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Abstract

Computational simulation must often be performed on domains where materials are rep-
resented as scalar quantities or volume fractions at cell centers of an octree-based grid. Com-
mon examples include bio-medical, geotechnical or shock physics calculations where interface
boundaries are represented only as discrete statistical approximations.

In this work, we introduce new methods for generating Lagrangian computational meshes
from Eulerian-based data. We focus specifically on shock physics problems that are relevant
to ASC codes such as CTH and Alegra.

New procedures for generating all-hexahedral finite element meshes from volume fraction
data are introduced. A new primal-contouring approach is introduced for defining a geometric
domain. New methods for refinement, node smoothing, resolving non-manifold conditions
and defining geometry are also introduced as well as an extension of the algorithm to han-
dle tetrahedral meshes. We also describe new scalable MPI-based implementations of these
procedures.

We describe a new software module, Sculptor, which has been developed for use as an
embedded component of CTH. We also describe its interface and its use within the mesh
generation code, CUBIT. Several examples are shown to illustrate the capabilities of Sculptor.
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Nomenclature

Alegra Arbitrary Lagrangian Eulerian General Research Application developed at Sandia.

CTH Eulerian-based code for simulation of high speed impact and penetration problems. Devel-
oped and maintained at Sandia National Laboratories.

CAMAL Set of meshing algorithm components developed for use in Cubit and for integration in
other FEA based tools. Includes tet, hex, quad and tri meshing as well as refinement and
smoothing.

CUBIT Computational simulation pre-processing software tool for mesh generation and geometry
manipulation. Developed and maintained at Sandia National Laboratories.

Exodus Mesh data format developed at Sandia.

Eulerian Grid Three-dimensional axis-aligned grid used as the computational domain for Eulerian-
based codes such as CTH.

Lagrangian Grid Finite element mesh typically used as the computational domain for Langrangian
based codes such as Presto.

Presto Sandias in-house explicit, transient, dynamic finite-element software package.

Sculptor New CAMAL software component developed as part of this work to generate hexahedral
and tetrahedral meshes from volume fraction data.

Spyplot Data manipulation and visualization module used by CTH. Volume fraction data can be
dumped from Spyplot module for use in Sculptor.
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1 Introduction

1.1 Motivation

Computational simulation must often be performed on domains where materials are represented
as scalar quantities or volume fractions at cell centers of an octree-based grid. Common examples
include bio-medical, geotechnical or shock physics calculations where interface boundaries are
represented only as discrete statistical approximations. CTH is an example of a code that utilizes
an Eulerian grid as its computational domain. The results of a CTH calculation are represented
as volume fractions in the individual cells of the domain. In practice, this is represented as a
3-dimensional array of scalar values ranging from 0.0 to 1.0, where 1.0 represents material that
completely fills the volume of the cell, and zero represents the absence of material. Values that fall
between represent the percentage of material, by volume, that is filling the volume of the cell.

There are situations where it is desirable that the results of the calculation of an Eulerian-based
code is used as input to a Langrangian, or finite element based code. For our application we focus
on the specific problem of generating a hexahedral finite element mesh from the volume fraction
data generated from CTH to be used as input to the finite element code, Presto. To accomplish this,
the scalar volume fraction data array must be interpreted and converted into a boundary aligned
hexahedral mesh that is of sufficient quality to be used in a finite element calculation.

Methods for generating Lagrangian meshes from Eulerian grids have been presented in the
literature (see Background section below). The CTH example provides unique and challenging
aspects that existing methods have not yet addressed. In particular, the problem of generating an
all-hex mesh in parallel, is of importance. In this work we introduce new approaches to solving
the all-hex meshing problem from volume fraction data that specifically address the problem in
the context of distributed memory parallel processing. We also introduce improved methods ap-
plicable for both serial and parallel processing. For example a new primal-contouring approach
is introduced for defining the fragment domains computed in CTH. New methods for refinement,
node smoothing, resolving non-manifold conditions and defining geometry are also introduced as
well as an extension of the algorithm to handle tetrahedral meshes.

We describe a new software module, Sculptor, which has been developed for use as an embed-
ded component of CTH. We also describe its interface and its use within the mesh generation code,
CUBIT. Several example meshes generated with Sculptor including shock physics examples are
shown.

1.2 Background

The development of general-purpose unstructured hexahedral mesh generation procedures for an
arbitrary domain have been a major challenge for the research community. A wide variety of
techniques and strategies have been proposed for this problem. It is convenient to classify these
methods into two categories: geometry-first and mesh-first. In the former case, a topology and
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geometry foundation is used upon which a set of nodes and elements is developed. Historically
significant methods such as plastering [1], whisker weaving [17] and the more the recent uncon-
strained plastering [15] can be considered geometry-first methods. These methods begin with a
well defined boundary representation and progressively build a mesh. Most of these methods de-
fine some form of advancing front procedure that requires resolution of an interior void and have
the advantage of conforming to a prescribed boundary mesh. Although work in the area is on-
going, the ability to generalize these techniques for a comprehensive set of B-Rep configurations
has proven a major challenge and has yet to prove successful for a broad range of models.

In contrast, the mesh-first methods start with a base mesh configuration. Procedures are then
employed to extract a topology and geometry from the base mesh. These methods include grid-
overlay or octree methods. In most cases these methods employ a Cartesian or octree refined
grid as the base mesh. Because a complete mesh is used as a starting point, the interior mesh
quality is high, however the boundary mesh produced cannot be controlled as easily as in geometry-
first approaches. As a result the mesh may suffer from reduced quality at the boundary and can
be highly sensitive to model orientation. In addition, grid-overlay methods may not accurately
represent the topology and geometric features as defined in the geometric model. In spite of these
inherent deficiencies, mesh-first methods have proven a valuable contribution to mesh generation
tools for modeling and simulation. In contrast to geometry-first techniques, fully automatic mesh-
first methods have been developed for some applications where boundary topology is simple or
is not critical to the simulation. In particular, bio-medical models [23] [24] [4], metal forming
applications [12] [8], and viscous flow [18] methods have utilized these techniques with some
success. Automating and extending mesh-first methods for use with general B-Rep topologies
would provide an important advance in hexahedral meshing technology.

