
SANDIA REPORT

SAND2010-6313

Unlimited Release

Printed September 2010

Adagio 4.18 User’s Guide

SIERRA Solid Mechanics Team

Computational Solid Mechanics and Structural Dynamics Department

Engineering Sciences Center

Prepared by

Sandia National Laboratories

Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation,

a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy’s

National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy

by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United

States Government. Neither the United States Government, nor any agency thereof, nor any

of their employees, nor any of their contractors, subcontractors, or their employees, make any

warranty, express or implied, or assume any legal liability or responsibility for the accuracy,

completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-

resent that its use would not infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,

does not necessarily constitute or imply its endorsement, recommendation, or favoring by the

United States Government, any agency thereof, or any of their contractors or subcontractors.

The views and opinions expressed herein do not necessarily state or reflect those of the United

States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best

available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401

Facsimile: (865) 576-5728

E-Mail: reports@adonis.osti.gov

Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce

National Technical Information Service

5285 Port Royal Rd

Springfield, VA 22161

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders@ntis.fedworld.gov

Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

•
 •
U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

SAND2010-6313

Unlimited Release

Printed September 2010

Adagio 4.18 User’s Guide

SIERRA Solid Mechanics Team

Computational Solid Mechanics and Structural Dynamics Department

Engineering Sciences CenterSandia National Laboratories

Box 5800

Albuquerque, NM 87185-0380

Abstract

Adagio is a Lagrangian, three-dimensional, implicit code for the analysis of solids and structures. It uses a

multi-level iterative solver, which enables it to solve problems with large deformations, nonlinear material

behavior, and contact. It also has a versatile library of continuum and structural elements, and an extensive

library of material models. Adagio is written for parallel computing environments, and its solvers allow for

scalable solutions of very large problems. Adagio uses the SIERRA Framework, which allows for coupling

with other SIERRA mechanics codes. This document describes the functionality and input structure for

Adagio.

3

Acknowledgments

This document is the result of the collective effort of a number of individuals. The current de-

velopment team responsible for Adagio and Presto, the SIERRA Solid Mechanics codes, includes

Nathan K. Crane, Jason D. Hales, Martin W. Heinstein, Alex J. Lindblad, David J. Littlewood,

Kendall H. Pierson, Vicki L. Porter, Nathaniel S. Roehrig, Timothy R. Shelton, Gregory D.

Sjaardema, Benjamin W. Spencer, and Jesse D. Thomas. This document is written and maintained

by this team.

Outside the core development team, there are number of other individuals who have contributed

to this manual. Nicole L. Breivik, J. Franklin Dempsey, Jeffery D. Gruda, and Chi S. (David) Lo

have provided valuable input from the user community as Presto and Adagio Product Managers.

Many others have contributed to this document, either directly or by providing suggestions. These

include, but are not limited to Manoj K. Bhardwaj, James V. Cox, Arne S. Gullerud, Daniel C.

Hammerand, J. Richard Koteras, Jakob T. Ostien, Rhonda K. Reinert, William M. Scherzinger,

and Gerald W. Wellman.

4

Contents

1 Introduction 33

1.1 Document Overview . 34

1.2 Overall Input Structure . 36

1.3 Conventions for Command Descriptions . 39

1.3.1 Key Words . 39

1.3.2 User-Specified Input . 39

1.3.3 Optional Input . 40

1.3.4 Default Values . 40

1.3.5 Multiple Options for Values . 40

1.3.6 Known Issues and Warnings . 41

1.4 Style Guidelines . 42

1.4.1 Comments . 42

1.4.2 Continuation Lines . 42

1.4.3 Case . 42

1.4.4 Commas and Tabs . 42

1.4.5 Blank Spaces . 43

1.4.6 General Format of the Command Lines 43

1.4.7 Delimiters . 44

1.4.8 Order of Commands . 44

1.4.9 Abbreviated END Specifications . 44

1.4.10 Indentation . 45

1.4.11 Including Files . 45

1.5 Naming Conventions Associated with the Exodus II Database 46

1.6 Major Scope Definitions for an Input File . 47

5

1.7 Input/Output Files . 48

1.8 Obtaining Support . 50

1.9 References . 51

2 General Commands 53

2.1 SIERRA Scope . 53

2.1.1 SIERRA Command Block . 53

2.1.2 Title . 54

2.1.3 Restart Control . 54

2.1.3.1 Restart Time . 55

2.1.3.2 Automatic Restart . 55

2.1.4 User Subroutine Identification . 55

2.1.5 Functions . 56

2.1.6 Axes, Directions, and Points . 61

2.1.7 Orientation . 62

2.1.8 Coordinate System Block Command . 67

2.1.9 Define Coordinate System Line Command 68

2.2 Procedure and Region . 70

2.2.1 Procedure . 70

2.2.2 Time Control . 70

2.2.3 Region . 71

2.3 Use Finite Element Model . 72

2.4 Element Distortion Metrics . 73

2.5 Activation/Deactivation of Functionality . 75

2.6 Error Recovery . 75

2.7 Manual Job Control . 76

3 Solver, Time Stepping, and Implicit Dynamics 79

3.1 Multilevel Solver . 81

3.2 Conjugate Gradient Solver . 85

3.2.1 Convergence Commands . 86

3.2.2 Preconditioner Commands . 88

3.2.3 Line Search Command . 90

6

3.2.4 Diagnostic Output Commands . 92

3.2.5 CG Algorithm Commands . 92

3.3 Full Tangent Preconditioner . 94

3.3.1 Solver Selection Commands . 95

3.3.2 Matrix Formation Commands . 96

3.3.3 Reset and Iteration Commands . 97

3.3.4 Fall-Back Strategy Commands . 99

3.4 FETI Equation Solver . 101

3.4.1 Convergence Commands . 102

3.4.2 Memory Usage Commands . 102

3.4.3 Solver Commands . 103

3.5 Control Contact . 105

3.5.1 Convergence Commands . 108

3.5.2 Level Selection Command . 109

3.5.3 Diagnostic Output Commands . 110

3.6 Control Stiffness . 111

3.6.1 Convergence Commands . 117

3.6.2 Level Selection Command . 119

3.6.3 Diagnostic Output Commands . 120

3.7 Control Failure . 121

3.7.1 Convergence Command . 121

3.7.2 Level Selection Command . 122

3.7.3 Diagnostic Output Commands . 122

3.8 Control Modes . 123

3.8.1 Control Modes Region . 124

3.8.1.1 Model Setup Commands . 125

3.8.1.2 Solver Commands . 125

3.8.1.3 Kinematic Boundary Condition Commands 126

3.9 Predictors . 127

3.9.1 Loadstep Predictor . 127

3.9.1.1 Predictor Type . 127

3.9.1.2 Scale Factor . 128

7

3.9.1.3 Slip Scale Factor . 128

3.9.2 Level Predictor . 129

3.10 JAS3D Compatibility Mode . 130

3.11 Time Step Control . 131

3.11.1 Command Blocks for Time Control and Time Stepping 131

3.11.1.1 Time Increment . 133

3.11.1.2 Number of Time Steps . 133

3.11.1.3 Time Increment Function . 133

3.11.2 Adaptive Time Stepping . 134

3.11.2.1 Method . 135

3.11.2.2 Target Iterations . 135

3.11.2.3 Iteration Window . 135

3.11.2.4 Cutback Factor . 136

3.11.2.5 Growth Factor . 136

3.11.2.6 Maximum Failure Cutbacks . 136

3.11.2.7 Maximum Multiplier . 136

3.11.2.8 Minimum Multiplier . 137

3.11.2.9 Reset at New Period . 137

3.11.2.10 Active or Inactive Periods . 137

3.11.3 Time Control Example . 138

3.12 Implicit Dynamic Time Integration . 139

3.12.1 Implicit Dynamics . 139

3.12.1.1 Active or Inactive Periods . 139

3.12.1.2 Use HHT Integration . 140

3.12.1.3 HHT Parameters . 140

3.12.1.4 Implicit Dynamic Adaptive Time Stepping 140

3.13 References . 142

4 Materials 143

4.1 General Material Commands . 147

4.1.1 Density Command . 147

4.1.2 Biot’s Coefficient Command . 147

4.1.3 Thermal Strain Behavior . 147

8

4.1.3.1 Defining Thermal Strains . 148

4.1.3.2 Activating Thermal Strains . 150

4.2 Material Models . 151

4.2.1 Elastic Model . 151

4.2.2 Thermoelastic Model . 153

4.2.3 Neo-Hookean Model . 155

4.2.4 Elastic Fracture Model . 157

4.2.5 Elastic-Plastic Model . 159

4.2.6 Elastic-Plastic Power-Law Hardening Model 161

4.2.7 Ductile Fracture Model . 163

4.2.8 Multilinear EP Hardening Model . 165

4.2.9 Multilinear EP Hardening Model with Failure 167

4.2.10 Johnson-Cook Model . 170

4.2.11 BCJ Model . 172

4.2.12 Power Law Creep . 174

4.2.13 Soil and Crushable Foam Model . 176

4.2.14 Karagozian and Case Concrete Model . 179

4.2.15 Foam Plasticity Model . 182

4.2.16 Low Density Foam Model . 185

4.2.17 Elastic Three-Dimensional Orthotropic Model 186

4.2.18 Wire Mesh Model . 189

4.2.19 Orthotropic Crush Model . 191

4.2.20 Orthotropic Rate Model . 194

4.2.21 Elastic Laminate Model . 197

4.2.22 Fiber Membrane Model . 200

4.2.23 Incompressible Solid Model . 203

4.2.24 Mooney-Rivlin Model . 206

4.2.25 NLVE 3D Orthotropic Model . 209

4.2.26 Stiff Elastic . 213

4.2.27 Swanson Model . 215

4.2.28 Viscoelastic Swanson Model . 218

4.3 Cohesive Zone Material Models . 222

9

4.3.1 Traction Decay . 222

4.3.2 Tvergaard Hutchinson . 223

4.3.3 Thouless Parmigiani . 225

4.4 References . 227

5 Elements 229

5.1 Finite Element Model . 229

5.1.1 Identification of Mesh File . 233

5.1.2 Alias . 233

5.1.3 Omit Block . 234

5.1.4 Component Separator Character . 234

5.1.5 Descriptors of Element Blocks . 235

5.1.5.1 Material Property . 236

5.1.5.2 Include All Blocks . 237

5.1.5.3 Remove Block . 237

5.1.5.4 Section . 237

5.1.5.5 Linear and Quadratic Bulk Viscosity 238

5.1.5.6 Hourglass Control . 239

5.1.5.7 Effective Moduli Model . 240

5.1.5.8 Activation/Deactivation of Element Blocks by Time 240

5.2 Element Sections . 242

5.2.1 Solid Section . 242

5.2.2 Cohesive Section . 245

5.2.3 Localization Section . 245

5.2.4 Shell Section . 246

5.2.5 Membrane Section . 253

5.2.6 Beam Section . 256

5.2.7 Truss Section . 261

5.2.8 Superelement Section . 263

5.2.8.1 Input Commands . 264

5.3 Element-like Functionality . 266

5.3.1 Rigid Body . 266

5.3.1.1 Multiple Rigid Bodies from a Single Block 270

10

5.4 Mass Property Calculations . 271

5.4.1 Block Set Commands . 271

5.4.2 Structure Command . 272

5.5 Element Death . 273

5.5.1 Block Set Commands . 274

5.5.2 Criterion Commands . 274

5.5.2.1 Global Death Criterion . 274

5.5.2.2 Material Death Criterion . 275

5.5.3 Miscellaneous Option Commands . 276

5.5.3.1 Summary Output Commands 276

5.5.3.2 Death Steps . 276

5.5.3.3 Death Method . 277

5.5.3.4 Active Periods . 278

5.5.4 Cohesive Zone Setup Commands . 278

5.5.5 Element Death Visualization . 279

5.6 Explicitly Computing Derived Quantities . 281

5.7 References . 281

6 Boundary Conditions and Initial Conditions 283

6.1 General Boundary Condition Concepts . 284

6.1.1 Mesh-Entity Assignment Commands . 284

6.1.2 Methods for Specifying Boundary Conditions 286

6.2 Initial Variable Assignment . 287

6.2.1 Mesh-Entity Set Commands . 288

6.2.2 Variable Identification Commands . 288

6.2.3 Specification Command . 289

6.2.4 Probability Distribution Commands . 289

6.2.5 External Mesh Database Commands . 290

6.2.6 User Subroutine Commands . 291

6.2.7 Additional Command . 292

6.3 Kinematic Boundary Conditions . 293

6.3.1 Fixed Displacement Components . 293

6.3.1.1 Node Set Commands . 294

11

6.3.1.2 Specification Commands . 294

6.3.1.3 Additional Commands . 294

6.3.2 Prescribed Displacement . 295

6.3.2.1 Node Set Commands . 296

6.3.2.2 Specification Commands . 296

6.3.2.3 User Subroutine Commands . 298

6.3.2.4 External Mesh Database Commands 298

6.3.2.5 Additional Commands . 299

6.3.3 Prescribed Velocity . 301

6.3.3.1 Node Set Commands . 302

6.3.3.2 Specification Commands . 302

6.3.3.3 User Subroutine Commands . 304

6.3.3.4 External Mesh Database Commands 304

6.3.3.5 Additional Commands . 305

6.3.4 Prescribed Acceleration . 306

6.3.4.1 Node Set Commands . 307

6.3.4.2 Specification Commands . 307

6.3.4.3 User Subroutine Commands . 308

6.3.4.4 External Mesh Database Commands 309

6.3.4.5 Additional Commands . 310

6.3.5 Fixed Rotation . 311

6.3.5.1 Node Set Commands . 311

6.3.5.2 Specification Commands . 312

6.3.5.3 Additional Commands . 312

6.3.6 Prescribed Rotation . 313

6.3.6.1 Node Set Commands . 314

6.3.6.2 Specification Commands . 315

6.3.6.3 User Subroutine Commands . 315

6.3.6.4 External Mesh Database Commands 316

6.3.6.5 Additional Commands . 317

6.3.7 Prescribed Rotational Velocity . 318

6.3.7.1 Node Set Commands . 319

12

6.3.7.2 Specification Commands . 320

6.3.7.3 User Subroutine Commands . 320

6.3.7.4 External Mesh Database Commands 321

6.3.7.5 Additional Commands . 322

6.3.8 Reference Axis Rotation . 323

6.3.8.1 Block Command . 324

6.3.8.2 Specification Commands . 324

6.3.8.3 Rotation Commands . 325

6.3.8.4 Torque Command . 325

6.3.8.5 Additional Commands . 325

6.3.9 Subroutine Usage for Kinematic Boundary Conditions 326

6.4 Initial Velocity Conditions . 327

6.4.1 Node Set Commands . 328

6.4.2 Direction Specification Commands . 328

6.4.3 Angular Velocity Specification Commands 329

6.4.4 User Subroutine Commands . 329

6.5 Force Boundary Conditions . 331

6.5.1 Pressure . 331

6.5.1.1 Surface Set Commands . 332

6.5.1.2 Specification Commands . 333

6.5.1.3 User Subroutine Commands . 333

6.5.1.4 External Pressure Sources . 334

6.5.1.5 Output Command . 335

6.5.1.6 Additional Commands . 335

6.5.2 Traction . 337

6.5.2.1 Surface Set Commands . 338

6.5.2.2 Specification Commands . 338

6.5.2.3 User Subroutine Commands . 339

6.5.2.4 Additional Commands . 340

6.5.3 Prescribed Force . 341

6.5.3.1 Node Set Commands . 342

6.5.3.2 Specification Commands . 342

13

6.5.3.3 User Subroutine Commands . 343

6.5.3.4 Additional Commands . 344

6.5.4 Prescribed Moment . 345

6.5.4.1 Node Set Commands . 346

6.5.4.2 Specification Commands . 346

6.5.4.3 User Subroutine Commands . 347

6.5.4.4 Additional Commands . 348

6.6 Gravity . 349

6.7 Prescribed Temperature . 351

6.7.1 Block Set Commands . 352

6.7.2 Specification Command . 352

6.7.3 User Subroutine Commands . 353

6.7.4 External Mesh Database Commands . 353

6.7.5 Coupled Analysis Commands . 355

6.7.6 Additional Commands . 355

6.8 Pore Pressure . 356

6.8.1 Block Set Commands . 357

6.8.2 Specification Command . 357

6.8.3 User Subroutine Commands . 357

6.8.4 External Mesh Database Commands . 358

6.8.5 Coupled Analysis Commands . 359

6.8.6 Additional Commands . 359

6.9 Fluid Pressure . 361

6.9.1 Surface Set Commands . 362

6.9.2 Specification Commands . 362

6.9.3 Additional Commands . 363

6.10 Specialized Boundary Conditions . 364

6.10.1 Blast Pressure . 364

6.10.2 General Multi-Point Constraints . 366

6.10.2.1 Master/Slave Multi-Point Constraints 366

6.10.2.2 Tied Contact . 367

6.10.2.3 Tied Multi-Point Constraints 369

14

6.10.2.4 Resolve Multiple MPCs . 369

6.10.2.5 Constraining a Subset of all DOFs 369

6.10.3 Submodel . 370

6.11 References . 371

7 Contact 373

7.1 Contact Definition Block . 377

7.2 Enforcement . 380

7.3 Descriptions of Contact Surfaces . 381

7.3.1 Contact Surface Command Line . 381

7.3.2 Contact Surface Command Block . 382

7.3.3 Contact Node Set . 383

7.4 Surface Normal Smoothing . 385

7.5 Contact Output Variables . 386

7.6 Friction Models . 387

7.6.1 Frictionless Model . 387

7.6.2 Constant Friction Model . 387

7.6.3 Tied Model . 388

7.6.4 Glued Model . 388

7.7 Search Options . 389

7.7.1 Search Algorithms . 390

7.7.2 Search Tolerances . 391

7.7.3 Secondary Decomposition . 392

7.8 Default Values for Interactions . 394

7.8.1 Surface Identification . 395

7.8.2 General Contact . 395

7.8.3 Friction Model . 395

7.9 Values for Interactions . 397

7.9.1 Surface Identification . 397

7.9.2 Tolerances . 398

7.9.3 Friction Model . 399

7.9.4 Pushback Factor . 399

7.9.5 Tension Release . 399

15

7.9.6 Tension Release Function . 399

7.9.7 Friction Coefficient . 400

7.9.8 Friction Coefficient Function . 400

7.10 Legacy Contact . 401

7.11 Examples . 402

7.11.1 Example 1 . 402

7.11.2 Example 2 . 403

7.12 References . 405

8 Output 407

8.1 Syntax for Requesting Variables . 408

8.1.1 Example 1 . 408

8.1.2 Example 2 . 409

8.1.3 Other command blocks . 410

8.1.4 Rigid Body Variables . 410

8.2 Results Output . 411

8.2.1 Exodus Results Output File . 412

8.2.1.1 Output Nodal Variables . 415

8.2.1.2 Output Node Set Variables . 415

8.2.1.3 Output Face Variables . 417

8.2.1.4 Output Element Variables . 419

8.2.1.5 Subsetting of Output Mesh . 422

8.2.1.6 Output Mesh Selection . 422

8.2.1.7 Component Separator Character 422

8.2.1.8 Output Global Variables . 423

8.2.1.9 Set Begin Time for Results Output 424

8.2.1.10 Adjust Interval for Time Steps 424

8.2.1.11 Output Interval Specified by Time Increment 424

8.2.1.12 Additional Times for Output 424

8.2.1.13 Output Interval Specified by Step Increment 425

8.2.1.14 Additional Steps for Output . 425

8.2.1.15 Set End Time for Results Output 425

8.2.1.16 Synchronize Output . 425

16

8.2.1.17 Use Output Scheduler . 426

8.2.1.18 Write Results If System Error Encountered 426

8.2.2 User-Defined Output . 427

8.2.2.1 Mesh-Entity Set Commands . 429

8.2.2.2 Compute Result Commands . 429

8.2.2.3 User Subroutine Commands . 431

8.2.2.4 Copy Command . 432

8.2.2.5 Variable Transformation Command 432

8.2.2.6 Data Filtering Commands . 432

8.2.2.7 Compute at Every Step Command 434

8.2.2.8 Additional Command . 434

8.3 History Output . 435

8.3.1 Output Variables . 437

8.3.1.1 Global Output Variables . 437

8.3.1.2 Mesh Entity Output Variables 438

8.3.1.3 Nearest Point Output Variables 438

8.3.2 Outputting History Data on a Node Set 439

8.3.3 Set Begin Time for History Output . 440

8.3.4 Adjust Interval for Time Steps . 440

8.3.5 Output Interval Specified by Time Increment 440

8.3.6 Additional Times for Output . 441

8.3.7 Output Interval Specified by Step Increment 441

8.3.8 Additional Steps for Output . 441

8.3.9 Set End Time for History Output . 441

8.3.10 Synchronize Output . 441

8.3.11 Use Output Scheduler . 442

8.3.12 Write History If System Error Encountered 442

8.4 Heartbeat Output . 444

8.4.1 Output Variables . 446

8.4.1.1 Global Output Variables . 446

8.4.1.2 Mesh Entity Output Variables 447

8.4.1.3 Nearest Point Output Variables 447

17

8.4.2 Outputting Heartbeat Data on a Node Set 449

8.4.3 Set Begin Time for Heartbeat Output . 449

8.4.4 Adjust Interval for Time Steps . 449

8.4.5 Output Interval Specified by Time Increment 450

8.4.6 Additional Times for Output . 450

8.4.7 Output Interval Specified by Step Increment 450

8.4.8 Additional Steps for Output . 450

8.4.9 Set End Time for Heartbeat Output . 450

8.4.10 Synchronize Output . 451

8.4.11 Use Output Scheduler . 451

8.4.12 Write Heartbeat On Signal . 451

8.4.13 Heartbeat Output Formatting Commands 452

8.4.13.1 CTH SpyHis output format . 453

8.4.13.2 Specify floating point precision 453

8.4.13.3 Specify Labeling of Heartbeat Data 453

8.4.13.4 Specify Existence of Legend for Heartbeat Data 454

8.4.13.5 Specify format of timestamp 454

8.4.14 Monitor Output Events . 455

8.5 Restart Data . 456

8.5.1 Restart Options . 457

8.5.1.1 Automatic Read and Write of Restart Files 458

8.5.1.2 User-Controlled Read and Write of Restart Files 461

8.5.1.3 Overwriting Restart Files . 464

8.5.1.4 Recovering from a Corrupted Restart 465

8.5.2 Overwrite Command in Restart . 466

8.5.3 Set Begin Time for Restart Writes . 466

8.5.4 Adjust Interval for Time Steps . 466

8.5.5 Restart Interval Specified by Time Increment 466

8.5.6 Additional Times for Restart . 467

8.5.7 Restart Interval Specified by Step Increment 467

8.5.8 Additional Steps for Restart . 467

8.5.9 Set End Time for Restart Writes . 467

18

8.5.10 Overlay Count . 467

8.5.11 Cycle Count . 468

8.5.12 Synchronize Output . 469

8.5.13 Use Output Scheduler . 469

8.5.14 Write Restart If System Error Encountered 470

8.6 Output Scheduler . 471

8.6.1 Output Scheduler Command Block . 471

8.6.1.1 Set Begin Time for Output Scheduler 472

8.6.1.2 Adjust Interval for Time Steps 472

8.6.1.3 Output Interval Specified by Time Increment 472

8.6.1.4 Additional Times for Output 472

8.6.1.5 Output Interval Specified by Step Increment 472

8.6.1.6 Additional Steps for Output . 473

8.6.1.7 Set End Time for Output Scheduler 473

8.6.2 Example of Using the Output Scheduler 473

8.7 Variable Interpolation . 475

8.8 Global Output Options . 478

8.9 Variables . 479

8.9.1 Global, Nodal, Face, and Element Variables 479

8.9.2 Variables for Material Models . 492

8.9.2.1 State Variable Output by Index for Strumento Solid Models . . . 492

8.9.2.2 State Variable Output for LAME Solid Material Models 492

8.9.2.3 State Variable Tables for Solid Material Models 493

8.9.2.4 Variables for Shell/Membrane Material Models 505

8.9.3 Variables for Surface Models . 507

8.9.3.1 State Variable Tables for Surface Models 507

8.10 References . 509

9 Special Modeling Techniques 511

9.1 Representative Volume Elements . 511

9.1.1 RVE Processing . 512

9.1.2 Mesh Requirements . 512

9.1.3 Input Commands . 513

19

9.1.3.1 RVE Material Model . 514

9.1.3.2 Embedded Coordinate System 514

9.1.3.3 RVE Region . 515

9.1.3.4 Definition of RVEs . 515

9.1.3.5 Multi-Point Constraints . 516

9.1.3.6 RVE Boundary Conditions . 517

9.2 J-Integrals . 518

9.2.1 Technique for Computing J . 518

9.2.2 Input Commands . 519

9.2.3 Output . 521

9.3 References . 522

10 User Subroutines 523

10.1 User Subroutines: Programming . 527

10.1.1 Subroutine Interface . 528

10.1.2 Query Functions . 528

10.1.2.1 Parameter Query . 530

10.1.2.2 Function Data Query . 534

10.1.2.3 Time Query . 534

10.1.2.4 Field Variables . 534

10.1.2.5 Global Variables . 543

10.1.2.6 Topology Extraction . 547

10.1.3 Miscellaneous Query Functions . 553

10.2 User Subroutines: Command File . 555

10.2.1 Subroutine Identification . 555

10.2.2 User Subroutine Command Lines . 555

10.2.2.1 Type . 555

10.2.2.2 Debugging . 556

10.2.2.3 Parameters . 556

10.2.3 Time Step Initialization . 558

10.2.3.1 Mesh-Entity Set Commands . 558

10.2.3.2 User Subroutine Commands . 559

10.2.3.3 Additional Command . 560

20

10.2.4 User Variables . 561

10.3 User Subroutines: Compilation and Execution . 564

10.4 User Subroutines: Examples . 565

10.4.1 Pressure as a Function of Space and Time 565

10.4.2 Error Between a Computed and an Analytic Solution 568

10.4.3 Transform Output Stresses to a Cylindrical Coordinate System 572

10.5 User Subroutines: Library . 578

10.5.1 aupst_cyl_transform . 578

10.5.2 aupst_rec_transform . 579

10.5.3 copy_data . 580

10.5.4 trace . 581

11 Transfers 583

11.1 SIERRA Transfers . 584

11.2 Inter-procedural Transfers . 584

11.2.1 Copying Data with Inter-procedural Transfers 585

11.2.2 Interpolating Data with Interpolation Transfers 585

A Example Problem 587

B Command Summary 595

C Consistent Units 655

D Constraint Enforcement Hierarchy 657

Index 659

21

List of Figures

1.1 Input/output files . 48

2.1 Piecewise linear and piecewise constant functions 57

2.2 Adjacent shell elements with nonaligned local coordinate systems 63

2.3 Rectangular coordinate system . 64

2.4 Z-Rectangular coordinate system. 64

2.5 Cylindrical coordinate system. 65

2.6 Spherical coordinate system. 65

2.7 Rotation about 1 . 66

2.8 Examples of elements with varying nodal Jacobians 74

3.1 Reaching convergence with controls and the multilevel solver. 81

3.2 Contact configuration at the beginning of the contact update. 106

3.3 Contact gap removal (after contact search). 106

3.4 Contact slip calculations. 107

3.5 Control stiffness softening behavior in the first model problem. 113

3.6 Control stiffness softening behavior in the second model problem. 113

3.7 Control stiffness stiffening behavior in the first model problem. 114

3.8 Control stiffness stiffening behavior in the second model problem. 114

3.9 Control stiffness softening behavior convergence 116

5.1 Association between command lines and command block. 238

5.2 Location of geometric plane of shell for various lofting factors. 249

5.3 Local rst coordinate system for a shell element. 251

5.4 Rotation of 30 degrees about the 1-axis (X′-axis). 251

5.5 Integration points for rod and tube . 259

22

5.6 Integration points for bar and box. 260

5.7 Integration points for I-section. 260

7.1 Two blocks at time step n before contact. 374

7.2 Two blocks at time step n + 1, after penetration. 374

7.3 Illustration of normal and tangential tolerances. 392

7.4 Problem with two blocks coming into contact. 402

7.5 Problem with three blocks coming into contact. 404

9.1 Example of meshes for RVE analysis . 513

9.2 Example weight functions for a J-integral integration domain 521

10.1 Overview of components required to implement functionality. 526

A.1 Eraser schematic . 587

A.2 Complete eraser mesh . 588

23

List of Tables

8.1 Global Variables For All Analyses . 481

8.2 Global Variables for Rigid Bodies . 481

8.3 Global Variables for J-Integral . 482

8.4 Nodal Variables for All Analyses . 482

8.5 Nodal Variables for Shells and Beams . 483

8.6 Nodal Variables for Spot Welds . 484

8.7 Nodal Variables for Contact . 485

8.8 Nodal Variables for J-Integral . 487

8.9 Face Variables for Blast Pressure Boundary Condition 487

8.10 Element Variables for All Elements . 488

8.11 Element Variables for Solid Elements . 489

8.12 Element Variables for Membranes . 489

8.13 Element Variables for Shells . 490

8.14 Element Variables for Trusses . 491

8.15 Element Variables for Cohesive Elements . 491

8.16 Element Variables for J-Integral . 491

8.17 State Variables for ELASTIC Model . 493

8.18 State Variables for ELASTIC FRACTURE Model 493

8.19 State Variables for ELASTIC PLASTIC Model 494

8.20 State Variables for EP POWER HARD Model . 494

8.21 State Variables for DUCTILE FRACTURE Model 494

8.22 State Variables for MULTILINEAR EP Model . 495

8.23 State Variables for ML EP FAIL Model . 495

8.24 State Variables for FOAM PLASTICITY Model 496

8.25 State Variables for WIRE MESH Model . 496

24

8.26 State Variables for HONEYCOMB Model . 496

8.27 State Variables for HYPERFOAM Model . 497

8.28 State Variables for JOHNSON COOK Model . 497

8.29 State Variables for LOW DENSITY FOAM Model 497

8.30 State Variables for MOONEY RIVLIN Model . 498

8.31 State Variables for NEO HOOKEAN Model . 498

8.32 State Variables for ORTHOTROPIC CRUSH Model 498

8.33 State Variables for ORTHOTROPIC RATE Model 498

8.34 State Variables for PIEZO Model . 499

8.35 State Variables for POWER LAW CREEP Model 499

8.36 State Variables for SHAPE MEMORY Model . 499

8.37 State Variables for SOIL FOAM Model . 499

8.38 State Variables for SWANSON Model . 500

8.39 State Variables for VISCOELASTIC SWANSON Model 501

8.40 State Variables for THERMO EP POWER Model 502

8.41 State Variables for THERMO EP POWER WELD Model 502

8.42 State Variables for UNIVERSAL POLYMER Model 503

8.43 State Variables for VISCOPLASTIC Model . 504

8.44 State Variables for ELASTIC PLASTIC Model for Shells 505

8.45 State Variables for EP POWER HARD Model for Shells 505

8.46 State Variables for MULTILINEAR EP Model for Shells 505

8.47 State Variables for ML EP FAIL Model for Shells 506

8.48 State Variables for TRACTION DECAY Surface Model 507

8.49 State Variables for TVERGAARD HUTCHINSON Surface Model 507

8.50 State Variables for THOULESS PARMIGIANI Surface Model 508

10.1 Subroutine Input Parameters . 528

10.2 Subroutine Output Parameters . 529

10.3 aupst_get_real_param Arguments . 531

10.4 aupst_get_integer_param Arguments . 532

10.5 aupst_get_string_param Arguments . 533

10.6 aupst_evaluate_function Arguments . 534

10.7 aupst_get_time Argument . 534

25

10.8 aupst_check_node_var Arguments . 536

10.9 aupst_check_elem_var Arguments . 537

10.10aupst_get_node_var Arguments . 538

10.11aupst_get_elem_var Arguments . 539

10.12aupst_get_elem_var_offset Arguments . 540

10.13aupst_put_node_var Arguments . 541

10.14aupst_put_elem_var Arguments . 542

10.15aupst_put_elem_var_offset Arguments . 543

10.16aupst_check_global_var Arguments . 545

10.17aupst_get_global_var Arguments . 545

10.18aupst_put_global_var Arguments . 546

10.19aupst_local_put_global_var Arguments . 547

10.20Topologies Used by Adagio . 548

10.21aupst_get_elem_topology Arguments . 549

10.22aupst_get_elem_nodes Arguments . 550

10.23aupst_get_face_topology Arguments . 551

10.24aupst_get_face_nodes Arguments . 552

10.25aupst_get_one_elem_centroid Arguments . 553

10.26aupst_get_point Arguments . 554

10.27aupst_get_proc_num Arguments . 554

C.1 Consistent Unit Sets . 656

D.1 Constraint Enforcement Order . 657

26

Adagio 4.18 Release Notes

Following is a list of new features and syntax changes made to Adagio since the 4.16 release.

Material Model Documentation

Documentation has been added for a number of material models. These include Thermoelastic

(Section 4.2.2), Neo-Hookean (Section 4.2.3), Power Law Creep (Section 4.2.12), K&C Concrete

(Section 4.2.14), Low Density Foam (Section 4.2.16), and Wire Mesh (Section 4.2.18).

Linear Shell

A fully linear shell element is available. See Section 5.2.4.

New Methods for Defining Beam/Shell Offset

Shell offset can now be defined based on a mesh variable, and beam offset can now be defined in the

global coordinate system either directly in the input file or by a mesh variable. See Sections 5.2.4

and 5.2.6.

Point Mass for Rigid Bodies

Mass may now be added to a rigid body at a user-specified location. See Section 5.3.1.

Element Disconnection For Shells

The element disconnection method for handling failure with element death is now available for

shell elements. See Section 5.5.3.3.

Initialization of Variables with Weibull Distribution

Field variables can be initialized with a spatially varying random variable conforming to the

Weibull probability distribution function. See Section 6.2.4.

27

MPCs for Volumetric Constraints

The capability to use MPCs for tied contact has been extended to allow for volumetric constraints

between slave nodes and the nodes on an enclosing surface. This is primarily intended to be used

to constrain volumes of void elements to an enclosing solid. See Section 6.10.2.

Interaction Defaults

Adagio can now select rational contact interaction defaults when using the GENERAL CONTACT

= ON command line in the INTERACTION DEFAULTS contact command block. Contact will au-

tomatically select a rational master/slave arrangement for all block-to-block interactions and use

default tolerances and friction models for these interactions. See Section 7.

Hourglass Energy by Block

The hourglass energy sums are now available on each block as global variables. See Sec-

tion 8.2.1.8.

Output Synchronization

The results, restart, heartbeat, and history output can be synchronized with databases of the same

type in other regions and output from coupled applications. See Sections 8.2.1.16, 8.3.10, 8.4.10,

and 8.5.12.

User Output Data Filtering

Frequency based data filters can now be automatically computed off of nodal and element quanti-

ties. See Section 8.2.2.6.

Surface Normal Data Transfer

The VARIABLE INTERPOLATION command block may now be used to transfer only component

of a variable normal to a surface. See Section 8.7.

Global Energy Reporting

Options for global energy reporting have been introduced to adjust accuracy and performance. See

Section 8.8.

28

Global Rigid Body Variable Output

The default global rigid body variable output may now be modified. See Section 8.8.

RVE Usage Enhancements

A representative volume element (RVE) with nonmatching opposing surfaces can be used by in-

cluding a block of membranes surrounding the RVE. This membrane block is required to have

matching opposing surfaces and must be tied to the underlying RVE. See Section 9.1.

29

30

Adagio 4.18 Known Issues

Section 3.3: Deactivation of element blocks (see Section 5.1.5.8) does not currently work in con-

junction with the full tangent preconditioner in Adagio. To use this capability, one of the nodal

preconditioners must be used.

Section 5.2.8: Superelements are not compatible with several modeling capabilities. They cannot

be used with element death. They cannot be used with node-based, power method, or Lanczos

critical time step estimation methods. They are also not compatible with some preconditioners

(such as FETI) for implicit solutions.

Section 6.3.2.2: If a prescribed displacement with the CYLINDRICAL AXIS option is applied to

nodes that fall on the axis, it will have no effect. Separate boundary conditions should be applied

to those nodes to fix them in the plane normal to the axis.

Section 6.3.3.2: If a prescribed velocity with the CYLINDRICAL AXIS option is applied to nodes

that fall on the axis, it will have no effect. Separate boundary conditions should be applied to those

nodes to fix them in the plane normal to the axis.

Section 8.4: User defined variables (see Section 10.2.4) are not currently supported with heartbeat

output.

Section 9.2: Currently, the J-Integral evaluation capability is based on assumptions of elastostatics

and a stationary crack, and is only implemented for uniform gradient hex elements.

31

32

Chapter 1

Introduction

This document is a user’s guide for the code Adagio. Adagio is a three-dimensional, implicit solid

mechanics code with a versatile element library, nonlinear material models, and capabilities for

modeling large deformation and contact. Adagio is a parallel code, and its nonlinear solver and

contact capabilities enable scalable solutions of large problems. It is built on the SIERRA Frame-

work [1, 3]. SIERRA provides a data management framework in a parallel computing environment

that allows the addition of capabilities in a modular fashion.

The Adagio 4.18 User’s Guide provides information about the functionality in Adagio and the

command structure required to access this functionality in a user input file. This document is

divided into chapters based primarily on functionality. For example, the command structure related

to the use of various element types is grouped in one chapter; descriptions of material models are

grouped in another chapter.

The input and usage of Adagio is similar to that of the code Presto [2]. Presto, like Adagio, is a

solid mechanics code built on the SIERRA Framework. The primary difference between the two

codes is that Presto uses explicit time integration for transient dynamics analysis, whereas Adagio

is an implicit code.

Because of the similarities in input and usage between Adagio and Presto, the user’s guides for

the two codes are structured in the same manner and share common material. (Once you have

mastered the input structure for one code, it will be easy to master the syntax structure for the

other code.) To maintain the commonality between the two user’s guides, we have used a variety

of techniques. For example, references to Presto may be found in the Adagio user’s guide and vice

versa, and the chapter order across the two guides is the same.

On the other hand, each of the two user’s guides is expressly tailored to the features of the specific

code and documents the particular functionality for that code. For example, though both Presto and

Adagio have contact functionality, the content of the chapter on contact in the two guides differs.

Important references for both Adagio and Presto are given in the references section at the end of

this chapter. Adagio was preceded by the codes JAC and JAS3D; JAC is described in Reference 4;

JAS3D is described in Reference 5. Presto was preceded by the code Pronto3D. Pronto3D is

described in References 6 and 7. Some of the fundamental nonlinear technology used by both

Presto and Adagio are described in References 8, 9, and 10. Currently, both Presto and Adagio

33

use the Exodus II database and the XDMF database; Exodus II is more commonly used than

XDMF. (Other options may be added in the future.) The Exodus II database format is described in

Reference 11, and the XDMF database format is described in Reference 12. Important information

about contact is provided in the reference document for ACME [13]. ACME is a third-party library

for contact.

One of the key concepts for the command structure in the input file is a concept referred to as

scope. A detailed explanation of scope is provided in Section 1.2. Most of the command lines in

Chapter 2 are related to a certain scope rather than to some particular functionality.

1.1 Document Overview

This document describes how to create an input file for Adagio. Highlights of the document con-

tents are as follows:

• Chapter 1 presents the overall structure of the input file, including conventions for the com-

mand descriptions, style guidelines for file preparation, and naming conventions for input

files that reference the Exodus II database [11]. The chapter also gives an example of the

general structure of an input file that employs the concept of scope.

• Chapter 2 explains some of the commands that are general to various applications based on

the SIERRA Framework. These commands let you define scopes, functions, and coordinate

systems, and they let you set up some of the main time control parameters (begin time, end

time, time blocks) for your analysis. (Time control and time step control are discussed in

more detail in Chapter 3.) Other capabilities documented in this chapter are available for

calculating element distortion and for activating and deactivating functionality at different

times throughout an analysis.

• Chapter 3 discusses the multilevel, nonlinear iterative solver in Adagio. This chapter also

describes how to set start time, end time, and time blocks for an analysis.

• Chapter 4 describes material models that can be used in conjunction with the elements in

Presto and Adagio. Most of the material models have an interface that allows the models to

be used by the elements in both codes. Even though a material model can be used by both

codes, it may be that the use of the material model is better suited for one code rather than

for the other code. For example, a material model set up to characterize behavior over a long

time would be better suited for use in Adagio than in Presto. If a material model is better

suited for one of the two codes, this information will be noted for the material model. In some

cases, a material model may only be included in one of the two user’s guides. Chapter 4 also

discusses the application of temperature to a mesh and the computation of thermal strains

(isotropic and anisotropic).

• Chapter 5 lists the elements in Presto and Adagio and describes how to set up commands

to use the various options for the elements. Most elements can be used in either Presto or

Adagio. If an element is available in one code but not the other, this information will be noted

34

for the element. In some cases, an element may only be included in one of the two user’s

guides. For example, Presto has a special element implementation referred to as smoothed

particle hydrodynamics (SPH). The Presto user’s guide contains a section on SPH, but the

Adagio user’s guide does not. Chapter 5 also includes descriptions of the commands for

mass property calculations, element death, and rigid bodies.

• Chapter 6 documents how to use kinematic boundary conditions, force boundary conditions,

initial conditions, and specialized boundary conditions.

• Chapter 7 discusses how to define interactions of contact surfaces.

• Chapter 8 details the various options for obtaining output.

• Chapter 9 documents special modeling techniques.

• Chapter 10 provides an overview of the user subroutine functionality.

• Appendix A provides a sample input file from an analysis of an eraser being pulled across a

surface. This problem emphasizes large deformation and contact.

• Appendix B lists all the permissible Adagio input lines in their proper scope.

• The index allows you to find information about command blocks and command lines. In

general, single-level entries identify the page where the command syntax appears, with dis-

cussion following soon thereafter—on the same page or on a subsequent page. Page ranges

are not provided in this index. Some entries consist of two or more levels. Such entries are

typically based on context, including such information as the command blocks in which a

command line appears, the location of the discussion related to a particular command line,

and tips on usage. The PDF version of this document contains hyperlinked entries from the

page numbers listed in the index to the text in the body of the document.

Note that all references cited within the text of each chapter are listed at the end of the respective

chapters rather than in a separate references chapter. The reference sections in the chapters are not

necessarily edited so that they are specific to Adagio or Presto. Some chapters will have exactly

the same set of references (even if not all are cited for a particular user’s guide), and some chapters

will have the references tailored to the specific user’s guide.

35

1.2 Overall Input Structure

Adagio is one of many mechanics codes built on the SIERRA Framework. The SIERRA Frame-

work provides the capability to perform multiphysics analyses by coupling together SIERRA codes

appropriate for the mechanics of interest. Input files may be set up for analyses using only Ada-

gio, or they may be set up to couple Adagio and one or more other SIERRA analysis codes. For

example, you might run Adagio to compute a stress state, and then use the results of this analysis

as initial conditions for a Presto analysis. For a multiphysics analysis using Presto and Adagio, the

time-step control, the mesh-related definitions, and the boundary conditions for both Presto and

Adagio will all be in the same input file. Therefore, the input for Adagio reflects the fact that it

could be part of a multiphysics analysis. (Note that not all codes built on the SIERRA Framework

can be coupled. Consult with the authors of this document to learn about the codes that can be

coupled with Adagio.)

To create files defining multiphysics analyses, the input files use a concept called “scope.” Scope

is used to group similar commands; a scope can be nested inside another scope. The broadest

scope in the input file is the SIERRA scope. The SIERRA scope contains information that can be

shared among different physics. Examples of physics information that can be shared are definitions

of functions and materials. Thus, in our above example of a coupled Presto/Adagio multiphysics

analysis, both Adagio and Presto could reference functions to define such things as time histories

for boundary conditions or stress-strain curves. Some of the functions could even be shared by

these two applications. Both Presto and Adagio could also share information about materials.

Within the SIERRA scope are two other important scopes: the procedure scope and the region

scope. The region is nested inside the procedure, and the procedure is nested inside the SIERRA

scope. The procedure scope controls the overall analysis from the start time to the end time; the

region scope controls a single time step. For a multiphysics analysis, the SIERRA scope could

contain several different procedures and several different regions.

Inside the procedure scope (but outside of the region scope) are commands that set the start time

and the end time for the analysis.

Inside the region scope for Adagio are such things as definitions for boundary conditions and

contact. In a multiphysics analysis, there would be more than one region. In our Presto/Adagio

example, there would be both a Presto region and an Adagio region, each within its respective

procedures. The definitions for boundary conditions and contact and the mesh specification for

Presto would appear in the Presto region; the definitions for boundary conditions and contact and

the mesh specification for Adagio would appear in the Adagio region.

The input for Adagio consists of command blocks and command lines. The command blocks

define a scope. These command blocks group command lines or other command blocks that share

a similar functionality. A command block will begin with an input line that has the word “begin”;

the command block will end with an input line that has the word “end”. The SIERRA scope, for

example, is defined by a command block that begins with an input line of the following form:

BEGIN SIERRA my_problem

The two character strings BEGIN and SIERRA are the key words for this command block. An input

line defining a command block or a command line will have one or more key words. The string

36

my_problem is a user-specified name for this SIERRA scope. The SIERRA scope is terminated

by an input line of the following form:

END SIERRA my_problem

In the above input line, END and SIERRA are the key words to end this command block. The

SIERRA scope can also be terminated simply by using the following key word:

END

The above abbreviated command line will be discussed in more detail in later chapters. There are

similar input lines used to define the procedure and region scopes. Boundary conditions are another

example where a scope is defined. A particular instance of a boundary condition for a prescribed

displacement boundary condition is defined with a command block. The command block for the

boundary condition begins with an input line of the form:

BEGIN PRESCRIBED DISPLACEMENT

and ends with an input line of either of the following forms:

END PRESCRIBED DISPLACEMENT

END

Command lines appear within the command blocks. The command lines typically have the form

keyword = value, where value can be a real, an integer, or a string. In the previous example

of the prescribed displacement boundary condition, there would be command lines inside the com-

mand block that are used to set various values. For example, the boundary condition might apply

to all nodes in node set 10, in which case there would be a command line of the following form:

NODE SET = nodelist_10

If the prescribed displacement were to be applied along a given component direction, there would

be a command line of this form:

COMPONENT = X

The form above would specify that the prescribed displacement would be in the x-direction.

Finally, if the displacement magnitude is described by a time history function with the name

cosine_curve, there would be a command line of this form:

FUNCTION = cosine_curve

The command block for the boundary condition with the appropriate command lines would appear

as follows:

BEGIN PRESCRIBED DISPLACEMENT

NODE SET = nodelist_10

COMPONENT = X

FUNCTION = cosine_curve

END PRESCRIBED DISPLACEMENT

It is possible to have a command line with the same key words appearing in different scopes. For

example, we might have a command line identified by the word TYPE in two or more different

37

scopes. The command line would perform different functions based on the scope in which it

appeared, and the associated value could be different in the two locations.

The input lines are read by a parser that searches for recognizable key words. If the key words

in an input line are not in the list of key words used by Adagio to describe command blocks

and command lines, the parser will generate an error. A set of key words defining a command

line or command block for Adagio that is not in the correct scope will also cause a parser error.

For example, the key words STEP INTERVAL define a valid command line in the scope of the

TIME CONTROL command block. However, if this command line was to appear in the scope of

one of the boundary conditions, it would not be in the proper scope, and the parser would generate

an error. Once the parser has an input line with any recognizable key words in the proper scope, a

method can be called that will handle the input line.

There is an initial parsing phase that checks only the parser syntax. If the parser encounters a

command line it cannot parse within a certain scope, the parser will indicate it cannot recognize the

command line and will list the various command lines that can appear within that scope. The initial

parsing phase will catch errors such as the one described in the previous paragraph (a command

line in the wrong scope). It will also catch misspelled key words. The initial parsing does not

catch some other types of errors, however. If you have specified a value on a command line that is

out of a specified range for that command line, the initial parsing will not catch this error. If you

have some combination of command lines within a command block that is not allowed, the initial

parsing will not catch this error. These other errors are caught after the initial parsing phase and

are handled one error at a time.

38

1.3 Conventions for Command Descriptions

The conventions below are used to describe the input commands for Adagio. A number of the

individual command lines discussed in the text appear on several text lines. In the text of this

document, the continuation symbols that are used to continue lines in an actual input file (\#

and \$, Section 1.4.2) are not used for those instances where the description of the command

line appears on several text lines. The description of command lines will clearly indicate all the

key words, delimiters, and values that constitute a complete command line. As an example, the

DEFINE POINT command line (Section 2.1.6) is presented in the text as follows:

DEFINE POINT <string>point_name WITH COORDINATES

<real>value_1 <real>value_2 <real>value_3

If the DEFINE POINT command line were used as a command line in an input file and spread over

two input lines, it would appear, with actual values, as follows:

DEFINE POINT center WITH COORDINATES \#

10.0 144.0 296.0

In the above example, the \# symbol implies the first line is continued onto the second line.

1.3.1 Key Words

The key word or key words for a command are shown in uppercase letters. For actual input, you

can use all uppercase letters for the key words, all lowercase letters for the key words, or some

combination of uppercase and lowercase letters for the key words.

1.3.2 User-Specified Input

The input that you supply is typically shown in lowercase letters. (Occasionally, uppercase letters

may be used for user input for purposes of clarity or in examples.) The user-supplied input may be

a real number, an integer, a string, or a string list. For the command descriptions, a type appears

before the user input. The type (real, integer, string, string list) description is enclosed by angle

brackets, <>, and precedes the user-supplied input. For example:

<real>value

indicates that the quantity value is a real number. For the description of an input command, you

would see the following:

FUNCTION = <string>function_name

Your input would be

FUNCTION = my_name

if you have specified a function name called my_name.

Valid user input consists of the following:

39

<integer> Integer data is a single integer number.

<real> Real data is a single real number. It may be formatted

with the usual conventions, such as 1234.56

or 1.23456e+03.

<string> String data is a single string.

<string list> A string list consists of multiple strings separated

by white space, a comma, a tab, or white

space combined with a comma or a tab.

1.3.3 Optional Input

Anything in an input line that is enclosed by square brackets, [], represents optional input within

the line. Note, however, that this convention is not used to identify optional input lines. Any

command line that is optional (in its entirety) will be described as such within the text.

1.3.4 Default Values

A value enclosed by parentheses, (), appearing after the user input denotes the default value. For

example:

SCALE FACTOR = <real>scale_factor(1.0)

implies the default value for scale_factor is 1.0. Any value you specify will overwrite the

default.

