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Abstract 

 
This report summarizes a 3-year LDRD program at Sandia National Laboratories 
exploring optical nonlinearities in intersubband devices.  Experimental and theoretical 
investigations were made to develop a fundamental understanding of light-matter 
interaction in a semiconductor system and to explore how this understanding can be 
used to develop mid-IR to THz emitters and nonclassical light sources. 
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1. Introduction 
 

Optical nonlinearities and quantum coherences have the potential to enable efficient, high-
temperature generation of coherent THz radiation.  This LDRD proposal involves the exploration 
of the underlying physics using intersubband transitions in a quantum cascade structure.  Success 
in the device physics aspect will give Sandia the state-of-the-art technology for high-temperature 
THz quantum cascade lasers. These lasers are useful for imaging and spectroscopy in medicine 
and national defense. 

Success may have other far-reaching consequences.  Results from the in-depth study of 
coherences, dephasing and dynamics will eventually impact the fields of quantum computing, 
optical communication and cryptology, especially if we are successful in demonstrating 
entangled photons or slow light.  An even farther reaching development is if we can show that 
the QC nanostructure, with its discrete atom-like intersubband resonances, can replace the atom 
in quantum optics experiments.  Having such an ‘artificial atom’ will greatly improve flexibility 
and preciseness in experiments, thereby enhancing the discovery of new physics.  This is because 
we will no longer be constrained by what natural can provide. Rather, one will be able to tailor 
transition energies and optical matrix elements to enhance the physics of interest. 

 
2. Approach 

 
Much of our modeling and experiments were based on variations of a 4-level QC scheme. 

In the case of 4-wave mixing (Fig. 1), the combination of drive field absorption and emission 
(waves 1 and 2) together with probe field absorption (wave 3) modifies the polarization (wave 4) 
connecting levels 1 and 2.  In our scheme, this polarization provides THz gain with phase 
matching automatically satisfied.  The simulations also revealed a quantum coherence 
contribution arising from the polarization between the optically forbidden transition connecting 
levels 1 and 3 (see Fig 2).  This polarization is created by the interference of probe and drive 
fields.  Owing to the quantum coherence, THz gain is achieved for drive intensity below that 
need for creating a population inversion.  Without a population inversion, device efficiency 
improves because of decreased sensitivity to nonradiative carrier losses. 

As may be seen in Fig. 3, the 4-level QC configuration incorporates the basic properties of 
4-wave mixing and quantum coherence.  Furthermore, it contains features that are not obtainable 
with atomic systems. We summarize them below. 
1) Separate transitions for absorption and emission of drive field, which is important for the 
present goal of THz generation with drive field recovery, and for the future goal of producing 
entangled photons. 
2) Forward electric bias to shoe-horn in the THz transition (levels 2 and 3) and to provide power 
for the THz radiation. 
3) Spatial variation in doping, so that the electron population in the lowest energy level (4) is 
actually smaller than that in the higher lying level 1, thereby creating a Raman inversion. 
4) Possibility of tailoring level energies and dipole matrix elements during quantum well growth 
to maximize 4-wave mixing and quantum coherence processes. 
5) Cascading (not shown in Fig. 3) to drain the electron population in level 4 and to generate 
more THz photons. 
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The above features combine to make possible the generation of coherent THz radiation, 

with no depletion of drive photons (hence, no Manley Rowe limitation).  Energy is conserved by 
deriving the energy for the THz photon from the electrical bias. 

 
 

3. Results 
 

Experiments 
 

FTIR and photoconductivity measurements were made for an intersubband photo-current 
multiplier.  Also measured was the photoconductivity of a digital superlattice OPED sample.  
Details are given in Appendices I, II and III.  The design of the experimental structures involved 
detailed modeling of bandstructure and carrier collision effects.  Details of the model and code 
developed and used in the investigations are published in a journal article [1].  
 
Theory 
 

During characterization of laser structures, we discovered interesting dynamical behaviors 
that are possibly related to coherence collapse.  That such enhanced dynamical nonlinearities 
occur in quantum cascade lasers is not well understood.  There are practical implications in terms 
of frequency stability and modulation response.  Also, there is scientific interest in terms of 
dynamical instabilities in a new class of lasers.  Furthermore, there is potential application for 
detecting a weak laser signals from a remote source in the presence of strong background noise 
(TA 11349).  Details are discussed in three papers [2-4]. 

