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Abstract

This report describes a Laboratory Directed Research and Development (LDRD) project to
use of synchrotron-radiation computed tomography (SRCT) data to determine the conditions
and mechanisms that lead to void nucleation in rolled alloys.

The Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory (LBNL)
has provided SRCT data of a few specimens of 7075-T7351 aluminum plate (widely used for
aerospace applications) stretched to failure, loaded in directions perpendicular and parallel
to the rolling direction. The resolution of SRCT data is 900nm, which allows elucidation of
the mechanisms governing void growth and coalescence.

This resolution is not fine enough, however, for nucleation. We propose the use statistics
and image processing techniques to obtain sub-resolution scale information from these data,
and thus determine where in the specimen and when during the loading program nucleation
occurs and the mechanisms that lead to it.

Quantitative analysis of the tomography data, however, leads to the conclusion that the
reconstruction process compromises the information obtained from the scans. Alternate,
more powerful reconstruction algorithms are needed to address this problem, but those fall
beyond the scope of this project.
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Chapter 1

Introduction

An accurate description of the kinetics of void nucleation, growth and coalescence is of
paramount importance for the understanding of ductile fracture and failure in structural
alloys. Over the years, many models have been proposed that rely on empirical and simplified
assumptions for the modeling of these phenomena. These simplified models, however, are
inadequate to model the evolution of anisotropic damage in rolled aluminum alloys. Thus,
more detailed descriptions based on micro-mechanics are needed to model more accurately
the processes that lead to failure and therefore obtain more reliable predictions.

Specimens of fractured aluminum alloy are imaged in-situ using Synchrotron-Radiation
Computed Tomography (SRCT). This shows the attenuation to X-rays that is correlated to
the density of the material, thus uncovering its internal structure. This is adequate to reveal
the three-dimensional structure of inclusions and voids, and the mechanisms that lead to the
formation of void chains, void sheets, and fracture surfaces. This information is crucial for
developing a material model.

The resolution of SRCT is 900nm, which is insufficient for the determination of void
nucleation mechanisms. Thus, we propose to analyze SRCT data using state-of-the-art tools
of computational homology to determine the evolution of debonding. The computation of the
Betti numbers is most relevant to the determination of whether interfaces are debonded or
not: the first number B1 is the number of connected components (fully debonded inclusions),
B2 is the numbers of tunnels (partially debonded inclusions), and B3 is the number of isolated
voids (fully formed voids) [9, 10].

As SRCT data is obtained about the loading of a particular specimen, we propose the
use the tools of statistics and computational homology to track the evolution of the Betti
numbers and therefore follow the evolution of the debonding of interfaces, and from this
information understand the mechanisms that lead to void nucleation.

1.1 Outline

Chapter 2 addresses the motivation for the experiment, which is the anisotropic damage
phenomenon observed in rolled aluminum allows. Based on this behavior, we propose a
set of experiments to be performed at the Advanced Light Source. Chapter 3 describes the
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tomographic scan and reconstruction processes. Finally, Chapter 4 describes the quantitative
analysis performed on the data obtained from tomography and the results.
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Chapter 2

The Experiment

We requested 144 hours and were granted 96 hours of time (48 hours starting 9:00am on
July 13, 2010 and 48 hours starting 9:00am on November 10, 2010) on the micro-tomography
beamline (beamline 8.3.2) at the Advanced Light Source at Lawrence Berkeley National
Laboratory in order to investigate the evolution of micron-scale damage and the role of mi-
crostructural mechanisms during the large deformation of high strength aluminum alloys.
These materials are of considerable commercial importance owing to the substantial increase
in yield and failure strength as compared with other aluminum alloys. This strength increase,
however, comes at the expense of decreased ductility and toughness. In order to use these
materials to their full potential, it is critical that the mechanisms leading to failure be under-
stood much more fully than is currently the case. There is a paucity of good microstructural
data available to help identify the roles of initiation, growth and ultimate coalescence of de-
fects leading to material failure. This lack of data has not stopped the development of failure
models, most of which attempt to mimic the macroscopic response of the material through
matching such measures as toughness or ultimate strain. The micro-tomography facility at
beamline 8.3.2 provides a unique opportunity to greatly increase our understanding of failure
of high strength materials.

2.1 Anisotropic Behavior

A typical geometry used in materials testing of ductile metals is the notched tensile specimen,
in which a stress concentration is intentionally introduced through reducing the cross-section
in the notch region. This geometry has been widely used because the configuration of the
notch affects the stress triaxiality which is known to promote void growth [11]. Figure 2.1
shows four different geometries of decreasing severity, with specimen R1 inducing relatively
high triaxiality (and hence increased void growth) and R4 inducing relatively low triaxiality.
In addition to the differences in damage that can be introduced by specimen geometry, it
has been observed that there can be large differences in ductility associated with specimen
orientation (i.e., loading in the rolling, short transverse or long transverse directions of rolled
plate), even in materials that do not exhibit much anisotropy in their elastic or plastic
response. In many materials, the issue of inhomogeneity is also of concern.

