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Abstract

Consider a classic hierarchy tree as a basic model of a “system-of-systems” network,
where each node represents a component system (which may itself consist of a set of
sub-systems). For this general composite system, we present a technique for computing
the optimal testing strategy, which is based on Bayesian decision analysis. In previous
work, we developed a Bayesian approach for computing the distribution of the relia-
bility of a system-of-systems structure that uses test data and prior information. This
allows for the determination of both an estimate of the reliability and a quantifica-
tion of confidence in the estimate. Improving the accuracy of the reliability estimate
and increasing the corresponding confidence require the collection of additional data.
However, testing all possible sub-systems may not be cost-effective, feasible, or even
necessary to achieve an improvement in the reliability estimate. To address this sam-
pling issue, we formulate a Bayesian methodology that systematically determines the
optimal sampling strategy under specified constraints and costs that will maximally
improve the reliability estimate of the composite system, e.g., by reducing the variance
of the reliability distribution. This methodology involves calculating the “Bayes risk of

3



a decision rule” for each available sampling strategy, where risk quantifies the relative
effect that each sampling strategy could have on the reliability estimate. A general nu-
merical algorithm is developed and tested using an example multicomponent system.
The results show that the procedure scales linearly with the number of components
available for testing.
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KS Kolmogorov-Smirnov

MCMC Markov chain Monte Carlo

NW nuclear weapon

PCE polynomial chaos expansion

PDF probability density function

RV random variable

7



Nomenclature

ai Action to be taken \action{}

A Space of all possible actions \Aspace

Fπ(θ) Cumulative distribution function of π(θ) \cdf{}

Di Data collected at the ith node (no subscript denotes the collection of all data) \data{}

δi(X) Decision rule given data X \dec{}

X i Space of all possible data (superscript denotes the ith subspace \Dspace{}

η Error node of the composite system \error

Eπθ [·] Expectation value of some function or random variable given a state of nature θ and
a probability distribution π \expect{}{}

Ωi Function mapping outputs from parent nodes of the jth node to output at the ith
node \fn{}

Hi The ith Hermite polynomial \herm{}

f(x,θ) Likelihood function for data x given the state of nature θ \llh

L(θ, a) Loss function quantifying the loss of taking action a given the state of nature θ

n` Total number of leaf nodes of the composite system \nl

np,i Total number of parent nodes for a particular node \np{}

ξi Gaussian or normal random variable from a polynomial chaos expansion from the ith
node, i.e, ξj ∼ N (0, 1) \nrv{}

qi Order of the polynomial chaos expansion for the ith node \ord{}

Ω Lower limit of root output (Ω1) for reliability quantification \outliml

Ω Upper limit of root output (Ω1) for reliability quantification \outlimu

Ωi Output at the ith node, calculated by a polynomial chaos expansion \out{}

pi Set of parent indices for the ith node \parents{}

π(θ) Probability density function for the random variable θ \pdf

Prπ(·) Probability of some “thing” given a probability distribution π \prob{}

R(θ) Reliability for the composite system given the state θ \rel
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Rreq Required reliability for the composite system \relreq

X i Random variable associated with data collection (superscript indicates the ith node)
\rvd{}

Θi Space of all possible states of nature (subscript denotes the ith subspace) \Sspace{}

θ State vector corresponding to coefficients in all of the polynomial chaos expansions
\state

θji State vector/coefficients of the polynomial chaos expansion for the ith node and jth
component or power (superscript is context-dependent) \sve{}{}

m(x) Unconditional marginal density of x \umd

U Notation for a uniform probability density function \updf

vi Designation for the ith node where data was not collected \vv{}
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1 Introduction

In the previous chapters we have shown how to compute the reliability distribution given
a set of data for steady-state and time-dependent cases. In this chapter, we consider the
optimization questions that we wish to answer, For example, what is the best choice of data
collection tests, given a fixed budget, that will maximally reduce the uncertainty in the
reliability estimate? We begin by making some observations:

• The simplest scenario is to assume that we only have a prior distribution and determine
which sampling scheme reduces the variance of the reliability distribution the most.

