applications are also susceptible to software errors which may also increase in
these complex systems due to the increase in parallelism, the possibility of deadlock, and new race
conditions.

The more failures occur during the execution time of an application, the longer it will take to
finish its work. This decreases the throughput of the machine: fewer applications finish in a unit of
time.

1.2 Other approaches

In the previous subsection we made the case that extreme-scale applications will have to contend
with a higher failure rate. We now briefly look at two other approaches that are being considered.
The first approach is to improve file systems and the storage system to enable faster checkpoints
and recovery. In [44] the authors explain that for storage bandwidth to grow at the same rate as the
number of processors, more storage devices will be needed since the bandwidth per disk drive grows
much more slowly. That in turn increases the number of components in a system and, therefore, the
number of failures. It also means that a higher portion of the system cost will need to be devoted
to storage than has been traditionally the case.

In this paper we evaluate redundant computing in the context of coordinated checkpoint /restart
because this method is widely deployed, easy to implement, and a natural fit for many scientific
applications that have periodic synchronization points in their algorithms. In addition to specialized
file systems [8] and improved non-volatile storage, more sophisticated checkpoint/restart methods

are often suggested to solve the problem of higher failure rates in exascale systems. Some of them
may not help with self-synchronizing applications that are often run on high-end systems. Successful
approaches will lower the checkpoint and restart time. A similar effect can be obtained by using Non-
Volatile Read-Only Memory (NVRAM) in the form of Solid State Disks (SSD) [39]. In Section 6.3
we evaluate lowered checkpoint and restart times and compare it with redundant computing.

This paper makes the following contributions: A). We created an open-source tool that mimics
an application’s work, checkpoint, restart, and rework cycles and allows the modeling of various
combinations of node count, MTBF, and work to be performed (Section 3). We describe and
validate this tool in Section 4. B.) The results of these simulations let us determine when it might
be beneficial to use redundant computing (Section 5). The paper closes with a related work section
(Section 6), and a summary (Section 7).

2 Motivation

In today’s large parallel systems, whenever a component fails that an application is currently using,
the application is interrupted and aborts. At a later time, after the system has been repaired or
enough resources are available again, the application is restarted. During the restart an earlier
checkpoint is read in from stable storage that lets the application continue from the point in time
when the last successful checkpoint was written. In addition to the time the application needs
to solve a particular problem, T, there is the overhead of occasionally writing checkpoints to
stable storage, restarting when necessary, and redoing work that was lost since the last successful
checkpoint.

In this paper we ignore the time an application spends in the batch queue after it has been
interrupted and before it is restarted. Although this time increases the time to solution, it is
very unpredictable and depends very much on the queuing policies in place and the load of the
system. Furthermore, we only consider coordinated checkpoint/restart. Other methods exist, but
are rarely used in practice, and coordinated checkpointing is easy to implement and natural for self-
synchronizing applications. Assuming that other methods might be able to write checkpoints more
quickly and restart faster, we will look at these benefits in Section 6.3. However, evaluating the full
impact of different checkpoint methods, such us uncoordinated with message logging or RAID-style
writes to other node’s memories, is beyond the scope of this paper. Improving checkpoint and
restart times is clearly beneficial, but the exact method and time requirements do not alter the
fundamental results presented in this paper.

Let Figure 1 motivate our discussion. It has been generated from numbers computed by the
analysis tool described in Section 3 and shows the overhead an application experiences. The ap-
plication needs to finish Ts = 168 hours of work per node (weak scaling). For several node sizes
we compute the overhead which is broken down into restart time, lost work, and time to write
checkpoints. The graph in this example clearly shows that beyond 50,000 nodes the application
spends only a fraction of the elapsed time doing the actual computation it was designed for. The
MTBEF of an individual node in this example is 43,800 hours (5 years).

1.6 kh

Restart
1.4 kh Rework
Checkpoint ===
1.2 kh Work

1.0kh
800.0 h
600.0 h
400.0 h
200.0 h
0.0 h

Elapsed time

Number of nodes

Figure 1. Example of overhead for a 168-hour application run.

10

The reason for the rapidly increasing overhead in Figure 1 is the lost work and number of restarts
the application experiences as the number of faults increases. The right y-axis of Figure 2 shows
the number of interrupts the application in this example experiences. While manageable to about
10,000 nodes, the number of faults increases exponentially for larger systems. Unless otherwise
noted, all experiments in this paper were conducted seven times. The error bars show minimum,
average, and maximum values. The error bars in these first two examples are barely visible due to
their small spread.

Given a node MTBF ©,,4e and the assumption that all nodes have the same MTBF and inde-
pendent failure behavior, it is easy to compute the MTBE Oy for an entire system consisting of n
nodes [30]:

o @node (1)

n

1 1
@*1‘1‘9724-...‘}‘97”

3
@\H‘ =

The result of this calculation for a 5-year node MTBF and the number of nodes varying from 10
to 200,000 is shown using the left side y-axis in Figure 2. The two figures in this section make clear
that large-scale applications running on future systems will have to contend with a lot of overhead,
a large number of faults, and a low system MTBEF.

L6 kh System MTBF
1.4 kh \ Faults

1.2 kh
1.0 kh
800.0 h
600.0 h
400.0 h
200.0 h
0.0 h

System MTBF
Number of faults (interrupts)

Number of nodes

Figure 2. Number of faults (interrupts) for the example in Fig-
ure 1. The left y axis shows the calculated system MTBF.

2.1 Redundant computing

When two nodes are used to represent the same MPI rank, as our replication library does, then the
failure of one or the other node does not interrupt the application. Only when both nodes fail does
the application need to restart. The frequency of that occurring is much lower than the occurrence
of a single node fault and can be characterized using the birthday problem.