Figure 2.2 shows typical load-displacement curves for geometry R3, clearly demonstrating

13



Figure 2.1. Four notched tensile specimens for the charac-
terization of failure in ductile metals.

both the anisotropy and inhomogeneity that exists in this material (aluminum allow 7075-
T7531). This material shows much more ductility in the rolling direction compared with
either of the transverse directions, and the material at the surface exhibits greater strength,
though this appears to have little influence on the ultimate ductility, as given by the strain
to failure. Missing in these results is any understanding of the microstructure of the material
and the manner in which this microstructure affects the initiation and growth of damage,
ultimately leading to failure.

Preliminary experiments using the hard X-ray micro-tomography system on beamline
8.3.2 suggested that it is well suited to examine the microstructural characteristics of the
material of interest: 7075 aluminum. Pure aluminum allows sufficient transmission of X-rays
to permit high resolution of specimens that are on the order of millimeters thick. For example,
at 30 keV the transmission through 2 mm pure aluminum is nearly 60% (associated with
an attenuation length of 3.7 mm). In the 7XXX series of aluminum, a typical constituent
(inclusion) particle that acts as a source of void nucleation is the intermetallic Al7Cu2Fe,
which has an attenuation length of 0.7 mm. Thus, there is reasonable contrast between the
matrix material and the inclusion particles. It is important to recognize, however, that there
are other important microstructural inhomogeneities, such as dispersoids and precipitates,
that are not visible through X-ray tomography because of their small size.

In order to determine whether these small microstructural features play a significant role
in the failure mechanisms, we performed fractography of the failure surfaces and scanning
electron microscopy (SEM) on sectioned specimens after they were examined with X-ray
tomography.

As an initial proof of concept, two fractured specimens were examined on beamline 8.3.2
by ALS scientists in November 2009. The results were extremely encouraging that the pro-
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posed work will provide useful data for understanding the evolution of damage in aluminum
alloys. Figure 2.3 shows a single reconstructed micrograph of a section of a smooth tensile
specimen of 7075-T7351 aluminum that had previously been loaded to failure. This par-
ticular specimen had been loaded in the short-transverse direction and then one end of the
fractured specimen was machined to provide a quarter-round section with lateral dimension
on the order of 2.5 mm. The full image on the left shows a cross-section within the 3D
fracture zone, capturing the damaged, but non-fractured material just beneath and adjacent
to the failure surface. The rolling direction is indicated in this figure by a dashed line. The
images show two main features: constituent particles, which are on the order of 5 µm in
lateral dimension and appear lighter than the aluminum matrix, and voids, which are the
dark regions and are as large as 40 µm. As expected with this type of material, the con-
stituent particles tend to align with the rolling direction in the form of stringers. What is
more interesting is that the voids are closely associated with these strings of particles. The
set of experiments involving in-situ and interrupted testing at various stages of deformation
is designed to reveal the detailed nature and evolution of the damage and its relationship to
the material microstructure.

Figure 2.3. Reconstructed cross section near the failure
surface of a transverse specimen of 7075-T7351 aluminum.

2.2 The Specimens

We propose to perform a comprehensive set of tests in which the internal damage at the
micron-scale will be monitored under different levels of load. Our tests will focus on a single
material (7075 aluminum) subject to different modes of deformation that will introduce
multiple damage mechanisms. The specimens are designed to allow investigation of the
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varying effects of such parameters as loading orientation, stress triaxiality and level of shear.
All loading is quasi-static.

We started the experiments with in-situ smooth tensile tests of specimens, followed by a
notched specimen. The smooth specimens are cylinders of 1.27mm diameter and 31.75mm
length. The notched specimens have a minimum diameter at the root of the notch of 1.5mm,
which allows this region to be fully within the image at maximum resolution.

Loading takes place using a loading frame designed at ALS beamline 8.3.2. We performed
a series of tomographic observations of the material under increasing load, beginning with
the virgin, unloaded specimen and proceeding until failure has occurred. The load is held
constant while the X-ray images are collected in order that all images are captured at the
same material state. The specimens are fabricated in such a manner that the loading will
be oriented along each of the principal material directions and in off-axis orientations (i.e.,
at 45 degrees to the principal directions) as well.

The corresponding loading programs and indicators of tomographic scans are shown in
Figure 2.4. The curves, which correspond to similar specimens, have indicators that show
where in the loading program the tomographic scan took place. The actual load levels
corresponding to the scanned specimens are shown in Table 2.1, together with a designated
name to identify them throughout this report. Where the load level is indicated by a hyphen,
the scan was performed on a failed specimen.

Additional tests will involve shear-dominated loading using the Iosipescu or V-rail geom-
etry which uses a traditional uniaxial testing machine to induce a nearly uniform state of
shear stress across a section of the specimen [4]. As with the notched tensile tests, specimens
will be machined to allow loading both in the principal material directions and in the off-axis
directions.

