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Abstract 
 

Understanding the interaction of aerosol particle clusters/flocs with surfaces is an area 
of interest for a number of processes in chemical, pharmaceutical, and powder 
manufacturing as well as in steam-tube rupture in nuclear power plants.  Developing 
predictive capabilities for these applications involves coupled phenomena on multiple 
length and timescales from the process macroscopic scale (~1m) to the multi-cluster 
interaction scale (1mm – 0.1m) to the single cluster scale (~1000 - 10000 particles) to 
the particle scale (10nm – 10m) interactions, and on down to the sub-particle, 
atomic scale interactions.  The focus of this report is on the single cluster scale; 
although work directed toward developing better models of particle-particle 
interactions by considering sub-particle scale interactions and phenomena is also 
described.  In particular, results of mesoscale (i.e., particle to single cluster scale) 
discrete element method (DEM) simulations for aerosol cluster impact with rigid 
walls are presented.  The particle-particle interaction model is based on JKR adhesion 
theory and is implemented as an enhancement to the granular package in the 
LAMMPS code.  The theory behind the model is outlined and preliminary results are 
shown.  Additionally, as mentioned, results from atomistic classical molecular 
dynamics simulations are also described as a means of developing higher fidelity 
models of particle-particle interactions.  Ultimately, the results from these and other 
studies at various scales must be collated to provide systems level models with 
accurate “sub-grid” information for design, analysis and control of the underlying 
systems’ processes. 
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 1.  INTRODUCTION 

 
 
Understanding particulate interactions and collective dynamics is of interest in a number of fields 
(e.g., soils, powder processing, colloidal suspensions, interstellar dust, etc.).  In particular, 
particles are often small enough to be aerosolized.  Often these particles form clusters of flocs as 
the agglomerate under the influence of long-range attractive interactions.  The interaction of 
aerosolized clusters of particles with surfaces is vitally important to a number of applications 
including the potential dispersal of radioactive particles during steam-tube rupture in nuclear 
energy power plants.  Numerical simulation has the potential to provide detailed information 
about the behavior of these particulate systems.  Modeling the behavior of aerosol particles 
during agglomeration and cluster dynamics upon impact with a wall is of particular interest.  
Ultimately, this involves modeling a range of scales:  from the multi-cluster interaction scale 
(1mm – 0.1m) to the single cluster scale (~1000 - 10000 particles) to the particle scale (10nm – 
10m) interactions, and on down to the sub-particle, atomic scale interactions.  In this report we 
describe efforts to develop and implement physical models for aerosol particle-particle and 
particle-wall interactions.  We focus on the cluster-wall interactions based on particle-scale 
models; but enhancing these models based on atomic information is also discussed.   
 Future work will consist of deploying these models to simulate aerosol cluster 
behavior upon impact with a rigid wall for the purpose of developing relationships for impact 
speed and probability of stick/bounce/break-up as well as to assess the distribution of cluster 
sizes if break-up occurs.  These relationships will be developed consistent with the need for 
inputs into system-level codes.  Section 2 gives background and details on the physical model as 
well as implementations issues and efforts to develop higher fidelity particle-particle interaction 
models.  Section 3 presents some results of the particle-based (i.e., “mesoscale”) simulations 
based on models discussed in Section 2.  Section 4 presents several conclusions. 
 
 