For your actual input file, you may simply omit a command line if you want to use the default

value associated with the command line. For example, there is a TIME STEP SCALE FACTOR

command line used to set one of the time control parameters; the parameter for this command line

has a default value of 1.0. If you want to use the default value of 1.0 for this parameter, you do not

have to include the TIME STEP SCALE FACTOR command line in the TIME CONTROL command

block.

1.3.5 Multiple Options for Values

Quantities separated by the | symbol indicate that one and only one of the possible choices must

be selected. For example:

EXPANSION RADIUS = <string>SPHERICAL|CYLINDRICAL

implies that expansion radius must be defined as SPHERICAL or CYLINDRICAL. One of the values

must appear. This convention also applies to some of the command options within a begin/end

block. For example:

40

SURFACE = <string>surface_name|

NODE SET = <string>nodelist_name

in a command block specifies that either a surface or a node set must be specified.

Quantities separated by the / symbol can appear in any combination, but any one quantity in the

sequence can appear only once. For example,

COMPONENTS = <string>X/Y/Z

implies that components can equal any combination of X, Y, and Z. Any value (X or Y or Z) can

appear at most once, and at least one value of X, Y, or Z must appear. Some examples of valid

expressions in this case are as follows:

COMPONENTS = Z

COMPONENTS = Z X

COMPONENTS = Y X Z

COMPONENTS = Z Y X

An example of an invalid expression would be the following:

COMPONENTS = Y Y Z

1.3.6 Known Issues and Warnings

Where there are known issues with the code, these are documented in the following manner:

Known Issue: A description of the known issue with the code would be provided

here.

Similarly, warnings regarding usage of code features that are not defective, but must be used with

care because of their nature, are documented as follows:

Warning: A description of the warning related to the usage of a code feature would

be provided here.

41

1.4 Style Guidelines

This section gives information that will affect the overall organization and appearance of your input

file. It also contains recommendations that will help you construct input files that are readable and

easy to proof.

1.4.1 Comments

A comment is anything between the # symbol or the $ symbol and the end-of-line. If the first

non-blank character in a line is a # or $, the entire line is a comment line. You can also place a #

or $ (preceded by a blank space) after the last character in an input line used to define a command

block or command line.

1.4.2 Continuation Lines

An input line can be continued by placing a \# pair of characters (or \$) at the end of the line. The

following line is then taken to be a continuation of the preceding line that was terminated by the

\# or \$. Note that everything after the line-continuation pair of characters is discarded, including

the end-of-line.

1.4.3 Case

Almost all the character strings in the input lines are case insensitive. For example, the BEGIN

SIERRA key words could appear as one of the following:

BEGIN SIERRA

begin sierra

Begin Sierra

You could specify a SIERRA command block with:

BEGIN SIERRA BEAM

and terminate the command block with this input line:

END SIERRA beam

Case is important only for file name specifications. If you have defined a restart file with uppercase

and lowercase letters and want to use this file for a restart, the file name you use to request this

restart file must exactly match the original definition you chose.

1.4.4 Commas and Tabs

Commas and tabs in input lines are ignored.

42

1.4.5 Blank Spaces

We highly recommend that everything be separated by blank spaces. For example, a command line

of the form

node set = nodelist_10

is recommended over the following forms:

node set= nodelist_10

node set =nodelist_10

Both of the above two lines are correct, but it is easier to check the first form (the equal sign

surrounded by blank space) in a large input file.

The parser will accept the following line:

BEGIN SIERRABEAM

However, it is harder to check this line for the correct spelling of the key words and the intended

SIERRA scope name than this line:

BEGIN SIERRA BEAM

It is possible to introduce hard-to-detect errors because of the way in which the blank spaces are

handled by the command parser. Suppose you type

begin definition for functions my_func

rather than the following correct form:

begin definition for function my_func

For the incorrect form of this command line (in which functions is used rather than function),

the parser will generate a string name of

s my_func

for the function name rather than the following expected name:

my_func

If you attempt to use a function named my_func, the parser will generate an error because the list

of function names will include s my_func but not my_func.

1.4.6 General Format of the Command Lines

In general, command lines have the following form:

keyword = value

This pattern is not always followed, but it describes the vast majority of the command lines.

43

1.4.7 Delimiters

The delimiter used throughout this document is “=” (the equal sign). Typically, but not always,

the = separates key words from input values in a command line. Consider the following command

line:

COMPONENTS = X

Here, the key word COMPONENTS is separated from its value, a string in this case, by the =. Some

command lines do allow for other delimiters. The use of these alternate delimiters is not consistent,

however, throughout the various command lines. (This lack of consistency has the potential for

introducing errors in this document as well as in your input.) The = provides a strong visual cue

for separating key words from values. By using the = as a delimiter, it is much easier to proof your

input file. It also makes it easier to do “cut and paste” operations. If you accidentally delete =, it is

much easier to detect than accidentally removing part of one of the other delimiters that could be

used.

1.4.8 Order of Commands

There are no requirements for ordering the commands. Both the input sequence:

BEGIN PRESCRIBED DISPLACEMENT

NODE SET = nodelist_10

COMPONENT = X

FUNCTION = cosine_curve

END PRESCRIBED DISPLACEMENT

and the input sequence:

BEGIN PRESCRIBED DISPLACEMENT

FUNCTION = cosine_curve

COMPONENT = X

NODE SET = nodelist_10

END PRESCRIBED DISPLACEMENT

are valid, and they produce the same result. Remember, that command lines and command blocks

must appear in the proper scope.

1.4.9 Abbreviated END Specifications

It is possible to terminate a command block without including the key word or key words that

identify the block. You could define a specific instance of the prescribed displacement boundary

condition with:

BEGIN PRESCRIBED DISPLACEMENT

44

and terminate it simply with:

END

as opposed to the following specification:

END PRESCRIBED DISPLACEMENT

Both the short termination (END only) and the long termination (END followed by identification, or

name, of the command block) are valid. It is recommended that the long termination be used for

any command block that becomes large. The RESULTS OUTPUT command block described in later

chapters can become fairly lengthy, so this is probably a good place to use the long termination. For

most boundary conditions, the command block will typically consist of five lines. In such cases,

the short termination can be used. Using the long termination for the larger command blocks will

make it easier to proof your input files. If you use the long termination, the text following the

END key word must exactly match the text following the BEGIN key word. You could not have

BEGIN PRESCRIBED DISPLACEMENT paired with an END PRESCRIBED DISPL to define the

beginning and ending of a command block.

1.4.10 Indentation

When constructing an input file, it is useful, but not required, to indent a scope that is nested inside

another scope. Command lines within a command block should also be indented in relation to

the lines defining the command block. This will make it easier to construct the input file with

everything in the correct scope and with all the command blocks in the correct structure.

1.4.11 Including Files

External text files containing input commands can be included at any point in the Adagio input file

using the INCLUDEFILE command. This command can be used in any context in the input file. To

use this command, simply use the command INCLUDEFILE followed by the name of the file to be

included. For example, the command:

INCLUDEFILE displacement_history.i

would include the displacement_history.i as if the contents of that file were places in the

position that it is included in the input file. The included file is contained in the standard echo of

the input that is provided at the beginning of the log file.

45

1.5 Naming Conventions Associated with the Exodus II

Database

When the mesh file has an Exodus II format, there are three basic conventions that apply to user

input for various command lines. First, for a mesh file with the Exodus II format, the Exodus II

side set is referenced as a surface. In SIERRA, a surface consists of element faces plus all the

nodes and edges associated with these faces. A surface definition can be used not only to select

a group of faces but also to select a group of edges or a group of nodes that are associated with

those faces. In the case of boundary conditions, a surface definition can be used not only to apply

boundary conditions that typically use surface specifications (pressure) but also to apply boundary

conditions for what are referred to as nodal boundary conditions (fixed displacement components).

For nodal boundary conditions that use the surface specification, all the nodes associated with the

faces on a specific surface will have this boundary condition applied to them. The specification

for a surface identifier in the following chapters is surface_name. It typically has the form

surface_integerid, where integerid is the integer identifier for the surface. If the side set

identifier is 125, the value of surface_name would be surface_125. It is also possible to

generate an alias for the side set1 and use this for surface_name. If surface_125 is aliased

to outer_skin, then surface_name becomes outer_skin in the actual input line. It is also

possible to name a surface in some mesh generation programs and that name can be used in the

input file.

Second, for a mesh file with the Exodus II format, the Exodus II node set is still referenced as a

node set. A node set can be used only for cases where a group of nodes needs to be defined. The

specification for a node set identifier in the following chapters is nodelist_name. It typically

has the form nodelist_integerid, where integerid is the integer identifier for the node set.

If the node set number is 225, the value of nodelist_name would be nodelist_225. It is also

possible to generate an alias for the node set and use this for nodelist_name. If nodelist_225

is aliased to inner_skin, then nodelist_name becomes inner_skin in the actual input line.

It is also possible to name a nodelist in some mesh generation programs and that name can be used

in the input file.

Third, an element block is referenced as a block. The specification for an element block identifier

in the following chapters is block_name. It typically has the form block_integerid, where

integerid is the integer identifier for the block. If the element block number is 300, the value

of block_name would be block_300. It is also possible to generate an alias for the block and

use this for block_name. If block_300 is aliased to big_chunk, then block_name becomes

big_chunk in the actual input line. It is also possible to name an element block in some mesh

generation programs and that name can be used in the input file.

A group of elements can also be used to select other mesh entities. In SIERRA, a block consists of

elements plus all the faces, edges, and nodes associated with the elements. The block and surface

concepts are similar in that both have associated derived quantities. Chapters 6 and 7 show how

this concept of derived quantities is used in the input command structure.

1See the ALIAS command in Section 5.1.2

46

1.6 Major Scope Definitions for an Input File

The typical input file will have the structure shown below. The major scopes—SIERRA, procedure,

and region—are delineated with input lines for command blocks. Comment lines are included that

indicate some of the key scopes that will appear within the major scopes. Note the indentation

used for this example.

BEGIN SIERRA <string>some_name

#

All command blocks and command lines in the SIERRA

scope appear here. The PROCEDURE ADAGIO command

block is the beginning of the next scope.

#

function definitions

material descriptions

description of mesh file

#

BEGIN ADAGIO PROCEDURE <string>procedure_name

#

time step control

#

BEGIN ADAGIO REGION <string>region_name

#

All command blocks and command lines in the

region scope appear here

#

solver commands

specification for output of result

specification for restart

boundary conditions

definition of contact

#

END [ADAGIO REGION <string>region_name]

END [ADAGIO PROCEDURE <string>procedure_name]

END [SIERRA <string>some_name]

47

1.7 Input/Output Files

The primary user input to Adagio is the input file introduced in this chapter. Throughout this

document, we explain how to construct a valid input file. It is important to be aware that Adagio

also processes a number of other types of input files and produces a variety of output files. These

additional files are also discussed in this document where applicable. Figure 1.1 presents a simple

schematic diagram of the various input and output files in Adagio. Both Adagio and Presto use the

same file structure. Therefore, in Figure 1.1, we indicate that the code (graphically represented by

the central cylinder) can be either Presto or Adagio.

input

mesh

restart(in)

subroutine

results

history

restart(out)

log

output

Adagio
or

Presto

Figure 1.1: Input/output files

As shown in Figure 1.1, Adagio uses the input file, mesh files, restart files, and user subroutine

files. The input file, which is required, is a set of valid Adagio command lines. Another required

input is a mesh file, which provides a description of the finite element mesh for the object being

analyzed. Restart and user subroutine files are optional inputs. The restart functionality lets you

break an analysis from the start time to the termination time into a sequence of runs. The files

generated by the restart functionality contain a complete state description for a problem at various

analysis times, which we will refer to as restart times. You can restart Adagio at any of these restart

times because the complete state description is known (see Chapter 8). The user subroutine files

let you build and incorporate specialized functionality into Adagio (Chapter 10).

As also shown in Figure 1.1, Adagio can generate a number of files. These include results files,

history files, restart files, a log file, and an output file. Typically, only the log file and the output

file are produced automatically. Generation of the other types of files is based on user settings in

the input file for the particular kinds of output desired. Results files provide the values of global

variables, element variables, and node variables at specified times (see Chapter 8). History files

will also provide values of global variables, element variables, and node variables at specified

times (see Chapter 8). History files are set up to provide a specific value at a specific node, for

example, whereas results files provide a nodal value for large subsets of nodes or, more typically,

all nodes. History files provide a much more limited set of information than results files. As noted

above, restart files can be generated at various analysis times. The log file contains a variety of

48

information such as the Adagio version number, a listing of the input file, initialization information,

some model information (mass, critical time steps for element blocks, etc.), and information at

various time steps. At every nth step, where n is user selected, the log file gives the current analysis

time; the current time step; the kinetic, internal, and external energies; the error in the energy; and

computing time information. You can monitor step information in the log file to gain information

about how your analysis is progressing. The output file contains error information.

49

1.8 Obtaining Support

Support for all SIERRA Mechanics codes, including Adagio, can be obtained by contacting the

SIERRA Mechanics user support hotline by email at sierra-help@sandia.gov, or by telephone at

(505)845-1234.

50

mailto:sierra-help@sandia.gov

1.9 References

1. Edwards, H. C., and J. R. Stewart. “SIERRA: A Software Environment for Developing

Complex Multi-Physics Applications.” In First MIT Conference on Computational Fluid

and Solid Mechanics, edited by K. J. Bathe, 1147–1150. Amsterdam: Elsevier, 2001.

2. Koteras, J. R., A. S. Gullerud, V. L. Porter, W. M. Scherzinger, and K. H. Brown. “PRESTO:

Impact Dynamics with Scalable Contact Using the SIERRA Framework.” In First MIT Con-

ference on Computational Fluid and Solid Mechanics, edited by K. J. Bathe, 294–296. Am-

sterdam: Elsevier, 2001.

3. Mitchell, J. A., A. S. Gullerud, W. M. Scherzinger, J. R. Koteras, and V. L. Porter. “ADAGIO:

Non-Linear Quasi-Static Structural Response Using the SIERRA Framework.” In First MIT

Conference on Computational Fluid and Solid Mechanics, edited by K. J. Bathe, 361–364.

Amsterdam: Elsevier, 2001.

4. Biffle, J. H. JAC – A Two-Dimensional Finite Element Computer Program for the Non-

Linear Quasi-Static Response of Solids with the Conjugate Gradient Method, SAND81-

0998. Albuquerque, NM: Sandia National Laboratories, April 1984. pdf.

5. Blanford, M. L., M. W. Heinstein, and S. W. Key. JAS3D – A Multi-Strategy Iterative Code

for Solid Mechanics Analysis Users’ Instructions, Release 2.0, Draft SAND report. Albu-

querque, NM: Sandia National Laboratories, September 2001.

6. Taylor, L. M. and D. P. Flanagan. Pronto3D: A Three-Dimensional Transient Solid Dynamics

Program, SAND87-1912. Albuquerque, NM: Sandia National Laboratories, March 1989.

pdf.

7. Attaway, S. W., K. H. Brown, F. J. Mello, M. W. Heinstein, J. W. Swegle, J. A. Ratner, and

R. I. Zadoks. PRONTO3D User’s Instructions: A Transient Dynamic Code for Nonlinear

Structural Analysis, SAND98-1361. Albuquerque, NM: Sandia National Laboratories, June

1998. pdf.

8. Laursen, T. A., S. W. Attaway, and R. I. Zadoks. SEACAS Theory Manuals: Part I. Problem

Formulation in Nonlinear Solid Mechanics, SAND98-1760/1. Albuquerque, NM: Sandia

National Laboratories, August 1998. pdf.

9. Laursen, T. A., S. W. Attaway, and R. I. Zadoks. SEACAS Theory Manuals: Part II. Nonlin-

ear Continuum Mechanics, SAND98-1760/2. Albuquerque, NM: Sandia National Labora-

tories, September 1998. pdf.

10. Laursen, T. A., S. W. Attaway, and R. I. Zadoks. SEACAS Theory Manuals: Part III. Fi-

nite Element Analysis in Nonlinear Solid Mechanics, SAND98-1760/3. Albuquerque, NM:

Sandia National Laboratories, March 1999. pdf.

11. Larry A. Schoof, Victor R. Yarberry, EXODUS II: A Finite Element Data Model, SAND92-

2137, Sandia National Laboratories, September 1994. pdf. See also documentation available

at EXODUS II Sourceforge page. link.

51

http://infoserve.sandia.gov/sand_doc/1981/810998.pdf
http://infoserve.sandia.gov/sand_doc/1987/871912.pdf
http://infoserve.sandia.gov/sand_doc/1998/981361.pdf
http://infoserve.sandia.gov/sand_doc/1998/981760-1.pdf
http://infoserve.sandia.gov/sand_doc/1998/981760-2.pdf
http://infoserve.sandia.gov/sand_doc/1998/981760-3.pdf
http://infoserve.sandia.gov/sand_doc/1992/922137.pdf
http://sourceforge.net/projects/exodusii

12. The eXtensible Data Model and Format (XDMF). link.

13. Brown, K. H., R. M. Summers, M. W. Glass, A. S. Gullerud, M. W. Heinstein, and R. E.

Jones. ACME: Algorithms for Contact in a Multiphysics Environment, API Version, 1.0.

SAND2001-3318. Albuquerque, NM: Sandia National Laboratories, October 2001. pdf.

52

http://www.xdmf.org
http://infoserve.sandia.gov/sand_doc/2001/013318.pdf

Chapter 2

General Commands

The commands described in this section appear in the SIERRA or procedure scope or control

general functionality in Adagio.

2.1 SIERRA Scope

These commands are used to set up some of the fundamentals of the Adagio input. The commands

are physics independent, or at least can be shared between physics. The commands lie in the

SIERRA scope, not in the procedure or region scope.

2.1.1 SIERRA Command Block

BEGIN SIERRA <string>name

#

All other command blocks and command lines

appear within the SIERRA scope defined by

begin/end sierra.

#

END [SIERRA <string>name]

All input commands must occur within a SIERRA command block. The syntax for beginning the

command block is:

BEGIN SIERRA <string>name

and for terminating the command block is as follows:

END [SIERRA <string>name]

In these input lines, name is a name for the SIERRA command block. All other commands for the

analysis must be within this command block structure. The name for the SIERRA command block

is often a descriptive name that identifies the analysis. The name is not currently used anywhere

else in the file and is completely arbitrary.

53

2.1.2 Title

TITLE <string list>title

To permit a fuller description of the analysis, the input has a TITLE command line for the analysis,

where title is a text description of the analysis. The title is transferred to the results file.

2.1.3 Restart Control

The restart capability in Adagio allows a user to run an analysis up to a certain time, stop the

analysis at this time, and then restart the analysis from this time. Restart can be used to break a

long-running analysis into several smaller runs so that the user can examine intermediate results

before proceeding with the next step. Restart can also be used in case of abnormal termination. If

a restart file has been written at various intervals throughout the analysis up to the point where the

abnormal termination has occurred, you can pick a restart time before the abnormal termination and

restart the problem from there. Thus, users do not have to go back to the beginning of the analysis,

but can continue the analysis at some time well into the analysis. With the restart capability, you

will generate a sequence of restart runs. Each run can have its own set of restart, results, and history

files.

When using the restart capability, you can reset a number of the parameters in the input file.

However, not all parameters can be reset. Users should exercise care in resetting parameters in the

input file for a restart. You will want to change parameters if you have encountered an abnormal

termination. You may want to change certain parameters, hourglass control for example, to see

whether you can prevent the abnormal termination and continue the analysis past the abnormal

termination time you had previously encountered.

The use of the restart capability involves commands in both the SIERRA scope and the region

scope. One of two restart command lines, RESTART or RESTART TIME, appears in the SIERRA

scope. A command block in the region scope, the RESTART DATA command block, specifies

restart file names and the frequency at which the restart files will be written. The RESTART DATA

command block is described in Section 8.5. This section gives a brief discussion of the command

lines that appear in the SIERRA scope. For a full discussion of all the command lines used for

restart, consult Chapter 8. The use of some of the command lines in the RESTART DATA com-

mand block depends on the command line, either RESTART or RESTART TIME, you select in the

SIERRA scope.

If you specify a time from a specific restart file for the restart, you will use the RESTART TIME

command line described in Section 2.1.3.1. If you select the automatic restart option, you will use

the RESTART command line described in Section 2.1.3.2. The command lines for both of these

methods are in the SIERRA scope. All other commands for restart are in the region scope in the

RESTART DATA command block.

For restarts specified with a restart time from a specific restart file, you will have to be concerned

about overwriting information in existing files. The issue of overwriting information is discussed

in Chapter 8. In general, you will want to have a restart file (or files in the case of parallel runs)

54

for each run in a sequence of runs you create with the restart option. You will want to preserve

all restart files you have written prior to any given run in a sequence of restart runs. The easiest

way to preserve prior restart information is with the use of the RESTART command line. How you

preserve previous restart information is discussed in detail in Chapter 8.

The amount of data written at a restart time is quite large. The restart data written at a given time is

a complete description of the state for the problem at that time. The restart data includes not only

information such as displacement, velocity, and acceleration, but also information such as element

stresses and all the state variables for the material model associated with each element.

2.1.3.1 Restart Time

RESTART TIME = <real>restart_time

The RESTART TIME command line is used to specify a time from a specific restart file for the

restart run. This restart option will pick the restart time on the restart file that is closest to the user-

specified time on the RESTART TIME command line. If the user specifies a restart time greater

than the last time written to a restart file, then the last time written to the restart file is picked as the

restart time. Use of this command line can result in previous restart information being overwritten.

To prevent the overwriting of existing restart files, you can specify both an input restart file and an

output restart file (and rename the results and history files) for the various restarts. The use of the

RESTART TIME command line requires the user to be more active in the management of the file

names to prevent the overwriting of restart, results, and history files. The automatic restart feature

(e.g., the RESTART command line in Section 2.1.3.2) prevents the overwriting of restart, results,

and history files. See Section 8.5 for a full discussion of implementing the restart capability.

2.1.3.2 Automatic Restart

RESTART = AUTOMATIC

The RESTART command line automatically selects for restart the last restart time written to the last

restart file. The automatic restart feature lets the user restart runs with minimal changes to the input

file. The only quantity that must be changed to move from one restart to another is the termination

time. The RESTART command line manages the restart files so as not to write over any previous

restart files. It also manages the results and history files so as not to write over any previous results

or history files. See Section 8.5 for a full discussion of implementing the restart capability.

2.1.4 User Subroutine Identification

USER SUBROUTINE FILE = <string>file_name

This command line is a part of a set of commands that are used to implement the user subroutine

functionality. The string file_name identifies the name of the file that contains the FORTRAN

code of one or more user subroutines.

55

To understand how this command line is used, see Chapter 10.

2.1.5 Functions

BEGIN DEFINITION FOR FUNCTION <string>function_name

TYPE = <string>CONSTANT|PIECEWISE LINEAR|PIECEWISE CONSTANT|

ANALYTIC

ABSCISSA = <string>abscissa_label

[scale = <real>abscissa_scale(1.0)]

[offset = <real>abscissa_offset(0.0)]

ORDINATE = <string>ordinate_label

[scale = <real>ordinate_scale(1.0)]

[offset = <real>ordinate_offset(0.0)]

X SCALE = <real>x_scale(1.0)

X OFFSET = <real>x_offset(0.0)

Y SCALE = <real>y_scale(1.0)

Y OFFSET = <real>y_offset(0.0)

BEGIN VALUES

<real>x_1 <real>y_1

<real>x_2 <real>y_2

...

<real>x_n <real>y_n

END [VALUES]

AT DISCONTINUITY EVALUATE TO <string>LEFT|RIGHT(LEFT)

EVALUATE EXPRESSION = <string>analytic_expression1;

analytic_expression2; ...

DEBUG = ON|OFF(OFF)

END [DEFINITION FOR FUNCTION <string>function_name]

A number of Adagio features are driven by a user-defined description of the dependence of one

variable on another. For instance, the prescribed displacement boundary condition requires the

definition of a time-versus-displacement relation, and the thermal strain computations require the

definition of a thermal-strain-versus-temperature relation. SIERRA provides a general method of

defining these relations as functions using the DEFINITION FOR FUNCTION command block, as

shown above.

There is no limit to the number of functions that can be defined. All function definitions must

appear within the SIERRA scope.

A description of the various parts of the DEFINITION FOR FUNCTION command block follows:

• The string function_name is a user-selected name for the function that is unique to the

function definitions within the input file. This name is used to refer to this function in other

locations in the input file.

• The TYPE command line has four options to define the type of function. The value of this

string can be CONSTANT, PIECEWISE LINEAR, PIECEWISE CONSTANT, or ANALYTIC.

56

• The ABSCISSA command line provides a descriptive label for the independent variable (x-

axis) with the string abscissa_label. This command line is optional. The user can op-

tionally add a scale factor and/or an offset which has the following effect: abscissascaled =

scale ∗ (abscissa + offset).

• The ORDINATE command line provides a descriptive label for the dependent variable (y-

axis) with the string ordinate_label. This command line is optional. The user can also

optionally add a scale factor and/or an offset which has the following effect: ordinatescaled =

scale ∗ (ordinate + offset).

• The X SCALE command line sets the scale factor value for the abscissa and has the same

effect as if the optional SCALE command were used in the ABSCISSA command line.

• The X OFFSET command line sets the offset value for the abscissa and has the same effect

as if the optional OFFSET command were used in the ABSCISSA command line.

• The Y SCALE command line sets the scale factor value for the ordinate and has the same

effect as if the optional SCALE command were used in the ORDINATE command line.

• The Y OFFSET command line sets the offset value for the ordinate and has the same effect

as if the optional OFFSET command were used in the ORDINATE command line.

• The DEBUG command line prints functions to the log file if they were scaled and/or offset.

This command line is optional. The generated function function name is the original function

name concatenated with _with_scale_and_offset_applied. The generated function

is a valid function and could be placed into the input file and used.

• The VALUES command block consists of the real value pairs (x_1,y_1) through (x_n, x_

n), which describe the function. This command block must be used if the value on the

TYPE command line is CONSTANT, PIECEWISE LINEAR, or PIECEWISE CONSTANT. For

a CONSTANT function, only one value is needed. For a PIECEWISE LINEAR or PIECEWISE

CONSTANT function, the values are (x, y) pairs of data that describe the function. The values

are nested inside the VALUES command block.

Figure 2.1: Piecewise linear and piecewise constant functions

57

A PIECEWISE LINEAR function performs linear interpolations between the provided value

pairs; a PIECEWISE CONSTANT function is constant valued between provided value pairs.

Figure 2.1 (a) shows an example of a piecewise linear function, and Figure 2.1 (b) shows an

example of a piecewise constant function.

For functions that are based on tabular values, such as the PIECEWISE LINEAR and

PIECEWISE CONSTANT functions, there is a possibility that the function may be evaluated

for abscissa values that fall outside the range of the tabulated values. If the abscissa for

which the function is to be evaluated is lower than the lowest tabulated abscissa, the func-

tion returns the ordinate corresponding to the smallest tabulated abscissa. Likewise, if the

function is evaluated for an abscissa higher than the highest tabulated abscissa, the function

returns the ordinate corresponding to the highest tabulated abscissa. For example, consider

the following function:

begin definition for function my_func

type = piecewise linear

begin values

5.0 0.0

10.0 50000.0

end values

end definition for function my_func

For values less than 5, this function returns 0, and for values greater than 10, it returns 50000.

• For a piecewise constant function, a constant valued segment ends on the left hand side of an

abscissa value and a new constant value segment begins on the right hand side of the same

abscissa value. (This transition from one constant value to another is indicated by the dotted

line in Figure 2.1 (b).) When the value of the function is to be evaluated at a discontinuity,

where there two potential values for the ordinate, the default behavior is to use the ordinate

from the value pair that has the lower-valued abscissa, or in other words, to use the value on

the left hand side of the discontinuity. The AT DISCONTINUITY EVALUATE TO command

line can be used to override this default behavior at an abscissa with two ordinate values. The

command line can have a value of either LEFT or RIGHT. If LEFT (the default) is specified,

the ordinate value to the left of the abscissa is used; if RIGHT is specified, the ordinate value

to the right of the abscissa is used.

• The EVALUATE EXPRESSION command line consists of one or more user-supplied algebraic

expressions. This command line must be used if the value on the TYPE command line is

ANALYTIC. See the rules and options for composing algebraic expressions discussed below.

Importantly, a DEFINITION FOR FUNCTION command block cannot contain both a VALUES

command block and an EVALUATE EXPRESSION command line.

Rules and options for composing algebraic expressions. If you choose to use the EVALUATE

EXPRESSION command line, you will need to write the algebraic expressions. The algebraic

expressions are written using a C-like format. Each algebraic expression is terminated by a semi-

colon(;). The entire set of algebraic expressions, whether a single expression or several, is enclosed

in a single set of double quotes(" ").

58

An expression is evaluated with x as the independent variable. We first provide several simple

examples and then list the options available in the algebraic expressions.

Example: Return sin(x) as the value of the function.

begin definition for function fred

type is analytic

evaluate expression is ‘‘sin(x);’’

end definition for function fred

In this example, the commented out table is equivalent to the evaluated expression:

begin definition for function pressure

type is analytic

evaluate expression is ‘‘x <= 0.0 ? 0.0 : (x < 0.5 ? x*200.0

: 100.0);’’

begin values

0.0 0.0

0.5 100.0

1.0 100.0

end values

end definition for function pressure

The following functionality is currently implemented for the expressions:

Operators

+ - * / == != > < >= <= ! & | && || ? :

Parentheses

()

Math functions

abs(x), absolute value of x

mod(x, y), modulus of x|y

ipart(x), integer part of x

fpart(x), fractional part of x

Power functions

pow(x, y), x to the y power

pow10(x), x to the 10 power

sqrt(x), square root of x

Trigonometric functions

59

acos(x), arccosine of x

asin(x), arcsine of x

atan(x), arctangent of x

atan2(y, x), arctangent of y/x, signs of x and y

determine quadrant (see atan2 man page)

cos(x), cosine of x

cosh(x), hyperbolic cosine of x

sin(x), sine of x

sinh(x), hyperbolic sine of x

tan(x), tangent of x

tanh(x), hyperbolic tangent of x

Logarithm functions

log(x), natural logarithm of x

ln(x), natural logarithm of x

log10(x), the base 10 logarithm of x

exp(x), e to the x power

Rounding functions

ceil(x), smallest integral value not less than x

floor(x), largest integral value not greater than x

Random functions

rand(), random number between 0.0 and 1.0, not including 1.0

randomize(), random number between 0.0 and 1.0, not

including 1.0

srand(x), seeds the random number generator

Conversion functions

deg(x), converts radians to degrees

rad(x), converts degrees to radians

recttopolr(x, y), magnitude of vector x, y

recttopola(x, y), angle of vector x, y

poltorectx(r, theta), x coordinate of angle theta at

distance r

poltorecty(r, theta), y coordinate of angle theta at

distance r

Constants. There are two predefined constants that may be used in an expression. These two

constants are e and pi.

e = e = 2.7182818284...

pi = π = 3.1415926535...

60

2.1.6 Axes, Directions, and Points

DEFINE POINT <string>point_name WITH COORDINATES

<real>value_1 <real>value_2 <real>value_3

DEFINE DIRECTION <string>direction_name WITH VECTOR

<real>value_1 <real>value_2 <real>value_3

DEFINE AXIS <string>axis_name WITH POINT

<string>point_1 POINT <string>point_2

DEFINE AXIS <string>axis_name WITH POINT

<string>point DIRECTION <string>direction

A number of Adagio features require the definition of geometric entities. For instance, the pre-

scribed displacement boundary condition requires a direction definition, and the cylindrical veloc-

ity initial condition requires an axis definition. Currently, Adagio input permits the definition of

points, directions, and axes. Definition of these geometric entities occurs in the SIERRA scope.

The DEFINE POINT command line is used to define a point:

DEFINE POINT <string>point_name WITH COORDINATES

<real>value_1 <real>value_2 <real>value_3

where

- The string point_name is a name for this point. This name must be unique to all other

points defined in the input file.

- The real values value_1, value_2, and value_3 are the x, y, and z coordinates of the

point.

The DEFINE DIRECTION command line is used to define a direction:

DEFINE DIRECTION <string>direction_name WITH VECTOR

<real>value_1 <real>value_2 <real>value_3

where

- The string direction_name is a name for this direction. This name must be unique to all

other directions defined in the input file.

- The real values value_1, value_2, and value_3 are the x, y, and z magnitudes of the

direction vector.

There are two command lines that can be used to define an axis. The first DEFINE AXIS command

line uses two points:

61

DEFINE AXIS <string>axis_name WITH POINT

<string>point_1 POINT <string>point_2

where

- The string axis_name is a name for this axis. This name must be unique to all other axes

defined in the input file.

- The strings point_1 and point_2 are the names for two points defined in the input file via

a DEFINE POINT command line.

The second DEFINE AXIS command line uses a point and a direction:

DEFINE AXIS <string>axis_name WITH POINT

<string>point DIRECTION <string>direction

where

- The string axis_name is a name for this axis. This name must be unique to all other axes

defined in the input file.

- The string point is the name of a point defined in the input file via a DEFINE POINT

command line.

- The string direction is the name of a direction defined in the input file via a DEFINE

DIRECTION command line.

2.1.7 Orientation

BEGIN ORIENTATION <string>orientation_name

SYSTEM = <string>RECTANGULAR|Z RECTANGULAR|CYLINDRICAL|

SPHERICAL(RECTANGULAR)

#

POINT A = <real>global_ax <real>global_ay <real>global_az

POINT B = <real>global_bx <real>global_by <real>global_bz

#

ROTATION ABOUT <integer> 1|2|3(2) = <real>theta(0.0)

END [ORIENTATION <string>orientation_name]

The ORIENTATION command block is currently used in Adagio to define a local co-rotational

coordinate system at each shell element centroid for output of shell in-plane stresses and strains.

Each BEGIN SHELL SECTION command block has an orientation that generates this local coor-

dinate system for each element in the associated element blocks. The generated local coordinate

system rotates with the shell element, thus making it co-rotational.

62

Stresses and strains for shell elements are computed in the shell element’s local coordinate system,

which typically varies from one element to the next, and can be seen in Figure 2.2. The local R

axis of element 1 does not align with the local R axis of element 2. Thus without the use of an

orientation to rotate the local coordinate system in to a consistent coordinate system, stress and

strain results would be difficult to decipher. The use of an orientation generates a transformation

matrix from a shell element’s local R, S, T coordinate system to the final coordinate system, R′,

S′, T′, by use of orientation and element-specific basis vectors and a rotation about an axis, all

defined below.

Figure 2.2: Adjacent shell elements with nonaligned local coordinate systems

There are four orientation systems available in Adagio to better align the stress and strain output of

shell elements. These orientations are defined via the optional SYSTEM command line within the

ORIENTATION command block and are: RECTANGULAR, Z_RECTANGULAR, CYLINDRICAL and

SPHERICAL with the default being RECTANGULAR. If the ORIENTATION command line within a

SHELL SECTION block is not used, the default orientation is a RECTANGULAR system with axes

aligned with the global X,Y and Z axes.

Each of the four systems produces a unique set of bases vectors, g1, g2, g3, computed using the

centroid of the shell element and the two required inputs, POINT A and POINT B. These four

methods of computing g1, g2, g3 are described below.

• RECTANGULAR: POINT A defines a point, PA, in the local coordinate system of the shell

element that lies in the direction of the the first basis vector, g1, from the centroid, C with

local coordinate of (0, 0, 0), see Figure 2.3. Thus, the vector from the centroid of the element

to point PA is defined as pA = PA − C. Similarly, a vector from the centroid to point PB,

defined via POINT B, can be computed as pB = PB − C. Using these two vectors, the

rectangular basis vectors are defined as: g1 =
pA

‖pA‖
, g3 =

g1×pB

‖g1×pB‖
, g2 =

g3×g1

‖g3×g1‖
.

• Z RECTANGULAR: This set of basis vectors is defined very similarly to the RECTANGULAR

system, however point PA now defines a point that lies in the direction of the third basis

vector, g3 from the centroid of the element, see Figure 2.4. Using the same definition for pA

63

Figure 2.3: Rectangular coordinate system

and pB as above we can define the three basis vectors as: g3 =
pA

‖pA‖
, g2 =

g3×pB

‖g3×pB‖
, g1 =

g2×g3

‖g2×g3‖
.

Figure 2.4: Z-Rectangular coordinate system.

• CYLINDRICAL: POINT A, PA, and POINT B, PB, define the direction of the third basis

vector, g3 such that g3 =
PB−PA

‖PB−PA‖
, as seen in Figure 2.5. Defining a vector, v, from PA to

the centroid of the element, C in the global coordinate system, the second basis vector, g2 is

defined as: g2 =
v×g3

‖v×g3‖
. Therefore the first basis vector is defined as g1 =

g2×g3

‖g2×g3‖
.

• SPHERICAL: The point PA, from the POINT A command line, defines the center of a sphere.

The point PB, from the POINT B command line, defines a polar axis for the sphere. (See

Figure 2.6.) The first basis vector is defined by the vector that passes from PA to the centroid,

C in the global coordinate system, of the element: g1 =
C−PA

‖C−PA‖
. The third basis vector is

parallel to the vector from PA to PB such that g3 =
PB−PA

‖PB−PA‖
. From these two vector, the

64

Figure 2.5: Cylindrical coordinate system.

second basis vector is defined as g2 =
g3×g1

‖g3×g1‖
. If g1 and g3 are collinear, the second basis

vector is taken to be the normal of the element, T, and the third basis is g3 =
g1×g2

‖g1×g2‖
.

Figure 2.6: Spherical coordinate system.

It is possible, using the ROTATION ABOUT command line, to specify an angle and an axis to rotate

the basis vectors, g1, g2 and g3 about in order to produce a second set of basis vectors, g′1, g′2 and

g′3, that are then used to compute the final transformation matrix. The syntax for this command is

as follows: ROTATION ABOUT 1|2|3(2) = <real>theta(0.0)

Where the 1,2,3 refers to which basis vector the rotation will occur about. The default value is 2

with an angle theta of 0.0, thus implying a rotation of 0.0 radians about g2. How g′1, g′2 and g′3 are

computed for each of the three cases is described below. In each case, the second order rotation

65

tensor, Q, is defined as:

Q =





2(q2
0 + q2

1) − 1 2(q1q2 − q0q3) 2(q1q3 − q0q3)

2(q1q2 + q0q3) 2(q2
o + q2

2) − 1 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) 2(q2
0 + q2

3) − 1





Where: q0 = cos(θ
2
), q1 = a1sin(θ

2
), q2 = a2sin(θ

2
), and q3 = a3sin(θ

2
), where the vector a =

[a1, a2, a3] is the basis vector we are rotating about.

• Rotation about g1 (ROTATION ABOUT 1): The prime set of basis vectors are defined as:

g′1 = Qg3, g′2 = Qg2, g′3 = −g1. Which can graphically be seen in Figure 2.7

Figure 2.7: Rotation about 1

• Rotation about g2 (ROTATION ABOUT 2), default: The prime set of basis vectors are defined

as: g′1 = Qg1, g′2 = Qg3, g′3 = −g2.

• Rotation about g3 (ROTATION ABOUT 3): The prime set of basis vectors are defined as:

g′1 = Qg2, g′2 = Qg1, g′3 = −g3.

The next step is to project g′1 onto the shell face as follows: R′ = g′1 − (g′1 · T)T, which defines

a rotated R vector. If R′ is perpendicular to the face of the element, we then redefine R′ to be:

R′ = g′2 − (g′2 · T)T, the projection of g′2 onto the element face. Once we have R′ we can define

S′ as T×R′

‖T×R′‖
. Hence, the final transformation matrix taking local stress and strain (in the R, S

coordinate system) to the R′, S′ coordinate system is:

Q′ =





R · R′ R · S′ 0

S · R′ S · S′ 0

0 0 1





66

2.1.8 Coordinate System Block Command

BEGIN COORDINATE SYSTEM <string>coordinate_system_name

TYPE = <string>RECTANGULAR|CYLINDRICAL|SPHERICAL (RECTANGULAR)

#

ORIGIN = <string>origin_point_name

VECTOR = <string>z_vector_point_name

POINT = <string>x_vector_point_name

ORIGIN NODE = <string>origin_nodelist_name

VECTOR NODE = <string>z_vector_nodelist_name

POINT NODE = <string> x_vector_nodelist_name

#

END [COORDINATE SYSTEM <string>coordinate_system_name]

The COORDINATE SYSTEM command block is used to define a local coordinate system for trans-

forming a stress tensor from components in the global xyz coordinate system to the local system

for output. This command block cannot be used for in-plane stresses and strains of shell ele-

ments because the shell integration point stresses and strains are computed in a local element

system that varies element to element and rotates with the element. For output of shell stresses, the

BEGIN ORIENTATION command must be used as explained in the previous section.

The COORDINATE SYSTEM block is also used to define a local coordinate system on the elements

of a block for use in a representative volume analysis. In these analyses, elements of each repre-

sentative volume will be aligned with the local system defined on the parent element.

A local element coordinate system may be defined using points defined in the input file with the

DEFINE POINT command or using nodelists in the mesh file that contain exactly one node each.

By using nodes in the mesh file, the defined coordinate system may translate and rotate during the

analysis.

The TYPE command line allows three options for constructing a local coordinate system:

RECTANGULAR, CYLINDRICAL, and SPHERICAL. The type defaults to RECTANGULAR if the TYPE

command line is not present.

• RECTANGULAR: The command line ORIGIN or ORIGIN NODE specifies the origin of the

local Cartesian coordinate system. The local Z′ axis is a vector from the origin to the point

given in the VECTOR of VECTOR NODE command. The local X′ axis is the component of

the vector from the origin to the POINT or POINT NODE that is orthogonal to the Z′ axis.

Finally, the local Y ′ axis is obtained from the cross product of Z′ and X′.

• CYLINDRICAL: The command line ORIGIN or ORIGIN NODE specifies one point on the axis

of the cylinder. The local Z′ axis, the axis of the cylinder, is a vector from the origin to the

point given in the VECTOR or VECTOR NODE command. The local X′ axis is constructed as

the vector normal to the cylindrical axis and passing through the location at which the local

system is desired. Depending on the context, this local point may be a node, an element

centroid, or an element integration point. If this local point lies on the Z′ axis, then the

point defined by the POINT or POINT NODE command is instead used to define the X′ axis.

67

Finally, the Y ′ axis is obtained from the cross product of Z′ and X′. Thus at the desired point

not on the cylinder axis, the X′ axis is through the cylinder thickness, Y ′ is tangent to the

cylinder, and Z′ is parallel to the cylinder axis.

• SPHERICAL: The command line ORIGIN or ORIGIN NODE specifies the location of the

center of the sphere. The local X′ axis is constructed as the vector from the center through

the location at which the local system is desired. Depending on the context, this local point

may be a node, an element centroid, or an element integration point. The local Z′ axis is the

component of the vector from the origin to the point given in the VECTOR or VECTOR NODE

command that is normal to the X′ axis. If this Z′ is parallel the X′ axis, then the Z′ axis

is defined along the vector from the point defined in POINT or POINT NODE to the origin.

Finally, the Y ′ axis is obtained from the cross product of Z′ and X′. Thus at a desired point,

the X′ axis is through the sphere thickness and the Y ′ and Z′ axes lie in the tangent plane.

2.1.9 Define Coordinate System Line Command

DEFINE COORDINATE SYSTEM <string>coord_sys_name <string>coord_sys_type

WITH POINT <string>point_1 POINT <string>point_2

POINT <string>point_3

The line command DEFINE COORDINATE SYSTEM can also be used to define the axis directions

of a local coordinate system to be located at nodes, element centroids, or element integration points.

In this command

- The string coord_sys_name is a name for this coordinate system. This name must be

unique to all other coordinate systems defined in the input file.

- The string coord_sys_type states the type of the coordinate system to be used. Three op-

tions are allowed for constructing a local coordinate system: RECTANGULAR, CYLINDRICAL,

and SPHERICAL.

- The strings point_1, point_2, and point_3 are the names for three points defined in the

input file via DEFINE POINT command lines. These three points are used to define two of

the coordinate system axes as described below for the different types of systems.

For a rectangular system, the local Z′ axis is parallel to the vector from the point_1 to point_2.

The local X′ axis is the component of the vector from point_1 to point_3 that is orthogonal to

the Z′ axis. Finally, the local Y ′ axis is obtained from the cross product of Z′ and X′.

Likewise, for a cylindrical system, the local Z′ axis is parallel to the vector from the point_1 to

point_2 and defines the axis of the cylinder. The local X′ axis is constructed as the vector normal

to the cylindrical axis and passing through the location at which the local system is desired. This

local point may be a node, an element centroid, or an element integration point. If this local point

lies on the Z′ axis, then the point point_3 is instead used to define the X′ axis. Finally, the Y ′ axis

is obtained from the cross product of Z′ and X′. Thus at the desired point not on the cylinder axis,

68

the X′ axis is through the cylinder thickness, Y ′ is tangent to the cylinder, and Z′ is parallel to the

cylinder axis.

For a spherical system, point_1 specifies the center of a sphere. The local X′ axis is constructed

as the vector from point_1 through the location at which the local system is desired. This local

point may be a node, an element centroid, or an element integration point. The local Z′ axis is the

component of the vector from the point_1 to point_3 that is normal to the X′ axis. If this Z′ is

parallel the X′ axis, then point_3 is used instead. Finally, the Y ′ axis is obtained from the cross

product of Z′ and X′. Thus at a desired point, the X′ axis is through the sphere thickness and the

Y ′ and Z′ axes lie in the tangent plane.

69

2.2 Procedure and Region

The Adagio procedure scope is nested within the SIERRA scope, and the Adagio region scope is

nested within the procedure scope. (See Section 1.2 for more information about scope.) To create

the scopes for the Adagio procedure and Adagio region, use the following commands:

BEGIN ADAGIO PROCEDURE <string>adagio_procedure_name

#

TIME CONTROL command block

#

BEGIN ADAGIO REGION <string>adagio_region_name

#

command blocks and command lines that appear in the

region scope

#

END [ADAGIO REGION <string>adagio_region_name]

END [ADAGIO PROCEDURE <string>adagio_region_name]

The TIME CONTROL command block also appears within the ADAGIO PROCEDURE command

block but outside of the ADAGIO REGION command block. These three command blocks (pro-

cedure, time control, and region) are discussed below.

Many command blocks and command lines fall within the region scope. These command blocks

and command lines are described in other sections of this document.

2.2.1 Procedure

The analysis time, from the initial time to the termination time, is controlled within the procedure

scope defined by the ADAGIO PROCEDURE command block. The command block begins with an

input line of the form

BEGIN ADAGIO PROCEDURE <string>adagio_procedure_name

and is terminated with an input line of the following form:

END [ADAGIO PROCEDURE <string>adagio_procedure_name]

The string adagio_procedure_name is the name for the Adagio procedure.

2.2.2 Time Control

Within the procedure scope, there is a TIME CONTROL command block. This command block lets

the user set the initial time and the termination time for an analysis. This block also allows the user

to control the size of the time step.

In an implicit code such as Adagio, a solver is used to find a converged solution at every time step.

The time steps can be arbitrarily large, although errors due to time discretization are larger with

70

larger time steps. In addition, for nonlinear problems, it is often more difficult to obtain a converged

solution with large time steps. The time step size is controlled by the user, although Adagio has a

capability to optionally modify the time step based on the effort required by the nonlinear solver.

The TIME CONTROL block contains the basic commands used to control the time step size. To use

adaptive time stepping, an ADAPTIVE TIME STEPPING command block is placed in the Adagio

region scope. In addition, for all Adagio analyses, commands to control the solver are required in

the Adagio region scope. The details of the commands related to time stepping and the nonlinear

solver are documented in Chapter 3.

2.2.3 Region

Individual time steps are controlled within the region scope. The region scope is defined by a

ADAGIO REGION command block that begins with an input line of the form

BEGIN ADAGIO REGION <string>adagio_region_name

and is terminated with an input line of the following form:

END [ADAGIO REGION <string>adagio_region_name]

The string adagio_region_name is the name for the Adagio region.

The region, as indicated previously, determines what happens at each time step. In the procedure,

we set the begin time and end time for the analysis. Time is incremented in the region. It is in the

region where we set information about what occurs at various time steps. The output of results,

for example, is set by command blocks in the region. If we want results output at certain times or

certain steps in the analysis, this information is set in command blocks in the region. The region

also contains command blocks for the boundary conditions. A boundary condition can have a

time-varying component. The region determines the value of the component for the current time

step.

Two of the major types of command blocks, those for results output and boundary conditions,

have already been mentioned. Other major types of command blocks in the region are those for

restart control and contact. The region is also where the user selects the analysis model (finite

element mesh). For Adagio, the command blocks for the solver are in the region. These blocks are

discussed in Chapter 3.

The region makes use of information in the procedure and the SIERRA scope. For example, the

specific element type used for an element block in the analysis model is defined in the SIERRA

scope. This information about the element type is collected into an analysis model. The region

then references this analysis model. As another example, the boundary condition command blocks

can reference a function. The function will be defined in the SIERRA scope.

71

2.3 Use Finite Element Model

USE FINITE ELEMENT MODEL <string>model_name

The model specification occurs within the region scope. To specify the model (finite element

mesh), use this command line. The string model_name must match a name used in a FINITE

ELEMENT MODEL command block described in Section 5.1. If one of these command blocks uses

the name penetrator in the command-block line and this is the model we wish to use in the

region scope, then we would enter the command line as follows:

USE FINITE ELEMENT MODEL penetrator

72

2.4 Element Distortion Metrics

Adagio can compute a number of element distortion metrics useful for assessing the quality of

the solution as the mesh evolves over time. These metrics are computed as element variables,

and can be used for output or as criteria for element death, just like any other element variable.

The solution quality generally deteriorates as elements approach inversion, and if they do invert,

the analysis aborts. The distortion metrics measure how close an element is to inversion. For all

metrics a value of 1.0 is an ideal element and a value of 0.0 is a degenerate element. The following

distortion metrics are available:

• NODAL_JACOBIAN_RATIO is currently available only for 8 node hexahedra. This metric

evaluates the Jacobian function at each node of each element, and then computes the nodal

Jacobian ratio as the smallest nodal Jacobian divided by the largest nodal Jacobian. An

element having right angles between all adjacent edges has a nodal Jacobian ratio of 1.0.