For each specimen we estimate that approximately eight tomograms will be required to
monitor the evolution of damage during the deformation. The first will characterize the
virgin material, then tomograms will be taken at approximately five load levels prior to
specimen failure. After failure, two additional tomograms will be taken one associated with
material near each of the failure surfaces. We requested a total of 72 shifts over the two year
span of the experimental work to complete all of the desired measurements.

The data collected through these observations will play a key role in the ongoing modeling
of anisotropic damage in structural materials of our team, of which the quantification of the
debonding of inclusions that concerns this report is part. To this end, we use the high-
performance visualization infrastructure at Sandia to construct virtual 3D models and thus
visualize, explore and mine the data provided by the experiments performed at the ALS.

We focus on the nucleation of voids and their association with the microstructure of the
material with loading. Since for each specimen, we have data from the unloaded state to
the failed state, we should be able to track individual microstructural features throughout
the damage evolution process. The experimental team consists of Prof. George C. Johnson,
Department of Mechanical Engineering, University of California at Berkeley and a group
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(a) (b)

(c) (d)

Figure 2.4. Loading programs and directions with scan in-
dicators: (a) Smooth specimen, longitudinal (L); (b) Smooth
specimen, long transverse (T); (c) Smooth specimen, short
transverse (S); (d) Notched specimen, longitudinal (L).
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(a) Smooth L

Scan Stress
Designation

number [MPa]
1 37.75 SL1
2 381.25 SL2
3 452.97 SL3
4 456.75 SL4
5 430.32 SL5
6 407.68 SL6
7 - SL7

(b) Smooth T

Scan Stress
Designation

number [MPa]
1 38.26 ST1
2 362.45 ST2
3 406.48 ST3
4 473.12 ST4
5 452.55 ST5
6 - ST6

(c) Smooth S

Scan Stress
Designation

number [MPa]
1 38.62 SS1
2 390.02 SS2
3 451.81 SS3
4 455.67 SS4
5 463.39 SS5
6 447.94 SS6
7 428.64 SS7

(d) Notched L

Scan Stress
Designation

number [MPa]
1 35.09 NL1
2 477.23 NL2
3 533.38 NL3
4 529.87 NL4

Table 2.1. Scans and load levels.
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of researchers from Sandia National Laboratories in Livermore, California: James Foulk,
Huiqing (Helena) Jin, Wei-Yang Lu and Alejandro Mota. This team brings a broad range
of expertise in experimental micro- and nano-mechanics, constitutive modeling and compu-
tational analysis.
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Chapter 3

Tomography and Reconstruction

The process of acquiring tomographic data can be divided in two phases: scan and recon-
struction. During the scan process the specimen is subjected to the X-ray beam, and a
camera captures the projected image. The specimen is rotated and the process repeated to
obtain projections from different angles. These projections are difficult to interpret, thus
further processing is required. It is possible to build a 3D representation of the original
specimen using these projections by a process known as reconstruction. We briefly discuss
the parameters used in the scans and concentrate in the reconstruction, which is a sensitive
procedure.

3.1 Tomographic Scan

Data obtained from SRCT consist of gray-scale 2D images which show attenuation to soft X-
rays (5-60keV, 0.248-0.021nm). This attenuation can be correlated to the mass density of the
material, with bright areas being zones of higher density (inclusions) than dark areas (voids).
These images are processed further by reconstruction to obtain full 3D representations that
reveal the internal structure of the material.

The resolution of SRCT data is 900nm, which allows elucidation of the mechanisms
governing void growth and coalescence. This resolution is not fine enough, however, for
nucleation. We propose the use of statistics and image processing techniques to obtain sub-
resolution scale information from these data, and thus determine where in the specimen and
when during the loading program nucleation occurs and the mechanisms that lead to it.

3.2 The Reconstruction Process

The operation which is being performed on the scanned data is known as the Radon transform
[7, 8]. It provides a way to relate an n-dimensional function to its (n − 1)-dimensional
projections (sinograms). For X-ray computed tomography, the analogy between the Radon
transform and our data is adequate under the assumption that the following do not introduce
significant distortions:: the photon beam has a finite size and is not completely collimated.
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Assume that the object can be sampled with infinite resolution. In other words, the
beam travels in a straight line and is infinitely thin along its whole length. As a result,
any scattering from the object is a source of model error. In order for tomography to work
in a straightforward way, the beam must interact with the object only through absorption.
Photons either pass through a section of the object without interaction or they are absorbed.
Note that re-emission at a different energy is acceptable as long as these photons cannot be
detected by the measurement equipment. It is possible to account for scattering within the
volume, but this is not standard X-ray tomography. Single scattering within the volume
results in linear blurring of the object and can be incorporated into a Radon transform
framework. Multiple scattering (the photon interacts more than once before exiting the
viewing volume) is a non-linear effect. For this reason, objects should interact with the
beam only weakly, as defined by the first Born approximation [7, 8].

