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Abstract

This report summarizes activities undertaken during FY08-FY10 for the LDRD Peridynamics as
a Rigorous Coarse-Graining of Atomistics for Multiscale Materials Design. The goal of our project
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Chapter 1

Peridynamics as a Rigorous
Coarse-Graining of Atomistics for
Multiscale Materials Design

Project Purpose

The goal of our project is to develop a coarse-graining of finite temperature molecular dynam-
ics (MD) that successfully transitions from statistical mechanics to continuum mechanics. Our
coarse-graining overcomes the intrinsic limitation of coupling atomistics with classical continuum
mechanics via the FEM (finite element method), SPH (smoothed particle hydrodynamics), or MPM
(material point method); namely, that classical continuum mechanics assumes a local force inter-
action that is incompatible with the nonlocal force model of atomistic methods. Therefore FEM,
SPH, and MPM inherit this limitation. This seemingly innocuous dichotomy has far reaching conse-
quences; for example, classical continuum mechanics cannot resolve the short wavelength behavior
associated with atomistics. Other consequences include spurious forces, invalid phonon dispersion
relationships, and irreconcilable descriptions/treatments of temperature. We propose a statistically
based coarse-graining of atomistics via peridynamics and so develop a first of a kind mesoscopic ca-
pability to enable consistent, thermodynamically sound, atomistic-to-continuum (AtC) multiscale
material simulation. Peridynamics (PD) is a microcontinuum theory that assumes nonlocal forces
for describing long-range material interaction. The force interactions occurring at finite distances
are naturally accounted for in PD. Moreover, PDs nonlocal force model is entirely consistent with
those used by atomistics methods, in stark contrast to classical continuum mechanics. Hence, PD
can be employed for mesoscopic phenomena that are beyond the realms of classical continuum me-
chanics and atomistic simulations, e.g., molecular dynamics and density functional theory (DFT).
The latter two atomistic techniques are handicapped by the onerous length and time scales as-
sociated with simulating mesoscopic materials. Simulating such mesoscopic materials is likely to
require, and greatly benefit from multiscale simulations coupling DFT, MD, PD, and explicit tran-
sient dynamic finite element methods FEM (e.g., Presto). The proposed work fills the gap needed
to enable multiscale materials simulations.

Accomplishments

The project goal of establishing the theoretical groundwork for coarse-graining MD into peridy-
namics was accomplished. This project accomplishment is documented in three related approaches
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and in three Sandia technical reports. The first approach derives the peridynamic balance of linear
momentum from the principles of statistical mechanics. The second approach upscales molecular
dynamics into a high order gradient theory, and exploits a relationship between peridynamics and a
high order gradient theory. The third approach represents an interatomic multibody potential as a
peridynamic material, and then smoothes the resulting heterogeneous peridynamic material model.
In recognition of these accomplishments, the project team received a Sandia employee recognition
award. The three coarse-graining approaches described above are synergistic. The first approach,
though of significant theoretical value, does not immediately lead to an expedient computational
scheme. An important conclusion is that the path from classical statistical to classical contin-
uum mechanics traverses the nonlocal continuum theory of peridynamics. A consequence is that
peridynamics can augment, or replace, MD, and AtC coupling can be replaced by PtC coupling
(peridynamics to classical continuum mechanics). The second approach is a practical applica-
tion justifying the contention of the first approach that molecular dynamics can be coarse-grained
into peridynamics. In contrast to classical continuum mechanics, peridynamics does capture the
short-wavelength behavior associated with molecular dynamics without the need to assume the ex-
istence of higher-order derivatives associated with a high-order gradient theory. The third approach
represents a sophisticated scheme for generating peridynamic material models by coarse-graining
multibody interatomic potentials at the continuum level. The third approach represents a sophisti-
cated scheme for generating peridynamic material models by coarse-graining multibody interatomic
potentials at the continuum level.

Published papers

1. Peridynamics as an Upscaling of Molecular Dynamics, P. Seleson, M. L. Parks, M. Gun-
zburger, and R. B. Lehoucq, Multiscale Modeling and Simulation, 8, pp. 204-227, 2009,
DOI:10.1137/09074807X.

2. Implementing Peridynamics within a Molecular Dynamics Code, M. L. Parks, R. B. Lehoucq,
S. J. Plimpton, and S. A. Silling, Computer Physics Communications, 179, pp. 777-783,
2008, DOI:10.1016/j.cpc.2008.06.011.

3. Peridynamic Theory of Solid Mechanics, S. A. Silling and R. B. Lehoucq, Advances In
Applied Mechanics, 44, pp. 73–169, 2010, DOI: 10.1016/S0065-2156(10)44002-8.

4. Translation of Walter Nolls “Derivation of the Fundamental Equations of Continuum Ther-
modynamics from Statistical Mechanics” R. B. Lehoucq and A. Von Lilienfeld-Toal, Journal
of Elasticity, 100, pp. 5-24, 2010, DOI:10.1007/s10659-010-9246-9.

5. Linearized theory of peridynamic states, S. A. Silling, Journal of Elasticity, 99, 85-111,
2010, DOI:10.1007/s10659-009-9234-0.

6. Mathematical analysis for the peridynamic nonlocal continuum theory, Q. Du and K. Zhou,
ESAIM: Mathematical Modelling and Numerical Analysis,
DOI:10.1051/m2an/2010040.

7. Mathematical and Numerical Analysis of Linear Peridynamic Models with Nonlocal Bound-
ary Conditions, Q. Du and K. Zhou, Accepted for publication in the SIAM Journal of
Numerical Analysis, 2010.
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Accepted for publication in the International Journal for Multiscale Computational
Engineering 2010.

9. A coarsening method for linear peridynamics, S. A. Silling, Accepted for publication in the
International Journal for Multiscale Computational Engineering 2010.

Organization of the report
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Chapter 2

A Peridynamics-Inspired Approach to
Nonlocal Advection

Introduction

This report describes an approach to nonlocal, nonlinear advection in one dimension. This
development extends the usual pointwise concepts to account for nonlocal contributions to the
fluxes. The spatially nonlocal operators we consider do not involve local derivatives. Instead, these
nonlocal expressions involve integral operators that, in the appropriate limit, reduce to the familiar
local equations. These ideas are motivated by the fundamental approach upon which peridynam-
ics [51] is built. Unlike the usual peridynamics equations for, say, elastic material response, we
specialize to nonlocal, nonlinear advection equations. We restrict our attention to explore model
equations that capture the fundamental character of nonlocal shock wave phenomena. Our ultimate
goal is to incorporate a consistent, defensible approach to nonlocal shock physics into the existing
peridynamics framework. As a first step, we develop a nonlocal, inviscid Burgers equation as an
intrinsically nonlinear example of these ideas.

The advection equation

The concept of advection and use of advection equations is widespread in applied mathematics
and fundamental in physics. Such equations provide a simple and extensible basis with which to
model conservation equations, which lie at the foundation of many physics principles. The essential
representation of this concept is contained in a balance equation between the time rate-of-change of
some quantity u and the corresponding spatial divergence of some function f—the flux function—of
that same quantity:

ut + div f(u) = 0 . (2.0.1)

Unless stated otherwise, we assume that there is no external source or sink, so that the RHS of
(2.0.1) is zero. We consider exclusively the one-dimensional case, so that the advection equation
reduces to

ut + fx(u) = 0 or ut + f ′(u)ux = 0 , (2.0.2)

where the second equation holds for f differentiable in u and u differentiable in x. In the simplest
case, the flux function is proportional to the field itself, which leads to the linear one-way wave
equation,

ut + c ux = 0 , c ∈ R . (2.0.3)
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This equation possesses the traveling wave solution, u(x, t) = g(x− ct), where g(x) = f(x, t = 0) is
the initial condition; for c > 0, this represents uniform translation of the initial wave profile to the
right at constant speed c. The simplest nonlinear case is given by a flux function quadratic in u,
yielding the well-known inviscid Burgers equation,

ut +
(
u2/2

)
x

= 0 or ut + uux = 0 , (2.0.4)

where, again, the second equation holds if u is differentiable in x. This equation is an elementary
yet powerful model for many shock phenomena, as it has a convex flux function, f(u) = u2/2, leads
to the development of shocks in finite time for smooth-but-nontrivial initial conditions, and forms
a basis for exploring important concepts, such as entropy. The fundamental ideas underlying local
advection, embodied in such equations, have been developed by numerous researchers in countless
applications, and have been examined theoretically, analytically, and computationally.

Non-local advection

The exhaustive study that has been conducted of local advection has not been applied to
nonlocal advection. Here, we briefly mention other approaches and describe our new work.

Previous approaches to non-local advection

The literature contain instances of what may be generally termed “nonlocal advection” (some-
times referred to as “nonlocal convection”). Assuming that the time derivative is treated locally
(i.e., as the usual partial derivative ∂/∂t), there are two main aspects of the general advection equa-
tion for which nonlocal extensions have been examined: (i) nonlocal f , nonlocal fx(u) in (2.0.2a),
or nonlocal f ′(u) in (2.0.2b), and (ii) nonlocal regularizations, i.e., “small” nonlocal terms replacing
the zero on the RHS of the equality in both equations in (2.0.2). The first of these approaches was
considered, e.g., in [6, 9, 14, 38, 56, 66], while the second category of nonlocalizations includes some
of the above cited works, as well as, e.g., [1, 2, 4, 7, 11, 15, 16, 19, 28, 27, 36, 37, 56, 49, 63, 64]. A
focus of many of these works is on nonlocal generalizations of Burgers equation. Moreover, in most
of these studies, assumptions are made regarding the particular form of the nonlocality; for exam-
ple, in [4] and [9], the Hilbert transform of u is used to model nonlocal behavior. Such assumptions
are perfectly sensible for modeling specific physics, but they are not general in nature.

Non-local advection: a new formulation

The approaches of the previous section impose some specific assumptions on the nonlocality,
either in the advective operator or in the regularization term. Motivated by peridynamics, we
consider a more general case and posit the following integro-differential equation:

ut(x, t) +
∫

R
dy ψ

(
u(y, t) + u(x, t)

2

)
φa(y, x) = 0 (x, t) ∈ R× (0,∞) ,

u(x, 0) = g(x) x ∈ R ,
(2.0.5)
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where the kernel1 is antisymmetric in its arguments: φa(y, x) = −φa(x, y). We claim that this
equation represents a general nonlocal, nonlinear conservation law for advection. To see that this is
the case, consider the special case in which the kernel is the derivative of the Dirac delta distribution:

φa(y, x) ≡ − d

dy
δ(y − x) , (2.0.6)

and assume further that ψ, u, and ux decay sufficiently fast to zero as their arguments approach
infinity. Integration by parts of (2.0.5) implies that∫

R
dy ψ

(
u(y, t) + u(x, t)

2

)
φa(y, x) = −

[
ψ

(
u(y, t) + u(x, t)

2

)
δ(y − x)

]∣∣∣∣y=∞

y=−∞

+
∫

R
dy ψy

(
u(y, t) + u(x, t)

2

)
δ(y − x) = ψx

(
u(x, t)

)
. (2.0.7)

Comparing this result with (2.0.2), we immediately identify ψ with the corresponding local flux
function f and see that, for the particular kernel given in (2.0.6), (2.0.5) reduces to its local
counterpart:

ut + fx(u) = 0 (x, t) ∈ R× (0,∞) ,
u(x, 0) = g(x) x ∈ R .

(2.0.8)

We gain more insight into the nature of (2.0.5) by applying Noll’s Lemma I [44, 33], which, under
certain boundedness and smoothness assumptions, gives an explicit expression for flux function f
for (2.0.5):

f
(
u(x, t)

)
= −1

2

∫
R
dz

∫ 1

0
dλ ψ

(
u(x− (1− λ)z, t) + u(x+ λz, t)

2

)
z φa(x− (1− λ)z, x+ λz)

(2.0.9a)

such that

fx
(
u(x, t)

)
=
∫

R
dy ψ

(
u(y, t) + u(x, t)

2

)
φa(y, x) . (2.0.9b)

This result confirms that (2.0.5) can be written in the form of (2.0.2) with the flux function given
by (2.0.9a).

An approach to solving the non-local advection equation

Consider now (2.0.5) in the form given by the second equation in (2.0.2), together with the flux
function relations (2.0.9a),(2.0.9b). Along the characteristic curves, given by the ODEs

dx

dt
= f ′(u) , x(0) = x0 , (2.0.10)

where x0 labels the initial point (x, t) = (x0, 0), (2.0.2) can be written as the perfect derivative

du

dt
= 0 , u(0) = g(x0) . (2.0.11)

1The kernel of the integral is called the micromodulus in the peridynamics literature.
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Together, (2.0.10) and (2.0.11) imply that the solution to (2.0.5) satisfies the implicit equation

u(x, t) = g
(
x− t f ′(u(x, t))

)
⇒ G(u(x, t)) ≡ g

(
x− t f ′(u(x, t))

)
− u(x, t) = 0 . (2.0.12)

From the chain rule applied to the flux function f , we have the following relation

fx(u(x, t)) = fu(u(x, t)) · ux(x, t) ⇒ fu(u(x, t)) ≡ f ′(u(x, t)) = fx(u(x, t))/ux(x, t) . (2.0.13)

In (2.0.12), (2.0.13), and (2.0.9b) we have key components used in a numerical algorithm with
which to obtain solutions to (2.0.5) as the roots of the function G in (2.0.12). This is the same
approach that can be applied to find solutions to the local advection equation. Unlike the local
case, where this solution procedure leads to a series of explicit root-solves for G(u) = 0 at each
(x, t), in the nonlocal case the solution for G(u) = 0 leads to an inherently implicit problem, as the
values of u(x, t) at all values of x are coupled through the nonlocal flux, i.e., the second addend in
(2.0.5).