A negative nodal Jacobian ratio indicates that the element is becoming either convex or

locally inverted. See Figure 2.8 for examples of quadrilateral elements with positive, zero,

and negative nodal Jacobian ratios. The element calculations on poorly shaped elements

(those with negative nodal Jacobian ratios) will generally be less accurate than those on well

shaped elements (those with positive nodal Jacobian ratios). In addition, contact surfaces

may become tangled and non-physical if elements start to invert.

• ASPECT_RATIO is available only for tetrahedral elements. A perfect equilateral tetrahedron

has an aspect ratio of 1.0. A degenerate zero-volume tetrahedron has an aspect ratio of zero.

An inverted tetrahedron has a negative aspect ratio. A very thin element can have a very

small aspect ratio.

• SOLID_ANGLE computes the minimum or maximum angle between edges of an element

as compared to optimal angles. The optimal solid angle for tetrahedra and triangles is 60

degrees; for hexahedra and quadrilaterals, it is 90 degrees. This error metric is 1.0 for an

element in which all angles are optimal. Severely distorted or twisted elements have values

of this metric near 0.0, and it is negative for inverted elements. This metric is 0 for degenerate

elements. The SOLID ANGLE metric functions with hex, tet, triangle, and quad elements.

• PERIMETER_RATIO measures the the ratio of the deformed perimeter of an element to the

undeformed perimeter of the element. This metric initially has a value of 1.0, and assumes

values either greater than or lower than 1 as the mesh deforms. The PERIMETER_RATIO

metric only works with triangle and quad elements.

• DIAGONAL_RATIO measures the the ratio of the deformed max diagonal of an element to

the undeformed max diagonal of the element. This metric initially has a value of 1.0, and

assumes values either greater than or lower than 1 as the mesh deforms. The DIAGONAL_

RATIO metric only works with hex and quad elements.

The results from any of these distortion metrics can be requested by specifying an ELEMENT

VARIABLES command line (Section 8.2.1.4) in the RESULTS OUTPUT command block (Sec-

tion 8.2.1) for each metric for which the results are of interest. For example, to request the

73

a) Nodal Jacobian = 1.0

b)Nodal Jacobian = 0.0

c) Nodal Jacobian < 0.0

Figure 2.8: Examples of elements with varying nodal Jacobians

ASPECT_RATIO metric to be output as an element variable named aspect in the results output

file, the following syntax can be included in a RESULTS OUTPUT command block:

ELEMENT ASPECT_RATIO as aspect

74

2.5 Activation/Deactivation of Functionality

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

The ACTIVE PERIODS or INACTIVE PERIODS command line can be used to activate or deacti-

vate functionality in the code at various points during an analysis. This functionality can include

such things as boundary conditions, element blocks, and user subroutines. Command blocks that

support this capability are documented accordingly in the sections of this manual where they are

described.

In the command line, the string list period_names is a list of the time periods defined in

TIME STEPPING BLOCK command blocks (see Section 3.11) during which the particular func-

tionality is considered to be active. Each such period_name must match a name used in a

TIME STEPPING BLOCK command block, e.g., time_block_name. Each defined time period

runs from that period’s start time to the next period’s start time.

Only one of ACTIVE PERIODS or INACTIVE PERIODS can be used in any given command block.

If the ACTIVE PERIODS command line is present, the functionality will be treated as active for

all of the named periods, and inactive for any time periods that are not listed. If the INACTIVE

PERIODS command line is present, the functionality will be treated as inactive for all of the named

periods and active for any period not listed. If neither of these command lines is present, by default

the functionality is active during all time periods.

2.6 Error Recovery

ERROR TOLERANCE = ON|OFF (ON)

This command controls how aggressively Adagio will attempt to recover from a non-physical or

ill-defined condition and continue with the analysis.

Under the default setting of ON, the code may invoke methods to keep the analysis moving for-

ward despite the presence of non-physical or ambiguous conditions. For example, if the contact

algorithm determines that a facet is potentially in two contact surfaces (an ambiguous condition),

Adagio will assign the facet to one of the surfaces and continue with the analysis. A second ex-

ample pertains to SPH particles: if the deformation gradient of an SPH particle is inverted, the

particle will be ignored rather than causing the analysis to terminate. Non-physical and ambiguous

conditions will generally result in a warning message being printed.

If ERROR TOLERANCE is OFF, Adagio will terminate an analysis in the presence of ambiguous or

non-physical conditions. This may make it easier for an analyst to address non-fatal but potentially

problematic issues.

75

2.7 Manual Job Control

The output of a running job can be controlled externally through the use of “shutdown” and “con-

trol” files. This mechanism allows for additional output of restart, results, history, and/or heartbeat

data to be requested, as well as an optional graceful shutdown of the job.

A graceful shutdown is requested by inserting a “shutdown” file in the working directory of a

running Adagio job. The name of this file can be any of the following:

sierra.shutdown

<application_name>.shutdown

<base_name>.shutdown

If the <application_name>.shutdown variant is used, <application_name> is the name

of the Sierra application being run. For example, adagio.shutdown would be used to shut down

Adagio. If the <base_name>.shutdown variant is used, <base_name> is the basename of the

input file. For example, if the input file name is my_analysis.i, then the shutdown file would

be my_analysis.shutdown.

If the code detects the existence of a shutdown file, it will dump an output step to any open restart,

results, history, or heartbeat file and then gracefully terminate the job. An entry will be written to

the log file specifying that a shutdown file was detected and the file will be deleted. The contents

of the file are not important; the shutdown file is only checked for existence.

The control file capability is provided to give more control over output and execution than is

possible with the shutdown file. The name of the control file is the same as that of the shutdown

file except that the filename suffix is .control instead of .shutdown. The contents of the file

consist of a single line, and are case insensitive. The syntax is:

DUMP [RESTART] [RESULTS] [HISTORY] [HEARTBEAT] [STEP] [TIME]

[STOP|ABORT|SHUTDOWN|CONTINUE]

The optional strings RESTART, RESULTS, HISTORY, HEARTBEAT, STEP, and TIME are used to

specify the type of output that is written before an action is taken. If any output blocks of the

specified type were defined in the input file for the model, output will be written to the files. The

STEP and TIME options result in the last step and time being written to the log file. Multiple output

types may be requested. If no output type is requested, all types of output specified in the input file

will be written.

In addition to controlling the type of output that occurs, the .control file also specifies whether

the job should be terminated or allowed to continue. If STOP, ABORT, or SHUTDOWN is specified at

the end of the line, the job will be gracefully terminated. If CONTINUE is specified or no option is

specified, the job will continue.

Several examples of the contents of continue files are shown below. The following examples all

result in output being written to all types of output file and the job continuing:

dump

76

dump continue

dump restart results history heartbeat step continue

In both of the following examples, the current step and time will be written to the the log file, but

no additional output will be written and the job will continue:

dump step

dump time continue

This example would result in a write to all output types and a graceful shutdown:

dump stop

In the following example, no output would be written to any files, but the current step and time

would be written to the log file before a graceful shutdown:

dump step abort

An alternate abbreviated syntax is also supported. The abbreviated commands are shown below

along with the full commands to which they are mapped:

sw1 dump restart shutdown

sw2 dump step continue

sw3 dump restart continue

sw4 dump results continue

If either the shutdown or control files are used, a message is output to the log file listing the name

of that file, and in the case of the control file, the contents of that file. The control or shutdown file

is then deleted.

77

78

Chapter 3

Solver, Time Stepping, and Implicit

Dynamics

Nonlinear solvers are a core part of any implicit finite element code. Adagio’s solution strategy

is based on iterative solution techniques, and builds on the capabilities pioneered in the JAS3D

code [1]. Adagio uses a nonlinear preconditioned conjugate gradient (CG) algorithm [2] to itera-

tively find a solution that satisfies equilibrium within a user-specified error tolerance at each load

step.

The nonlinear CG algorithm iterates to find a solution by computing a series of search direction

vectors that are successively added to the trial velocity vector. In each iteration, the residual is

multiplied by a preconditioning matrix to obtain a gradient direction. The gradient direction is

used to compute the next search direction in a way that ensures that each new search direction is

orthogonal to the previous search directions. A line search is used to compute a scaling factor that

when applied to the search direction results in a minimized residual.

The performance of the CG algorithm is highly dependent on the conditioning of the problem,

which is affected by the choice of preconditioner. Using the inverse of the full tangent stiffness

matrix as a preconditioner minimizes the number of CG iterations required, but this can be com-

putationally expensive. An alternative is to use the inverse of a diagonalized stiffness matrix as a

preconditioner. This requires much lower computational and memory resources, per iteration, but

may require many more iterations.

Adagio provides several preconditioner options that can be categorized in two general types. These

enable the efficient solution of a wide variety of problems using available resources. The first type

of preconditioner is the nodal preconditioner. There are several different variants of nodal precon-

ditioners available. These include the diagonal preconditioners that were available in JAS3D, in

addition to other options. The second type of preconditioner provided by Adagio is the full tangent

preconditioner. This option uses the FETI parallel scalable linear solver to solve the full tangent

matrix for use as a preconditioner in the CG algorithm.

In addition to using a preconditioner, conditioning of a problem can be improved by using a multi-

level solver. Rather than directly solving the potentially ill-posed full problem with the CG solver,

Adagio forms a series of “model problems” and solves them with the core CG solver. Features of

79

the model that make it ill-posed are either adjusted or held constant for a model problem. After

each model problem is solved, the multilevel solver updates the quantities that were controlled.

The process of forming model problems and updating is iterative, as with the core solver, and

convergence must be achieved both in the core solver and in the multilevel controls.

Adagio provides three types of controls for the multilevel solver: “control contact,” “control stiff-

ness,” and “control failure”. Control contact must be used for all problems that have sliding contact,

but is not needed for tied contact. Control stiffness is used to solve problems that are difficult be-

cause of extreme differences in the stiffness of various modes of material response. For instance,

control stiffness is beneficial for nearly incompressible materials where the bulk response is much

stiffer than the shear response. Control stiffness is also useful for oriented materials where the

material response is much stiffer in some directions than it is in others. In addition, using control

stiffness can greatly speed the iterative solution process when a model contains several materials

that have extreme differences in stiffness. Control failure is used on problems that involve element

death.

Adagio also provides a geometric multigrid algorithm called “control modes,” which uses a coarse

grid to solve for the low mode response. To use the control modes algorithm, a user must supply

a coarse mesh that overlays the actual problem mesh. This algorithm works well for solving

problems that are dominated by bending of slender members.

This chapter discusses the commands in Adagio for specifying solver options, for controlling time

stepping, and for solving implicit dynamic problems. Adagio’s CG solver can either be used

alone or as the core solver within a multilevel solver. Section 3.1 presents the characteristics and

structure of the SOLVER command block, which contains all solver-related commands within the

ADAGIO REGION command block. Section 3.2 discusses the CG command block, which controls

Adagio’s nonlinear preconditioned CG solver. An option in the CG command block is to use a

full tangent preconditioner. The command block to control the behavior of this option is discussed

in Section 3.3. The recommended linear solver for use as a full tangent preconditioner is FETI,

whose command block is presented in Section 3.4. The three types of controls, control contact,

control stiffness, and control failure, that can be used within the multilevel solver are presented

in Sections 3.5, 3.6, and 3.7. Section 3.8 explains how to activate the multigrid control modes

solution method. This feature greatly increases the effectiveness of the CG algorithm for solving

slender, bending-dominated problems. Section 3.9 describes the predictors, which are used to gen-

erate an initial trial solution for a load step or for a multilevel-solver model problem. As explained

in Section 3.10, Adagio also has an option that allows it to use the same algorithms as the JAS3D

solver. Adagio’s approaches for controlling time stepping and for performing implicit solutions on

quasi-static and dynamic problems are described in Sections 3.11 and 3.12, respectively. Finally,

Section 3.13 provides references for this chapter.

80

3.1 Multilevel Solver

Adagio allows the conjugate gradient (CG) solver to be used either by itself or as the core solver

within a multilevel solver. The multilevel solver improves the ability of the core solver to solve

poorly conditioned problems. This is done by holding fixed some variables that would ordinarily

be free to change in the fully nonlinear iteration. The multilevel solver algorithm can be used

recursively to treat multiple variables by assigning them to multiple solution levels. CG iterations

are performed while a variable is held fixed. After convergence is obtained with the controlled

variable fixed, a new residual calculation is performed, and the controlled variable is updated.

Convergence on a particular level requires that all levels leading up to that level must be converged.

Once all control variables have been established, CG iterations are performed until convergence is

obtained on the core “model problem.” At this point, the variable controlled at level 1 is adjusted

to minimize its residual. This process is known as a “level 1 update.” After the level 1 update, the

model problem is solved again, and this process is repeated until the core solver and the variable

controlled at level 1 have converged. Once a solution has been obtained at level 1, the variable

controlled at level 2 is updated. After each level 2 update, the level 1 problem must be solved

again. This process can be repeated recursively for many levels. For convergence in the multilevel

solver, all updates starting with the lowest level and proceeding to the highest level must be in

equilibrium. These concepts are illustrated in Figure 3.1.

Level 1

convergence

External

t+ t ∆F

Un

Level 1

convergence

Level 1 & Level 2

convergence

External

tF

Un+1

Level 1 update

Level 2 update

Figure 3.1: Reaching convergence with controls and the multilevel solver.

Adagio has three types of controls that can be used within the multilevel solver: control contact,

control stiffness, and control failure. Control contact is used to keep the set of nodes in contact

constant during the solution of a model problem. Contact searches are performed during the mul-

tilevel solver updates. Control contact must be used for all problems that have sliding contact. It is

81

not required or beneficial for models that only have tied contact. Control contact is documented in

detail in Section 3.5.

Control stiffness is used to improve the conditioning of models that contain widely varying stiff-

nesses in different modes of material response. Such differences naturally exist for models with

nearly incompressible materials where the bulk behavior is much stiffer than the shear behavior, for

models with orthotropic and/or anisotropic materials that have much higher stiffnesses in preferred

material directions, and for models containing several materials that are vastly different in their

overall stiffnesses. Control stiffness works by scaling a given material response up (stiffening) or

down (softening) to create a set of better conditioned model problems. For nearly incompressible

materials, for instance, the bulk stress increments may be softened and/or the shear stress incre-

ments may be stiffened. For oriented materials, the stress increments in certain material directions

are softened to create a material response that is more isotropic in nature. Finally, for the case

where a material is much stiffer than the surrounding materials, both the bulk and shear stress in-

crements are softened to create a response that has a stiffness much closer to that of the adjacent

materials. Ultimately, as the control stiffness model problems progress, the true material response

is recovered by building up stresses that correspond to the true material response. There are a

number of special material models that are designed to work with this capability.

Control failure is used to improve the conditioning of models that involve element death due to

failure defined within a material model or due to a user-defined global variable failure criteria.

Currently, failure due to element or nodal variables is not supported in adagio. This control limits

the failure only to the single most critical element during each control failure iteration. Iterations

of the control failure continue until no additional elements fail.

The following is the basic structure of the SOLVER command block:

BEGIN SOLVER

#

cg solver commands

BEGIN CG

#

Parameters for cg

#

END [CG]

#

control contact commands

BEGIN CONTROL CONTACT [<string>contact_name]

#

Parameters for control contact

#

END [CONTROL CONTACT <string>contact_name]

#

control stiffness commands

BEGIN CONTROL STIFFNESS [<string>stiffness_name]

#

Parameters for control stiffness

#

82

END [CONTROL STIFFNESS <string>stiffness_name]

#

control failure commands

BEGIN CONTROL FAILURE [<string>failure_name]

#

Parameters for control failure

#

END [CONTROL FAILURE <string>failure_name]

#

predictor commands

BEGIN LOADSTEP PREDICTOR

#

Parameters for predictor

#

END [LOADSTEP PREDICTOR]

LEVEL 1 PREDICTOR = <string>NONE|DEFAULT(DEFAULT)

END [SOLVER]

The SOLVER command block contains all solver-related commands, and must be present in the

ADAGIO REGION command block. It is used regardless of whether the CG solver should be used

alone or as a core solver in the multilevel solver. The CG command block (described in Section 3.2)

is required for all models. If no multilevel controls are desired, the commands related to those

controls are simply omitted from this block.

In addition to the CG command block, the SOLVER command block contains command blocks

that describe the controls that will be used. The SOLVER command block can contain any or all

of CONTROL CONTACT command block, CONTROL STIFFNESS command block, and CONTROL

FAILURE command blocks described in Sections 3.5, 3.6, and 3.7.

Aside from the command blocks for the core solver and the controls, the SOLVER block contains

the LOADSTEP PREDICTOR command block, which is described in Section 3.9.1, and the LEVEL

1 PREDICTOR command line, which is described in Section 3.9.2.

Convergence tolerances for the CONTROL CONTACT and CONTROL STIFFNESS solver levels are

set within those command blocks while the tolerance of the core CG solver is set within the CG

command block. Rather than use a convergence tolerance, the CONTROL FAILURE block is con-

sidered converged when no new elements fail during an iteration or when the maximum iterations

is reached.

The commands within the CG command block are used in the same way whether or not the multi-

level solver is used. It is, however, important to consider the role of tolerances within the multilevel

solver. The convergence of the problem is controlled by the convergence of the highest solver level.

For the multilevel solver to converge well, it is important for the core solver (or lower level of the

solver, in the case of multiple levels) to reduce the residual by a certain amount during each model

problem solution. For this reason, it is recommended that the solution tolerances be set an order

of magnitude tighter for each lower level solver. The MINIMUM RESIDUAL IMPROVEMENT com-

mand in the CG command block is helpful for ensuring that the residual is reduced by the core

solver during model problems, even though the residual might already be within the convergence

83

tolerances (see Section 3.2.1).

84

3.2 Conjugate Gradient Solver

The core nonlinear preconditioned conjugate gradient solver is controlled through the CG command

block, which must be nested within a SOLVER command block, regardless of whether multilevel

controls are to be used if it is to be used without multilevel controls.

BEGIN CG

#

convergence commands

TARGET RESIDUAL = <real>target_resid

[DURING <string list>period_names]

TARGET RELATIVE RESIDUAL = <real>target_rel_resid

[DURING <string list>period_names]

ACCEPTABLE RESIDUAL = <real>accept_resid

[DURING <string list>period_names]

ACCEPTABLE RELATIVE RESIDUAL = <real>accept_rel_resid

[DURING <string list>period_names]

REFERENCE = EXTERNAL|INTERNAL|RESIDUAL(EXTERNAL)

[DURING <string list>period_names]

MINIMUM RESIDUAL IMPROVEMENT = <real>resid_improvement

[DURING <string list>period_names]

MINIMUM ITERATIONS = <integer>min_iter(0)

[DURING <string list>period_names]

MAXIMUM ITERATIONS = <integer>max_iter

[DURING <string list>period_names]

#

preconditioner commands

PRECONDITIONER = BLOCK|BLOCK_INITIAL|DIAGONAL|

DIAGSCALING|ELASTIC|IDENTITY|PROBE|SCHUR|TANGENT

[<real>scaling_factor]

BALANCE PROBE = <integer>balance_probe

NODAL PROBE FACTOR = <real>probe_factor(1.0e-6)

BEGIN FULL TANGENT PRECONDITIONER

#

Parameters for full tangent preconditioner

#

END [FULL TANGENT PRECONDITIONER]

#

line search command, default is secant

LINE SEARCH ACTUAL|TANGENT [DURING <string list>period_names]

LINE SEARCH SECANT [<real>scale_factor]

#

diagnostic output commands

ITERATION PRINT = <integer>iter_print

[DURING <string list>period_names]

ITERATION PLOT = <integer>iter_plot

[DURING <string list>period_names]

85

ITERATION PLOT OUTPUT BLOCKS = <string list>plot_blocks

#

cg algorithm commands

ITERATION RESET = <integer>iter_reset(10000)

[DURING <string list>period_names]

ORTHOGONALITY MEASURE FOR RESET = <real>ortho_reset(0.5)

[DURING <string list>period_names]

RESET LIMITS <integer>iter_start <integer>iter_reset

<real>reset_growth <real>reset_orthogonality

[DURING <string list>period_names]

BETA METHOD = FletcherReeves|PolakRibiere|

PolakRibierePlus(FletcherReeves)

[DURING <string list>period_names]

END [CG]

Sections 3.2.1 through 3.2.5 describe the components of the CG command block.

3.2.1 Convergence Commands

TARGET RESIDUAL = <real>target_resid

[DURING <string list>period_names]

TARGET RELATIVE RESIDUAL = <real>target_rel_resid

[DURING <string list>period_names]

ACCEPTABLE RESIDUAL = <real>accept_resid

[DURING <string list>period_names]

ACCEPTABLE RELATIVE RESIDUAL = <real>accept_rel_resid

[DURING <string list>period_names]

REFERENCE = EXTERNAL|INTERNAL|RESIDUAL(EXTERNAL)

[DURING <string list>period_names]

MINIMUM RESIDUAL IMPROVEMENT = <real>resid_improvement

[DURING <string list>period_names]

MINIMUM ITERATIONS = <integer>min_iter(0)

[DURING <string list>period_names]

MAXIMUM ITERATIONS = <integer>max_iter

[DURING <string list>period_names]

The nonlinear preconditioned CG solver iterates to decrease the residual until the residual is

deemed to be sufficiently small, based on user-specified convergence criteria. The command lines

listed above are placed in the CG command block and used to control these convergence criteria.

Solver convergence is measured by computing the L2 norm of the residual and comparing that

residual norm with target convergence criteria specified by the user. Convergence can be monitored

either directly in terms of the residual norm, or in terms of a relative residual, which is the residual

norm divided by a reference quantity that is indicative of the current loading conditions on a model.

Basing convergence on the relative residual is often helpful because doing so ensures that the

convergence target is meaningful for the model. There are some situations, however, when it is

86

better to check for convergence based on the actual residual rather than on the relative residual.

This approach is especially helpful when the model passes through a stage during which there are

no loads. Note that the actual residual, the relative residual, or both of these residuals can be used

for checking convergence at the same time.

All the convergence command lines in the CG command block can have different values for dif-

ferent time periods by using the DURING specification. This specification consists of the key word

DURING followed by a list of time periods, and is appended to the end of the command line. Each of

the time periods included in the list must correspond to the name of a TIME STEPPING command

block (i.e., time_block_name) specified in the TIME CONTROL command block. If the DURING

specification is omitted from the command line, the value of the parameter in the command line is

applicable for the entire analysis. This default value can be overwritten for specific periods by re-

peating the same command line and using the DURING specification on each repeated line. In other

words, multiple occurrences of the same command line can be included in the command block,

one without a DURING specification and each of the others with a unique DURING specification for

its applicable time periods.

The TARGET RESIDUAL command line specifies the target convergence criterion in terms of the

actual residual norm. The TARGET RELATIVE RESIDUAL command line specifies a convergence

criterion in terms of the relative residual. If both command lines are included in the CG command

block, the solver will accept the solution as converged if either the target residual or the target

relative residual is below the specified values. Note that use of the term “target” in this discussion

means “desired.”

The solver also allows the user to define acceptable convergence criteria. If the solution has not

converged to the specified targets before the maximum number of iterations of the solver is reached,

the residual is checked against the acceptable convergence criteria. These criteria are specified

via the ACCEPTABLE RESIDUAL and ACCEPTABLE RELATIVE RESIDUAL command lines. The

concepts of residual and relative residual are the same as those used for the target limits, i.e., in the

TARGET RESIDUAL and TARGET RELATIVE RESIDUAL command lines. If the solution has not

met the target criteria but has met the acceptable criteria, the solution is allowed to proceed. The

default value for each acceptable criterion command line is 10 times the value of its correspond-

ing target criterion command line, e.g., if the value of target_resid was 1.0e-6, the value of

accept_resid would be 1.0e-5. Solutions that meet only the acceptable criteria are noted in the

log file. If the acceptable criteria are not met, the solution at that load step has failed to converge,

and the solver exits. If adaptive time stepping, as discussed in Section 3.11.2, is active, a solution

of the load step may be attempted with a smaller time step. Otherwise, the code will exit at this

point with an error.

If relative residuals are given in the convergence criteria, the REFERENCE command line can be

used to select the method for computing the reference load. This command line has three options:

EXTERNAL, INTERNAL, and RESIDUAL. When the EXTERNAL option, which is the default, is

selected, the reference load is computed by taking the L2 norm of the current external load. If the

model has force boundary conditions, the external force vector used for this norm is composed of

the nodal forces resulting from those boundary conditions. If there are no prescribed forces, the

reaction forces at all prescribed kinematic boundary conditions are used instead. The INTERNAL

option uses the norm of the internal forces as the reference load. This option is helpful in situations

87

where a structure has no externally applied boundary conditions, such as in the case of a thermally

loaded structure. Finally, the RESIDUAL option denotes that the residual from the initial residual

should be used as the reference quantity. The initial residual is computed from the first iteration of

the solver.

The MINIMUM RESIDUAL IMPROVEMENT command line stipulates that the CG solver must re-

duce the initial residual by a specified amount to obtain convergence. If this command line is

included in the CG command block, the improvement condition must be met in addition to the

standard target residual criteria. The parameter resid_improvement is a real number between

0.0 and 1.0 that specifies the amount by which the residual must be improved as a fraction of the

initial residual in the current model problem. Thus, to stipulate that the residual must be smaller

than 10% of the initial residual, one would set the value of resid_improvement equal to 0.9.

The MINIMUM RESIDUAL IMPROVEMENT command line is primarily useful in the context of the

multilevel solver. The model problems presented to the core solver sometimes begin with very low

residuals and require very few iterations to converge. This command line forces the core solver to

further improve the residual, which can accelerate the convergence of the other solver levels.

The MAXIMUM ITERATIONS and MINIMUM ITERATIONS command lines are used to specify the

maximum and minimum number of core solver iterations, respectively. These limits apply for a

load step if the CG solver is used in the stand-alone mode, or for a model problem if the CG solver

is used as the core solver in the multilevel solver. The default value for the minimum number of

iterations, min_iter, is zero. If a number greater than zero is specified, the solver will iterate at

least that many times, regardless of whether the convergence criteria are met.

3.2.2 Preconditioner Commands

PRECONDITIONER = BLOCK|BLOCK_INITIAL|DIAGONAL|

DIAGSCALING|ELASTIC|IDENTITY|PROBE|SCHUR|TANGENT

[<real>scaling_factor]

BALANCE PROBE = <integer>balance_probe

NODAL PROBE FACTOR = <real>probe_factor(1.0e-6)

BEGIN FULL TANGENT PRECONDITIONER

#

Parameters for full tangent preconditioner

#

END [FULL TANGENT PRECONDITIONER]

The command lines listed above are used to select the type of preconditioner used by the CG

algorithm, as well as the method used to form the preconditioner for some types of preconditioners.

The preconditioner is applied to the residual vector to obtain a gradient direction, which in turn is

used to find a search direction. The most effective preconditioner is one that closely approximates

the effect of multiplying by the inverse of the tangent stiffness matrix.

There are two basic types of preconditioners available: nodal and full tangent. The nodal precondi-

tioners provide only the diagonal terms of the full tangent stiffness matrix or 3-by-3-block diagonal

matrices along the diagonal of the stiffness matrix. The diagonal nature of a nodal preconditioner

88

allows it to be inverted very inexpensively and also use very little memory. Nodal preconditioners

are so termed because they only account for the stiffness at each node in isolation and ignore the

coupling between nodes that is accounted for in the off-diagonal terms of a full stiffness matrix.

The result of this approximation is that with a nodal preconditioner, in a single iteration, the equi-

libration of a residual at a node can only cause movement in nodes that are directly connected

by an element to that node. Thus, as the model size increases, the number of iterations also in-

creases. Nodal preconditioners require many iterations, but they are often very efficient because

the iterations are very inexpensive, especially if the problem is “blocky” in nature.

With the PRECONDITIONER command line, the user selects the nodal preconditioner. As defined

below, this command line has several options. Some options are synonyms for other options.

• The BLOCK and ELASTIC options, which are synonyms, specify the default preconditioner.

These options provide a nodal preconditioner with 3-by-3-block matrices that are computed

based on the elastic material properties. These matrices are updated at every model problem

to account for the current geometry.

• The BLOCK_INITIAL option, which is a variant of the BLOCK preconditioner, forms the

preconditioner at the beginning of the analysis but never recomputes it for efficiency.

• The DIAGONAL preconditioner is formed in the same way as the BLOCK preconditioner, but

only uses the terms on the diagonal.

• The PROBE option forms a 3-by-3-block diagonal preconditioner by probing the stiffness of

nodes rather than by using the elastic stiffness.

• The SCHUR option, a variant of the PROBE preconditioner, uses a Schur Complement to

approximate the coupling effects between translational and rotational degrees of freedom at

a node.

• The IDENTITY option uses an identity matrix for the preconditioner, meaning that the resid-

ual is used as the gradient direction. This option is only of academic interest and is included

for completeness.

• The DIAGSCALING option uses the identity matrix multiplied by the parameter scaling_

factor. This is the only option for which the scaling_factor parameter is applicable.

This option is also only of academic interest.

The BALANCE PROBE and NODAL PROBE FACTOR command lines control the behavior of the

probing algorithm that is used to obtain the stiffness for the probe preconditioner (selected via the

PROBE option in the PRECONDITIONER command line). For the probe preconditioner, the tangent

stiffness K is approximated using finite differences:

Ki j =
∂F int

i

∂x j

, (3.1)

where F int is the internal force and x is the displacement. The nodal probe preconditioner only

computes the 3-by-3-block diagonal version of the stiffness matrix. The NODAL PROBE FACTOR

89

command line controls the probing distance, with the value of probe_factor defaulting to 1.0e-

6. The probe factor controls the probing distance relative to element size. Smaller values may give

a better tangent approximation, but these values could result in the generation of round-off errors.

The BALANCE PROBE command line selects the type of finite differencing scheme used to probe

for the stiffness. The value of balance_probe can be set to 0, 1, or 2, as explained below.

• Setting balance_probe to 0, the default for the nodal probe preconditioner, causes the

preconditioner to be formed by forward finite differencing. Probing occurs in only one di-

rection, resulting in zero-order accuracy in the preconditioner. The stiffness computed when

balance_probe is set to 0 appears as

Ki j =
∂F int

i (x + δe j) − F int
i (x)

δ
, (3.2)

where δ is the probing distance, controlled by the NODAL PROBE FACTOR command line,

and e j is a unit vector in the jth equation direction.

• Setting balance_probe to 1, the default for the full tangent preconditioner, causes the

preconditioner to be formed with central differencing. Probing at each element degree of

freedom is performed in both positive and negative directions, leading to a first-order ac-

curate estimate of the tangent stiffness. This approach can be necessary in problems with

material nonlinearity, where a probe that stretches rather than compresses the element can

result in orders of magnitude differences in estimated stiffness. The stiffness computed when

balance_probe is set to 1 appears as

Ki j =
∂F int

i (x + δe j) − F int
i (x − δe j)

2δ
. (3.3)

• The value of balance_probe may also be set to 2, which allows the full tangent precon-

ditioner to obtain central finite differencing with fourth-order error. This approach requires

twice the work as central differencing but is more accurate. The stiffness computed when

balance_probe is set to 2 appears as

Ki j =
∂F int

i (x + 2δe j) + 8F int(x + δe j) − 8F int(x + δe j) − F int
i (x − 2δe j)

12δ
. (3.4)

The FULL TANGENT PRECONDITIONER command block enables the full tangent preconditioner

and specifies options that apply specifically to that type of preconditioner. See Section 3.3 for

a description of the options available. The FULL TANGENT PRECONDITIONER command block

cannot be used with the PRECONDITIONER command line in a CG command block. The user must

select only one type of preconditioner for an analysis.

3.2.3 Line Search Command

LINE SEARCH ACTUAL|TANGENT [DURING <string list>period_names]

LINE SEARCH SECANT [<real>scale_factor]

90

During each CG iteration, after the search direction is computed, a line search is used to find an

optimal scaling factor that when applied to the search vector will result in a minimized residual.

The line search algorithm is controlled with the LINE SEARCH command line. Three line search

types are available: ACTUAL, SECANT, and TANGENT. The SECANT option is the default, and is

used if the LINE SEARCH command line is not present.

• The ACTUAL line search is a single-step quadratic line search that is equivalent to the cor-

responding JAS3D line search option. The line search requires an additional evaluation for

each iteration of the element internal forces and thus the material response. For a given

search direction s, residual r, and velocity v, the step length α is computed as

α = −
sT r(v)

sT (Fint(v + s) − Fint(v))
, (3.5)

where the residual is computed based on the internal force Fint and on the external force Fext

as r = Fint(v) − Fext(v).

• The SECANT line search is a slight variation of the ACTUAL line search described above. Like

the ACTUAL line search, this line search requires an additional internal force evaluation for

each iteration. The step length α is computed as

α = −
sT r(v)

sT (r(v + s) − r(v))
. (3.6)

The optional scale_factor can be used with the secant line search to scale the the search

vector s in the equation above. If scale_factor is omitted, no scaling is done. If scale_

factor is provided on the command line, s is scaled by the product of scale_factor

and the dimension of the smallest element. Setting the scale factor to a small value can

be helpful to avoid inverting elements during the evaluation of r(v + s). The SECANT line

search is recommended for problems in which the external force is highly nonlinear (e.g., a

beam-bending problem with a pressure distribution).

• The TANGENT line search avoids the additional internal force calculation that is inherent in

the other line search types by using the tangent modulus computed in the last call to the

material subroutine for each element. The step length α is computed as

α = −
sT r(v)

sT Ks
, (3.7)

where K is the tangent stiffness.

The optional scale_factor can be used with all three line search types. This parameter is used to

scale the search direction s. If scale_factor is omitted, no scaling is done. If scale_factor

is provided on the command line, s is scaled by the product of scale_factor and the dimension

of the smallest element. Supplying a small value for scale_factor can help to avoid element

inversion during the line search.

91

3.2.4 Diagnostic Output Commands

ITERATION PRINT = <integer>iter_print

[DURING <string list>period_names]

ITERATION PLOT = <integer>iter_plot

[DURING <string list>period_names]

ITERATION PLOT OUTPUT BLOCKS = <string list>plot_blocks

The command lines listed above can be used to control the output of diagnostic information from

the CG solver. The ITERATION PRINT and ITERATION PLOT command lines can be appended

with the DURING specification, as discussed in Section 3.2.1.

The ITERATION PRINT command line controls the frequency at which the convergence informa-

tion line is printed to the log file. The default value of iter_print is 25 if a nodal preconditioner

is used, and it is 1 if a full tangent preconditioner is used.

The ITERATION PLOT command line allows plots of the current state of the model to be written

to the output database during the CG iterations. The value supplied in iter_plot specifies the

frequency of such plots. The default behavior is not to produce such plots. The plots are generated

with a fictitious time step. Every time such a plot is generated, a message is sent to the log file. This

feature is useful for debugging, but it should be used with care. Note that the ITERATION PLOT

command line can be appended with the DURING specification, as discussed in Section 3.2.1.

The output produced by iteration plots is sent by default to every active results output file, as spec-

ified by a RESULTS OUTPUT command block. The ITERATION PLOT OUTPUT BLOCKS com-

mand line can optionally be used to supply a list of output block names to which iteration plots

should be written. Each of the output block names listed in plot_blocks, must match the name

of a RESULTS OUTPUT command block (see Section 8.2.1). The ITERATION PLOT OUTPUT

BLOCKS command line can be useful for directing iteration plots to separate output files so that

these plots are separated from the converged solution output. It can also be used to send output

plots for different levels of the multilevel solver to different files.

3.2.5 CG Algorithm Commands

ITERATION RESET = <integer>iter_reset(10000)

[DURING <string list>period_names]

ORTHOGONALITY MEASURE FOR RESET = <real>ortho_reset(0.5)

[DURING <string list>period_names]

RESET LIMITS <integer>iter_start <integer>iter_reset

<real>reset_growth <real>reset_orthogonality

[DURING <string list>period_names]

BETA METHOD = FletcherReeves|PolakRibiere|

PolakRibierePlus(FletcherReeves)

[DURING <string list>period_names]

The behavior of the CG algorithm can be changed using the command lines listed above. The

CG algorithm orthogonalizes the current search direction and the previous search direction at each

92

iteration. During an iteration where a reset occurs, the orthogonalization is skipped, resulting in

a search in the steepest descent direction. Note that all of these command lines can be appended

with the DURING specification, as discussed in Section 3.2.1.

The ITERATION RESET command line specifies that the CG algorithm be reset after every iter_

reset iterations. The default is to reset the algorithm after every 10,000 iterations.

For the CG algorithm to work well, each new search direction must be sufficiently orthogonal to

the previous search directions. If the current search direction has a significant component in one of

the previous search directions, error can be introduced that will not be corrected in future iterations.

At every iteration, the relative lack of orthogonality between the current gradient direction and the

previous search direction is computed. The ORTHOGONALITY MEASURE FOR RESET command

line specifies that a reset will occur if the lack of orthogonality exceeds the value of ortho_reset.

The default value of 0.5 results in few resets. Setting ortho_reset to a value as tight as 0.01 can

result in many resets and potentially improved convergence on some problems.

The RESET LIMITS command line is also used to control CG resets. This command line is pro-

vided to achieve compatibility with JAS3D, and it behaves exactly the same as its JAS3D coun-

terpart. The command line, however, should not be used when either the ITERATION RESET

command line or the ORTHOGONALITY MEASURE FOR RESET command line is included in the

CG command block. Up to four parameters can optionally be specified in the RESET LIMITS

command line. The first, iter_start, sets the number of iterations to wait before looking for

a minimum residual. The second, iter_reset, sets the number of iterations to allow between

finding a minimum and restarting the iterative algorithm. The third, reset_growth, sets the

amount of growth in the residual norm that would indicate divergence and thus trigger a reset. Fi-

nally, reset_orthogonality sets the relative lack of orthogonality between the current gradient

direction and the previous search direction that would trigger a reset.

The BETA METHOD command line allows different formulas to be used in computing the β scalar

in the CG algorithm. If set to FletcherReeves, the β scalar is computed as

βk =
rT

k gk

rT
k−1gk−1

. (3.8)

If set to PolakRibiere (the default), β is computed as

βk =
rT

k (gk − gk−1)

rT
k−1gk−1

. (3.9)

With the PolakRibierePlus option, β is computed as

βk = max(βPR
k , 0). (3.10)

In the above equations, rk is the current iteration’s residual vector, rk−1 is the previous iteration’s

residual vector, gk is the current iteration’s gradient vector, and gk−1 is the previous iteration’s

gradient vector. The PolakRibierePlus formula forces beta to be positive. A steepest descent

direction is taken when beta becomes negative.

93

3.3 Full Tangent Preconditioner

In addition to the nodal preconditioners, Adagio provides the capability to use a full tangent pre-

conditioner in the CG algorithm. The full tangent preconditioner employs a scalable parallel linear

solver to solve for the gradient direction using the full tangent stiffness matrix. Although the full

tangent preconditioner is significantly more costly per CG iteration than are the nodal precondi-

tioners, it can solve problems in a very small number of iterations. Full tangent preconditioners are

especially effective in solving poorly conditioned problems that are often very difficult to solve us-

ing the CG algorithm with nodal preconditioners, such as those problems that involve the bending

response of long, slender members.

Using a full tangent preconditioner requires that two command blocks be added to the in-

put file. First, the FULL TANGENT PRECONDITIONER command block, described in this sec-

tion, must be added to the CG command block. The FULL TANGENT PRECONDITIONER com-

mand block is used instead of the PRECONDITIONER command line in the CG command block.

Second, a command block for a linear solver must be defined in the SIERRA scope, as de-

scribed in Section 3.4. That linear solver command block must be referenced from within the

FULL TANGENT PRECONDITIONER command block, instructing the CG algorithm to use the

specified linear solver. The command block to enable the full tangent preconditioner is as fol-

lows:

Known Issue: Deactivation of element blocks (see Section 5.1.5.8) does not cur-

rently work in conjunction with the full tangent preconditioner in Adagio. To use

this capability, one of the nodal preconditioners must be used.

BEGIN FULL TANGENT PRECONDITIONER

#

solver selection commands

LINEAR SOLVER = <string>linear_solver_name

NODAL PRECONDITIONER METHOD = ELASTIC|PROBE|DIAGONAL

(ELASTIC)

#

tangent matrix formation commands

PROBE FACTOR = <real>probe_factor(1.0e-6)

BALANCE PROBE = <integer>balance_probe(1)

CONSTRAINT ENFORCEMENT = SOLVER|PENALTY(PENALTY)

PENALTY FACTOR = <real>penalty_factor(100.0)

SHELL DRILLING STIFFNESS =

<real>shell_drill_stiff(1.0e-4 for quasistatics)

TANGENT DIAGONAL SCALE = <real>tangent_diag_scale(0.0)

#

reset and iteration commands

MAXIMUM RESETS FOR MODELPROBLEM = <integer>max_mp_resets

(100000) [DURING <string list>period_names]

MAXIMUM RESETS FOR LOADSTEP = <integer>max_ls_resets

94

(100000) [DURING <string list>period_names]

MAXIMUM ITERATIONS FOR MODELPROBLEM

= <integer>max_mp_iter(100000)

[DURING <string list>period_names]

MAXIMUM ITERATIONS FOR LOADSTEP = <integer>max_ls_iter

(100000) [DURING <string list>period_names]

ITERATION UPDATE = <integer>iter_update

[DURING <string list>period_names]

SMALL NUMBER OF ITERATIONS = <integer>small_num_iter

[DURING <string list>period_names]

NUMBER OF SMOOTHING ITERATIONS

= <integer>num_smooth_iter(0)

[DURING <string list>period_names]

#

fall-back strategy commands

STAGNATION THRESHOLD = <real>stagnation(1.0e-12)

[DURING <string list>period_names]

MINIMUM CONVERGENCE RATE = <real>min_conv_rate(1.0e-4)

[DURING <string list>period_names]

ADAPTIVE STRATEGY = SWITCH|UPDATE(SWITCH)

[DURING <string list>period_names]

END [FULL TANGENT PRECONDITIONER]

The FULL TANGENT PRECONDITIONER command block contains all command lines related to

the interaction of Adagio with the linear solver. There are command lines to control selection

of the linear solver, formation of the matrices passed into the linear solver, CG iteration strate-

gies, updating strategies, and strategies for dealing with poor convergence. Reasonable defaults

have been set for most problems. The only required command line in this command block is the

LINEAR SOLVER command line, which is used to select the linear solver. The command lines in

this command block are described in Sections 3.3.1 through 3.3.4.

3.3.1 Solver Selection Commands

LINEAR SOLVER = <string>linear_solver_name

NODAL PRECONDITIONER METHOD = ELASTIC|PROBE|DIAGONAL(ELASTIC)

The command lines listed above are used in selecting a linear solver for use with the full tangent

preconditioner and in selecting a nodal preconditioner. The LINEAR SOLVER command line is

the only required command line in the FULL TANGENT PRECONDITIONER command block. This

command line specifies the name of the solver that will be used to compute the action of the

preconditioner by solving the linear system. Linear solvers are defined in the SIERRA scope.

Although several linear-solver packages are available for use as preconditioners in Adagio, we

recommend that the FETI equation solver be used in production analyses. The FETI equation

solver is actively maintained and tested by the Adagio development team. The FETI EQUATION

SOLVER command block is documented in Section 3.4.

95

An arbitrary number of equation solver command blocks can be included in the input file to define

various sets of solver options. Each equation solver command block must be given a name, which

is referenced in the linear_solver_name parameter of the LINEAR SOLVER command line.

This name instructs Adagio to use the specified linear solver as a preconditioner for the CG solver.

When Adagio uses a full tangent preconditioner, it also forms a nodal preconditioner. This nodal

preconditioner is used in contact calculations, as a fall-back preconditioner if the full tangent pre-

conditioner does not perform well, and optionally for performing a specified number of smoothing

iterations prior to use of the full tangent preconditioner.

The nodal preconditioner is selected with the NODAL PRECONDITIONER METHOD command line.

Three options are available: ELASTIC, PROBE, and DIAGONAL. The ELASTIC option is the de-

fault. These options have the same meaning as the corresponding options given for the nodal

preconditioner in the CG command block, as documented in Section 3.2.2.

3.3.2 Matrix Formation Commands

PROBE FACTOR = <real>probe_factor(1.0e-6)

BALANCE PROBE = <integer>balance_probe(1)

CONSTRAINT ENFORCEMENT = SOLVER|PENALTY(PENALTY)

PENALTY FACTOR = <real>penalty_factor(100.0)

TANGENT DIAGONAL SCALE = <real>tangent_diag_scale(0.0)

SHELL DRILLING STIFFNESS =

<real>shell_drill_stiff(1.0e-4 for quasistatics)

The command lines listed above can be used to optionally control the way the stiffness matrix

is formed. This matrix is formed by assembling contributions from all active elements. These

element stiffness matrices are formed by finite differencing.

The PROBE FACTOR command line controls the probing distance relative to element size The

default value of probe_factor is 1.0e-6. Smaller values may give a better tangent approximation,

but they may also generate round-off errors.

The BALANCE PROBE command line selects the type of finite-differencing scheme used to probe

for the stiffness. The value of balance_probe can be set to 0, 1, or 2. Setting balance_probe

to 0 causes the preconditioner to be formed by forward finite differencing. Probing occurs in only

one direction, resulting in zero-order accuracy in the preconditioner. Setting balance_probe

to 1, the default for the full tangent preconditioner, causes the preconditioner to be formed with

central differencing. Probing at each element degree of freedom is performed in both positive and

negative directions, leading to a first-order accurate estimate of the tangent stiffness. The value

of balance_probe may also be set to 2, which allows the full tangent preconditioner to obtain

central finite differencing with fourth-order error. This scheme requires twice the work as the

central-differencing scheme but is more accurate. See Section 3.2.2 for a more detailed discussion

of these options.

The CONSTRAINT ENFORCEMENT command line controls the way multipoint constraints (i.e. con-

tact, rigid body, and periodic BC) are enforced in the linear system. Two options are available:

96

SOLVER and PENALTY. Specifying SOLVER results in the constraints being passed to the solver,

thus allowing the solver to handle constraint enforcement internally. Specifying PENALTY results

in the constraints being converted to penalty “elements” whose stiffness is contributed to the linear

system before it is passed to the linear solver. If the PENALTY option is used, the penalty stiffness

is controlled by the PENALTY FACTOR command line.

Although some of the available linear-solver packages support internal constraint enforcement,

these packages often perform poorly in parallel. Thus, we recommend that CONSTRAINT

ENFORCEMENT be set to PENALTY for all analyses. The errors caused by penalty compliance

are corrected in each CG iteration, so the converged solution will not have errors that are due to

penalty compliance. This strategy has proven to be very effective for dealing with constraints.

The PENALTY FACTOR command line is used to specify the penalty stiffness. At each constraint,

the diagonal tangent stiffness of the slave degree of freedom is multiplied by the value of the

penalty_factor parameter. The default value for this parameter is 100.0, which is reasonable

for most problems. Assigning a high value (greater than about 1.0e+8) can cause poor conditioning

of the linear system and also cause the linear solver to perform poorly. Assigning a low value (less

than about 10) could require more CG iterations due to the correction of errors resulting from

penalty compliance.

The TANGENT DIAGONAL SCALE command line is used to specify a tangent matrix diagonal scale

factor, which is used to scale the diagonal entries of the tangent matrix. This is useful in some

situations where a model does not have sufficient boundary conditions to remove all rigid body

modes. This command has also been used as a last resort to get convergence when all else fails.

The diagonal terms of the tangent matrix are scaled by (1.0 + tangent_diagonal_scale). The

default value of tangent_diagonal_scale is 0.0, which means the tangent matrix diagonals

are not scaled. A value of 0.1 scales up all tangent matrix diagonal terms by 10 percent.

The SHELL DRILLING STIFFNESS command line is used to add a small rotational stiffness in the

normal direction of a shell since this degree of freedom does not exist in the local shell coordinate

system. The value specified is multiplied by Young’s modulus, the shell thickness, and the time

step to get a stiffness which is added to the full tangent preconditioner stiffness matrix for this

degree of freedom.

3.3.3 Reset and Iteration Commands

MAXIMUM RESETS FOR MODELPROBLEM = <integer>max_mp_resets

(100000) [DURING <string list>period_names]

MAXIMUM RESETS FOR LOADSTEP = <integer>max_ls_resets

(100000) [DURING <string list>period_names]

MAXIMUM ITERATIONS FOR MODELPROBLEM = <integer>max_mp_iter

(100000) [DURING <string list>period_names]

MAXIMUM ITERATIONS FOR LOADSTEP = <integer>max_ls_iter

(100000) [DURING <string list>period_names]

ITERATION UPDATE = <integer>iter_update

[DURING <string list>period_names]

SMALL NUMBER OF ITERATIONS = <integer>small_num_iter(0)

97

[DURING <string list>period_names]

NUMBER OF SMOOTHING ITERATIONS = <integer>num_smooth_iter(0)

[DURING <string list>period_names]

When a linear solver is used as a preconditioner, the efficiency of the solution can often be dramati-

cally affected by the frequency at which the preconditioner is updated. The computational expense

of updating the preconditioner, which involves forming and factorizing the stiffness matrix, is often

much higher than the cost of applying the preconditioner, which involves only a back-solve, during

a CG iteration. If the stiffness does not dramatically change from iteration to iteration, it is often

much more efficient to re-use the preconditioner for a number of iterations, or even load steps, than

it is to update it at every iteration.

The command lines listed above can be used to control when the preconditioner is updated. As

Adagio allows for the nodal preconditioner to be used in place of the full tangent preconditioner in

some situations, these command lines also control this behavior. Note that all of these command

lines can be appended with the DURING specification, as discussed in Section 3.2.1.

The MAXIMUM RESETS FOR MODELPROBLEM command line limits the number of times that the

preconditioner can be reset (updated) during a model problem. By default, there is no limit on

the number of updates that can occur during a model problem. The MAXIMUM RESETS FOR

LOADSTEP command line limits the updates that can occur during a load step. By default, there is

also no limit on the number of updates that can occur during a load step.

The MAXIMUM ITERATIONS FOR LOADSTEP and MAXIMUM ITERATIONS FOR

MODELPROBLEM command lines can be used to limit the number of CG iterations that will

be performed using the full tangent preconditioner per model problem or load step, respectively.

The values of the parameters max_mp_iter and max_ls_iter are both unlimited by default. If

one of these iteration limits is reached, the CG solver will continue to iterate using the fall-back

nodal preconditioner until either the CG solver iteration limit is reached or convergence is

achieved. It can be useful to limit the iterations taken by the full tangent preconditioner. If the full

tangent preconditioner is performing poorly, the nodal preconditioner may work better in some

cases.