Since we are attempting to reconstruct a 3D volume and at the moment we are ignoring
sampling effects, the data that are collected are 2D projections (sinograms) of a 3D object.
In each data set, bright spots exist where the object was less dense, and dark spots occur
where the object is dense as a result of more absorption. Brute force inversion of the Radon
transform occurs in two steps: 1) Compute the adjoint of each of the data sets. This is
known as back-projection. The data is smeared back across the viewing volume so that the
reconstructed quantity (absorption coefficient) is assumed to be constant over a line passing
through the volume to the detector. This is the same line that the X-ray took to the detector.
2) Repeat step 1 with all of the data sets and perform a sum.

The linear attenuation coefficient µS
ē of the object S at energy ē is defined as

µS
ē := − log(ρ), (3.1)

in which ρ is the probability that a photon of energy ē will not be absorbed or scattered in
a unit-thickness slab of the object S on a line orthogonal to the slab. The relative linear
attenuation coefficient is defined as

µē := µS
ē − µ0

ē, (3.2)

in which µ0
ē is a reference linear attenuation coefficient, that of air on our case. Roughly

speaking, the CT number that is obtained for each voxel after reconstruction is proportional
to its average relative attenuation coefficient. Note that the relative attenuation coefficient
leads to dark regions where the material is less dense and bright regions where the material
is more dense, in contrast to the 2D projections (sinograms).

Assume that the reconstruction process takes place in slices perpendicular to a vertical
axis. Then let L be the straight line that is the path of all the X-ray photons for a particular
source-detector pair and let m be the corresponding monochromatic ray sum. Then this sum
can be approximated by

m ≈
∫ D

0

µē(x, y) dz, (3.3)

in which z is the distance to the point along the line L, x and y are the coordinates of a
point in a given slice, and the integration limits denote the nearest and farthest surfaces of
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the object along the line L, respectively. Now let l denote the distance of line L to the origin,
and let θ be the angle between x and L. The Radon transform is [7, 8]

µē(x, y) = − 1

2π2
lim
ε→0

∫ ∞

ε

1

q

∫ 2π

0

∂m

∂l
(x cos θ + y sin θ, θ) dθ dq. (3.4)

The implication of this transform is that the distribution of the relative linear attenuation
in an infinitely thin slice is uniquely determined by the set of all its line integrals. There are
some important difficulties, however, in applying this transform to computed tomography,
some of which we address in the next section.

3.3 Reconstruction from Sampled Data

It is known that any insufficiency in the data leads to aliasing (artifacts) in the reconstructed
object [7, 8]. Perfect Radon reconstruction is only possible if the projections are known with
infinite precision at all points. This is because any finite sized object cannot have limited
spatial frequency content; therefore any frequency content beyond the Shannon-Nyquist limit
will be aliased into lower frequencies. This has the effect of adding a null space to the Radon
operator. Thus, a priori information must be introduced to resolve the ambiguity.

An effective but simple assumption is that the object which is desired is the object with
the minimum energy. More sophisticated reconstruction methods may allow for edges and
other image features to be penalized less severely.

The null space has other implications with respect to noise. This noise could arise from the
photon counting process or the quantization of the detector voltage. Below a certain signal
to noise ratio it is desirable to limit the contribution of the noisy data to the reconstructed
object. The most popular method is known as Tikhonov regularization, which allows fidelity
to the data and the fidelity to the minimum energy solution to be traded off in a linear fashion
with respect to the signal to noise ratio. Using regularization ensures that the reconstructed
absorption coefficient does not go to infinity when there is low signal to noise ratio.

There are a number of reconstruction algorithms. The most efficient of these is based
upon the Fourier slice Theorem and is attributed to Delaney and Bresler [5]. The Fourier
slice theorem says that the Fourier transform of a projection yields a slice of the Fourier
transform of the object in a direction orthogonal to the viewing direction (in Fourier space).
The last part is, in some sense, not all that important because it simply results in a rotation
of the object. If the object is highly symmetric, however, this could lead to significant alias-
ing. Delaney and Bresler [5] contribution was to realize that there is a significant amount of
redundancy in the Fourier transform computations. As a result, it is possible to reconstruct
a 2D slice in O(n log(n)) operations as opposed to O(n2 log(n)) for the basic Fourier recon-
struction algorithm. Note that the Fourier transform is an O(n log(n)) algorithm, where n
is the number of pixels. One can trade off reconstruction accuracy for increased sampling
and computational requirements.
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In summary:

1. The Radon transform (3.4) determines the reconstruction from the set of all line inte-
grals. In computed tomography there exist only a finite set of measurements.

2. The measurements are assumed to contain information used to estimate the line inte-
grals. Inaccuracies in these estimates due to the finite size of the X-ray beam, scatter,
photon statistics, detector inaccuracies and so forth could severely affect the result of
the Radon transform.