• We first consider only one data collection test. Later we will consider the problem of
choosing the best suite of tests. Recall that our MCMC procedure [4] produces a set
of possible θ values, and that for each of these values we can compute one value of the
reliability.

• Even if we know the values of θ corresponding to a particular node extremely well,
i.e., there is very little variation in the θ values, it still may be that the component
is intrinsically quite variable. In general, the intrinsic variability of a component con-
tributes to the variability of the overall output of the system; large variabilities will
generally mean that the composite system is less reliable. This contribution will need
to be considered relative to the contribution of the component to the overall system.
A large variability in the θ values of a component will, by contrast, be reflected in
a large spread in the reliability distribution. Aleatory versus epistemic issue, system
model and mapping from node to node to root.

• The implication of this last point suggests that re-testing a component whose θ values
are already well determined, despite any inherent variability, will not decrease the
spread of the reliability distribution. Instead, we will want to concentrate on those
components whose coefficients are still widely variable.

• Because of the possible large number of components and corresponding testing schemes
and the potential wide range of outcomes for a particular test, we clearly cannot explore
all possibilities. Thus, we need to compute some form of an expected effect of a given
test on the computed reliability distribution instead.

Our approach is first to develop the ideal optimization problem that we would like to
solve, even though it may be computationally intractable. We can then simplify the problem
as necessary to obtain a computationally tractable approach. In the next section, we present
a formal analysis and derivation based on Bayesian decision analysis.
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2 Foundational Concepts and Notational Conventions

The following notation and formulation follows James Berger’s classic text, Statistical De-
cision Theory and Bayesian Analysis [2]. Formal development of statistical procedures, be
they estimation, hypothesis testing, design of experiments, etc., is typically structured as a
decision analysis problem. By developing this formalism for our problem, this chapter de-
velops a rigorous approach to the optimization problem. As appropriate we follow Berger’s
notation, clarifying our use of it and making adjustments to meet the needs of our problem.

This chapter is organized as follows. Section 2 works through the basic formalism of
Bayesian decision analysis, while Section 3 addresses the optimization/design-of-experiments
question specifically. Berger calls the latter “pre-posterior” analysis. Section 4 formulates
the risk function minimization to identify the optimal data collection scheme.

The following notational conventions apply generally to the decision theoretic foundations
of Bayesian analysis as used by Berger [2]. This list also introduces the basic formalism of
Bayesian decision analysis. Let

• θ (a vector) denote an unknown state of nature, with elements θij, the distribution of
which captures epistemic uncertainties (i.e., the variation in the θij’s is reduced as more
data are collected). In our system, output at each of the n` “leaf” node (e.g., nodes
7, 9, 10, and 12 in Fig. 1; nodes marked with an η are unmeasurable error nodes) is
given by a random variable (RV) Ωj expressed as a polynomial chaos expansion (PCE)
[14, 5, 9, 6]:

Ωj =

qj∑
i=0

θijHi(ξj), (2.1)

where qj is the order of the PCE, Hi represents the ith Hermite polynomial, and ξj is a
Gaussian RV (also referred to as a normal RV): ξj ∼ N (0, 1). Subscripts i correspond
to the indices for the PCE expansion of the jth node, which begin with 0 for consistency
with standard Hermite polynomial notation. Between the leaf and/or “parent” nodes
and an intermediate system node k, output is given by a deterministic function:

Ωk = Ωk(Ωα,Ωβ, . . . ,Ωω), (2.2)

where Ωα,Ωβ, . . . ,Ωω denote the corresponding output of the parent nodes (k <
α, β, . . . , ω) and Ωk : Rnk → R, e.g., Ω4 = Ω4(Ω9,Ω10) in Fig. 1. The mapping Ω1

is part of an intermediate calculation, producing output at the “root” node (node 1 in
Fig. 1). At this point, the output at the root node has a stochastic dimension of n`.
Using a projection method [3], output at the root node can be then approximated by
a PCE with a stochastic dimension of one [8]:

Ω1 =
∑
i,j

θijHi(ξj). (2.3)
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Figure 1: Graphical representation of a 12-node example model of our system of systems.
Nodes marked η are (unmeasurable) error nodes.