As one of the first to propose an automatic overlay-grid method, Schneiders [12] developed
techniques for refining the grid to better capture geometry. He utilized template-based refinement
operations, later extended by Ito [4] and H. Zhang [22] to adapt the grid so that geometric fea-
tures such as curvature, proximity and local mesh size could be incorporated. Y. Zhang [23] [24]
and Yin [21] independently propose an alternate approach known as the Dual-contouring method
that discovers and builds sharp features into the model as the procedure progresses. This is espe-
cially effective for meshing volumetric data where a predefined topology is unknown and must be
extracted as part of the meshing procedure.

The dual contouring method for generating a hexahedral mesh described by Y. Zhang [23] be-
gins by computing intersections of the geometry with edges in the grid. Intersection locations are
used to approximate normal and tangent information for the geometry. One point per intersected
grid cell is then computed using a minimization procedure that is based upon Hermite approxima-
tions from the tangents computed at the grid edges. The base mesh in this case is defined as the
dual of the Cartesian grid, using the cell centroids and interpolated node locations at the boundary.
While attractive as a method for extracting features from volumetric data, it does not guarantee
capture of a pre-existing topology such as that contained in a CAD solid model.

Recent work on mesh-first approaches have focused more on the capturing of features of the
geometry. A common thread among many of these methods [23] [4] [13] is the introduction of
a buffer layer of hex elements to improve element quality near the boundary. Shepherd [14] also
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describes an approach to mesh-first hexahedral mesh generation utilizing geometric capture pro-
cedures. This work utilizes theory and assertions developed in [6] [7] . Owen [10] expands on this
work by introducing specific geometric algorithms for capturing topology for mesh first methods.

Methods that employ level sets to identify interfaces in a finite element mesh also employ
techniques that build discrete boundaries from scalar data. Noble, et. al. [9] is one such example.
They propose a method for imposing an interface through a fixed tetrahedral mesh based on the
results of a volume of fluids calculation. This work introduces parallel methods for defining the
interface surfaces, however, further smoothing and mesh improvement are not employed, which
can result in poor quality or sliver tetrahedra. It is also not clear how these methods would extend
to generation of hexahedra in parallel. Other interface reconstruction techniques, such as that
proposed by Garimella et. al. [3] will construct very accurate interfaces that preserve individual
cell volume fraction characteristics on an Eulerian grid. This work does not however address the
problem of Lagrangian mesh construction, nor does it provide smooth surfaces from which to
define a boundary aligned mesh. It is however, worthwhile to note these interface construction
methods and their similarities to the current problem.

The proposed procedure in this work is a mesh-first method that uses the Eulerian grid defined
in CTH as the base mesh. Since the application we are targeting does not require the definition
of sharp features, we will neglect the topology capture issues necessary for CAD-based modeling.
The dual contouring approach used by Zhang [23] appears to be attractive for our application,
particularly as it has direct extension to the generation of hexahedral elements. We have chosen to
further explore this technique and to extend its application for our purposes.

Several important contributions to this field are introduced in this work. Existing literature does
not currently address parallel meshing problems and the unique issues it entails for mesh-first mesh
generation methods. In addition, no literature is currently available on the appplication of octree-
type methods to shock consolidation or transient dynamics Eulerian codes. This work develops
further some of the concepts introduced by others in the field and applies them specifically to
address the unique problems of parallel meshing for building a hexahedral mesh from an Eulerian
grid.
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2 Algorithm

2.1 Overview of Method

The following is a brief description of the procedure used for generating a hexahedral mesh from
volume fraction data in parallel.

CTH provides a decomposition of the domain based upon 3-dimensional L×M×N subdo-
mains of the global grid as shown in Figure 1(a) . The global domain is assumed to be an axis
aligned Cartesian grid with any number of subdomains with scalar volume fraction data assigned
to the cell-centers of each cell of the grid. Figures 1(b), 1(c) and 1(d), illustrate the cells in the
domain that contain scalar volume fraction data of 1.0, 0.0 and values between 0.0 and 1.0 respec-
tively. The objective is for each subdomain to be processed independently with minimal commu-
nication, generating its portion of the global hexahedral mesh. The following procedure outlines
the algorithm for a given L×M×N subdomain.

1. Establish Cartesian Grid: A light-weight grid data structure is established to store and work
on the data.

2. Estimate Gradients: Based upon the cell-centered data field, gradient vectors are approxi-
mated.

3. Compute Virtual Edge Crossings: Assuming an iso-value of 0.5, virtual edges (connecting
adjacent cell centers) that have endpoints that bound the iso-value are identified.

4. Compute surface points: Interpolating the virtual edge crossing data, cell centers are pro-
jected to an interpolated iso-surface.

5. Establish Interior Hexes: Cells that lie within the surface points are established as the basis
for the hexahedral mesh.

6. Resolve Non-Manifold Cases: Cells are added or deleted from the base set of hexes to
resolve cases that would result in non-manifold connections in the final mesh.

7. Define Boundary Nodes: Grid nodes that lie on the iso-surface and those that define the
boundary of the domain are established as the boundary of the Lagrangian grid.

8. Create Geometry Definition: Based upon the node and hex definition, a geometry description
comprised of volumes, surfaces, curves and vertices is established with associativity to grid
entities.

9. Insert Hex Buffer Layer: A layer of hexes is inserted at the iso-surface boundary. Care is
taken to ensure the layer extends through surfaces defined at domain interfaces.

10. Generate Hex Mesh: The final connectivity for the hex mesh is established.
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(a) Full Domain (b) Volume Fraction = 1.0

(c) Volume Fraction = 0.0 (d) Volume Fraction between 0.0 and 1.0

Figure 1. An example of volume fraction data defined on a global
domain. Colors represent separate processor subdomains. Cells
are shown to illustrate different cell values for volume fractions
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11. Smooth: Smoothing procedures are employed for curves, surfaces and volume mesh entities
to improve mesh quality.

The following sections contain a discussion of some of the details of this procedure.