3. It is not trivial to obtain and efficient and accurate algorithm for the implementation
of the Radon transform. Much research has been performed in the development of
algorithms that yield acceptable reconstructions in a timely manner and that work
well with limited and inaccurate data [5, 7, 8].

For our scans, we were limited to the reconstruction software available at the Advanced
Light Source. The software package is called Octopus [2].
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Chapter 4

Quantitative Analysis of Tomography
Data

Synchrotron-radiation computed tomography (SRCT) is a technique that provides informa-
tion about the internal structure of a material by probing it with soft X-rays. The attenuation
of the X-rays is directly correlated to the mass density of the material, thus providing infor-
mation about the internal structure of a specimen. Data obtained from the SRCT scanner
are in the form of a series of 2D images, each of which show the internal structure of the
specimen in a slice that has a thickness equal to the resolution of the scanner, which is
900nm for the Advanced Light Source (ALS). A full 3D scan of the specimen is built by
combining the series of 2D images into a stack with ImageJ, an image-processing software
from the National Institutes of Health [1]. The data thus produced ranges from 5 GB to
25 GB per scan. Each data set is rendered using ParaView [3] on high capacity computing
clusters at Sandia, due to the size of the data sets and the high amount of computing power
and memory required to process them.

4.1 Distribution of Attenuation in Scans

Each voxel in the 3D image has a 16-bit integer associated with it, its CT number, which
is proportional to its average relative attenuation (3.2) to soft X-rays, and which henceforth
will be referred to as attenuation. The images are further processed by building a histogram
of these integers. A typical view of the reconstructed images as obtained from Octopus [2]
is shown in Figure 4.1

Another typical reconstructed image, this time from scan NL4 is shown in Figure 4.2,
where the dark areas indicate voids and the bright areas hard particles. The pixel resolution
is 900nm.

In order to be able to distinguish between the aluminum matrix, hard particles, and
voids in the images we need to determine which values of their corresponding attenuation
distinguish them. First start by constructing histograms of attenuation values of regions that
are visually devoid of bright or dark zones. The corresponding histograms of attenuation
values are normalized so that their mean is equal to zero and their standard deviation equal to
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(a) (b) (c)

Figure 4.1. Typical section of reconstructed images for
smooth transverse (T) specimen near the center: (a) ST1,
near intact; (b) ST5, void growth; (c) ST6, coalescence and
rupture.

one. Figure 4.3 shows the results. It is evident from the figure that the resulting distributions
are close to a normal probability distribution.

By contrast, the attenuation distribution of a region in the scan that is outside the
specimen is essentially a Dirac δ, as shown in Figure 4.4. This indicates that the attenuation
distribution in the matrix is a feature of the matrix and not the scan or reconstruction
processes.

Low (voids) and high (inclusions) density regions can then be extracted by filtering from
the image voxels that deviate from the normal distribution. A typical histogram with the
distribution of the attenuation values for a scan is shown in Figure 4.5.

The histogram was produced by taking all the slices in the reconstruction of scan ST1 and
extracting a rectangular parallelepiped (the size in pixels of which is shown in the heading
of the plots) that avoids the boundaries of the specimen. The boundary is not included as
it contains a high concentration of voxels with both low and high attenuation values, which
would bias the statistics. This effect does not seem to be a genuine structural feature of the
specimen but rather an artifact of either the scan or reconstruction.

Note that the histogram of Figure 4.5 still shows a rather smooth distribution of the atten-
uation values but one that deviates significantly from a normal distribution. For comparison,
a normal distribution with the same mean and standard deviation is shown as a black line
in the figure. A distribution with a more pronounced peak than the normal distribution has
high kurtosis, which means that there are significant contributions to the standard deviation
from outliers. For this particular scan the statistics are shown in Table 4.1.

Given the very large size of the data sets (almost 2 billion voxels for this set alone), the
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Figure 4.2. NL4 scan near the center of the specimen.
Dark areas are voids and bright areas are particles. Diameter
of specimen is 1.27mm

Number of voxels (N): 1904894496
Mean (µ): 34819.6
Standard deviation (σ): 698.2
Skewness (γ): -0.6
Kurtosis (κ): 56.0

Table 4.1. Statistics for scan ST1.
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Figure 4.5. Histogram of attenuation values for scan ST1:
(a) linear-linear scale; (b) linear-log scale.
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statistics are computed by means of moments about zero that are transformed into moments
about the mean. In this manner, the statistics are computed in a single pass as follows

µk :=
1

N

N∑
i=1

xk
i , k ∈ [1, . . . , 4], (4.1)

µ̄3 :=µ3 − 3µ1µ2 + 2µ3
1, (4.2)

µ̄4 :=µ4 − 4µ1µ3 + 6µ2
1µ2 − 3µ4

1, (4.3)

µ :=µ1, (4.4)

σ :=
√

µ2 − µ2
1, (4.5)

γ :=
µ̄3

σ3
, (4.6)

κ :=
µ̄4

σ4
− 3, (4.7)

in which N is the number of voxels in a given set, xi the attenuation value for voxel i, µ is
the mean, σ is the standard deviation, γ is the skewness, and κ is the excess kurtosis, defined
in a way that both the skewness and kurtosis of the normal distribution are zero.