2.  MESOSCALE MODEL AND IMPLENTATION 
 
2.1. JKR Particle Adhesion Model 
 
Following the work of Chokshi et al. [1] a number of researchers (e.g., [2-7]) have used particle-
based techniques for investigating coagulation/agglomeration of small particles.  What each of 
these has in common is that their physical models for the interaction of pairs of aerosol particles 
in the direction normal to the point of contact between the particles are derived from JKR theory 
[8].  JKR theory [8] combines Hertz’s analysis of elastic deformation of contacting spheres with 
a constant attractive adhesive force when particles are in contact.  The resulting equation for the 
magnitude of the normal force between contacting spheres of identical material and size is 
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where E is the Young’s Modulus,  is the Poisson ratio,  is the surface energy per unit area, 
d=2R is the diameter of the particle, and a is the radius of the contact circle between the spheres.  
The first term on the R.H.S. is the standard Hertz result.  The second term is the force due to the 
surface adhesion of the particles.  Equation (1) gives the relationship between the force and the 
contact circle radius for identical spheres; although the results can be generalized to convex 
particles of differing size and materials.  Furthermore, the contact radius a can be related to the 
relative displacement  as 
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where the critical displacement at separation under tensile force is c with 
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and at equilibrium under zero applied force the contact circle radius 
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Note that for Hertzian contact without adhesion  = 4a2/d.  Equation (1) can be rewritten in a 
non-dimensional form as 
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where Fc=3d/4 is the force required to separate the adhered spheres.  Figure 1 shows the value 
of the normal force as a function of the overlap, . 
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Figure 1:  Normal force as a function of overlap, .  Note: at contact,  = 1.0, force is non-
zero due to adhesion while force for  > 1.0 applies only for separation after contact.  

 
 As noted above, many researchers seem to follow the work of Chokshi et al. in 
using the JKR theory of adhesion.  However, alternatives have been proposed and debated in the 
literature most notably the DMT theory [9].  The differences between these were initially 
conceptual in formulating the problem, but led to very different predictions including different 
values of the pull-off force (Fc=3d/4 for JKR and Fc=d for DMT).  Later other approaches 
were developed to reconcile these discrepancies [10, 11].  From the later studies it was 
determined that JKR theory is appropriate for soft materials (i.e., low Young’s Modulus) with 
high surface energies and large size whereas DMT theory is relevant for hard materials with low 
surface energies and small size; the key dimensionless parameter being 
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where z0 is the separation at which the attraction between the sphere surfaces is maximum.  At 
high , JKR applies and low , DMT.  The second equality follows from the discussion below 
(see equation (7)).  Tsai et al. [12] have raised objections to JKR, DMT and the “unified” MYD 
theories.  In particular, a formulation which is consistent with long-range van der Waals 
attraction between macroscopic spheres may require formulating the problem along the lines of 
[12]; although it is not entirely clear that this is necessary.   
 In fact, it is difficult to reconcile the long-range attractive Van der Waals 
interactions with the surface energy adhesion energy without a detailed understanding of the 
nature of the short-range repulsive interactions (see z0 in equation (6)) and surface structure and 
thermodynamics.  The importance of the short-range repulsion can be seen if figure 2a where the 
potential 
 
















)2(6

1
)/)(exp()( 0 Rr

rrArU
ij

ijij                                                                                 (7) 



10 

 
is plotted.  Here, rij is the center-center particle separation, r0 is the shift parameter, R is the 
radius of the particles (assumed equal sized), A is the Hamaker constant, and  determines the 
range of the exponential repulsion (see z0 in equation (6)).  Alternatively, one could integrate the 
Lennard-Jones “12-6” atomistic potential to obtain the well know Hamaker attractive Van der 
Waals potential for macroscopic spheres and a repulsive term which has an analogous short-
range repulsive lengthscale [21].  The difficulty with this approach is that the 1/r12 repulsive term 
in the LJ potential has no physical basis, but is chosen for computational expedience being 
“strong enough” to model Born repulsion of electron shells.  When this term is integrated it 
becomes “weaker” (1/r7).  However, this doesn’t seem physical as the nature of the repulsion 
remains a quantum mechanical and sub-atomic.  Hence we choose to model the short-range 
repulsion as just that – by an exponential term (as is often done in atomic systems) shifted to the 
surface of the particle.  This allows for demonstrating the significance of the range of the 
repulsive term as it determines the depth of the potential well and the strength of the “non-
contact” attractive force as seen in figure 2b.  In figure 2b, the JKR force is also compared to that 
determined from the non-contact interparticle potential equation (7).  As can be seen, depending 
on the range of the repulsive force the magnitude of the Van der Waals force near contact can be 
a significant fraction of the JKR adhesion force.  Also, the reason for taking the repulsive force 
to be a shifted exponential form becomes apparent in figure 2b from the small range between the 
zero force equilibrium distance, the attractive force at contact, and the pull-off force at d+c. 
 