• Θ denote the space of possible states of nature. In general, Θ is not a proper vector
space (it may not be closed under vector addition and scalar multiplication operations),
but a subspace of a real vector space, e.g., Θ ⊂ Rd, where d =

∑
j qj + n`.

• R(θ) denote system reliability, here, R(θ) = Pr(Ω1 ∈ [Ω,Ω] |θ) for some set [Ω,Ω]
of acceptable values. This probability comes from the PCE evaluated at a given value
of θ and pre-defined upper and lower limits on the output, Ω and Ω, respectively. In
other words,

R(θ) =

∫ Ω

Ω
D(Ω1|θ)dΩ1, (2.4)

where D(Ω1|θ) is the normalized conditional distribution of Ω1 given θ, i.e.,

R(θ) =

∫
Ω
D(Ω1|θ)dΩ1, (2.5)

• Rreq be the required reliability of the composite system of interest. The optimization
methodology will use this as a reference value.

• π(θ) denote a prior density or probability function capturing the epistemic uncertainty
about θ at the time the optimization problem is performed. This may correspond to
the posterior after some original prior has been updated with available data.

• Fπ(θ) denote the cumulative distribution function capturing the epistemic uncertainty
about θ. For continuous univariate distributions. π(θ) = dFπ(θ)/dθ. There is a
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notation convention here: superscripts give additional information about the source of
the free variable in a function (and subscripts provide information about conditioning
variables).

• a denote an “action” to be taken. In this formulation, the action refers to the ultimate
conclusion drawn from whatever data are collected, not the intermediate decisions
about what data to collect. For estimation problems, the action is typically the re-
ported vector of estimated values for θ. For hypothesis testing, where the choice is
whether θ ∈ Θ0 or θ ∈ Θ1, where Θ = Θ0 ∪ Θ1, action typically assumes values: a0

(assert that θ ∈ Θ0 is correct) or a1 (assert that θ ∈ Θ1 is correct). For the develop-
ment of our problem we follow the hypothesis testing format and choose among two
actions:

1. Conclude that the system does meet its reliability requirements

2. Conclude that the system does not meet its reliability requirements

• A denote the space of all possible actions

• L(θ, a) denote the “loss” (some measure of infidelity or regret) if one takes action a
when θ is the true state of nature (i.e., if all epistemic uncertainty was removed). Note
that this does not depend in any way on the data or the distribution of θ. In addition,
since we don’t actually know the true value of θ, we can never compute a “true” value
for L(θ, a). What is important though is that the loss function is computable for all
θ ∈ Θ and a ∈ A . For hypothesis testing the typical formulation is

L(θ, a0) =

{
0 if θ ∈ Θ0

1 if θ ∈ Θ1
(2.6a)

and

L(θ, a1) =

{
1 if θ ∈ Θ0

0 if θ ∈ Θ1
. (2.6b)

An alternative formulation might replace the 1’s above with some function of the
distance between θ and the nearest point on the boundary of Θ0 or Θ1, depending on
the case.

• ρ(π, a) denote the expected loss or risk functional for action a:

ρ(π, a) = Eπ[L(θ, a)] =

∫
Θ
L(θ, a)dFπ(θ). (2.7)

The Bayesian would seek to choose the action a that minimizes ρ(π, a). Note the
superscript on the expectation, indicating the distribution over which the integration
is performed. For example, the π here is an argument to the risk functional repre-
senting the prior distribution on θ, but this formulation can also be applied to other
distributions on θ, such as a posterior after some data are observed.
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• X denote the RV associated with the data that we might collect.

• X denote the sample space for all possible data values, where X maps from the event
space to X .

• x denote an element of X .

• f(x|θ) denote the likelihood function for x given the state of nature θ.

• FX (x|θ) denote the cumulative distribution of x given the state of nature θ:

f(x|θ) = dFX (x|θ)/dx. (2.8)

• m(x) denote the unconditional marginal density of x:

m(x) =

∫
θ
f(x|θ)dFπ(θ). (2.9)

• Fm(x) denote the unconditional cumulative distribution of x:

m(x) = dFm(x)/dx. (2.10)

• π(θ|x) denote the posterior density for θ; by Bayes theorem,

π(θ|x) =
f(x|θ)π(θ)

m(x)
. (2.11)

• Fθ|X (θ) denote the cumulative distribution of θ given the data x:

π(θ|x) = dFθ|X (θ)/dθ. (2.12)

• Eθ[h(X )] denote the expected value of some RV h(X ) given the state of nature θ.