The statistics for all the scans (except SL7, for which the reconstruction showed heavy
artifacts, rendering it useless) are summarized in Table 4.2.

Given that the attenuation distribution for all the scans is similar to the normal distri-
bution, we provide an interpretation for the skewness and kurtosis in terms of a comparison
with their corresponding values for the normal distribution, which are zero.

Positive skewness means a distribution tilted toward −∞ and negative skewness means a
distribution tilted toward +∞, both with respect to a distribution with zero skewness. Note
that all scans have relatively low negative skewness, which means that their distributions of
attenuation are highly symmetric, as it is evident from the example in Figure 4.5.

Kurtosis is a measure of the concentration of values around the mean. A leptokurtic
distribution (high kurtosis) has a high central peak and many outliers as compared with
the normal distribution. A platykurtic distribution (low kurtosis) has a flattened central
peak and few outliers as compared to the normal distribution. Note that the attenuation
distributions for all scans are highly leptokurtic, which means that they contain a significant
amount of outliers and a high peak at the center, as it is evident from Figure 4.5.

4.2 Separation of Voids and Particles

The distribution of attenuation values in the aluminum matrix follows closely that of the
normal distribution, as seen in Figure 4.3; while the background is highly monochromatic,
as shown in Figure 4.4. These two observations indicate that the normal distribution of the
matrix attenuation values is a feature of the specimen.
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Scan
Number of Voxels Mean Std Dev Skewness Kurtosis

N µ σ γ κ
NL1 1493515944 38290.6 712.0 -0.6 32.4
NL2 1518934032 34458.7 645.7 -0.5 30.3
NL3 1401099000 34439.6 654.5 -1.0 38.1
NL4 1365235320 34459.5 681.5 -1.4 46.7
SL1 2301320960 30978.9 628.4 -0.7 60.8
SL2 2131860605 34849.6 706.7 -0.5 42.1
SL3 1974380079 34432.9 588.5 -0.7 44.8
SL4 1726160744 34428.9 639.5 -0.7 30.2
SL5 1542430692 34435.3 693.5 -2.6 83.1
SL6 1466857008 34443.4 747.9 -3.5 96.1
SS1 2084499200 34222.2 533.0 -0.8 56.0
SS2 2048435200 34383.3 601.5 -0.8 54.2
SS3 1954356000 34385.1 633.9 -1.4 59.9
SS4 1878272000 34386.9 679.2 -2.3 77.6
SS5 1871206400 34388.7 696.0 -2.5 81.5
SS6 1846365204 34389.5 744.4 -3.1 90.6
SS7 364860840 34365.3 627.1 -0.3 8.1
ST1 1904894496 34819.6 698.2 -0.6 56.0
ST2 1895833544 34408.7 556.6 -1.5 91.3
ST3 1891507845 34411.9 556.6 -1.1 67.8
ST4 1792388864 34414.9 575.6 -1.2 66.1
ST5 1557048744 34417.6 748.2 -3.3 97.4
ST6 766397352 27870.9 703.0 -4.6 118.9

Table 4.2. Statistics for all scans.
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On the other hand, the high values of kurtosis observed in Table 4.2 for all scans indicate
a significant presence of outliers that are located toward the tails of the distribution. This
is evident in the semi-logarithmic plot of Figure 4.5.

These observations suggest that in order to find the distribution of outliers contained in
the full histogram of a scan, such as the one in Figure 4.5, one would need first to identify the
normal distribution associated with the attenuation values of its matrix. Provided that this
identification can be performed, the distribution of outliers would be given by the difference
between the full distribution and the matrix normal distribution.

The identification of the normal distribution associated with the matrix was performed
using two methods: 1) A least-squares fit using the central part of the histogram that has no
obvious outliers (from µ−σ to µ+σ), and 2) The random sample and consensus approach or
RANSAC [6], which finds a model from data that contains a significant amount of outliers.
The theory behind the RANSAC method is not addressed here; we defer to Fischler and
Bolles [6] who first introduced this technique.

The results of using both the least-squares and RANSAC approaches are shown in Fig-
ure 4.6. It shows the normalized scan histogram (circles), a normal distribution with the
same mean and standard deviation as the full distribution (black), the best-fitting normal
distribution found by RANSAC (blue), a normal distribution that was fitted by least-squares
to the central part (red), and the difference between the full distribution and the least-squares
fit (green).