    
 

Figure 2:  (a) Non-contact interparticle potential – equation (7) with ; (b) negative of 
interparticle force from potential in Equation (7).  Lines same as in (a) except red line is 

negative of JKR force from equation (1). 
 
 Without further investigation into possible solutions to these issues, the JKR theory 
has been implemented as the particle-scale/mesoscale interaction model in the current work.  
Hence, materials with high  are being simulated.  Should it become necessary, a change to 
DMT would be trivial.  Questions about compatibility with the Hamaker equation for long-range 
van der Waals attraction have been set aside initially since we neglect these interactions at 
present; although they can be included. 
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2.2. Model Implementation 
 
 The above model is easily implemented in Discrete Element Codes which allow for 
simulating the many particle dynamics of cluster formation and behavior upon impact.  DEM is 
the large particle analog of Molecular Dynamics.  Newton’s equations of motion are solved for 
each individual discrete particle.  The positions of all the particles are specified as the initial 
condition for the simulation.  Then, using equations (2) and (3) the radius of the contact circle 
can be found for any pair of particles that are in contact.  That is, delaying the discussion of 
tangential contact forces until later, for identical spheres i and j in contact, we note that  =d- rij 
where rij=|ri-rj|.  Having calculated  for a pair of particles, solving equation (2) for a now 
allows us to find the force acting between the particles via equations (4) and (5).  The forces on 
each particle are summed and Netwon’s First Law is integrated to get the velocities and 
integrated again to get the displacement.  This is done for each particle.  The particles are then 
moved and the new configuration allows us to repeat the process thereby iteratively evolving of 
the multi-particle dynamics.   
 Accordingly, equations (2-5) form the basis of the adhesive particle model 
implemented in Sandia’s Large Atomic-Molecular Massively Parallel Simulator (LAMMPS) 
code.  The current LAMMPS implementation of adhesive particle models is similar to previous 
work [5]; however a few differences in the details should be pointed out.  As part of the general 
distribution, LAMMPS contains a “Granular” package that allows one to perform particle 
simulations using the Discrete Element Method (DEM) [13].  LAMMPS’s basic granular model 
for grain-grain interactions is based on the visco-elastic contact forces derived in [14].  These 
include a normal Hertzian elastic and a dissipative force describing the inelasticity of real 
materials; although the exact atomistic nature of the dissipative force remains an open subject.  
Note the dissipative force does not appear in equations (1) or (5).  The tangential frictional forces 
are represented similarly using a Mindlin-type model [15].  In practice this amounts to a spring 
and a dashpot model for both the normal and tangential contact forces with the addition of a 
slider in the tangential model due to the Coulomb friction limit.  To this basic model were added 
additional terms representing the surface adhesive force at contact as well as other terms, which 
restrict relative translation, rotation and twisting.  
 In the basic LAMMPS granular model, the user specified parameters for the normal 
interactions are the normal stiffness (with units of force/distance) 
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where  is Poisson’s ratio and  and are the shear and bulk “viscosities”, respectively, of the 
material.  Note we have again assumed equal sized spheres of identical materials.  In the 
model of [5] following [15] the normal damping coefficient is written as 
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with m the mass of the particle.  Equation (9) is derived heuristically with the empirical 
coefficient  related to the coefficient of restitution.  The visco-elastic model underlying 
equation (8) by contrast allows the damping coefficient to be specified independent of the normal 
stiffness – at least there is no explicit dependence on the normal stiffness even though there is an 
implicit dependence through the relative normal displacement .  Similarly, the user specified 
parameters for the tangential interactions are the coefficient of friction  
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where Fn and Ft are the normal and tangential force magnitudes, respectively.   The tangential 
stiffness is defined by 
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where G is the shear modulus.  Equation (11) is based on the analysis of Mindlin and Deresiecz 
for the case of no-slip [15].  Implied by equation (11) is the fact that the tangential force-
displacement relationship depends on the relative normal displacement.  Finally, and tangential 
damping coefficient can also be specified; however it has been ignored (i.e., set equal to zero) in 
the current work. 
 Given the above discussion, the magnitude of the total normal force acting on 
particles i and j in contact, again assuming identical particles, can be written as 
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where (a) is given in equation (2) and vij = |vi – vj| is the relative velocity of the pair and nij the 
unit normal vector and the contact.  The magnitude of the tangential force is given by 
 