2.2 Dual Contouring in the Primal

In recent literature [23] [24], the principal method for generating meshes from scalar field data
defined on a Cartesian grid is based upon the dual contouring procedure [16]. This procedure is
illustrated in Figure 2. The dual contouring method is briefly described here for clarity, although
modifications to the published procedure have been implemented for simplicity and for purposes
of working in parallel. The assumption for this method, is that data is provided at the grid nodes
as shown in Figure 2(a). Cell centered data would first be interpolated to the nodes to utilize this
procedure. Next, the gradient vectors of the scalar field are interpolated at the grid nodes. This can
be done using a least squares fit of the differences of the values at neighboring nodes. Figure 2(b)
illustrates the approximated gradient vectors of the scalar field at the nodes.

Interpolation of a single gradient requires the volume fraction data at neighboring cells. This
has implications for parallelism, as grid nodes at the processor boundaries will need to retreive data
from neighboring processors. To reduce the overhead of communication, the neighboring cell data
is retrieved only once at the start of the procedure and made available to the current processor for
interpolation as ghost cells. Figure 3 shows the domains from the eight processors in the example
in Figure 1. The cells from one of the processors are colored based upon their volume fraction
value. Here we illustrate how an additional 2 layers of volume fraction data from neighboring
domains are used for processor subdomain. This ensures that interpolation of gradient vectors on
either side of a domain boundary will be consistent resulting in continuity of the resulting surface
across processor boundaries. Although additional ghost cell layers are included in the Cartesian
grid definition, hexahedra are only generated in the non-ghost cells.

The identification of edge crossings is then performed as illustrated in 2(c). In this case, edges
in the domain whose end points bound the iso-value, 0.5 are established. The iso-value of 0.5
defined the statistical volume fraction value where the surface definition is most likely to exist.
Since no real surface data is present, this is obviously an approximation, and at best, a guess at
where the surface actually exists. The objective therefore, is to define an iso-surface everywhere
in the domain where the scalar field is interpolated to be a value of 0.5. By identifying the edges
and interpolating where the iso-value lies on the edge, we provide discrete data for the surface
definition. For our purposes we use a simple linear interpolation of the edges. The example in
Figure 2(c) illustrates 4 edges where edge crossings have been defined.

The objective of the dual contouring procedure is to relocate the center point of a cell based
upon the edge crossing data of its edges. Reference [16] utilizes a hermite interpolation or mini-
mization procedure to determine the cell center perturbation. We have found that a simple gradient-
based interpolation of the edge crossing data is sufficient. Figure 2(d) show the gradient planes as
they would be interpolated at the 4 edge crossing points for a cell. Using an inverse distance
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(a) Initial data interpolated to grid nodes (b) Gradients are approximated

(c) Edge Crossings Identified (d) Cell Center Location Interpolated

Figure 2. Basic dual contouring procedure illustrated on a single
cell of the grid
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Figure 3. Representation of 8 processor domains where an addi-
tional 2 layers of volume fraction data is included on each proces-
sor.

weighted interpolation procedure of the gradient planes at its edge crossing, the perturbation of the
center node can be approximated.

Rather than using the Cartesian grid, which we will refer to as the ”primal” grid, the dual
contouring procedure represents the hexahedra as the dual of the Cartesian grid. Figure 4(a) shows
a local 8-cell configuration in the primal grid, with its corresponding dual cell shown in red. The
vertices of the dual cell are defined by the centers of the primal cells. The dual cell vertices, which
will become the nodes of the hexhadral mesh, are modified using the preceding procedure. Figure
4(b) shows an example of a single dual cell with some of its vertices modified at the 0.5 iso-value.
Dual cell vertices where no edge crossings have been identified in their corresponding primal cell
edges, remain unmodified.

For the purposes of this work, we have proposed a modification to the traditional dual contour-
ing approach. Rather than utilizing the dual cells as the basis for the final hexahedral mesh, we
modify the primal cells themselves. Figure 5 shows an example grouping of 8 primal cells. Rather
than identifying edge crossing data on the primal grid, we instead compute it on the dual edges.
Dual edges are illustrated in Figure 5 as red dotted lines that connect primal cell centers. The same
dual contouring calculations can then be computed on the basis of dual edge-crossings rather than
primal edge-crossings. As a result, the interpolation to define the surface nodes is based on the dual
edges. For practical purposes, this modification to the dual contouring algorithm can be thought of
as shifting the definition of the grid globally by 1/2 cell.

Two main reasons motivated the dual contouring in the primal approach:
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(a) Initial dual cell (red) defined on the Cartesian grid (b) Vertices of a dual cell are shown perturbed

Figure 4. The dual cell is illustrated surrounded by its eight pri-
mal cells in the Cartesian grid

1. Parallelism: Because the original dual contouring approach defines the hexahedral data at
the primal cell centers, there would be a need to share data for a single hexahedron between
neighboring processors. The extension to dual contouring in the primal allows data for every
hex to be contained on a single processor.

2. Cell centered data: The data provided by the CTH code is cell-centered. Using the original
dual contouring approach first requires interpolation of the data to the primal grid nodes.
The proposed approach avoids this additional interpolation step.

Once this procedure is complete, the basic hexahedral mesh can be represented. Figure 9
shows a hexahedral mesh in one of the processor domains where the surface has been described
using the dual contouring in the primal approach described here. It is clear that element quality is
not sufficient at this point, so additional steps are taken to improve the shape of the elements.

2.3 Non-Manifold Resolution

Choosing which cells will become hexahedra by examination of the volume fraction at the cell
center alone can result in non-manifold connections between the resulting hexahedra. Given a set
of cells C, which forms the set of all cells in the Eulerian grid, a set of cells H, H ⊂ C, such
that every hi ∈ H was chosen to be converted into hexahedra, a non-manifold connection exists
when H contains non-face-connected hexahedra. For example, Figure 6(a) illustrates two non-
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Figure 5. Representation of dual contouring in the primal. Red
dotted lines show the dual of the Cartesian (primal) grid. Primal
grid nodes are shown modified at the iso-value.

manifold connection cases, while Figure 6(b) illustrates a complete face connected manifold set of
hexahedra.