The results shown in Figure 4.6 are typical in the sense that, in our computations, the
least-squares approach consistently produced better results than the RANSAC approach.
Although the theory behind the RANSAC method is sound and robust, it is known that
in order to find the model that best fits the data with a high probability, the RANSAC
algorithm may require a large number of iterations. We found that the computational expense
associated with the RANSAC approach was not justified, especially considering that in this
case the location of outliers is known beforehand, and therefore one can quickly produce a
good fit by using least squares.

The central part of the outlier distribution computed in this manner sometimes yields
small negative values. These values are unrealistic and are associated with fits that have
larger distribution values than the original curve. These negative values can be ignored, as
we are interested in outliers at the tails. With this in mind, we now proceed to define the
criterion that separates voids and particles from the aluminum matrix. The green curve in
Figure 4.6 indicates the difference between the full attenuation distribution and the normal
distribution associated with the matrix. Thus, it also indicates the attenuation distribution
of outliers. Note that the full histogram is the only true probability density function (PDF)
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Figure 4.6. Identification of matrix normal distribution for
scan ST1. Black, normal with µ and σ. Red, least-squares fit.
Blue, RANSAC fit. Green, outlier distribution. (a) linear-
linear scale; (b) linear-log scale.
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involved here, in the sense that

P [a ≤ X ≤ b] =

∫ b

a

f(x) dx, (4.8)

∫ +∞

−∞
f(x) dx =1, (4.9)

f(x) =g(x) + h(x), (4.10)

in which X is a random attenuation value, f(x) represent the histogram (taken as a con-
tinuous function), x is the attenuation (taken as continuous as well), and g(x) and h(x)
are functions representing the matrix and outlier attenuation distributions, respectively. It
follows from these definitions that, given p ∈ [0, 1], the attenuation value x with probability
of being an outlier p and probability of being in the matrix 1− p is given by solutions of

p h(x) = (1− p) g(x), (4.11)

if such solutions exist. As an example, assume that p = 1
2
, which means finding attenuation

values for which it is equally likely that they are part of the matrix or outliers. The criterion
(4.11) is reduced to finding solutions for h(x) = g(x). In terms of Figure 4.6 this requires
finding points where the green and red curves intersect, if any such points exist. From the
figure, in particular in the semi-logarithmic plot, it is clear that two such points exist, one at
each tail of the distribution. Thus, there are two attenuation values for which it is equally
likely that they correspond to matrix or outliers: one for voids for the left tail and one for
particles for the right tail.

Solving (4.11) for a given p does not pose significant computational challenges, as the
histograms are represented as pairs of values (attenuation, distribution). Therefore finding
solutions is relatively simple by using interpolation between points.

The results of applying criterion (4.11) to all the scans with p = 0.95 are shown in
Table 4.3. The selected value of p = 0.95 gives reasonable assurance, with 0.95 probability,
that each limit (α for voids and β for particles) separate outliers from the matrix.

A visualization of the criterion applied to scan ST1 is shown in Figure 4.7, which shows
the central part of the specimen looking down the loading axis. The high density of both
voids and particles is due to the fact that the entire length of the specimen is represented in
the figure. The rolling direction in the specimen appears to be oriented at about 135 degrees.

4.3 Extraction of Under-Resolved Information

The approach defined in (4.11) is more than adequate to reveal the structure of inclusions
and voids in the material, and provides the means to establish the mechanisms that lead to
the formation of void chains, void sheets, and eventually fracture surfaces. The resolution of
the images, however, is insufficient to elucidate the mechanisms that lead to nucleation of the
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Scan
Scan Scan Fit Fit Void Particle
Mean Std Dev Mean Std Dev Threshold Threshold

µ σ µ̄ σ̄ α(0.95) β(0.95)
NL1 38290.6 712.0 38287.9 596.8 35800 40744
NL2 34458.7 645.7 34456.4 538.9 32217 36662
NL3 34439.6 654.5 34437.8 533.3 32223 36610
NL4 34459.5 681.5 34458.0 541.8 32215 36653
SL1 30978.9 628.4 30975.5 477.8 29040 32900
SL2 34849.6 706.7 34845.2 546.0 32646 37024
SL3 34432.9 588.5 34430.6 468.4 32514 36327
SL4 34428.9 639.5 34428.2 504.8 32389 36445
SL5 34435.3 693.5 34436.2 468.0 32572 36276
SL6 34443.4 747.9 34444.1 477.7 32539 36319
SS1 34222.2 533.1 34219.9 423.5 32472 35954
SS2 34383.3 601.5 34380.9 473.2 32434 36313
SS3 34385.1 633.9 34382.4 479.2 32414 36320
SS4 34386.9 679.2 34384.6 485.2 32404 36328
SS5 34388.7 696.0 34386.3 490.0 32389 36343
SS6 34389.5 744.4 34388.9 500.3 32356 36377
SS7 34365.3 627.1 34370.5 533.8 32232 36525
ST1 34819.6 698.2 34814.6 523.4 32703 36903
ST2 34408.7 556.5 34404.2 410.6 32729 36063
ST3 34411.9 556.6 34407.4 413.6 32735 36061
ST4 34414.9 575.6 34410.7 419.5 32724 36076
ST5 34417.6 748.2 34418.8 456.8 32606 36201
ST6 27870.9 703.0 27879.5 388.0 26348 29415

Table 4.3. Normal fits and void and particle thresholds for
p = 0.95.
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(a)

(b)

(c)

Figure 4.7. Scan ST1 after applying separation criterion
(4.11) with p = 0.95. Voxel size = 900nm (a) all outliers; (b)
voids; (c) particles.
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voids, namely, the initial formation of a void from the debonding of the interface between an
inclusion and the metallic matrix, or the propagation and growth of a void from an already
debonded interface that existed in the undamaged material.