Open issues in non-local advection equation

Suggested by analysis of local advection equations, there are numerous open issues to be ad-
dressed for the nonlocal advection equation given in (2.0.5). We list a few of the most important
topics here.

Regularization of non-local advection

The regularization of inviscid advection equations (such as (2.0.2)) plays an important role in
the associated physics and mathematics. Here, by the term regularization we mean the modification
of the otherwise-zero RHS of the conservation law with terms that are small relative to the scale
of the solution. Inspired by the work of Gunzberger and Lehoucq [21] and informed by the work
of Ignat and Rossi [25], we propose a regularization of the (inviscid) nonlocal advection equation
(2.0.5) of the following form:

ut(x, t) +
∫

R
dy ψ

(
u(y, t) + u(x, t)

2

)
φa(y, x) = ε

∫
R
dy
(
u(y, t)− u(x, t)

)
φs(y, x) (x, t) ∈ R× (0,∞) ,

u(x, 0) = g(x) x ∈ R ,
(2.0.14)

where the kernel φs is symmetric in its arguments: φs(y, x) = φs(x, y). We claim that this equation
represents a general nonlocal, nonlinear conservation law for advection. Using arguments similar
to those presented in §2, with the particular symmetric kernel

φs(y, x) ≡ − d2

dy2
δ(y − x) , (2.0.15)

one can show that ∫
R
dy
(
u(y, t)− u(x, t)

)
ψs(y, x)y = uxx(x, t) . (2.0.16)

Thus, the regularized nonlocal equation (2.0.14), for φs as in (2.0.15) and φa as in (2.0.6), reduces
to the viscous conservation law

ut + fx(u) = ε uxx . (2.0.17)
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While shock waves are often idealized as inviscid structures, it is only through the proper regu-
larization of the governing conservation equations, associated with vanishing viscosity, that shock
formation and propagation can be properly understood. The form of the equation given (2.0.14)
forms the nonlocal approach to a regularized (viscous) nonlocal conservation law consistent with
the (inviscid) nonlocal advection equation given in (2.0.5).

Shocks in non-local advection

There are innumerable references on this shock waves, among them being [60, 42]. Burgers
equation, as discussed, e.g., in [65, 34, 35], provides a model equation with which to examine many
of the key issues related to basic shock physics. We propose to study the nonlocal Burgers equation,
introduced in (2.0.4), for exactly this reason: to understand the fundamental aspects of idealized,
nonlocal shock physics. This remains an as-yet unrealized aspect of our work.

Entropy in non-local advection

The concept of entropy has proved crucial in both the physical understanding of and com-
putational approach to shock waves. Understanding the physics of entropy production through
shock waves was a seminal finding in 20th century continuum mechanics. The corresponding
mathematical understanding has developed over the last ∼50 years and is well codified for 1D
shocks [13, 18, 32, 57, 61]. In particular, the concept of the entropy-flux/entropy-function pair
(see the previous references) provides an instructional picture of the shock selection mechanism
for local equations. We posit that a very similar analysis for the nonlocal advection equation may
hold, although the analysis is likely more complicated in the nonlocal case. It is exactly this type of
careful analysis that will provide the basis of rigorous understanding of nonlocal shock propagation.

Non-local Burgers Equation

Using the approach to nonlocal advection discussed in previous section, we propose a new
nonlocal (inviscid) Burgers equation of the form

ut(x, t) =
∫ ∞
−∞
dy ψ

(
u(y, t) + u(x, t)

2

)
φa(y, x) , (2.0.18)

where ψ(u) = u2/2 is the usual (i.e., local) Burgers flux function and, following the discussion after
(2.0.5), the kernel φa is an antisymmetric function of its arguments. Following the procedure of
§2, setting the kernel to the generalized function φa(y, x) = ∂y(δ(y − x)), one finds that (2.0.18)
reduces to the local Burgers equation (2.0.4).

The corresponding nonlocal viscous Burgers equation corresponds to (2.0.14) with the flux
function given in the preceding paragraph. One important aspect of the viscous Burgers equation
is the existence of a closed-form solution (see, e.g., [65]); another is the ability to examine the
vanishing viscosity behavior (i.e., as ε → 0+) of the solution. A tantalizing open question is
whether a similar solution obtains for the nonlocal viscous Burgers equation, perhaps through a
nonlocal analogue of the Cole-Hopf procedure [12, 24]. Such a solution would be desirable as a

19



definitive benchmark against which to evaluate general numerical methods for solving nonlocal
equations.

Conclusions

We have introduced a new approach to nonlocal advection, and, in particular, the nonlocal
Burgers equation. This approach was inspired by the foundational approach to nonlocal mechanics
developed in peridynamics. Analysis of the nonlocal advection equation we propose offers a logical
path by which to address fundamental issues of shock phenomena—such as the formation of shock
waves, entropy generation through shocks, properties of nonlocal viscous regularization—that must
be addressed before a defensible shock physics implementation of peridynamics can be developed.
We look forward to developing elements of this theory in future work.
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Chapter 3

Peridynamics with LAMMPS: A User
Guide

Introduction

This document details the implementation of a discrete peridynamic model within the LAMMPS
molecular dynamic code, as described in the original article [46].

In §3 we discuss how to build the peridynamic module within LAMMPS, and discuss basic
requirements for input scripts to use the peridynamic module. In §3 we overview the relevant
portions of the peridynamic model of a continuum. In §3 we discuss the discretization of the
peridynamic model and its LAMMPS implementation. Finally, in §3, we discuss a LAMMPS
simulation of a specific numerical experiment described in [54].

Quick Start Guide

For those who hate reading users’ guides1, please try the following:

1. Download LAMMPS from http://lammps.sandia.gov and untar the source.

2. In the LAMMPS src/ directory do make yes-peri followed by make <your platform> (for
example, make g++).

3. In the LAMMPS examples/peri directory, run the example input script (for example,
lmp g++ < in.peri).

4. Follow instructions in §3 to visualize results.2

Typographical Conventions

Our typographical conventions are found in Table 3.1.

Finally, note all norms ‖·‖ are taken to be the 2-norm, ‖·‖2.

1Congratulations on getting this far!
2For a more meaningful example, try running the input script in Algorithm 7 on page 37.
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Getting Started

We assume that you already have a working LAMMPS installlation. For more on downloading
and building LAMMPS, see http://lammps.sandia.gov. This document only provides informa-
tion related to the peridynamic module within LAMMPS. For questions regarding the usage of
LAMMPS, please see the LAMMPS documentation.

Building the Peridynamic Module within LAMMPS

In the LAMMPS distribution, the peridynamic model is distributed as an add-on module, which
means that it is not by default compiled with the rest of LAMMPS. To instruct LAMMPS to build
the peridynamic module, go to the LAMMPS source subdirectory (/src) and type

make yes-peri

followed by

make <your platform>

to compile LAMMPS on your particular platform.

Input Script Basics

Here we provide a listing of commands that must be included in a LAMMPS input script to
utilize the peridynamic module. These commands assume knowledge of peridynamics (§3) and its
discretization (§3). This is not an inclusive list of LAMMPS commands. For a complete example
script, see §3.

LAMMPS has been modified to support SI units. To use SI units, your LAMMPS input script
should contain the command

units si

Table 3.1. Notational conventions.

Notation Example Description
Verbatim text make g++ Text to be typed at your command prompt

<text in angle brackets> <your platform> User specified statement
Bold lowercase letter x, ξ A vector in R3

Non-bold letter K, α A scalar in R
Underlined lowercase letter t, ω Scalar state (see §3)

Underlined bold uppercase letter T, M Vector state (see §3)
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All quantities specified in the input script and data file, as well as quantities output to the screen,
log file, and dump files will be in SI units.

Only a simple cubic lattice is currently supported. Your LAMMPS input script should contain
the command

lattice sc <lattice constant>

A peridynamic simulation requires the “peri” atom style be used. Your input script should
contain the command

atom_style peri

An associated required command tells LAMMPS to create a data structure used to index particles.
Your input script should contain the command

atom_modify map array

The “skin” distance used when computing neighborlists should be defined appropriately for your
choice of simulation parameters. Your input script should contain the command

neighbor <skin> bin

where the “skin” should be set to a value such that the peridynamic horizon plus the skin distance
is larger than the maximum possible distance between two bonded particles (before their bond
breaks). A peridynamic simulation also requires a peridynamic pair style be used. Your input
script should contain either the commands

pair_style peri/lps
pair_coeff <type 1> <type 2> <bulk modulus> <shear modulus> <delta> <s00> <α>

to invoke the “peri/lps” pair style, or the commands

pair_style peri/pmb
pair_coeff <type 1> <type 2> <c> <delta> <s00> <α>

to invoke the “peri/pmb” pair style. See §3 for more on the linear peridynamic solid (LPS) model,
and §3 for more on the prototype microelastic brittle (PMB) model.

The mass density and volume fraction for each particle must be defined. Your input script
should contain the commands

set group all density <ρ>
set group all volume <Vi>

23



In the second line, you are setting the volume of each peridynamic particle. For a simple cubic
lattice, the volume should be equal to the cube of the lattice constant, i.e., Vi = ∆x3.

If you wish to start a simulation with the velocity of the peridynamic particles set to zero, your
input script should contain the command

velocity all set 0.0 0.0 0.0 sum no units box

We use a velocity-Verlet time integrator (algebraically equivalent to a centered difference in
time, but numerically more stable.) To use a velocity-Verlet time integrator, your input script
should contain the command

fix <fix id> all nve

You can compute the damage (see §3) at each particle with the compute style damage/atom:

compute <compute id> all damage/atom

To periodically dump snapshots of your simulation to disk, use the LAMMPS dump command:

dump <dump id> all custom <N> <dump filename> id type x y z c <compute id>

where N is the number of steps between snapshots and <compute id> is the id of the damage/atom
compute style above. You can visualize these snapshots (see §3).

Peridynamic Model of a Continuum

The following is not a complete overview of peridynamics, but a discussion of only those details
specific to the model we have implemented within LAMMPS. For more on the peridynamic theory,
the reader is referred to [55, 52]. To begin, we define the notation we will use.

Basic Notation

Within the peridynamic literature, the following notational conventions are generally used.
The position of a given point in the reference configuration is x. Let u(x, t) and y(x, t) denote
the displacement and position, respectively, of the point x at time t. Define the relative position
and displacement vectors of two bonded points x and x′ as ξ = x′ − x and η = u(x′, t) − u(x, t),
respectively. We note here that η is time-dependent, and that ξ is not. It follows that the relative
position of the two bonded points in the current configuration can be written as ξ + η = y(x′, t)−
y(x, t).

Peridynamic models are frequently written using states, which we briefly describe here. For the
purposes of our discussion, all states are operators that act on vectors in R3. For a more complete
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discussion of states, see [55]. A vector state is an operator whose image is a vector, and may be
viewed as a generalization of a second-rank tensor. Similarly, a scalar state is an operator whose
image is a scalar. Of particular interest is the vector force state T [x, t] 〈x′ − x〉, which is a mapping,
having units of force per volume squared, of the vector x′ − x to the force vector state field. The
vector state operator T may itself be a function of x and t. The constitutive model is completely
contained within T.

In the peridynamic theory, the deformation at a point depends collectively on all points inter-
acting with that point. Using the notation of [55], we write the peridynamic equation of motion
as

ρ(x)ü(x, t) =
∫
Hx

{
T [x, t]

〈
x′ − x

〉
−T

[
x′, t

] 〈
x− x′

〉}
dVx′ + b(x, t), (3.0.1)

where ρ represents the mass density, T the force vector state, and b an external body force density.
A point x interacts with all the points x′ within the neighborhood Hx, assumed to be a spherical
region of radius δ > 0 centered at x. δ is called the horizon, and is analogous to the cutoff radius
used in molecular dynamics. Conditions on T for which (3.0.1) satisfies the balance of linear and
angular momentum are given in [55].

We consider only force vector states that can be written as

T = tM,

with t a scalar force state and M the deformed direction vector state, defined by

M 〈ξ〉 =

{
ξ+η
‖ξ+η‖ ‖ξ + η‖ 6= 0

0 otherwise
. (3.0.2)

Such force states correspond to so-called ordinary materials ([55]). These are the materials for
which the force between any two interacting points x and x′ acts along the line between the points.