Eθ[h(X )] =

∫
X

h(x)dFX (x|θ). (2.13)

Note the subscript convention: θ is the conditioning variable. If the context requires

more clarity, we use the notation EXθ [h(X )] to emphasize the integration is with
respect to X conditional on θ.

• δ(X ) denote the decision rule giving the action taken when X is observed. Thus,
δ : X → A .

• r(π, δ) denote the “Bayes risk of a decision rule” with respect to a prior:

r(π, δ) = EπEXθ {L[θ, δ(X )]} =

∫
Θ

∫
X

L[θ, δ(x)]dFX (x|θ)dFπ(θ). (2.14)
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When there are probability densities, this becomes

r(π, δ) =

∫
Θ

∫
X

L[θ, δ(x)]f(x|θ)π(θ)dxdθ. (2.15)

An application of Fubini’s theorem and some algebraic manipulation yields

r(π, δ) = Em {ρ[π, δ(X )]} =

∫
X

∫
Θ
L[θ, δ(x)]dFθ|X (θ)dFm(x), (2.16a)

=

∫
X

∫
Θ
L[θ, δ(x)]π(θ|x)m(x)dθdx. (2.16b)

This form is often easier to use. The Bayes risk of a decision rule is the metric that
combines prior information, data collection, and subsequent conclusions.
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3 Pre-posterior Analysis

There are several elements that one must combine: (a) the possible ways one might collect
data, (b) the possible outcomes, (c) the conclusions that one might draw once the data
are collected, and (d) the resulting risk of doing so. The Bayesian analyst would then run
through this for all the ways one might collect data and then select the scheme with lowest
risk.

3.1 Actions, loss, and decision rules for reliability problems

First, we need to augment the basic concepts introduced in the previous section to make
them specific to our problem. Let

• aa and ar be the actions. For our problem, we propose

aa: conclude that the system does meet its reliability requirements (i.e., accept)

ar: conclude that the system does not meet its reliability requirements (i.e., reject)

• s be the index of possible data collection schemes. For the initial analysis, the strategy
might be to collect one more observation at any one of the leaf nodes in the system.
The notation, however, allows for any collection of pre-specified data collection options.
For example, a simple extension would be to consider an ensemble of data collection
schemes s(i, n) where one collects n new observations at node i 1.

• L(θ, a, s) denote an expanded loss function where θ is the true state of nature, a is the
ultimate action taken, and s is the sampling strategy for collecting data. This expansion
allows for measuring the cost of collecting data. For our purposes, We propose that
we start with a very simple right/wrong loss function that does not depend on s, i.e.,

L(θ, aa, s) =

{
1 if R(θ) < Rreq system is not OK and we disagree
0 if R(θ) ≥ Rreq system is OK and we agree

(3.1a)

and

L(θ, ar, s) =

{
0 if R(θ) < Rreq system is not OK and we agree
1 if R(θ) ≥ Rreq system is OK and we disagree

(3.1b)

This formulation only works when the data collection alternatives are of essentially
equal difficulty and expense. We address the issue of incorporating data collection
costs in Section 6. For notational simplicity, let Θa denote the set of θ ∈ Θ such that
R(θ) ≥ Rreq and Θr = Θ/Θa, so Θa ∪Θr = Θ.

• Xs denote a possible outcome that could be observed under data collection scheme s,
i.e., Xs is the RV associated with the data that we might collect with scheme s.

1There are many potential realizations for s(i, n), e.g., envy, gluttony, greed, lust, pride, sloth, wrath [1].
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• X s denote the outcome space of data collection under scheme s. When it is clear from
the context, x will be used to refer to an element of X s, otherwise xs will be used.