One version of the birthday problem asks how many people need to be brought together until
there are enough to have a 50% or better chance that two of them share the same birth month

11

and day. If we equate days in a year with nodes and let the number of people represent the faults
occurring in a parallel system, we can use the birthday problem to calculate how many faults can
occur until both nodes in a pair are damaged and cause an application interrupt.

The equation to calculate the birthday problem is shown in Equation 2 |25, 35|. This equation is
the so called @-function described in [20] and examined by Knuth in [31] in the context of hashing.
The answer for a n = 365-day year, and all days equally likely, is 24.6 people.

e n!
F(n):1+k§1m (2>

The above equation is time consuming to compute since it requires an arbitrary precision cal-
culator. Equation 3 is an approximation that can be calculated much more quickly and provides
good results [25].

F(n) = 5 T3 (3)

In Figure 3 we calculate, using Equation 2, the expected number of faults that can occur before
an application is interrupted. The total number of faults occurring in a system is still the same;
actually it doubles, since we are using twice as many nodes. But redundant computing acts as
a filter, absorbing many of the faults and lets the application progress uninterrupted for a longer
period of time.

365
900 (R —
800
700
600
500
400 i = i
300
200

100 e 2
S i 2416

O I I
o SHYnsh Y 2 S <y SHnsh K
050 059,05 50,255050, 7055 % %

Node failures until application interrupt

Number of nodes

Figure 3. Number of faults before a redundant application gets
interrupted.

Due to the absorption of faults, the Mean Time Between Interrupts (MTBI) ©,p, which the
application experiences is larger than the MTBF of the system it is running on: Equation 4. F() is
the expected number of faults the application can absorb: Equation 2 or Equation 3 depending on

12

your patience. Note that we now need 2n nodes.

@node
Ouapp = om F(2n) (4)

Note that we are not interested in the probability of a node failing. We want to know the time
between interruptions of an application in case of redundant and non-redundant computing.

In Figure 4 we compare system MTBF Ogy with the application MTBI ©,, when individual
nodes have an MTBF ©,,,4. of 5 years. Even though both curves tend downward, the application
MTBI at 200,000 nodes is still about 100 hours, while the system MTBF has dropped to 13 minutes.

100.0 kh —— Application MTBI
System MTBF
10.0 kh 1 | ‘
1.0 kh
LL
2 1000 h
s
10.0 h A
1.0 h
100.0 mh 96\\;\36‘\796‘\’96\\7;’
0 0 % %% °%%0.70,20.%0,.70 %0 0,
000 YYD YD 0 0,00,
000 D% %%,

Number of node pairs

Figure 4. Comparing system MTBF and application MTBI when
using redundant computing.

Since redundant computing increases the MTBI, an application running on such a system can
increase its checkpoint interval; making it more efficient.

13

3 Checkpoint restart

In the previous section we have seen that redundant computing reduces the number of interrupts
an application experiences. In this section we describe a tool that mimics an application cycling
through its work, checkpoint, restart, and rework phases. The tool randomly generates node faults
and determines whether the application has been interrupted. There are a slew of configuration
parameters that determine how long the application needs to do its work, how many nodes have
redundancy, the MTBF of a node, and so on.

Our simulation tool mimics an application by assuming it is always is in one of four states: work
(making progress towards a solution), ckpt (writing state information to stable storage), restart
(recover from an interrupt, and rework (recompute lost work). The state diagram in Figure 5 illus-
trates these phases. Application interrupts can occur during any of the phases, and the simulation
continues until a fixed amount of work has been completed.

Figure 5. State diagram of the application simulator.

The simulator currently assumes coordinated check-pointing and a fixed amount of time to write
checkpoints and restart. While more sophisticated checkpoint methods exist, they are seldom used
in practice and would not change the basic results presented here. At best, they reduce the time
needed to create checkpoints and would allow for a longer checkpoint interval. We explore the
impact of checkpoint time in Section 6.3.

Our simulations assume a perfectly, weak-scaling application; i.e., all nodes perform the same
amount of work, independent of the number of nodes used. The amount of work to be done is
an input parameter to our tool. Our decision to simulate a weak-scaling application simplifies our
experiments and makes the answers easier to understand.

When an interrupt occurs during any of the phases, a restart from the last successful checkpoint
is initiated. The work that was lost since the last checkpoint has to be redone in the rework phase.
After that, the regular cycle of work and check-pointing continues.

The transitions to the checkpoint state occur whenever the checkpoint interval timer expires.
That timer is reset in the checkpoint state. Our simulator uses Equation 5 from [16] to calculate
the optimal checkpoint interval. In this equation 0 is the (fixed) amount of time it takes to write a

14

checkpoint, R is the time required to perform a restart, and © is the MTBI seen by the application.

1
V250 |14 4 (55)°
T =0 4 d ()] -5 fors<2e (5)
G for § > 20

For all of our work, we assume that the checkpoint interval 7,p¢ is calculated using Equation 5.
The checkpoint interval applies to work and rework phases. If the rework phase does not consume
the entire interval, then the remaining time until the next checkpoint is used to continue regular
work. When all the successfully completed work phases add up to the total work time an application
needs to perform, then the application will end.

One of the parameters to control the simulator is the node MTBF of the simulated system. The
simulator generates random events that are exponentially distributed around the node MTBEF. Each
event is a fault that we feed into a model of our replication library. The model determines which
node has failed and whether the application receives an interrupt or can continue doing its work.
If the model determines that an application interrupt should occur, it forces a transition to the
restart state in the state diagram in Figure 5. These transitions are indicated by the exclamation
point signs in the diagram. We are assuming that for a restart, the same number of nodes will be
available again. This is the same assumption that is made for applications using checkpoint /restart
running without redundant nodes.