Linear Peridynamic Solid (LPS) Model

We summarize the linear peridynamic solid (LPS) material model. For more on this model, the
reader is referred to [55]. This model is a nonlocal analogue to a classical linear elastic isotropic
material. The elastic properties of a a classical linear elastic isotropic material are determined by
(for example) the bulk and shear moduli. For the LPS model, the elastic properties are analogously
determined by the bulk and shear moduli, along with the horizon δ.

The LPS model has a force scalar state

t =
3Kθ
m

ω x+ αω ed, (3.0.3)

with K the bulk modulus and α related to the shear modulus G as

α =
15G
m

.

The remaining components of the model are described as follows. Define the reference position
scalar state x so that x 〈ξ〉 = ‖ξ‖. Then, the weighted volume m is defined as

m [x] =
∫
Hx

ω 〈ξ〉x 〈ξ〉x 〈ξ〉 dVξ. (3.0.4)
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Let
e [x, t] 〈ξ〉 = ‖ξ + η‖ − ‖ξ‖

be the extension scalar state, and

θ [x, t] =
3

m [x]

∫
Hx

ω 〈ξ〉x 〈ξ〉 e [x, t] 〈ξ〉 dVξ

be the dilatation. The isotropic and deviatoric parts of the extension scalar state are defined,
respectively, as

ei =
θx

3
, ed = e− ei,

where the arguments of the state functions and the vectors on which they operate are omitted for
simplicity. We note that the LPS model is linear in the dilatation θ, and in the deviatoric part of
the extension ed.

Remark 3.0.1. The weighted volume m is time-independent, and does not change as bonds break.
It is computed with respect to the bond family defined at the reference (initial) configuration.

The nonnegative scalar state ω is an influence function [55, Defn. 3.2]. For more on influence
functions, see [50]. If an influence function ω depends only upon the scalar ‖ξ‖, (i.e., ω 〈ξ〉 =
ω 〈‖ξ‖〉), then ω is a spherical influence function. For a spherical influence function, the LPS model
is isotropic [55, Prop. 14.1].

Remark 3.0.2. In the PDLAMMPS implementation of the LPS model, the influence function
ω 〈‖ξ‖〉 = 1/ ‖ξ‖ is used. However, the user can define their own influence function by altering
the method influence_function in the file pair_peri_lps.cpp. The PDLAMMPS code permits
both spherical and non-spherical influence functions (e.g., isotropic and non-isotropic materials).

Prototype Microelastic Brittle (PMB) Model

We summarize the prototype microelastic brittle (PMB) material model. For more on this
model, the reader is referred to [52, 54]. This model is a special case of the LPS model; see [50] for
the derivation. The elastic properties of the PMB model are determined by the bulk modulus K
and the horizon δ.

The PMB model is expressed using the scalar force state field

t [x, t] 〈ξ〉 =
1
2
f (η, ξ) , (3.0.5)

with f a scalar-valued function. We assume that f takes the form

f = cs,

where
c =

18K
πδ4

, (3.0.6)

with K the bulk modulus and δ the horizon, and s the bond stretch, defined as

s(t,η, ξ) =
‖η + ξ‖ − ‖ξ‖

‖ξ‖
.
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Bond stretch is a unitless quantity, and identical to a one-dimensional definition of strain. As such,
we see that a bond at its equilibrium length has stretch s = 0, and a bond at twice its equilibrium
length has stretch s = 1. The constant c given above is appropriate for 3D models only. For more
on the origins of the constant c, see [54]. For the derivation of c for 1D and 2D models, see [17].

Given (3.0.5), (3.0.1) reduces to

ρ(x)ü(x, t) =
∫
Hx

f (η, ξ) dVξ + b(x, t), (3.0.7)

with

f (η, ξ) = f (η, ξ)
ξ + η

‖ξ + η‖
.

Unlike the LPS model, the PMB model has a Poisson ratio of ν = 1/4 in 3D, and ν = 1/3 in 2D.
This is reflected in the input for the PMB model, which requires only the bulk modulus of the
material, whereas the LPS model requires both the bulk and shear moduli.

Damage

Bonds are made to break when they are stretched beyond a given limit. Once a bond fails, it
is failed forever [54]. Further, new bonds are never created during the course of a simulation. We
discuss only one criterion for bond breaking, called the critical stretch criterion.

Define µ to be the history-dependent scalar boolean function

µ(t,η, ξ) =
{

1 if s(t′,η, ξ) < min
(
s0(t′,η, ξ), s0(t′,η′, ξ′)

)
for all 0 ≤ t′ ≤ t

0 otherwise

}
. (3.0.8)

where η′ = u(x′′, t)− u(x′, t) and ξ′ = x′′ − x′. Here, s0(t,η, ξ) is a critical stretch defined as

s0(t,η, ξ) = s00 − αsmin(t,η, ξ), smin(t) = min
ξ
s(t,η, ξ), (3.0.9)

where s00 and α are material-dependant constants. The history function µ breaks bonds when the
stretch s exceeds the critical stretch s0.

Although s0(t,η, ξ) is expressed as a property of a particle, bond breaking must be a symmetric
operation for all particle pairs sharing a bond. That is, particles x and x′ must utilize the same
test when deciding to break their common bond. This can be done by any method that treats the
particles symmetrically. In the definition of µ above, we have chosen to take the minimum of the
two s0 values for particles x and x′ when determining if the x–x′ bond should be broken.

Following [54], we can define the damage at a point x as

ϕ(x, t) = 1−
∫
Hx

µ(t,η, ξ)dVx′∫
Hx

dVx′
. (3.0.10)
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Discrete Peridynamic Model and LAMMPS Implementation

In LAMMPS, instead of (3.0.1), we model this equation of motion:

ρ(x)ÿ(x, t) =
∫
Hx

{
T [x, t]

〈
x′ − x

〉
−T

[
x′, t

] 〈
x− x′

〉}
dVx′ + b(x, t),

where we explicitly track and store at each timestep the positions and not the displacements of the
particles. We observe that ÿ(x, t) = ẍ + ü(x, t) = ü(x, t), so that this is equivalent to (3.0.1).

Spatial Discretization

The region defining a peridynamic material is discretized into particles forming a simple cubic
lattice with lattice constant ∆x, where each particle i is associated with some volume fraction Vi.
For any particle i, let Fi denote the family of particles for which particle i shares a bond in the
reference configuration. That is,

Fi = {p | ‖xp − xi‖ ≤ δ}. (3.0.11)

The discretized equation of motion replaces (3.0.1) with

ρÿni =
∑
p∈Fi

{
T [xi, t]

〈
x′p − xi

〉
−T [xp, t] 〈xi − xp〉

}
Vp + bni , (3.0.12)

where n is the timestep number and subscripts denote the particle number.

Short-Range Forces

In the model discussed so far, particles interact only through their bond forces. A particle with
no bonds becomes a free non-interacting particle. To account for contact forces, short-range forces
are introduced [53]. We add to the force in (3.0.12) the following force

fS(yp,yi) = min
{

0,
cS
δ

(
∥∥yp − yi

∥∥− dpi)} yp − yi∥∥yp − yi
∥∥ , (3.0.13)

where dpi is the short-range interaction distance between particles p and i, and cS is a multiple of
the constant c from (3.0.6). Note that the short-range force is always repulsive, never attractive.
In practice, we choose

cS = 15
18K
πδ4

. (3.0.14)

For the short-range interaction distance, we choose [53]

dpi = min {0.9 ‖xp − xi‖ , 1.35(rp + ri)} , (3.0.15)

where ri is called the node radius of particle i. Given a discrete lattice, we choose ri to be half the
lattice constant.3 Given this definition of dpi, contact forces appear only when particles are under
compression.

3For a simple cubic lattice, ∆x = ∆y = ∆z.
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When accounting for short-range forces, it is convenient to define the short-range family of
particles

FSi = {p |
∥∥yp − yi

∥∥ ≤ dpi}.
Modification to the Particle Volume

The right-hand side of (3.0.12) may be thought of as a midpoint quadrature of (3.0.1). To
slightly improve the accuracy of this quadrature, we discuss a modification to the particle volume
used in (3.0.12). In a situation where two particles share a bond with ‖xp − xi‖ = δ, for example, we
suppose that only approximately half the volume of each particle is “seen” by the other [53]. When
computing the force of each particle on the other we use Vp/2 rather than Vp in (3.0.12). As such,
we introduce a nodal volume scaling function for all bonded particles where δ− ri ≤ ‖xp − xi‖ ≤ δ
(c.f. Figure 3.1).

We choose to use a linear unitless nodal volume scaling function

ν(xp − xi) =


− 1

2ri
‖xp − xi‖+

(
δ

2ri
+ 1

2

)
if δ − ri ≤ ‖xp − xi‖ ≤ δ

1 if ‖xp − xi‖ ≤ δ − ri
0 otherwise


If ‖xp − xi‖ = δ, ν = 0.5, and if ‖xp − xi‖ = δ − ri, ν = 1.0, for example.

(a) Two-dimensional diagram show-
ing particle on mesh (solid lines) with
neighborhood Hx as grey circular re-
gion. Dual mesh (dotted lines) shows
boundaries of each particle.

y 

1 

2 

3 

x 
4   5 

(b) Plot of ν(xp − xi) vs. ‖xp − xi‖.

Figure 3.1. Diagram showing horizon of a particular particle,
demonstrating that the volume associated with particles near the
boundary of the horizon is not completely contained within the
horizon.
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Temporal Discretization

When discretizing time in LAMMPS, we use a velocity-Verlet scheme, where both the position
and velocity of the particle are stored explicitly. The velocity-Verlet scheme is generally expressed
in three steps. In Algorithm 1, ρi denotes the mass density of a particle and f̃

n

i denotes the
the net force density on particle i at timestep n. The LAMMPS command fix nve performs a
velocity-Verlet integration.

Algorithm 1 Velocity Verlet

1: vn+1/2
i = vni + ∆t

2ρi
f̃
n

i

2: yn+1
i = yni + ∆tvn+1/2

i

3: vn+1
i = vn+1/2

i + ∆t
2ρi

f̃
n+1

i

Breaking Bonds

During the course of simulation, it may be necessary to break bonds, as described in §3. Bonds
are recorded as broken in a simulation by removing them from the bond family Fi (see (3.0.11)).

A näıve implementation would have us first loop over all bonds and compute smin in (3.0.9),
then loop over all bonds again and break bonds with a stretch s > s0 as in (3.0.8), and finally loop
over all particles and compute forces for the next step of Algorithm 1. For reasons of computational
efficiency, we will utilize the values of s0 from the previous timestep when deciding to break a bond.

Remark 3.0.3. For the first timestep, s0 is initialized to ∞ for all nodes. This means that no bonds
may be broken until the second timestep. As such, it is recommended that the first few timesteps
of the peridynamic simulation not involve any actions that might result in the breaking of bonds.
As a practical example, the projectile in §3 is placed such that it does not impact the target brittle
plate until several timesteps into the simulation.

LPS Pseudocode

A sketch of the LPS model implementation in PDLAMMPS appears in Algorithm 2. This
algorithm makes use of the routines in Algorithms 3 and 4.

PMB Pseudocode

A sketch of the PMB model implementation in PDLAMMPS appears in Algorithm 5.