• δs(Xs) denote the decision rule that states when we chose data collection scheme s and
observe data Xs, then we choose action δs(X

s), which for our problem, is either aa or
ar. Once data has been collected, a natural thing to do is to let δs(X

s) be the action
that minimizes the risk ρ, i.e., the action whose posterior probability of being correct
corresponds to a maximum:

δs(X
s) =

{
aa if ρ[π(θ|Xs), aa] < ρ[π(θ|Xs), ar]
ar otherwise

. (3.2)

Applying the definition of expected loss [Eq. (2.7)] yields

δs(X
s) =

 aa if

∫
Θ
L(θ, aa, s)dF

θ|Xs
(θ) <

∫
Θ
L(θ, ar, s)dF

θ|Xs
(θ)

ar otherwise
, (3.3)

where θ|Xs represents the conditional distribution of θ given the result of the mapping
Xs. Because L(θ, a,s) is simple [Eq. (3.1)], this reduces to

δs(X
s) =

 aa if

∫
Θr

dFθ|Xs
(θ) <

∫
Θa

dFθ|Xs
(θ)

ar otherwise
. (3.4)

However, these integrands are just the posterior probabilities:

δs(X
s) =

{
aa if Prπ(θ|Xs

)[Θr] < Prπ(θ|Xs
)[Θa]

ar otherwise
, (3.5)

or equivalently,

δs(X
s) =

{
aa if Prπ(θ|Xs

)[Θa] < 0.5
ar otherwise

. (3.6)

3.2 Bayes risk for reliability problems

This structure basically describes what we would do in practice for the military, although
we don’t perform the formal Bayesian calculation. We would tell them a system no longer
meets its requirements if our best guess of its reliability (which we often interpret as our
50% confidence number), rightly or wrongly, fell below the requirement value.

Moreover, our often imprecise usage of “confidence”, a word from the frequentist, not the
Bayesian world, links well to Bayes risk. When applying the decision rule above, the value
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of the Bayes risk of the decision is:

ρ[π(θ|Xs), δs(X
s)] =

{
Prπ(θ|Xs

)[Θr] if δs(X
s) = aa

Prπ(θ|Xs
)[Θa] if δs(X

s) = ar

(3.7a)

= min
{

Prπ(θ|Xs
)[Θa], Prπ(θ|Xs

)[Θr]
}

(3.7b)

= min
{

Prπ(θ|Xs
)[Θa], 1− Prπ(θ|Xs

)[Θa]
}

(3.7c)

In the context of our pre-defined decision rule δs, this is the posterior probability of making
the wrong conclusion.
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4 The Pre-posterior Problem

With the notation and formalism from Sections 2 and 3, we have the mathematical tools to
address the pre-posterior problem. For the various sampling options indexed by s, one seeks
to minimize the overall decision risk functional

r(π, δs, s) = EπEX
s

θ {L[θ, δs(X
s), s]} =

∫
Θ

∫
X s

L[θ, δs(X
s), s]dFX

s|θ(x)dFπ(θ), (4.1)

just as one does in any Bayesian decision problem. Note the addition of the argument “s” to
the risk function to index the data collection scheme. This looks straightforward, but there
is an inner calculation: ∫

X s
L[θ, δs(X

s), s]dFX
s|θ(x), (4.2)

which is evaluated at all values of θ in the outer integral (integrating over the prior on
θ), but the evaluation of the decision rule δs(X

s) depends on probabilities on the posterior
distribution of θ given Xs. That posterior draws on all of the prior π(θ), not just on the one
θ from the outer integral. We are writing the rule to determine what we will do with the
data when we get there, and then, in the outer integral, work through how we could have
gotten there. We have not written rules about how to use data based on an unknown true
single value of θ.