(a) Two cases of non-manifold connections between hexes (b) Example of man-
ifold connections be-
tween hexes

Figure 6. Illustration of non-manifold vs manifold connections
between grouping of hexahedra

Non-manifold resolution involves modifying the set of hexahedra, H, to eliminate any non-
manifold connections. If a non-manifold connections are not removed, the resulting hexahedral
mesh will have element topology which will only admit inverted elements when the buffer layer is
inserted.
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Non-manifold connections are removed by judiciously adding or subtracting elements from
H. For example, Figures 7(b) and 7(c) illustrate two possible resolutions of the non-manifold
connection in Figure 7(a). In Figure 7(b), 2 hexahedra are added to H. In Figure 7(c), one hex is
removed from H. For a given non-manifold connection, there are several possible ways to resolve
a manifold connection through addition or subtraction. The option that will result in the least
amount of volume changed, based on the volume fraction data is selected. Additionally, resolution
of one non-manifold connections often creates a new non-manifold connection, thus a recursive
resolution process is required, which terminates once all non-manifold connections are eliminated.

(a) Initial non-manifold connection
that must be resolved

(b) Connection in (a) resolved by
adding hexahedra

(c) Connection in (a) resolved by re-
moving hexahedra

Figure 7. Two different approaches shown for resolving non-
manifold connections

For parallel execution of our implementation, care is taken with non-manifold connections on
or near a processor boundary. Adjacent processor must resolve non-manifold connections on the
processor boundary and in the corresponding ghost cells the same way in order to ensure proper
mesh connection across the processor boundary. Currently, our implementation uses the following
procedure:

1. Each processor resolves all non-manifold connection on its boundaries (i.e. involves el-
ements owned by more than one processor). The in/out status in H of all hexahedra on
processor boundaries is then fixed.

2. Each processor resolves all non-manifold connections in ghost cells from other processors,
and cells that it owns which are ghosted on adjacent processors. Then the in/out status in H
of all ghost cells is fixed.

3. Each processor resolves all non-manifold connections of all interior cells.

The above procedure ensures that consistent resolution of non-manifold connections at pro-
cessor boundaries is maintained. However, it does yield a different (although still topologically
valid) result if the domain decomposition is different where different size processor subdomains
are defined. Modifying the non-manifold connection resolution to be independent of processor
boundaries is a tractable problem that we leave for future development.
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2.4 Geometry Definition

Once the final set of hexahedra are identified, we choose to generate a geometry definition com-
prised of volumes, surfaces, curves and vertices. The geometry serves as a convenient grouping
mechanism for the mesh entities, for subsequent operations on the mesh. In particular, the buffer
layer insertion procedure can operate specifically at faces associated with surfaces. The smoothing
procedures can also be applied based on nodal surface and volume association. Additionally, the
geometric information can be used to define distinct fragment volume information.

Figure 8. A single processor domain is shown with geometry
defined from the hexahedra. Colors represent distinct surface def-
initions. Curves and vertices are also defined between surfaces.

In our implementation a boundary representation model is generated by first separating groups
of contiguous hexahedra into distinct volumes. Surfaces are then defined by skinning the hexahedra
in each volume. Sharp features in the surfaces are currently not detected, instead a smooth sur-
face definition is assumed. Distinct surface definitions are however defined at domain boundaries.
Figure 8 is an example of surface geometry generated from the hexahedra in a single processor
domain. Different colors represent distinct surfaces. Note that surfaces at domain boundaries are
also distinguished. In practice, surfaces are defined by collecting groups of grid faces that have a
common face type. A face type is classified based on its association with one of the six domain
boundaries or as an interior face that contains a perturbed primal grid node at the 0.5 iso-value.

20



Once surfaces are defined, curves and vertices can then be generated by finding the boundary of
each surface and curve respectively.

2.5 Buffer Layer Insertion

Figure 9. A single processor domain is shown with its hexes
defined using dual contouring in the primal. In addition, one layer
of hexes have been inserted at the iso-surface boundary. Note that
the buffer layer continues through the processor boundary.

Perturbing the primal grid nodes at the iso-value, can result in poor quality hexes near the
surface. To help mitigate the problem, a single layer of hex elements is inserted at the iso-surface.
To accomplish this, the faces that are associated with the interior iso-surface are used. Each of the
nodes on the surface is duplicated and projected to a location along the gradient vector towards
the interior of the volume a distance of 1/4 of the grid cell edge length. Connectivity of individual
buffer layer hexes can be generated using a surface quad and its duplicated/projected nodes. It
should be noted that this procedure is only performed at interior domain surfaces and not at the
domain boundaries. This will result in a continuous buffer layer definition across processors.
Figure 9 shows an example of a single processor domain with the buffer layer defined. It can also
be seen from this figure that the buffer layer insertion alone will result in inverted or poor quality
elements. The addition of the buffer layer will permit subsequent smoothing operations to improve
the element quality near the surface.
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2.6 Smoothing

As noted previously, mesh quality can be poor based only on the base hexes and the inserted buffer
layer. Smoothing is a key procedure that can make the mesh acceptable as a computational do-
main. With mesh entities classified according to their geometry associativity, existing smoothing
techniques may be employed to smooth surface and volume nodes. Although the smoothing pro-
cedures are still under development at the printing of this report, two main approaches have been
explored for surface smoothing:

1. Geometry Based: This procedure utilizes the discrete surface definition we defined in section
2.4 as the basis for smoothing. In this case an iterative Length-weighted Laplacian smooth-
ing procedure is employed. The resulting node location is then projected to the underlying
surface facets of the surface. This approach follows the traditional smoothing procedures
for CAD-based models and is relatively successful, although currently less efficient than the
quadric surface method.

2. Quadric surface approximation: In this method a local quadric surface patch is defined based
on the local neighborhood of the current node being smoothed. While this method also uti-
lizes a length-weighted Laplacian operation, its distinguishing feature is the smooth surface
fitting. Rather than using the discrete surface representation, the surface is implicitly defined
at each node by using a least squares minimization to compute the coefficients of a quadric
surface patch. This method appears to provide a smoother surface representation and is cur-
rently more efficient than using the direct discrete surface evaluations. References [5] and
[20] describe the basic equations for defining the local least squares quadric approximation
of the surface.