Damage

The damage associated with every particle (see (3.0.10)) can optionally be computed and output
with a LAMMPS data dump. To do this, your input script must contain the command
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Algorithm 2 LPS Peridynamic Model Pseudocode
1: Fix s00, α, horizon δ, bulk modulus K, shear modulus G, timestep ∆t, and generate initial lattice of particles

with lattice constant ∆x. Let there be N particles. Define constant cS for repulsive short-range forces.
2: Initialize bonds between all particles i 6= j where ‖xj − xi‖ ≤ δ
3: Initialize weighted volume m for all particles using Algorithm 3
4: Initialize s0 = ∞ {Initialize each entry to MAX DOUBLE}
5: while not done do
6: Perform step 1 of Algorithm 1, updating velocities of all particles
7: Perform step 2 of Algorithm 1, updating positions of all particles
8: s̃0 = ∞ {Initialize each entry to MAX DOUBLE}
9: for i = 1 to N do

10: {Compute short-range forces}
11: for all particles j ∈ FSi (the short-range family of nodes for particle i) do
12: r =

∥∥yj − yi
∥∥

13: dr = min{0, r − d}. {Short-range forces are only repulsive, never attractive}
14: k = cS

δ
Vkdr {cS defined in (3.0.14)}

15: f = f + k
yj−yi

‖yj−yi‖
16: end for
17: end for
18: Compute the dilatation for each particle using Algorithm 4
19: for i = 1 to N do
20: {Compute bond forces}
21: for all particles j sharing an unbroken bond with particle i do
22: e =

∥∥yj − yi
∥∥− ‖xj − xi‖

23: ω+ = ω 〈xj − xi〉 {Influence function evaluation}
24: ω− = ω 〈xi − xj〉 {Influence function evaluation}
25: f̂ =

[
(3K − 5G)

(
θ(i)
m(i)

ω+ + θ(j)
m(j)

ω−
)
‖xj − xi‖+ 15G

(
ω+
m(i)

+
ω−
m(j)

)
e
]
ν(xj − xi)Vj

26: f = f + f̂
yj−yi

‖yj−yi‖
27: if (dr/ ‖xj − xi‖) > min(s0(i), s0(j)) then
28: Break i’s bond with j {j’s bond with i will be broken when this loop iterates on j}
29: end if
30: s̃0(i) = min(s̃0(i), s00 − α(dr/ ‖xj − xi‖))
31: end for
32: end for
33: s0 = s̃0 {Store for use in next timestep}
34: Perform step 3 of Algorithm 1, updating velocities of all particles
35: end while

Algorithm 3 Computation of Weighted Volume m
1: for i = 1 to N do
2: m(i) = 0.0
3: for all particles j sharing a bond with particle i do
4: m(i) = m(i) + ω 〈xj − xi〉 ‖xj − xi‖2 ν(xj − xi)Vj
5: end for
6: end for

Algorithm 4 Computation of Dilatation θ
1: for i = 1 to N do
2: θ(i) = 0.0
3: for all particles j sharing an unbroken bond with particle i do
4: e =

∥∥yi − yj
∥∥− ‖xi − xj‖

5: θ(i) = θ(i) + ω 〈xj − xi〉 ‖xj − xi‖ eν(xj − xi)Vj
6: end for
7: θ(i) = 3

m(i)
θ(i)

8: end for
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Algorithm 5 PMB Peridynamic Model Pseudocode
1: Fix s00, α, horizon δ, spring constant c, timestep ∆t, and generate initial lattice of particles with lattice constant

∆x. Let there be N particles.
2: Initialize bonds between all particles i 6= j where ‖xj − xi‖ ≤ δ
3: Initialize s0 = ∞ {Initialize each entry to MAX DOUBLE}
4: while not done do
5: Perform step 1 of Algorithm 1, updating velocities of all particles
6: Perform step 2 of Algorithm 1, updating positions of all particles
7: s̃0 = ∞ {Initialize each entry to MAX DOUBLE}
8: for i = 1 to N do
9: {Compute short-range forces}

10: for all particles j ∈ FSi (the short-range family of nodes for particle i) do
11: r =

∥∥yj − yi
∥∥

12: dr = min{0, r − d} {Short-range forces are only repulsive, never attractive}
13: k = cS

δ
Vkdr {cS defined in (3.0.14)}

14: f = f + k
yj−yi

‖yj−yi‖
15: end for
16: end for
17: for i = 1 to N do
18: {Compute bond forces}
19: for all particles j sharing an unbroken bond with particle i do
20: r =

∥∥yj − yi
∥∥

21: dr = r − ‖xj − xi‖
22: k = c

‖xi−xj‖ν(xi − xj)Vjdr {c defined in (3.0.6)}

23: f = f + k
yj−yi

‖yj−yi‖
24: if (dr/ ‖xj − xi‖) > min(s0(i), s0(j)) then
25: Break i’s bond with j {j’s bond with i will be broken when this loop iterates on j}
26: end if
27: s̃0(i) = min(s̃0(i), s00 − α(dr/ ‖xj − xi‖))
28: end for
29: end for
30: s0 = s̃0 {Store for use in next timestep}
31: Perform step 3 of Algorithm 1, updating velocities of all particles
32: end while
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Algorithm 6 Example Python Script to Convert LAMMPS Dump to Ensight .case File Format
1: import sys

2: from dump import dump

3: from ensight import ensight

4: d = dump("dump.peri)̈;

5: d.map(1,"id",2,"type",3,"x",4,"y",5,"z",6,"damage");

6: e = ensight(d);

7: e.one("disk","damage","Damage")

compute <ComputeID> all damage/atom

This enables a LAMMPS per-atom compute to calculate the damage associated with each particle
every time a LAMMPS data dump is called. To output the results of this compute in your dump
file, you must use the LAMMPS dump command, as

dump <DumpID> all custom <N> <output filename> id type x y z c_<ComputeID>

where N is the number of timesteps between dumps.

Visualizing Simulation Results

LAMMPS does not visualize your simulation results. You’ll need to post-process your LAMMPS
data dump for use by a third-party visualization tool. Use of the pizza.py toolkit [47] is recom-
mended for conversion of LAMMPS data dump to another format suitable for use of your visual-
ization package of choice.

As an example, we outline here one possible means of visualizing the output of a peridynamic
simulation using only freely available open-source software. We assume that you have a dump file
named dump.peri constructed using line 35 in Algorithm 7, and that you have Algorithm 6 saved
as a python script named convert.py.

1. Install the pizza.py toolkit from http://www.sandia.gov/~sjplimp/pizza.html.

2. Install the Numeric Python packages from http://sourceforge.net/projects/numpy/files/
Old%20Numeric/. The package is installed correctly if you can type >>> import Numeric
from an interactive python prompt.

3. Install ParaView from www.paraview.org.

4. Run the conversion script: python convert.py.

This will produce an Ensight-format .case file, as well as a .xyz file and a .damage file. Launch
ParaView, open the .case file, and click the green Apply button on the left. For more on Paraview,
see www.paraview.org.
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Pitfalls

Parallel Scalability. LAMMPS operates in parallel in a spatial-decomposition mode [48],
where each processor owns a spatial subdomain of the overall simulation domain and communicates
with its neighboring processors via distributed-memory message passing (MPI) [58] to acquire
ghost atom information to allow forces on the atoms it owns to be computed. LAMMPS also
uses Verlet neighbor lists which are recomputed every few timesteps as particles move. On these
timesteps, particles also migrate to new processors as needed. LAMMPS decomposes the overall
simulation domain so that spatial subdomains of nearly equal volume are assigned to each processor.
When each subdomain contains nearly the same number of particles, this results in a reasonable
load balance among all processors. As is more typical with some peridynamic simulations, some
subdomains may contain many particles while other subdomains contain few particles, resulting in
a load imbalance that impacts parallel scalability.

Setting the “skin” distance. The neighbor command with LAMMPS is used to set the
so-called “skin” distance used when building neighbor lists. All atom pairs within a cutoff distance
equal to the horizon δ plus the skin distance are stored in the list. Unexpected crashes in LAMMPS
may be due to too small a skin distance. The skin should be set to a value such that δ plus the skin
distance is larger than the maximum possible distance between two bonded particles. For example,
if s00 is increased, the skin distance may also need to be increased.

“Lost” particles. All particles are contained within the “simulation box” of LAMMPS. The
boundaries of this box may change with time, or not, depending on how the LAMMPS boundary
command has been set. If a particle drifts outside the simulation box during the course of a
simulation, it is called lost.

As an option of the themo_modify command of LAMMPS, the lost keyword determines whether
LAMMPS checks for lost atoms each time it computes thermodynamics and what it does if atoms
are lost. If the value is ignore, LAMMPS does not check for lost atoms. If the value is error or
warn, LAMMPS checks and either issues an error or warning. The code will exit with an error and
continue with a warning. This can be a useful debugging option. The default behavior of LAMMPS
is to exit with an error if a particle is lost.

The peridynamic module within LAMMPS does not check for lost atoms. If a particle with
unbroken bonds is lost, those bonds are marked as broken by the remaining particles.

Defining the peridynamic horizon δ. In the pair_coeff command, the user must specify the
horizon δ. This argument determines which particles are bonded when the simulation is initialized.
It is recommended that δ be set to a small fraction of a lattice constant larger than desired.

For example, if the lattice constant is 0.0005 and you wish to set the horizon to three times
the lattice constant, then set δ to be 0.0015001, a value slightly larger than three times the lattice
constant. This guarantees that particles three lattice constants away from each other are still
bonded. If δ is set to 0.0015, for example, floating point error may result in some pairs of particles
three lattice constants apart not being bonded.
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Breaking bonds too early. For technical reasons, the bonds in the simulation are not created
until the end of the first timestep of the simulation. Therefore, one should not attempt to break
bonds until at least the second step of the simulation.

Bugs

The user is cautioned that this code is a beta release. If you are confident that you have found
a bug in the peridynamic module, please send an email to the developers. First, check the “New
features and bug fixes” section of the LAMMPS website site to see if the bug has already been
reported or fixed. If not, the most useful thing you can do for us is to isolate the problem. Run
it on the smallest number of atoms and fewest number of processors and with the simplest input
script that reproduces the bug. In your email, describe the problem and any ideas you have as to
what is causing it or where in the code the problem might be. We’ll request your input script and
data files if necessary.

Modifying and Extending the Peridynamic Module

To add new features or peridynamic potentials to the peridynamic module, the user is referred
to section 8 of the LAMMPS user manual, Modifying & extending LAMMPS. To develop a new
bond-based material, start with the PMB pair style as a template. To develop a new state-based
material, start with the LPS pair style as a template.

A Numerical Example

To introduce the peridynamic implementation within LAMMPS, we replicate a numerical ex-
periment taken from section 6 of [54].

Problem Description and Setup

We consider the impact of a rigid sphere on a homogeneous disk of brittle material. The sphere
has diameter 0.01 m and velocity 100 m/s directed normal to the surface of the target. The target
material has density ρ = 2200 kg/m3. A PMB material model is used with K = 14.9 GPa and
critical bond stretch parameters given by s00 = 0.0005 and α = 0.25. A three-dimensional simple
cubic lattice is constructed with lattice constant 0.0005 m and horizon 0.0015 m. (The horizon
is three times the lattice constant.) The target is a cylinder of diameter 0.074 m and thickness
0.0025 m, and the associated lattice contains 103,110 particles. Each particle i has volume fraction
Vi = 1.25× 10−10 m3.

The spring constant in the PMB material model is (see (3.0.6))

c =
18k
πδ4

=
18(14.9× 109)
π(1.5× 10−3)4

≈ 1.6863× 1022.

The CFL analysis from [54] shows that a timestep of 1.0× 10−7 is safe.
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We observe here that in IEEE double-precision floating point arithmetic when computing the
bond stretch s(t,η, ξ) at each iteration where ‖η + ξ‖ is computed during the iteration and ‖ξ‖
was computed and stored for the initial lattice, it may be that fl(s) = ε with |ε| ≤ εmachine for an
unstretched bond. Taking ε = 2.220446049250313×10−16, we see that the value csVi ≈ 4.68×10−4,
computed when determining f , is perhaps larger than we would like, especially when the true force
should be zero. One simple way to avoid this issue is to insert the following instructions in Algorithm
5 after instruction 21 (and similarly for Algorithm 2):

1: if |dr| < εmachine then
2: dr = 0.
3: end if

Qualitatively, this says that displacements from equilibrium on the order of 10−6Å are taken to be
exactly zero, a seemingly reasonable assumption.

The Projectile

The projectile used in the following experiments is not the one used in [54]. The projectile used
here exerts a force

F (r) = −ks(r −R)2

on each atom where ks is a specified force constant, r is the distance from the atom to the center of
the indenter, and R is the radius of the projectile. The force is repulsive and F (r) = 0 for r > R.
For our problem, the projectile radius R = 0.05 m, and we have chosen ks = 1.0 × 1017 (compare
with (3.0.6) above).

Writing the LAMMPS Input File

We discuss the example input script from Algorithm 7. In line 2 we specify that SI units are
to be used. We specify the dimension (3) and boundary conditions (“shrink-wrapped”) for the
computational domain in lines 3 and 4. In line 5 we specify that peridynamic particles are to
be used for this simulation. In line 7, we set the “skin” distance used in building the LAMMPS
neighborlist. In line 8 we set the lattice constant (in meters) and in line 10 we define the spatial
region where the target will be placed. In line 12 we specify a rectangular box enclosing the target
region that defines the simulation domain. Line 14 fills the target region with atoms. Lines 15
and 17 define the peridynamic material model, and lines 19 and 21 set the particle density and
particle volume, respectively. The particle volume should be set to the cube of the lattice constant
for a simple cubic lattice. Line 23 sets the initial velocity of all particles to zero. Line 25 instructs
LAMMPS to integrate time with velocity-Verlet, and lines 27-30 create the spherical projectile,
sending it with a velocity of 100 m/s towards the target. Line 32 declares a compute style for the
damage (percentage of broken bonds) associated with each particle. Line 33 sets the timestep, line
34 instructs LAMMPS to provide a screen dump of thermodynamic quantities every 200 timesteps,
and line 35 instructs LAMMPS to create a data file (dump.peri) with a complete snapshot of the
system every 100 timesteps. This file can be used to create still images or movies. Finally, line 36
instructs LAMMPS to run for 2,000 timesteps.
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Algorithm 7 Example LAMMPS Input Script
1: # 3D Peridynamic simulation with projectile

2: units si

3: dimension 3

4: boundary s s s

5: atom_style peri

6: atom_modify map array

7: neighbor 0.0010 bin

8: lattice sc 0.0005

9: # Create desired target

10: region target cylinder y 0.0 0.0 0.037 -0.0025 0.0 units box

11: # Make 1 atom type

12: create_box 1 target

13: # Create the atoms in the simulation region

14: create_atoms 1 region target

15: pair_style peri/pmb 4

16: # <type1> <type2> <c> <horizon> <s00> <alpha>

17: pair_coeff * * 1.6863e22 0.0015001 0.0005 0.25

18: # Set mass density

19: set group all density 2200

20: # volume = lattice constant^3

21: set group all volume 1.25e-10

22: # Zero out velocities of particles

23: velocity all set 0.0 0.0 0.0 sum no units box

24: # Use velocity-Verlet time integrator

25: fix F1 all nve

26: # Construct spherical indenter to shatter target

27: variable y0 equal 0.00510

28: variable vy equal -100

29: variable y equal "v y0 + step*dt*v vy"

30: fix F2 all indent 1e17 sphere 0.0000 v_y 0.0000 0.0050 units box

31: # Compute damage for each particle

32: compute C1 all damage/atom

33: timestep 1.0e-7

34: thermo 200

35: dump D1 all custom 100 dump.peri id type x y z c_C1

36: run 2000

Numerical Results and Discussion

We ran the input script from Algorithm 7. Images of the disk (projectile not shown) appear in
Figure 3.2. The LAMMPS dump file was converted to an EnSight data format with the pizza.py
toolkit [47]. Visualization was done with the EnSight visualization package [10]. Use of the Paraview
visualization package is also recommended, as it reads EnSight data files, and is open-source and
freely available [29]. See §3 for more on visualizing peridynamic simulations results. The plot of
damage on the top monolayer was created by coloring each particle according to its damage (see
(3.0.10)).