Rather than develop the calculus with the original form of r(π, δs, s) from Eq. (4.1), it is
more straightforward to utilize the alternate form

r(π, δs, s) = Em {ρ[π(θ|Xs), δs(X
s)]} =

∫
X s

∫
Θ
L[θ, δs(X

s), s]dFθ|Xs
(θ)dFm(x). (4.3)

This form emphasizes the fact that we first choose Xs according to the unconditional
marginal distribution for possible data and then base the risk confidence on the posterior
development given that data. The key difference from our earlier formulation is that the
valuation function (the loss) is inside of the integrals and is done separately and possibly
differently for each possible data value. It is not done outside the integral for some averaged
outcome. Combining everything yields [cf. Eq. (3.7)]

r(π, δs, s) =

∫
X s

min
{

Prπ(θ|Xs
)[Θa], Prπ(θ|Xs

)[Θr]
}
m(x)dx, (4.4a)

where

Prπ(θ|Xs
)[Θa] =

∫
Θa

f(Xs|θ)π(θ)

m(Xs)
dθ =

∫
Θa

π(θ|Xs)dθ. (4.4b)

Note that Eq. (4.4b) depends on Xs, not θ. The fairly simple equation above (at least
analytically) is what we need to compare sampling schemes. Equation (4.4a) may also be
expressed as

r(π, δs, s) =

∫
X s

min
Θ′

{∫
Θ′
f(x|θ)π(θ)dθ

}
dx, (4.5)
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where Θ′ is either Θa or Θr. Equation (4.4a) can be incorporated as part of an objective
functional:

J1 = r(π, δs, s) + λC(s) (4.6a)

or

J2 = r(π, δs, s)× [1 + C(s)], (4.6b)

where C(s) quantifies the cost of the sampling scheme s and λ ≥ 0 weights C(s) relative to
r(π, δs, s). Now one can minimize J1 or J2 to locate the optimal scheme ŝ:

ŝ = arg min
s
J, (4.7)

where J can be either J1 or J = J2.
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Figure 2: Graphical representation of a simple 3-node example model.

5 Examples: Limiting Cases

Here we work out in detail some small examples to show that our formula for risk makes
sense and gives the correct result in some limiting cases. This also gives some insight into
the process.

Consider a simple three-node system consisting of two leaf/parent nodes and one root/system
node, illustrated in Fig. 2.

Output Ω2 and Ω3 at the leaf nodes 2 and 3, are given by respective PCEs [Eq. (2.1)] and
output Ω1 at the root node “1” is given by Ω1 = Ω1(Ω2,Ω3). In this example, we consider
two sampling schemes, corresponding to collecting additional data at either node 2 or 3.

For our purposes, we make the simplifying assumption that we can partition the subspaces
Θa and Θr by node: Θa,2, Θr,2, Θa,3 and Θr,3, and posit that

Θa = Θa,2 ⊗Θa,3 (5.1a)

and

Θr = {Θa,2 ⊗Θr,3,Θr,2 ⊗Θa,3,Θr,2 ⊗Θr,3} . (5.1b)

Using this decomposition of Θ, consider r(π, δ2, 2) from Eq. (4.5):

r(π, δ2, 2) =

∫
X 2

min
Θ′

{∫
Θ′
f(x|θ)π(θ)dθ

}
dx, (5.2a)

=

∫
X 2

min

{∫
Θa,2

f(x|θ2)π(θ2)dθ2 ×
∫

Θa,3

π(θ3)dθ3,∑
(i,j)

∫
Θi,2

f(x|θ2)π(θ2)dθ2 ×
∫

Θj,3

π(θ3)dθ3

}
dx, (5.2b)

where the indices i and j specify pairs {(a, r), (r, a), (r, r)} corresponding to integration over
the “reject” subspace Θr. By exchanging the node indices of Eq. (5.2), the corresponding
analytical form for r(π, δ3, 3) results. With Bayes risk expressed this way, we can test some
limiting cases against intuition.
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5.1 Example 1: Node 2 is completely characterized

Suppose node 2 represents a sub-system that is completely characterized. In other words,
its prior is a multivariate delta function given by

π(θ2) = δ (θt
2 − θ2) , (5.3)

where, without loss of generality, we assume θt
2 ∈ Θa,2 is the true value for θ2. We define

Πj,k =

∫
Θj,k

π(θk)dθk, (5.4)

where j is either a or r and k is 2 or 3. Thus from our assumptions, Πa,2 = 1 and Πr,2 = 0.
Now, from [Eq. (5.2)], we compute

r(π, δ2, 2) =

∫
X 2

min

{
Πa,3

∫
Θa,2

f(x|θ2)π(θ2)dθ2, (5.5)