The MTBF parameter for the application simulator is the MTBF of a single node. The fault
generator within the simulator uses that MTBF to generate exponentially distributed faults for
the individual nodes. This is shown in Figure 6. The state machine requests the next time an
application interrupt will occur from the replication model. The replication model then determines
at what time to cause an application interrupt. If redundant computing is used, it will be the
earliest time both nodes in a bundle have failed. When there are no redundant nodes, each node
fault causes an application interrupt.

Fault generator)
@ Analysis
S
E
| B time
lnode A
faults statistical
request data
Mineeles [Rieitss ir:ft”e(:rupt
ittt | B
ALl application
s ?ﬂ_ inﬁgrrupts
77 —_.
rMPI model State machine

Figure 6. Block diagram of the simulator.

The application interrupt times are fed into a analysis module which computes various values
and compares them to simulation results. That module also prints various statistics about the run.

15

Any attempt at redundant computing has some overhead in addition to using twice the resources.
We have evaluated this overhead in [3| and found it to be minimal for actual applications. The over-
head is application-specific and dwarfed by the potential savings offered by redundant computing.
Therefore, our simulation tool does not consider that small overhead. Our tool has been released

as open source and is available from the authors [4].

Using this tool we can now conduct experiments with redundant computing. Figure 7 shows
the result for the same configuration we used for Figure 1 but adding an additional n nodes for
backup. We keep the y-scale the same for both plots to illustrate the dramatic savings in elapsed

time offered by redundant computing.

1.6 kh ‘
Restart s]
1.4 kh Rework s !
Checkpoint =3 !
1.2 kh Work - | ‘/
2 1
£ 1.0kh No redundancy ------ ¥
@ 8000 h /
%]
Q 1
< 600.0 h
w
400.0 h
200.0 h
0.0 h

Number of node pairs

Figure 7. Example of overhead for a 168-hour application run
with redundant nodes. The line labeled "No redundancy” corre-

sponds to the total elapsed time of Figure 1.

16

4 Validation

4.1 Expected application MTBI

In Section 3 we explained that the application simulator takes the node MTBF as one of its input
parameters. It simulates node failures over the time an application needs to complete its task. We
can output the time of each application interruption and calculate the mean. When we do that for
simulations without redundant nodes we get the application MTBF as calculated by Equation 1.
This is a good indication that the replication model within the simulator is doing its job correctly.
The simulation is within 1% of the calculated value, as long as the work time is long enough to
allow for enough interrupts to occur to make the average calculation meaningful.

Similarly, we can use Equation 4, which uses the system MTBF and the birthday problem to
predict the application MTBI, to evaluate our simulation for the case where each node is part of a
redundant bundle.

4.2 Interrupt-to-fault ratio

Based on our discussion of the birthday problem in Section 2.1, the simulator must for a given
number of nodes show the same ratio of application interrupts to node faults as is the expected
value of the birthday problem. We ran 500,000 hour workload simulation to let enough interrupts
occur to get meaningful results. We ran each experiment seven times and show the minimum,
average, and maximum as error bars in Figure 8.

120%‘

100%i I ,TT77¢:~a
80 %
60 %
40 %

20 % —_—— F(n) approximation (Equation 3)
I Expected value F'(n) (Equation 2)
Simulation

Relative to Birthday Problem

Simulated Faults to Interrupt Ratio

0%

D HinD $HI2 S D D
00 0%y 00’000’000'00090%0 %%

n

Figure 8. Simulated interrupt-to-fault ratio compared to ex-
pected value for the birthday problem.

We normalize against he expected value of the birthday problem from Equation 2. The plot
shows that the simulator slightly underestimates the interrupt/fault ratio for smaller number of
nodes, but matches the expected value very closely starting with a few thousand nodes. The reason
for that is that with fewer nodes, even with a 500,000 hour workload, the number of interrupts is
small. That also explains the larger error bars when simulating fewer nodes.

17

For reference, Figure 8 also shows the value of Equation 3 normalized against the expected value
from Equation 2.

We ran an experiment for a 5,000-hour workload on 200,000 nodes (half of them redundant). The
application experienced 43 interrupts during that run. At each interrupt we counted the number
of faults that had occurred since the last interrupt. Figure 9 shows the result. While the number
of faults leading up to an interrupt varies considerably, the figure clearly shows that they cluster
around the expected value of 561.166 calculated using Equation 3 for 200,000 nodes. The average
number of faults per interrupt for this experiment was 567.093, just 1% above the expected value.

Faults
Expected average

1,200

1000

800

600

Faults per Interrupt

400 |

200

Interrupt Time

Figure 9. Observed number of faults leading to each interrupt.
The expected average value for 200,000 nodes is 562.166.

4.3 Comparison to model

John Daly presents Equation 6 in [16], from which he derives an optimal checkpoint interval 7opt
(Equation 5). In Equation 6, T,,(7) is the total wall clock time the application needs to complete
its assigned task. The checkpoint interval 7 is calculated using Equation 5. © is the MTBI for the
application and T is the solve time, the amount of time the application needs to complete its work.
R is the time needed to restart an application, and § is the time it takes to write a checkpoint.

T+38 T,

~ DL for §<<T, (6)

Using the model from Equation 6 we should be able to validate our simulator. In Figures 3, 4,
and 5 of [16] Daly plots the total elapsed time of an application and varies the checkpoint interval.
He does this for MTBF of 24, 6, and 0.25 hours. The work time is 500 hours, restart time is 10
minutes, and the checkpoint time J is 5 minutes. Using these parameters we can recreate Daly’s
experiment.

Initial tests show that for an MTBF of 6 hours our simulation predicted an average elapsed time
that was 11.65% higher, and 5.88% higher for the 24-hour MTBF. Unfortunately, for the 0.25 hour

18

MTBF it was 51.7% higher. When the MTBF is that small it is near the checkpoint time 0. At
that point even very small changes in § or the application MTBI cause very large changes in the
total elapsed time T3, (7).