The symmetry in the computed solution arises because a “perfect” lattice was used, and a
because a perfectly spherical projectile impacted the lattice at its geometric center. To break the
symmetry in the solution, the nodes in the peridynamic body may be perturbed slightly from the
lattice sites. To do this, a perturbed lattice of points can be prepared in a data file and read into

4To use the LPS model, replace line 15 with pair style peri/lps and modify line 17 accordingly; see page 23.
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(a) Cut view of target during impact.

(b) Top monolayer showing fragmenta-
tion.

(c) Top monolayer showing damage. (blue
= 0% broken bonds; red = 100% broken
bonds)

Figure 3.2. Target during (a) and after (b,c) impact.

LAMMPS using the read_data command.
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Chapter 4

The mapping from particle mechanics
to continuum mechanics

This paper discusses the exact mapping from classical particle mechanics to the dynamical
equations of continuum mechanics. The original work of Irving and Kirkwood and later that of
Hardy is extended to systems with general multibody interactions. The approach of this paper can
be used to derive continuum equations for a single instance (e.g. from molecular dynamics) or for
an ensemble of systems, and in either case these systems can be very far from equilibrium. The
interpretation of the continuum field quantities is that they represent observed densities which are
spatial averages of microscopic densities. We derive a simple theorem about the consequences of
reflection invariance with the important result that the Cauchy stress is symmetric if and only if
the underlying potential is reflection invariant. The relation of the dynamical stress to virial stress
is explored. For the energy equation some partitioning of the potential energy is required and we
find that there is an additional microscopic heat source, which we call churning heat. We show that
this vanishes for pair potentials and in the virial limit for three particle interactions; we conjecture
that it always vanishes in the virial limit.

Introduction.

There are several different definitions of stress available in the literature. We distinguish con-
ceptually between stress as a physical field that can be measured (in principle) and stress as the
output of some model (e.g. an elastic or other particular phenomenological model): the latter is
not of interest in this paper. The physical definitions can be divided generally into mechanical def-
initions (stress is the response to a virtual strain), thermodynamic definitions (stress is an average
quantity derived from a virial theorem), and dynamical definitions (stress is that field which causes
the momentum balance equation to be satisfied).

The approach taken in this paper is a dynamical one, since we show that this approach allows the
construction of microscopic definitions of continuum fields which obey expected continuum balance
laws. These definitions are valid even when the underlying system is very far from equilibrium,
in great contrast to the mechanical and virial/thermodynamic definitions. This also means that
we can show that the continuum balance laws are consequences of an underlying theory that is
based on particles. This gives us a methodology for reasoning about the continuum balance laws
which is not possible in a purely mathematical approach where these balance laws are taken to be
postulates. Note also that we do not assume any results from the continuum theory but instead
stop at developing the microscopic definitions of some of the quantities which appear in that theory.
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The first serious attempt at constructing the dynamical stress was carried out in the seminal
paper of Irving and Kirkwood [26]. Here a statistical ensemble of systems obeying classical particle
mechanics was assumed and the continuum equations were derived using Liouville’s theorem. This
paper did not derive a closed form expression for the microscopic dynamical stress. Instead the
potential part of the stress was shown to be the expectation of an infinite sum of distributions

σµν
U (x) =

1
2

〈∑
jk

∂Ujk
∂xµj

(xj − xk)ν
{

1− 1
2!

xjk · ∇x

+ · · ·+ (−1)n

n!
(xjk · ∇x)n−1 + · · ·

}
δ(xj − x)

〉
. (4.0.1)

Noll [45, 33] was able to replace the sum of distributions with a pair of integrals

σµν
U =

1
2

∑
jk

∫
z

zµzν

|z|
dUjk(y)
dy

∣∣∣∣
|z|

×
∫ 1

0
dα 〈W |xj = x + αz,xk = x− (1− α)z)〉 , (4.0.2)

but neither of these formulas is useful from a computational point of view, and any connection with
mechanical or virial definitions of stress is obviously very obscure. This approach was therefore
more or less abandoned in the physical chemistry community. In developing what is now known as
the Green-Kubo formalism Green [20] thus took a line of reasoning based on the virial theorem and
the assumption of systems at equilibrium. Such techniques do not result in a stress that is part of
a dynamical system of equations; instead they compute linear transport coefficients directly.

The next major advance in the computation of dynamical stress was due to Hardy [23]. This ap-
proach was developed explicitly for shock waves where the concept of equilibrium at the shock front
is obviously problematic, so the equilibrium/virial methods are not applicable. Hardy introduced
the concept of observed density fields which are spatial averages of microscopic densities. If the
averaging filter (Hardy’s localization function) is sufficiently sharp one can recover the microscopic
densities, so mathematically nothing is lost. Hardy’s formula for the potential part of the stress in
terms of the pair force fjk is

σµν
U =

1
2

∑
jk

fνjkx
µ
jkβjk (4.0.3)

where β is the bond function derived from the averaging filter. This is clearly very close to the well
known virial formula [62, 41]

σµν
U =

1
2V

∑
jk

fνjkx
µ
jk (4.0.4)

where V is the averaging volume. In this paper we show that (4.0.3) is equal to (4.0.4) in the limit
of a very soft averaging function. Thus the Hardy and virial results are very closely related.

A second major advance due to Irving and Kirkwood [26] is the derivation of a continuum
energy equation and the realization by these authors that the expression for heat flux follows from
the derivation of stress by closing the energy balance equation. Of course this derivation suffers
from the same problems that the original stress derivation has, but this difficulty was solved also
by Hardy [23].
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Thus we have a complete set of microscopic expressions for all the dynamical quantities that
appear in the continuum equations, at least for pair potentials. We note that all of the references
cited so far had carried out calculations only in this case, that is when the potential energy of all
the particles is given as a sum of pairwise terms (equivalently, central forces) which depend only
on the distance between the individual pair of particles. This is a valuable case to study, since
it includes so-called simple fluids [22, 5]. But modern molecular dynamics calculations abound
with multibody terms involving bond angles and torsion angles, not to mention terms such as the
Axelrod-Teller [3, 43] interaction or Stillinger-Weber [59] type potentials. Although there have been
attempts at generalizing microscopic stress formulas to more general potentials these have typically
been carried out in a very ad-hoc fashion.

The main goal of this paper is to construct exact (and computable) expressions for microscopic
stress and heat flux which are valid for any multibody potential. In order to carry out this goal
we find that it is necessary to understand the concept of pair force in some detail. We find that a
simplification is available if we add one additional symmetry principle, that of reflection invariance,
to the underlying system. We are able to show that this constraint implies a simple formula for
the pair force and as an important consequence we are able to show that symmetry of the Cauchy
stress follows from reflection invariance of the underlying potential. This is in strong contrast to
the understanding in the continuum mechanics community [40] that symmetry of the Cauchy stress
is related to conservation of angular momentum.

For the energy equation it is also necessary to pick some partitioning for the potential energy,
that is some assignment of parts of the potential energy to the individual particles. The arbitrariness
in this procedure has been understood for a long time [26, 20], even for pair potentials. We carry
out the analysis for an arbitrary partitioning and show that non-pair terms in the potential lead
to a new kind of term in the heat flux. For multibody potentials we suggest the somewhat obvious
idea of evenly dividing a given multibody term among the particles that participate in it. For three-
body terms we are able to show that this partitioning leads to a churning term which vanishes in
the virial limit and we conjecture that this is true for terms with more particles as well.

The outline of this paper is as follows. First we discuss the equations of continuum mechanics
and the continuum field quantities. Then we introduce the particle mechanics model and derive the
basic formula for pair forces that will be needed, including the theorems about the consequences
of reflection invariance. The definition of microscopic and observed density fields is presented and
the next sections show the derivation for the mass, momentum, and energy equations along with a
discussion of the relation between the Hardy approach and the ensemble approach.

Continuum mechanics.

The goal of this paper is to derive the dynamical equations of continuum mechanics from a
microscopic particle theory. Continuum mechanics is described by fields which represent mass
density, material velocity, stress, energy density, heat flux. We expect to derive the conservation
laws (balance equations) for mass, momentum, and energy which describe the connection between
these field quantities. We use Eulerian form to avoid the necessity of introducing extraneous
concepts (material points, bodies, deformation, and so forth). The end result will be a microscopic
description of all the field quantities in the balance equations; this allows us to derive continuum
mechanics from microscopic principles rather than postulating it as a mathematical theory.
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Mass density.

The usual form for the balance equation describing conservation of mass is

∂ρ

∂t
+

∂

∂xµ
(ρvµ) = 0 (4.0.5)

where ρ is the mass density and v is the material velocity. Alternatively, we can write

∂ρ

∂t
+

∂

∂xµ
(πµ) = 0 (4.0.6)

where π = ρv is the momentum density of the material. We use the Einstein summation convention
for coordinate indices.

Momentum density.

The conservation equation for momentum is

∂

∂t
(ρvν) +

∂

∂xµ
(ρvµvν) =

∂σµν

∂xµ
(4.0.7)

or
∂

∂t
(πν) +

∂

∂xµ
(vµπν) =

∂σµν

∂xµ
(4.0.8)

where we introduce the tensor Cauchy stress field σ.

Total and internal energy densities.

There are two equations describing conservation of energy. Let ε be the total material energy
density. Then

∂ε

∂t
+

∂

∂xµ
(εvµ) =

∂

∂xµ
(vνσµν − qµ) (4.0.9)

where q is the heat flux.

An additional equation is obtained by contracting (4.0.8) with vν and subtracting from the
energy conservation equation (4.0.9). The result is an equation for internal energy density, defined
as the total energy density minus the material kinetic energy density. Thus,

∂εI
∂t

+
∂

∂xµ
(εIvµ) =

∂vν

∂xµ
σµν − ∂qµ

∂xµ
(4.0.10)

where

εI = ε− 1
2
ρv2 (4.0.11)

Note that this equation contains terms which are all invariant under Galilean transformation, i.e.
the equation is the same in a uniformly moving coordinate system.
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Particle mechanics.

Hamiltonian particle mechanics.

Consider a system with N classical point particles with masses mj , positions xj(t), velocities
vj(t), and momenta pj = mjvj . The particles follow Hamiltonian dynamics [31, 30] under the
influence of a Hamiltonian H given by

H = K + U (4.0.12)

where the kinetic energy K is the sum of the individual particle kinetic energies

K =
∑
j

p2
j

2mj
(4.0.13)

and the potential energy U is a given function of all the particle coordinates:

U = U(x1,x2, · · · ). (4.0.14)

Often the assumption is made that U is a sum of pair contributions. We will avoid this assumption
in most circumstances.

Note that we do not consider external forces; this is a fairly trivial modification to make.

We assume that U is independent of space and time, and invariant under rotations and trans-
lations. (Later we will see that U must be invariant under reflections as well). The usual equations
of motion follow:

dxj
dt

=
pj
mj

= vj

dpj
dt

= − ∂U
∂xj

(4.0.15)

Note that this dynamics can just as easily be derived from a Lagrangian formulation [31].

Conservation laws.

From the particle theory we can easily deduce the usual conservation laws for total mass,
momentum, and energy. According to Noether’s theorem [30] these conservation laws follow from
the continuous symmetry principles that we assume for the Hamiltonian. The conservation of total
mass M is trivial

M =
∑
j

mj and
dM

dt
= 0. (4.0.16)

The conservation of total momentum P is deduced from translational invariance and we have

P =
∑
j

pj and
dP
dt

= 0. (4.0.17)
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From rotational invariance we derive the conservation of total angular momentum L

L =
∑
j

mjxj × vj and
dL
dt

= 0. (4.0.18)

Note that this conservation law does not depend on the assumption of reflection invariance.