Casual observation of the images reveals that in the damaged state there exist regions
of lower-than-average density around inclusions that are relatively far away from the most
damaged regions. This seems to indicate that there is a process of debonding and void
nucleation in progress around these inclusions. Nevertheless, the resolution of the images
provided by SRCT is 900nm per voxel, which is not fine enough to determine the evolution
of the nucleation process with confidence.

The full 3D image for each scan can be filtered to contain only voxels that have an
attenuation value below the threshold that defines voids as given in Table 4.3. The image
is then transformed to binary by assigning a value of 1 to present voxels and 0 to absent
voxels. The image contains now information about voids only, which can be analyzed using
state-of-the-art tools of computational homology to determine the evolution of debonding
[9, 10].

In particular, the computation of the Betti numbers is most relevant to the determination
of whether interfaces are debonded or not. In summary, for a three-dimensional topological
space X, only the first three Betti numbers Bi are relevant (the rest are zero): the first number
B1 is the number of connected components in the space, B2 is the numbers of tunnels, and
B3 is the number of isolated voids. It can be seen that the number of connected components
is directly related to fully debonded inclusions, the second to partially debonded inclusions
and the third to fully formed voids.

4.4 Error in Reconstruction

We start by quantifying the volume fraction of voids and particles as follows. Once the atten-
uation thresholds for voids and particles have been defined, these fractions follow immediately
by simple voxel counting. The results of these computations are shown in Table 4.4.

The nature of the volume fractions with loading can be better appreciated in Figure 4.8.
The significant change of particle volume fraction with loading for all specimens is completely
unexpected. This is not something that can be realistically attributable to the kinetics of
the loading and deformation, and one can only conclude that there is a significant source of
error either in the scanning or reconstruction processes.

As supporting evidence that the reconstruction is the source of the error, Figure 4.9
shows sections of reconstructed slices for different scans. In each of the sections, artifacts in
the form of wings, streaks or both propagate from voids and particles. These artifacts enter
the statistics as spurious outliers, compromising the reconstructions and rendering them
inadequate for quantitative analysis, as demonstrated in Table 4.4 and Figure 4.8.
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Scan
Void Particle

Volume Fraction Volume Fraction
f × 10−3 h× 10−3

NL1 2.06 3.04
NL2 2.17 3.25
NL3 2.57 3.54
NL4 2.91 3.92
SL1 3.88 5.49
SL2 3.99 5.66
SL3 3.13 4.45
SL4 4.02 4.85
SL5 6.22 7.47
SL6 6.62 8.13
SS1 2.74 4.07
SS2 2.94 4.29
SS3 3.39 5.49
SS4 4.13 5.94
SS5 4.34 6.21
SS6 4.96 6.87
SS7 4.12 2.55
ST1 4.36 5.98
ST2 3.77 5.54
ST3 4.22 5.97
ST4 4.73 6.43
ST5 7.55 9.33
ST6 9.27 9.22

Table 4.4. Void and particle volume fractions.
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Figure 4.8. Evolution of void and particle volume fractions
with loading: (a) NL Specimen; (b) SL Specimen; (c) SS
Specimen; (d) ST Specimen.
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(a) (b)

(c) (d)

Figure 4.9. Reconstruction Artifacts: (a) NL3 Scan; (b)
SL4 Scan; (c) SS6 Scan; (d) ST1 Scan.

41



42



Chapter 5

Conclusion

The Octopus software used for the reconstruction of the tomography data was the only one
available to us [2]. It is very fast, as it can perform a reconstruction of a 5GB to 25GB
data set from 20 minutes to 1 hour. The accuracy of the reconstruction may be good for
qualitative analysis; but as our results show, it proves inadequate for quantitative analysis.

Nevertheless, we believe that the tools developed for quantitative and statistical analysis
of tomographic data are robust and sound, and we plan to use them in the context of more
accurate reconstructions.

Alternate, more accurate reconstruction methods exist, although they are more compu-
tationally expensive [7]. The scans were performed from July 13 to July 15 of 2010, and
therefore there was no time available for research and implementation of alternate recon-
structions schemes. Although we will continue to pursue the use of other, more powerful
reconstruction methods, that effort will be beyond the scope of this project.
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