When using redundant computing, but otherwise the same system configuration as above, and
recalculating 7 accordingly, simulation results agree with the model very nicely. We get -.28%,
1.27%, and 3.14%. Of course, the application MTBI is much higher now due to the redundancy
and, since we kept J at 5 minutes, much larger than 9.

For an additional test we compare the model and the simulator for a 700-hour application and a
five-year node MTBF for increasing number of nodes. The two nearly overlapping lines are shown
in |Figure omitted for space in draft]. We run our simulator 200 times for each simulation point.

For this paper we chose simulation over an analytical model because it is easier to adapt to new
conditions, such as choosing a different random distribution, and varying the level of redundancy;
e.g., triple redundancy for soft-error correction or only a portion of the nodes replicated. A limitation
of our simulator is that we assume the application will checkpoint at the precise moment the optimal
checkpoint interval (7o) indicates. For real application this is sometimes difficult to achieve because
they have to be in a consistent state and network activity has to be quiescent. Self-synchronizing
applications usually use the granularity of a time step computation to select the time when to
checkpoint.

Although our paper focuses on scientific exascale computing systems, the results presented here
may be applicable to large data centers as well. Non-scientific applications may not have the long
execution times that some scientific applications have, but a lower number of system interruptions
should result in a higher system throughput and increase productivity of such centers.

4.4 Performance

Simulation performance depends on the number of nodes we simulate and how many application
interrupts we have to process. For most simulation results presented in this paper, simulator execu-
tion time was less than one second on a desktop PC. Only when the node count exceeds a million
does the simulator need more than a few seconds; especially in non-redundant experiments when
many more application interrupts need to be processed.

19

5 Results

In this section we conduct parameter studies using the simulator described in the first part of this
paper.

For the experiments in this section, unless we state otherwise, we use the following parameters
for our simulation runs: Checkpoint time § — 5 minutes, restart time R — 10 minutes, a work time
Ty, of 168 hours (one week), and a node MTBF © = 43,800 (five years).

Manufacturers often claim a higher MTBF for their products. However, [43] found an MTBF
of about four years more realistic for a large high-performance-computing site. The MTBF we
are considering is not purely due to hardware faults. Any interruptions that causes an application
restart adds to the overhead an application experiences. Even scheduled maintenance is not handled
properly by many applications and causes work to be lost. For comparisons we also include some
results assuming an MTBF of one year. While probably not common, it has been used in the
literature [18], and provides a lower bound on what to expect.

Note that in the data we present in this section, we are not considering the slowdown our
replication library introduces, since it is application specific and dwarfed by the time savings when
running on large numbers of nodes.

5.1 Application efficiency

Comparing Figure 1 and Figure 7 shows that redundant computing can make a significant difference
at large scale. Because of the time it takes to write checkpoints, restart, and rework, an application’s
efficiency f—fu suffers.

Figure 10 shows three workloads with and without redundant computing. The amount of work
an application needs to complete: 168 hours (a week), 700 hours (a month), and 5,000 hours (seven
months) in Figure 10 has no impact on application efficiency. Whether redundant computing is used
or not, has a huge impact. Even at 500,000 nodes, efficiency only drops to 90% when redundant
nodes are used (one million in this case), while applications running without redundancy drop below
2% (below 11% at 200,000 nodes).

Application efficiency impacts system throughput. If an application occupies n nodes ten to
forty times longer in order to complete its job, that application is taking resources away from other
applications. An inefficient application takes longer to complete and lowers system throughput.
Using redundant computing we can bring efficiency up to 90% and even though it requires 2n
nodes, can complete tens of jobs in the time it takes to finish a single non-redundant job.

5.2 Number of application interrupts

The reason redundant computing offers better efficiency is because the number of application inter-
rupts is significantly reduced. Table 1 illustrates this for a 5,000-hour application.

When redundant computing is not used, each fault causes an application interrupt. This can be
seen in columns two and three of Table 1. Because redundant computing increases resilience, the

20

100 % 4
90 %
80 %
70 %
60 %
50 %
40 %
30 %
20 % —_—— 168 hours work

10 % 700 hours work
0% — 5000 hours work

(0906‘(0\306\0(96‘ 0 0 D % v"oé\
X7
° %% 000 %, 00 °

Application efficiency

Number of nodes (pairs)

Figure 10. Application efficiency ; Ls for three different work
sizes. Solid lines are non-redundant, dashed lines use redundant
nodes.

number of interrupts an application experiences is drastically reduced: column 5. Since redundant
computing uses twice as many nodes, the number of faults also doubles: column 4. Note, however,
that this is not true for larger node counts: A larger non-redundant application will take much
longer to complete and experiences more faults and interrupts due to remaining in the system for a
longer time period.

The last few rows of Table 1 exemplify why redundant computing is so efficient at high node
counts. While a non-redundant application has to restart four million times, using twice as many
nodes requires just over 100 restarts. A sensible checkpoint/restart strategy is still necessary to
recover from these interrupts, but it does not dominate anymore the time the application uses the
system.

5.3 Level of redundancy

Sometimes it may be desirable to use less than twice the number of nodes for redundant computing.
The replication library supports this and we can evaluate whether it makes sense to use only a few,
half, or almost twice the nodes required by the application.

Figure 11 shows the impact of partial redundancy on the number of interrupts an application
sees. The longer an application runs, the more impact even a small increase in redundancy has. For
example, going from using 50% more nodes for redundancy to 60% reduces the number of interrupts
a 720-hour job sees from 6,709 to 4,427; a 34% improvement. Since we ran these experiments for
200,000 nodes, that 34% improvement comes at a cost of an additional 20,000 nodes.