The ITERATION UPDATE command line controls the frequency at which the full tangent precon-

ditioner is updated. By default, it is only updated at the first iteration of each model problem.

If this command line is used, the preconditioner will be updated at the frequency specified by

iter_update. If a model experiences highly nonlinear behavior over the course of a model prob-

lem, it may be useful to use this command line to cause more frequent preconditioner updates.

Such problems may converge better when iter_update is set to about 10. It is important to

realize that frequent updates may reduce the number of CG iterations but dramatically increase the

computational cost.

It can often be efficient to update the preconditioner very infrequently. The SMALL NUMBER OF

ITERATIONS command line is used to “freeze” the preconditioner, or prevent updates, until a

model problem requires more iterations than the number specified in small_num_iter. The de-

fault value of small_num_iter is 0, meaning that the preconditioner is never re-used for the

next model problem unless the SMALL NUMBER OF ITERATIONS command line is used. It is

often beneficial to set small_num_iter to 10. This can often result in the re-use of the precondi-

98

tioner over many load steps. When this command line is used, the CG solver often converges in a

very small number of iterations immediately following a preconditioner update; however, over the

course of several load steps, the iteration counts slowly increase because the preconditioner is out

of date. At a certain point, the iteration count exceeds small_num_iter, and the preconditioner

is reset. This solution strategy is very efficient because it allows re-use of the preconditioner while

it is still relatively effective.

In some cases it is beneficial to perform a number of CG iterations using the nodal preconditioner

prior to applying the full tangent preconditioner. The iterations with the nodal preconditioner are

used as a “smoother” to put the model in a better state for the full tangent preconditioner. This

behavior can be enabled using the NUMBER OF SMOOTHING ITERATIONS command line. By

default, this feature is disabled. If this command line is present, the num_smooth_iter parame-

ter specifies the number of smoothing iterations to be taken. This feature can also be used in cases

where the nodal preconditioner may be effective enough to achieve convergence with relatively

few iterations, but occasionally the nodal preconditioner is not effective. If num_smooth_iter

is set to a relatively high number, many load steps can be solved without ever using the full tan-

gent preconditioner, but this preconditioner is used on the more difficult steps that require more

iterations.

Another use of the NUMBER OF SMOOTHING ITERATIONS command line is for switching be-

tween the nodal preconditioner and the full tangent preconditioner for certain time periods. This

command line, as all the other command lines discussed above, can be set on a period-specific

basis by appending it with the DURING keyword, followed by a list of periods. To use the nodal

preconditioner on some periods, the user can set num_smooth_iter to a high number for those

periods and leave the default value of 0 for the periods in which the full tangent preconditioner is

desired.

3.3.4 Fall-Back Strategy Commands

STAGNATION THRESHOLD = <real>stagnation(1.0e-12)

MINIMUM CONVERGENCE RATE = <real>min_conv_rate(1.0e-4)

ADAPTIVE STRATEGY = SWITCH|UPDATE(SWITCH)

Occasionally, the full tangent preconditioner may stagnate, failing to significantly reduce the resid-

ual from one CG iteration to the next. At each iteration, Adagio checks for slow convergence, and

attempts to remedy poor convergence if such is detected. The commands listed above can option-

ally be added to the FULL TANGENT PRECONDITIONER command block.

The STAGNATION THRESHOLD and MINIMUM CONVERGENCE RATE command lines are used to

set the stagnation and min_conv_rate parameters, respectively. These parameters are used in

a strategy that attempts to remedy slow convergence. The method for remedying slow convergence

is controlled with the ADAPTIVE STRATEGY command line, which can have a value of SWITCH

or UPDATE. The default strategy is SWITCH. The convergence rate is computed as the absolute

value of the relative difference between residuals after successive CG iterations. In the SWITCH

strategy, if the convergence rate is less than the value of min_conv_rate but greater than the

value of stagnation, the CG solver will switch to using the fall-back nodal preconditioner. In

99

the UPDATE strategy, the full tangent preconditioner would be updated instead. In either case,

if the convergence rate is below the value of stagnation, the solver will switch to the nodal

preconditioner.

100

3.4 FETI Equation Solver

FETI is a domain-decomposition-based parallel iterative linear solver that can be used as a full

tangent preconditioner for Adagio’s nonlinear CG solver [3, 4]. FETI uses a direct solver on each

domain and iteratively solves for Lagrange multiplier fields at the domain boundaries. Under typ-

ical usage, the FETI domains correspond to the portions of the model owned by each processor. If

a model is run on a single processor, FETI simply behaves as a direct solver. Because large mod-

els are typically run using many processors, FETI uses significantly lower computing resources

than a direct solution of the whole problem would require because a large number of small direct

solutions are performed in parallel.

Although a number of other linear solvers are available for use as full tangent preconditioners in

Adagio’s CG solver, it is recommended that FETI be used. FETI is actively maintained and tested

by the Adagio development team; its effectiveness as a robust parallel solver has been demonstrated

on a wide range of production analyses. The command block for the FETI equation solver is as

follows:

BEGIN FETI EQUATION SOLVER <string>name

#

convergence commands

MAXIMUM ITERATIONS = <integer>max_iter(500)

RESIDUAL NORM TOLERANCE = <real>resid_tol(1.0e-6)

#

memory usage commands

PARAM-STRING "precision" VALUE <string>"single"|"double"

("double")

PRECONDITIONING METHOD = NONE|LUMPED|DIRICHLET(DIRICHLET)

MAXIMUM ORTHOGONALIZATION = <integer>max_orthog(500)

#

solver commands

LOCAL SOLVER = SKYLINE|SPARSE|ITERATIVE(SPARSE)

COARSE SOLVER = SKYLINE|SPARSE|ITERATIVE(SPARSE)

NUM LOCAL SUBDOMAINS = <integer>num_local_subdomains

END [FETI EQUATION SOLVER <string>name]

The command lines used to control FETI all reside in the FETI EQUATION SOLVER command

block, where name identifies the particular command block. This command block, as with all

equation solver command blocks, must be placed in the SIERRA scope and must be referenced

by name when it is used. Although a number of command lines are available to control the be-

havior of FETI, the default settings generally work well for the vast majority of problems. Thus,

it is recommended that all default settings be used unless special behavior is desired because of

the unique features of a specific model. The command lines in the FETI EQUATION SOLVER

command block are described in Sections 3.4.1 through 3.4.3.

101

3.4.1 Convergence Commands

MAXIMUM ITERATIONS = <integer>max_iter(500)

RESIDUAL NORM TOLERANCE = <real>resid_tol(1.0e-6)

The command lines listed above provide controls on the convergence of the FETI iterative solver,

and belong in the FETI EQUATION SOLVER command block.

The MAXIMUM ITERATIONS command line sets the maximum number of iterations allowed per

FETI solution. The default value of the parameter max_iter is 500. A FETI solution occurs for

every CG iteration in which FETI is used as a full tangent preconditioner. The RESIDUAL NORM

TOLERANCE command line sets the convergence criterion for the FETI solver. The default value

of the parameter resid_tol is 1.0e-6. If convergence is not reached before the iteration count

exceeds max_iter, FETI will simply return the current gradient direction to the CG solver, which

will continue iterating. The code will not exit with an error. The default settings for both of these

command lines are reasonable for most models and typically should not be modified.

3.4.2 Memory Usage Commands

PARAM-STRING "precision" VALUE <string>"single"|"double"

("double")

PRECONDITIONING METHOD = NONE|LUMPED|DIRICHLET(DIRICHLET)

MAXIMUM ORTHOGONALIZATION = <integer>max_orthog(500)

The command lines listed above can be placed in the FETI EQUATION SOLVER command block

to enable optional memory-saving features of the FETI solver. All these features will adversely

affect the performance of this solver to some degree, but they can be useful if the memory require-

ments of a model exceed the capacity of the machine on which the model is run. Before using

these features, it is important to consider that on a distributed memory cluster, spreading the model

out over more processors can reduce the memory requirements on each processor. For this reason,

it is often better to use more processors rather than use the options described here.

FETI has the option of using either single or double precision for storage of internal variables. The

default behavior is to use double precision, and this is typically recommended. To select single

precision, the user would specify the command line as follows: PARAM-STRING "precision"

VALUE "single". Using single-precision variables within FETI can dramatically reduce the

memory requirements. This may, however, slightly degrade the performance of the solver, re-

quiring more iterations within FETI or more CG iterations. Using single precision in FETI does

not affect the Adagio data structures, which are always double precision, and therefore does not

adversely affect solution accuracy.

The PRECONDITIONING METHOD command line selects the preconditioning method that is used

internally within FETI. The default option, DIRICHLET, typically results in the best convergence

rate. The LUMPED option uses less memory, but it usually results in more iterations within FETI.

This option should only be used if there are constraints on memory usage. The NONE option uses

no preconditioner and is included only for completeness. This option is not of practical interest.

102

Like Adagio’s CG solver, the FETI equation solver stores a set of search directions to ensure that

the search direction used in each iteration is orthogonal to previous search directions. The number

of search directions stored is controllable with the MAXIMUM ORTHOGONALIZATION command

line. The default value of 500 for max_orthog provides optimal convergence. Setting max_

orthog to a lower number can decrease memory usage but, as with the other options discussed

above, may require more iterations for convergence.

3.4.3 Solver Commands

LOCAL SOLVER = SKYLINE|SPARSE|ITERATIVE(SPARSE)

COARSE SOLVER = SKYLINE|SPARSE|ITERATIVE(SPARSE)

NUM LOCAL SUBDOMAINS = <integer>num_local_subdomains

The command lines listed above control the type of solver used by FETI for solving the linear

system that arises from the coarse grid and for the local linear system on the actual solution mesh.

The default behavior is for FETI to use a sparse direct solver for both of these systems, an approach

that works well for most problems. The LOCAL SOLVER command line is used to select the solver

for the local subdomains. Similarly, the solver for the coarse grid can be selected with the COARSE

SOLVER command lines. Both of these command lines allow the same three options: SPARSE,

SKYLINE, and ITERATIVE, where SPARSE is the default.

• The SPARSE option uses a sparse matrix storage direct solver. The sparse matrix is factored

into an A = LDLT decomposition, but the code implementation takes advantage of equation

orderings to reduce matrix fill-in. The default equation ordering is done by calling METIS’s

sparse matrix ordering algorithm. This solver is recommended for both speed and memory

efficiency.

• The SKYLINE option uses a skyline (profile) matrix storage direct solver. The skyline matrix

is factored into an A = LDLT decomposition. This method is very robust, detects rigid-

body modes effectively, and includes the reverse Cuthill-McKee (RCM) and Sloan equation

orderings. This solver uses much more memory than does the sparse solver.

• The ITERATIVE option implements a multiple domain FETI algorithm for the local solver,

where the number of domains is either computed based on some heuristics or is input by the

user. This option is recommended in special circumstances where memory becomes an issue

with the sparse direct solver.

The NUM LOCAL SUBDOMAINS command line sets the number of local subdomains for the

ITERATIVE local solver. This command line is not used for the other local solvers. As the num-

ber of local subdomains increases, the size of the local subdomains decreases, thus reducing the

memory requirements and the time it takes for the local matrix factorizations. As the number of

subdomains increases, the size of the coarse grid increases, thus requiring increased factorization

time and memory. A good rule of thumb is to set the number of local subdomains to the total

number of elements in the mesh divided by 400. For a serial run, if the NUM LOCAL SUBDOMAINS

103

command line is not specified, FETI sets the number of domains to the greater of 2 or the number

of elements divided by 400. For parallel runs, FETI uses the same number of domains used by

Adagio.

104

3.5 Control Contact

The multilevel solution control scheme used for contact is referred to as control contact. After a

set of nodes in contact (a constraint set) is established, a model problem is solved using the CG

solver with this constraint set held constant. For frictional contact, slave nodes are fixed to master

faces during the CG iterations. For frictionless contact, the slave nodes are fixed in the normal

direction but are allowed to slide during the CG iterations. After model problem convergence, the

constraint set is updated to reflect the changing contact conditions. This update gives rise to a force

imbalance and to another model problem.

Changing or updating the constraint set is referred to as a contact update. Multiple contact updates

are typically required before equilibrium is achieved. The contact update consists of a search, a

gap removal, an equilibrium query, and a slip calculation if equilibrium is not satisfied.

New constraints are detected in the search phase based on the current deformed configuration of the

model. If a node is found to penetrate a master surface, the node is added to the set of constraints.

The slave node is moved to the master surface by moving it along the push-back vector. The

penetration may be removed at once (the default behavior), or it may be incrementally removed

over a number of model problems.

The gap removal phase involves creating or destroying constraints and calculating push-back vec-

tors for slave nodes. For types of surface mechanics in which contacting surfaces are free to

separate, a slave node constraint continues to exist as long as there is a compressive force between

the slave node and the master surface. The constraint changes during the gap removal phase to

reflect changes in the shape and orientation of the master surface. Constraints are destroyed when

a tensile force exceeding a known tolerance exists at the master/slave interface.

During the slip portion of the contact update, a residual force is calculated at each node and re-

solved into normal and tangential components. This force reflects changes in residual due to gap

removal that occurred earlier in the update. For frictional contact, the friction coefficient is used to

determine the tangential load capacity. If the tangential loads exceed this capacity, nodes will slip.

The procedure for control contact is illustrated in the following sequence of figures. It is assumed

that control contact is on level 1, so the model problems are directly solved by the core solver. In

this example (Figure 3.2), the model problem has three constraints that are enforced during itera-

tions of the core solver. Nothing prevents other nodes from penetrating surfaces during solution of

the model problem, and in this example, one node does penetrate.

Once the model problem has converged, a contact update is performed. In the gap removal portion

of the update (Figure 3.3), one of the constraints accumulated a tensile force large enough that

surfaces should separate, thus eliminating this constraint. During the search, one node penetrated

the surface, resulting in a new constraint for this node. A push-back vector is calculated for this

node to remove the penetration.

In the second phase of the contact update, slip is allowed to occur along the master/slave interface.

After the gaps are removed, the external and internal force vectors are recomputed, and forces are

partitioned along normal and tangential directions of the master surface. This process is illustrated

in Figure 3.4.

105

master surface
slave surface
constraints

penetrates
Node without constraint

Figure 3.2: Contact configuration at the beginning of the contact update.

Push−back vector

New constraint created

Tensile force
constraint deleted

master surface
slave surface
constraints

F
c

F
c

F
c

Figure 3.3: Contact gap removal (after contact search).

106

master surface
slave surface
constraints

n t

Fc

F
tan
c

F
nor
c

Fc

Fc

Figure 3.4: Contact slip calculations.

The command block for control contact is as follows:

BEGIN CONTROL CONTACT

#

convergence commands

TARGET RESIDUAL = <real>target_resid

[DURING <string list>period_names]

TARGET RELATIVE RESIDUAL = <real>target_rel_resid

[DURING <string list>period_names]

TARGET RELATIVE CONTACT RESIDUAL = <real>target_rel_cont_resid

[DURING <string list>period_names]

ACCEPTABLE RESIDUAL = <real>accept_resid

[DURING <string list>period_names]

ACCEPTABLE RELATIVE RESIDUAL = <real>accept_rel_resid

[DURING <string list>period_names]

ACCEPTABLE RELATIVE CONTACT RESIDUAL =

<real>accept_rel_cont_resid [DURING <string list>period_names]

REFERENCE = EXTERNAL|INTERNAL|RESIDUAL(EXTERNAL)

[DURING <string list>period_names]

MINIMUM ITERATIONS = <integer>min_iter(0)

[DURING <string list>period_names]

MAXIMUM ITERATIONS = <integer>max_iter

[DURING <string list>period_names]

#

level selection command

LEVEL = <integer>contact_level(1)

#

diagnostic output commands

107

ITERATION PLOT = <integer>iter_plot

[DURING <string list>period_names]

ITERATION PLOT OUTPUT BLOCKS = <string list>plot_blocks

END [CONTROL CONTACT]

To enable control contact, a CONTROL CONTACT command block must exist in the SOLVER com-

mand block. The line commands within the CONTROL CONTACT command block are used to

control convergence during the contact updates, select the level for the contact control within the

multilevel solver, and output diagnostic information. These commands are described in detail in

Section 3.5.1 through Section 3.5.3.

3.5.1 Convergence Commands

The command lines listed in this section are placed in the CONTROL CONTACT command block to

control convergence criteria for contact within the multilevel solver.

TARGET RESIDUAL = <real>target_resid

[DURING <string list>period_names]

TARGET RELATIVE RESIDUAL = <real>target_rel_resid

[DURING <string list>period_names]

TARGET RELATIVE CONTACT RESIDUAL = <real>target_rel_cont_resid

[DURING <string list>period_names]

ACCEPTABLE RESIDUAL = <real>accept_resid

[DURING <string list>period_names]

ACCEPTABLE RELATIVE RESIDUAL = <real>accept_rel_resid

[DURING <string list>period_names]

ACCEPTABLE RELATIVE CONTACT RESIDUAL =

<real>accept_rel_cont_resid [DURING <string list>period_names]

REFERENCE = EXTERNAL|INTERNAL|RESIDUAL(EXTERNAL)

[DURING <string list>period_names]

MINIMUM ITERATIONS = <integer>min_iter(0)

[DURING <string list>period_names]

MAXIMUM ITERATIONS = <integer>max_iter

[DURING <string list>period_names]

Solver convergence is monitored for control contact in much the same way as it is done for the core

CG solver. The command lines listed above are used for specifying the convergence criteria used

in the level 1 updates. With the exception of two additional command lines used for controlling

the residual due to contact, these command lines are the same as those used for the core CG solver

(described in Section 3.2.1) and have the same meaning. Here, however, these command lines are

applied to the contact control. Note that all of these command lines can be appended with the

DURING specification, as discussed in Section 3.2.1.

Contact convergence is measured by computing the L2 norm of the residual, and comparing that

residual norm with target convergence criteria specified by the user. There are two residual norms

108

used as convergence metrics for contact: the norm of the residual on all nodes, and the norm of the

residual on the nodes currently in contact. In the discussion here, the residual norm for all nodes

is referred to as the residual, while the residual norm for the contact nodes is referred to as the

contact residual. Convergence can be monitored directly in terms of the residual norm, the relative

residual, or the relative contact residual. The relative residual and relative contact residual are

computed by dividing the residual and contact residual, respectively, by a reference quantity that

is indicative of the current loading conditions on a model. Either the residual, the relative residual,

or both can be used for checking convergence at the same time. In addition, the contact relative

residual must be below specified convergence limits.

The TARGET RESIDUAL command line specifies the target convergence criterion in terms of the

actual residual norm. The TARGET RELATIVE RESIDUAL command line specifies a convergence

criterion in terms of the relative residual. If both command lines are specified, the multilevel

solver will accept the contact solution as converged if either the target residual or the target relative

residual is below the specified values. The TARGET RELATIVE CONTACT RESIDUAL command

line specifies the target convergence criterion for the relative contact residual. This criterion must

be satisfied in addition to the target residual or relative residual for convergence. The default value

for the target relative contact residual is the target relative residual.

The multilevel solver also allows for acceptable convergence criteria to be input for contact con-

vergence. If the solution has not converged to the specified targets before the maximum number of

iterations is reached, the residual is checked against the acceptable convergence criteria. These cri-

teria are specified via the ACCEPTABLE RESIDUAL, ACCEPTABLE RELATIVE RESIDUAL, and

ACCEPTABLE RELATIVE CONTACT RESIDUAL command lines. The concepts of residual, rela-

tive residual, and relative contact residual are the same as those used for the target limits. If the

solution has not met the target criteria but has met the acceptable criteria, the solution is allowed

to proceed. The defaults for each of these acceptable criteria are 10 times the corresponding target

criteria.

If relative residuals are given in the convergence criteria, the REFERENCE command line can be

used to select the method that will be used to compute the reference load. This command line

has three options: EXTERNAL, INTERNAL, and RESIDUAL. The EXTERNAL option, which is the

default, is computed by taking the L2 norm of the current external load. The INTERNAL option

uses the norm of the internal forces as the reference load. Finally, the RESIDUAL option denotes

that the initial residual should be used as the reference quantity.

The MAXIMUM ITERATIONS and MINIMUM ITERATIONS command lines specify the maximum

and minimum number of contact updates, respectively. The default minimum number of iterations,

min_iter, is 0. If a number greater than 0 is specified, the multilevel solver will update contact

at least that many times, regardless of whether the convergence criteria have been met.

3.5.2 Level Selection Command

LEVEL = <integer>contact_level(1)

The LEVEL command line in the CONTROL CONTACT command block is used to specify the level

in the multilevel solver at which contact is controlled. The contact_level parameter can have

109

a value of either 1 or 2, with 1 being the default.

This command is used when multiple controls (i.e. control contact and control stiffness) are active

in the multilevel solver. It is permissible for multiple controls to exist at a given level. The default

behavior is for all controls to be at level 1. To have a control at level 2, another control must be

active at level 1 because a level in the multilevel solver cannot be skipped. The level of other

controls is specified using the LEVEL command line in the command blocks associated with those

controls.

3.5.3 Diagnostic Output Commands

ITERATION PLOT = <integer>iter_plot

[DURING <string list>period_names]

ITERATION PLOT OUTPUT BLOCKS = <string list>plot_blocks

The command lines listed above can be used to control the output of diagnostic information from

the contact control within the multilevel solver. The ITERATION PLOT command line allows plots

of the current state of the model to be written to the output database during the contact updates.

The value supplied in iter_plot specifies the frequency of such plots. The default behavior is

not to produce such plots. The plots are generated with a fictitious time step. Every time such

a plot is generated, a message is sent to the log file. This feature is useful for debugging, but it

should be used with care. Note that the ITERATION PLOT command line can be appended with

the DURING specification, as discussed in Section 3.2.1.

The output produced by iteration plots is sent by default to every active results output file, as spec-

ified by a RESULTS OUTPUT command block. The ITERATION PLOT OUTPUT BLOCKS com-

mand line can optionally be used to supply a list of output block names to which iteration plots

should be written. Each of the output block names listed in plot_blocks, must match the name

of a RESULTS OUTPUT command block (see Section 8.2.1). The ITERATION PLOT OUTPUT

BLOCKS command line can be useful for directing iteration plots to separate output files so that

these plots are separated from the converged solution output. It can also be used to send output

plots for different levels of the multilevel solver to different files.

110

3.6 Control Stiffness

Control stiffness is an augmented Lagrange iterative solution strategy for solving models that have

widely varying stiffnesses in various modes of material response. These differences in stiffness can

be between individual materials in a problem or even between the different responses of a single

material model. For instance, nearly incompressible materials have a bulk/volumetric response that

is much stiffer than the corresponding shear/deviatoric response. A similar case arises for materials

that are orthotropic or anisotropic in nature and exhibit widely varying stiffnesses in the principal

material directions.

Using control stiffness allows part of the constitutive response of a material to be softened or

stiffened to give a tangent response that results in model problems that can be solved more easily

by the core solver. This is accomplished by scaling a chosen stress increment up or down in a

given model problem and adding it to a saved reference stress to yield a scaled stress that is used

for equilibrium evaluations. The reference stress accumulates the model problem stress increments

so that the true material response for a time step is obtained after solving a sequence of model

problems.

For the case of nearly incompressible materials, a sequence of model problems can be constructed

in which the bulk behavior is softened (scaled down) and/or the shear behavior is stiffened (scaled

up). For the case of anisotropic materials, the anisotropic part of the material response is scaled

down to create a model problem where the material has a more nearly isotropic response. In

addition, the isotropic part of the response of some of these orthotropic materials can have its bulk

stress increments scaled down and/or its shear/deviatoric stress increments scaled up. Finally, if an

isotropic material is much stiffer than its neighbors, all of that material’s stress increments can be

scaled down.

Scaling a stress increment up or down is akin to using scaled moduli in a model problem. It should

be noted that this is only precisely true for the case in which the true material response is linear.

For the case of nonlinear materials, the effective scaled moduli are based solely on the difference

between the unscaled stresses and the reference stresses. As a result, these effective scaled moduli

vary over the course of model problem and core solver iterations. Nevertheless, the control stiffness

algorithms are completely general and do not rely on linearity in the true material response.

The degree to which components of a material’s response are softened or stiffened to achieve

overall minimum computational time is problem dependent and involves a trade-off between the

difficulty of solving a model problem and the number of model problems that must be used to

achieve the final solution.

For example, consider a nearly incompressible material, such as rubber, for which the model prob-

lem solution may be optimized by scaling the bulk and shear behaviors such that the effective

tangent response has a bulk modulus that is equal to twice its shear modulus. Adjusting the ratio

between the bulk and shear moduli in this manner may minimize the core solver iterations for a

given model problem. However, because of the inherently large difference between these two mod-

uli in this material, significant bulk and/or shear scaling would be required to achieve these optimal

scaled moduli. Such severe scaling could result in a large number of model problems to achieve

the true material response. Choosing less severe scalings (scalings closer to 1), on the other hand,

111

could result in more core solver iterations in each model problem, but fewer model problems to

arrive at the true material response.

Experience has shown that once nearly optimal scaling values have been determined for a class of

problems, these can be applied successfully to families of problems with similar characteristics.

A partial explanation of scaling the material response will be given for a simple scalar relation be-

tween stress and strain. For example, the true pressure-volume relation for a nearly incompressible

material is a scalar relation between pressure and volumetric strain. Appropriate generalizations of

the softening and stiffening algorithms to tensor relations are easily achieved by applying the same

algorithms for all of the stress quantities individually. Only the calculation of the appropriate error

measures is modified to deal with the tensorial nature of the stress-strain response that is being

scaled.

There are two strain and three stress quantities of interest in the control stiffness algorithm. The

stress quantities are the unscaled stress calculated by the unmodified material model, the scaled

stress used for equilibrium evaluation, and a reference stress used to build up stresses to achieve

convergence such that the scaled model problem stress is nearly equal to the unscaled stress com-

puted from the material model. The strain quantities of interest are the true strain computed from

the kinematics and the strain necessary to achieve the scaled stress using the unmodified material

model.

In the equations that follow, the subscripts refer to the particular model problem being solved. Let

us begin with the true material response in model problem I given by

σ
I
= f (e

I
), (3.11)

where σ
I

is the true stress corresponding to the kinematic strain e
I

determined from the nodal

displacements, and f (·) is the function representing the constitutive response. Although the true

material response has been written for the hyperelastic case employing total stress and strain quan-

tities, the control stiffness algorithms that are being presented can be equally applied to hypoelastic

models where the stress rate is written in terms of the strain rate. The important point here is that

the unscaled constitutive equation is used to calculate the unscaled/true stress response. It is not

necessary for that relation to be linear or for a particular formulation to be used in terms of total

strains or incremental strain rates. However, it should be noted that control stiffness is set up in

Adagio to work only with certain material models.

The scaled stress response to use for equilibrium evaluations in a model problem is determined as

follows:

s
I
= r

I
+ λ

(

σ
I
− r

I

)

, (3.12)

where s
I

is the scaled stress, r
I

is the reference stress, and λ is the scaling factor. For softening

behavior, λ is less than 1, while for stiffening behavior, it is greater than 1. As noted previously,

this scaled stress is what the core solver uses for equilibrium evaluation in a given model problem.

It should be noted that the core solver typically requires a number of iterations to find the scaled

stress that results in equilibrium. The softening and stiffening control stiffness algorithms differ

only in terms of what is used for the reference stress. The reference stress in model problem I is

112

given by the following:

r
I
=

{

s
I−1

λ < 1 (softening)

σ
I−1

λ > 1 (stiffening)
(3.13)

Figures 3.5 and 3.6 provide a graphical presentation of softening the material response, and Fig-

ures 3.7 and 3.8 offer a similar presentation of stiffening the material response.

Figure 3.5: Control stiffness softening behavior in the first model problem of a time step.

Figure 3.6: Control stiffness softening behavior in the second model problem of a time step.

When equilibrium is achieved in a model problem, it is necessary to do two things. First, an

error measure related to the difference between the unscaled and scaled stress must be determined.

Second, the reference stress used in the scaled stress calculations must be updated. The reference

113

Figure 3.7: Control stiffness stiffening behavior in the first model problem of a time step.

Figure 3.8: Control stiffness stiffening behavior in the second model problem of a time step.

stresses are updated according to Equation (3.13). That is, for the case of softening the material

response, the reference stress is updated for the next model problem to be the scaled stress that

achieved equilibrium in the current model problem. On the other hand, for the case of stiffening

the material response, the reference stress is updated for the next model problem to be the true

stress at the end of the current model problem.

The control stiffness updating process is converged when the scaled and unscaled stresses differ by

an acceptably small amount. Several different error measures can be used to determine the degree

to which the scaled and unscaled stresses differ. These can be categorized into two types: those

that consider stress errors, and those that consider strain errors.

114

The stress convergence measures consider consider the difference between the scaled stress and the

unscaled stress. The first of these stress error measures involves taking the L2 norm of the stress

difference:

error
I
=
∥

∥s
I
− σ

I

∥

∥

2
. (3.14)

A second stress error measure involves normalizing that quantity:

error
I
=

∥

∥s
I
− σ

I

∥

∥

2
∥

∥s
I

∥

∥

2

. (3.15)

The strain error convergence measure is based on a strain quantity E
I

that is computed as the

difference between the scaled stress and the unscaled stress and dividing that value by a modulus:

E
I
=

∣

∣s
I
− σ

I

∣

∣

M
, (3.16)

where M is an appropriate material modulus that is used to represent the unscaled constitutive

response. For the case where the true material response is linear and the scaled stress is computed

by stiffening the material response, E
I

as defined by Equation (3.16) corresponds exactly to the

difference between the kinematic strain e
I

and the strain ǫ
I

needed in the unscaled constitutive

equation to give the scaled stress:

ǫ
I
= f −1(s

I
) = s

I
/M, (3.17)

where M would be the real material modulus. Nevertheless, Equation (3.16) is not dependent upon

linear behavior, and it can be used in both softening and stiffening types of control stiffness scaling.

The strain error quantity used to check convergence is computed by taking a global maximum (an

L∞ norm) as follows:

error
I
=

∥

∥

∥

∥

E
I

Ere f

∥

∥

∥

∥

∞

, (3.18)

where Ere f is a reference strain specified in the input parameters for the material whose response

is being scaled.

In summary, the user may specify error tolerances to determine convergence of the sequence of

model problems solved in the control stiffness algorithm by using one of the error measures defined

by Equations (3.14), (3.15), or (3.18). If the user so chooses, error tolerances corresponding to

both Equations (3.14) and (3.15) can be specified, and convergence is considered whenever either

tolerance is met. Because L2 norms are computed by summing over all the elements in a mesh,

users are cautioned that the tolerance used with Equation (3.14) to achieve a given level of control

stiffness convergence is mesh dependent. That is, as the number of elements greatly increases,

the L2 norm of Equation (3.14) naturally increases. In most cases, the relative strain error given

in Equation (3.18) is the preferred error measure. In addition to the error measures defined by

Equations (3.14), (3.15), or (3.18), it is necessary to determine whether equilibrium is still achieved

once the reference stresses have been updated. That is, equilibrium is re-evaluated with σ
I+1

and

s
I+1

calculated without any additional changes to the fundamental nodal degrees of freedom such

that

σ
I+1
= σ

I
(3.19)

115

and

s
I+1
= r

I+1
+ λ

(

σ
I+1
− r

I+1

)

. (3.20)

If convergence is achieved both for the difference between the scaled stress and the unscaled stress

(either as a direct measure or as a strain error) and for the updated equilibrium evaluation, the

time step is considered complete. Note that if control contact is also active, it is necessary that the

appropriate contact convergence checks be satisfied as well.

Figure 3.9 shows an example of a linear material that has been softened through control stiffness. In

this example, the time step is considered converged immediately after the second model problem

update. The third model problem involved no iterations and is thus simply a re-evaluation of

equilibrium and control stiffness convergence after the reference stress is updated following the

second model problem.

Figure 3.9: Control stiffness softening behavior convergence is achieved after solving two model

problems.

The command block for control stiffness is as follows:

BEGIN CONTROL STIFFNESS [<string>stiffness_name]

#

convergence commands

TARGET <string>RESIDUAL|AXIAL FORCE INCREMENT|

PRESSURE INCREMENT|SDEV INCREMENT|STRESS INCREMENT

= <real>target [DURING <string list>period_names]

TARGET RELATIVE <string>RESIDUAL|AXIAL FORCE INCREMENT|

PRESSURE INCREMENT|SDEV INCREMENT|STRESS INCREMENT|

STRAIN INCREMENT

= <real>target_rel [DURING <string list>period_names]

ACCEPTABLE <string>RESIDUAL|AXIAL FORCE INCREMENT|

PRESSURE INCREMENT|SDEV INCREMENT|STRESS INCREMENT

116

= <real>accept [DURING <string list>period_names]

ACCEPTABLE RELATIVE <string>RESIDUAL|AXIAL FORCE INCREMENT|

PRESSURE INCREMENT|SDEV INCREMENT|STRESS INCREMENT|

STRAIN INCREMENT

= <real>accept_rel [DURING <string list>period_names]

REFERENCE = EXTERNAL|INTERNAL|RESIDUAL(EXTERNAL)

[DURING <string list>period_names]

MINIMUM ITERATIONS = <integer>min_iter(0)

[DURING <string list>period_names]

MAXIMUM ITERATIONS = <integer>max_iter

[DURING <string list>period_names]

#

level selection command

LEVEL = <integer>stiffness_level

#

diagnostic output commands

ITERATION PLOT = <integer>iter_plot

[DURING <string list>period_names]

ITERATION PLOT OUTPUT BLOCKS = <string list>plot_blocks

END [CONTROL STIFFNESS <string>stiffness_name]

To enable control stiffness, a CONTROL STIFFNESS command block must exist in the SOLVER

command block. The command lines within the CONTROL STIFFNESS command block are used

to control convergence during the control stiffness updates, select the level for control stiffness

within the multilevel solver, and output diagnostic information. These command lines are de-

scribed in detail in Sections 3.6.1 through 3.6.3.

3.6.1 Convergence Commands

The command lines listed in this section are placed in the CONTROL STIFFNESS command block

to control convergence criteria for stiffness control within the multilevel solver.

TARGET <string>RESIDUAL|AXIAL FORCE INCREMENT|

PRESSURE INCREMENT|SDEV INCREMENT|STRESS INCREMENT

= <real>target [DURING <string list>period_names]

TARGET RELATIVE <string>RESIDUAL|AXIAL FORCE INCREMENT|

PRESSURE INCREMENT|SDEV INCREMENT|STRESS INCREMENT|

STRAIN INCREMENT

= <real>target_rel [DURING <string list>period_names]

ACCEPTABLE <string>RESIDUAL|AXIAL FORCE INCREMENT|

PRESSURE INCREMENT|SDEV INCREMENT|STRESS INCREMENT

= <real>accept [DURING <string list>period_names]

ACCEPTABLE RELATIVE <string>RESIDUAL|AXIAL FORCE INCREMENT|

PRESSURE INCREMENT|SDEV INCREMENT|STRESS INCREMENT|

STRAIN INCREMENT

= <real>accept_rel [DURING <string list>period_names]

117

REFERENCE = EXTERNAL|INTERNAL|RESIDUAL(EXTERNAL)

[DURING <string list>period_names]

MINIMUM ITERATIONS = <integer>min_iter(0)

[DURING <string list>period_names]

MAXIMUM ITERATIONS = <integer>max_iter

[DURING <string list>period_names]

Convergence for problems using control stiffness requires that two criteria be met. The first cri-

terion is that equilibrium must be achieved. The second criterion is that the scaled stress used for

equilibrium must be close enough to the unscaled stress that is determined with the unmodified

material model as calculated from either Equation (3.14), (3.15), or (3.18).

The command lines listed above for the equilibrium evaluation are similar to those used for the

core CG solver, and have similar meaning. Here, however, the command lines are applied as

part of determining convergence for the control stiffness series of model problems. Note that

some of the command lines have multiple options, e.g., the command line beginning with TARGET

has five options. This practice has been used for the command lines beginning with TARGET,

TARGET RELATIVE. ACCEPTABLE, and ACCEPTABLE RELATIVE. Note also that all of these

command lines can be appended with the DURING specification, as discussed in Section 3.2.1.

Convergence of equilibrium using scaled stresses is measured by computing the L2 norm of the

residual, and comparing that residual norm with target convergence criteria specified by the user.

Convergence can be monitored either directly in terms of the residual norm, or in terms of a relative

residual, which is the residual norm divided by a reference quantity that is indicative of the current

loading conditions on a model. Either the residual, the relative residual, or both of these can be

used for checking convergence at the same time. The TARGET RESIDUAL command line specifies

the target convergence criterion in terms of the actual residual norm. The TARGET RELATIVE

RESIDUAL command line specifies a convergence criterion in terms of the relative residual. If both

absolute and relative criteria are specified for the residual calculation, the equilibrium is accepted

if either criterion is met.

The multilevel solver also allows acceptable convergence criteria to be input for residual conver-

gence. If the solution has not converged to the specified targets before the maximum number of

iterations is reached, the residual is checked against the acceptable convergence criteria. These

criteria are specified via the ACCEPTABLE RESIDUAL and ACCEPTABLE RELATIVE RESIDUAL

command lines. The concepts of absolute and relative values are the same here as discussed for

the target limits.

If relative residuals are given in the convergence criteria, the REFERENCE command line can be

used to select the method for computing the reference load. This command line has three options:

EXTERNAL, INTERNAL, and RESIDUAL. With the EXTERNAL option, which is the default, the

reference is computed by taking the L2 norm of the current external load. The INTERNAL option

uses the norm of the internal forces as the reference load. Finally, the RESIDUAL option denotes

that the initial residual should be used as the reference quantity.

For control stiffness, unlike other controls, the convergence of the series of model problems to

obtain the final solution for a time step is also based on other criteria that measure how far apart

the scaled and unscaled stress responses are from each other. Either a direct error measure of the

118

difference of the scaled and unscaled stress is used or a relative strain error computed using the

difference between the scaled and unscaled stress and a representative modulus is employed.

There are a number of variants of the TARGET command that can be used for the direct stress

differences. The TARGET AXIAL FORCE INCREMENT command is used to base convergence on

the increment of axial force in fiber membrane elements in an update. The TARGET PRESSURE

INCREMENT and TARGET SDEV INCREMENT commands are used to specify convergence for

nearly incompressible materials based on the pressure and deviatoric stress increments, respec-

tively. Also, TARGET STRESS INCREMENT is used to base convergence on the stress incre-

ment for materials which have their entire behavior softened as part of a control stiffness ap-

proach. If desired, the RELATIVE form of these convergence criteria can be used. If the

TARGET RELATIVE STRAIN INCREMENT command is specified, the strain error measure be-

tween the scaled and unscaled stress will be computed and used.

Any combination of these criteria can be specified. If more than one is specified, all of the cri-

teria must be satisfied. However, each material block contributes either to the direct stress error

measures or to the relative strain error measure. If a material block specifies a positive non-zero

REFERENCE STRAIN in its definition, it will contribute to the relative strain error measure. Other-

wise, it will contribute to the direct stress error measures. Finally, acceptable convergence criteria

can be input for converging the difference between the scaled and unscaled stress. If the solution

has not met the target criteria for equilibrium and the difference between the scaled and unscaled

stresses, but meets the acceptable criteria, it is allowed to proceed to the next time step.

The MAXIMUM ITERATIONS and MINIMUM ITERATIONS command lines specify the maximum

and minimum number of control stiffness updates, respectively. The default minimum number of

iterations, min_iter, is 0. If a number greater than 0 is specified for min_iter, the multilevel

solver will update stiffness at least that many times, regardless of whether the convergence criteria

have been met.

3.6.2 Level Selection Command

LEVEL = <integer>stiffness_level

The LEVEL command line in the CONTROL STIFFNESS command block is used to specify the

level in the multilevel solver at which stiffness is controlled. The stiffness_level parameter

can have a value of either 1 or 2, with 1 being the default.

This command is used when multiple controls (i.e. control contact and control stiffness) are active

in the multilevel solver. It is permissible for multiple controls to exist at a given level. The default

behavior is for all controls to be at level 1. To have a control at level 2, another control must be

active at level 1 because a level in the multilevel solver cannot be skipped. The level of other

controls is specified using the LEVEL command line in the command blocks associated with those

controls.

119

3.6.3 Diagnostic Output Commands

ITERATION PLOT = <integer>iter_plot

[DURING <string list>period_names]

ITERATION PLOT OUTPUT BLOCKS = <string list>plot_blocks

The command lines listed above can be used to control the output of diagnostic information from

the stiffness control within the multilevel solver. The ITERATION PLOT command line allows

plots of the current state of the model to be written to the output database during the stiffness

control updates. The value supplied in iter_plot specifies the frequency of such plots. The

default behavior is not to produce such plots. The plots are generated with a fictitious time step.

Every time such a plot is generated, a message is sent to the log file. This feature is useful for

debugging, but it should be used with care. Note that the ITERATION PLOT command line can be

appended with the DURING specification, as discussed in Section 3.2.1.

The output produced by iteration plots is sent by default to every active results output file, as spec-

ified by a RESULTS OUTPUT command block. The ITERATION PLOT OUTPUT BLOCKS com-

mand line can optionally be used to supply a list of output block names to which iteration plots

should be written. Each of the output block names listed in plot_blocks, must match the name

of a RESULTS OUTPUT command block (see Section 8.2.1). The ITERATION PLOT OUTPUT

BLOCKS command line can be useful for directing iteration plots to separate output files so that

these plots are separated from the converged solution output. It can also be used to send output

plots for different levels of the multilevel solver to different files.

120

3.7 Control Failure

Control failure can be used to improve convergence in problems that involve material failure com-

puted by the Multilinear Elastic-Plastic Failure material model or by user-defined global variables.

For element death to occur in adagio, the user must define both an element death block (as defined

in Section 5.5) and a multilevel solver with control failure.

The command block for control failure is as follows:

BEGIN CONTROL FAILURE [<string>failure_name]

#

convergence control command

MAXIMUM ITERATIONS = <integer>max_iter

[DURING <string list>period_names]

#

level selection command

LEVEL = <integer>failure_level

#

diagnostic output commands

ITERATION PLOT = <integer>iter_plot

[DURING <string list>period_names]

ITERATION PLOT OUTPUT BLOCKS = <string list>plot_blocks

END [CONTROL FAILURE <string>failure_name]

To enable control failure, a CONTROL FAILURE command block must exist in the SOLVER com-

mand block. The command lines within the CONTROL FAILURE command block are used to

establish convergence criteria, select the level for control failure within the multilevel solver, and

output diagnostic information. These command lines are described in detail in Sections 3.7.1

through 3.7.3.

Convergence of control failure is defined by two criteria. The first criterion is that no new elements

have been marked as ready to begin to fail in the previous model problem iteration. Currently this

control only works with the Multilinear Elastic-Plastic Failure material model. An optional second

criteria is that this first criteria is reached before the maximum number of iterations is reached if

this command is specified by the user.

3.7.1 Convergence Command

The only user input convergence criteria that is allowed for control failure is specification of max-

imum iterations.

MAXIMUM ITERATIONS = <integer>max_iter

[DURING <string list>period_names]

Iterations for control failure will continue until no new elements are failing unless the user specified

number of maximum iterations is reached. If a maximum number of iterations is specified in the

121

input, control failure iterations will only continue until this number is reached. If the maximum

number of iterations is reached the analysis will terminate in an unconverged state and with an

explanatory message in the log file. Note that this command can be appended with the DURING

specification, as discussed in Section 3.2.1.

3.7.2 Level Selection Command

LEVEL = <integer>failure_level

The LEVEL command line in the CONTROL FAILURE command block is used to specify the level

in the multilevel solver at which failure is controlled. The failure_level parameter can have a

value of either 1 or 2, with 1 being the default.

This command is used when multiple controls (i.e. control contact and control failure) are active

in the multilevel solver. The control failure should be the only control at the outermost (highest

numerical value) level. To have a control at level 2, another control must be active at level 1

because a level in the multilevel solver cannot be skipped. The level of other controls is specified

using the LEVEL command line in the command blocks associated with those controls.

3.7.3 Diagnostic Output Commands

ITERATION PLOT = <integer>iter_plot

[DURING <string list>period_names]

ITERATION PLOT OUTPUT BLOCKS = <string list>plot_blocks

The command lines listed above can be used to control the output of diagnostic information from

the failure control within the multilevel solver. The ITERATION PLOT command line allows plots

of the current state of the model to be written to the output database during the failure control

updates. The value supplied in iter_plot specifies the frequency of such plots. The default

behavior is not to produce such plots. The plots are generated with a fictitious time step. Every

time such a plot is generated, a message is sent to the log file. This feature is useful for debugging,

but it should be used with care. Note that the ITERATION PLOT command line can be appended

with the DURING specification, as discussed in Section 3.2.1.

The output produced by iteration plots is sent by default to every active results output file, as spec-

ified by a RESULTS OUTPUT command block. The ITERATION PLOT OUTPUT BLOCKS com-

mand line can optionally be used to supply a list of output block names to which iteration plots

should be written. Each of the output block names listed in plot_blocks, must match the name

of a RESULTS OUTPUT command block (see Section 8.2.1). The ITERATION PLOT OUTPUT

BLOCKS command line can be useful for directing iteration plots to separate output files so that

these plots are separated from the converged solution output. It can also be used to send output

plots for different levels of the multilevel solver to different files.

122

3.8 Control Modes

The core conjugate gradient solution algorithm used by Adagio typically works very well on

“blocky” problems if the nodal preconditioners are used. As the aspect ratios of the structures

modeled increase, however, the performance of the CG solver begins to degrade. Because of their

lack of coupling terms, the nodal preconditioners only allow for the effects of the residual to be

propagated across a single element during an iteration. Consequently, these preconditioners are

effective at minimizing high frequency error, but may require many iterations to solve for the low

frequency, structural bending modes in slender structures.

The full tangent preconditioners provided by Adagio greatly improve the effectiveness of the CG

algorithm for solving models with slender members. However, the memory usage requirements

and the computational effort needed to factorize matrices with the full tangent preconditioners can

sometimes be significant.

In addition to its other solution strategies, Adagio provides a multigrid solution method within the

CG algorithm. This method, known as control modes, greatly increases the effectiveness of the

CG algorithm for solving slender, bending-dominated problems. In addition to the actual mesh of

the model to be solved, referred to as the “reference mesh,” control modes uses a coarse mesh of

the model, known as a “constraint mesh,” to solve for the low-frequency response. To use control

modes, the user must supply both the reference mesh and the constraint mesh. While it does

require some additional effort to generate a suitable coarse mesh, control modes provides very

efficient solutions with only slightly higher memory usage than would be required by the standard

CG solver with a nodal preconditioner.

Control modes functions somewhat like another level in the multilevel solver, although it does not

appear as a control type in the SOLVER command block. The CG algorithm operates alternately on

the residual on the coarse mesh and the fine mesh. The coarse residual is computed by performing a

restriction operation from the fine mesh to the coarse mesh using the shape functions of the coarse

elements. The CG solver is used to minimize the coarse residual until convergence is reached,

at which point it switches to operate on the fine mesh to minimize that residual. The fine mesh

iterations continue until either the fine mesh has converged or the fine residual is 50% of the coarse

residual. The solver alternates between the fine and coarse meshes until convergence is obtained

on both meshes.

To use control modes, the user should set up the mesh file and the input file as usual, except that

the following additional items must be provided:

• A constraint mesh must be generated. The constraint mesh must be in a separate file from the

reference mesh, which is the real model. The constraint mesh should be a coarse represen-

tation of the reference mesh. If there are node sets or side sets in the reference mesh that are

used to prescribe kinematic boundary conditions, similar mesh entities should be provided

in the coarse mesh to prescribe similar boundary conditions.

• A second FINITE ELEMENT MODEL command block must be provided in addition to the

standard definition for the reference finite element model in the input file. This command

block is set up exactly as it normally would be (see Section 5.1), except that the mesh file

123

referenced is the constraint mesh instead of the reference mesh. Although the constraint

mesh is used purely as a solution tool, and does not use any finite elements or material

models, each block in the constraint mesh must still be assigned a material model.

• A CONTROL MODES REGION command block must appear alongside the standard ADAGIO

REGION command block within the ADAGIO PROCEDURE command block. The presence

of the CONTROL MODES REGION command block instructs the CG solver to use the con-

trol modes logic. There are no commands within the CG solver for the region associ-

ated with the reference mesh related to control modes. The CONTROL MODES REGION

command block is documented in Section 3.8.1. It contains the same commands used

within the standard ADAGIO REGION command block, except that the commands in the

CONTROL MODES REGION command block are used to control the control modes algorithm

and the boundary conditions on the coarse mesh.

3.8.1 Control Modes Region

BEGIN CONTROL MODES REGION

#

model setup

USE FINITE ELEMENT MODEL <string>model_name

CONTROL BLOCKS = <string list>control_blocks

#

solver commands

BEGIN SOLVER

BEGIN LOADSTEP PREDICTOR

#

Parameters for loadstep predictor

#

END [LOADSTEP PREDICTOR]

BEGIN CG

#

Parameters for CG

#

END [CG]

END [SOLVER]

JAS MODE [SOLVER|CONTACT|OUTPUT]

#

kinematic boundary condition commands

BEGIN FIXED DISPLACEMENT

#

Parameters for fixed displacement

#

END [FIXED DISPLACEMENT]

BEGIN PERIODIC

#

Parameters for periodic

124

#

END [PERIODIC]

END [CONTROL MODES REGION]

The CONTROL MODES REGION command block controls the behavior of the control modes

algorithm, and is placed alongside a standard ADAGIO REGION command block within the

ADAGIO PROCEDURE scope. With the exception of the CONTROL BLOCKS command line, all

the commands that can be used in this block are standard commands that appear in the Adagio

region. These commands have the same meaning in either context; they simply apply to the con-

straint mesh or to the reference mesh, depending on the region block in which they appear. Sec-

tions 3.8.1.1 through 3.8.1.3 describe the components of the CONTROL MODES REGION command

block.

3.8.1.1 Model Setup Commands

USE FINITE ELEMENT MODEL <string>model_name

CONTROL BLOCKS = <string list>control_blocks

The command lines listed above must appear in the CONTROL MODES REGION command block if

control modes is used. The USE FINITE ELEMENT MODEL command line should reference the

finite element model for the constraint mesh. This command line is used in the same way that the

command line is used for the reference mesh (see Section 2.3).