Finally, the conservation of total energy E follows from the independence of the Hamiltonian
on time:

E = H and
dE

dt
= 0. (4.0.19)

Galilean invariance.

A Galilean transformation is a transformation to a new coordinate system t′,x′ where t′ = t
and x′ = x+tV for some constant velocity V. Differences in coordinates are invariant under such a
transformation, while velocities v are transformed to v+V. Thus velocity differences (and velocity
gradients) are also invariant. Note that

∂f

∂t
→ ∂f

∂t′
+

∂f

∂x′µ
Vµ (4.0.20)

while
∂f

∂x′µ
→ ∂f

∂xµ
. (4.0.21)

Decomposition of the force.

The force on particle j is defined as

Fj = − ∂U
∂xj

(4.0.22)

and from translational invariance we have ∑
j

Fj = 0. (4.0.23)

It is usual to introduce pair forces at this point. The pair force fjk is intuitively defined as “the
force on particle j due to particle k”, with

Fj =
∑
k

fjk (4.0.24)

(we will implicitly take fjj = 0 to simplify the notation in what follows). For the simplest case
where U is given by a sum of pair contributions the pair force is easily computed.

The problem for a general potential U is that we have to decide how to decompose the forces into
pair contributions. The above equation is not sufficient to determine this decomposition for large
numbers of particles, because there are N particles but O(N2) possible pair force contributions.
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Even if we add the constraint that fjk = −fkj we still cannot uniquely determine the pair forces.
This can be easily seen for as few as three particles, since we can write a transformed set of fjk:

f ′12 = f12 + a, f ′13 = f13,−a, and f ′23 = f23 + a (4.0.25)

that leaves Fj invariant for an arbitrary vector a. Note that a restriction that a must be some
function of the particle coordinates is insufficient, since we could take a = K(x1 − x2) for some
arbitrary K. Thus particle forces Fj are well defined but they do not determine a unique pairwise
decomposition, and therefore pairwise forces are not measurable physical quantities. A definition
is necessary and the results will depend on that definition.

A possible definition of the pair force is given by the following argument [41]. Since U is
translationally invariant, it can only depend on the differences between particle positions. So we
can define

fjk = −1
2
∂U

∂xjk
(4.0.26)

where xjk = xj − xk. Note that this definition satisfies the requirement (Newton’s third law) that

fjk = −fkj . (4.0.27)

and of course we can easily show that these pair forces satisfy (4.0.24). We will see that this
definition has problems, but first we examine this in the context of Newton’s third law.

(4.0.27) shows that pair forces are equal and opposite, but not necessarily directed along the
line between two particles. This can be seen by looking at forces generated by a potential among
four particles x0,x1,x2,x3 of the form

U = (x1 − x0) · ((x2 − x0)× (x3 − x0)) . (4.0.28)

Such a term is invariant under translations and rotations, but not reflections, and the resulting
forces do not obey the strong form of Newton’s third law. Using (4.0.26) we get

f01 = −(x2 − x0)× (x3 − x0)
f02 = (x1 − x0)× (x3 − x0)
f03 = −(x1 − x0)× (x2 − x0)
f12 = 0
f13 = 0
f23 = 0.

(4.0.29)

so f01 is not parallel to x0 − x1, etc.

We can prove that the pair forces for this example cannot be written so that all of them lie
along the direction of the pairs, even if we use the freedom described in (4.0.25) to modify them.
To see this, choose the triangles 1, 2, 3 for a vector a, 1, 2, 4 for a vector b, and triangle 1, 3, 4 for a
vector c. Then

f01 → f01 + a + b

f02 → f02 − a + c

f03 → f03 − b− c

f12 → f12 + a

f13 → f13 + b

f23 → f23 + c

(4.0.30)
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where we attempt to choose a,b, c to enforce the strong law. This is as much freedom as is available;
if we choose d from the triangle 2, 3, 4 then it can be absorbed into a redefinition of a,b, c. From
the last three equations we see that to get f12 etc to lie in the direction x12 we must choose

a = K12x12

b = K13x13

c = K23x23

(4.0.31)

where K23,K24,K34 are scalars. Now consider the modified version of f01 which we want to lie in
the direction x01. This becomes

f01 = −x02 × x03 +K12x12 +K13x13 = K01x01 (4.0.32)

and using x12 = x02 − x01 etc. we can write

−x02 × x03 +K12x02 −K12x01 +K13x03 −K13x01 = K01x01. (4.0.33)

But now if x01 and x02 are chosen in one plane and we assume that x03 is perpendicular to that
plane we see that on the left hand side there is a vector proportional to x03 while on the right
hand side there is none. Therefore the equation cannot be satisfied and there is generally no way
to rewrite the forces so they satify the strong form of Newton’s third law.

If we add reflection invariance to the symmetries of the potential U then we can deduce a form
for the pair force that is both equal and opposite and directed along the line between the pair.
Indeed, we can show that U is a function of pair distances djk = |xjk| if and only if it is invariant
under reflections as well as translations and rotations.

When U has the given symmetries we can construct the positions of the particles from the
distances between particles (pair distances) modulo a symmetry group operation as follows: Assume
that the first four particles are not in a degenerate configuration and that all the pair distances
are given (we actually only need the distances to the first four particles). Begin by translating
and rotating such that the first particle is at the origin, the second particle lies on the positive x
axis, and the third lies in the upper half of the x, y plane. The fourth particle can be placed in a
tetrahedral position either above or below this plane. By reflection we can choose arbitrarily either
one side or the other. Now for all the remaining particles we have more distances than are needed
to locate them with respect to the first four. For each additional particle we can use the distances
to the first three particles to find two possible locations above and below the x, y plane but because
of the additional constraint of the distance to the fourth particle there will be only one solution
that is feasible. Therefore there is a unique (modulo a symmetry group operation) mapping from
distances to the particle positions.

Practical molecular dynamics simulations often use potentials written in terms of pairwise
distances, bond angles, and bond torsions; in the appendix we derive some simple formulas for
conversion of these angle terms to functions of pairwise distances.

Given U as a function of pair distances we can use the chain rule to write the total force on
particle j as

Fj = −1
2

∑
kl

∂dkl
∂xj

∂U

∂dkl
, (4.0.34)
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where we make the notation simpler by ignoring the k = l term and summing over all possible k
and l. The factor of 1/2 takes care of the double counting of terms. Of course

∂dkl
∂xj

= xkl
1
dkl

(δjk − δjl) (4.0.35)

so that
Fj = −

∑
k

(xj − xk)
1
djk

∂U

∂djk
. (4.0.36)

We can now define the pair force

fjk = −(xj − xk)
1
djk

∂U

∂djk
. (4.0.37)

where fjk satisfies (4.0.24) and the strong form of Newton’s third law by construction.

An alternative expression uses distance parameters ξjk defined by

ξjk =
1
2
d2
jk (4.0.38)

so that
fjk = −(xj − xk)Gjk (4.0.39)

where the generalized force Gjk is defined by

Gjk =
∂U

∂ξjk
=

1
djk

∂U

∂djk
. (4.0.40)

The advantage of this form over (4.0.37) is that we get rid of the factor of 1/djk with its attendant
singularity.

The equations (4.0.39) and (4.0.37) do not give the same results as (4.0.26), even when the
potential is reflection invariant. Consider a simple three particle term which is a dot product

U = (x1 − x3) · (x2 − x3). (4.0.41)

Using (4.0.26) we obtain the following pair forces

f12 = 0
f13 = −(x2 − x3)
f23 = −(x1 − x3)

(4.0.42)

but we can also write (see (4.0.145) in the appendix)

U = ξ13 + ξ23 − ξ12

=
1
2

((x1 − x3)2 + (x2 − x3)2 − (x1 − x2)2)

= (x1 − x3) · (x2 − x3).

(4.0.43)

and we obtain from (4.0.39) the pair forces

f12 = x1 − x2

f13 = −(x1 − x3)
f23 = −(x2 − x3)

(4.0.44)
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which are clearly not the same as (4.0.26).

These sets must be physically equivalent, since they both give the same total force on each
particle. Indeed, we can use a = x1 − x2 in the transformation (4.0.25) to map (4.0.42) onto
(4.0.39). This example thus serves to illustrate the difficulty in defining precisely the term “pair
force”. In the remainder of the paper we will generally assume the existence of reflection invariance
for the potential and will use the definition (4.0.39).

Note that when Gjk is positive the force is attractive since the force on particle j points from
particle j to particle k and vice versa. Also, clearly we have Gjk = Gkj .

If U is given as a sum of pair potentials Ujk then it is useful to have a formula for the pair force
in terms of the pair potential. We begin with

U =
1
2

∑
jk

Ujk (4.0.45)

where we sum over all particles j, k and divide by two because of the double counting. We can
assume that Ujj = 0 to simplify the notation. Then

Gjk =
∂U

∂ξjk
=

1
2

(U ′jk + U ′kj)

= U ′jk

(4.0.46)

where U ′jk is the derivative of Ujk wrt ξjk. Therefore in this case

fjk = −(xj − xk)U ′jk. (4.0.47)

Further discussion about reflection invariance.

Another way to look at the consequence of reflection invariance is as follows. Suppose U is
invariant under reflection R, then it must be true from (4.0.26) that under R

fjk →
R
−fjk (4.0.48)

Now consider
fjk × (xj − xk)→

R
fij × (xj − xk) (4.0.49)

so this vector is invariant under reflection. We now argue that this must be zero, because any
such vector must be translation invariant and constructible from the relative particle positions xjk
which all invert under reflection. Multiplying one of these expressions by a pseudoscalar will not
work because we can then show that U would not be reflection invariant.

Conversely, if U is not reflection invariant then we can divide it into two parts one of which is
invariant and the other which is a pseudoscalar. The pseudoscalar term will lead to a component
such that

fjk × (xj − xk) 6= 0. (4.0.50)

We thus see that the strong form of Newton’s third law is true if and only if U is invariant under
translations, rotations and reflections. If U is invariant only under translations and rotations but
not reflections then we have only the weak form of the third law.
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Microscopic densities.

The definitions of microscopic densities for mass and momentum are straightforward. We simply
associate a delta function with each particle that follows the particle around. The delta function
for mass density is weighted by the mass of that particle while the delta function for momentum
density is weighted by the momentum of the particle. Thus the microscopic mass density ρ̂ is

ρ̂(x, t) =
∑
j

mjδ(x− xj) (4.0.51)

while that for microscopic momentum density is

π̂(x, t) =
∑
j

mjvjδ(x− xj). (4.0.52)

On the other hand the microscopic energy density is not so straightforward to define. The
kinetic part of the energy due to each particle can be assigned to the particle, but the potential
energy must be distributed among the particles. Thus we take

U =
∑
j

U (j) (4.0.53)

where U (j) represents the part of the potential energy assigned to particle j. This partitioning is
still somewhat arbitrary at this point, but we will assume that the partitions depend only on the
particle positions and that they satisfy the same symmetries that U does. The microscopic energy
density is thus given by

ε̂(x, t) =
∑
j

(
1
2
mjv2

j + U (j)

)
δ(x− xj) (4.0.54)

From the above definitions we can easily see that the total mass, total momentum, and total
energy are conserved, because ∫

ρ̂ = M,

∫
π̂ = P, and

∫
ε̂ = E. (4.0.55)

Observed densities.

We assume that the densities that an observer would see are given by spatial averages of the
microscopic densities. The spatial average is defined by some experimental filter function φ, so that
the observed mass density is given by

ρ(x, t) =
∫
φ(x,x′)ρ̂(x′, t)dx′ (4.0.56)

The filter function must have some simple properties in order to make the observed densities
physically meaningful. In particular φ must be independent of space and time, we must have φ ≥ 0,
and ∫

φ = 1. (4.0.57)
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Finally, we take φ to be rotationally invariant (if not then the observed densities will not be
rotationally invariant). From these properties we deduce that φ depends only on |x− x′|.

The observed mass density is thus given by the expression

ρ(x, t) =
∑
j

mjφ(x− xj) (4.0.58)

where the spatial dependence arises from the appearance of x and the time dependence comes from
the dependence on xj(t). We introduce the notation

φj = φ(x− xj). (4.0.59)

and the above equation can be written

ρ(x, t) =
∑
j

mjφj (4.0.60)

We can easily derive the simple relation

∂φj
∂t

= −vµj
∂φj
∂xµ

(4.0.61)

that will be used repeatedly in the following.

The observed momentum density is easily seen to be

π(x, t) =
∑
j

mjvjφj (4.0.62)

and the observed energy density is

ε(x, t) =
∑
j

(
1
2
mjv2

j + U (j)

)
φj (4.0.63)

Note that from (4.0.57) we see that the observed densities also represent conserved quantities.
In particular ∫

ρ = M,

∫
π = P, and

∫
ε = E. (4.0.64)

independent of time.

Conservation of mass.