The same 20,000-node investment for a 24-hour job is less beneficial in the number of interrupts
saved. At a 50% redundancy level, a 24-hour job takes 231 interrupts and at the 60% redundancy
level it takes 167 interrupts; a savings of 64 interruptions.

21

Table 1. Number of faults and interrupts for a 5,000-hour appli-

cation.

nodes not redundant redundant
(pairs) faults interrupts faults interrupts
100 11 11 24 1
200 27 27 45 1
500 60 60 117 3
1,000 126 126 231 3
2,000 264 264 447 5
5,000 739 739 1,153 9
10,000 1,653 1,653 2,384 13
20,000 3,902 3,902 4,784 19
50,000 14,228 14,228 11,973 30
100,000 46,565 46,565 24,304 43
200,000 209,909 209,909 48,930 62
500,000 4,031,114 4,031,114 125,811 101
10,000 720-hour job

168-hour job

. 8,000 24-hour job

=3 |

E 6,000 |

% \

3 4,000 b

5 K

z |
2,000 ~

*
% <o, <0, 0o, 0 00 B 0 0 0 %,
< < < o < o o o o %

2
Level of redundancy

Figure 11. Level of redundancy versus number of interrupts.

22

In Figure 12 we show the same experiment but plot the elapsed time on the left y-axis. The larger
savings in number of interrupts for a 10% increase in the level of redundancy translates directly
into a larger savings of elapsed time. The right y-axis and the dashed lines show the impact on
application efficiency, tt—i, for the three jobs. When we increase the level of redundancy, we increase
application efficiency. With full redundancy (100%) we achieve almost 100% efficiency because very
little time is wasted on writing checkpoints and, more importantly, recovering from failures.

- 0,
10,000 h 720-hour job : 100%
168-hour job]
- 1 1
8,000 h ~ 24-hour job 1]. 80%
’ | 2
o o
£ 6000h &
- (3]
(] c
g S
® 4,000 h IS
] S}
=
<
2,000 h

Oh !

Figure 12. Level of redundancy versus elapsed time. The dashed
lines show application efficiency f—s

5.4 Rebooting nodes

Future systems will try to address fault resilience during the design stage. One approach that might
help, is hot-swappable nodes. When a node goes down it can be replaced, rebooted, and reintegrated
into the running application. Another approach that is available today, except for the re-integration
part, is to simply reboot failed nodes. Very often the faults that brought them down are so called
soft-faults, and a reboot brings the node back into operation.

This is especially useful for redundant computing. If one of the two node fails and can be
rebooted and reintegrated into the application before the other node fails, that node bundle will be
fully restored and can absorb another fault.

Anecdotal evidence suggests that rebooting a failed node in a production system succeeds about
50% of the time. We further assume that a node requires five minutes to reboot. The simulator
will interrupt the application only, if the second node in the bundle fails during that five minute
window. However, if the second node comes back online (with our chosen 50% probability), both
nodes in that bundle will have to fail before it causes another application interrupt.

We assumed that this should further reduce the number of interrupts an application experiences.
However, our simulations show no significant difference, and application execution time remains
about the same, with or without node reboots.

23

6 Discussion and related work

6.1 Implementing software redundancy

Using our replication library, we evaluated empirically the cost of implementing redundant com-
puting [3, 5], while in this paper we analyze the impact of redundant computing at exascale on the
throughput of a system and the application efficiency.

The replication library implements redundant computing transparently to the application at the
profiling layer of the MPI library. At start time the user chooses how many ranks of the application
should be replicated. The replication library then uses these additional MPI ranks and assigns
them as redundant partners to the initial set of ranks in a one-to-one fashion, or according to some
permutation chosen by the user. The later feature is used to evaluate the impact of distributing
ranks and their redundant partners across the nodes of a system. To increase fault independence,
the two ranks should be physically as far apart from each other as possible; hopefully using different
power supplies, colling systems, and network components. This increases communication latency
between a rank and its redundant partner which could impact the efficiency of the replication
protocol needed between the ranks to maintain replication state. It turns out that on a system with
more than 10,000 nodes placing of replicas has very little impact on application performance.

When we first implemented the replication library we assumed that it would need to reside
at a very low layer in the communication stack and be thoroughly integrated into the Reliability,
Availability, and Security (RAS) system. In the end it was possible to implement the library in user
space between an application and the MPI library. Its requirements of the RAS system are rather
minimal. It needs to be informed in one fashion or another about ranks that have experienced
faults and have become unresponsive. Furthermore, the system must be able to discard messages in
flight to disabled nodes; i.e., even messages to dead nodes must be consumed and must not deadlock
communication channels. Since the replication library relies on the underlying MPI implementation,
that library must be able to survive the loss of individual ranks without stopping the application.

The replication library supports several replication protocols to maintain state of the compu-
tation and the availability of individual ranks. The most efficient of these protocols has a very
low impact on application performance. The overhead of replicating messages and synchronizing a
rank and its redundant partner is easily measurable with micro-benchmarks. However, the impact
of that overhead is greatly diminished for real applications which perform enough compute work
between communications to mask most of this overhead. We measured an overhead of well below
10% for several scientific applications and application benchmarks, and saw a worst case of 20% for
one application in one specific case. These overheads are easily dwarfed by the performance gains
of redundant computing.

A major contributor to overhead is the handling of any-source MPI receives. The library must
ensure that these messages arrive at a redundant rank in the same order as they did on the original
rank. This requires tight synchronization between these two ranks and increases latency greatly.
The library detects any-source receives and uses the more expensive synchronization protocol only
in those cases where application behavior mandates it.

The current implementation of the replication library is a prototype and has several limitations,
the main one being that it does not handle I/0O. It also replicates a large portion of the MPI library

24

itself in order to stay informed about the state of communication. Integrating replication into the
MPI library would be beneficial.

