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Abstract

This report is a summary of the accomplishments of the “Leveraging Multi-way Linkages on Hetero-
geneous Data” which ran from FY08 through FY10. The goal was to investigate scalable and robust
methods for multi-way data analysis. We developed a new optimization-based method called CPOPT for
fitting a particular type of tensor factorization to data; CPOPT was compared against existing methods
and found to be more accurate than any faster method and faster than any equally accurate method. We
extended this method to computing tensor factorizations for problems with incomplete data; our results
show that you can recover scientifically meaningfully factorizations with large amounts of missing data
(50% or more). The project has involved 5 members of the technical staff, 2 postdocs, and 1 summer
intern. It has resulted in a total of 13 publications, 2 software releases, and over 30 presentations. Several
follow-on projects have already begun, with more potential projects in development.
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1 Introduction

The focus of the “Leveraging Multi-way Linkages on Heterogeneous Data” LDRD was investigating and
developing novel data analysis methods for heterogeneous data. The motivation is the ubiquity of such
data in the intelligence community, though applications also exist in social network, bibliometric, critical
infrastructure, and complex biological systems analysis.

Our goal was to investigate techniques for combining heterogeneous entities and the multiple linkages
(i.e., relationships) between them. We developed a new class of optimization-based algorithms, emphasiz-
ing scalability and robustness, that can be extended to multi-way linkage dimensionality reduction. Such
techniques can be used to map heterogeneous entities into a shared conceptual space, which is in turn fun-
damental for solving a variety of data analysis problems; we have specifically studied an example involving
link prediction.

Sandia’s expertise in data and graph analysis, matrix and tensor methods, and high-performance com-
puting makes it natural for us to pursue this line of inquiry.

The remainder of this report is organized as follows. Section 2 reviews highlights of our technical con-
tributions. Section 3 summarizes the impact of the LDRD in terms of staff participation, communication of
results, and community involvement. Finally, Section 3.6 discusses follow-on projects.
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2 Technical Impact

Summaries of key results from this LDRD are summarized below. For a complete list of publications, see
Section 3.2.

2.1 CPOPT: Optimization for fitting the CP Tensor Decomposition [1]

Tensor decompositions are higher-order analogues of matrix decompositions and have proven to be powerful
tools for data analysis. In particular, we are interested in the canonical tensor decomposition, otherwise
known as CANDECOMP/PARAFAC (CP), which expresses a tensor as the sum of component rank-one
tensors and is used in a multitude of applications such as chemometrics, signal processing, neuroscience,
and web analysis. The task of computing CP, however, can be difficult. The typical approach is based on
alternating least squares (ALS) optimization, but it is not accurate in the case of overfactoring. High accuracy
can be obtained by using nonlinear least squares (NLS) methods; the disadvantage is that NLS methods
are much slower than ALS. In this paper, we propose the use of gradient-based optimization methods. We
discuss the mathematical calculation of the derivatives and show that they can be computed efficiently, at
the same cost as one iteration of ALS. Computational experiments demonstrate that the gradient-based
optimization methods are more accurate than ALS and faster than NLS in terms of total computation time.

2.2 CPWOPT: Fitting the CP Tensor Decomposition with Incomplete Data [3]

The problem of incomplete data—i.e., data with missing or unknown values—in multi-way arrays is ubiqui-
tous in biomedical signal processing, network traffic analysis, bibliometrics, social network analysis, chemo-
metrics, computer vision, communication networks, etc. We consider the problem of how to factorize data
sets with missing values with the goal of capturing the underlying latent structure of the data and possibly
reconstructing missing values (i.e., tensor completion). We focus on one of the most well-known tensor fac-
torizations that captures multi-linear structure, CANDECOMP/PARAFAC (CP). In the presence of missing
data, CP can be formulated as a weighted least squares problem that models only the known entries. We
develop an algorithm called CP-WOPT (CP Weighted OPTimization) that uses a first-order optimization
approach to solve the weighted least squares problem. Based on extensive numerical experiments, our al-
gorithm is shown to successfully factorize tensors with noise and up to 99% missing data. A unique aspect
of our approach is that it scales to sparse large-scale data, e.g., 1000× 1000× 1000 with five million known
entries (0.5% dense). We further demonstrate the usefulness of CP-WOPT on two real-world applications:
a novel EEG (electroencephalogram) application where missing data is frequently encountered due to dis-
connections of electrodes and the problem of modeling computer network traffic where data may be absent
due to the expense of the data collection process.

2.3 Temporal Link Prediction [10]

The data in many disciplines such as social networks, web analysis, etc. is link-based, and the link structure
can be exploited for many different data mining tasks. In this paper, we consider the problem of temporal
link prediction: Given link data for times 1 through T , can we predict the links at time T +1? If our data has
underlying periodic structure, can we predict out even further in time, i.e., links at time T +2, T +3, etc.? In
this paper, we consider bipartite graphs that evolve over time and consider matrix- and tensor-based methods
for predicting future links. We present a weight-based method for collapsing multi-year data into a single
matrix. We show how the well-known Katz method for link prediction can be extended to bipartite graphs
and, moreover, approximated in a scalable way using a truncated singular value decomposition. Using
a CANDECOMP/PARAFAC tensor decomposition of the data, we illustrate the usefulness of exploiting
the natural three-dimensional structure of temporal link data. Through several numerical experiments, we
demonstrate that both matrix- and tensor-based techniques are effective for temporal link prediction despite
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the inherent difficulty of the problem. Additionally, we show that tensor-based techniques are particularly
effective for temporal data with varying periodic patterns.