Consider the observed mass density ρ. Using the definition (4.0.60) and the relation (4.0.61)
we get

∂ρ

∂t
= −

∑
j

mjv
µ
j

∂φj
∂xµ

= − ∂

∂xµ

∑
j

mjv
µ
j φj


= − ∂

∂xµ
πµ

(4.0.65)
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where the second line follows from the fact that neither mj nor vj depend on the spatial coordinate
x.

We can deduce the continuum equation for conservation of mass (4.0.5) if the material velocity
field v is defined with the relation

π = ρv (4.0.66)

so that the microscopic definition of material velocity is the mass-weighted quantity

v =

∑
jmjvjφj∑
jmjφj

. (4.0.67)

Note that although material velocity does have a microscopic definition it is not a density. One
could possibly make a different definition of material velocity but it might be very difficult to show
that mass, momentum, and energy were conserved.

At this point we can define relative particle velocities uj with

vj = v + uj (4.0.68)

and we note that the definition of the material velocity implies the relation∑
j

mjuj = 0 (4.0.69)

The absolute particle velocities are independent of x but it is important to realise that the rel-
ative particle velocities have a dependence on x through their dependence on the material velocity.
Therefore in some of the following derivations we must be very careful to commute the gradient
operator with absolute particle velocities, not relative ones.

We can now show that the definition of “material point” is problematic, and therefore the usual
transformation to material coordinates may not be possible. We attempt to construct the material
coordinate at spatial position x as the localized center of mass coordinate, similar to the localized
mass-weighted velocity that we identified as material velocity. This gives

y =

∑
jmjxjφj∑
jmjφj

. (4.0.70)

and we can define the relative particle position dj as

dj = xj − y. (4.0.71)

Note that ḋj 6= uj . Now we can show that

∂y
∂t

+
∂

∂xµ
(vµy) = v +

∂

∂xµ

∑
j

mjujdjφj

 . (4.0.72)

so that y is not a material coordinate since the quantity in parentheses does not vanish. An alter-
native approach is to define the material coordinate as an interpolation of the particle coordinates
in some way. If this is done then the material velocity is still not the time derivative of the material
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coordinate (or, if it is forced to be then mass is not conserved). Yet another alternative approach
is to define the material coordinate by back integration in time of the material velocity; here the
difficulty is to prove that the resulting coordinate is some reasonably simple function of the particle
positions and that the coordinate is single valued.

Thus, the usual transformation to material coordinates that is typically made in continuum
mechanics is not necessarily possible. For this reason, any use of material coordinates has been
omitted from this paper.

Conservation of momentum.

We straightforwardly differentiate (4.0.62) with respect to time to get

∂πν

∂t
=
∑
j

mjvνj
∂φj
∂t

+
∑
j

mj

∂vνj
∂t

φj (4.0.73)

We use the same process as for the conservation of mass to rewrite the first term and we use the
equation of motion (4.0.15) for the second term. Thus

∂πν

∂t
= − ∂

∂xµ

∑
j

mjv
µ
j vνjφj

−∑
j

∂U

∂xνj
φj . (4.0.74)

Now substitute the relative velocities (4.0.68) in the expression∑
j

mjv
µ
j vνjφj = vµvν

∑
j

mjφj

+ vµ
∑
j

mjuνjφj

+ vν
∑
j

mju
µ
j φj

+
∑
j

mju
µ
j u

ν
jφj

(4.0.75)

and the two inner sums vanish from (4.0.69) so we have∑
j

mjv
µ
j vνjφj = ρvµvν +

∑
j

mju
µ
j u

ν
jφj . (4.0.76)

This leads to
∂πν

∂t
+
∂(ρvµvν)
∂xµ

=
∂

∂xµ
σµν

K −
∑
j

∂U

∂xνj
φj (4.0.77)

where we define the kinetic part of the stress as

σµν
K = −

∑
j

mju
µ
j u

ν
jφj . (4.0.78)
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We now treat the second sum. Using the force decomposition (4.0.26) we have

−
∑
j

∂U

∂xνj
φj =

∑
jk

fνjkφj

=
1
2

∑
jk

fνjk(φj − φk)
(4.0.79)

using the fact that fjk is antisymmetric under interchange of the indices.

Under the assumption of reflection invariance we can use (4.0.39) to see that

−
∑
j

∂U

∂xνj
φj = −1

2

∑
jk

(xνj − xνk)Gjk(φj − φk) (4.0.80)

Evidently to build an expression for microscopic stress we must be able to turn φj − φk into
the divergence of some quantity. There are several ways to accomplish this; we will skip the less
useful approaches of Irving-Kirkwood [26] and Noll [44] and focus on that of Hardy [23] and the
Fourier aspect of the method developed originally by Green [20]. We will see that these methods
are closely related to each other and to the result of the virial method.

Hardy’s method.

Hardy [23] introduced a bond function βjk defined by

βjk =
∫ 1

0
φ(x− λxj − (1− λ)xk) dλ (4.0.81)

which has the property that

φj − φk = − ∂

∂xµ
(xµjkβjk). (4.0.82)

This allows us to write
∂πν

∂t
+
∂ρvµvν

∂xµ
=

∂

∂xµ
σµν

K +
∂

∂xµ
σµν

U (4.0.83)

where
σµν

U = −1
2

∑
jk

fνjkx
µ
jkβjk (4.0.84)

So far we have written the microscopic stress in terms of a pair force fjk without making the
assumption of reflection invariance. If the potential is not reflection invariant then the pair force
will not be proportional to xjk and the Cauchy stress is not symmetric. On the other hand if we
do assume reflection invariance then we can use (4.0.39) to write

σµν
U =

1
2

∑
jk

Gjkxνjkx
µ
jkβjk (4.0.85)

which is explicitly symmetric. Therefore we have established the result that the Cauchy stress is
symmetric if and only if the underlying potential is reflection invariant.
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From (4.0.57) and (4.0.81) we see that ∫
βjk = 1 (4.0.86)

and we also note that βkj has units of 1/volume. For a very soft filter function φ we can replace φ
and β with 1/V where V is an averaging volume. The precise meaning of this is better described
with the Fourier approach.

A simpler form is available when U consists of pair terms. Using (4.0.46) we obtain

σµν
U =

1
2

∑
jk

U ′jkx
ν
jkx

µ
jkβjk (4.0.87)

The Fourier method.

A version of the Fourier method was introduced by Green [20]. See also Hansen and McDonald
[22], and references therein.

Consider the Fourier transform of the function φj − φk. This is

φ̂j(k)− φ̂k(k) = φ̂(k)
(
eik·xj − eik·xk

)
= ik · xjkφ̂(k)

eik·xj − eik·xk
ik · xjk

(4.0.88)

Using the usual properties of Fourier transform we can derive

σµν
U =

1
2

∑
jk

fνjkx
µ
jkβjk (4.0.89)

where the Fourier transform of βjk is given by

β̂jk(k) = φ̂(k)
eik·xj − eik·xk

ik · xjk
(4.0.90)

and we can easily show that this is equal to the Fourier transform of Hardy’s bond function.

Conservation of angular momentum.

The usual derivation [40] of a balance equation which describes continuum conservation of
angular momentum relies on two assumptions. The first assumption is that the material angular
momentum density can be written as

l = ρy × v (4.0.91)

where y is the material coordinate which obeys the equation

∂y
∂t

= v. (4.0.92)
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The second assumption is that the Cauchy stress is symmetric. From this one can show that

∂l
∂t

+
∂

∂xµ
vµl = 0. (4.0.93)

The conclusion from this argument is that angular momentum is conserved if and only if the Cauchy
stress is symmetric.

We have seen above that symmetry of the Cauchy stress is not a consequence of conservation
of angular momentum but instead relies on the assumption of microscopic reflection invariance.
Therefore we need to resolve the difference between these arguments.

The point of view taken in this paper is that the angular momentum density l defined above does
not represent a meaningful angular momentum density, because y is not necessarily a meaningful
physical quantity. Therefore the classical continuum mechanics argument is unphysical and not
relevant.

Conservation of energy.

We want to construct a microscopic energy density ε(x) whose integral over all of space is the
total energy E, which is known from the particle dynamics to be∫

ε(x) = E =
∑
j

mj

2
v2
j + U. (4.0.94)

Following [26] and [23] we propose a solution which partitions the energy among the particles,
assigning εj to each particle j and then smearing the assigned energy using the φ function:

ε(x) =
∑
j

εjφj (4.0.95)

where
εj =

mj

2
v2
j + U (j) (4.0.96)

with φj = φ(x − xj). That is, we assign to each particle its kinetic energy plus some part U (j) of
the potential energy where ∑

j

U (j) = U. (4.0.97)

We demand that U (j) depend only on the particle coordinates x1,x2, · · · and so εj is independent
of spatial coordinates. Then the requirement (4.0.94) follows from (4.0.57). We also require that
the partitions U (j) satisfy the same invariance principles that U satisfies (translational, rotational,
and reflection invariance). Otherwise the partition is arbitrary, and we will see that, although
reasonable choices for the partitioning are possible, the arbitrariness will remain. This arbitrariness
was pointed out originally by [26, 20].

The insight from [26] is that since we know everything in the conservation equation (4.0.9)
except the heat flux q, we use the equation to determine the microscopic form for the heat flux (up
to a vector which is divergence-free). But we do not know yet that the proposed energy density
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even obeys an equation such as (4.0.9), and the first objective of the following derivation will be to
show that this can indeed be done.

Taking the partial derivative of ε with respect to time, we get

∂ε

∂t
=
∑
j

εj
∂φj
∂t

+
∑
j

∂εj
∂t
φj (4.0.98)

where we can use (4.0.61) to get

∂ε

∂t
= − ∂

∂xµ

∑
j

vµj εjφj

+
∑
j

∂εj
∂t
φj (4.0.99)

or
∂ε

∂t
= − ∂

∂xµ

vµ
∑
j

εjφj

− ∂

∂xµ

∑
j

uµj εjφj

+
∑
j

∂εj
∂t
φj (4.0.100)

using the decomposition of particle velocity vj into the material velocity v plus the relative (local)
particle velocity uj . Then

∂ε

∂t
+

∂

∂xµ
(vµε) = − ∂

∂xµ

∑
j

uµj εjφj

+
∑
j

∂εj
∂t
φj (4.0.101)

We now consider the first term, which is the gradient of∑
j

uµj
(mj

2
v2
j + U (j)

)
φj (4.0.102)

and we can rewrite this in terms of relative particle velocities. (4.0.102) becomes∑
j

uµj
(mj

2
u2
j + U (j)

)
φj + vν

∑
j

mjuνju
µ
j φj (4.0.103)

where we note that the term proportional to v2 must vanish, see (4.0.69). Using the expression
derived previously for the kinetic part of the stress, and defining the kinetic part of the heat flux
as

qK =
∑
j

uµj
(mj

2
u2
j + U (j)

)
φj (4.0.104)

we have obtained an analysis of the energy equation for the kinetic parts

∂ε

∂t
+

∂

∂xµ
(vµε) =

∂

∂xµ
(vνσµν

K − qµK) +
∑
j

∂εj
∂t
φj (4.0.105)

We use Hardy’s [23] terminology for the separate parts of the heat flux.

Now consider the remaining term ∑
j

∂εj
∂t
φj (4.0.106)
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which can be expanded into

∑
j

(
mjvνj

∂vνj
∂t

+
∑
k

vνk
∂U (j)

∂xνk

)
φj (4.0.107)

and using the equations of motion we get

∑
j

(
−vνj

∂U

∂xνj
+
∑
k

vνk
∂U (j)

∂xνk

)
φj (4.0.108)

Using the partitioning of U and relabelling we thus obtain

∑
j

∂εj
∂t
φj =

∑
jk

vνk
∂U (j)

∂xνk
(φj − φk) (4.0.109)

We can now use the property (4.0.82) of the bond function βjk to write (4.0.106) as the divergence
of some quantity: ∑

j

∂εj
∂t
φj = − ∂

∂xµ

∑
jk

vνk
∂U (j)

∂xνk
(xµj − xµk)βjk

 (4.0.110)

and at this point we have succeeded in establishing the correct divergence form of (4.0.9).