Figure 10 shows an example of smoothing based on the quadric surface approximation method
for one processor domain. Note that smoothing is also performed on the surfaces defined at the
processor boundaries so that nodes are projected to its planar surface definition. It is clear that
future work will need to be done in order to remove the artificial constraints of the processor
boundaries so that nodes can float between processor domains to achieve optimal mesh quality and
be independent of the chosen domain decomposition.

Also illustrated in Figure 11 is the smooth and continuous surface definition defined across
processor boundaries. This is a combined result of the dual contouring node positioning procedure
and the smoothing procedures described above.

Smoothing of nodes inside the volume is also currently performed using a length-weighted
Laplacian procedure. As is well-known for this type of smoothing, although it can be very ef-
ficient, there is no guarantee that mesh quality will indeed improve. For many of the example
models that have been tried to date, the interior mesh quality is still not sufficient for analysis pur-
poses. Future work will need to focus on improving the volumetric smoothing capabilities beyond
a simple Laplacian smoothing technique.
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Another smoothing issue yet to be addressed is the smoothing of nodes on curves. Curve
definitions defined at processor boundaries, like surfaces, can also impose artificial constraints to
the mesh. Future research will also need to address positions of nodes that are associated with
curves.

(a) (b)

Figure 10. Two views of a processor domain illustrating that
surfaces meshes have been smoothed

2.7 Refinement

In many instances, the volume fraction data provided by the Eulerian code is not sufficient to ad-
equately describe the shape of a fragment. In addition, Eulerian codes, such as CTH will provide
automatically refined (AMR) data at multiple resolutions. For the CTH case, blocks or subdo-
mains are uniformly refined. This will result in hanging nodes or discontinuities in the grid at
the boundaries of the subdomains. The dual contouring approach we are using, however requires a
conformal base mesh in order to operate. This required development of a refinement procedure that
would maintain conforming cells throughout the base mesh prior to applying the dual contouring
algorithm.

Previous work on conformal hexahedral refinement [11] was used as the basis for refinement of
the base Cartesian grid. The main issue however, was the definition of the data structures needed for
general unstructured refinement and the regular Cartesian grid data structure. The Cartesian grid
has the advantage that it can be represented as a lightweight set of arrays where all grid entities
such as vertices, edges, faces and cells can be represented implicitly. For example, an individual
face does not have an allocated memory footprint, rather it is referred to only by an ID that is
computed as it is needed. The advantage to this implicit data definition is that huge data sets can
be represented with a very small memory footprint. The unstructured data structures required by
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(a) (b)

Figure 11. View of multiple processor subdomains illustrating
continuity of the surface definition following smoothing

(a) Cartesian grid showing cell-centered volume frac-
tions (red = 1.0, green = 0.0)

(b) Resulting hexahedral mesh from volume fraction
data at left

Figure 12. Simple example of a regular Cartesian grid and its
volume fraction data. The resulting hexahedral mesh is shown
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refinement however require a full data description in order to fully represent the connectivity. The
challenge we had was to integrate these two data definitions so that the dual contouring procedure
could operate without the need to define special case operations for refined data and another for
regular Cartesian data. It is clear that we could have converted the Cartesian data into a fully
unstructured data when refinement was necessary, however, we make the assumption that only
small portions of the grid will need to be refined for any given problem. This avoids ballooning
the data footprint for the entire grid and restricts the additional data only to the localities where it
is required.

(a) Side view of refined Cartesian grid with interpolated
cell-centered volume fractions

(b) Resulting hexahedral mesh from the volume frac-
tion data at left

Figure 13. Cartesian grid from Figure 12 with selected cells re-
fined and its resulting hexahedral mesh

Figure 12(a) shows a representation of a regular Cartesian grid where cell-centered data is color
coded based on its value. In this simple example, we have defined two local sets of cells where
the volume fraction is 1.0. The remaining cells are defined as 0.0. The resulting hexahedral grid
from this simple configuration is shown in 12(b). Note that since no attempt is made to capture
sharp features from the grid that the gradient approximations result in rounding and bowing of the
otherwise brick shapes.

To illustrate the refinement procedure, Figure 13(a) shows a side view of the same Cartesian
grid where a few cells have been selected for refinement. Note that the resulting base grid now
has a refined region with conformal transition hexes to the courser regular Cartesian definition.
We also note that Figure 13(a) shows the additional cell-centered data that can now be used to
enrich the final hexahedral grid definition. The values used for this new volume fraction data
must be interpolated from its parent grid cells. It is not clear at this point how this data should
be interpolated, however several methods have been tried including an inverse distance weighted
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interpolation of nearby cells. For the example in Figure 13, we simply use the volume fraction
data at the parent cell as the data for the refined child cell without interpolating, which seemed
to achieve the desired results. Figure 13(b) shows the resulting hexahedral mesh resulting from
the refined Cartesian grid. Note that the resulting hexahedral shapes in the refined region conform
better to the original data definition.

To date, the ability to identify specific cells for refinement prior to the dual contouring pro-
cedure has been implemented and integrated within Sculptor. Future work will need to apply the
refinement procedure adaptively based on the interpretation of local volume fraction data. Ideally
we would like to minimize the use of refinement, instead preferring to resolve features using the
non-manifold resolution techniques described in section 2.3, however it is unlikely that all cases
will be handled adequately by adding and subtracting cells alone from the hex set. Ideally an adap-
tive procedure that can determine when to use non-manifold and when to use a refinement solution
should be investigated. In addition, in order to manage AMR data from CTH, adaptive refinement
will be required to capture varying resolution of the grid.

(a) Tetrahedra generated on a single processor (b) Resulting tetrahedra on multiple processors

Figure 14. Illustration of tetrahedral mesh generated in parallel

2.8 Tetrahedral Meshing

The ability to generate an unstructured tetrahedral mesh was also included in this work. The gen-
eral procedures defined in section 2.1 are also applicable to generating a tetrahedral mesh with a
few minor exceptions. Items 1 through 8 in this list are also necessary for tet mesh generation.
Once a geometry definition has been defined, the surface facets can be used as the basis for a tet
mesh. In our implementation, we use the Tetmesh-GHS3D [19] tetrahedral meshing algorithm
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which is part of the CUBIT, CAMAL software. Once a watertight set of facets have been extracted
from the geometry definition, surface smoothing procedures described in section 2.6 can be em-
ployed to improve surface element quality. The smoothed facets can then be sent to the tet mesher
to define a boundary conforming mesh. Figure 14 shows an example of a tetrahedral mesh defined
from the dual contouring procedures.