13 

d

k

F

F t

c

ijt




3

4,                                                                                                                           (13) 

 
where kt is defined in equation (11) and the tangential force is limited by  the adhesion analog of 
equation (10), namely 
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Note it is more convenient to write the tangential force in terms of  and not a as in equation 
(12).  Recall that  is the quantity calculated directly during the force determination; 
subsequently equation (2) is solved for a and used in (12).  In fact, equation (2) is solved 
analytically (selecting the root that gives real values) and implemented in the code.  The total 
force on particle i can now be written as 
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where t is the unit vector tangential to the contact and in the direction of sliding (n x t = 0).  
Additional forces including long-range van der Walls attraction or electrostatic repulsion (i.e., 
DLVO-type forces) and forces due to particle-fluid interactions (Brownian, drag, etc.) are 
available in LAMMPS or by coupling LAMMPS to a fluid flow solver and can be included at a 
later date. 
 
2.3. Adhered Particle Contact Constraint Model 
 
In addition to the JKR adhesion which applies to the forces between particle pairs in contact, a 
model for sintered constraints between contacting particles has been implemented.  In addition to 
the tangential and normal forces a torque between contacting particles is included.  This model 
follows [5] and details can be found there.  Here we outline some of its aspects in the LAMMPS 
implementation.  The total torque on a particle i is given by 
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where tr is the unit vector tangential to the contact and in the direction of rolling, Tr is magnitude 
of the torque on the particle due to the rolling resistance and Tt is the magnitude of the torque due 
to resistance twisting of the particle about the contact normal.  As mentioned, further details can 
be found in [5].  The twisting torque is limited by 
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while the rolling torque satisfies 
 

critrr kM                                                                                                                        (18) 

 
where kr = 4Fc(a/a0)

3/2 is the rolling “stiffness” and crit is the is the critical rolling displacement 
[5] which is a user specified value.  This sintered particle model can be used in conjunction with 
the JKR adhesion or the user can choose to perform simulations with JKR adhesion only. 
 
2.4. Enhancing Particle Interaction Models via Microscale (Atomistic) 
Simulations 
 
As noted above, a number of outstanding questions remain for connecting the particle-level inter-
particle interactions with a detailed atomistic approach.  In particular, while most mesoscale 
inter-particle force models include a viscous damping term (see equations (8), (9), and (12)) to 
dissipate energy the actual nature of the dissipation mechanisms being modeled in particle 
collisions are not well understood.  Additionally, as noted previously, the connection between the 
longrange, noncontact Van der Waals attraction, adhesion due to surface energy effects and the 
constraints (sliding, rolling, twisting) induced, and particle surface structure remain poorly 
characterized.  These phenomena play a crucial roll in developing better models of particle-
particle collisions leading to sticking, bouncing, fracture, etc.  Many have sought to predict these 
phenomena by considering energy balance at the particle scale [22,23,24].  Therefore, to 
elucidate these mechanisms we perform atomistic classical molecular dynamics simulations of 
colliding particles of nanometric dimension.  Initially we have focused on the nature of the 
dissipation mechanisms in collisions of purely repulsive particles. 