We can now compute the remaining (potential) part of the heat flux qR by satisfying the
equation

vνσµν
U − qµR = −

∑
jk

vνk
∂U (j)

∂xνk
(xµj − xµk)βjk. (4.0.111)

or

qµR = vνσµν
U +

∑
jk

vνk
∂U (j)

∂xνk
(xµj − xµk)βjk. (4.0.112)

We now split the second term using the decomposition of particle velocities vj into material
velocity v and relative particle velocities uj . Thus

qµR =
∑
jk

uνk
∂U (j)

∂xνk
(xµj − xµk)βjk.+ vν

∑
jk

∂U (j)

∂xνk
(xµj − xµk)βjk + vνσµν

U (4.0.113)

The first term we identify as the normal potential heat flux, qU:

qµU =
∑
jk

uνk
∂U (j)

∂xνk
(xµj − xµk)βjk (4.0.114)

and the second term which we call the churning heat flux qC is given by

qµC = vν

σµν
U +

∑
jk

∂U (j)

∂xνk
(xµj − xµk)βjk


= vνzµν

(4.0.115)
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defining the churning tensor

zµν = σµν
U +

∑
jk

∂U (j)

∂xνk
(xµj − xµk)βjk (4.0.116)

The churning tensor vanishes for pair potentials, using the obvious partitioning. In this case we
choose

U (j) =
1
2

∑
k

Ujk (4.0.117)

where Ujk is the pair potential between particles i, j. Then using (4.0.87) we have

zµν =
1
2

∑
jk

∂Ujk
∂ξjk

(xj − xk)µ(xj − xk)νβjk +
1
2

∑
ij

∂Ujk
∂ξjk

(xk − xj)µ(xj − xk)νβjk = 0 (4.0.118)

The second property that we can establish for the churning tensor is that its divergence vanishes.
Substituting (4.0.77), (4.0.82) into (4.0.116) and taking the divergence, we get

∂zµν

∂xµ
= −

∑
j

∂U

∂xνj
φj +

∑
jk

∂U (j)

∂xνk

∂

∂xµ
(xµjkβjk)

= −
∑
jk

∂U (k)

∂xνj
φj −

∑
jk

∂U (j)

∂xνk
(φj − φk)

= −
∑
j

(∑
k

∂U (j)

∂xνk

)
φj

= 0

(4.0.119)

where the inner sum must be zero in the last equation because U (j) is invariant under translations.
This means that we can write the churning heat source as

∂qµC
∂xµ

=
∂

∂xµ
(vνzµν) = zµν

∂vν

∂xµ
(4.0.120)

which contains only Galilean invariant terms.

In this derivation we have not made any assumption about reflection invariance or symmetry
of the Cauchy stress, so the results so far are valid for general potentials. Using (4.0.85) we write

zµν =
1
2

∑
jk

Gjkxνjkx
µ
jkβjk +

∑
jk

∂U (j)

∂xνk
xµjkβjk (4.0.121)

and we can introduce a new set of quantities G(j)
kp defined by

G
(j)
kp =

∂U (j)

∂ξkp
(4.0.122)

By assumption, the same symmetry properties hold for U (j) that hold for U . Therefore

∂U (j)

∂xνk
=
∑
kp

G
(j)
kp (xνk − xνp) (4.0.123)
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so (4.0.121) can be written as

zµν =
∑
jkp

βjkx
µ
jk

(
1
2
G

(p)
jk (xνj − xνk) +G

(j)
kp (xνk − xνp)

)
(4.0.124)

To analyze this expression further we need to examine the partition of U . Suppose that U is written
in terms of two particle interactions plus three particle interactions and so forth:

U =
1
2

∑
jk

Ujk +
1
3

∑
jkl

Ujkl + · · · (4.0.125)

where we assume that 1/3 of a three particle interaction term is assigned to each of the participating
particles. This is clearly the simplest possible partitioning. For a term that involves K particles
we assume that a fraction 1/K of the term is assigned to each participating particle.

Since the expression for zµν is linear in the potential we can consider each term by itself. We
already showed that pair terms will not contribute. Now consider a single term Ut where K particles
interact. Then we can write

U
(p)
t =

1
K
Ut (4.0.126)

so that
G

(p)
jk =

1
K
Gtjk (4.0.127)

with
Gtjk =

∂Ut
∂ξjk

(4.0.128)

and this vanishes when j or k is not in the set of K participating particles.

The contribution to the churning tensor from U t is then

zµνt =
1
K

∑
jk

βjkx
µ
jk

∑
p

(
1
2
Gtjkx

ν
jk +Gtkpx

ν
kp

)
(4.0.129)

where the sums are taken only over participating particles. Now in the sum over p we treat the
terms for j = p and k = p separately, to obtain

zµνt =
1
K

∑
jk

βjkx
µ
jk

[
1
2
Gtjkx

ν
jk +Gtkjx

ν
kj +

1
2
Gtjkx

ν
jk +

∑′

p

(
1
2
Gtjkx

ν
jk +Gtkpx

ν
kp

)]

=
1
K

∑
jk

βjkx
µ
jk

∑′

p

(
1
2
Gtjkx

ν
jk +Gtkpx

ν
kp

) (4.0.130)

where
∑′

p
means that terms with p = j, k are excluded from the sum. Now use

Gtkpxkp =
1
2

(Gtkpxkp +Gtjpxjp) +
1
2

(Gtkpxkp −Gtjpxjp) (4.0.131)

to get

zµνt =
1

2K

∑
jk

βjkx
µ
jk

∑′

p

(
Gtjkx

ν
jk +Gtkpx

ν
kp −Gtjpxνjp

)
(4.0.132)
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We can repeat the argument that the churning tensor vanishes for pair contributions, since if K = 2
then the sum over p has no terms in it.

Further insight into this expression can be obtained by examining the case where K = 3. Here
we imagine that we have particles a, b, c and we note that xbc can be written in terms of xab,xac.
Doing this we obtain

zµνt =
1
3
xµabx

ν
ab(G

t
ab −Gtbc)(βab − βbc)

+
1
3
xµacx

ν
ac(G

t
ac −Gtbc)(βac − βbc)

+
1
3
xµabx

ν
ac(G

t
bc −Gtac)(βab − βbc)

+
1
3
xµacx

ν
ab(G

t
bc −Gtab)(βac − βbc)

(4.0.133)

All of these terms will vanish in the virial limit, where βjk → 1/V .

Conjecture: The churning tensor vanishes in the virial limit for arbitrary K. To prove this we
would need to show that (4.0.132) only depends on differences of β factors.

The churning tensor does not vanish microscopically. An open question is whether it has any
effect on physics; obviously if the conjecture above is true then the effect will vanish at large length
scales. Finally, we note that the churning tensor is not symmetric. Therefore it can interact with
both the strain rate tensor and the vorticity tensor in the source term (4.0.120) for the energy
equation.

Summary.

The mass density field is given by

ρ(x, t) =
∑
j

mjφj (4.0.134)

the momentum density is
π(x, t) =

∑
j

mjvjφj (4.0.135)

and the material velocity field is determined to be

v(x, t) =

∑
jmjvjφj∑
jmjφj

. (4.0.136)

From the particle dynamics we deduce the stress field

σµν(x, t) = −
∑
j

mju
µ
j u

ν
jφj −

1
2

∑
jk

fνjkx
µ
jkβjk (4.0.137)

where the pair force fjk is given by
fjk = −xjkGjk (4.0.138)
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and βjk is Hardy’s bond function.

Total and internal energy densities require a partitioning of the potential U . The total energy
density is then

ε̂(x, t) =
∑
j

(
1
2
mjv2

j + U (j)

)
δ(x− xj) (4.0.139)

and we deduce that the microscopic heat flux is

q = qK + qU (4.0.140)

where the kinetic part of the heat flux is

qK =
∑
j

uµj
(mj

2
u2
j + U (j)

)
φj (4.0.141)

and the potential part is

qµU =
∑
jk

uνk
∂U (j)

∂xνk
(xµj − xµk)βjk. (4.0.142)

In addition to these two terms there is a churning heat source given by

(4.0.143)

Conclusions.

Beginning with a microscopic theory (particle mechanics) we are able to construct all of the par-
tial differential equations of continuum mechanics that describe conservation of mass, momentum,
angular momentum, and energy. But we come to some unusual conclusions. First, the concept of
“pair force” is not well defined and requires some careful analysis. In particular, the strong form
of Newton’s third law is a consequence of reflection invariance in the microscopic potential. We
concluded that the usual assumption of “material particles” and the transformation to material
coordinates is problematic. The usual derivation of balance of angular momentum is invalid for
this reason and the common result that symmetry of the Cauchy stress is a result of conservation
of angular momentum is also faulty. Instead we show that symmetry of the Cauchy stress is a
consequence of reflection invariance of the underlying potential. We are able to deduce a simple
formula for Cauchy stress in terms of derivatives of the potential with respect to pair distances
(or distance parameters); these derivatives form a definition of pair forces that are guaranteed to
satisfy the strong form of Newton’s third law.

Carrying this argument forward to the energy balance equation we are able to establish micro-
scopic formulas for energy density and heat flux. But these formulas depend on a decomposition
of the energy (assignment to particles) which, as other authors have pointed out, is arbitrary. We
also show that the energy balance equation has a new term (churning heat source) which does
not appear for pair potentials. This term may vanish in the virial limit, which makes its physical
impact small.
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Formulas for distance parameter representations.

Here we include some simple formulas for distance parameter representation of common multi-
body terms.

Let x1,x2,x3,x4 be four position vectors. We can write the dot product

(x1 − x2) · (x3 − x4) = ξ14 − ξ13 + ξ23 − ξ24, (4.0.144)

which we can easily establish by expanding each of the distance parameters ξij . A simpler version
of this for three particles is

(x1 − x3) · (x2 − x3) = ξ13 + ξ23 − ξ12. (4.0.145)

For the cosine of a bond angle θ123 between x1 − x3 and x2 − x3 we have

cos θ =
(x1 − x3) · (x2 − x3)
|x1 − x3| |x2 − x3|

and using the dot product formula above we get cosine of the bond angle in distance parameter
form:

cos θ123 =
ξ13 + ξ23 − ξ12

d13d23
(4.0.146)

This can be differentiated to obtain

∂ cos θ123

∂ξ12
= − 1

d13d23

∂ cos θ123

∂ξ13
=

1
d13d23

− cos θ123

2ξ13
=

1
d13d23

− cos θ123

d2
13

∂ cos θ123

∂ξ23
=

1
d13d23

− cos θ123

2ξ23
=

1
d13d23

− cos θ123

d2
23

(4.0.147)

For torsion or dihedral angles we can suppose that we want to compute the torsion angle around
the bond x2,x3 which is the angle between the plane containing the points x1,x2,x3 and the plane
containing x2,x3,x4. The cosine of this angle is obviously

cosφ =
((x1 − x2)× (x1 − x3)) · ((x4 − x2)× (x4 − x3))

|x1 − x2| |x1 − x3| |x4 − x2| |x4 − x3|
(4.0.148)

and after simplification

cosφ =
ξ12(ξ34 − ξ24 + ξ23) + ξ13(ξ24 − ξ34 + ξ23)− ξ2

23

d12d13d24d34
(4.0.149)

Note that sinφ is not invariant under reflection, so it cannot be computed in the distance parameter
representation. Therefore potential terms proportional to something like cos(nφ + δ) where δ is
a phase factor parameter are not generally invariant under reflection. However, many commonly
used potential parameterizations only use torsion phases that are 0 or π and so this problem does
not occur.
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We can imagine potentials which depend on the area of a triangle defined by three atoms or
the volume of a tetrahedron defined by four atoms. For the unsigned area of a triangle one can use
Herod’s classical formula, and implicitly we see that there must be such a formula for the unsigned
volume of a tetrahedron. In fact this is given by the formula of Piero della Francesca.

These formulas are sufficient to transform most standard molecular dynamics potentials into
the distance parameter representation. With the above caveat about torsion potentials the stress
and force state formulas derived in this paper should be applicable to multibody force fields such as
CHARMM [39] and Amber [8]. As another example, the well-known Stillinger-Weber [59] potential
for silicon is given as a sum of two body terms and three body terms

U =
1
2

∑
ij

f(dij) +
∑
i,j,k

g(dij)g(dik)
(

cos θijk −
1
3

)2

(4.0.150)

where f, g are specified functions. Therefore in distance-parameter form the Stillinger-Weber po-
tential is given by

U =
1
2

∑
ij

f(2
√
ξij) +

∑
i,j,k

g(2
√
ξij)g(2

√
ξik)

(
ξij + ξik − ξjk

2
√
ξijξik

− 1
3

)2

. (4.0.151)

Given these formulas the generalized forces Gij are computed by simple differentiation using
(4.0.40).

Pair forces for the Stillinger-Weber potential.

The Stillinger-Weber potential [59] is a molecular dynamics potential that contains two and
three particle terms. The three particle term defining an interaction between particle 1 that is at
the center of the interaction and particles 2,3 that form the two bonds is written in terms of the
distances d12 and d13 and the cosine of the angle between the vectors x1 − x2, x1 − x3:

h123 = λf(d12)f(d13)
(

cos θ231 +
1
3

)2

(4.0.152)

where

f(x) = exp
(

γ

x− a

)
(4.0.153)

The generalized forces can be computed easily using (4.0.147) to obtain

G12 =
(
− γ

d12(d12 − a)2
+A12

)
h123

G13 =
(
− γ

d13(d13 − a)2
+A13

)
h123

G23 = A23h123

(4.0.154)
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where

A12 =
2

cos θ231 + 1
3

(
1

d12d13
− cos θ231

d2
12

)
A13 =

2
cos θ231 + 1

3

(
1

d12d13
− cos θ231

d2
13

)
A23 = − 2

cos θ231 + 1
3

(
1

d12d13

) (4.0.155)

Then we have f12 = −x12G12, etc.
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