The CONTROL BLOCKS command line provides a list of blocks in the reference mesh that will be

controlled by the constraint mesh in the solver. The block names are listed using the standard

method of referencing mesh entities (see Section 1.5). For example, the block with an ID of 1

would be listed as block_1 in this command. Multiple CONTROL BLOCKS command lines may

appear to specify a long list of blocks over several lines.

3.8.1.2 Solver Commands

BEGIN SOLVER

BEGIN LOADSTEP PREDICTOR

#

Parameters for loadstep predictor

#

END [LOADSTEP PREDICTOR]

BEGIN CG

#

Parameters for CG

#

END [CG]

END SOLVER

JAS MODE [OUTPUT|CONTACT|SOLVER]

125

The constraint mesh must have solver parameters defined using the LOADSTEP PREDICTOR and

CG command blocks, which must be nested within a SOLVER block in the CONTROL MODES

REGION. The constraint mesh does not have material properties or contact, so the CG command

block is used to define the solver on the constraint mesh. The multilevel solver is not used on

the constraint mesh, even though the multilevel solver may be used on the reference mesh in an

analysis that uses a constraint mesh. All the command lines that appear in these command blocks

in a standard analysis can be used for the parameters of the solver on the constraint mesh. Refer to

Section 3.9.1 for a description of the command lines for the load step predictor and to Section 3.2

for a description of the CG solver commands.

The full set of preconditioners that are available on the reference mesh are also available for the

constraint mesh. The full tangent preconditioner can be used on the constraint mesh, and provides

a very powerful solution strategy. Because the constraint mesh is typically very small compared

to the reference mesh, forming and factorizing matrices for the constraint mesh typically requires

small computational resources.

The JAS MODE command line enables complete compatibility with the JAS3D legacy code. If this

mode of operation is desired, the JAS MODE command line must be present in both the CONTROL

MODES REGION command block and the ADAGIO REGION command block. See Section 3.10 for

more information on this command line.

3.8.1.3 Kinematic Boundary Condition Commands

BEGIN FIXED DISPLACEMENT

#

Parameters for fixed displacement

#

END [FIXED DISPLACEMENT]

BEGIN PERIODIC

#

Parameters for periodic

#

END [PERIODIC]

For the solver to converge well, it is often important to create a node set or a side set on the

coarse mesh that coincides geometrically with a node set or a side set on the fine mesh to

which a fixed boundary condition is applied. This should be done for fixed boundary conditions,

but not for boundary conditions with prescribed nonzero displacements. Any of the kinematic

boundary condition command blocks that can appear in a standard Adagio region can also ap-

pear in the CONTROL MODES REGION command block. However, it is recommended that only

FIXED DISPLACEMENT and PERIODIC boundary conditions be used on the constraint mesh.

The boundary conditions are applied to the specified mesh entities on the constraint mesh. The con-

straint mesh and the reference mesh can have a node set or a side set with the same identifier. The

determination of which entity should be affected by the boundary condition is based on the context

of the boundary condition specified. See Section 6.3.1 for details on the FIXED DISPLACEMENT

command block.

126

3.9 Predictors

Predictors are an important component of Adagio’s nonlinear solution strategy. A predictor is used

to generate an initial trial solution for a load step or for a multilevel solver model problem. The

goal of the predictor is to generate a trial solution that is as close as possible to the actual converged

solution. A good prediction that gives a trial solution close to the actual solution can dramatically

reduce the number of iterations required for convergence.

There are two types of predictors used in Adagio: the load step predictor and the level 1 predictor.

The load step predictor, documented in Section 3.9.1, estimates a solution at the beginning of a

new load step, and is applicable to all types of models. The level 1 predictor estimates the solution

at the beginning of a new level 1 model problem in the multilevel solver. This predictor type,

documented in Section 3.9.2, is only applicable for the multilevel solver.

3.9.1 Loadstep Predictor

BEGIN LOADSTEP PREDICTOR

TYPE = <string>SCALE_FACTOR|SECANT|EXTERNAL|EXTERNAL_FIRST

(SECANT)

SCALE FACTOR = <real>scale_factor(1.0)

[<real>first_scale_factor]

[DURING <string list>period_names]

SLIP SCALE FACTOR = <real>slip_factor(1.0)

[DURING <string list>period_names]

END [LOADSTEP PREDICTOR]

The LOADSTEP PREDICTOR command block controls the behavior of the predictor that is used

to predict the solution at the beginning of a new load step. This command block is placed in the

SOLVER scope.

3.9.1.1 Predictor Type

TYPE = <string>SCALE_FACTOR|SECANT|EXTERNAL|EXTERNAL_FIRST

(SECANT)

There are several types of load step predictors available in Adagio that are suitable for different

types of analysis. The predictor type is selected using the TYPE command line in the LOADSTEP

PREDICTOR command block.

- The scale factor predictor is selected with the SCALE_FACTOR option. This type of predictor

extrapolates from the solution of the previous time step using the velocity field from that

step, multiplied by a scale factor, to obtain a trial solution. The actual scale factor that is

applied can be controlled with the SCALE FACTOR command line, which also appears in the

LOADSTEP PREDICTOR command block. This type of predictor works well with models

that have smoothly varying loads.

127

- The secant predictor is selected with the SECANT option, which is useful for scenarios in

which the loading may not be monotonic. This type of predictor uses a line search to compute

an optimal scaling factor for use in extrapolating from the previous solution. This type of

predictor is the default, and provides good performance without requiring user intervention

to select appropriate scale factors.

A scale factor can optionally be specified for the SECANT predictor using the SCALE FACTOR

command line. In this case, the user-specified scale factor is used instead of that computed

by the line search for the time periods where a scale factor is defined. This permits switching

between line search and scale factor predictors over the course of an analysis.

- The external predictor is selected with the EXTERNAL option. This type of predictor uses

the solution from a file to predict the solution at new load steps. Re-using the work done

in previous solutions of similar problems can be very helpful. Using this type of predictor

requires that the input mesh file be a results file that contains displacement data.

- The EXTERNAL_FIRST option is used to select a special type of predictor that (1) uses the

external predictor for the first load step of the solution period and (2) thereafter uses the scale

factor predictor for every other load step in the solution period. If this option is chosen, the

SCALE FACTOR command line must be included in the LOADSTEP PREDICTOR command

block.

3.9.1.2 Scale Factor

SCALE FACTOR = <real>scale_factor(1.0)

[<real>first_scale_factor]

[DURING <string list>period_names]

The SCALE FACTOR command controls the behavior of the SCALE_FACTOR and SECANT predictor

types (and the EXTERNAL_FIRST predictor type in all load steps except the first in a time period).

The velocity field of the previous step, multiplied by the value of scale_factor, is used to

extrapolate from the previous solution to obtain a trial solution. The default value of 1.0 provides

good performance on models that experience smooth loading. Setting the value of scale_factor

to 0.0 may improve the convergence of models with discontinuous loading.

The optional first_scale_factor parameter is used as the scale factor for the first step of a

time period. If first_scale_factor is omitted, the default behavior is to use scale_factor

for all time steps. Models are often subjected to loading that is mostly monotonic, but with discon-

tinuities at the beginning of a new period. Using 1.0 and 0.0 for the values of scale_factor and

first_scale_factor, respectively, often gives good performance in such cases.

The SCALE FACTOR command line can be appended with the DURING specification, as discussed

in Section 3.2.1. This allows for the scale factor to be specified per time period.

3.9.1.3 Slip Scale Factor

SLIP SCALE FACTOR = <real>slip_factor(1.0)

128

[DURING <string list>period_names]

The prediction of slip on slave nodes that are currently active in sliding contact can be con-

trolled separately from other nodes in the model by using the SLIP SCALE FACTOR command

line. The parameter slip_factor controls the scaling of the predicted slip on these nodes. If

slip_factor is left at its default value of 1.0, contact slip will be predicted using the same scale

factor used for the rest of the model. If the value of slip_factor is set to 0.0, the predicted

solution will not allow any sliding contact nodes to slip. This command line applies to both the

SCALE_FACTOR and the SECANT types of predictors.

The SLIP SCALE FACTOR command line can be appended with the DURING specification, as

discussed in Section 3.2.1.

3.9.2 Level Predictor

LEVEL 1 PREDICTOR = <string>NONE|DEFAULT(DEFAULT)

The LEVEL 1 PREDICTOR command line controls the level 1 predictor. This command line ap-

pears in the SOLVER command block, and is only applicable if the multilevel solver is used. The

level 1 predictor estimates the solution for the next model problem based on the solution of the

previous model problem. The default behavior is to enable this predictor, indicated by DEFAULT.

The predictor can be turned off by setting it to NONE.

129

3.10 JAS3D Compatibility Mode

Adagio’s multilevel solver and CG solver are based on the solver used in the legacy JAS3D

code [1]. While the solvers in the two codes are very similar, there are some minor implemen-

tation differences between the two codes.

JAS MODE [SOLVER|CONTACT|OUTPUT]

Adagio provides an option, selectable by inserting the JAS MODE command line in the ADAGIO

REGION command block, to make it use exactly the same algorithms as the JAS3D solver. If control

modes is being used, the JAS MODE command line must appear both in the ADAGIO REGION and

in the CONTROL MODES REGION command blocks (see Section 3.8.1.2). This option is primarily

useful for migrating analyses previously done in JAS3D to Adagio.

The JAS MODE command used without any options enables all JAS3D compatibility features avail-

able. Optionally, this command can be followed by one of the three keywords SOLVER, CONTACT,

or OUTPUT to enable a subset of these features. The command can be repeated on separate lines

with different options to enable more than one subset of features.

The subsets of the features enabled by the JAS MODE command line are summarized below:

• SOLVER: Adagio’s CG solver and multilevel solver use exactly the same algorithms. There

are a number of algorithmic decisions in the solver that were made one way in JAS3D and

another way in Adagio. While both methods are valid, the JAS MODE command line forces

the code to always use the exact JAS3D algorithms.

• CONTACT: Adagio uses the Legacy Contact library instead of the internal Adagio and ACME

code for contact search and enforcement. The Legacy Contact library is the same contact

code that is used in JAS3D, so contact in Adagio models behaves the same as it would if it

were run in JAS3D if this option is chosen.

• OUTPUT: The log file output produced by Adagio is formatted in the same manner as JAS3D

formats log files, thus facilitating comparisons between the output from JAS3D and Adagio

models.

Note that the JAS MODE command line only ensures JAS3D compatibility for features that are

available in JAS3D. Advanced features such as the full tangent preconditioner are not available in

JAS3D. It should also be noted that for those interested in converting JAS3D input files to Adagio

input files, there is a program available for this purpose. For more information on this converter

program, refer to the Adagio web page or contact an Adagio developer.

130

3.11 Time Step Control

Time stepping in Adagio is controlled by using a TIME CONTROL command block in the procedure

scope. In this command block, the user controls the start time, the termination time, and the method

by which time is advanced during the analysis. The analysis time can optionally be subdivided into

a number of time periods. If the analysis is from time 0 to time T and it is split into three periods,

the first period is defined from time 0 to time t1, the second period is defined from time t1 to time

t2, and the third period is defined from time t2 to time T . (The times t1 and t2 are set by the user.)

The sum of the times for the three periods is T .

There are many reasons for splitting an analysis into multiple time periods. It is usually desirable to

start time periods when a change in the model or in the loading conditions occurs that is significant

enough to warrant switching to a different set of solver parameters or boundary conditions. Many of

Adagio’s features can be toggled on or off or changed during different time periods. For example,

boundary conditions and contact can be activated during certain time periods. Similarly, many

solution parameters can change based on the time period.

Time stepping can be uniform during a solution period, or it can vary during a solution period by

using a function to control the time step as a function of analysis time. In Adagio, an automatic

time stepping scheme can also be used to automatically take larger time steps at points in the

analysis when the solution is relatively easy, and take smaller time steps when it becomes more

difficult to solve a time step.

A description of the TIME CONTROL command block follows in Section 3.11.1. Section 3.11.2

describes the ADAPTIVE TIME STEPPING command block, which allows the user to adapt the

size of the time step based on solution difficulty. A simple example of a TIME CONTROL command

block is presented in Section 3.11.3.

3.11.1 Command Blocks for Time Control and Time Stepping

BEGIN TIME CONTROL

BEGIN TIME STEPPING BLOCK <string>time_block_name

START TIME = <real>start_time_value

BEGIN PARAMETERS FOR ADAGIO REGION <string>region_name

#

Time control parameters specific to ADAGIO

are set in this command block.

#

END [PARAMETERS FOR ADAGIO REGION <string>region_name]

END [TIME STEPPING BLOCK <string>time_block_name]

TERMINATION TIME = <real>termination_time

END [TIME CONTROL]

Adagio time control resides in a TIME CONTROL command block. The command block begins

with the input line

BEGIN TIME CONTROL

131

and terminates an input line of the following form:

END [TIME CONTROL]

An arbitrary number of TIME STEPPING BLOCK command blocks can be present to define indi-

vidual time stepping periods within the TIME CONTROL command block. Each TIME STEPPING

BLOCK command block contains the time at which the time stepping starts and a number of param-

eters that set time-related values for the analysis. Each time period terminates at the start time of

the following time period. The start times for the TIME STEPPING BLOCK command blocks must

appear in increasing order or an error message will result. The example in Section 3.11.3 shows

the overall structure of the TIME CONTROL command block.

In the above input lines, the parameters are as follows:

- The string time_block_name is a name for the time period. Every time period must

have a unique name. These names are referenced to control solution parameters or to ac-

tivate/deactivate functionality.

- The real value start_time_value is the start time for this TIME STEPPING BLOCK com-

mand block. A time period goes from its start time until the start time of the next period or

the termination time. The start time may be negative.

- The string region_name is the name of the Adagio region affected by the parameters (see

Section 2.2).

The final termination time for the analysis is given by the following command line:

TERMINATION TIME = <real>termination_time

Here, termination_time is the time at which the analysis will stop. The TERMINATION TIME

command line appears inside the TIME CONTROL command block but outside of any TIME

STEPPING BLOCK command block.

The TERMINATION TIME command line can appear before the first TIME STEPPING BLOCK

command block or after the last TIME STEPPING BLOCK command block. Note that it is permis-

sible to have TIME STEPPING BLOCK command blocks with start times greater than the termina-

tion time; in this case, those command blocks that have start times after the termination time are

not executed. Only one TERMINATION TIME command line can appear in the TIME CONTROL

command block. If more than one of these command lines appears, Adagio gives an error.

Nested inside the TIME STEPPING BLOCK command block is a PARAMETERS FOR ADAGIO

REGION command block containing parameters that control the time stepping.

BEGIN PARAMETERS FOR ADAGIO REGION <string>region_name

TIME INCREMENT = <real>time_increment_value

NUMBER OF TIME STEPS = <integer>nsteps

TIME INCREMENT FUNCTION = <string>time_function

END [PARAMETERS FOR ADAGIO REGION <string>region_name]

132

These parameters are specific to an Adagio analysis.

The command block begins with an input line of the form

BEGIN PARAMETERS FOR ADAGIO REGION <string>region_name

and is terminated with an input line of the following form:

END [PARAMETERS FOR ADAGIO REGION <string>region_name]

As noted previously, the string region_name is the name of the Adagio region to which the

parameters apply. The command lines nested inside the PARAMETERS FOR ADAGIO REGION

command block are used to control the way time stepping occurs, and are described in Sec-

tions 3.11.1.1 through 3.11.1.3. Only one of these command lines (TIME INCREMENT, NUMBER

OF TIME STEPS, or TIME INCREMENT FUNCTION) may be used in a given time period.

3.11.1.1 Time Increment

TIME INCREMENT = <real>time_increment_value

The TIME INCREMENT command line directly specifies the size of a uniform time step that will

be used during a time period. The size of the time step is specified with the parameter time_

increment_value.

3.11.1.2 Number of Time Steps

NUMBER OF TIME STEPS = <integer>nsteps

The NUMBER OF TIME STEPS command line specifies the number of uniform time steps that will

be used during a time period. The number of time steps is specified with the parameter nsteps. If

this command line is used, the time step size is computed by dividing the length of the time period

by the specified number of time steps.

3.11.1.3 Time Increment Function

TIME INCREMENT FUNCTION = <string>time_function

The TIME INCREMENT FUNCTION command line allows the time step to be specified as a func-

tion of analysis time. The function used to control the time step is referenced by the param-

eter time_function. The actual function is defined within a DEFINITION FOR FUNCTION

command block within the SIERRA scope. It is often convenient to use a function of the

PIECEWISE CONSTANT type (see Section 2.1.5) with this command line. Using a function to

control time incrementation allows for the time increment to be conveniently switched many times

during an analysis without creating a new time block every time the time increment needs to be

changed.

133

3.11.2 Adaptive Time Stepping

BEGIN ADAPTIVE TIME STEPPING

METHOD = <string>SOLVER|MATERIAL(SOLVER)

[DURING <string list>period_names]

TARGET ITERATIONS = <integer>target_iter

[DURING <string list>period_names]

ITERATION WINDOW = <integer>iter_window

[DURING <string list>period_names]

CUTBACK FACTOR = <real>cutback_factor(0.5)

[DURING <string list>period_names]

GROWTH FACTOR = <real>growth_factor(1.5)

[DURING <string list>period_names]

MAXIMUM FAILURE CUTBACKS = <integer>max_cutbacks(5)

[DURING <string list>period_names]

MAXIMUM MULTIPLIER = <real>max_multiplier

[DURING <string list>period_names]

MINIMUM MULTIPLIER = <real>min_multiplier

[DURING <string list>period_names]

RESET AT NEW PERIOD = TRUE|FALSE(TRUE)

[DURING <string list>period_names]

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [ADAPTIVE TIME STEPPING]

Adagio has the capability to adapt the time step size during an analysis based on either solu-

tion difficulty or on feedback from material models. This capability is enabled by inserting an

ADAPTIVE TIME STEPPING command block in the region scope. If this command block is not

present in the Adagio region, the time stepping specified in the TIME CONTROL command block

will be used. In addition to adjusting the size of time steps as the analysis proceeds, the adaptive

time stepping algorithm can attempt to solve a load step by using a smaller time step if a solution

fails to converge.

The adaptive time stepping algorithm works by computing a multiplier that is applied to the time

step specified in the TIME CONTROL command block. Thus, even if adaptive time stepping is

used, the time step must be specified for all loading periods in the TIME CONTROL command

block. For the initial load step in each solution period, Adagio always uses the prescribed time

step. In subsequent steps, the adaptive time stepping algorithm computes a factor that is multiplied

by the prescribed time step to adjust the time step based on solution difficulty.

The command lines nested within the ADAPTIVE TIME STEPPING command are used to control

the behavior of this feature and are described in Sections 3.11.2.1 through 3.11.2.10.

Many of these command lines can optionally be set for a specific time period. To set a parameter

for a specific time period, the user can append the DURING keyword followed by a list of applicable

period names to a command line (see Section 3.2.1. Multiple instances of these command lines

can exist to set the parameter differently for different periods. If a command line is not appended

with the DURING specification, it is used to set the default behavior for all time periods. Setting a

134

default in this way does not preclude setting a period-specific value for that parameter with another

instance of the same command line.

3.11.2.1 Method

METHOD = <string>SOLVER|MATERIAL(SOLVER)

[DURING <string list>period_names]

The METHOD command line is used to select the type of adaptive time stepping to be used. The

default SOLVER method adapts the time step based on the difficulty of the solution. Solution

difficulty is determined based on the number of iterations required to achieve convergence. If the

SOLVER method is used, the TARGET ITERATIONS command line must be used to specify the

target iterations used by this method to adapt the time step.

The MATERIAL method adapts the time step based on feedback from the material model. Some

material models are capable of computing a recommended time step. When material-based adap-

tive time stepping is used, the minimum time step recommended by all material integration points

in the model is used.

3.11.2.2 Target Iterations

TARGET ITERATIONS = <integer>target_iter

[DURING <string list>period_names]

The solver method for adaptive time stepping adjusts the time step to achieve a target level of

difficulty. The level of difficulty is determined by the total number of core solver iterations required

to solve for a time step. The TARGET ITERATIONS command is used to specify a target number

of iterations per time step. This command line must be provided if the solver based adaptivity

method is to be used.

The specified value of target_iter is used in conjunction with the value of iter_window

(specified with the ITERATION WINDOW command documented in Section 3.11.2.3) to control the

next step size. If the number of iterations for the previous step is greater than (target_iter-

iter_window), and less than (target_iter+iter_window), the step size is kept the same. If

the number of iterations is greater than (target_iter+iter_window), the step size is decreased,

and if it is less than (target_iter-iter_window), the step size is increased.

3.11.2.3 Iteration Window

ITERATION WINDOW = <integer>iter_window

[DURING <string list>period_names]

The ITERATION WINDOW command is used to specify the size of the window for the iteration

count used in the solver type of adaptive time stepping. See Section 3.11.2.2 for an explanation

135

of how this is used in conjunction with the specified target iterations to adaptively choose the time

step size. The default value of iter_window is the value specified in the TARGET ITERATIONS

command line divided by 10.

3.11.2.4 Cutback Factor

CUTBACK FACTOR = <real>cutback_factor(0.5)

[DURING <string list>period_names]

The CUTBACK FACTOR command line controls the amount by which the next time step is reduced

if the solution is difficult. The parameter cutback_factor, which has a default value of 0.5,

specifies the multiplier that is applied to the current time step with each cutback. The parameter

also controls the amount that the current time step is cut back if a solution fails. Note that the

CUTBACK FACTOR command line can be appended with the DURING specification, as discussed in

Section 3.2.1.

3.11.2.5 Growth Factor

GROWTH FACTOR = <real>growth_factor(1.5)

[DURING <string list>period_names]

The GROWTH FACTOR command line controls the amount by which the next time step is increased

if the solution is easy. The parameter growth_factor, which has a default value of 1.5, specifies

the multiplier (a 50 percent increase) that is applied to the current time step each time the time

step is increased. Note that the GROWTH FACTOR command line can be appended with the DURING

specification, as discussed in Section 3.2.1.

3.11.2.6 Maximum Failure Cutbacks

MAXIMUM FAILURE CUTBACKS = <integer>max_cutbacks(5)

[DURING <string list>period_names]

The MAXIMUM FAILURE CUTBACKS command line controls how many cutbacks to a time step

can be taken if a solution fails to converge. The The parameter max_cutbacks has a default value

of 5 if adaptive time stepping is enabled. If an ADAPTIVE TIME STEPPING command block is

not present, the code will exit rather than attempting to cut back in the event of an unsuccessful

solution. Note that the MAXIMUM FAILURE CUTBACKS command line can be appended with the

DURING specification, as discussed in Section 3.2.1.

3.11.2.7 Maximum Multiplier

MAXIMUM MULTIPLIER = <real>max_multiplier

[DURING <string list>period_names]

136

Time steps are adaptively adjusted by updating a multiplier that is applied to the base time step

specified in the TIME CONTROL command block. By default, there are no limits on the size of

this multiplier. The MAXIMUM MULTIPLIER command line can be used to limit the growth of the

time step. The parameter max_multiplier specifies the upper bound for the multiplier. The

largest possible time step in an analysis is the product of max_multiplier and the baseline

time step size. This baseline size is specified in the TIME CONTROL command block. Note that

the MAXIMUM MULTIPLIER command line can be appended with the DURING specification, as

discussed in Section 3.2.1.

3.11.2.8 Minimum Multiplier

MINIMUM MULTIPLIER = <real>min_multiplier

[DURING <string list>period_names]

Time steps are adaptively adjusted by updating a multiplier that is applied to the base time step

specified in the TIME CONTROL command block. By default, there are no limits on the size of

this multiplier. The MINIMUM MULTIPLIER command line can be used to limit the shrinkage of

the time step. The parameter min_multiplier specifies the lower bound for the multiplier. The

smallest possible time step in an analysis is the product of min_multiplier and the baseline time

step size. Note that the MINIMUM MULTIPLIER command line can be appended with the DURING

specification, as discussed in Section 3.2.1.

3.11.2.9 Reset at New Period

RESET AT NEW PERIOD = TRUE|FALSE(TRUE)

[DURING <string list>period_names]

This command controls whether the time step is reset to the user-specified base time step at the

beginning of a new time period. If this is set to TRUE, which is the default value, the time step is

reset. If this parameter is set to FALSE, the time step at the end of the previous period is maintained.

If the base time step is changed in the new period, the multiplier is adjusted to maintain the same

time step. If the resulting multiplier is outside the specified range, it will be adjusted to stay within

that range and the time step will change. The value of this parameter can optionally be specified

per time period with the DURING option (see Section 3.2.1). If adaptive time stepping is inactive

for a given period, the time step will always be reset even if it is requested that the adaptive time

step not be reset.

3.11.2.10 Active or Inactive Periods

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

If the ADAPTIVE TIME STEPPING command block is present in the Adagio region, it is active

for all periods by default. Adaptive time stepping can be activated or deactivated for specific time

137

periods with the ACTIVE PERIODS or INACTIVE PERIODS command lines. See Section 2.5 for

more information about these optional command lines.

3.11.3 Time Control Example

The following is a simple example of a TIME CONTROL command block:

BEGIN TIME CONTROL

BEGIN TIME STEPPING BLOCK p1

START TIME = 0.0

BEGIN PARAMETERS FOR ADAGIO REGION adagio_region

NUMBER OF TIME STEPS = 10

END

END

BEGIN TIME STEPPING BLOCK p2

START TIME = 1.0

BEGIN PARAMETERS FOR ADAGIO REGION adagio_region

TIME INCREMENT = 0.2

END

END

TERMINATION TIME = 2.0

END

The first TIME STEPPING BLOCK, p1, begins at time 0.0, the initial start time, and terminates at

time 1.0. The second TIME STEPPING BLOCK, p2, begins at time 1.0 and terminates at time 2.0,

the time listed on the TERMINATION TIME command line. The TIME STEPPING BLOCK names

p1 and p2 can be referenced elsewhere to activate boundary conditions or control the solver in

different ways during the two periods.

138

3.12 Implicit Dynamic Time Integration

Adagio has the ability to perform implicit solutions on both quasistatic and dynamic problems.

In quasistatic calculations, the solution for static equilibrium is obtained at each step, ignoring the

inertial terms of the equations of motion. In dynamic problems, the inertial forces are included, and

the HHT time integrator [5] is used to integrate the equations of motion in time. The behavior of

the HHT integrator is controlled with three parameters: α, β, and γ. With proper selection of these

parameters, the HHT integrator is unconditionally stable. If α = 0, this reduces to the Newmark

method [7]. The trapezoidal rule is recovered if α = 0, β = 0.25, and γ = 0.5. For a detailed

discussion of the theory of implicit time integrators, see Reference 6.

3.12.1 Implicit Dynamics

BEGIN IMPLICIT DYNAMICS

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

USE HHT INTEGRATION

ALPHA = <real>alpha(0.0) [DURING <string list>period_names]

GAMMA = <real>beta(0.5) [DURING <string list>period_names]

BETA = <real>beta(0.25) [DURING <string list>period_names]

TIME INTEGRATION CONTROL = <string>ADAPTIVE|COMPUTERESIDUAL|

IGNORE(IGNORE) [DURING <string list>period_names]

INCREASE ERROR THRESHOLD = <real>increase_threshold(0.02)

[DURING <string list>period_names]

HOLD ERROR THRESHOLD = <real>hold_threshold(0.10)

[DURING <string list>period_names]

DECREASE ERROR THRESHOLD = <real>decrease_threshold(0.25)

[DURING <string list>period_names]

END [IMPLICIT DYNAMICS]

The IMPLICIT DYNAMICS command block enables implicit dynamics and contains commands to

control the behavior of implicit time integration. This command block is placed in the ADAGIO

REGION command block. Note that prior versions of Adagio required an Andante region to use

implicit dynamics. The Andante region has been eliminated, and this capability has all been moved

to the Adagio region, which gives the analyst much more flexibility. Formerly, it was necessary to

create a new procedure for switching between implicit dynamics and quasistatics in an analysis.

Now, these different analysis types can all be done within a single region, and the command lines

in the IMPLICIT DYNAMICS command block can be used to enable or disable implicit dynamics

for specific time periods within a single region. Sections 3.12.1.1 through 3.12.1.4 describe the

command lines in this command block.

3.12.1.1 Active or Inactive Periods

ACTIVE PERIODS = <string list>period_names

139

INACTIVE PERIODS = <string list>period_names

If the IMPLICIT DYNAMICS command block is present in the Adagio region, it is active for all

periods by default. Implicit dynamics can be activated or deactivated for specific time periods

with the ACTIVE PERIODS or INACTIVE PERIODS command lines. See Section 2.5 for more

information about these optional command lines.

3.12.1.2 Use HHT Integration

USE HHT INTEGRATION

Adagio currently only supports the HHT algorithm for implicit time integration. The USE HHT

INTEGRATION command line is provided as a placeholder to allow for other time integrators in

the future, but currently this command line has no effect.

3.12.1.3 HHT Parameters

ALPHA = <real>alpha(0.0) [DURING <string list>period_names]

BETA = <real>beta(0.5) [DURING <string list>period_names]

GAMMA = <real>gamma(0.25) [DURING <string list>period_names]

The ALPHA, BETA, and GAMMA command lines specify the HHT integration parameters. These

parameters can all be specified for the entire analysis, or they can vary by solution period by

appending them with the optional DURING specification (see Section 3.2.1).

• The ALPHA command line specifies α, which is the dissipation factor applied to the internal

force vector. The value of alpha controls numerical damping and must always be less than

or equal to zero. Its default value of 0.0 results in no numerical damping. To maintain

second-order accuracy, the value of alpha should not be less than − 1
3
.

• The GAMMA command line specifies the dissipation factor γ for Newmark time integrators.

The default value of gamma is 0.25. It should have a value of 0.5−α to maintain second-order

accuracy.

• The BETA command line specifies the stability parameter β for time integrators in the New-

mark family. The default value of beta is 0.5. It should have a value of 0.25(γ + 0.5)2 to

maintain second-order accuracy.

3.12.1.4 Implicit Dynamic Adaptive Time Stepping

TIME INTEGRATION CONTROL = <string>ADAPTIVE|COMPUTERESIDUAL|

IGNORE(IGNORE) [DURING <string list>period_names]

INCREASE ERROR THRESHOLD = <real>increase_threshold(0.02)

140

[DURING <string list>period_names]

HOLD ERROR THRESHOLD = <real>hold_threshold(0.10)

[DURING <string list>period_names]

DECREASE ERROR THRESHOLD = <real>decrease_threshold(0.25)

[DURING <string list>period_names]

Adagio provides an adaptive time stepping capability that adjusts the time step based on the error

due to time discretization with implicit time integration. If this capability is activated, after a

solution is obtained for each time step, an interpolated solution for the half step is computed based

on the assumption that acceleration is constant over the time step. The residual is computed using

this interpolated solution. The residual is indicative of the error introduced due to the time step,

and is used to adjust the time step. The residual is always evaluated relative to the reference load.

The size of the next time step is increased if the residual is low, or decreased if the residual is high.

The command lines for adaptive time stepping can all be optionally used in the IMPLICIT

DYNAMICS command block. These command lines control the behavior of the implicit time in-

tegrator’s algorithm for adaptive time stepping. All the parameters specified by these command

lines can vary by period by appending the command lines with the optional DURING specification

(see Section 3.2.1).

• The TIME INTEGRATION CONTROL command line controls whether the algorithm for

adaptive time stepping should be used. Three options are available: ADAPTIVE,

COMPUTERESIDUAL, and IGNORE. If the option is set to ADAPTIVE, the midstep residu-

als are computed and the time step is adjusted based on the residuals. If the option is set to

COMPUTERESIDUAL, the midstep residual is computed and reported in the log file, but the

time step is not adjusted. If the option is set to IGNORE, the default, no midstep residuals are

computed, and the time step is not adjusted.

• The INCREASE ERROR THRESHOLD command line controls when the time step is in-

creased. If the relative midstep residual is below the specified value, the next time step

will be increased. The default value of increase_threshold is 0.02.

• The HOLD ERROR THRESHOLD command line controls when the time step is held constant.

If the relative midstep residual is below the hold threshold and greater than the increase

threshold, the next time step will be held constant. The default value of hold_threshold

is 0.10, which must be greater than the value of increase_threshold.

• The DECREASE ERROR THRESHOLD command line controls when the time step is de-

creased. If the relative midstep residual is below the decrease threshold and greater than

the hold threshold, the current time step is accepted but the next time step will be de-

creased. If the relative midstep residual is greater than the decrease threshold, the cur-

rent solution is rejected and recomputed with a smaller time step. The default value of

decrease_threshold is 0.25, which must be greater than hold_threshold.

141

3.13 References

1. Blanford, M. L., M. W. Heinstein, and S. W. Key. JAS3D – A Multi-Strategy Iterative Code

for Solid Mechanics Analysis Users’ Instructions, Release 2.0, Draft SAND report. Albu-

querque, NM: Sandia National Laboratories, September 2001.

2. Fletcher, R., and C. M. Reeves. “Function Minimization by Conjugate Gradients.” The

Computer Journal 7 (1964): 149–154.

3. Farhat, C., M. Lesoinne, and K. Pierson. “A Scalable Dual-Primal Domain Decomposition

Method.” Numerical Linear Algebra with Applications 7 (2000): 687–714.

4. Farhat, C., M. Lesoinne, P. LeTallec, K. Pierson, and D. Rixen. “FETI-DP: A Dual-Primal

Unified FETI Method – Part I: A Faster Alternative to the Two-Level FETI Method.” Inter-

national Journal for Numerical Methods in Engineering 50 (2001): 1523–1544.

5. Hilber, H. M., T. J. R. Hughes, and R. L. Taylor. “Improved Numerical Dissipation for Time

Integration Algorithms in Structural Dynamics.” Earthquake Engineering and Structural

Dynamics 5 (1977): 283–292.

6. Hughes, T. J. R. The Finite Element Method: Linear Static and Dynamic Finite Element

Analysis. Englewood Cliffs, NJ: Prentice-Hall, 1987.

7. Newmark, N. M. “A Method of Computation for Structural Dynamics.” Journal of the En-

gineering Mechanics Division, ASCE 85, no. EM3 (1959): 67–94.

142

Chapter 4

Materials

This chapter describes material models that can be used in conjunction with the elements in Presto

and Adagio. Most of the material models have an interface that allows them to be used by the

elements in both codes. Even though a material model can be used by both codes, usage of the

model may be better suited for the type of problems solved by one code rather than the type of

problems solved by the other code. For example, a material model that was built to characterize

behavior over a long time would be better suited for use in Adagio than in Presto. If a particular

material model is better suited for one code rather than the other, this usage information is provided

in the description of that model.

The material models described in this chapter are, in general, applicable to solid elements. The

structural elements, such as shells and beams, have a much more limited set of material models.

Chapter 5 describes the element library, including which material models are available for the

various elements. The introduction to Chapter 5 summarizes all the element types in Presto and

Adagio. For each element type, a list of available material models is provided.

When using the nonlinear material models, you may want to output state variables that are associ-

ated with these models. See Section 8.9.2 to learn how to output the state variables for the various

nonlinear material models.

Most material models for solid elements are available in two libraries. The newer library is the

LAME library [17], but it is not the default. The line command to activate the LAME material

library for a particular section is described in Section 5.2.1.

General Model Form. PROPERTY SPECIFICATION FOR MATERIAL command blocks appear

in the SIERRA scope in the general form shown below.

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

#

Command lines and command blocks for material

models appear in this scope.

#

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

143

PROPERTY SPECIFICATION FOR MATERIAL command blocks are physics independent in the

sense that the information in them can be shared by more than one application. For example, some

of the PROPERTY SPECIFICATION FOR MATERIAL command blocks contain density informa-

tion that can be shared among several applications.

The command block begins with the line:

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

and terminates with the line:

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Here, the string mat_name is a user-specified name for the command block. This name is typically

descriptive of the material being modeled, e.g., aluminum_t6061.

Within a PROPERTY SPECIFICATION FOR MATERIAL command block, there will be other com-

mand blocks and possibly other general material command lines that are used to describe particular

material models. The general material command lines, if present, are listed first, followed by one

or more material-model command blocks. The general material command lines may be used to

specify the density of the material, the Biot’s coefficient, and the application of temperatures and

thermal strains to two- or three-dimensional elements. Each material-model command block fol-

lows the naming convention of PARAMETERS FOR MODEL model_name, where model_name

identifies a particular material model, such as elastic, elastic-plastic, or orthotropic crush. Each

such command block contains all the parameters needed to describe a particular material model.

As noted above, more than one material-model command block can appear within a

PROPERTY SPECIFICATION FOR MATERIAL command block. Suppose we have a PROPERTY

SPECIFICATION FOR MATERIAL command block called steel. It would be possible to

have two material-model command blocks within this command block. One of the material-

model command blocks would provide an elastic model for steel; the other material-model

command block would provide an elastic-plastic model for steel. The general form of a

PROPERTY SPECIFICATION FOR MATERIAL command block would be as follows:

144

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

#

General material command lines

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_coefficient_value

#

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL <string>model_name1

#

Parameters for material model model_name1

END PARAMETERS FOR MODEL <string>model_name1

#

BEGIN PARAMETERS FOR MODEL <string> model_name2

#

Parameters for material model model_name2

END PARAMETERS FOR MODEL <string> model_name2

#

Additional model command blocks if required

#

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

In the above general form for a PROPERTY SPECIFICATION FOR MATERIAL command block,

the string model_name1 could be ELASTIC and the string model_name2 could be ORTHOTROPIC

CRUSH. Typically, however, only one material model would be desired for a given block,

and the PROPERTY SPECIFICATION FOR MATERIAL command block would have only one

PARAMETERS FOR MODEL command block. A particular material model may only appear once

within a given PROPERTY SPECIFICATION FOR MATERIAL command block.

Although multiple material models can be defined for one material within a PROPERTY

SPECIFICATION FOR MATERIAL command block, only one material model is actually used for

a given element block during an analysis. The ability to define multiple constitutive models for one

material is provided as a convenience to enable the user to easily switch between models. The ma-

terial name and the model name are both referenced when material models are assigned to element

blocks within the FINITE ELEMENT MODEL command block, which is described in Section 5.1.

This chapter is organized to correspond to the general form presented for the PROPERTY

SPECIFICATION FOR MATERIAL command block. Section 4.1 discusses the DENSITY com-

mand line, the BIOTS COEFFICIENT command line, and the command lines used for thermal

strains, and also explains how temperatures and thermal strains are applied. Section 4.2 describes

each of the material models that are shared by Presto and Adagio. References applicable for both

145

Presto and Adagio are listed in Section 4.4.

As indicated in the introductory material, not all the material models available are applicable to all

the element types. As one example, there is a one-dimensional elastic material model that is used

for a truss element but is not applicable to solid elements such as hexahedra or tetrahedra. For this

particular example, the specific material-model usage is hidden from the user. If the user specifies

a linear elastic material model for a truss, the one-dimensional elastic material model is used. If

the user specifies a linear elastic material model for a hexahedron, a full three-dimensional elastic

material model is used. As another example, the energy-dependent material models available

in Presto cannot be used for a one-dimensional element such as a truss. The energy-dependent

material models can only be used for solid elements such as hexahedra and tetrahedra. (Chapter 5

indicates what material models are available for which element models.)

For each material model, the parameters needed to describe that model are listed in the section

pertinent to that particular model. Solid models with elastic constants require only two elastic

constants. These two constants are then used to generate all the elastic constants for the model.

For example, if the user specifies Young’s modulus and Poisson’s ratio, then the shear modulus,

bulk modulus, and lambda are calculated. If the shear modulus and lambda are specified, then

Young’s modulus, Poisson’s ratio, and the bulk modulus are calculated.

The various nonlinear material models have state variables. See Section 8.9.2 to learn how to

output the state variables for the nonlinear material models.

Note that only brief descriptions of the material models are presented in this chapter. For a detailed

description of the various material models, you will need to consult a variety of references. Specific

references are identified for most of the material models shared by Presto and Adagio.

146

4.1 General Material Commands

A PROPERTY SPECIFICATION FOR MATERIAL command block for a particular material may

include additional command lines that are applicable to all the material models specified within

the command block. These command lines related to density, to Biot’s coefficient, and to thermal

strain behavior are discussed, respectively, in Section 4.1.1, Section 4.1.2, and Section 4.1.3.

4.1.1 Density Command

DENSITY = <real>density_value

This command line specifies the density of the material described in a PROPERTY

SPECIFICATION FOR MATERIAL command block. The units of the input parameter density_

value are specified as mass per unit volume.

As previously explained, a PROPERTY SPECIFICATION FOR MATERIAL command block can

contain one or more PARAMETERS FOR MODEL command blocks. The specified density_value

for the material will be used with all of the models described in these PARAMETERS FOR MODEL

command blocks.

4.1.2 Biot’s Coefficient Command

BIOTS COEFFICIENT = <real>biots_value

This command line specifies the Biot’s coefficient of the material. Biot’s coefficient is used with

the pore pressure capability. See Section 6.8 for more information on pore pressure. If not given,

the value defaults to 1.0. This parameter is unitless.

As previously explained, a PROPERTY SPECIFICATION FOR MATERIAL command block can

contain one or more PARAMETERS FOR MODEL command blocks. The specified biots_value

for the material will be used with all of the models described in these PARAMETERS FOR MODEL

command blocks.

4.1.3 Thermal Strain Behavior

Isotropic and orthotropic thermal strains may be defined for use by material models listed in a

PROPERTY SPECIFICATION FOR MATERIAL command block. Section 4.1.3.1 describes the

command lines that are used to define the thermal strain behavior. These command lines must be

used in conjunction with other command blocks outside of a PROPERTY SPECIFICATION FOR

MATERIAL command block for the calculations of thermal strains to be activated. Section 4.1.3.2

explains the process for activating thermal strains.

147

4.1.3.1 Defining Thermal Strains

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

A PROPERTY SPECIFICATION FOR MATERIAL command block may include command lines

that define thermal strain behavior. It is possible to specify either an isotropic thermal-strain field

using the command line THERMAL STRAIN FUNCTION or an orthotropic thermal-strain field us-

ing the command lines THERMAL STRAIN X FUNCTION, THERMAL STRAIN Y FUNCTION, and

THERMAL STRAIN Z FUNCTION. For any of these command lines, the user supplies a thermal

strain function (via a DEFINITION FOR FUNCTION command block), which defines the thermal

strain as a function of temperature. The computed thermal strain is then subtracted from the strain

passed to the material model.

A thermal strain can be applied to any two-dimensional or three-dimensional element, regardless

of material type. For a three-dimensional element such as a hexahedron or tetrahedron, the ther-

mal strains are applied to the strain in the global XYZ coordinate system. For the isotropic case,

the thermal strains are the same in the X-direction, the Y-direction, and the Z-direction. For the

anisotropic case, the thermal strains can be different in each of the three global directions—X, Y ,

and Z. For a two-dimensional element, shell or membrane, the thermal strain corresponding to the

THERMAL STRAIN X FUNCTION command line is applied to the strain in the shell (or membrane)

r-direction. (Reference Section 5.2.4 for a discussion of the shell rst coordinate system.) The ther-

mal strain corresponding to the THERMAL STRAIN Y FUNCTION command line is applied to the

strain in the shell (or membrane) s-direction. For two-dimensional elements, the current imple-

mentation of orthotropic thermal strains is limited, for practical purposes, to special cases—flat

sheets of uniform shell elements lying in one of the global planes, e.g., XY , YZ, or ZX. The current

orthotropic thermal-strain capability has limited use for shells and membranes in the current release

of the code. Tying the orthotropic thermal-strain functionality to the shell orientation functionality

(Section 5.2.4) in the future will provide much more useful orthotropic thermal-strain functionality

for two-dimensional elements.

If an isotropic thermal-strain field is to be applied, the THERMAL STRAIN FUNCTION command

line is placed in the PROPERTY SPECIFICATION FOR MATERIAL command block, outside of

the specifications of any material models in the block. Such placement is necessary because

the isotropic thermal strain is a general material property, not a property that is specific to any

particular constitutive model, such as ELASTIC or ELASTIC-PLASTIC. The input value of

thermal_strain_function is the name of the function that defines thermal strain as a function

of temperature for the material model described in this particular PROPERTY SPECIFICATION

FOR MATERIAL command block. The function is defined within the SIERRA scope using a

DEFINITION FOR FUNCTION command block. For more information on how to set the input

to compute thermal strains and how to apply temperatures, see Section 4.1.3.2.

148

The specification of an orthotropic thermal-strain field requires that all three of the

THERMAL STRAIN X FUNCTION, THERMAL STRAIN Y FUNCTION, and THERMAL STRAIN Z

FUNCTION command lines be placed in the PROPERTY SPECIFICATION FOR MATERIAL com-

mand block. All three command lines must be provided, even when there is no thermal strain

in one or more directions. The values of thermal_strain_x_function, thermal_strain_

y_function, and thermal_strain_z_function are the names of the functions for thermal

strains in the X-direction, the Y-direction, and the Z-direction, respectively. These functions are de-

fined within the SIERRA scope using DEFINITION FOR FUNCTION command blocks. To specify

that there should be no thermal strain in a given direction, use a function that always evaluates to

zero for that direction.

The THERMAL STRAIN FUNCTION command line and the THERMAL STRAIN X FUNCTION,

THERMAL STRAIN Y FUNCTION, and THERMAL STRAIN Z FUNCTION command lines are not

used for several of the material models, as discussed in Section 4.1.3.2. Note that specification of a

thermal strain is identified in the descriptions of the material models in Section 4.2 by the notation

“ thermal strain option”.

149

4.1.3.2 Activating Thermal Strains

Adagio has the capability to compute thermal strains on three-dimensional continuum and two-

dimensional (shell, membrane) elements. Three things are required to activate thermal strains:

• First, one or more thermal strain functions (strain as a function of temperature) must be

defined. Each thermal strain function is defined with a DEFINITION FOR FUNCTION com-

mand block. (This function is the standard function definition that appears in the SIERRA

scope.) The thermal strain function gives the total thermal strain associated with a given

temperature. It is the change in thermal strain with the change in temperature that gives rise

to thermal stresses in a body.

• Second, the material models used by blocks that experience thermal strain must have their

thermal strain behavior defined. The command lines for defining isotropic and orthotropic

thermal strain are described in Section 4.1.3.1. Materials with isotropic thermal strain use the

THERMAL STRAIN FUNCTION command line, while those with orthotropic thermal strain

must define thermal strain in all three directions using the THERMAL STRAIN X FUNCTION,

THERMAL STRAIN Y FUNCTION, and THERMAL STRAIN Z FUNCTION command lines.

These inputs can be used with all material models with the exception of the following: elas-

tic three-dimensional orthotropic, elastic laminate, Mooney-Rivlin, NLVE three-dimensional

orthotropic, Swanson, and viscoelastic Swanson. These models require their own model-

specific inputs to define thermal strain and must not use these standard commands. Informa-

tion for defining thermal strains is provided in the individual descriptions of these models in

Section 4.2.

• Third, a temperature field must be applied to the affected blocks. The command block to

specify the application of temperatures is PRESCRIBED TEMPERATURE, which is imple-

mented as a standard boundary condition. A description of the PRESCRIBED TEMPERATURE

command block is given in Section 6.7.

Whenever a temperature field is applied, the temperature is prescribed at the nodes, but thermal

strain is computed based on element temperature. Element temperatures are obtained by averaging

the temperatures of the nodes connected to a given element. Thermal strains are applied in rate

form, so the thermal strain in an element is relative to the thermal strain at the initial temperature.

Thus, the initial temperature is the stress-free temperature. If desired, a different stress-free temper-

ature can be used by prescribing the initial temperature with the INITIAL CONDITION command

block as described in Section 6.2.

150

4.2 Material Models

This section contains descriptions of the material models that are shared by Presto and Adagio.

4.2.1 Elastic Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL ELASTIC

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

END [PARAMETERS FOR MODEL ELASTIC]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

An elastic material model is used to describe simple linear elastic behavior of materials. This

model is generally valid for small deformations.

The command block for an elastic material starts with the line:

BEGIN PARAMETERS FOR MODEL ELASTIC

and terminates with the line:

END [PARAMETERS FOR MODEL ELASTIC]

In the above command blocks:

- The density of the material is defined with the DENSITY command line.

- The Biot’s coefficient of the material is defined with the BIOTS COEFFICIENT command

line.

151

- The thermal strain option is used to define thermal strains. See Section 4.1.3.1 and

Section 4.1.3.2 for further information on defining and activating thermal strains.

- Any two of the following elastic constants are required:

• Young’s modulus is defined with the YOUNGS MODULUS command line.

• Poisson’s ratio is defined with the POISSONS RATIO command line.

• The bulk modulus is defined with the BULK MODULUS command line.

• The shear modulus is defined with the SHEAR MODULUS command line.

• Lambda is defined with the LAMBDA command line.

There are no output variables available for the elastic model. For information about the elastic

model, consult Reference 1.

152

4.2.2 Thermoelastic Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL THERMOELASTIC

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

YOUNGS MODULUS FUNCTION = <string>ym_function_name

POISSONS RATIO FUNCTION = <string>pr_function_name

END [PARAMETERS FOR MODEL THERMOELASTIC]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The thermoelastic material model is used to describe the temperature-dependent linear elastic be-

havior of materials. This model is generally valid for small deformations.

The command block for a thermoelastic material starts with the line:

BEGIN PARAMETERS FOR MODEL THERMOELASTIC

and terminates with the line:

END [PARAMETERS FOR MODEL THERMOELASTIC]

In the above command blocks:

- The density of the material is defined with the DENSITY command line.

- The Biot’s coefficient of the material is defined with the BIOTS COEFFICIENT command

line.

- The thermal strain option is used to define thermal strains. See Section 4.1.3.1 and

Section 4.1.3.2 for further information on defining and activating thermal strains.

153

- Any two of the following elastic constants are required:

• Young’s modulus is defined with the YOUNGS MODULUS command line.

• Poisson’s ratio is defined with the POISSONS RATIO command line.

• The bulk modulus is defined with the BULK MODULUS command line.

• The shear modulus is defined with the SHEAR MODULUS command line.

• Lambda is defined with the LAMBDA command line.

- The YOUNGS MODULUS FUNCTION command line references the name of a function defined

in a DEFINITION FOR FUNCTION command line in the SIERRA scope that describes a

scale factor on Young’s modulus as a function of temperature.

- The POISSONS RATIO FUNCTION command line references the name of a function defined

in a DEFINITION FOR FUNCTION command line in the SIERRA scope that describes a

scale factor on Poisson’s ratio as a function of temperature.