The nano-sized particles considered here are roughly spheres of various radii, R 
constructed from a face-centered cubic (fcc) lattice of Lennard-Jones atoms. We simulated 
different sizes of nano-particles ranging from R = 6.5  to R = 29.4. As noted, the particles are 
not perfect spheres; there exist faceted faces on the particles due to the underlying fcc lattice of 
atoms. To simulate collisions, two identical particles are placed with facets facing each other (see 
figure 3) and they are given equal and opposite center-of-mass velocities.  We use classical MD 
for this study and consider nanocluster constituent atoms whose potential is expressed by 
Lennard-Jones (L-J) potential: 
 



























































cutij

cutij
ijijij

rr

rr
rrrU

0

,4
)(

612


                                                                                  (19) 

 
where rij is an inter-atomic distance between atoms i and j, and rcut is a cut-off distance. We set 
rcut = 2.5 for atoms interacting within a single particle, which is typically used for the L-J 
potential.  In addition, we ignore cluster-cluster adhesive interactions, and therefore, we set rcut = 
21/6 (purely repulsive) for interactions between atoms belonging to different clusters.  Note that 
the units used here are the standard non-dimensional LJ units, i.e., the unit for energy , distance 
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, and the unit for mass m.  In addition to these units, the “derived” units for velocity √/m, 
temperature /kB, where kB is Boltzmann constant, and time  = (m 2/)1/2 are used. 

The full simulation procedure follows a number of steps.  First, two identical clusters are 
placed and thermally equilibrated over 10,000 MD steps, controlling temperature T = 0.02/kB 
using the Nose-Hoover thermostat. After reaching an equilibrium state, the clusters are given 
equal and opposite center-of-mass velocities and are thus set to collide with a relative collision 
velocity of vcoll.  The collision process is carried out in the microcanonical ensemble (NVE).  For 
most system sizes, vcoll is varied from 0.03√/m to 3.3√/m.  The time step is set to be t = 
0.005 for all cases. The relative residue of the total energy of a system during calculations is 
conserved around 10-5.  This is achieved for finite cutoffs by shifting the potential to zero at rcut. 
In order to quantify errors in calculated quantities, we perform multiple simulations for each 
collision velocity by setting different initial thermal velocities. 
 Figure 3 shows sample results for the various components of the total energy of colliding 
nanoparticles (vcoll = 2.0, R = 11.4).  Two features stand out.  First, due to the NVE 
ensemble the temperature of the particles increases which allows for “softening” due to melting 
of the FCC structure.  Secondly, large deformation of the particle is expected as indicated by the 
change in total potential energy.  This later difference should be related to the energy of cold 
work and an important component in the development of a thermo-mechanical model of particle-
particle impact. 
 
 

 
 

 
 
Figure 3:  Components of total energy during collision of particles of LJ atoms, R = 11.4 
and vcoll = 2.0√/m:  (a) total kinetic energy; (b) total potential energy; (c) temperature of 

particles. 
 

The simplest way to demonstrate the various dissipation mechanisms is in terms of the 
well know coefficient of restitution for colliding particles.  From data given in the energy budget 
a coefficient of restitution can be calculated according to 
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where Ethrm and Epot are the thermal and potential energy changes respectively and Kcm is the 
initial center-of-mass kinetic energy.  The coefficient of restitution is plotted in figure 4 as a 
function of vcoll.  Several regimes of particle behavior can be seen.  At low impact velocity the 
collision is elastic (e ≈ 1).  At vcoll ≈  0.4√/m a transition takes place and increasing the impact 
velocity decreases e.  As can be seen in the snapshots of the particles, this is due to increasing 
deformation of the particles.  Initially this deformation takes the form of dislocations along 
particular directions.  Increasing vcoll leads to increased plastic deformation.  At large vcoll (> ~ 
2.0√/m) the increased temperature allows for weakening of the FCC solid so that very large 
plastic flow can take place. 

 
 
 

 
 

     Figure 4:  Coefficient of restitution for nanoparticle (R = 11.4) collisions as a function 
in impact velocity.  Simulation snapshots indicate regimes of dissipative behavior. 

 
 From these results models of dissipation at the particle scale can be derived.  
Additionally, allowing inter-particle attraction and changing the particle composition will allow 
to explore dissipation mechanism and attractive interactions in a broader class of systems. 
 