Work was performed on solving of the optical Bloch equations for a multilevel system 
interacting with a quantized radiation field.  The equations described a fully quantized (i.e., 
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quantized active medium and quantized radiation field) light-matter system operating in the 
strong-coupling (polariton) limit.  Results to date are described in 2 publications [5-6].  The 
system has applications in brightness enhancement (TA 11318), quantum nondemolition and 
ultra-small (subwavelength) volume lasers. 

 
 

Invention Disclosures  
 

Several TAs were produced involving the use of intersubband and intersubband/interband 
structures to modify radiation properties.  These disclosures are described in Appendices D. 
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Appendix B: Photoconductivity of VB0349 (Digital superlattice OPED) 
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Appendix C 
 

Photoconductivity measurements of a wide barrier photo-current multiplier 
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Appendix D: Summary of invention disclosures 
 
1. TA 11043: Laser-triggered electrical switch 

This technical advance involves a laser-triggered electrical switch that is based on intersubband electronic 
transitions within a quantum cascade (QC) structure [Fig. 1 (left)].  An electrically-biased QC structure is used to 
block the flow of current from a voltage source.  As shown in Fig. 1 (right), the switching mechanism involves the 
absorption and reemission of laser-trigger radiation, resulting in transport of electrons from left to right quantum 
wells.  Unique to this switching scheme is that there is no depletion of trigger.  

 
Fig. 1.  (Left) Sketch of QC-based laser-triggered electrical switch.  (Right) Single 
stage of laser-triggered electrical switch.. 

 
2. TA 11079: Intersubband photomultiplier enabled by photon recycling 

This disclosure involves a different approach to achieving amplification than the conventional photomultiplier 
tube (PMT).  Similar to the PMT, a single photon creates multiple electrons at the anode. However, our device is a 
semiconductor chip [see Fig. 2 (left)] with advantages of low bias voltage, structure ruggedness, radiation hardness 
and femtosecond response. 

As shown in Fig. 2 (right), absorption and subsequent remission of the incident photon (transitions 2-3 and 3-1, 
respectively) moves the electron from leftmost quantum well to rightmost quantum well. Upon reaching the 
rightmost quantum well, the electron is swept to the anode by an electric field created with forward bias, producing a 
photocurrent.  The process recovers the photon, which is then available for transporting more electrons 

 
Fig. 2. (Left) Sketch of intersubband photomultipilier. (Right) Absorption followed 
by emission of incident photon creates a photocurrent. 

 
3.  TA 11318: Radiation-brightness enhancer  

Disclosure is for enhancing coherence of a radiation field with a semiconductor structure [Fig. 3 (left)].  Device 
converts incoherent input radiation into spectrally narrower and more collimated output beam, using a multi-
quantum-well structure operating with interband and intersubband transitions [Fig. 3 (right)]. The input field creates 
conduction electrons via an interband transition, where the electron and hole dispersions provide a broad absorption 
bandwidth.  The output radiation is from an intersubband transition, where the discreteness of the intersubband 
resonance and a waveguide give spectral narrowing and beam collimation. 
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Fig. 3. (Left) Sketch of radiation-brightness enhancer.  (Right) Single stage of active 
medium.  
 

4. TA 11317: Solar-powered high-brightness light source  
Disclosure is for high-brightness light sources that are powered by solar radiation.  The scheme is based on a 

quantum well structure that contains two sets of quantum wells.  One set is compressively strained and configured to 
allow broadband absorption of incident solar radiation incident normal or near-normal to the wafer surface.  The 
transition is from valence to conduction subbands.  The device also contains a second set of quantum wells that is 
tensile strained and configured to allow narrowband emission that is collimated by a waveguide that encompasses 
the entire active region.  The emission transition is between conduction subbands.  Important to the scheme is that 
the emitting quantum well, being tensile strained is very weakly absorbing to the incident solar radiation because of 
polarization selection rules. 

   
Fig. 4. (Left) Solar-powered high-brightness light source.  (Right) Single stage of active 
medium.  
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