6.2 Lowering the cost of checkpoint /restart

Redundant computing is a costly approach to application resilience at the exascale. We have seen
in Section 5 that it can pay off at large number of nodes and that it is not too difficult to implement
for MPI in [3|. However, it is somewhat controversial in HPC and researchers are looking at other
methods to make applications more resilient to faults.

In Section 1.2 we discussed other checkpoint/restart schemes, and improvements to file and
storage systems that are alternatives to redundant computing. |17] is a good survey of checkpoint
restart methods and [34] looks at seven specific implementations for clusters. Although some of
these methods promise better performance than coordinated checkpointing, very few of them have
been implemented and used by scientific applications at large scale. Many scientific applications
are self-synchronizing and coordinated checkpointing is a natural fit for these applications. For
other types of applications, uncoordinated (asynchronous) checkpointing has been proposed; e.g.,
[47]. The issue for large-scale systems is that a consistent-state recovery line has to be established
after a fault which may be prone to rollback propagation. Rollback may be worse at larger scales,
although we have not investigated that yet. Communication-induced checkpointing [1] allows for
some checkpoints to be local, but does not scale well.

Message logging schemes in conjunction with uncoordinated checkpointing may be good candi-
dates for larger systems [17, 26-28, 32, 33]. Most of them are difficult to implement and have not
been evaluated using real applications at large scale.

Several hybrid approaches, improvements, and alternate methods have also been proposed. Us-
ing incremental checkpoints to reduce the checkpoint overhead is described in [40, 41]. Our ex-
periments show that at large scale in systems with many faults the main contributor to overhead
is restart time. It is therefore very important to improve restart times along with checkpointing
performance.

New technologies expected to be available in future exascale systems include node-local NVRAM
and SSD which promise faster access times and higher bandwidth. One way of using these devices
would be to checkpoint locally to NVRAM and then trickle the data in the background to stable
storage off-node (either SSD or spinning media). Until data reaches off-node storage, it may not
be available to a restarting process. One interesting idea is to use intermediate nodes in a system
to coordinate checkpointing to external storage and thereby better utilize a system’s resources and
improve checkpoint and restore times [37].

6.3 The need for a new solution

Applications will need to adapt to exascale systems [2]. Concerns include billion-fold parallelism,
locality, and a simple, understandable execution model. While dealing with these difficult challenges,
the idea of adapting applications to an environment with a higher fault rate is rarely mentioned.
Therefore, systems researchers need to find ways to isolate applications from the faults that occur
in the underlying system.

25

There is a cost associated with that. Hardware manufacturers could make their components
more reliable, perhaps using redundancy at the hardware level; machine owners could buy addi-
tional resource to allow for software redundancy, as proposed in this paper; or, advances in new
technologies, such as NVRAM, advanced checkpointing methods, or faster file systems might offer
a solution. Transaction-based systems require a lower error rate than the underlying hardware pro-

vides. For these systems, users are paying a performance penalty that would not be acceptable in
a HPC system [10].

Which method, or combination of methods, will prevail remains to be seen. We can use the
simulator described in this paper to set limits on when a method becomes more cost-effective than
redundant computing. Until now we have used a fixed checkpoint time of § = 5 minutes and a fixed
restart time of R = 10 minutes for all of our experiments. While these values may be unrealistically
low for today’s technology extrapolated to the exascale, newer technologies and approaches to fault
resilience aim to lower the checkpoint and restart times.

In Figure 13 we look at checkpoint times ¢ of five minutes or less. We assume a restart time of
R = 2§. We simulate four large node counts, with and without redundant computing. For each run
we calculate and use the optimal checkpoint interval 7. To obtain a y-axis value, we compute the
ratio of the average of seven redundant runs and the average of seven non-redundant runs. As long
as this ratio remains below 0.5, redundant computing is more cost effective.

500,000 nodes
0.9 200,000 nodes
08 100,000 nodes
' 50,000 nodes

Ratio redundant/non-redundant

% % % eSS,

Checkpoint time &

Figure 13. Redundant/none-redundant elapsed time ratio for
various checkpoint times ¢.

Figure 13 lets us determine how low § needs to be for a given number of nodes, to rule out
redundant computing as a feasible solution. For example, for 500,000 nodes, ¢ needs to be less than
24 seconds in order to beat redundant computing. Specifically, a typical 500,000-node job that does
168 hours of work (7%) runs for about 370 hours without redundant computing and a checkpoint
time of 24 seconds. Using the same parameters, but using twice as many nodes, the job completes
in 170 hours. If we lower the checkpoint time some more to 12 seconds, the non-redundant job
finishes in 290 hours, while the redundant job still takes about 170 hours. At that point it is no
longer cost-effective to use twice the number of nodes for redundant computing.

Therefore, technologies and algorithms that lower the checkpoint time are worthwhile to inves-

26

tigate. However, the cost of these methods need to be taken into consideration and compared to
redundant computing. For example, on a 200,000 node system with 16 or 64 GB of memory per
node, a 1 GB checkpoint size per node does not seem unreasonable. In order to write 200 TB of
data in less than one minute (the break-even point for 200,000 nodes in Figure 13), the system
aggregate bandwidth to stable storage needs to be 3,333 GB/s. That is unrealistic, when current
projections are closer to 50 GB/s [37].

Other ideas, such as checkpointing to the NVRAM of neighboring nodes, are more promising
because of the higher bandwidth that can be achieved. Note that this data still needs to be trickled
off to stable storage, or some other method, such as using far-away neighbors, needs to be employed
to keep the checkpoint data available in case of a cabinet-wide failure. In the 500,000-node non-
redundant scenario above, a checkpoint is written every 1.32 minutes, which is not much time to
trickle data to stable storage. Saving only a fraction of the checkpoints from NVRAM to stable
storage helps, but increases the risk of more lost work and makes this less efficient. Further studies
are needed to determine the break-even points for the various approaches at the exascale.