2.9 Parallel Processing

It is clear that some of the algorithms described in this report are a work in progress, requiring
additional research and development. Enhancing the Sculptor’s results when run in parallel is an
area where significant additional research is required. The contributions to date in this area, as we
will describe, include the identification of the full neighborhood of all subdomains, (not just face
neighbors), and the communication of ghost cell information between neighbors.

The primary source of input for the Sculptor is CTH, which is a massively parallel Eulerian
code that computes the volume fraction input to the Sculptor module. Figure 15 illustrates a 2D
example of the data that comes from CTH. In this example, each processor owns a 6x6 grid of cells.
Each processor also shares one layer of ghost cells, represented as grey cells in Figure 15, with all
of its’ neighboring processors. In addition, the green arrows indicate that each processor is aware
of the processors that are at its edge boundaries. However, information provided by CTH does not
provide information on diagonal or vertex neighbors. For example, in Figure 15, processor 1 is
aware of processor 2 and 3, but not aware of processor 4. For 3 dimensional problems, this means
that each processor is aware of any neighboring processor that it shares a face with, however, it is
initially unaware of any processor that it shares only an edge or a vertex with.

Although CTH provides one layer of ghost cells, Sculptor requires a full two layers of ghost
cells from all of its neighboring processors. The two layers of ghost cells are required for accurate
interpolation of derivatives as described in section 2.2 of this report. As a result, the Sculptor must
discover its edge and vertex neighbors. The Sculptor code discovers its edge and vertex neighbors
using the following procedure:

Given a CTH data model on P processors:

1. Each processor, pi, i ∈ [1,P], builds a list, Ni = {n1, ...nm}, of its M face neighbors

2. Each processor sends (MPI Send) its list, Ni, to every neighbor in Ni.

3. Each processor receives (MPI Irecv) from each of its face neighbors, n j, j ∈ [1,M], that
neighbors face neighbor list, N j.

4. Each processor builds a new complete neighbor list, Ci, by merging its list, Ni, with each of
its neighbors’ lists N j, j ∈ [1,M]. Duplicates are removed. A bounding box check is made to
reject any processors in Ci which are not immediately adjacent to pi.
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Figure 15. A 2D representation of volume fraction data on four
subdomains as CTH (splyplot) provides the data to Sculptor. One
layer of ghost cells is provided along with face neighbors (No edge
and vertex neighbors provided)
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Once each processor knows about all of its neighboring processors, it communicates with each
neighbor to extract the full two-layers of ghost cells as illustrated in Figure 16.

Figure 16. A 2D representation of volume fraction data on four
subdomains illustrating data communicated between processors.
Two layers of ghost cells as well as its full set of neighboring pro-
cessor IDs are communicated
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3 Examples

In this section a few examples are provided to illustrate the capabilities of the Sculptor module.
The first shows a simple half-spherical shape that was initially represented as volume fraction
data shown in Figure 17(a). Note the buffer layer insertion is present, but exits the volume at the
processor boundary

(a) Volume fraction data represented as colored points
at cell centers on a Cartesian grid

(b) Hexahedral mesh generated from volume fraction
data at left

Figure 17. Illustration of volume fraction data describing a half
cylinder and its resulting hexahedral mesh

Transient CTH volume fraction data representing the impact of a ball with a plate at an oblique
angle was generated on a two-processor system. The Sculptor module was called on two processors
to generate the corresponding hexahedral meshes at critical time-steps. Figure 18 illustrates the
impact at four timesteps. The grey and orange colors represent the two material zones of the ball
and plate. In Figure 18(d), the ball breaks into multiple fragments, each of which is represented by
a separate set of hexahedral elements. The impact also leaves a depression in the plate as illustrated
in Figures 18(b), 18(c) and 18(d).

Figure 19 represent a static volume fraction data set representing a variety of different shapes
generated with the diatom capability in CTH. The hexahedra were generated on a single processor
and illustrate the ability of the Sculptor module to capture relatively complex features. Each color
represents a different material as defined by the spyplot data. Figure 20 illustrates the same CTH
diatom shapes data meshed with tetrahedra. In this example approximately 259,000 tetrahedra
were generated with all positive jacobian shape metrics.
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(a) time = 00060

(b) time = 00097

(c) time = 00122

(d) time = 00172

Figure 18. Hexahedral meshes generated at multiple time steps
from transient CTH volume fraction data representing the impact
of a ball with a plate at an oblique angle
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Figure 19. Hexahedral meshes generated from CTH diatom
shape data

Figure 20. Tetrahedral meshes generated from CTH diatom
shape data
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Figure 21 illustrates the ability of the Sculptor code to run on multiple processors. The colors
represent the domain decomposition created by CTH. The data and hexahedral meshes in Figure
21 were generated by running CTH and the Sculptor on 4, 8, and 33 processors respectively.

(a) 4 processors (b) 8 processors

(c) 33 processors

Figure 21. Hexahedral meshes generated from CTH diatom
shape data at multiple processor resolutions
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4 Conclusion and Future Work

This work has introduced new procedures and methods for generating both hexahedral and tetra-
hedral meshes from volume fraction data defined on a Cartesian grid. We recognize that with the
limited resources for this project, that there are many areas left to explore. We would anticipate that
the results of such research would move this technology towards a tool that can be robustly used
for coupling Eulerian and Lagrangian codes. We do however offer that these methods improve on
existing techniques proposed in the literature particular as they apply to parallel mesh generation
using overlay grid methods.

4.1 Future Work

The algorithms and methods discussed here are clearly only a start to the process of building a
robust system for generating both hex and tet meshes from volume fraction data. In this report we
have identified specific areas that will need additional study and development. Here we enumerate
the proposed areas of future R&D.