Πr,3

∫
Θi,2

f(x|θ2)π(θ2)dθ2

}
dx (5.6)

=

∫
X 2

min

{
Πa,3,Πr,3

}
f(x|θ2)dx (5.7)

= min

{
Πa,3,Πr,3

}∫
X 2

f(x|θ2)dx (5.8)

= min

{
Πa,3,Πr,3

}
. (5.9)

This says that the risk of testing a node that is already completely characterized, i.e.,
where all of the epistemic uncertainty has already been removed, is independent of that
node. That is, no useful information will be gained. This is in accordance with our intuition.
If node 3 is also completely characterized, then it follows that the risk of testing at either
node 2 or node 3 is 0; testing at either node yields no new information, but there is no risk
involved.
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5.2 Example 2: Node 2 is completely characterized, but node 3 is
not

As above and recalling that Πa,2 = 1 and Πr,2 = 0, we can write the risk at node 3 as

r(π, δ3, 3) =

∫
X 3

min

{∫
Θa,3

f(x|θ3)π(θ3)dθ3, (5.10)∫
Θr,3

f(x|θ3)π(θ3)dθ3

}
dx (5.11)

≤ min

{∫
X 3

∫
Θa,3

f(x|θ3)π(θ3)dθ3dx, (5.12)∫
X 3

∫
Θi,3

f(x|θ3)π(θ3)dθ3dx

}
. (5.13)

Now, by interchanging the order of integration using Fubini’s theorem and recalling that∫
X 3

f(x|θ3)dx = 1,

for any value of θ3, we have

r(π, δ3, 3) ≤ min

{∫
Θa,3

π(θ3)dθ3,

∫
Θr,2

π(θ3)dθ3

}
(5.14)

≤ min

{
Πa,3,Πr,3

}
(5.15)

≤ r(π, δ2, 2). (5.16)

This shows that the risk of testing at node 3 when node 3 is not completely characterized is
always less than testing at node 2, again in accordance with our intuition.
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6 Numerical Implementation

6.1 Model initialization

To set Ω and Ω, which collectively determine system reliability, we use the “truth”, denoted
as θt for the leaf nodes. For our tests, the set of θij has either linear or exponential time-
dependent forms:

θij =

{
θij = θ1

ij + θ2
ijt linear time dependence

θij = θ1
ij + θ2

ij exp
(
−θ3

ijt
)

exponential time dependence
. (6.1)

With a sampling of ξj for each leaf node and the resulting output Ω1 [determined from
Eqs. (2.1) and (2.2)], we then set Ω and Ω such that R(θt) = Rreq (e.g., a desired reliability
of Rreq = 0.8):

R(θt) =

∫ Ω

Ω
D(Ω1|θt)dΩ1 = Rreq. (6.2)

This calculation allows for elements of Θ to be categorized as in either Θa or Θr, which is
necessary to evaluate Eq. (4.5). For our initial optimizations, time will be fixed (e.g., t = 0
or t = 1) to simplify calculations.

6.2 Integration limits

State of initial prior distributions

For the jth leaf node, where θj =
{
θij
}qj
i=0

, the prior π(θj) is a product of Gaussian and
gamma probability density functions (PDFs):

π(θj) =
1√

2πσj
exp

[
−

(θ0j − µj)
2σ2

j

]
× 1

Γ(α)
β−ανα−1

j exp

(
−νj
β

)
, (6.3)

where µj and σj are the mean and standard deviation of the Gaussian PDF, Γ(α) is the

standard gamma function, νj =
∑qj

i=1 θ
2
ij/i! (the variance of the jth PCE), and α and β are

the shape and scale parameters for the gamma PDF, respectively. Typically, µj is estimated
or known for a given node/sub-component, e.g., σj = 0.5, and α = β = 1 for all j. This
prior can be used to estimate reasonable integration limits for Eq. (4.5):

µj − b0σj ≤ θ0j ≤ µj + b0σj (6.4a)

and

0 ≤
qj∑
i=1

θ2
ij/i! ≤ b1, (6.4b)
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where νj =
∑

i θ
2
ij/i! ≤ b1 corresponds to a hyperellipsoid. For simplicity, the hyperellip-

soid is approximated as qj-orthotope (i.e., a generalized qj-dimensional hypercube), with a

hypervolume given by
∏qj

i=1 2
√
b1i!. In practice, b0 = 3 and b1 = 5 may be sufficient

Limits of the sampling spaces

Integration limits for the sampling spaces can be based on the available data or truth model
to get an estimate on X s, e.g., within a few standard deviations of the mean.