2.4 Fast Tensor Computations in Parallel and on GPUs [7]

The tensor eigenproblem has many important applications, and both mathematical and application-specific
communities have taken recent interest in the properties of tensor eigenpairs as well as methods for computing
them. In particular, Kolda and Mayo [13] present a generalization of the matrix power method for symmetric
tensors. We focus in this work on efficient implementation of their algorithm, known as the shifted symmetric
higher-order power method, and on how a GPU can be used to accelerate the computation up to 70× over
a sequential implementation for an application involving many small tensor eigenproblems.
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3 Impact

3.1 Staff Participation

The primary technical staff involved in this project were the authors of this report; however, other staff,
postdocs, and interns were involved as listed below.

• Tamara Kolda (8966) — Principal investigator, FY08–FY10
• Daniel Dunlavy (1415) — Primary contributor to all aspects of the project, FY08–FY10
• Ann Yoshimura (8116) — Database support, FY08
• Evrim Acar (8962, postdoc) — Full-time postdoc on this project, FY09–FY10
• Todd Plantenga (8958) — Optimization consultant, FY10
• Nicole Lemaster (8961) — Parallel implementation of tensor decomposition, FY10
• David Gleich (8966, Von Neumann postdoc) — Entity resolution and disambiguation, FY10
• Grey Ballard (8966, summer intern) — GPU implementation of tensor algorithms, Summer FY10

3.2 Publications

This LDRD produced 13 publications, broken down below.

• 7 journal articles
– ACM Transactions on Knowledge Discovery [10]
– Chemometrics and Intelligent Laboratory Systems [3]
– IEEE Transactions on Knowledge and Data Engineering [5]
– Journal of Chemometrics [8, 1]
– SIAM Journal on Scientific Computing [6]
– SIAM Review [12]

• 3 refereed conference and workshop articles
– ICDM’08: IEEE International Conference on Data Mining [14]
– LDMTA’09: 1st Workshop on Large-Scale Data Mining: Theory and Applications [2]
– SDM’10: SIAM International Conference on Data Mining [4]

• 1 book chapter [9]
• 2 technical reports [11, 7]

3.3 Software

This LDRD produced two software releases.

• Tensor Toolbox for MATLAB, Version 2.4 (released 2010)
• Poblano for MATLAB, Version 1.0 (released 2010)

3.4 Presentations

This LDRD produced over 30 presentations, with highlights listed below.

• Keynote Invited Talks at Major Conferences
– IEEE International Conference on Data Mining (ICDM’07), Omaha, Nebraska, Oct. 28–31, 2007
– BIT 50 Conference - Trends in Numerical Computing, Lund, Sweden, June 17-20, 2010
– BIRS workshop on Sparse Random Structure, Banff, Canada, Jan. 24–29, 2010

• Keynote Invited Talks at Minor Conferences/Workshops
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– Symposium on Gene Golub’s Legacy: Matrix Computations — Foundation and Future, Stanford
University, California, Mar. 1, 2008

– ICDM09 Workshop on Large Scale Data Mining: Theory and Applications (LDMTA), Miami
Beach, Florida, Dec. 6, 2009

– Pete Stewart
• Invited Talks at International Workshops

– GAMM Seminar on Tensor Approximations, Max-Planck Institute for Mathematics in the Sci-
ences, Leipzig, Germany, Jan. 25–26, 2008

– Computational Algebraic Statistics, Theories and Applications (CASTA2008), Kyoto, Japan, Dec.
10–11, 2008

• Invited Talks at U.S. Workshops
– Numerical Tools and Fast Algorithms for Massive Data Mining, Search Engines and Applications,

IPAM, UCLA, Los Angeles, CA, Oct. 22–26, 2007
– Multi-Manifold Data Modeling and Applications, Institute for Mathematics and Its Applications

(IMA), Minneapolis, Minnesota, Oct. 27–30, 2008
– Future Directions in Tensor-Based Computation and Modeling, NSF, Arlington, Virginia, Feb.

20–21, 2009 (two talks)
– BIRS workshop on Sparse Random Structure, Banff, Canada, Jan. 24–29, 2010

3.5 Community Involvement

The staff from this project were involved with numerous events, chairing meetings, serving on program
committees, and organizing minisympoia. Of particular note, we co-organized the AIM Workshop on Com-
putational Optimization for Tensor Factorizations in Palo Alto, California in 2010.

3.6 Follow-on Projects

There are two externally-funded (DOE Office of Science Applied Math Program and a WFO project) and one
internally-funded project (HSD LDRD) that have already come out of this project. Several more proposals
are being developed.
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