6.4 Other work

Extreme-scale resiliency is an active research topic. We discussed in detail why a higher failure
rate is likely in exascale systems in Section 1.1, and several papers show that future systems will
have a low system MTBF [18, 29, 37, 38|, which requires solutions that go beyond traditional
checkpoint /restart.

The requirements for RAS systems have been studied before [6] and newer work more directly
aimed at large-scale systems is under way [24]. Integrating the RAS system with the replication
library, or an MPI implementation that includes redundant computing will be essential. Systems
that are specifically built to reduce the number of faults, and use redundancy to do so, have been
available [7, 36] and designing hardware with fault resiliency in mind has a long history [42]. Software
solutions for redundancy have also been proposed [11, 15|. The issue with proposed large-scale
systems is that many of the components are off-the-shelf and not specifically designed to operate at
that scale, and that these systems are specifically purchased for their performance and capacity.

Several groups are investigating application resilience in the context of extreme-scale systems:
e.g., |12, 18, 34]. Looking toward extreme scale in particular are: [13, 14, 21, 38|. Several of these
papers point at [43] which shows that the observed system error rate is often much higher than the
theoretical prediction for the hardware alone.

Large-scale and frequent faults are typical in distributed systems. Solutions in that domain are
interesting for exascale systems. For example, |22, 23|. However, performance and throughput are
paramount in exascale systems, while they are less critical in distributed systems.

27

7 Summary

Redundant computing has been used in mission-critical systems but has been viewed as too ex-
pensive for large-scale HPC systems. This paper discusses a simulator for redundant computing in
large-scale systems. We show that redundant computing can be more cost effective at large scale.
Alternative methods that improve checkpoint and restart time need to improve by two orders of
magnitude before they approach the throughput improvements possible with redundant computing.

28

References

[1] Lorenzo Alvisi, E. N. Elnozahy, Sriram Rao, Syed Amir Husain, and Asanka De Mel. An
analysis of communication induced checkpointing. In FT'CS, pages 242-249, 1999.

[2] Saman Amarasinghe and et al. Exascale software study: Software challenges in extreme
scale systems. http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/
ECSS’%20report’%20101909.pdf, September 2009.

[3] Anonymous. Hidden for double blind review. Technical report 7777, Some organization,
October 2009.

[4] Anonymous. Hidden for double blind review. http://www. .., March 2010.

[5] Anonymous. Hidden for double blind review. In Hidden, Lecture Notes in Computer Science.
Springer Verlag, 2010.

[6] Michael Barborak, Anton Dahbura, and Miroslaw Malek. The consensus problem in fault-
tolerant computing. ACM Comput. Surv., 25(2):171-220, 1993.

[7] Joel F. Bartlett. A nonstop kernel. In Symposium on Operating Systems Principles (SOSP),
pages 22-29, 1981.

[8] John Bent, Garth Gibson, Gary Grider, Ben McClelland, Paul Nowoczynski, James Nunez,
Milo Polte, and Meghan Wingate. Plfs: a checkpoint filesystem for parallel applications. In
ACM/IEEE Supercomputing Conference (SC), 2009.

[9] Keren Bergman and et al. Exascale computing study: Technology challenges
in achieving exascale systems. http://www.science.energy.gov/ascr/Research/CS/
DARPAexascale-hardware (2008) .pdf, 2008.

[10] Ricardo Bianchini and et al. System resiliency at extreme scale. http://institute.lanl.gov/
resilience/docs/IBM),20Mootaz’20White?,20Paper’20System),20Resilience.pdf, 2009.

[11] Thomas C. Bressoud and Fred B. Schneider. Hypervisor-based fault tolerance. ACM Trans.
Comput. Syst., 14(1):80-107, 1996.

[12] G. Bronevetsky, R. Fernandes, D. Marques, K. Pingali, and P. Stodghill. Recent advances
in checkpoint/recovery systems. International Parallel and Distributed Processing Symposium
(IPDPS), 2006.

[13] Franck Cappello. Fault tolerance in petascale/ exascale systems: Current knowledge, challenges
and research opportunities. Int. J. High Perform. Comput. Appl., 23(3):212-226, 2009.

[14] Franck Cappello, Al Geist, Bill Gropp, Sanjay Kale, Bill Kramer, and Marc Snir. Toward exas-
cale resilience. Technical report TR-JLPC-09-01, Illinois-INRIA Joint Laboratory on PetaScale
Computing, 2009.

[15] J. Chapin, M. Rosenblum, S. Devine, T. Lahiri, D. Teodosiu, and A. Gupta. Hive: fault con-
tainment for shared-memory multiprocessors. In Symposium on Operating Systems Principles
(SOSP), pages 12-25, 1995.

[16] J. T. Daly. A higher order estimate of the optimum checkpoint interval for restart dumps.
Future Gener. Comput. Syst., 22(3):303-312, 2006.

29

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. Johnson. A survey of
rollback-recovery protocols in message-passing systems. ACM Comput. Surv., 34(3):375 408,
2002.

E.N. Elnozahy and J.S. Plank. Checkpointing for peta-scale systems: a look into the future
of practical rollback-recovery. Dependable and Secure Computing, IEEE Transactions on, 1(2):
97-108, 2004.

Christian Engelmann and Frank Lauer. Facilitating codesign for extreme-scale systems through
lightweight simulation. In Workshop on Application/Architecture Co-design for Extreme-scale
Computing (AACEC), 2010.

Philippe Flajolet, Peter J. Grabner, Peter Kirschenhofer, and Helmut Prodinger. On Ramanu-
jan’s Q-function. J. Comput. Appl. Math., 58(1):103-116, 1995.