 

3.  MESOSCALE SIMULATION RESULTS 
 
In this section, the mesoscale simulation setup and methods are described as well as results.  
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3.1. Simulation Method 
 
DEM simulations to study aerosol cluster impact and break-up were performed.  Identical 
spherical particles are the constituents of the clusters.  Initially, gravity, long-range (i.e., non-
contact) Van der Waals attraction and electrostatic repulsion between particles and the wall, and 
interaction with a background fluid have been ignored.  In order to perform the simulations the 
following steps were taken: 
 

 Generate initial fractal clusters 
o Build directly with target fractal dimension ~2.0 (ballistic cluster-cluster 

aggregation-like models – BCCA) 
 “Throw” clusters at flat, rigid wall varying impact velocity 

o Initially ignore fluid flow and particle-fluid coupling 
o Initially assume no random motion of particles, which may occur due to thermal, 

or turbulent fluctuations in the background fluid 
 Characterize agglomerate response: fracture probability and fragment size distribution, 

etc. 
 Develop models to predict response based on agglomerate characteristics and impact 

conditions 
 

In performing the simulations the flowing non-dimensional units were used 
 Length:  d = 1.0 
 Mass: m = 1.0 
 Time:  √d/g , where g is the acceleration of gravity, representing the time taken for a 

particle to fall its own diameter under the influence of gravity (g = 1.0 in non-
dimensional units) 

 Force: d 
 Energy: d2 

A key dimensionless ratio is /kn as can be seen by substituting equations (4) and (7) into 
equation (12) (see also equation (6) and the discussion concerning it).  It should be noted at this 
point that although we have a direct relationship between elastic material properties of a material 
and kn (equation (7)), for computational efficiency for very stiff materials (e.g., glass) the value 
of kn used in the simulations is several orders of magnitude smaller than the value determined by 
equation (7).  This is due to the stability of the time-stepping scheme where the timestep must 
satisfy t < √m/kn.  Hence the larger kn the smaller t.  Realizing this requires  to be adjusted 
accordingly in the simulation while keeping the ratio /kn equivalent to the physical value.  
Another key ratio for particle-particle (similar for particle-wall) collisions is  
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where v0 is the initial velocity of the particle (i.e., velocity prior to impact) and c is a constant 
related to converting the time units in the velocity to √m/kn which, according to the above, 
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originally had units of √d/g.  Equation (21) is the ratio of adhesion energy to kinetic energy 
for a single particle.  The value of this ratio is related to whether colliding particles will stick or 
not (ignoring inelastic dissipation in the collision) [1].  This ratio indicates that if  is to be scaled 
while keeping the ratio /kn constant then the velocity must be scaled as well to recover the 
correct stick or bounce behavior of the particle-particle (particle-wall) interaction. 
 
3.2. Aerosol Cluster Formation 
 
The initial conditions for a simulation of an aerosol cluster impacting a wall consists of 
specifying the geometry of the cluster.  It is well known that the fractal dimension of the cluster 
describing its geometry depends on the agglomeration process [16, 17].  A couple approaches 
can be taken to build these initial fractal clusters.  One can either simulate the exact formation 
process [e.g., 19, 20], or the clusters can be built by an algorithm which attempts to model the 
physical formation process [e.g., 18, cf. 6 and 7].  Since the former can be algorithmically and 
computationally intensive, the latter process will be adopted.  Figure 5a shows a representative 
cluster of 4096 particles generated from an algorithm similar to [18].  Figure 5b shows the 
method for determining the fractal dimension from the scaling of the radius of gyration with 
number of constituent particles in the cluster.  This algorithm yields clusters with fractal 
dimensions ~2.05.  Modifications can be made to yield fractal dimensions ~1.91 [18].  
Alternative algorithms can give clusters of arbitrary fractal dimensions.  One hundred random 
clusters were built with this cluster and simulated to determine the statistical results of cluster-
wall collisions. 
 