1. Smoothing: Improved methods for smoothing will need to be addressed. Four specific areas
have been identified: (a) Curve smoothing has not yet been addressed. Curves at boundaries
remain fixed in the current implementation. Work will need to be done to better represent
curves on processor boundaries. (b) Progress has been made on surface smoothing, however
a solution that involves a combined geometry based solution with local quadric interpola-
tion would be beneficial. (c) Current volume smoothing utilizes a simple Laplacian-based
smoothing scheme. Since this does not yet address the mesh quality issues we are seeing
in the mesh, further work will need to be done to identify and implement improved volume
meshing methods. (d) Smoothing the mesh in parallel is a significant concern. Subdomain
boundaries currently impose artificial constraints on the mesh. This will require new meth-
ods for processor communication that will focus on improved iterative smoothing techniques
across processor boundaries.

2. Non-Manifold Resolution: The current solution implemented for non-manifold resolution in
some may result in different solutions based on where processor boundaries are imposed.
New processor-independent methods for non-manifold resolution will need to be developed.

3. Refinement: In this work we have developed a capability for refining the Cartesian grid for
use in the dual contouring procedure. This capability now needs to be incorporated into an
adaptive process where regions requiring additional resolution are automatically identified
and refinement operations applied. The current work is also incorporating the 3-refinement
scheme developed by Parrish [11]. Current work on 2-refinement [2] should be incorporated
to allow for less drastic local mesh size changes common with 3-refinement. Another driver
for automatic refinement will be the need to incorporate AMR data from CTH where regions
of the mesh will have higher resolution than others.
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4. Buffer-Layer Improvement: Current procedures for hex meshing include a procedure for
adding a single buffer layer at the iso-surface boundary. The ability to adaptively insert
additional layers or to only improve local mesh quality through topology operations should
be explored.

5. Tetrahedral Meshing: A tetrahedral mesh generation capability has been provided, however
mesh quality improvement for the boubdary mesh will need to be addressed further.

6. Multiple Materials: The current implementation of Sculptor allows for a single material
definition. Although multiple runs of Sculptor can generate a model with many materials,
there is no guarantee of mesh conformity. Managing multiple materials implies that multiple
scalar values will be provided for each cell of the Eulerian grid which will be processed
simultaneously. New methods will need to be explored to determine how to best interpret
the data and how to accurately model interfaces between multiple materials.

7. Generalized Hexahedral Meshing: This work has shown that all hex methods for fragment-
type data generated from volume fractions is a tractable method for generating an all-hex
mesh. Further work should be done to explore how these techniques might apply to a more
general hexahedral meshing capability for CAD-based or facet-based models. Integration of
the methods proposed by Owen [10] is one avenue to explore.
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A Sculptor Interface

Sculptor has been developed as an independent module that is callable from an external application.
To date, two applications use the Sculptor module to link with: CUBIT and CTH. A C-style API
has been developed for these applications to interface with Sculptor. This appendix documents the
current Sculptor API.

The Sculptor module has been implemented inside of the Cubit CAMAL library as CMLP-
Sculptor. The header file to include is CMLPSculptor.hpp for a C++ interface, or CMLPSculp-
tor c.h for a C interface.

A.1 Initialization of the Sculptor

The CMLPSculptor must be initialized with the following function:

// construct a psculptor object. Return a handle to it.
int c_create_cml_psculptor( void );

Once the mesh is generated and extracted, the psculptor must be deleted with the function:

// delete the psculptor object
// Arg handle The handle to the psculptor to delete

void c_delete_cml_psculptor( int handle );

A.2 Mesh Generation by Directly Linking with CMLPSculptor

Once created, there are two methods to generate meshes with the sculptor. The first method is
by linking CMLPSculptor directly into another program. This has been implemented in CTH.
CTH passes the data directly to CMLPSculptor for the volume fraction data owned by the current
processor, along with face-neighbor information to allow communication to extract ghost cells.
Currently this method allows for meshing only a single material at a time. A single function call
passes in the volume fraction data and generates the mesh:

// create the mesh with the given inputs.
// ARG handle The handle to the psculptor to mesh in.
// ARG xmin, ymin, zmin, xmax, ymax, zmax - the bounding box of the domain
// owned by this processor.
// ARG xint The number of grid cells in the x direction
// ARG yint The number of grid cells in the y direction
// ARG zint The number of grid cells in the z direction
// ARG vfrac Array of volume fraction data for each cell in the grid.
// length = xint*yint*zint
// ARG neighbor_plus_i Rank of processor on the +i side of this processor.
// ARG neighbor_negative_i Rank of processor on the -i side of this processor.
// ARG neighbor_plus_j Rank of processor on the +j side of this processor.
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// ARG neighbor_negative_j Rank of processor on the -j side of this processor.
// ARG neighbor_plus_k Rank of processor on the +k side of this processor.
// ARG neighbor_negative_k Rank of processor on the -k side of this processor.
// ARG auto_refine 1 to allow local refinements
// ARG stair_step 1 to force simple conversion of cells to hexahedra without
// projecting nodes to iso-surface.
// ARG smooth 1 to perform node relocation aposteriori to improve element
// quality.
// ARG tet_mesh 0 to create a hex mesh, 1 to create a tetmesh.

int c_mesh_from_data( int handle,
double xmin, double ymin, double zmin,
double xmax, double ymax, double zmax,
int xint, int yint, int zint,
double *vfrac,
int neighbor_plus_i,
int neighbor_negative_i,
int neighbor_plus_j,
int neighbor_negative_j,
int neighbor_plus_k,
int neighbor_negative_k,
int auto_refine,
int stair_step,
int smooth,
int tet_mesh );

The SpyPlot files are output from CTH one per processor containing the volume fraction data
for the cells owned by that particular processor. The SpyPlot file also contains data about processor
face neighbors to allow communication to extract the required two layers of ghost cells.

The use of SpyPlot file input to the Sculptor has been implemented by writing a stand alone
MPI program, which calls the CMLPSculptor once on each processor with the SpyPlot file output
from CTH on that processor. This makes debugging of CMLPSculptor internal algorithms easier
than when linked directly into CTH.