Rahul Garg, Vijay K. Garg, and Yogish Sabharwal. Scalable algorithms for global snapshots
in distributed systems. In International Conference on Supercomputing (ICS), pages 269277,
2006.

Stéphane Genaud, Emmanuel Jeannot, and Choopan Rattanapoka. Fault management in
p2p-mpi. International Journal of Parallel Programming, 37(5):433-461, 2009.

Stéphane Genaud and Choopan Rattanapoka. P2p-mpi: A peer-to-peer framework for robust
execution of message passing parallel programs on grids. Journal of Grid Computing, 5:27-42,
2007.

Rinku Gupta, Pete Beckman, Byung-Hoon Park, Ewing Lusk, Paul Hargrove, Al Geist, Dha-
baleswar Panda, Andrew Lumsdaine, and Jack Dongarra. CIFTS: A coordinated infrastructure
for fault-tolerant systems. In International Conference on Parallel Processing (ICPP), pages
237-245, 2009.

Lars Holst. The general birthday problem. In International seminar on Random graphs and
probabilistic methods in combinatorics and computer science, pages 201-208, 1995.

Q. Jiang and D. Manivannan. An optimistic checkpointing and selective message logging ap-
proach for consistent global checkpoint collection in distributed systems. International Parallel
and Distributed Processing Symposium (IPDPS), 2007.

Qiangfeng Jiang, Yi Luo, and D. Manivannan. An optimistic checkpointing and message
logging approach for consistent global checkpoint collection in distributed systems. .J. Parallel
Distrib. Comput., 68(12):1575-1589, 2008.

David B. Johnson and Willy Zwaenepoel. Recovery in distributed systems using asynchronous
message logging and checkpointing. In ACM symposium on principles of distributed computing,
pages 171-181, 1988.

William M. Jones, John T. Daly, and Nathan A. DeBardeleben. Application resilience: Making
progress in spite of failure. In International Symposium on Cluster Computing and the Grid
(CCGRID), pages 789-794, 2008.

Dimitri B. Kececioglu. Reliability Engineering Handbook, volume 2. DEStech Publications,
Inc, 2002.

30

[31]

[32]

[33]

[34]

[35]
[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Donald E. Knuth. The art of computer programming, volume 3: (2nd ed.) sorting and search-
1ng. Addison Wesley, 1998.

Pierre Lemarinier, Aurelien Bouteiller, Geraud Krawezik, and Franck Cappello. Coordinated
checkpoint versus message log for fault tolerant MPI. Int. J. High Perform. Comput. Netw., 2
(2-4):146-155, 2004.

Kai Li, Jeffrey F. Naughton, and James S. Planck. Checkpointing multicomputer applications.
Reliable Distributed Systems, pages 2—11, 1991.

Andrew Maloney and Andrzej Goscinski. A survey and review of the current state of rollback-
recovery for cluster systems. Concurrency and Computation: Practice and Ezperience, 2009.

Frank H. Mathis. A generalized birthday problem. SIAM Review, 33(2):265-270, 1991.

Dennis McEvoy. The architecture of tandem’s nonstop system. In Proceedings of the ACM
conference, 1981.

Ron A. Oldfield, Sarala Arunagiri, Patricia J. Teller, Seetharami Seelam, Maria Ruiz Varela,
Rolf Riesen, and Philip C. Roth. Modeling the impact of checkpoints on next-generation
systems. In 24th IEEE Conference on Mass Storage Systems and Technologies, pages 30-46,
2007.

A. J. Oliner, R. K. Sahoo, J. E. Moreira, and M. Gupta. Performance implications of pe-
riodic checkpointing on large-scale cluster systems. In International Parallel and Distributed
Processing Symposium (IPDPS) - Workshop 18, 2005.

Xiangyong Ouyang, Sonya Marcarelli, and Dhabaleswar K. Panda. Enhancing checkpoint per-
formance with staging 10 and SSD. In International Workshop on Storage Network Architecture
and Parallel 1/0s (SNAPI), pages 13—20, 2010.

Alessandro Pellegrini, Roberto Vitali, and Francesco Quaglia. Di-DyMeLoR: Logging only
dirty chunks for efficient management of dynamic memory based optimistic simulation objects.
In Workshop on Principles of Advanced and Distributed Simulation (PADS), pages 4553, 2009.

Yasushi Saito and Marc Shapiro. Optimistic replication. ACM Comput. Surv., 37(1):42-81,
2005.

Richard D. Schlichting and Fred B. Schneider. Fail-stop processors: an approach to designing
fault-tolerant computing systems. ACM Trans. Comput. Syst., 1(3):222-238, 1983.

Bianca Schroeder and Garth A. Gibson. A large-scale study of failures in high-performance
computing systems. In International Conference on Dependable Systems and Networks (DSN),
2006.

Bianca Schroeder and Garth A Gibson. Understanding failures in petascale computers. Journal
of Physics: Conference Series, 78(1), 2007.

Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber. DRAM errors in the wild:
a large-scale field study. In International joint conference on Measurement and modeling of
computer systems (SIGMETRICS), pages 193-204, 2009.

Charlie Slayman. Impact and mitigation of DRAM and SRAM soft errors. http://www.ewh.
ieee.org/r6/scv/rl/articles/Soft%20Error,20mitigation.pdf, 2010.

31

[47] Yi-Min Wang, Pi-Yu Chung, In-Jen Lin, and W. Kent Fuchs. Checkpoint space reclamation
for uncoordinated checkpointing in message-passing systems. IEEFE Trans. Parallel Distrib.
Syst., 6(5):546-554, 1995.

32

DISTRIBUTION:

1 MS 0899 Technical Library, 9536 (electronic copy)
1 MS 0359 D. Chavez, LDRD Office, 1911

33

34

v1.36

(ﬂ:'l) Sandia National Laboratories