6.3 Evaluation of the Bayes risk of a decision rule

As an illustrative example, we consider the simple three-node system consisting of two leaf
nodes and one root node in Fig. 2, with only 2 possible sampling strategies, s = 2 or s = 3,
corresponding to sampling at node 2 or node 3, respectively.

For convenience, Eq. (4.5) is repeated here:

r(π, δs, s) =

∫
X s

min
Θ′

{∫
Θ′
f(x|θ)π(θ)dθ

}
dx,

where Θ′ = {Θa,Θr}. For sampling schemes at leaf nodes, this corresponds to a (qs + 1)-
dimensional integral in Θ-space, with qs (the order of the s-leaf-node PCE) corresponding
to the sampling scheme. Monte Carlo integration with quasi-random sequences [7, 12] is a
suitable method for numerical integration of Bayes risk:

r(π, δs, s) ≈
|X s|
Nx

Nx∑
i=1

min
Θ′

{
|Θ′|
Nθ′

Nθ′∑
j=1

f
(
x(i)|θ(j)

)
π
(
θ(j)
)}

, (6.5)

where |X s| and |Θ′| denote the volumes of the respective spaces. For each of the Nx sample
integration points of X s, Eq. (6.5) requires two integrations of f(x|θ)π(θ) because of the
minimization over Θ′ involves Θa and Θr. For a given leaf node sampling scheme s, the Nθ′

sample integration points will be generated according to the following routine:

1. Based on the limits specified by Eq. (6.4), generate a set of Nθ sample points, each
denoted as θ(i), via, e.g., quasi-random sequences such as the Faure sequence [13, 7, 12].

2. For every point, determine whether θ(i) is an element of Θa or Θr. This calculation is
similar to what is described in Section 6.1: If R [θ(i)] ≥ Rreq, then θ(i) ∈ Θa, otherwise

θ(i) ∈ Θr.

3. Repeat steps 1 and 2 for all Nθ points.
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For a given data point x and a state θ, the likelihood function f(x|θ) in Eq. (6.5) is
evaluated in the following manner. Let

Ω(ξ|θ) =

q∑
i=1

θiHi(ξ), (6.6)

i.e., leaf-node output Ω is represented by PCE, which is a function of the Gaussian RV ξ,
conditional on θ. Then, the likelihood f(x|θ) is given by

f(x|θ) =
∑
ξ∗∈Ξ∗

Pξ(ξ∗)

|Ω′(ξ∗|θ)|
, (6.7)

where Pξ(·) is the known probability distribution of ξ [in this work, ξ ∼ N (0, 1)] and Ξ∗ is

the set of roots of x − Ω(ξ). The set Ξ∗ is determined from an efficient polynomial solver
[10, 11].
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7 Conclusion and Future Work

In this chapter we present a methodology to select an optimal sampling strategy based
on Bayesian decision theory, incorporating a combination of data and prior information
via Bayes theorem. By defining an appropriate loss function [Eq. (3.1)] and decision rule
[Eq. (3.2)], this methodology determines which component/node should be tested to opti-
mally improve the reliability estimate. A numerical implementation is described that scales
linearly with the number of components available for testing, although evaluating integrals
of Eq. (6.5) may be expensive in general (depending on the PCE order of the leaf nodes, the
number of sample points required for accurate integration, etc.).

Future work involves a numerical demonstration of this sampling strategy for a mul-
ticomponent system, potentially adapting the formalism to determine which components
might benefit from redundancy or other fault-tolerant techniques to further improve the re-
liability estimate. In addition, developing criteria that a priori limit the number of integral
evaluations (e.g., by performing a preliminary analysis of the likelihood functions and prior
distributions) may decrease the computational expense of this strategy and are also being
considered.
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