A.3 Retrieving the Generated Mesh

The mesh generated by CMLPSculptor can be extracted either in bulk, or fragment by fragment.
Extracting in bulk returns the entire mesh regardless of the number of distinct fragments the mesh
might represent. The functions to extract the mesh in bulk are:

// retrieve the size of the mesh generated from the volume fraction meshing
// ARG handle the handle to the sculptor to query
// ARG num_nodes the number of nodes created by the sculptor
// ARG num_hexes the number of hexes created by the sculptor
// ARG num_tets the number of tets created by the sculptor

void c_get_free_totals( int handle,
int *num_nodes,
int *num_hexes,
int *num_tets );

// retrieve the coordinate and connectivity array for the volume fraction hex mesh
// ARG handle the handle to the sculptor to query
// ARG - coords node coordinates (array size=3*num_nodes)
// ARG - hexes - connectivity of hexes (array size=8*num_hexes)

int c_get_free_hexes( int handle,
double *coords,
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int *hexes );

// retrieve the coordinate and connectivity array for the volume fraction tet mesh
// ARG handle the handle to the sculptor to query
// ARG - coords node coordinates (array size=3*num_nodes)
// ARG - tets - connectivity of tets (array size=4*num_tets)

int c_get_free_tets( int handle,
double *coords,
int *tets );

Alternatively, the resulting mesh elements might represent several separate pieces, such as the
break up of the ball in the oblique impact example in the Examples Section 3. These pieces can be
extracted one at a time with the functions:

// return the number of distinct fragments generated
// ARG handle the handle to the sculptor to query

int c_get_num_fragments( int handle );

// return the number of nodes, hexes, and tets generated for a given fragment
// ARG handle the handle to the sculptor to query
// ARG - ifrag - integer from 1 to number of fragments returned from
// get_num_fragments

int c_get_fragment_totals( int handle,
int ifrag,
int *num_nodes,
int *num_hexes,
int *num_tets );

// return the coordinate and connectivity array for a given fragment
// ARG handle the handle to the sculptor to query
// ARG - ifrag - integer from 1 to number of fragments returned from
// get_num_fragments
// ARG - coords node coordinates (array size=3*num_nodes)
// ARG - hexes - connectivity of hexes (array size=8*num_hexes)

int c_get_fragment_hexes( int handle,
int ifrag,
double *coords,
int *hexes );

// return the coordinate and connectivity array for a given fragment
// ARG handle the handle to the sculptor to query
// ARG - ifrag - integer from 1 to number of fragments returned from
// get_num_fragments
// ARG - coords node coordinates (array size=3*num_nodes)
// ARG tets - connectivity of tets (array size=4*num_tets)

int c_get_fragment_tets( int handle,
int ifrag,
double *coords,
int *tets );
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B CUBIT Sculptor Users Manual

The CUBIT Geometry and Meshing Toolkit provides a convenient graphical user interface to the
Sculptor module. CUBIT provides the ability to read both Exodus and Spyplot data files. The
Exodus file must define a basic hexahedral mesh with element-based scalar data provided. For our
purposes we limit the hex mesh to a simple Cartesian grid structure. In addition, a custom dump
of data from a CTH run can be exported from the Spyplot module. Although not a standardized
format, it provides a convenient way to import data into CUBIT so that the data can be meshed and
visualized. This section documents the CUBIT commands relevant for the Sculptor and provides
a few examples for generating meshes in cubit using the Sculptor module.

B.1 CUBIT Commands

Note that these commands are currently under development so it is necessary to issue the following
command in Cubit to gain access to the Sculptor module:

set dev on

The command for reading data from a spyplot data file:

import volume fraction ”〈 f ilename.txt〉”

where 〈 f ilename.txt〉 is the name of a splyplot data file. All materials and data will be read from
the file and stored in cubit. A listing of the material IDs in the data file will be displayed on import.

The command for reading data from an exodus file:

import volume fraction ”〈 f ilename.txt〉” variable ”〈varname〉” [time 〈timeval〉]

where 〈 f ilename.txt〉” is the name of an exodus file that contains blocks of hexahedra containing
element-based scalar data. 〈varname〉 defines a material identifier that is used in the exodus file
and the 〈timeval〉 is an optional argument to specify a specific timestep present in the exodus file.

To generate a mesh once the data has been read in to CUBIT, the following command is used:

mesh volume fraction [material 〈matid〉] [stairstep] [no smooth] [smooth 〈smoothid〉] [tetmesh]

The basic command without optional arguments will generate a hexahedral mesh of the first mate-
rial that was read from the data file. The optional arguments are defined as follows:

material 〈matid〉 The mesh will be generated for the specified material ID

stairstep A stairstep hex mesh will be generated with no attempt to define a smooth surface.

no smooth Turn off all smoothing in the mesh.
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smooth 〈smoothid〉 Define the smoothing algorithm to be used by Sculptor. 0=no smooth,
1=quadric surface, 2=geometry-based. (See section 2.6)

tetmesh Generate a tetrahedral mesh.

B.2 CUBIT Examples

A hardcoded test function has been embedded in CUBIT to validate the Sculptor capability. The
following command should generate the simple mesh shown in Figure 12(b)

mesh volume fraction test

The optional arguments can also be used with this test. or example:

mesh volume fraction test tetmesh
mesh volume fraction test no smooth

In addition the simple refinement case can be generated by setting the sculptor refine flag

set sculpt refine on
mesh volume fraction test
set sculpt refine off

Some examples shown in section 3 of this document can be generated with the following com-
mands. See the authors to get a copy of the data files. They are also available as part of the CUBIT
test suite (cubit test).

To generate the example in Figure 19

cd ”cubit test/sculpt”
reset
set dev on
import vol frac ’vfblock data 00001.txt’
mesh vol frac mat 100001
mesh vol frac mat 100002
mesh vol frac mat 100003
mesh vol frac mat 100004
mesh vol frac mat 100005
mesh vol frac mat 100006
mesh vol frac mat 100007
mesh vol frac mat 100008
create mesh geom hex all feature 0

To generate the example shown in Figure 14 use the following commands. Note that this
example uses an exodus file as input and generates a tet mesh.
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cd ”cubit test/sculpt”
reset
set dev on
import vol frac ’cube mesh.exo.1.0’ variable ’MAT 10’
mesh vol frac tetmesh
create mesh geom tet all feature 0
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