There are no output variables available for the thermoelastic model. For information about the

thermoelastic model, consult Reference 1.

154

4.2.3 Neo-Hookean Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL NEO_HOOKEAN

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

END [PARAMETERS FOR MODEL NEO_HOOKEAN]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The neo-Hookean material model is used to describe linear elastic behavior of materials. Unlike

the elastic model, this model is valid for both large and small deformations. The neo-Hookean

model uses a strain energy density, which makes it a hyperelastic constitutive model. This feature

makes it applicable to finite strains. Currently the neo-Hookean model, as implemented in LAME,

does not support thermal strains.

The command block for a neo-Hookean material starts with the line:

BEGIN PARAMETERS FOR MODEL NEO_HOOKEAN

and terminates with the line:

END [PARAMETERS FOR MODEL NEO_HOOKEAN]

In the above command blocks:

- The density of the material is defined with the DENSITY command line.

- The Biot’s coefficient of the material is defined with the BIOTS COEFFICIENT command

line.

155

- The thermal strain option is used to define thermal strains. See Section 4.1.3.1 and

Section 4.1.3.2 for further information on defining and activating thermal strains.

- Any two of the following elastic constants are required:

• Young’s modulus is defined with the YOUNGS MODULUS command line.

• Poisson’s ratio is defined with the POISSONS RATIO command line.

• The bulk modulus is defined with the BULK MODULUS command line.

• The shear modulus is defined with the SHEAR MODULUS command line.

• Lambda is defined with the LAMBDA command line.

There are no output variables available for the neo-Hookean model. For information about the

neo-Hookean model, consult Reference 5.

156

4.2.4 Elastic Fracture Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL ELASTIC_FRACTURE

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

MAX STRESS = <real>max_stress

CRITICAL CRACK OPENING STRAIN = <real>critical_strain

END [PARAMETERS FOR MODEL ELASTIC_FRACTURE]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

An elastic fracture material is a simple failure model that is based on linear elastic behavior. The

model uses a maximum-principal-stress failure criterion. The stress decays isotropically based on

the component of strain parallel to the maximum principal stress. The value of the component of

strain over which the stress is decayed to zero is a user-defined parameter for the model. This strain

parameter can be adjusted so that failure is mesh independent.

The command block for an elastic fracture material starts with the line:

BEGIN PARAMETERS FOR MODEL ELASTIC_FRACTURE

and terminates with the line:

END [PARAMETERS FOR MODEL ELASTIC_FRACTURE]

In the above command blocks:

- The density of the material is defined with the DENSITY command line.

- The Biot’s coefficient of the material is defined with the BIOTS COEFFICIENT command

line.

157

- The thermal strain option is used to define thermal strains. See Section 4.1.3.1 and

Section 4.1.3.2 for further information on defining and activating thermal strains.

- Any two of the following elastic constants are required:

• Young’s modulus is defined with the YOUNGS MODULUS command line.

• Poisson’s ratio is defined with the POISSONS RATIO command line.

• The bulk modulus is defined with the BULK MODULUS command line.

• The shear modulus is defined with the SHEAR MODULUS command line.

• Lambda is defined with the LAMBDA command line.

- The maximum principal stress at which failure occurs is defined with the MAX STRESS com-

mand line.

- The component of strain over which the stress decays to zero is defined with the CRITICAL

CRACK OPENING STRAIN command line. This component of strain is aligned with the

maximum-principal-stress direction at failure.

Output variables available for this model are listed in Table 8.18.

158

4.2.5 Elastic-Plastic Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL ELASTIC_PLASTIC

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

YIELD STRESS = <real>yield_stress

HARDENING MODULUS = <real>hardening_modulus

BETA = <real>beta_parameter(1.0)

END [PARAMETERS FOR MODEL ELASTIC_PLASTIC]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The elastic-plastic linear hardening models are used to model materials, typically metals, that

undergoing plastic deformation at finite strains. Linear hardening generally refers to the shape of a

uniaxial stress-strain curve where the stress increases linearly with the plastic, or permanent, strain.

In a three-dimensional framework, hardening is the law that governs how the yield surface grows

in stress space. If the yield surface grows uniformly in stress space, the hardening is referred to as

isotropic hardening. When BETA is 1.0, we have only isotropic hardening.

Because the linear hardening model is relatively simple to integrate, the model also has the ability

to define a yield surface that not only grows, or hardens, but also moves in stress space. This

ability is known as kinematic hardening. When BETA is 0.0, we have only kinematic hardening.

The elastic-plastic linear hardening model allows for isotropic hardening, kinematic hardening, or

a combination of the two.

The command block for an elastic-plastic material starts with the line:

BEGIN PARAMETERS FOR MODEL ELASTIC_PLASTIC

and terminates with the line:

END [PARAMETERS FOR MODEL ELASTIC_PLASTIC]

159

In the above command blocks:

- The density of the material is defined with the DENSITY command line.

- The Biot’s coefficient of the material is defined with the BIOTS COEFFICIENT command

line.

- The thermal strain option is used to define thermal strains. See Section 4.1.3.1 and

Section 4.1.3.2 for further information on defining and activating thermal strains.

- Any two of the following elastic constants are required:

• Young’s modulus is defined with the YOUNGS MODULUS command line.

• Poisson’s ratio is defined with the POISSONS RATIO command line.

• The bulk modulus is defined with the BULK MODULUS command line.

• The shear modulus is defined with the SHEAR MODULUS command line.

• Lambda is defined with the LAMBDA command line.

- The yield stress is defined with the YIELD STRESS command line.

- The hardening modulus is defined with the HARDENING MODULUS command line.

- The beta parameter is defined with the BETA command line.

Output variables available for this model are listed in Table 8.19. For information about the elastic-

plastic model, consult Reference 1.

160

4.2.6 Elastic-Plastic Power-Law Hardening Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL EP_POWER_HARD

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

YIELD STRESS = <real>yield_stress

HARDENING CONSTANT = <real>hardening_constant

HARDENING EXPONENT = <real>hardening_exponent

LUDERS STRAIN = <real>luders_strain

END [PARAMETERS FOR MODEL EP_POWER_HARD]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

A power-law hardening model for elastic-plastic materials is used for modeling metal plasticity up

to finite strains. The power-law hardening model, as opposed to the linear hardening model, has

a power law fit for the uniaxial stress-strain curve that has the stress increase as the plastic strain

raised to some power. The power-law hardening model also has the ability to model materials that

exhibit Luder’s strains after yield. Due to the more complicated yield behavior, the power-law

hardening model can only be used with isotropic hardening.

The command block for an elastic-plastic power-law hardening material starts with the line:

BEGIN PARAMETERS FOR MODEL EP_POWER_HARD

and terminates with the line:

END [PARAMETERS FOR MODEL EP_POWER_HARD]

In the above command blocks:

- The density of the material is defined with the DENSITY command line.

161

- The Biot’s coefficient of the material is defined with the BIOTS COEFFICIENT command

line.

- The thermal strain option is used to define thermal strains. See Section 4.1.3.1 and

Section 4.1.3.2 for further information on specifying and applying thermal strains and tem-

peratures.

- Any two of the following elastic constants are required:

• Young’s modulus is defined with the YOUNGS MODULUS command line.

• Poisson’s ratio is defined with the POISSONS RATIO command line.

• The bulk modulus is defined with the BULK MODULUS command line.

• The shear modulus is defined with the SHEAR MODULUS command line.

• Lambda is defined with the LAMBDA command line.

- The yield stress is defined with the YIELD STRESS command line.

- The hardening constant is defined with the HARDENING CONSTANT command line.

- The hardening exponent is defined with the HARDENING EXPONENT command line.

- The Luder’s strain is defined with the LUDERS STRAIN command line.

Output variables available for this model are listed in Table 8.20. For information about the elastic-

plastic power-law hardening model, consult Reference 1.

162

4.2.7 Ductile Fracture Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL DUCTILE_FRACTURE

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

YIELD STRESS = <real>yield_stress

HARDENING CONSTANT = <real>hardening_constant

HARDENING EXPONENT = <real>hardening_exponent

LUDERS STRAIN <real>luders_strain

CRITICAL TEARING PARAMETER = <real>crit_tearing

CRITICAL CRACK OPENING STRAIN = <real>critical_strain

END [PARAMETERS FOR MODEL DUCTILE_FRACTURE]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

This model is identical to the elastic-plastic power-law hardening model with the addition of a

failure criterion and a post-failure isotropic decay of the stress to zero within the constitutive model.

The point at which failure occurs is defined by a critical tearing parameter. The critical tearing

parameter tp is related to the plastic strain at failure ε f by the evolution integral

tp =

∫ ε f

0

〈
2σmax

3 (σmax − σm)
〉

4

dεp . (4.1)

In Equation (4.1), σmax is the maximum principal stress, and σm is the mean stress. The quantity

in the angle brackets, the expression

2σmax

3 (σmax − σm)
, (4.2)

is nonzero only if it evaluates to a positive value. This quantity is set to zero if it has a negative

value.

163

The stress decays isotropically based on the component of strain parallel to the maximum principal

stress. The value of the component of strain over which the stress is decayed to zero is a user-

defined parameter for the model. This strain parameter can be adjusted so that failure is mesh

independent.

The command block for an elastic-plastic power-law hardening material with failure starts with the

line:

BEGIN PARAMETERS FOR MODEL DUCTILE_FRACTURE

and terminates with the line:

END [PARAMETERS FOR MODEL DUCTILE_FRACTURE]

In the above command blocks:

- The density of the material is defined with the DENSITY command line.

- The Biot’s coefficient of the material is defined with the BIOTS COEFFICIENT command

line.

- The thermal strain option is used to define thermal strains. See Section 4.1.3.1 and

Section 4.1.3.2 for further information on defining and activating thermal strains and tem-

peratures.

- Any two of the following elastic constants are required:

• Young’s modulus is defined with the YOUNGS MODULUS command line.

• Poisson’s ratio is defined with the POISSONS RATIO command line.

• The bulk modulus is defined with the BULK MODULUS command line.

• The shear modulus is defined with the SHEAR MODULUS command line.

• Lambda is defined with the LAMBDA command line.

- The yield stress is defined with the YIELD STRESS command line.

- The hardening constant is defined with the HARDENING CONSTANT command line.

- The hardening exponent is defined with the HARDENING EXPONENT command line.

- The Luder’s strain is defined with the LUDERS STRAIN command line.

- The critical tearing parameter is defined with the CRITICAL TEARING PARAMETER com-

mand line.

- The component of strain over which the stress decays to zero is defined with the CRITICAL

CRACK OPENING STRAIN command line. This component of strain is aligned with the

maximum-principal-stress direction at failure.

Output variables available for this model are listed in Table 8.21. For information about the ductile

fracture material model, consult Reference 1.

164

4.2.8 Multilinear Elastic-Plastic Hardening Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL MULTILINEAR_EP

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

YIELD STRESS = <real>yield_stress

BETA = <real>beta_parameter(1.0)

HARDENING FUNCTION = <string>hardening_function_name

YOUNGS MODULUS FUNCTION = <string>ym_function_name

POISSONS RATIO FUNCTION = <string>pr_function_name

YIELD STRESS FUNCTION = <string>yield_stress_function_name

END [PARAMETERS FOR MODEL MULTILINEAR_EP]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

This model is similar to the power-law hardening model except that the hardening behavior is

described with a piecewise-linear curve as opposed to a power law.

The command block for a multi-linear elastic-plastic hardening material starts with the line:

BEGIN PARAMETERS FOR MODEL MULTILINEAR_EP

and terminates with the line:

END [PARAMETERS FOR MODEL MULTILINEAR_EP]

In the above command blocks:

- The density of the material is defined with the DENSITY command line.

165

- The Biot’s coefficient of the material is defined with the BIOTS COEFFICIENT command

line.

- The thermal strain option is used to define thermal strains. See Section 4.1.3.1 and

Section 4.1.3.2 for further information on defining and activating thermal strains.

- Any two of the following elastic constants are required:

• Young’s modulus is defined with the YOUNGS MODULUS command line.

• Poisson’s ratio is defined with the POISSONS RATIO command line.

• The bulk modulus is defined with the BULK MODULUS command line.

• The shear modulus is defined with the SHEAR MODULUS command line.

• Lambda is defined with the LAMBDA command line.

- The yield stress is defined with the YIELD STRESS command line.

- The beta parameter is defined with the BETA command line.

- The HARDENING FUNCTION command line references the name of a function defined in

a DEFINITION FOR FUNCTION command line in the SIERRA scope that describes the

hardening behavior of the material as a stress versus equivalent plastic strain. This curve is

expressed as the additional increment of stress over the yield stress versus equivalent plastic

strain, thus the first point on the curve should be (0.0, 0.0).

- The YOUNGS MODULUS FUNCTION command line references the name of a function defined

in a DEFINITION FOR FUNCTION command line in the SIERRA scope that describes a

scale factor on Young’s modulus as a function of temperature.

- The POISSONS RATIO FUNCTION command line references the name of a function defined

in a DEFINITION FOR FUNCTION command line in the SIERRA scope that describes a

scale factor on Poisson’s ratio as a function of temperature.

- The YIELD STRESS FUNCTION command line references the name of a function defined in

a DEFINITION FOR FUNCTION command line in the SIERRA scope that describes a scale

factor on the yield stress as a function of temperature.

Output variables available for this model are listed in Table 8.22.

166

4.2.9 Multilinear Elastic-Plastic Hardening Model with Failure

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL ML_EP_FAIL

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

YIELD STRESS = <real>yield_stress

BETA = <real>beta_parameter(1.0)

HARDENING FUNCTION = <string>hardening_function_name

YOUNGS MODULUS FUNCTION = <string>ym_function_name

POISSONS RATIO FUNCTION = <string>pr_function_name

YIELD STRESS FUNCTION = <string>yield_stress_function_name

CRITICAL TEARING PARAMETER = <real>crit_tearing

CRITICAL CRACK OPENING STRAIN = <real>critical_strain

END [PARAMETERS FOR MODEL ML_EP_FAIL]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

This model is similar to the power-law hardening model except that the hardening behavior is

described with a piecewise-linear curve as opposed to a power law. This model incorporates a

failure criterion and a post-failure isotropic decay of the stress to zero within the constitutive model.

The point at which failure occurs is defined by a critical tearing parameter. The critical tearing

parameter tp is related to the plastic strain at failure ε f by the evolution integral:

tp =

∫ ε f

0

〈
2σmax

3 (σmax − σm)
〉

4

dεp . (4.3)

In Equation (4.3), σmax is the maximum principal stress, and σm is the mean stress. The quantity

in the angle brackets, the expression

2σmax

3 (σmax − σm)
, (4.4)

167

is nonzero only if it evaluates to a positive value. This quantity is set to zero if it has a negative

value.

The stress decays isotropically based on the component of strain parallel to the maximum principal

stress. The value of the component of strain over which the stress is decayed to zero is a user-

defined parameter for the model. This strain parameter can be adjusted so that failure is mesh

independent.

The command block for a multi-linear elastic-plastic hardening material with failure starts with the

line:

BEGIN PARAMETERS FOR MODEL ML_EP_FAIL

and terminates with the line:

END [PARAMETERS FOR MODEL ML_EP_FAIL]

In the above command blocks:

- The density of the material is defined with the DENSITY command line.

- The Biot’s coefficient of the material is defined with the BIOTS COEFFICIENT command

line.

- The thermal strain option is used to define thermal strains. See Section 4.1.3.1 and

Section 4.1.3.2 for further information on defining and activating thermal strains.

- Any two of the following elastic constants are required:

• Young’s modulus is defined with the YOUNGS MODULUS command line.

• Poisson’s ratio is defined with the POISSONS RATIO command line.

• The bulk modulus is defined with the BULK MODULUS command line.

• The shear modulus is defined with the SHEAR MODULUS command line.

• Lambda is defined with the LAMBDA command line.

- The yield stress is defined with the YIELD STRESS command line.

- The beta parameter is defined with the BETA command line.

- The HARDENING FUNCTION command line references the name of a function defined in

a DEFINITION FOR FUNCTION command line in the SIERRA scope that describes the

hardening behavior of the material as a stress versus equivalent plastic strain. This curve is

expressed as the additional increment of stress over the yield stress versus equivalent plastic

strain, thus the first point on the curve should be (0.0, 0.0).

168

- The YOUNGS MODULUS FUNCTION command line references the name of a function defined

in a DEFINITION FOR FUNCTION command line in the SIERRA scope that describes a

scale factor on Young’s modulus as a function of temperature.

- The POISSONS RATIO FUNCTION command line references the name of a function defined

in a DEFINITION FOR FUNCTION command line in the SIERRA scope that describes a

scale factor on Poisson’s ratio as a function of temperature.

- The YIELD STRESS FUNCTION command line references the name of a function defined in

a DEFINITION FOR FUNCTION command line in the SIERRA scope that describes a scale

factor on the yield stress as a function of temperature.

- The critical tearing parameter is defined with the CRITICAL TEARING PARAMETER com-

mand line.

- The component of strain over which the stress decays to zero is defined with the CRITICAL

CRACK OPENING STRAIN command line. This component of strain is aligned with the

maximum-principal-stress direction at failure.

Output variables available for this model are listed in Table 8.23.

169

4.2.10 Johnson-Cook Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL JOHNSON_COOK

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

YIELD STRESS = <real>yield_stress

HARDENING CONSTANT = <real>hardening_constant

HARDENING EXPONENT = <real>hardening_exponent

RHOCV = <real>rho_cv

RATE CONSTANT = <real>rate_constant

THERMAL EXPONENT = <real>thermal_exponent

REFERENCE TEMPERATURE = <real>reference_temperature

MELT TEMPERATURE = <real>melt_temperature

END [PARAMETERS FOR MODEL JOHNSON_COOK]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The Johnson-Cook model is used to model materials, typically metals, undergoing plastic defor-

mation at finite strains. The hardening function is defined by:

σ = (σy + B(ǭp)N)(1 +C ln(e∗))(1 − (T ∗)M) , (4.5)

where σy is the yield stress, B is the hardening constant, ǭp is the equivalent plastic strain, N is the

hardening exponent, C is the rate constant, e∗ is the non-dimensional effective total strain rate, and

T ∗ is the homologous temperature. T ∗ is defined as:

T ∗ = (T − Tre f)/(Tmelt − Tre f) , (4.6)

where T is the current temperature, Tre f is the reference temperature, and Tmelt is the melt temper-

ature. In the case where M <= 0, (1 − (T ∗)M) = 1.

170

Plastic work results in adiabatic heating. The resulting change in temperature is computed accord-

ing to the function:

∆T =
0.95σy∆ǭp

ρcv

, (4.7)

where ρ is the material density and cv is the specific heat.

For more information about the Johnson-Cook material model, consult Reference 22.

In the command blocks that define the Johnson-Cook model:

- The density of the material is defined with the DENSITY command line.

- The Biot’s coefficient of the material is defined with the BIOTS COEFFICIENT command

line.

- The thermal strain option is used to define thermal strains. See Section 4.1.3.1 and

Section 4.1.3.2 for further information on defining and activating thermal strains.

- Any two of the following elastic constants are required:

• Young’s modulus is defined with the YOUNGS MODULUS command line.

• Poisson’s ratio is defined with the POISSONS RATIO command line.

• The bulk modulus is defined with the BULK MODULUS command line.

• The shear modulus is defined with the SHEAR MODULUS command line.

• Lambda is defined with the LAMBDA command line.

- The yield stress is defined with the YIELD STRESS command line.

- The hardening constant is defined with the HARDENING CONSTANT command line.

- The hardening exponent is defined with the HARDENING EXPONENT command line.

- The product ρcv is defined with the RHOCV command line.

- The thermal exponent is defined with the THERMAL EXPONENT command line.

- The reference temperature is defined with the REFERENCE TEMPERATURE command line.

- The melt temperature is defined with the MELT TEMPERATURE command line.

171

4.2.11 BCJ Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL BCJ

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

C1 = <real>c1

C2 = <real>c2

C3 = <real>c3

C4 = <real>c4

C5 = <real>c5

C6 = <real>c6

C7 = <real>c7

C8 = <real>c8

C9 = <real>c9

C10 = <real>c10

C11 = <real>c11

C12 = <real>c12

C13 = <real>c13

C14 = <real>c14

C15 = <real>c15

C16 = <real>c16

C17 = <real>c17

C18 = <real>c18

C19 = <real>c19

C20 = <real>c20

DAMAGE EXPONENT = <real>damage_exponent

INITIAL ALPHA_XX = <real>alpha_xx

INITIAL ALPHA_YY = <real>alpha_yy

INITIAL ALPHA_ZZ = <real>alpha_zz

INITIAL ALPHA_XY = <real>alpha_xy

172

INITIAL ALPHA_YZ = <real>alpha_yz

INITIAL ALPHA_XZ = <real>alpha_xz

INITIAL KAPPA = <real>initial_kappa

INITIAL DAMAGE = <real>initial_damage

YOUNGS MODULUS FUNCTION = <string>ym_function_name

POISSONS RATIO FUNCTION = <string>pr_function_name

SPECIFIC HEAT = <real>specific_heat

THETA OPT = <integer>theta_opt

FACTOR = <real>factor

RHO = <real>rho

TEMP0 = <real>temp0

END [PARAMETERS FOR MODEL BCJ]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The BCJ plasticity model is a state-variable model for describing the finite deformation behavior of

metals. It uses a multiplicative decomposition of the deformation gradient into elastic, volumetric

plastic, and deviatoric parts. The model considers the natural configuration defined by this decom-

position and its associated thermodynamics. The model incorporates strain rate and temperature

sensitivity, as well as damage, through a yield-surface approach in which state variables follow a

hardening-minus-recovery format.

Because the BCJ model has such an extensive list of parameters, we will not present the usual

synopsis of parameter names with command lines. As with most other material models, the

thermal strain option is used to define thermal strains. See Section 4.1.3.1 and Sec-

tion 4.1.3.2 for further information on defining and activating thermal strains. In addition, only

two of the five elastic constants are required. The user should consult References 2, 3, and 4

for a description of the various parameters. Note that the parameters for the SPECIFIC HEAT,

THETA OPT, FACTOR, RHO, and TEMP0 command lines are used to accommodate changes to the

model for heat generation due to plastic dissipation. For coupled solid/thermal calculations, the

plastic dissipation rate is stored as a state variable and passed to a thermal code as a heat source

term. For uncoupled calculations, temperature is stored as a state variable, and temperature in-

creases due to plastic dissipation are calculated within the material model.

If temperature is provided from an external source, theta_opt is set to 0. If the temperature is

calculated by the BCJ model, theta_opt is set to 1.

173

4.2.12 Power Law Creep

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL POWER_LAW_CREEP

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

CREEP CONSTANT = <real>creep_constant

CREEP EXPONENT = <real>creep_exponent

THERMAL CONSTANT = <real>thermal_constant

END [PARAMETERS FOR MODEL POWER_LAW_CREEP]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The power law creep model is a secondary creep model that can be used to model the time-

dependent behavior of metals, brazes or solders at high homologous temperatures. It can also

be used as a simple model for the time-dependent behavior of geologic materials such as salt.

In the power law creep model, the effective creep strain rate is related to the effective stress raised

to a power

˙̄εc = Aσ̄m exp

(

−Q

RT

)

, (4.8)

where ˙̄εc is the effective creep strain rate, σ̄ is the effective stress, A is the creep constant, m is the

creep exponent, Q is the activation energy, R is the universal gas constant (1.987 cal/mole K), and

T is the absolute temperature.

If an analysis is run isothermally, then the THERMAL CONSTANT is simply Q/RT for the given

temperature. If the analysis is a thermal analysis, then the THERMAL CONSTANT is Q/R, and T is

in general a function of space and time.

The command block for a power law creep material starts with the line:

BEGIN PARAMETERS FOR MODEL POWER_LAW_CREEP

174

and terminates with the line:

END [PARAMETERS FOR MODEL POWER_LAW_CREEP]

In the above command blocks:

- The density of the material is defined with the DENSITY command line.

- The Biot’s coefficient of the material is defined with the BIOTS COEFFICIENT command

line.

- The thermal strain option is used to define thermal strains. See Section 4.1.3.1 and

Section 4.1.3.2 for further information on defining and activating thermal strains.

- Any two of the following elastic constants are required:

• Young’s modulus is defined with the YOUNGS MODULUS command line.

• Poisson’s ratio is defined with the POISSONS RATIO command line.

• The bulk modulus is defined with the BULK MODULUS command line.

• The shear modulus is defined with the SHEAR MODULUS command line.

• Lambda is defined with the LAMBDA command line.

- The creep constant, A, in Equation (4.8) is defined with the CREEP CONSTANT command

line.

- The creep exponent, m, in Equation (4.8) is defined with the CREEP EXPONENT command

line.

- The thermal constant, the particular form depending on if the analysis is isothermal or not,

is defined with the THERMAL CONSTANT command line.

Output variables available for this model are listed in Table 8.35.

175

4.2.13 Soil and Crushable Foam Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL SOIL_FOAM

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

A0 = <real>const_coeff_yieldsurf

A1 = <real>lin_coeff_yieldsurf

A2 = <real>quad_coeff_yieldsurf

PRESSURE CUTOFF = <real>pressure_cutoff

PRESSURE FUNCTION = <string>function_press_volstrain

END [PARAMETERS FOR MODEL SOIL_FOAM]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The soil and crushable foam model is a plasticity model that can be used for modeling soil or

crushable foam. Given the right input, the model is a Drucker-Prager model.

For the soil and crushable foam model, the yield surface is a surface of revolution about the hy-

drostat in principal stress space. A planar end cap is assumed for the yield surface so that the yield

surface is closed. The yield stress σyd is specified as a polynomial in pressure p. The yield stress

is given as:

σyd = a0 + a1 p + a2 p2 , (4.9)

where p is positive in compression. The determination of the yield stress from Equation (4.9)

places severe restrictions on the admissible values of a0, a1, and a2. There are three valid cases for

the yield surface. In the first case, there is an elastic–perfectly plastic deviatoric response, and the

yield surface is a cylinder oriented along the hydrostat in principal stress space. In this case, a0 is

positive, and a1 and a2 are zero. In the second case, the yield surface is conical. A conical yield

surface is obtained by setting a2 to zero and using appropriate values for a0 and a1. In the third

case, the yield surface has a parabolic shape. For the parabolic yield surface, all three coefficients

176

in Equation (4.9) are nonzero. The coefficients are checked to determine that a valid negative

tensile-failure pressure can be derived based on the specified coefficients.

For the case of the cylindrical yield surface (e.g., a0 > 0 and a1 = a2 = 0), there is no tensile-failure

pressure. For the other two cases, the computed tensile-failure pressure may be too low. To handle

the situations where there is no tensile-failure pressure or the tensile-failure pressure is too low,

a pressure cutoff can be defined. If a pressure cutoff is defined, the tensile-failure pressure is the

larger of the computed tensile-failure pressure and the defined cutoff pressure.

The plasticity theories for the volumetric and deviatoric parts of the material response are com-

pletely uncoupled. The volumetric response is computed first. The mean pressure p is assumed to

be positive in compression, and a yield function φp is written for the volumetric response as:

φp = p − fp (εV) , (4.10)

where fp (εV) defines the volumetric stress-strain curve for the pressure. The yield function φp

determines the motion of the end cap along the hydrostat.

The command block for a soil and crushable foam material starts with the line:

BEGIN PARAMETERS FOR MODEL SOIL_FOAM

and terminates with the line:

END [PARAMETERS FOR MODEL SOIL_FOAM]

In the above command blocks:

- The density of the material is defined with the DENSITY command line.

- The Biot’s coefficient of the material is defined with the BIOTS COEFFICIENT command

line.

- The thermal strain option is used to define thermal strains. See Section 4.1.3.1 and

Section 4.1.3.2 for further information on defining and activating thermal strains.

- Any two of the following elastic constants are required:

• Young’s modulus is defined with the YOUNGS MODULUS command line.

• Poisson’s ratio is defined with the POISSONS RATIO command line.

• The bulk modulus is defined with the BULK MODULUS command line.

• The shear modulus is defined with the SHEAR MODULUS command line.

• Lambda is defined with the LAMBDA command line.

- The constant in the equation for the yield surface is defined with the A0 command line.

177

- The coefficient for the linear term in the equation for the yield surface is defined with the A1

command line.

- The coefficient for the quadratic term in the equation for the yield surface is defined with the

A2 command line.

- The user-defined tensile-failure pressure is defined with the PRESSURE CUTOFF command

line.

- The pressure as a function of volumetric strain is defined with the function named on the

PRESSURE FUNCTION command line.

For information about the soil and crushable foam model, see the PRONTO3D document listed as

Reference 6. The soil and crushable foam model is the same as the soil and crushable foam model

in PRONTO3D. The PRONTO3D model is based on a material model developed by Krieg [7]. The

Krieg version of the soil and crushable foam model was later modified by Swenson and Taylor [8].

The soil and crushable foam model developed by Swenson and Taylor is the model in PRONTO3D

and is also the shared model for Presto and Adagio.

Output variables available for this model are listed in Table 8.37.

178

4.2.14 Karagozian and Case Concrete Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

BEGIN PARAMETERS FOR MODEL KC_CONCRETE

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

BULK MODULUS = <real>bulkmodulus

SHEAR MODULUS = <real>shearmodulus

COMPRESSIVE STRENGTH = <real>compressive_strength

TENSILE STRENGTH = <real>tensile_strength

LAMBDA = <real>lambda

LAMBDAM = <real>lambda_m

LAMBDAZ = <real>lambda_z

SINGLE RATE ENHANCEMENT = <enum>TRUE|FALSE

FRACTIONAL DILATANCY = <real>omega

MAXIMUM AGGREGATE SIZE = <real>max_aggregate_size

ONE INCH = <real>one_inch

RATE SENSITIVITY FUNCTION = <string>rate_function_name

PRESSURE FUNCTION = <string>pressure_function_name

UNLOAD BULK MODULUS FUNCTION = <string>bulk_function_name

HARDEN-SOFTEN FUNCTION = <string>harden_soften_function_name

END PARAMETERS FOR MODEL KC_CONCRETE

END PROPERTY SPECIFICATION FOR MATERIAL name

The Karagozian & Case (or K&C) concrete model is an inelasticity model appropriate for approx-

imating the constitutive behavior of concrete. Coupled with appropriate elements for capturing the

embedded deformation of reinforcing steel, the K&C concrete model can be utilized effectively

for simulating the mechanical response of reinforced concrete structures. The K&C model has

several useful characteristics for estimating concrete response, including strain-softening capabil-

ities, some degree of tensile response, and a nonlinear stress-strain characterization that robustly

simulates the behavior of plain concrete. This model is described in detail in Reference 9.

The command block for the K&C concrete material model starts with the line:

BEGIN PARAMETERS FOR MODEL KC_CONCRETE

179

and terminates with the line:

END PARAMETERS FOR MODEL KC_CONCRETE

In the above command blocks:

- The density of the material is defined with the DENSITY command line.

- The Biot’s coefficient of the material is defined with the BIOTS COEFFICIENT command

line.

- The thermal strain option is used to define thermal strains. See Section 4.1.3.1 and

Section 4.1.3.2 for further information on defining and activating thermal strains.

- Any two of the following elastic constants are required:

• Young’s modulus is defined with the YOUNGS MODULUS command line.

• Poisson’s ratio is defined with the POISSONS RATIO command line.

• The bulk modulus is defined with the BULK MODULUS command line.

• The shear modulus is defined with the SHEAR MODULUS command line.

• Lambda is defined with the LAMBDA command line.

In addition to these material moduli, the following constitutive parameters should be defined:

- The compressive strength for a uniaxial compression test is defined with the COMPRESSIVE

STRENGTH command line.

- The tensile strength for the uniaxial tension test is defined with the TENSILE STRENGTH

command line.

- The abscissa of the hardening/softening curve where this curve takes on the value of one

is termed Lambda-M, and it is defined with the LAMBDAM command line (Reference 9, pg.

B-3).

- The abscissa of the hardening/softening curve where this curve takes on the value of zero

after its peak value has been attained is termed Lambda-Z, and it is defined with the LAMBDAZ

command line. This parameter should satisfy LAMBDAZ > LAMBDAM (Reference 9, pg.

B-3). This input is Sierra-specific, and differs from the previous PRONTO3D definitions.

- The SINGLE RATE ENHANCEMENT parameter indicates whether the rate enhancement of

the model should be independent of the sign of the deformation. If this parameter is set to

TRUE, the same enhancement function is used for both compression and tension. If it is set to

FALSE, the enhancement function must assign values for both positive and negative values

of strain rate (Reference 9, pg. B-5). This parameter is also Sierra-specific, and is different

from the previous PRONTO3D definitions.

180

- The FRACTIONAL DILATANCY is an estimate of the size of the plastic volume strain incre-

ment relative to that corresponding to straining in the hydrostatic plane. This value normally

ranges from 0.3 to 0.7, and a value of one-half is commonly utilized in practice.

- The MAXIMUM AGGREGATE SIZE parameter provides an estimate of the largest length di-

mension for the aggregate component of the concrete mix. The American Concrete Institute

code [10] includes specifications for maximum aggregate size that are based on member

depth and clear spacing between adjacent reinforcement elements.

- The parameter ONE INCH provides for conversion to units other than the pounds/inch system

commonly used in U.S. concrete venues. This parameter should be set to the equivalent

length in the system utilized for analysis, e.g., if centimeters are used, then this parameter is

set to 2.54.

The following functions describe the evolution of material coefficients in this model:

- The function characterizing the enhancement of strength with strain rate is described via the

RATE SENSITIVITY FUNCTION (Reference 9, pg. B-3).

Warning: The RATE SENSITIVITY FUNCTION command should be used with

caution. The implementation appears to provide unconservative estimates of con-

crete strength in tension, and users are cautioned to provide rate sensitivity function

values that have the value of 1.0 for positive (tensile) values of strain rate. These

values correspond to no additional strength in tension due to strain rate, and are

both physically realistic and properly conservative.

- The function describing the relationship between pressure and volumetric strain is described

via the PRESSURE FUNCTION.

- The function characterizing the relationship between bulk modulus and volumetric strain

during unloading is described via the UNLOAD BULK MODULUS FUNCTION.

- The function describing the hardening and softening functions function eta as a func-

tion of the material parameters lambda (see LAMBDAM and LAMBDAZ) is defined via the

HARDEN-SOFTEN FUNCTION (Reference 9, pg. B-3).

181

4.2.15 Foam Plasticity Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL FOAM_PLASTICITY

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

PHI = <real>phi

SHEAR STRENGTH = <real>shear_strength

SHEAR HARDENING = <real>shear_hardening

SHEAR EXPONENT = <real>shear_exponent

HYDRO STRENGTH = <real>hydro_strength

HYDRO HARDENING = <real>hydro_hardening

HYDRO EXPONENT = <real>hydro_exponent

BETA = <real>beta

END [PARAMETERS FOR MODEL FOAM_PLASTICITY]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The foam plasticity model was developed to describe the response of porous elastic-plastic ma-

terials like closed-cell polyurethane foam to large deformation. Like solid metals, these foams

can exhibit significant plastic deviatoric strains (permanent shape changes). Unlike metals, these

foams can also exhibit significant plastic volume strains (permanent volume changes). The foam

plasticity model is characterized by an initial yield surface that is an ellipsoid about the hydrostat.

When foams are compressed, they typically exhibit an initial elastic regime followed by a plateau

regime in which the stress needed to compress the foam remains nearly constant. At some point

in the compression process, the densification regime is reached, and the stress needed to compress

the foam further begins to rapidly increase.

The foam plasticity model can be used to describe the response of metal foams and many closed-

cell polymeric foams (including polyurethane, polystyrene bead, etc.) subjected to large deforma-

tion. This model is not appropriate for flexible foams that return to their undeformed shape after

loads are removed.

182

The command block for a foam plasticity material starts with the line:

BEGIN PARAMETERS FOR MODEL FOAM_PLASTICITY

and terminates with the line:

END [PARAMETERS FOR MODEL FOAM_PLASTICITY]

In the above command blocks:

- The density of the material is defined with the DENSITY command line.

- The Biot’s coefficient of the material is defined with the BIOTS COEFFICIENT command

line.

- The thermal strain option is used to define thermal strains. See Section 4.1.3.1 and

Section 4.1.3.2 for further information on defining and activating thermal strains.

- Any two of the following elastic constants are required:

• Young’s modulus is defined with the YOUNGS MODULUS command line.

• Poisson’s ratio is defined with the POISSONS RATIO command line.

• The bulk modulus is defined with the BULK MODULUS command line.

• The shear modulus is defined with the SHEAR MODULUS command line.

• Lambda is defined with the LAMBDA command line.

- The initial volume fraction of solid material in the foam, ϕ, is defined with the PHI command

line. For example, solid polyurethane weighs 75 pounds per cubic foot (pcf); uncompressed

10 pcf polyurethane foam would have a ϕ of 0.133 = 10/75.

- The shear (deviatoric) strength of uncompressed foam is defined with the SHEAR STRENGTH

command line.

- The shear hardening modulus for the foam is defined with the SHEAR HARDENING command

line.

- The shear hardening exponent is defined with the SHEAR EXPONENT command line.

The deviatoric strength is given by (SHEAR STRENGTH) + (SHEAR HARDENING) *
PHI**(SHEAR EXPONENT).

- The hydrostatic (volumetric) strength of the uncompressed foam is defined with the HYDRO

STRENGTH command line.

- The hydrodynamic hardening modulus is defined with the HYDRO HARDENING command

line.

183

- The hydrodynamic hardening exponent is defined with the HYDRO EXPONENT command

line. The hydrostatic strength is given by (HYDRO STRENGTH) + (HYDRO HARDENING) *
PHI**(HYDRO EXPONENT).

- The prescription for nonassociated flow, β, is defined with the BETA command line. When

β = 0.0, the flow direction is given by the normal to the yield surface (associated flow).

When β = 1.0, the flow direction is given by the stress tensor. Values between 0.0 and 0.95

are recommended.

Output variables available for this model are listed in Table 8.24.

184

4.2.16 Low Density Foam Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL LOW_DENSITY_FOAM

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

A = <real>A

B = <real>B

C = <real>C

NAIR = <real>NAir

P0 = <real>P0

PHI = <real>Phi

END [PARAMETERS FOR MODEL LOW_DENSITY_FOAM]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The LOW_DENSITY_FOAM material model is a phenomenological model for low density

polyurethane foams, where A, B, and C are material constants, NAIR is the mole fraction of air,

P0 is the initial air pressure, and PHI is the volume fraction of solid material. The yield function

for this model has the form

σ̄ = A
〈

I′2
〉

+ B (1.0 + CI1) , (4.11)

where 〈〉 denotes the Heaviside step function, I1 is the first invariant of the deviatoric strain, and I′2
is the second invariant of the strain.

For more information on the low density foam material model, see [11].

185

4.2.17 Elastic Three-Dimensional Orthotropic Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

BEGIN PARAMETERS FOR MODEL ELASTIC_3D_ORTHOTROPIC

general parameters (any two are required)

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

required parameters

YOUNGS MODULUS AA = <real>Eaa_value

YOUNGS MODULUS BB = <real>Ebb_value

YOUNGS MODULUS CC = <real>Ecc_value

POISSONS RATIO AB = <real>NUab_value

POISSONS RATIO BC = <real>NUbc_value

POISSONS RATIO CA = <real>NUca_value

SHEAR MODULUS AB = <real>Gab_value

SHEAR MODULUS BC = <real>Gbc_value

SHEAR MODULUS CA = <real>Gca_value

COORDINATE SYSTEM = <string>coordinate_system_name

DIRECTION FOR ROTATION = <real>1|2|3

ALPHA = <real>alpha_in_degrees

SECOND DIRECTION FOR ROTATION = <real>1|2|3

SECOND ALPHA = <real>second_alpha_in_degrees

THERMAL STRAIN AA FUNCTION = <string>ethaa_function_name

THERMAL STRAIN BB FUNCTION = <string>ethbb_function_name

THERMAL STRAIN CC FUNCTION = <string>ethcc_function_name

END [PARAMETERS FOR MODEL ELASTIC_3D_ORTHOTROPIC]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The elastic three-dimensional orthotropic model describes the linear elastic response of an or-

thotropic material where the orientation of the principal material directions can be arbitrary. These

principal axes are here denoted as A, B, and C. Thermal strains are also given along the principal

material axes. The specification of these material axes is accomplished by selecting a user-defined

coordinate system that can then be rotated twice about one of its current axes to give the final

desired directions.

The command block for an elastic three-dimensional orthotropic material starts with the line:

BEGIN PARAMETERS FOR MODEL ELASTIC_3D_ORTHOTROPIC

and terminates with the line:

END [PARAMETERS FOR MODEL ELASTIC_3D_ORTHOTROPIC]

186

In the above command blocks all of the following are required inputs, including two of the five

general elastic material constants:

- The density of the material is defined with the DENSITY command line.

- The Biot’s coefficient of the material is defined with the BIOTS COEFFICIENT command

line.

- Any two of the following elastic constants are required:

• Young’s modulus is defined with the YOUNGS MODULUS command line.

• Poisson’s ratio is defined with the POISSONS RATIO command line.

• The bulk modulus is defined with the BULK MODULUS command line.

• The shear modulus is defined with the SHEAR MODULUS command line.

• Lambda is defined with the LAMBDA command line.

- The Youngs moduli corresponding to the principal material axes A, B, and C are given by

the YOUNGS MODULUS AA, YOUNGS MODULUS BB, and YOUNGS MODULUS CC command

lines.

- The Poisson’s ratio defining the BB normal strain when the material is subjected only to AA

normal stress is given by the POISSONS RATIO AB command line.

- The Poisson’s ratio defining the CC normal strain when the material is subjected only to BB

normal stress is given by the POISSONS RATIO BC command line.

- The Poisson’s ratio defining the AA normal strain when the material is subjected only to CC

normal stress is given by the POISSONS RATIO CA command line.

- The shear moduli for shear in the AB, BC, and CA planes are given by the SHEAR MODULUS

AB, SHEAR MODULUS BC, and SHEAR MODULUS CA command lines, respectively.

- The specification of the principal material directions begins with the selection of a user-

specified coordinate system given by the COORDINATE SYSTEM command line. This initial

coordinate system can then be rotated twice to give the final material directions.

- The rotation of the initial coordinate system is defined using the DIRECTION FOR

ROTATION and ALPHA command lines. The axis for rotation of the initial coordinate system

is specified by the DIRECTION FOR ROTATION command line, while the angle of rotation

is given by the ALPHA command line. This gives an intermediate specification of the material

directions.

- The rotation of the intermediate coordinate system is defined using the SECOND DIRECTION

FOR ROTATION and SECOND ALPHA command lines. The axis for rotation of the intermedi-

ate coordinate system is specified by the SECOND DIRECTION FOR ROTATION command

line, while the angle of rotation is given by the SECOND ALPHA command line. The resulting

coordinate system gives the final specification of the material directions.

187

- The thermal strain functions for normal thermal strains along the principal material

directions are given by the THERMAL STRAIN AA FUNCTION, THERMAL STRAIN BB

FUNCTION, and THERMAL STRAIN CC FUNCTION command lines.

See Reference 13 for more information about the elastic three-dimensional orthotropic model.

188

4.2.18 Wire Mesh Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL WIRE_MESH

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

YIELD FUNCTION = <string>yield_function

TENSION = <real>tensile_strength

END [PARAMETERS FOR MODEL WIRE_MESH]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The wire mesh constitutive model was developed at Sandia National Laboratories to model layers

of mesh for analyses of packaging for transportation of hazardous materials.

The wire mesh model decomposes the Cauchy stress tensor into its principal components. It then

checks each of the principal stress to see whether they exceed the yield criterion. If a principal

stress is negative, i.e. in compression, the yield condition is

ψ = σ − f (ev) (4.12)

The yield function for this model can be input by the user, and defines the yield strength as a

function of the volumetric engineering strain, ev.

If the principal stress is tensile, a cutoff value of the principal tensile stress is used, and the yield

condition is

ψ = σ − τ (4.13)

The value for τ is given by the value of TENSION.

The command block for a wire mesh material starts with the line:

189

BEGIN PARAMETERS FOR MODEL WIRE_MESH

and terminates with the line:

END [PARAMETERS FOR MODEL WIRE_MESH]

In the above command blocks:

- The density of the material is defined with the DENSITY command line.

- The Biot’s coefficient of the material is defined with the BIOTS COEFFICIENT command

line.

- The thermal strain option is used to define thermal strains. See Section 4.1.3.1 and

Section 4.1.3.2 for further information on defining and activating thermal strains.

- Any two of the following elastic constants are required:

• Young’s modulus is defined with the YOUNGS MODULUS command line.

• Poisson’s ratio is defined with the POISSONS RATIO command line.

• The bulk modulus is defined with the BULK MODULUS command line.

• The shear modulus is defined with the SHEAR MODULUS command line.

• Lambda is defined with the LAMBDA command line.

- The yield function in compression is defined with the YIELD FUNCTION command line.

- The tensile strength is give by the TENSION command line.

Output variables available for this model are listed in Table 8.25.

More information on the model can be found in the report by Neilsen, et. al. [12]

190

4.2.19 Orthotropic Crush Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL ORTHOTROPIC_CRUSH

EX = <real>modulus_x_pre_lockup

EY = <real>modulus_y_pre_lockup

EZ = <real>modulus_z_pre_lockup

GXY = <real>shear_modulus_xy_pre_lockup

GYZ = <real>shear_modulus_yz_pre_lockup

GZX = <real>shear_modulus_zx_pre_lockup

CRUSH XX = <string>stress_volume_xx_function_name

CRUSH YY = <string>stress_volume_yy_function_name

CRUSH ZZ = <string>stress_volume_zz_function_name

CRUSH XY = <string>shear_stress_volume_xy_function_name

CRUSH YZ = <string>shear_stress_volume_yz_function_name

CRUSH ZX = <string>shear_stress_volume_zx_function_name

VMIN = <real>lockup_volumetric_strain

YOUNGS MODULUS = <real>youngs_modulus_post_lockup

POISSONS RATIO = <real>poissons_ratio_post_lockup

SHEAR MODULUS = <real>shear_modulus_post_lockup

BULK MODULUS = <real>bulk_modulus_post_lockup

LAMBDA = <real>lambda_post_lockup

YIELD STRESS = <real>yield_stress_post_lockup

END [PARAMETERS FOR MODEL ORTHOTROPIC_CRUSH]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The orthotropic crush model is an empirically based constitutive relation that is useful for mod-

eling materials like metallic honeycomb and wood. This particular implementation follows the

formulation of the metallic honeycomb model in DYNA3D [14]. The orthotropic crush model

divides material behavior into three phases:

• orthotropic elastic,

• volumetric crush (partially compacted), and

191

• elastic–perfectly plastic (fully compacted).

The command block for an orthotropic crush material starts with the line:

BEGIN PARAMETERS FOR MODEL ORTHOTROPIC_CRUSH

and terminates with the line:

END [PARAMETERS FOR MODEL ORTHOTROPIC_CRUSH]

In the above command blocks:

- The uncompacted density of the material is defined with the DENSITY command line.

- The thermal strain option is used to define thermal strains. See Section 4.1.3.1 and

Section 4.1.3.2 for further information on defining and activating thermal strains.

- The initial directional modulus Exx is defined with the EX command line.

- The initial directional modulus Eyy is defined with the EY command line.

- The initial directional modulus Ezz is defined with the EZ command line.

- The initial directional shear modulus Gxy is defined with the GXY command line.

- The initial directional shear modulus Gyz is defined with the GYZ command line.

- The initial directional shear modulus Gzx is defined with the GZX command line.

- The compressive volumetric strain at lockup or full compaction is defined with the VMIN

command line.

- The directional stress σxx as a function of the compressive volumetric strain is defined by

the function referenced in the CRUSH XX command line.

- The directional stress σyy as a function of the compressive volumetric strain is defined by the

function referenced in the CRUSH YY command line.

- The directional stress σzz as a function of the compressive volumetric strain is defined by the

function referenced in the CRUSH ZZ command line.

- The directional stress σxy as a function of the compressive volumetric strain is defined by the

function referenced in the CRUSH XY command line.

- The directional stress σyz as a function of the compressive volumetric strain is defined by the

function referenced in the CRUSH YZ command line.

- The directional stress σzx as a function of the compressive volumetric strain is defined by the

function referenced in the CRUSH ZX command line.

192

- Any two of the following elastic constants are required:

• Young’s modulus for the fully compacted state is defined with the YOUNGS MODULUS

command line. This is the elastic–perfectly plastic value of Young’s modulus.

• Poisson’s ratio for the fully compacted state is defined with the POISSONS RATIO

command line. This is the elastic–perfectly plastic value of Poisson’s ratio.

• The bulk modulus is defined with the BULK MODULUS command line.

• The shear modulus is defined with the SHEAR MODULUS command line.

• Lambda is defined with the LAMBDA command line.

- The yield stress for the fully compacted state is defined with the YIELD STRESS command

line. This is the elastic–perfectly plastic value of the yield stress.

Note that several of the command lines in this command block (those beginning with CRUSH)

reference functions. These functions must be defined in the SIERRA scope. Output variables

available for this model are listed in Table 8.32. For information about the orthotropic crush

model, consult Reference 14.

193

4.2.20 Orthotropic Rate Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL ORTHOTROPIC_RATE

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

YIELD STRESS = <real>yield_stress

MODULUS TTTT = <real>modulus_tttt

MODULUS TTLL = <real>modulus_ttll

MODULUS TTWW = <real>modulus_ttww

MODULUS LLLL = <real>modulus_llll

MODULUS LLWW = <real>modulus_llww

MODULUS WWWW = <real>modulus_wwww

MODULUS TLTL = <real>modulus_tltl

MODULUS LWLW = <real>modulus_lwlw

MODULUS WTWT = <real>modulus_wtwt

TX = <real>tx

TY = <real>ty

TZ = <real>tz

LX = <real>lx

LY = <real>ly

LZ = <real>lz

MODULUS FUNCTION = <string>modulus_function_name

RATE FUNCTION = <string>rate_function_name

T FUNCTION = <string>t_function_name

L FUNCTION = <string>l_function_name

W FUNCTION = <string>w_function_name

TL FUNCTION = <string>tl_function_name

LW FUNCTION = <string>lw_function_name

WT FUNCTION = <string>wt_function_name

END [PARAMETERS FOR MODEL ORTHOTROPIC_RATE]

194

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The orthotropic rate model extends the functionality of the orthotropic crush constitutive model

described in Section 4.2.19. The orthotropic rate model has been developed to describe the behav-

ior of an aluminum honeycomb subjected to large deformation. The orthotropic rate model, like

the original orthotropic crush model, has six independent yield functions that evolve with volume

strain. Unlike the orthotropic crush model, the orthotropic rate model has yield functions that also

depend on strain rate. The orthotropic rate model also uses an orthotropic elasticity tensor with

nine elastic moduli in place of the orthotropic elasticity tensor with six elastic moduli used in the

orthotropic crush model. A honeycomb orientation capability is included with the orthotropic rate

model that allows users to prescribe initial honeycomb orientations that are not aligned with the

original global coordinate system.