 

       
 

(a)                                                                (b) 
Figure 5:  (a) Representative aerosol cluster formed by model cluster generator and (b) 

radius of gyration of cluster versus number of constituent particles (4096 total 
constituent particles). 
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3.3. Cluster-wall Impact 
 
Taking the cluster of figure 5, one can “throw” it against a flat, rigid wall and observe the 
behavior as in figures 6.  The parameters for this simulation were /kn = 5x10-5, n = 50,  = 0.5 
the initial impact velocity of the cluster was 0.1d/.  The timestep t = 1x10-6 and the 
simulations were run for 2500000 t, well past the collision with the wall in all cases.  There was 
no attractive interaction between the wall and the individual particles, but the Hertzian elastic 
and frictional interactions are the same between the grain-grain and grain-wall interactions.  
Although the snapshots end before rebound of the cluster from the wall impact, it can be seen 
that these parameters give a very ductile-like response with no cluster fracture/break-up. 
 

       
 

       
 

Figure 6:  Snapshots of the cluster from Figure 2 impacting a flat, rigid wall. 
 
In contrast to low impact velocity collisions, figure 7 shows snapshots of moderate, 1.0d/ (left), 
and very high, 100d/ (right), impact velocities.  As can be seen, moderate impact velocities lead 
to cluster break-up into a number of smaller, ejected clusters of varying size while higher impact 
velocities can lead to nearly complete disintegration of the cluster.   
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Figure 7:  Snapshots of the cluster from Figure 2 impacting a flat, rigid wall at moderate 
velocity (left) and high velocity (right). 

 
 To quantify these observations we perform 100 identical simulations of different 
randomly generated clusters of 4096 particles and fractal dimension of ~2.05.  Figure 8 shows 
the results of these simulations plotted as the average fraction of ejected clusters of a given size 
versus cluster size.  The average is taken over the 100 simulations for each impact velocity.  The 
error bars represent the standard deviation of the fraction of clusters of a given size in the sample 
of 100 simulations.  For moderate and lower impact velocities the error bars large and many 
more simulations must be run to determine whether the same trend as in the small cluster size 
distribution continues.  Clearly, as the impact velocity increases the vast majority of ejected 
clusters are single particles. 

 

   
 
Figure 8:  Ejected cluster size distribution after collision with wall in terms of (a) fraction 

of total ejected clusters of a given size; and (b) close-up of small ejected clusters 
distribution, lines are guides to the eye. 

 
Based on the results in figure 8, it can be seen that the majority of ejected clusters are of small 
size (< ~50 particles), e.g., 1 in ~10000 ejected clusters has less than 50 particles for vimp = 1.0 
d/and fewer for higher impact velocities.  Although more simulations must be run at moderate 
and lower impact velocities to reduce the uncertainties in the results, it seems that smaller ejected 
cluster sizes have a clear power law behavior.  Therefore, ignoring larger cluster sizes and 
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recognizing the slight over-prediction of smallest cluster sizes for moderate impact velocities, we 
can tentatively propose an empirical scaling relation for use systems levels models as follows 


ii NNP ~)(                                                                                                                     (22) 

 
That is, the probability of a given ejected cluster size follows a power law in the ejected cluster 
size.  Note a normalization constant remains undetermined in (22) and care should be taken to 
find it particularly since (22) slightly over-estimates the smallest ejected cluster sizes for the 
moderate impact velocities.  From figure 8b an interesting result is suggested for the dependence 
of the exponent in (22) on the impact velocity. 

3.0~ impv                                                                                                                                 (23) 

 
Again the normalization constant remains undetermined.  Practically, if this empirical scaling 
relation holds this constant would be determined by the value of  at the onset of cluster break-
up.  Here it can be taken to be 2.5 giving  = 2.5 at collision velocity of 1d/. 
 

4.  CONCLUSIONS AND FUTURE WORK 
 
Physical models for aerosol particle dynamics and adhesion have been implemented in Sandia 
National Laboratories’ Large Atomic Molecular Massively Parallel Simulator.  Both sub-
particle, atomic level simulations and mesocale, particle-scale simulations have been performed.  
Initial results of atomic simulation provide promise that higher fidelity particle-particle 
interaction models can be developed, particularly with regard to dissipation mechanisms.  
Results from the mesoscale simulations indicate that this technique can be useful in developing 
scaling relationships for ejected cluster size distribution in floc-wall collision studies.  These 
models may prove useful in systems level codes where modeling of individual particles is too 
computationally intensive. 
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