The command block for an orthotropic rate material starts with the line:

BEGIN PARAMETERS FOR MODEL ORTHOTROPIC_RATE

and terminates with the line:

END [PARAMETERS FOR MODEL ORTHOTROPIC_RATE]

In the above command blocks:

- The density of the material is defined with the DENSITY command line.

- The Biot’s coefficient of the material is defined with the BIOTS COEFFICIENT command

line.

- The thermal strain option is used to define thermal strains. See Section 4.1.3.1 and

Section 4.1.3.2 for further information on defining and activating thermal strains.

- In the following list of elastic constants, only the elastic modulus (Young’s modulus) is

required for this model. If two elastic constants are supplied, the elastic constants will be

completed. However, only the elastic modulus is used in this model.

• Young’s modulus for the fully compacted honeycomb is defined with the YOUNGS

MODULUS command line.

• Poisson’s ratio for the fully compacted state is defined with the POISSONS RATIO

command line.

• The bulk modulus for the fully compacted state is defined with the BULK MODULUS

command line.

• The shear modulus for the fully compacted state is defined with the SHEAR MODULUS

command line.

• Lambda for the fully compacted state is defined with the LAMBDA command line.

195

- The yield stress for the fully compacted honeycomb is defined with the YIELD STRESS

command line.

- The nine elastic moduli for the orthotropic uncompacted honeycomb are defined with

the MODULUS TTT, MODULUS TTLL, MODULUS TTWW, MODULUS LLLL, MODULUS LLWW,

MODULUS WWWW, MODULUS TLTL, MODULUS LWLW, and MODULUS WTWT command lines.

The T-direction is usually associated with the generator axis for the honeycomb. The L-

direction is in the ribbon plane (plane defined by flat sheets used in reinforced honeycomb)

and orthogonal to the generator axis. The W-direction is perpendicular to the ribbon plane.

- The components of a vector defining the T-direction of the honeycomb are defined by the

TX, TY, and TZ command lines. The values of tx, ty, and tz are components of a vector

in the global coordinate system that define the orientation of the honeycomb’s T-direction

(generator axis).

- The components of a vector defining the L-direction of the honeycomb are defined by the

LX, LY, and LZ command lines. The values of lx, ly, and lz are components of a vector

in the global coordinate system that define the orientation of the honeycomb’s L-direction.

Caution: The vectors T and L must be orthogonal.

- The function describing the variation in moduli with compaction is given by the MODULUS

FUNCTION command line. The moduli vary continuously from their initial orthotropic values

to isotropic values when full compaction is obtained.

- The function describing the change in strength with strain rate is given by the RATE

FUNCTION command line. Note that all strengths are scaled with the multiplier obtained

from this function.

- The function describing the T-normal strength of the honeycomb as a function of compres-

sive volumetric strain is given by the T FUNCTION command line.

- The function describing the L-normal strength of the honeycomb as a function of compres-

sive volumetric strain is given by the L FUNCTION command line.

- The function describing the W-normal strength of the honeycomb as a function of compres-

sive volumetric strain is given by the W FUNCTION command line.

- The function describing the TL-normal strength of the honeycomb as a function of compres-

sive volumetric strain is given by the TL FUNCTION command line.

- The function describing the LW-normal strength of the honeycomb as a function of com-

pressive volumetric strain is given by the LW FUNCTION command line.

- The function describing the WT-normal strength of the honeycomb as a function of com-

pressive volumetric strain is given by the WT FUNCTION command line.

Note that several of the command lines in this command block reference functions. These functions

must be defined in the SIERRA scope. Output variables available for this model are listed in

Table 8.33.

196

4.2.21 Elastic Laminate Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

#

BEGIN PARAMETERS FOR MODEL ELASTIC_LAMINATE

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

A11 = <real>a11_value

A12 = <real>a12_value

A16 = <real>a16_value

A22 = <real>a22_value

A26 = <real>a26_value

A66 = <real>a66_value

A44 = <real>a44_value

A45 = <real>a45_value

A55 = <real>a55_value

B11 = <real>b11_value

B12 = <real>b12_value

B16 = <real>b16_value

B22 = <real>b22_value

B26 = <real>b26_value

B66 = <real>b66_value

D11 = <real>d11_value

D12 = <real>d12_value

D16 = <real>d16_value

D22 = <real>d22_value

D26 = <real>d26_value

D66 = <real>d66_value

COORDINATE SYSTEM = <string>coord_sys_name

DIRECTION FOR ROTATION = 1|2|3

ALPHA = <real>alpha_value_in_degrees

THETA = <real>theta_value_in_degrees

NTH11 FUNCTION = <string>nth11_function_name

NTH22 FUNCTION = <string>nth22_function_name

NTH12 FUNCTION = <string>nth12_function_name

MTH11 FUNCTION = <string>mth11_function_name

MTH22 FUNCTION = <string>mth22_function_name

MTH12 FUNCTION = <string>mth12_function_name

END [PARAMETERS FOR MODEL ELASTIC_LAMINATE]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The elastic laminate model can be used to describe the overall linear elastic response of layered

shells. The response of each layer is pre-integrated through the thickness under an assumed vari-

197

ation of strain through the thickness. That is, the user inputs laminate stiffness matrices directly,

and the overall response is calculated appropriately. This model allows the user to input laminate

stiffness matrices that are consistent with a state of generalized plane stress for each layer. Each

layer can be orthotropic with a unique orientation. This model is primarily intended for captur-

ing the response of fiber-reinforced laminated composites. The user inputs the laminate stiffness

matrices calculated with respect to a chosen coordinate system and then specifies this coordinate

system’s definition relative to the global coordinate system. Thermal stresses are handled via the

input of thermal-force and thermal-force-couple resultants for the laminate as a whole. At present,

the user cannot get layer stresses out from this material model. However, the overall section-force

and force-couple resultants can be computed from available output. The details of this model are

described in References 15 and 16.

The command block for an elastic laminate material starts with the line:

BEGIN PARAMETERS FOR MODEL ELASTIC_LAMINATE

and terminates with the line:

END [PARAMETERS FOR MODEL ELASTIC_LAMINATE]

In the above command blocks:

- The density of the material is defined with the DENSITY command line.

- Two of the five elastic constants must be defined with the YOUNGS MODULUS, POISSONS

RATIO, SHEAR MODULUS, BULK MODULUS, or LAMBDA commands

- The elastic constants are unrelated to the laminate stiffness matrix. They are used along with

the shell section thickness (defined in the shell section command block, see section 5.2.4) to

calculate drilling and hourglass stiffnesses. Otherwise these values have no physical signifi-

cance in the elastic laminate material model.

- The extensional stiffnesses are defined with the Ai j command lines, where the values of i j

are 11, 12, 16, 22, 26, 66, 44, 45, and 55.

- The coupling stiffnesses are defined with the Bi j command lines, where the values of i j are

11, 12, 16, 22, 26, and 66.

- The bending stiffnesses are defined with the Di j command lines, where the values of i j are

11, 12, 16, 22, 26, and 66.

- The initial laminate coordinate system is defined with the COORDINATE SYSTEM command

line.

- The rotation of the initial laminate coordinate system is defined with the DIRECTION FOR

ROTATION and ALPHA command lines. The axis of initial laminate coordinate system is

specified by the DIRECTION FOR ROTATION command line, while the angle of rotation

is given by the ALPHA command line. This produces an intermediate laminate coordinate

system that is then projected onto the surface of each shell element.

198

- The projected intermediate laminate coordinate system is rotated about the element normal

by angle theta, which is specified by the THETA command line.

- The thermal-force resultants are defined by functions that are referenced on the NTH11

FUNCTION, NTH22 FUNCTION, and NTH12 FUNCTION command lines.

- The thermal-force-couple resultants are defined by functions that are referenced on the

MTH11 FUNCTION, MTH22 FUNCTION, and MTH12 FUNCTION command lines.

199

4.2.22 Fiber Membrane Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL FIBER_MEMBRANE

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

CORD DENSITY = <real>cord_density

CORD DIAMETER = <real>cord_diameter

MATRIX DENSITY = <real>matrix_density

TENSILE TEST FUNCTION = <string>test_function_name

PERCENT CONTINUUM = <real>percent_continuum

EPL = <real>epl

AXIS X = <real>axis_x

AXIS Y = <real>axis_y

AXIS Z = <real>axis_z

MODEL = <string>RECTANGULAR

STIFFNESS SCALE = <real>stiffness_scale

REFERENCE STRAIN = <real>reference_strain

END [PARAMETERS FOR MODEL FIBER_MEMBRANE]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The fiber membrane model is used for modeling membranes that are reinforced with unidirectional

fibers. Through the use of a non-zero PERCENT CONTINUUM, a background isotropic material

response can also be incorporated and is added in a manner such that the response in the fiber

direction is unchanged. The fiber membrane model can be used in both Presto and Adagio. When

the fiber membrane model is used in Adagio, the model can be used with or without the control-

stiffness option in Adagio’s multilevel solver. The control-stiffness option is implemented via

the CONTROL STIFFNESS command block and is discussed in Chapter 3. If the control-stiffness

option is activated in Adagio, the response in the fiber direction is softened by lowering the fiber

response. In all cases, the final material behavior that is used for equilibrium corresponds to the

real material response. When the fiber membrane model is used in Presto, the fiber scaling, which

is controlled by the STIFFNESS SCALE command line, is ignored.

200

The command block for a fiber membrane material starts with the line:

BEGIN PARAMETERS FOR MODEL FIBER_MEMBRANE

and terminates with the line:

END [PARAMETERS FOR MODEL FIBER_MEMBRANE]

In the above command blocks, the following definitions are applicable. Usage requirements are

identified both in this list of definitions and in the discussion that follows the list.

- The density of the material is defined with the DENSITY command line. This command

line should be included, but its value will be recomputed (and hence replaced) if the CORD

DENSITY, CORD DIAMETER, and MATRIX DENSITY command lines are specified.

- The thermal strain option is used to define thermal strains. See Section 4.1.3.1 and

Section 4.1.3.2 for further information on defining and activating thermal strains.

- Any two of the following elastic constants are required. These are used to compute values

for the elastic preconditioner only.

• Young’s modulus is defined with the YOUNGS MODULUS command line.

• Poisson’s ratio is defined with the POISSONS RATIO command line.

• The bulk modulus is defined with the BULK MODULUS command line.

• The shear modulus is defined with the SHEAR MODULUS command line.

• Lambda is defined with the LAMBDA command line.

- The density of the fibers is defined by the CORD DENSITY command line. This command

line is optional. See the usage discussion below.

- The diameter of the fibers is defined by the CORD DIAMETER command line. This command

line is optional. See the usage discussion below.

- The density of the matrix is defined by the MATRIX DENSITY command line. This command

line is optional. See the usage discussion below.

- The TENSILE TEST FUNCTION command line references the name of a function defined

in a DEFINITION FOR FUNCTION command line in the SIERRA scope that describes the

fiber force versus strain data. This command line must be included.

- The fractional fiber stiffness to use in defining the background isotropic response is given by

the PERCENT CONTINUUM command line. This command line must be included.

- The number of fibers per unit length is defined by the EPL command line. This command

line must be included.

201

- The components of the vector defining the initial fiber direction is given by the AXIS X,

AXIS Y, and AXIS Z command lines. These command lines must be included. See the

usage discussion below.

- The coordinate system for specifying the fiber orientation is given by the MODEL command

line. Only the option RECTANGULAR is available in this release. This command line must be

included. See the usage discussion below.

- The fiber scaling is specified by the STIFFNESS SCALE command line. If the control-

stiffness option is used in Adagio, this command line must be included. When the fiber

membrane model is used in Presto, this command line is ignored.

- The reference strain is defined with the REFERENCE STRAIN command line. This command

line is optional for Adagio and is not used in Presto. If the control-stiffness option is used in

Adagio, this command line may be included. See the usage discussion below.

Certain command lines in the PARAMETERS FOR MODEL FIBER_MEMBRANE command block

also have interdependencies or other factors that may impact their usage in Presto and Adagio,

as discussed below.

The CORD DENSITY, CORD DIAMETER, and MATRIX DENSITY command lines are optional.

When included, these three command lines are used for computation of the correct density cor-

responding to the fibers, the number of fibers per unit length, and the chosen matrix. When these

three command lines are not included, the density is taken as that specified by the DENSITY com-

mand line.

The AXIS X, AXIS Y, and AXIS Z command lines must be specified if the value for the MODEL

command line is RECTANGULAR. Currently, these axis-related command lines must be specified.

Specifying a reference strain (via the REFERENCE STRAIN command line) implies the use of

strains for measuring part of the control-stiffness material constraint violation in Adagio. If this

command line is not present, the material constraint violation is determined by comparing the

change in the scaled fiber force over the current model problem.

202

4.2.23 Incompressible Solid Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL INCOMPRESSIBLE_SOLID

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

BULK MODULUS = <real>bulk_modulus

SHEAR MODULUS = <real>shear_modulus

LAMBDA = <real>lambda

K SCALING = <real>k_scaling

2G SCALING = <real>2g_scaling

TARGET E = <real>target_e

MAX POISSONS RATIO = <real>max_poissons_ratio

REFERENCE STRAIN = <real>reference_strain

SCALING FUNCTION = <string>scaling_function_name

END [PARAMETERS FOR MODEL INCOMPRESSIBLE_SOLID]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The incompressible solid model is a variation of the elastic model and can be used in both Presto

and Adagio. In Adagio, the incompressible solid model is used with the control-stiffness option in

the multilevel solver. The control-stiffness option is implemented via the CONTROL STIFFNESS

command block and is discussed in Chapter 3. The model is used to model nearly incompressible

materials where Poisson’s ratio, ν, ≈ 0.5. In the course of solving a series of model problems in

Adagio, the material response from this model incorporates scaling the bulk and/or shear behaviors

to yield a material response that is more amenable to solution using Adagio’s conjugate gradient

solver. The final material behavior that is calculated corresponds to the actual moduli that are

specified. When this model is used in Presto, the material scalings are ignored, and the model

behaves like a linear elastic model.

The command block for an incompressible solid material starts with the line:

BEGIN PARAMETERS FOR MODEL INCOMPRESSIBLE_SOLID

and terminates with the line:

203

END [PARAMETERS FOR MODEL INCOMPRESSIBLE_SOLID]

In the above command blocks, the following definitions are applicable. Usage requirements are

identified both in this list of definitions and in the discussion that follows the list.

- The density of the material is defined with the DENSITY command line.

- The Biot’s coefficient of the material is defined with the BIOTS COEFFICIENT command

line.

- The thermal strain option is used to define thermal strains. See Section 4.1.3.1 and

Section 4.1.3.2 for further information on defining and activating thermal strains.

- Any two of the following elastic constants are required to define the unscaled material re-

sponse:

• Young’s modulus is defined with the YOUNGS MODULUS command line.

• Poisson’s ratio is defined with the POISSONS RATIO command line.

• The bulk modulus is defined with the BULK MODULUS command line.

• The shear modulus is defined with the SHEAR MODULUS command line.

• Lambda is defined with the LAMBDA command line.

- The following material-scaling command lines are used only in Adagio:

• The nominal bulk scaling is defined with the K SCALING command line. This com-

mand line is optional. See the usage discussion below.

• The nominal shear scaling is defined with the 2G SCALING command line. This com-

mand line is optional. See the usage discussion below.

• The target Young’s modulus is defined with the TARGET E command line. This com-

mand line is optional. See the usage discussion below.

• The maximum Poisson’s ratio is defined with the MAX POISSONS RATIO command

line. This command line is optional. See the usage discussion below.

• The reference strain is defined with the REFERENCE STRAIN command line. This

command line is optional. See the usage discussion below.

• The SCALING FUNCTION command line references the name of a function defined in

a DEFINITION FOR FUNCTION command line in the SIERRA scope that describes

the time dependent scaling to be applied. This command line is optional. See the usage

discussion below.

As noted previously, only two of the elastic constants are required to define the unscaled material

response. This requirement applies to use of the incompressible solid model in Presto and in

Adagio. Further, all the material-scaling command lines are only used in Adagio.

Several options exist for defining the bulk and/or shear scalings that can be used with the multilevel

solver in Adagio.

204

- Option 1: You can provide the scalings directly by including both of the K SCALING and

2G SCALING command lines or either of them. When both command lines are input, the

user-specified values for their parameters will be used. If only the K SCALING command

line is input, the bulk scaling is as specified in the k_scaling parameter, and the value of

the shear scaling parameter, 2g_scaling, is set to 1.0. On the other hand, if only the 2G

SCALING command line is input, then the shear scaling is as specified in the 2g_scaling

parameter, but the value of the bulk-scaling parameter, k_scaling, is not set to 1.0. Instead,

the bulk scaling is determined by computing a scaled bulk modulus from the scaled shear

modulus and a (scaled) Poisson’s ratio of 0.3. Then, the bulk scaling is determined simply

as the ratio of the scaled bulk modulus to the actual bulk modulus.

- Option 2: You can specify either or both of the TARGET E and MAX POISSONS RATIO

command lines to define the scalings. If only the TARGET E command line is included,

the bulk and shear scalings are computed by first finding scaled moduli using the value of

the target_e parameter along with a (scaled) Poisson’s ratio of 0.3. The bulk and shear

scalings are then determined as the ratio of the appropriate scaled to unscaled modulus. If

only the MAX POISSONS RATIO command line is included, the shear scaling is set to 1.0,

and the bulk scaling is computed by first calculating a scaled bulk modulus from the actual

shear modulus and the value of the max_poissons_ratio parameter. The bulk scaling is

then calculated simply as the ratio of the scaled bulk modulus to the actual bulk modulus.

If both the TARGET E and MAX POISSONS RATIO command lines are included, the bulk

scaling (and shear scaling) is determined from the ratio of the bulk scaled modulus (and shear

scaled modulus) computed using the values of the target_e and max_poissons_ratio

parameters to the unscaled bulk (and shear) modulus.

- Option 3: You can choose not to include any of the K SCALING, 2G SCALING, TARGET E,

and MAX POISSONS RATIO command lines. In such case, the shear scaling is set to 1.0,

and the bulk scaling is computed as the ratio of the scaled bulk modulus coming from the

real shear modulus and a (scaled) Poisson’s ratio of 0.3 to the actual bulk modulus.

The function referenced by the value of the parameter scaling_function_name in the SCALING

FUNCTION command line can be used to modify the bulk and shear scalings in solution time. The

actual scalings used are computed by taking the scalings specified by the parameter values in the

K SCALING, 2G SCALING, TARGET E, and MAX POISSONS RATIO command lines and simply

multiplying them by the function value at the specified solution time. If the SCALING FUNCTION

command line is not included, the bulk and shear scalings are fixed in time.

The REFERENCE STRAIN command line supplies a value for the reference strain that is used to

create a normalized material constraint violation based on strains. Specifying a reference strain

implies the use of strains for measuring the material constraint violation (or part of the control-

stiffness error in Adagio). Otherwise, the material constraint violation is determined by using the

change in the scaled stress response over the current model problem.

205

4.2.24 Mooney-Rivlin Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

BEGIN PARAMETERS FOR MODEL MOONEY_RIVLIN

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

BULK MODULUS = <real>bulk_modulus

SHEAR MODULUS = <real>shear_modulus

LAMBDA = <real>lambda

C10 = <real>c10

C01 = <real>c01

C10 FUNCTION = <string>c10_function_name

C01 FUNCTION = <string>c01_function_name

BULK FUNCTION = <string>bulk_function_name

THERMAL EXPANSION FUNCTION = <string>eth_function_name

TARGET E = <real>target_e

TARGET E FUNCTION = <string>etar_function_name

MAX POISSONS RATIO = <real>max_poissons_ratio(0.5)

REFERENCE STRAIN = <real>reference_strain

END [PARAMETERS FOR MODEL MOONEY_RIVLIN]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Mooney-Rivlin is a hyperelastic model that is used to model rubber. The Mooney-Rivlin model

incorporates temperature-dependent material moduli and can be used in both Presto and Ada-

gio. When the model is used in Adagio, it can be used with or without the control-stiffness op-

tion in Adagio’s multilevel solver. The control-stiffness option is implemented via the CONTROL

STIFFNESS command block and is discussed in Chapter 3. The model is used to model nearly

incompressible materials where Poisson’s ratio, ν, ≈ 0.5. In the course of solving a series of model

problems in Adagio, the material response from this model incorporates scaling the bulk and/or

shear behaviors to yield a material response that is more amenable to solution using Adagio’s

conjugate gradient solver. The final material behavior that is calculated corresponds to the actual

moduli that are specified. When this model is used in Presto, the material scalings are ignored.

The command block for a Mooney-Rivlin material starts with the line:

BEGIN PARAMETERS FOR MODEL MOONEY_RIVLIN

and terminates with the line:

END [PARAMETERS FOR MODEL MOONEY_RIVLIN]

In the above command blocks:

206

- The density of the material is defined with the DENSITY command line.

- The Biot’s coefficient of the material is defined with the BIOTS COEFFICIENT command

line.

- Any two of the following elastic constants are required to define the unscaled bulk behavior:

• Young’s modulus is defined with the YOUNGS MODULUS command line.

• Poisson’s ratio is defined with the POISSONS RATIO command line.

• The bulk modulus is defined with the BULK MODULUS command line.

• The shear modulus is defined with the SHEAR MODULUS command line.

• Lambda is defined with the LAMBDA command line.

- The nominal value for C10 is defined with the C10 command line. This command line is

required. See the usage discussion below.

- The nominal value for C01 is defined with the C01 command line. This command line is

required. See the usage discussion below.

- The C10 FUNCTION command line references the name of a function defined in a

DEFINITION FOR FUNCTION command line in the SIERRA scope that describes the tem-

perature dependence of the C10 material parameter. This command line is optional. If it

is not present, there is no temperature dependence in the C10 parameter. See the usage

discussion below.

- The C01 FUNCTION command line references the name of a function defined in a

DEFINITION FOR FUNCTION command line in the SIERRA scope that describes the tem-

perature dependence of the C01 material parameter. This command line is optional. If it

is not present, there is no temperature dependence in the C01 parameter. See the usage

discussion below.

- The BULK FUNCTION command line references the name of a function defined in a

DEFINITION FOR FUNCTION command line in the SIERRA scope that describes the tem-

perature dependence of the bulk modulus. This command line is optional. If it is not present,

there is no temperature dependence in the bulk modulus. See the usage discussion below.

- The THERMAL EXPANSION FUNCTION command line references the name of a function de-

fined in a DEFINITION FOR FUNCTION command line in the SIERRA scope that describes

the linear thermal expansion as function of temperature. This command line is optional. If it

is not present, there is no thermal expansion. See the usage discussion below.

- The following material-scaling command lines are used only in Adagio:

• The target Young’s modulus is defined with the TARGET E command line. This com-

mand line is optional. See the usage discussion below.

207

• The TARGET E FUNCTION command line references the name of a function defined

in a DEFINITION FOR FUNCTION command line in the SIERRA scope that describes

the time variation of the target Young’s modulus. This command line is optional. If it

is not present, there is no time dependence in the Target E parameter. See the usage

discussion below.

• The maximum Poisson’s ratio is defined with the MAX POISSONS RATIO command

line. This command line is optional and will default to 0.5 if not specified. See the

usage discussion below.

• The reference strain is defined with the REFERENCE STRAIN command line. This

command line is optional. See the usage discussion below.

As noted previously, only two of the elastic constants are required to define the unscaled bulk

behavior. Together, the values for C10 and C01 determine the shear behavior, and thus the C10

and C01 command lines must be included in this model.

The command lines for functions that specify the temperature dependence of C10, C01, and

bulk modulus are optional, e.g., the C10 FUNCTION, C01 FUNCTION and BULK FUNCTION

command lines. If these command lines are not included, their corresponding material param-

eters are taken to be independent of temperature. Mooney-Rivlin, like other material models,

allows for the specification of thermal strain behavior within the material model itself, via the

THERMAL EXPANSION FUNCTION command line. This command line, like the other “function-

type” command lines in this model requires that a function associated with the name be defined in

the SIERRA scope.

The bulk and shear scalings that can be used with the multilevel solver in Adagio are specified via

a combination of the TARGET E, TARGET E FUNCTION, and MAX POISSONS RATIO command

lines. If the TARGET E command line is not included (and the MAX POISSONS RATIO command

line is included), the shear scaling is set to 1.0, and the bulk scaling is determined from the ratio of

the scaled bulk modulus to its unscaled value, where the scaled bulk modulus is computed using the

value of the max_poissons_ratio parameter along with the unscaled initial shear modulus that

is determined from the value of the parameters specified in the C10 and C01 command lines. On the

other hand, if both the TARGET E command line and the MAX POISSONS RATIO command line

are included, bulk and shear scaling values are computed using scaled moduli that are calculated

from the target_e and max_poissons_ratio parameter values.

Including the TARGET E FUNCTION command line allows time-dependent bulk and shear scaling

to be used. If this command line is not specified, the bulk and shear scalings remain constant

in solution time. If the command line is specified, the target Young’s modulus that is used for

computing the scaled moduli is multiplied by the function value.

The REFERENCE STRAIN command line supplies a value for the reference strain used to create

a normalized material constraint violation that is based on strains. Specifying a reference strain

implies the use of strains for measuring the material constraint violation (or part of the control-

stiffness error in Adagio). Otherwise, the material constraint violation is determined using the

change in the scaled stress response over the current model problem.

Brief documentation on the theoretical basis for the Mooney-Rivlin model is given in Reference 17.

208

4.2.25 NLVE 3D Orthotropic Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

BEGIN PARAMETERS FOR MODEL NLVE_3D_ORTHOTROPIC

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

COORDINATE SYSTEM = <string>coordinate_system_name

DIRECTION FOR ROTATION = <real>1|2|3

ALPHA = <real>alpha_in_degrees

SECOND DIRECTION FOR ROTATION = <real>1|2|3

SECOND ALPHA = <real>second_alpha_in_degrees

FICTITIOUS LOGA FUNCTION = <string>fict_loga_function_name

FICTITIOUS LOGA SCALE FACTOR = <real>fict_loga_scale_factor

In each of the five ‘‘PRONY’’ command lines and in

the RELAX TIME command line, the value of i can be from

1 through 30

1PSI PRONY <integer>i = <real>psi1_i

2PSI PRONY <integer>i = <real>psi2_i

3PSI PRONY <integer>i = <real>psi3_i

4PSI PRONY <integer>i = <real>psi4_i

5PSI PRONY <integer>i = <real>psi5_i

RELAX TIME <integer>i = <real>tau_i

REFERENCE TEMP = <real>tref

REFERENCE DENSITY = <real>rhoref

WLF C1 = <real>wlf_c1

WLF C2 = <real>wlf_c2

B SHIFT CONSTANT = <real>b_shift

SHIFT REF VALUE = <real>shift_ref

WWBETA 1PSI = <real>wwb_1psi

WWTAU 1PSI = <real>wwt_1psi

WWBETA 2PSI = <real>wwb_2psi

WWTAU 2PSI = <real>wwt_2psi

WWBETA 3PSI = <real>wwb_3psi

WWTAU 3PSI = <real>wwt_3psi

WWBETA 4PSI = <real>wwb_4psi

WWTAU 4PSI = <real>wwt_4psi

WWBETA 5PSI = <real>wwb_5psi

WWTAU 5PSI = <real>wwt_5psi

DOUBLE INTEG FACTOR = <real>dble_int_fac

REF RUBBERY HCAPACITY = <real>hcapr

REF GLASSY HCAPACITY = <real>hcapg

209

GLASS TRANSITION TEM = <real>tg

REF GLASSY C11 = <real>c11g

REF RUBBERY C11 = <real>c11r

REF GLASSY C22 = <real>c22g

REF RUBBERY C22 = <real>c22r

REF GLASSY C33 = <real>c33g

REF RUBBERY C33 = <real>c33r

REF GLASSY C12 = <real>c12g

REF RUBBERY C12 = <real>c12r

REF GLASSY C13 = <real>c13g

REF RUBBERY C13 = <real>c13r

REF GLASSY C23 = <real>c23g

REF RUBBERY C23 = <real>c23r

REF GLASSY C44 = <real>c44g

REF RUBBERY C44 = <real>c44r

REF GLASSY C55 = <real>c55g

REF RUBBERY C55 = <real>c55r

REF GLASSY C66 = <real>c66g

REF RUBBERY C66 = <real>c66r

REF GLASSY CTE1 = <real>cte1g

REF RUBBERY CTE1 = <real>cte1r

REF GLASSY CTE2 = <real>cte2g

REF RUBBERY CTE2 = <real>cte2r

REF GLASSY CTE3 = <real>cte3g

REF RUBBERY CTE3 = <real>cte3r

LINEAR VISCO TEST = <real>lvt

T DERIV GLASSY C11 = <real>dc11gdT

T DERIV RUBBERY C11 = <real>dc11rdT

T DERIV GLASSY C22 = <real>dc22gdT

T DERIV RUBBERY C22 = <real>dc22rdT

T DERIV GLASSY C33 = <real>dc33gdT

T DERIV RUBBERY C33 = <real>dc33rdT

T DERIV GLASSY C12 = <real>dc12gdT

T DERIV RUBBERY C12 = <real>dc12rdT

T DERIV GLASSY C13 = <real>dc13gdT

T DERIV RUBBERY C13 = <real>dc13rdT

T DERIV GLASSY C23 = <real>dc23gdT

T DERIV RUBBERY C23 = <real>dc23rdT

T DERIV GLASSY C44 = <real>dc44gdT

T DERIV RUBBERY C44 = <real>dc44rdT

T DERIV GLASSY C55 = <real>dc55gdT

T DERIV RUBBERY C55 = <real>dc55rdT

T DERIV GLASSY C66 = <real>dc66gdT

T DERIV RUBBERY C66 = <real>dc66rdT

T DERIV GLASSY CTE1 = <real>dcte1gdT

T DERIV RUBBERY CTE1 = <real>dcte1rdT

T DERIV GLASSY CTE2 = <real>dcte2gdT

210

T DERIV RUBBERY CTE2 = <real>dcte2rdT

T DERIV GLASSY CTE3 = <real>dcte3gdT

T DERIV RUBBERY CTE3 = <real>dcte3rdT

T DERIV GLASSY HCAPACITY = <real>dhcapgdT

T DERIV RUBBERY HCAPACITY = <real>dhcaprdT

REF PSIC = <real>psic_ref

T DERIV PSIC = <real>dpsicdT

T 2DERIV PSIC = <real>d2psicdT2

PSI EQ 2T = <real>psitt

PSI EQ 3T = <real>psittt

PSI EQ 4T = <real>psitttt

PSI EQ XX 11 = <real>psiXX11

PSI EQ XX 22 = <real>psiXX22

PSI EQ XX 33 = <real>psiXX33

PSI EQ XX 12 = <real>psiXX12

PSI EQ XX 13 = <real>psiXX13

PSI EQ XX 23 = <real>psiXX23

PSI EQ XX 44 = <real>psiXX44

PSI EQ XX 55 = <real>psiXX55

PSI EQ XX 66 = <real>psiXX66

PSI EQ XXT 11 = <real>psiXXT11

PSI EQ XXT 22 = <real>psiXXT22

PSI EQ XXT 33 = <real>psiXXT33

PSI EQ XXT 12 = <real>psiXXT12

PSI EQ XXT 13 = <real>psiXXT13

PSI EQ XXT 23 = <real>psiXXT23

PSI EQ XXT 44 = <real>psiXXT44

PSI EQ XXT 55 = <real>psiXXT55

PSI EQ XXT 66 = <real>psiXXT66

PSI EQ XT 1 = <real>psiXT1

PSI EQ XT 2 = <real>psiXT2

PSI EQ XT 3 = <real>psiXT3

PSI EQ XTT 1 = <real>psiXTT1

PSI EQ XTT 2 = <real>psiXTT2

PSI EQ XTT 3 = <real>psiXTT3

REF PSIA 11 = <real>psiA11

REF PSIA 22 = <real>psiA22

REF PSIA 33 = <real>psiA33

REF PSIA 12 = <real>psiA12

REF PSIA 13 = <real>psiA13

REF PSIA 23 = <real>psiA23

REF PSIA 44 = <real>psiA44

REF PSIA 55 = <real>psiA55

REF PSIA 66 = <real>psiA66

T DERIV PSIA 11 = <real>dpsiA11dT

T DERIV PSIA 22 = <real>dpsiA22dT

T DERIV PSIA 33 = <real>dpsiA33dT

211

T DERIV PSIA 12 = <real>dpsiA12dT

T DERIV PSIA 13 = <real>dpsiA13dT

T DERIV PSIA 23 = <real>dpsiA23dT

T DERIV PSIA 44 = <real>dpsiA44dT

T DERIV PSIA 55 = <real>dpsiA55dT

T DERIV PSIA 66 = <real>dpsiA66dT

REF PSIB 1 = <real>psiB1

REF PSIB 2 = <real>psiB2

REF PSIB 3 = <real>psiB3

T DERIV PSIB 1 = <real>dpsiB1dT

T DERIV PSIB 2 = <real>dpsiB2dT

T DERIV PSIB 3 = <real>dpsiB3dT

PSI POT TT = <real>psipotTT

PSI POT TTT = <real>psipotTTT

PSI POT TTTT = <real>psipotTTTT

PSI POT XT 1 = <real>psipotXT1

PSI POT XT 2 = <real>psipotXT2

PSI POT XT 3 = <real>psipotXT3

PSI POT XTT 1 = <real>psipotXTT1

PSI POT XTT 2 = <real>psipotXTT2

PSI POT XTT 3 = <real>psipotXTT3

PSI POT XXT 11 = <real>psipotXXT11

PSI POT XXT 22 = <real>psipotXXT22

PSI POT XXT 33 = <real>psipotXXT33

PSI POT XXT 12 = <real>psipotXXT12

PSI POT XXT 13 = <real>psipotXXT13

PSI POT XXT 23 = <real>psipotXXT23

PSI POT XXT 44 = <real>psipotXXT44

PSI POT XXT 55 = <real>psipotXXT55

PSI POT XXT 66 = <real>psipotXXT66

END [PARAMETERS FOR MODEL NLVE_3D_ORTHOTROPIC]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The NLVE three-dimensional orthotropic model is a nonlinear viscoelastic orthotropic continuum

model that describes the behavior of fiber-reinforced polymer-matrix composites. In addition to

being able to model the linear elastic and linear viscoelastic behaviors of such composites, it also

can capture both “weak” and “strong” nonlinear viscoelastic effects such as stress dependence of

the creep compliance and viscoelastic yielding. This model can be used in both Presto and Adagio.

Because the NLVE model is still under active development and also because it has an extensive list

of command lines, we have not followed the typical approach in documenting this model.

212

4.2.26 Stiff Elastic

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL STIFF_ELASTIC

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

BULK MODULUS = <real>bulk_modulus

SHEAR MODULUS = <real>shear_modulus

LAMBDA = <real>lambda

SCALE FACTOR = <real>scale_factor

REFERENCE STRAIN = <real>reference_strain

END [PARAMETERS FOR MODEL STIFF_ELASTIC]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The stiff elastic model is a variation of the isotropic elastic model. The stiff elastic model can be

used in both Presto and Adagio. When the model is used in Adagio, it is typically used with the

control-stiffness option in Adagio’s multilevel solver. The control-stiffness option is implemented

via the CONTROL STIFFNESS command block and is discussed in Chapter 3. The stiff elastic

model is used to lower the stiffness of the bulk and shear behaviors of relatively stiff materials to

yield a material response more amenable to solution using Adagio’s conjugate gradient solver. The

final material behavior that is calculated corresponds to the actual moduli that are specified. When

this model is used in Presto, the material scalings are ignored.

The command block for a stiff elastic material starts with the line:

BEGIN PARAMETERS FOR MODEL STIFF_ELASTIC

and terminates with the line:

END [PARAMETERS FOR MODEL STIFF_ELASTIC]

In the above command blocks:

213

- The density of the material is defined with the DENSITY command line.

- The Biot’s coefficient of the material is defined with the BIOTS COEFFICIENT command

line.

- The thermal strain option is used to define thermal strains. See Section 4.1.3.1 and

Section 4.1.3.2 for further information on defining and activating thermal strains.

- Any two of the following elastic constants are required to define the unscaled material re-

sponse:

• Young’s modulus is defined with the YOUNGS MODULUS command line.

• Poisson’s ratio is defined with the POISSONS RATIO command line.

• The bulk modulus is defined with the BULK MODULUS command line.

• The shear modulus is defined with the SHEAR MODULUS command line.

• Lambda is defined with the LAMBDA command line.

- The following command lines are used only in Adagio:

• The material scaling is defined with the SCALE FACTOR command line.

• The reference strain is defined with the REFERENCE STRAIN command line.

As noted previously, only two of the elastic constants are required to define the unscaled material

response.

The scaled bulk and shear moduli are computed using a Young’s modulus scaled by the value given

by the SCALE FACTOR line command.

The REFERENCE STRAIN command line supplies a value for the reference strain used to create

a normalized material constraint violation that is based on strains. Specifying a reference strain

implies the use of strains for measuring the material constraint violation (or part of the control-

stiffness error in Adagio). Otherwise, the material constraint violation is determined using the

change in the scaled stress response over the current model problem.

214

4.2.27 Swanson Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

BEGIN PARAMETERS FOR MODEL SWANSON

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

BULK MODULUS = <real>bulk_modulus

SHEAR MODULUS = <real>shear_modulus

LAMBDA = <real>lambda

A1 = <real>a1

P1 = <real>p1

B1 = <real>b1

Q1 = <real>q1

C1 = <real>c1

R1 = <real>r1

CUT OFF STRAIN = <real>ecut

THERMAL EXPANSION FUNCTION = <string>eth_function_name

TARGET E = <real>target_e

TARGET E FUNCTION = <string>etar_function_name

MAX POISSONS RATIO = <real>max_poissons_ratio(0.5)

REFERENCE STRAIN = <real>reference_strain

END [PARAMETERS FOR MODEL SWANSON]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The Swanson model is a hyperelastic model that is used to model rubber. The Swanson model

can be used in both Presto and Adagio. When the model is used in Adagio, it can be used with

or without the control-stiffness option in Adagio’s multilevel solver for nearly incompressible

materials where Poisson’s ratio, ν, ≈ 0.5. The control-stiffness option is implemented via the

CONTROL STIFFNESS command block and is discussed in Chapter 3. In the course of solving a

series of model problems in Adagio, the material response from this model incorporates scaling

the bulk and/or shear behaviors to yield a material response that is more amenable to solution using

Adagio’s conjugate gradient solver. The final material behavior that is calculated corresponds to

the actual moduli that are specified. When this model is used in Presto, the material scalings are

ignored.

The command block for a Swanson material starts with the line:

BEGIN PARAMETERS FOR MODEL SWANSON

and terminates with the line:

END [PARAMETERS FOR MODEL SWANSON]

In the above command blocks:

215

- The density of the material is defined with the DENSITY command line.

- The Biot’s coefficient of the material is defined with the BIOTS COEFFICIENT command

line.

- Any two of the following elastic constants are required to define the unscaled bulk behavior:

• Young’s modulus is defined with the YOUNGS MODULUS command line.

• Poisson’s ratio is defined with the POISSONS RATIO command line.

• The bulk modulus is defined with the BULK MODULUS command line.

• The shear modulus is defined with the SHEAR MODULUS command line.

• Lambda is defined with the LAMBDA command line.

- The following command lines are required:

• The material constant A1 is defined with the A1 command line.

• The material constant P1 is defined with the P1 command line.

• The material constant B1 is defined with the B1 command line.

• The material constant Q1 is defined with the Q1 command line.

• The material constant C1 is defined with the C1 command line.

• The material constant R1 is defined with the R1 command line.

• The small-strain value used for computing the initial shear modulus is defined with the

CUT OFF STRAIN command line.

- The THERMAL EXPANSION FUNCTION command line references the name of a function de-

fined in a DEFINITION FOR FUNCTION command line in the SIERRA scope that describes

the linear thermal expansion as function of temperature. This command line is optional. If it

is not present, there is no thermal expansion. See the usage discussion below.

- The following material-scaling command lines are used only in Adagio:

• The target Young’s modulus is defined with the TARGET E command line. This com-

mand line is optional. See the usage discussion below.

• The TARGET E FUNCTION command line references the name of a function defined

in a DEFINITION FOR FUNCTION command line in the SIERRA scope that describes

the time variation of the target Young’s modulus. This command line is optional. If it

is not present, there is no time dependence in the Target E parameter. See the usage

discussion below.

• The maximum Poisson’s ratio is defined with the MAX POISSONS RATIO command

line. This command line is optional and will default to 0.5 if not specified. See the

usage discussion below.

• The reference strain is defined with the REFERENCE STRAIN command line. This

command line is optional. See the usage discussion below.

216

As noted previously, only two of the elastic constants are required to define the unscaled bulk

behavior. Together, the values for parameters in the A1, P1, B1, Q1, C1, and R1 command lines

define the unscaled shear behavior, so these command lines must be present. The initial unscaled

shear modulus is determined from those parameter values along with the value of the parameter in

the CUT OFF STRAIN command line, so this command line must also be present.

The Swanson model, like a few of the material models, allows for the specification of thermal strain

behavior within the material model itself, via the THERMAL EXPANSION FUNCTION command

line. This command line, like the other “function-type” command lines in this model, requires that

a function associated with the name be defined in the SIERRA scope.

The bulk and shear scalings that can be used with the multilevel solver in Adagio are specified via

a combination of the TARGET E, TARGET E FUNCTION, and MAX POISSONS RATIO command

lines. If the TARGET E command line is not included (and the MAX POISSONS RATIO command

line is included), the shear scaling is set to 1.0, and the bulk scaling is determined from the ra-

tio of the scaled bulk modulus to its unscaled value, where the scaled bulk modulus is computed

using the value of the max_poissons_ratio parameter along with the unscaled shear modulus.

On the other hand, if both the TARGET E command line and the MAX POISSONS RATIO are in-

cluded, bulk and shear scaling values are computed using scaled moduli that are calculated from

the target_e and max_poissons_ratio parameter values.

Including the TARGET E FUNCTION command line allows time-dependent bulk and shear scaling

to be used. If this command line is not specified, the bulk and shear scalings remain constant

in solution time. If the command line is specified, the target Young’s modulus that is used for

computing the scaled moduli is multiplied by the function value.

The REFERENCE STRAIN command line supplies a value for the reference strain used to create

a normalized material constraint violation that is based on strains. Specifying a reference strain

implies the use of strains for measuring the material constraint violation (or part of the control-

stiffness error in Adagio). Otherwise, the material constraint violation is determined using the

change in the scaled stress response over the current model problem.

Output variables available for this model are listed in Table 8.38. Brief documentation on the

theoretical basis for the Swanson model is given in Reference 17.

217

4.2.28 Viscoelastic Swanson Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

BEGIN PARAMETERS FOR MODEL VISCOELASTIC_SWANSON

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

BULK MODULUS = <real>bulk_modulus

SHEAR MODULUS = <real>shear_modulus

LAMBDA = <real>lambda

A1 = <real>a1

P1 = <real>p1

B1 = <real>b1

Q1 = <real>q1

C1 = <real>c1

R1 = <real>r1

CUT OFF STRAIN = <real>ecut

THERMAL EXPANSION FUNCTION = <string>eth_function_name

PRONY SHEAR INFINITY = <real>ginf

PRONY SHEAR 1 = <real>g1

PRONY SHEAR 2 = <real>g2

PRONY SHEAR 3 = <real>g3

PRONY SHEAR 4 = <real>g4

PRONY SHEAR 5 = <real>g5

PRONY SHEAR 6 = <real>g6

PRONY SHEAR 7 = <real>g7

PRONY SHEAR 8 = <real>g8

PRONY SHEAR 9 = <real>g9

PRONY SHEAR 10 = <real>g10

SHEAR RELAX TIME 1 = <real>tau1

SHEAR RELAX TIME 2 = <real>tau2

SHEAR RELAX TIME 3 = <real>tau3

SHEAR RELAX TIME 4 = <real>tau4

SHEAR RELAX TIME 5 = <real>tau5

SHEAR RELAX TIME 6 = <real>tau6

SHEAR RELAX TIME 7 = <real>tau7

SHEAR RELAX TIME 8 = <real>tau8

SHEAR RELAX TIME 9 = <real>tau9

SHEAR RELAX TIME 10 = <real>tau10

WLF COEF C1 = <real>wlf_c1

WLF COEF C2 = <real>wlf_c2

WLF TREF = <real>wlf_tref

NUMERICAL SHIFT FUNCTION = <string>ns_function_name

TARGET E = <real>target_e

TARGET E FUNCTION = <string>etar_function_name

218

MAX POISSONS RATIO = <real>max_poissons_ratio(0.5)

REFERENCE STRAIN = <real>reference_strain

END [PARAMETERS FOR MODEL VISCOELASTIC_SWANSON]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The viscoelastic Swanson model is a finite strain viscoelastic model that has an initial elastic

response that matches the Swanson material model. The bulk response is elastic, while the shear

response is viscoelastic. This model is commonly employed in simulating the response of rubber

materials. The viscoelastic Swanson model can be used in both Presto and Adagio. When the

model is used in Adagio, it can be used with or without the control-stiffness option in Adagio’s

multilevel solver for nearly incompressible materials where Poisson’s ratio, ν, ≈ 0.5. The control-

stiffness option is implemented via the CONTROL STIFFNESS command block and is discussed in

Chapter 3. In the course of solving a series of model problems in Adagio, the material response

from this model incorporates scaling the bulk and/or shear behaviors to yield a material response

that is more amenable to solution using Adagio’s conjugate gradient solver. The final material

behavior that is calculated corresponds to the actual moduli that are specified. When this model is

used in Presto, the material scalings are ignored.

The command block for a viscoelastic Swanson material starts with the line:

BEGIN PARAMETERS FOR MODEL VISCOELASTIC_SWANSON

and terminates with the line:

END [PARAMETERS FOR MODEL VISCOELASTIC_SWANSON]

In the above command blocks:

- The density of the material is defined with the DENSITY command line.

- The Biot’s coefficient of the material is defined with the BIOTS COEFFICIENT command

line.

- Any two of the following elastic constants are required to define the unscaled bulk behavior:

• Young’s modulus is defined with the YOUNGS MODULUS command line.

• Poisson’s ratio is defined with the POISSONS RATIO command line.

• The bulk modulus is defined with the BULK MODULUS command line.

• The shear modulus is defined with the SHEAR MODULUS command line.

• Lambda is defined with the LAMBDA command line.

- The following command lines are required:

• The material constant A1 is defined with the A1 command line.

219

• The material constant P1 is defined with the P1 command line.

• The material constant B1 is defined with the B1 command line.

• The material constant Q1 is defined with the Q1 command line.

• The material constant C1 is defined with the C1 command line.

• The material constant R1 is defined with the R1 command line.

• The small-strain value used for computing the glassy shear modulus is defined with the

CUT OFF STRAIN command line.

- The THERMAL EXPANSION FUNCTION command line references the name of a function de-

fined in a DEFINITION FOR FUNCTION command line in the SIERRA scope that describes

the linear thermal expansion as function of temperature. This command line is optional. If it

is not present, there is no thermal expansion. See the usage discussion below.

- PRONY SHEAR INFINITY command line. This command line is required.

- The normalized relaxation spectra coefficients are specified with the PRONY SHEAR I com-

mand lines, where the value of I varies sequentially from 1 to 10. These command lines are

optional.

- The normalized relaxation spectra time constants are specified with the SHEAR RELAX

TIME I command lines, where the value of I varies sequentially from 1 to 10. These com-

mand lines are optional.

- WLF COEF C1 command line. This command line is required.

- WLF COEF C2 command line. This command line is required.

- WLF TREF command line. This command line is required.

- NUMERICAL SHIFT FUNCTION command line. This command line is optional.

- The following material-scaling command lines are used only in Adagio:

• The target Young’s modulus is defined with the TARGET E command line. This com-

mand line is required. See the usage discussion below.

- The TARGET E FUNCTION command line references the name of a function defined

in a DEFINITION FOR FUNCTION command line in the SIERRA scope that describes

the time variation of the target Young’s modulus. This command line is optional. If it

is not present, there is no time dependence in the Target E parameter. See the usage

discussion below.

- The maximum Poisson’s ratio is defined with the MAX POISSONS RATIO command

line. This command line is optional and will default to 0.5 if not specified. See the

usage discussion below.

- The reference strain is defined with the REFERENCE STRAIN command line. This

command line is required. See the usage discussion below.

220

As noted previously, only two of the elastic constants are required to define the unscaled bulk be-

havior. Together, the values for parameters in the A1, P1, B1, Q1, C1, and R1 command lines define

the unscaled glassy shear behavior, so these command lines must be present. The unscaled glassy

shear modulus is determined from those parameter values along with the value of the parameter in

the CUT OFF STRAIN command line, so this command line must also be present.

The viscoelastic Swanson model, like a few of the material models, allows for the specifica-

tion of thermal strain behavior within the material model itself, via the THERMAL EXPANSION

FUNCTION command line. This command line, like the other “function-type” command lines in

this model requires that a function associated with the name be defined in the SIERRA scope.

The bulk and shear scalings that can be used with the multilevel solver in Adagio are specified via

a combination of the TARGET E, TARGET E FUNCTION, and MAX POISSONS RATIO command

lines. If the TARGET E command line is not included (and the MAX POISSONS RATIO command

line is included), the shear scaling is set to 1.0, and the bulk scaling is determined from the ratio of

the scaled bulk modulus to its unscaled value, where the scaled bulk modulus is computed using

the value of the max_poissons_ratio parameter along with the unscaled shear modulus. On the

other hand, if both the TARGET E command line and the MAX POISSONS RATIO command line

are included, bulk and shear scaling values are computed using scaled moduli that are calculated

from the target_e and max_poissons_ratio parameter values.

Including the TARGET E FUNCTION command line allows time-dependent bulk and shear scaling

to be used. If this command line is not specified, the bulk and shear scalings remain constant

in solution time. If the command line is specified, the target Young’s modulus that is used for

computing the scaled moduli is multiplied by the function value.

The REFERENCE STRAIN command line supplies a value for the reference strain used to create

a normalized material constraint violation that is based on strains. Specifying a reference strain

implies the use of strains for measuring the material constraint violation (or part of the control-

stiffness error in Adagio). Otherwise, the material constraint violation is determined using the

change in the scaled stress response over the current model problem.

Output variables available for this model are listed in Table 8.39. Brief documentation on the

theoretical basis for the viscoelastic Swanson model is given in References 17, 18, 19, and 20.

221

4.3 Cohesive Zone Material Models

Several material models are available for use with cohesive zone elements, and are described in

this section.

Traction separation models used for cohesive surface elements are input within BEGIN PROPERTY

SPECIFICATION FOR MATERIAL blocks in the same manner as continuum models. Although

density is not a property used by cohesive zone elements, because of their specification within this

block, all of these models currently require a density to be provided as part of their input.

4.3.1 Traction Decay

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

#

DENSITY = <real>density_value

#

BEGIN PARAMETERS FOR MODEL TRACTION_DECAY

NORMAL DECAY LENGTH = <real>

TANGENTIAL DECAY LENGTH = <real>

END [PARAMETERS FOR MODEL TRACTION_DECAY]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The Traction Decay cohesive model is a simple model that get initialized with a traction upon

activation or insertion of the cohesive element, and decays that traction to zero over specified

values of normal and tangential separation. This model is only valid to use in conjunction with

dynamic cohesive zone activation through MPC deactivation or dynamic insertion of cohesive

surface elements.

The command block for a traction decay material starts with the line:

BEGIN PARAMETERS FOR MODEL TRACTION_DECAY

and terminates with the line:

END [PARAMETERS FOR MODEL TRACTION_DECAY]

In the above command block:

- The density of the material is defined with the DENSITY command line. Although this is not

used in the model, it is currently a required input parameter.

- The separation length over which the normal traction decays to zero is set by the NORMAL

DECAY LENGTH command line.

- The separation length over which the tangential traction decays to zero is set by the

TANGENTIAL DECAY LENGTH command line.

222

4.3.2 Tvergaard Hutchinson

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

#

DENSITY = <real>density_value

#

BEGIN PARAMETERS FOR MODEL TVERGAARD_HUTCHINSON

INIT TRACTION METHOD = IGNORE|ADD (IGNORE)

LAMBDA_1 = <real>

LAMBDA_2 = <real>

NORMAL LENGTH SCALE = <real>

TANGENTIAL LENGTH SCALE = <real>

PEAK TRACTION = <real>

PENETRATION STIFFNESS MULTIPLIER = <real>

NORMAL INITIAL TRACTION DECAY LENGTH = <real>

TANGENTIAL INITIAL TRACTION DECAY LENGTH = <real>

USE ELASTIC UNLOADING = NO|YES (YES)

END [PARAMETERS FOR MODEL TVERGAARD_HUTCHINSON]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The Tvergaard Hutchinson cohesive model combines the normal and tangential separation into

a single normalized separation and calculates a traction per unit length based on this value. This

model then calculates normal and tangential traction based on the ratio of the normal and tangential

length scales.

For a Tvergaard Hutchinson surface model, a Tvergaard Hutchinson command block starts with

the input line: The command block for a traction decay material starts with the line:

BEGIN PARAMETERS FOR MODEL TVERGAARD_HUTCHINSON

and terminates with the line:

END [PARAMETERS FOR MODEL TVERGAARD_HUTCHINSON]

In the above command blocks:

- The density of the material is defined with the DENSITY command line. Although this is not

used in the model, it is currently a required input parameter.

- For dynamically activated or dynamically inserted cohesive surface elements, an initial trac-

tion can be added to the calculated traction based on element properties specified in the

ELEMENT DEATH block and is set via the INIT TRACTION METHOD. The default behavior

is to ignore any initial tractions and let the traction-separation law dictate the behavior.

- LAMBDA_1 indicates the normalized separation at which the traction response flattens with

an additional increase in separation.

- LAMBDA_2 indicates the normalized separation at which the traction begins to degrade with

an additional increase in separation.

223

- The separation at which failure occurs in the normal direction is prescribed using the NORMAL

LENGTH SCALE command.

- The maximum traction is specified through the PEAK TRACTION command.

- NORMAL INITIAL TRACTION DECAY LENGTH and TANGENTIAL INITIAL TRACTION

DECAY LENGTH specify the length over which the initial traction will decay to zero in the

normal and tangential direction respectively if the cohesive elements are initialized dur-

ing element death. This decay length is independent of the NORMAL LENGTH SCALE and

TANGENTIAL LENGTH SCALE specified for the calculated traction.

- The separation at which failure occurs in the tangential direction is prescribed using the

TANGENTIAL LENGTH SCALE command.

- To help prevent interpenetration of the cohesive faces, use the PENETRATION STIFFNESS

MULTIPLIER command to artificially increase the normal traction when penetration occurs.

WARNING: cohesive elements are not well equipped to handle compression. This is an

ad-hoc method to handle contact.

- Set the USE ELASTIC UNLOADING command to YES to force this model to unload elasti-

cally.

224

4.3.3 Thouless Parmigiani

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BEGIN PARAMETERS FOR MODEL THOULESS_PARMIGIANI

INIT TRACTION METHOD = IGNORE|ADD (IGNORE)

LAMBDA_1_N = <real>

LAMBDA_1_T = <real>

LAMBDA_2_N = <real>

LAMBDA_2_T = <real>

NORMAL LENGTH SCALE = <real>

PEAK NORMAL TRACTION = <real>

TANGENTIAL LENGTH SCALE = <real>

PEAK Tangential TRACTION = <real>

PENETRATION STIFFNESS MULTIPLIER = <real>

USE ELASTIC UNLOADING = NO|YES (YES)

END [PARAMETERS FOR MODEL THOULESS_PARMIGIANI]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The Thouless Parmigiani model support mixed-mode fracture more accurately than the Tvergaard

Hutchinson model by separating the normal and tangential components, allowing one to fail inde-

pendently of the other. Failure of this model is dependent on the energy release of both normal

and tangential components. The shape of the traction-separation curve for this model is hardening,

followed by a plateau, followed by softening.

The command block for a Thouless Parmigiani material starts with the line:

BEGIN PARAMETERS FOR MODEL THOULESS_PARMIGIANI

and terminates with the line:

END [PARAMETERS FOR MODEL THOULESS_PARMIGIANI]

In the above command block:

- The density of the material is defined with the DENSITY command line. Although this is not

used in the model, it is currently a required input parameter.

- For dynamically activated or dynamically inserted cohesive surface elements, an initial trac-

tion can be added to the calculated traction based on element properties specified in the

ELEMENT DEATH block and is set via the INIT TRACTION METHOD. The default behavior

is to ignore any initial tractions and let the traction-separation law dictate the behavior.

- LAMBDA_1_N indicates the normalized normal separation at which the traction response flat-

tens with an additional increase in separation.

- LAMBDA_1_T indicates the normalized tangential separation at which the traction response

flattens with an additional increase in separation.

225

- LAMBDA_2_N indicates the normalized normal separation at which the traction begins to

decrease with an additional increase in separation.

- LAMBDA_2_T indicates the normalized tangential separation at which the traction begins to

decrease with an additional increase in separation.

- The separation at which failure occurs in the normal direction is prescribed using the NORMAL

LENGTH SCALE command.

- The maximum normal traction is specified through the PEAK NORMAL TRACTION com-

mand.

- The separation at which failure occurs in the tangential direction is prescribed using the

TANGENTIAL LENGTH SCALE command.

- The maximum tangential traction is specified through the PEAK TANGENTIAL TRACTION

command.

- To help prevent interpenetration of the cohesive faces, use the PENETRATION STIFFNESS

MULTIPLIER command to artificially increase the normal traction when penetration occurs.

WARNING: cohesive elements are not well equipped to handle compression. This is an

ad-hoc method to handle contact.

- Set the USE ELASTIC UNLOADING command to YES to force this model to unload elasti-

cally.

226

4.4 References

1. Stone, C. M. SANTOS – A Two-Dimensional Finite Element Program for the Quasistatic,

Large Deformation, Inelastic Response of Solids, SAND90-0543. Albuquerque, NM: Sandia

National Laboratories, 1996. pdf.

2. Bammann, D. J., M. L. Chiesa, and G. C. Johnson. “Modelling Large Deformation and

Failure in Manufacturing Processes.” In Proceedings of the 19th International Congress

of Theoretical and Applied Mechanics, edited by T. Tatsumi, E. Watanabe, and T. Kambe,

359–376. Amsterdam: Elsevier Science Publishers, 1997.

3. Bammann, D. J., M. L. Chiesa, M. F. Horstemeyer, and L. E. Weingarten. “Failure in Ductile

Materials Using Finite Element Methods.” In Structural Crashworthiness and Failure, edited

by N. Jones and T. Wierzbicki, 1–53. London: Elsevier Applied Science, 1993.

4. Bammann, D. J. “Modeling Temperature and Strain Dependent Large Deformations in Met-

als.” Applied Mechanics Reviews 43, no. 5 (1990): S312–319. doi.

5. Simo, J. C., and T. J. R. Hughes. Computational Inelasticity, Springer-Verlag, New York,

NY, 1998.

6. Taylor, L. M., and D. P. Flanagan. PRONTO3D: A Three-Dimensional Transient Solid Dy-

namics Program, SAND87-1912. Albuquerque, NM: Sandia National Laboratories, March

1989. pdf.

7. Krieg, R. D. A Simple Constitutive Description for Cellular Concrete, SAND SC-DR-72-

0883. Albuquerque, NM: Sandia National Laboratories, 1978. pdf.

8. Swenson, D. V., and L. M. Taylor. “A Finite Element Model for the Analysis of Tailored

Pulse Stimulation of Boreholes.” International Journal for Numerical and Analytical Meth-

ods in Geomechanics 7 (1983): 469–484. doi.

9. Attaway, S. W., R. V. Matallucci, S. W. Key, K. B. Morrill, L. J. Malvar, and J. E. Crawford.

Enhancements to PRONTO3D to Predict Structural Response to Blast, SAND2000-1017.

Albuquerque, NM: Sandia National Laboratories, 2000.

10. ACI318-08: Building Code Requirements for Structural Concrete and Commentary. Farm-

ington Hills, MI: American Concrete Institute, 2008.

11. Neilsen, M. K., and Morgan, H. S., and Krieg, R. D. A Phenomenological Constitutive Model

for Low Density Polyurethane Foams, SAND86-2927. Albuquerque, NM: Sandia National

Laboratories, April 1987. pdf.

12. Neilsen, M. K., and Pierce, J. D., and Krieg, R. D. A Constitutive Model for Layered Wire

Mesh and Aramid Cloth Fabric, SAND91-2850. Albuquerque, NM: Sandia National Labo-

ratories, 1993. pdf.

13. Green, A. E., and W. Zerna. Theoretical Elasticity, 2nd Edition. Oxford: Clarendon Press,

1968.

227

http://infoserve.sandia.gov/sand_doc/1990/900543.pdf
http://dx.doi.org/10.1115/1.3120834
http://infoserve.sandia.gov/sand_doc/1987/871912.pdf
http://infoserve.sandia.gov/sand_doc/1972/720883.pdf
http://dx.doi.org/10.1002/nag.1610070408
http://infoserve.sandia.gov/sand_doc/1986/862927.pdf
http://infoserve.sandia.gov/sand_doc/1991/912850.pdf

14. Whirley, R. G., B. E. Engelmann, and J. O. Halquist. DYNA3D Users Manual. Livermore,

CA: Lawrence Livermore Laboratory, 1991.

15. Hammerand, D. C. Laminated Composites Modeling in ADAGIO/PRESTO, SAND2004-

2143. Albuquerque, NM: Sandia National Laboratories, 2004. pdf.

16. Hammerand, D. C. Critical Time Step for a Bilinear Laminated Composite Mindlin Shell

Element, SAND2004-2487. Albuquerque, NM: Sandia National Laboratories, 2004. pdf.

17. Scherzinger, W. M., and D. C. Hammerand. Constitutive Models in LAME, SAND2007-

5873. Albuquerque, NM: Sandia National Laboratories, September 2007. pdf.

18. HKS. ABAQUS Version 6.6, Theory Manual. Providence, RI: Hibbitt, Karlsson and

Sorensen, 2006.

19. Hammerand, D. C. “ABAQUS Style Finite Strain Viscoelasticity in Adagio.” Memo. Albu-

querque, NM: Sandia National Laboratories, March 2003.

20. Hammerand, D. C. “Finite Strain Viscoelasticity in Adagio and ABAQUS.” Memo. Albu-

querque, NM: Sandia National Laboratories, July 2003.

21. Swegle, J. W. SIERRA: PRESTO Theory Documentation: Energy Dependent Materials Ver-

sion 1.0. Albuquerque, NM: Sandia National Laboratories, October 2001.

22. Johnson, G. R., and Cook, W. H. “A constitutive model and data for metals subjected to

large strains, high strain rates and high temperatures” Proc. 7th. Int. Symp. on Ballistics,

The Hague, The Netherlands (1983): 541–547.

228

http://infoserve.sandia.gov/sand_doc/2004/042143.pdf
http://infoserve.sandia.gov/sand_doc/2004/042487.pdf
http://infoserve.sandia.gov/sand_doc/2007/075873.pdf

Chapter 5

Elements

This chapter explains how material, geometric, and other properties are associated with the various

element blocks in a mesh file. A mesh file contains, for the most part, only topological information

about elements. For example, there may be a group of elements in the mesh file that consists of

four nodes defining a planar facet in three-dimensional space. Whether or not these elements are

used as shells or membranes in our actual model of an object is determined by command lines in

the input file. The specifics of a material type associated with these four node facets are also set in

the input file.

Most elements can be used in either Presto or Adagio. If an element is available in one code but not

the other, this information will be noted for the element. There are special element implementations

in Presto for peridynamics and for smoothed particle hydrodynamics (SPH). These sections are

included in the Presto manual but not the Adagio manual. This chapter also includes descriptions

of the commands for mass property calculations, element death, and rigid bodies.

Highlights of chapter contents follow. Section 5.1 discusses the FINITE ELEMENT MODEL com-

mand block, which provides the description of a mesh that will be associated with the elements.

Section 5.2 presents the section command blocks that are used to define the different element sec-

tions.

Section 5.3.1 explains the use of rigid bodies. Section 5.4 describes the MASS PROPERTIES com-

mand block, which lets the user compute the total mass of the model or the mass of sub-parts

of the model once the element blocks are completely defined in terms of geometry and material.

Section 5.5 details the ELEMENT DEATH command block, which lets the user delete (kill) elements

based on various criteria during an analysis. A command block for derived quantities that are to be

used with transfers or error estimation is discussed in Section 5.6.

Most of the command blocks and command lines described next appear within the SIERRA scope.

There are some exceptions, and these exceptions are noted.

5.1 Finite Element Model

BEGIN FINITE ELEMENT MODEL <string>mesh_descriptor

229

DATABASE NAME = <string>mesh_file_name

DATABASE TYPE = <string>database_type(exodusII)

ALIAS <string>mesh_identifier AS <string>user_name

OMIT BLOCK <string>block_list

COMPONENT SEPARATOR CHARACTER = <string>separator

BEGIN PARAMETERS FOR BLOCK [<string list>block_names]

#

Command lines that define attributes for

a particular element block appear in this

command block.

#

END [PARAMETERS FOR BLOCK <string list>block_names]

END [FINITE ELEMENT MODEL <string>mesh_descriptor]

The input file must point to a mesh file that is to be used for an analysis. The name of the mesh

file appears within a FINITE ELEMENT MODEL command block, which appears in the SIERRA

scope. In this command block, you will identify the particular mesh file that describes your

model. Also within this command block, there will be one or more PARAMETERS FOR BLOCK

command blocks. (All the PARAMETERS FOR BLOCK command blocks are embedded in the

FINITE ELEMENT MODEL command block.) Within the PARAMETERS FOR BLOCK command

block, you will set a material type and model, a section, and various other parameters for the

element block. The concept of “section” is explained in Section 5.1.5.

The current element library is as follows:

- Eight-node, uniform-gradient hexahedron: Both a midpoint-increment formulation [1] and

a strongly objective formulation are implemented [2]. These elements can be used with any

of the material models described in Chapter 4.

- Eight-node, selective-deviatoric hexahedron: Only a strongly objective formulation is pro-

vided. This element can be used with any of the material models described in Chapter 4.

- Four-node tetrahedron: There is now the regular element formulation for the four-node tetra-

hedron and a node-based formulation for the four-node tetrahedron. For the regular element

formulation, only a strongly objective formulation is implemented. The concept of a node-

based four-node tetrahedron is described in Reference 3. The regular four-node tetrahe-

dron can be used with any of the material models described in Chapter 4. The node-based

tetrahedron can be used with any of the material models described in Chapter 4. When

using node-based tetrahedron it is important that nodal quantities are used where other ele-

ment types use element quantities. For example, you evaluate element variable stress with

a regular four-node tetrahedron but in node-based tetrahedron one should use nodal vari-

able element_stress_## where ## is a number that increments from 1. Nodal variables for

node-based tets will live on all nodes but are zero where they are not used. Element vari-

ables for node-based elements serve as intermediate variables and should not be used in post

processing in the same way as other regular element variables.

230

- Eight-node tetrahedron: This tetrahedral element has nodes at the four vertices and nodes on

the four faces. The eight-node tetrahedron has only a strongly objective formulation [4]. The

eight-node tetrahedron uses a mean quadrature formulation even though it has the additional

nodes. This element can be used with any of the material models described in Chapter 4.

- Ten-node tetrahedron: Only a strongly objective formulation is implemented. This element

can be used with any of the material models described in Chapter 4.

- Four-node, quadrilateral, uniform-gradient membrane: Both a midpoint-increment formula-

tion and a strongly objective formulation are implemented. This element is derived from the

Key-Hoff shell formulation [5]. The strongly objective formulation has not been extensively

tested, and it is recommended that the midpoint-increment formulation, which is the default,

be used for this element type. These elements can be used with any of the following material

models described in Chapter 4:

– Elastic

– Elastic-plastic

– Elastic-plastic power-law hardening

– Multilinear elastic-plastic hardening (no failure)

- Four-node, quadrilateral shell: This shell uses the Key-Hoff formulation [5]. Both a

midpoint-increment formulation and a strongly objective formulation are implemented. The

strongly objective formulation has not been extensively tested, and it is recommended that

the midpoint-increment formulation, which is the default, be used for this element type.

These elements can be used with any of the following material models described in Chap-

ter 4:

– Elastic

– Elastic-plastic

– Elastic-plastic power-law hardening

– Multilinear elastic-plastic hardening without failure

– Multilinear elastic-plastic hardening with failure

- Four-node, quadrilateral, selective-deviatoric membrane: Only a midpoint-increment for-

mulation is implemented. These elements can be used with any of the following material

models described in Chapter 4:

– Elastic

– Elastic-plastic

– Elastic-plastic power-law hardening

– Multilinear elastic-plastic hardening (no failure)

231

- Linear elastic shell element: The linear elastic shell element is linear in both a material and

geometric sense. The linear elastic shell element can be used with any material, however it

will use only the density and elastic material constants of that material. Use of the linear

elastic shell element is specified with the FORMULATION = NQUAD command in the section

command block.

- Two-node beam: The beam element is a uniform result model. Strains and stresses are com-

puted only at the midpoint of the element. These midpoint values determine the forces and

moments for the beam. The beam element is based on an incremental kinematic formulation

that is accurate for large strains and rotations (e.g. this element exactly agrees with a loga-

rithmic strain formulation under large strain axial loading). Thinning of the cross section is

taken into account through a constant volume assumption. There are five different sections

currently implemented for the beam: rod, tube, bar, box, and I. This element can be used

with any of the following material models described in Chapter 4:

– Elastic

– Elastic-plastic

- Two-node truss: The two-node truss element carries only a uniform axial stress. Currently,

there is a linear-elastic material model for the truss element.

- Two-node spring: The two-node spring element computes a uniaxial resistance force based

on a non-linear force-engineering strain function. This element can handle preloads, mass

per unit length, resetting of the initial length after preload and any arbitrary loading function.

- Two-node damper: (Code Usage: Presto only) The two-node damping element computes a

damping force based on the relative velocity of the two nodes along the axis of the element.

This element uses only a damping parameter for a material property.

- Point mass: The point mass element allows the user to put a specified mass and/or rotational

inertia at a node. This element requires input for density, but does not make use of any other

material properties.

The command block to describe a mesh file begins with

BEGIN FINITE ELEMENT MODEL <string>mesh_descriptor

and is terminated with:

END [FINITE ELEMENT MODEL <string>mesh_descriptor]

where mesh_descriptor is a user-selected name for the mesh. In this section, we will first

discuss the command lines within the scope of the FINITE ELEMENT MODEL command block

but outside the scope of the PARAMETERS FOR BLOCK command block. We will then discuss the

PARAMETERS FOR BLOCK command block and the associated command lines for this particular

block.

232

5.1.1 Identification of Mesh File

Nested within the FINITE ELEMENT MODEL command block are two command lines (DATABASE

NAME and DATABASE TYPE) that give the mesh name and define the type for the mesh file, respec-

tively. The command line

DATABASE NAME = <string>mesh_file_name

gives the name of the mesh file with the string mesh_file_name. If the current mesh file is in the

default directory and is named job.g, then this command line would appear as:

DATABASE NAME = job.g

If the mesh file is in some other directory, the command line would have to show the path to that

directory. For parallel runs, the string mesh_file_name is the base name for the spread of parallel

mesh files. For example, for a four-processor run, the actual mesh files associated with a base name

of job.g would be job.g.4.0, job.g.4.1, job.g.4.2, and job.g.4.3. The database name

on the command line would be job.g.

Two metacharacters can appear in the name of the mesh file. If the %P character is found in the

name, it will be replaced with the number processors being used for the run. For example, if you are

running on 1024 processors and use the name mesh-%P/job.g, then the name would be expanded

to mesh-1024/job.g and the actual mesh files would be mesh-1024/job.g.1024.0000 to

mesh-1024/job.g.1024.1023. The other recognized metacharacter is %B which is replaced

with the base name of the input file containing the input commands. For example, if the commands

are in the file my_analysis_run.i and the mesh database name is specified as %B.g, then the

mesh would be read from the file my_analysis_run.g.

If the mesh file does not use the Exodus II format, you must specify the format for the mesh file

using the command line:

DATABASE TYPE = <string>database_type(exodusII)

Currently, only the Exodus II database format is supported by Presto and Adagio for mesh input.

Other options may be added in the future.

5.1.2 Alias

It is possible to associate a user-defined name with some mesh entity. The mesh entity names

for Exodus II entities are typically the concatenation of the entity type (for example, “block”,

“nodelist”, or “surface”), an underscore (“_”), and the entity id. This generated name can be

aliased to a more descriptive name by using the ALIAS command line:

ALIAS <string>mesh_identifier AS <string>user_name

This alias can then be used in other locations in the input file in place of the Exodus II name.

Examples of this association are as follows:

Alias block_1 as Case

Alias block_10 as Fin

233

Alias block_12 as Nose

Alias surface_1 as Nose_Case_Interface

Alias surface_2 as OuterBoundary

The above examples use the Exodus II naming convention described in Section 1.5.

5.1.3 Omit Block

If the finite element mesh contains element blocks that should be omitted from the finite element

analysis, the OMIT BLOCK line command is used.

OMIT BLOCK <string>block_list

The element blocks listed in the command are removed from the model. Any nodesets or surfaces

only existing on nodes or elements in the omitted element blocks are also omitted. Note that if this

command is used in a parallel analysis, it is possible for the resulting model to become unbalanced

if, for example, the omitted element blocks make up a large portion of the elements on one or more

processors.

Examples of omitting element blocks are:

Omit Block block_1 block_2

Omit Block block_10

5.1.4 Component Separator Character

A variable defined on the mesh database can be used as an initial condition, or a prescribed tem-

perature with the READ VARIABLE command. If the variable is a vector or a tensor, then the

base name of the variable will be separated from the suffixes with a separator character. The de-

fault separator character is an underscore, but it can be changed with the COMPONENT SEPARATOR

CHARACTER command.

COMPONENT SEPARATOR CHARACTER = <string>character|NONE

For example, the variable displacement can have the suffixes x, y, etc. By default, the base name

is separated from the suffixes with an underscore character so that we have displacement_x,

displacement_y, etc. in the mesh file. The underscore can be replaced as the default separator

by using the above command line. If the data used the period as the separator, then the command

would be

COMPONENT SEPARATOR CHARACTER = .

For the displacement example the components would then appear in the mesh file as

displacement.x, displacement.y, etc.

The separator can be eliminated with an empty string or NONE.

234

5.1.5 Descriptors of Element Blocks

BEGIN PARAMETERS FOR BLOCK [<string list>block_names]

MATERIAL <string>material_name

SOLID MECHANICS USE MODEL <string>model_name

INCLUDE ALL BLOCKS

REMOVE BLOCK = <string list>block_names

SECTION = <string>section_id

LINEAR BULK VISCOSITY =

<real>linear_bulk_viscosity_value(0.06)

QUADRATIC BULK VISCOSITY =

<real>quad_bulk_viscosity_value(1.20)

HOURGLASS STIFFNESS =

<real>hour_glass_stiff_value(solid = 0.05,

shell/membrane = 0.0)

HOURGLASS VISCOSITY =

<real>hour_glass_visc_value(solid = 0.0,

shell/membrane = 0.0)

MEMBRANE HOURGLASS STIFFNESS =

<real>memb_hour_glass_stiff_value(0.0)

MEMBRANE HOURGLASS VISCOSITY =

<real>memb_hour_glass_visc_value(0.0)

BENDING HOURGLASS STIFFNESS =

<real>bend_hour_glass_stiff_value(0.0)

BENDING HOURGLASS VISCOSITY =

<real>bend_hour_glass_visc_value(0.0)

TRANSVERSE SHEAR HOURGLASS STIFFNESS =

<real>tshr_hour_glass_stiff_value(0.0)

TRANSVERSE SHEAR HOURGLASS VISCOSITY =

<real>tshr_hour_glass_visc_value(0.0)

EFFECTIVE MODULI MODEL = <string>PRESTO|PRONTO|CURRENT|

ELASTIC(PRONTO)

ELEMENT NUMERICAL FORMULATION = <string>OLD|NEW(OLD)

ACTIVE FOR PROCEDURE <string>proc_name DURING PERIODS

<string list>period_names

INACTIVE FOR PROCEDURE <string>proc_name DURING PERIODS

<string list>period_names

END [PARAMETERS FOR BLOCK <string list>block_names]

The finite element model consists of one or more element blocks. Associated with an element

block or group of element blocks will be a PARAMETERS FOR BLOCK command block, which is

also referred to in this document as an element-block command block. The basic information about

the element blocks (number of elements, topology, connectivity, etc.) is contained in a mesh file.

Specific attributes for an element block must be specified in the input file. If for example, a block of

eight-node hexahedra is to use the selective-deviatoric versus mean-quadrature formulation, then

the selective-deviatoric formulation must be specified in the input file. The element library is listed

at the beginning of Section 5.1.

235

The element-block command block begins with the input line

BEGIN PARAMETERS FOR BLOCK [<string list>block_names]

and is terminated with the input line:

END [PARAMETERS FOR BLOCK <string list>block_names]

Here block_names is a list of element blocks assigned to the element-block command block.

Such a list must be included on the BEGIN PARAMETERS FOR BLOCK input line if the INCLUDE

ALL BLOCKS line command is not used. If the format for the mesh file is Exodus II, the typical

form of a block_name is block_integerID, where integerID is the integer identifier for the

block. If the element block is 280, the value of block_name would be block_280. It is also

possible to generate an alias identifier for the element block and use this for the block_name. If

block_280 is aliased to AL6061, then block_name becomes AL6061.

All the element blocks listed on the PARAMETERS FOR BLOCK command line (or all the element

blocks included using the line commands INCLUDE ALL BLOCKS and REMOVE BLOCK) will have

the same mechanics properties. The mechanics properties are set by use of the various command

lines. One of the key command lines, i.e., MATERIAL, will let you associate a material with the

elements in the block. Another key command line is the SECTION command line. This command

line lets you differentiate between elements with the same topology but different formulations. For

example, assume that the topology of the elements in a block is a four-node quadrilateral. With the

SECTION command line you can specify whether the element block will be used as a membrane

or a shell. The SECTION command line also lets you assign a variety of parameters to an element,

depending on the element formulation.

It is important to state here that the SECTION command line only specifies an identifier that

maps to a section command block that is defined by the user. There are currently several

kinds of section command blocks for the different elements: SOLID SECTION, COHESIVE

SECTION, SHELL SECTION, MEMBRANE SECTION, BEAM SECTION, TRUSS SECTION, and

SUPERELEMENT SECTION. It is within a section command block that the formulation-specific

entities related to a particular element are specified. If no SECTION command line is present in

an element-block command block, the code assumes the element block is a block of eight-node

hexahedra using mean quadrature and the midpoint-increment formulation.

All the command lines that can be used for the element-block command block are described in

Section 5.1.5.1 through Section 5.1.5.8.

5.1.5.1 Material Property

MATERIAL <string>material_name

SOLID MECHANICS USE MODEL <string>model_name

The material property specification for an element block is done by using the above two command

lines. The property specification references both a PROPERTY SPECIFICATION FOR MATERIAL

command block and a material-model command block, which has the general form PARAMETERS

FOR MODEL model_name. These command blocks are described in Chapter 4. The PROPERTY

236

SPECIFICATION FOR MATERIAL command block contains all the parameters needed to define

a material, and is associated with an element block (PARAMETERS FOR BLOCK command block)

by use of the MATERIAL command line. Some of the material parameters inside the property

specification are grouped on the basis of material models. A material-model command block is

associated with an element block by use of the SOLID MECHANICS USE MODEL command line.

Consider the following example. Suppose there is a PROPERTY SPECIFICATION FOR

MATERIAL command block with a material_name of steel. Embedded within this command

block for steel is a material-model command block for an elastic model of steel and an elastic-

plastic model of steel. Suppose that for the current element block we would like to use the material

steel with the elastic model. Then the element-block command block would contain the input lines:

MATERIAL steel

SOLID MECHANICS USE MODEL elastic

If, on the other hand, we would like to use the material steel with the elastic-plastic model, the

element-block command block would contain the input lines:

MATERIAL steel

SOLID MECHANICS USE MODEL elastic_plastic

The user should remember that not all material types can be used with all element types.

5.1.5.2 Include All Blocks

The INCLUDE ALL BLOCKS line command is used to associate all element blocks with the same

element parameters (which minimizes input).

INCLUDE ALL BLOCKS

5.1.5.3 Remove Block

The REMOVE BLOCK command line allows you to delete blocks from the set specified in the

PARAMETERS FOR BLOCK command block or INCLUDE ALL BLOCKS command line(s) through

the string list block_names.

REMOVE BLOCK <string>block_list

5.1.5.4 Section

SECTION = <string>section_id

The section specification for an element-block command block is done by using the above com-

mand line. The section_id is a string associated with a section command block. The various

section command blocks are described in Section 5.2.

237

Suppose you wanted the current element-block command block to use the membrane formulation.

You would define a MEMBRANE SECTION command block with some name, such as membrane_

rubber. Inside the current element-block command block you would have the command line:

SECTION = membrane_rubber

The thickness of the membrane would be described in the MEMBRANE SECTION command block

and then associated with the current element-block command block.

There can be only one SECTION command line in an element-block command block. Each

element-block command block within the model description can reference a unique section com-

mand block, or several element-block command blocks can reference the same section command

block. For example, in Figure 5.1, the section named membrane_rubber appears in two dif-

ferent PARAMETERS FOR MODEL command blocks, but there is only one specification for their

associated MEMBRANE SECTION command block. When several element-block command blocks

reference the same section, the input file is less verbose, and it is easier to maintain the input file.

Figure 5.1: Association between SECTION command lines and a section command block.

5.1.5.5 Linear and Quadratic Bulk Viscosity

LINEAR BULK VISCOSITY =

<real>linear_bulk_viscosity_value(0.06)

QUADRATIC BULK VISCOSITY =

<real>quad_bulk_viscosity_value(1.20)

238

The linear and quadratic bulk viscosity are set with these two command lines. Consult the docu-

mentation for the elements [6] for a description of the bulk viscosity parameters.

5.1.5.6 Hourglass Control

HOURGLASS STIFFNESS = <real>hour_glass_stiff_value(solid

= 0.05, shell/membrane = 0.0)

HOURGLASS VISCOSITY = <real>hour_glass_visc_value(solid

= 0.0, shell/membrane = 0.0)

MEMBRANE HOURGLASS STIFFNESS =

<real>memb_hour_glass_stiff_value(0.0)

MEMBRANE HOURGLASS VISCOSITY =

<real>memb_glass_visc_value(0.0)

BENDING HOURGLASS STIFFNESS =

<real>bend_hour_glass_stiff_value(0.0)

BENDING HOURGLASS VISCOSITY =

<real>bend_glass_visc_value(0.0)

TRANSVERSE SHEAR HOURGLASS STIFFNESS =

<real>tshr_hour_glass_stiff_value(0.0)

TRANSVERSE SHEAR HOURGLASS VISCOSITY =

<real>tshr_glass_visc_value(0.0)

These command lines set the hourglass control parameters for elements that use hourglass control.

Currently, the included elements are the eight-node, uniform-gradient hexahedral elements; the

eight-node and ten-node tetrahedral elements; and the four-node membrane and shell elements.

Consult the element documentation [6] for a description of the hourglass parameters.

Hourglass stiffness and viscosity parameters for hexahedral and tetrahedral elements are set using

the HOURGLASS STIFFNESS and HOURGLASS VISCOSITY commands, respectively. If either of

these commands are used for shell elements, they set the hourglass stiffness or viscosity for all

three modes (membrane, bending, and transverse shear).

Hourglass parameters for the membrane, bending, and transverse shear modes can be set indi-

vidually for shell elements. The membrane hourglass stiffness and viscosity can be set with

the MEMBRANE HOURGLASS STIFFNESS and MEMBRANE HOURGLASS VISCOSITY commands.

These membrane hourglass commands can also be used with membrane elements. The bend-

ing hourglass stiffness and viscosity are set with the BENDING HOURGLASS STIFFNESS and

BENDING HOURGLASS VISCOSITY commands, and transverse shear hourglass stiffness and vis-

cosity are set with the TRANSVERSE SHEAR HOURGLASS STIFFNESS and TRANSVERSE SHEAR

HOURGLASS VISCOSITY commands. All of these commands will override either the default val-

ues and any value set in the generic HOURGLASS STIFFNESS and/or HOURGLASS VISCOSITY

commands for the particular mode that is specified.

The hourglass stiffness parameter defaults to 0.05 for solids using hourglass control; it defaults to

0.0 for shell and membrane elements. A reasonable user defined hourglass stiffness (if needed)

for shells and membranes is 0.005 (approximately an order of magnitude lower than for solid ele-

ments). The hourglass viscosity parameter defaults to 0.0 for all elements currently using hourglass

239

control.

The hourglass stiffness is the same as the dilatational hourglass parameter, and the hourglass vis-

cosity is the same as the deviatoric hourglass parameter.

The computation of the hourglass parameters can be strongly affected by the method that computes

the effective moduli. The command line in Section 5.1.5.7 selects the method for computing the

effective moduli.

5.1.5.7 Effective Moduli Model

EFFECTIVE MODULI MODEL =

<string>PRESTO|PRONTO|CURRENT|ELASTIC(PRONTO)

The hourglass force computations require a measure of the material moduli to ensure appropriate

scaling of the hourglass forces. For elastic, isotropic material models, the moduli are constant

throughout the analysis. However, for nonlinear materials, the moduli are typically computed nu-

merically from the stresses. For models with softening regimes or that approach perfect plasticity,

the moduli may be difficult to define, and the way in which they are computed may adversely affect

the analysis. Through the EFFECTIVE MODULI MODEL command line, Presto provides several

methods for the computation of these effective moduli:

• PRESTO: This method includes a number of techniques for returning reasonable moduli for

softening and perfectly plastic materials. The effective moduli that this approach produces

are stiffer than those computed by the PRONTO approach.

• PRONTO: This method is the default and is identical to the method of computing effective

moduli present in the Pronto3D code. It is similar to the PRESTO approach but generally

produces moduli that are softer than the PRESTO approach.

• CURRENT: This method computes the effective moduli without any extra handling of negative

or near-zero moduli cases. It generally provides the softest response but is also less stable.

• ELASTIC: This method simply uses the initial elastic moduli for the entire analysis. It is the

most robust but also the most stiff, and may produce an overly stiff global response.

The EFFECTIVE MODULI MODEL command line should be used with caution because it can

strongly affect the analysis results.

5.1.5.8 Activation/Deactivation of Element Blocks by Time

ACTIVE FOR PROCEDURE <string>proc_name DURING PERIODS

<string list>period_names

INACTIVE FOR PROCEDURE <string>proc_name DURING PERIODS

<string list>period_names

240

This command line permits the activation and deactivation of element blocks by time period. The

time periods are defined in the TIME STEPPING BLOCK command block (Section 3.11.1) within

a specific procedure named in an ADAGIO PROCEDURE command block (Section 2.2.1).

The ACTIVE FOR PROCEDURE or INACTIVE FOR PROCEDURE command lines can optionally be

used to deactivate element blocks for a portion of the analysis. If the ACTIVE FOR PROCEDURE

command is used, the element block is active for all periods listed for the named procedure, and is

deactivated for all time periods that are absent from the list. If the INACTIVE FOR PROCEDURE

command is used, the element block is deactivated for all periods listed for the named procedure.

The element block is active for all time periods that are absent from the list. If neither command

line is used, by default the block is active during all time periods. This command line controls the

activation and deactivation of all elements in a block. Alternatively, individual elements can be

deactivated with the ELEMENT DEATH command block (see Section 5.5).

Known Issue: Deactivation of element blocks does not currently work in conjunc-

tion with the full tangent preconditioner (see Section 3.3) in Adagio. To use this

capability, one of the nodal preconditioners must be used.

241

5.2 Element Sections

Element sections are defined by section command blocks. There are currently nine different types

of section command blocks. The section command blocks appear in the SIERRA scope, at the

same level as the FINITE ELEMENT MODEL command block. In general, a section command

block has the following form:

BEGIN section_type SECTION <string>section_name

command lines dependent on section type

END [section_type SECTION <string>section_name]

Currently, section_type can be SOLID, COHESIVE, SHELL, MEMBRANE, BEAM, TRUSS, or

SUPERELEMENT. These various section types are identified as individual section command blocks

and are described below. The corresponding section_name parameter in each of these com-

mand blocks, e.g., truss_section_name in the TRUSS SECTION command block, is selected

by the user. The method used to associate these names with individual SECTION command lines

in PARAMETERS FOR BLOCK command blocks is discussed in Section 5.1.5.4.

5.2.1 Solid Section

BEGIN SOLID SECTION <string>solid_section_name

COORDINATE SYSTEM = <string>Coordinate_system_name

FORMULATION = <string>MEAN_QUADRATURE|

SELECTIVE_DEVIATORIC|VOID(MEAN_QUADRATURE)

DEVIATORIC PARAMETER = <real>deviatoric_param

STRAIN INCREMENTATION = <string>MIDPOINT_INCREMENT|

STRONGLY_OBJECTIVE|NODE_BASED(MIDPOINT_INCREMENT)

NODE BASED ALPHA FACTOR = <real>bulk_stress_weight(0.01)

NODE BASED BETA FACTOR = <real>shear stress_weight(0.35)

HOURGLASS FORMULATION = <string>TOTAL|INCREMENTAL(INCREMENTAL)

HOURGLASS INCREMENT = <string>ENDSTEP|MIDSTEP (ENDSTEP)

HOURGLASS ROTATION = <string> APPROXIMATE|SCALED (APPROXIMATE)

RIGID BODY = <string>rigid_body_name

RIGID BODIES FROM ATTRIBUTES = <integer>first_id

TO <integer>last_id

USE LAME|STRUMENTO(LAME)

END [SOLID SECTION <string>solid_section_name]

The SOLID SECTION command block is used to specify the properties for solid elements (hexa-

hedra and tetrahedra). This command block is to be referenced by an element block made up of

solid elements. The two types of solid-element topologies currently supported are hexahedra and

tetrahedra. The parameter solid_section_name is user-defined and is referenced by a SECTION

command line in a PARAMETERS FOR BLOCK command block.

The COORDINATE SYSTEM command line specifies the name of a coordinate system definition

block command that will be used to define a local coordinate system on each element of a block

242

that uses this SOLID SECTION. The coordinate system can then be used to transform element

stresses for solid elements from the global coordinate system to this local element coordinate sys-

tem through the use of a BEGIN USER OUTPUT command block as described in Section out:user.

It is also used for defining a local element coordinate system for representative volume analyses

(see Section spec:rve).

The FORMULATION command line specifies whether the element will use a single-point integration

rule (mean quadrature), use a selective-deviatoric rule, or act as a void element. The selective-

deviatoric integration rule is a higher-order integration scheme, which is discussed below.

If the user wishes to use the selective-deviatoric rule, the DEVIATORIC PARAMETER command

line must also appear in the SOLID SECTION command block. The selective-deviatoric param-

eter, deviatoric_param, which is valid from 0.0 to 1.0, indicates how much of the deviatoric

response should be taken from a uniform-gradient integration and how much should be taken from

a full integration of the element. A value of 0.0 will give a pure uniform-gradient response with

no hourglass control. Thus, this value is of little practical use. A value of 1.0 will give a fully

integrated deviatoric response. Although any value between 0.0 and 1.0 is perfectly valid, lower

values are generally preferred.

The selective-deviatoric elements, when used with a value greater than 0.0, provide hourglass

control without artificial hourglass parameters.

The VOID formulation is valid for 8-node hexahedral and 4-node tetrahedral element blocks. Void

elements only compute volume. They do not contribute internal forces to the model. The mate-

rial model and density associated with void elements are ignored. The volume and the first and

second derivatives of the volume for each element are stored in the element variables volume,

volume_first_derivative, and volume_second_derivative. The volume derivatives are

computed using least squares fits of the volume history, which is stored for the previous five time

steps.

In addition to the per-element volume and derivatives, the total volume and derivatives of that total

volume for all elements in each void element block are written to the results file as global variables.

The names for these variables are voidvol_blockID, voidvol_first_deriv_blockID, and

voidvol_second_deriv_blockID. In these global variable names, blockID is the ID of the

block. For example, the void volume for block 8 would be stored in voidvol_8.

Some of the solid elements support different strain-incrementation formulations. See the element

summary at the beginning of Section 5.1 to determine which strain-incrementation formulations

are available for which elements. The STRAIN INCREMENTATION command line lets you specify

a midpoint-increment strain formulation (MIDPOINT_INCREMENT), a strongly objective strain for-

mulation (STRONGLY_OBJECTIVE), or a node-based formulation (NODE_BASED) for some of the

elements. Consult the element documentation [2,6] for a description of these strain formulations.

The node-based formulation can only be used with four-node tetrahedral elements. If your element-

block command block (i.e., a PARAMETERS FOR BLOCK command block) has a SECTION com-

mand line that references a SOLID SECTION command block that uses:

STRAIN INCREMENTATION = NODE_BASED

then the element block must be a block of four-node tetrahedral elements.

243

The node-based formulation lets you calculate a solution that is some mixture of an element-based

formulation (information from the center of an element) and a node-based formulation (informa-

tion at a node that is based on all elements attached to the node). The node-based tetrahedron

allows the user to model with four-node tetrahedral elements and avoid the main problems with

regular tetrahedral elements. Regular tetrahedral elements are much too stiff and can produce very

inaccurate results.

You can adjust the mixture of node-based versus element-based information incorporated into

your solution with the NODE BASED ALPHA FACTOR and NODE BASED BETA FACTOR com-

mand lines. These two lines apply only if you have selected the NODE BASED option on

the STRAIN INCREMENTATION command line. The value for bulk_stress_weight on the

NODE BASED ALPHA FACTOR command line sets the element bulk stress weighting factor, while

the value for shear_stress_weight on the NODE BASED BETA FACTOR command line sets

the element shear stress weighting factor. You should consult Reference 3 to better understand

the use of these weighting factors. If both of these factors are set to 0.0, you will be using a

strictly node-based formulation. If both of these factors are set to 1.0, you will be using a strictly

element-based formulation.

The HOURGLASS FORMULATION command is used to switch between total and incremental forms

of hourglass control. This option can only be used with eight-noded uniform-gradient hexa-

hedral elements using strongly objective strain incrementation (STRAIN INCREMENTATION =

STRONGLY_OBJECTIVE). One of the following two arguments can be used with this command:

TOTAL or INCREMENTAL. The total formulation performs stiffness hourglass force updates based

on the rotation tensor from the polar decomposition of the total deformation gradient. The in-

cremental formulation is the default and performs stiffness hourglass force updates based on the

hourglass velocities and the incremental rotation tensor. The viscous hourglass forces and the hour-

glass parameters are unchanged by this command. Consult the element documentation [6] for a

description of the hourglass forces and the incremental hourglass formulation.

The HOURGLASS INCREMENT and HOURGLASS ROTATION commands control the speed and ac-

curacy of the hourglass control computation. These commands are only applicable to the uniform

gradient hex with midpoint strain incrementation (STRAIN INCREMENTATION = MIDPOINT_

INCREMENT). The HOURGLASS INCREMENT line command specifies whether the hourglass re-

sistance increment is to be computed at the middle or end of the time step. The endstep calcu-

lation has a slightly reduced computational cost while the midstep computation is more accurate.

The default is ENDSTEP. The HOURGLASS ROTATION command controls whether the hourglass

resistance will be scaled after rotation to preserve the magnitude. Scaling requires additional com-

putation time but will be more accurate, particularly when very large rotations are present in the

analysis. The default is APPROXIMATE, meaning no scaling is done.

Rigid elements in a section are indicated by including the RIGID BODY command line. The

RIGID BODY command line specifies an identifier that maps to a rigid body command block. See

Section 5.3.1 for a full discussion of how to create rigid bodies and Section 5.3.1.1 for information

on the use of the RIGID BODIES FROM ATTRIBUTES command.

You can request that the material model that will be used with this solid section come from the

legacy Strumento material model library by using the USE STRUMENTO line command. LAME is

the default material model library for all solid sections [9] but can be explicitly requested with the

244

USE LAME line command. The versions of the material models in the Strumento library will be

removed in a future release of Adagio, so it is advised to switch to the LAME versions as soon as

possible.

5.2.2 Cohesive Section

BEGIN COHESIVE SECTION <string>cohesive_section_name

NUMBER OF INTEGRATION POINTS = <integer>num_int_points(1)

END [COHESIVE SECTION <string>cohesive_section_name]

The COHESIVE SECTION command block is used to specify the properties for cohesive zone

elements (quadrilateral and triangular). The name of this block (given by cohesive_section_

name) is referenced by the element block for cohesive elements. If the option for adaptive insertion

of cohesive zone elements is used, the name of this block is referenced by the COHESIVE SECTION

command defined in Section 5.5.4.

NUMBER OF INTEGRATION POINTS = <integer>num_int_points(1)

The default number of integration points for a cohesive element is one. However, it should be

noted that with a single integration point, spurious hour-glass like modes can be introduced to the

deformation of the cohesive element. Currently, the quadrilateral cohesive element supports one

and four integration points while the triangular cohesive element supports one and three integration

points.

5.2.3 Localization Section

BEGIN LOCALIZATION SECTION <string>localization_section_name

MEAN DILATATION FORMULATION

NUMBER OF INTEGRATION POINTS = <integer>num_int_points

THICKNESS = <real>thickness

END [LOCALIZATION SECTION <string>cohesive_section_name]

Localization elements are planar elements that lie between bulk (volumetric) elements and can em-

ploy the same underlying bulk material model. Topologically, localization elements are identical

to cohesive surface elements. The reason this 2D element can access 3D material models is due

to the multiplicative decomposition of the deformation gradient F such that F = F‖F⊥ where F‖

encapsulates in-plane stretching and F⊥ is defined to be

F⊥ = I +
∆

h
⊗ N (5.1)

where N is the normal to the mid-plane, ∆ is the gap vector, and h is the element “thickness” or the

length scale governing the sub-grid separation progress. We note that because the length scale h

is independent of the discretization, the methodology is regularized and ideal for employing local,

softening material models to simulate the failure process. For full details on the theory, please

see 15.

245

The LOCALIZATION SECTION command block is used to specify the properties for localiza-

tion elements (quadrilateral and triangular). The name of this block (given by localization_

section_name) is referenced by the element block for localization elements.

MEAN DILATATION FORMULATION This command line will yield a constant pressure formu-

lation. The average pressure is obtained at all integration points through a modification of the

kinematic quantities. For hypoelastic materials, we volume average the tr[D]. For uncoupled hy-

perelastic models, we volume average det[F]. After voluming averaging tr[D] and det[F], we

remove local dilatational contributions and additively (hypoelastic) or multiplicatively (hypere-

lastic) include the average response. This results in an average pressure (by construction) and

has been shown to be effective in avoiding element locking during isochoric deformations. Note

that one can use a single integration point to achieve a constant pressure but we do not provide

any hourglass control to suppress spurious modes. If isochoric deformations are of concern, we

recommend using a fully-integrated element with MEAN DILATATION FORMULATION.

NUMBER OF INTEGRATION POINTS = <integer>num_int_points The default number

of integration points for a localization element depends on the topology, but is always sufficient

for full integration. For an 8 noded hex (planar 4 node quad) the default is 4 integration points

while for a 6 noded wedge (planar 3 node tri) the default is 1 integration point. However, it should

be noted that with a single integration point, spurious hourglass modes can be introduced into

the deformation of the quadrilateral localization element. Currently, the quadrilateral localization

element supports one and four integration points while the triangular localization element supports

one integration point.

THICKNESS = <real>thickness The THICKNESS command line sets the localization ele-

ment thickness h. In many respects, h should be considered a material parameter as it governs the

evolution of surface separation. We note that the introduction of h generates the true length scale

in the problem, the process zone size. Care must be taken to adequately resolve the process zone

size or the methodology will not be regularized.

5.2.4 Shell Section

BEGIN SHELL SECTION <string>shell_section_name

THICKNESS = <real>shell_thickness

THICKNESS MESH VARIABLE =

<string>THICKNESS|<string>var_name

THICKNESS TIME STEP = <real>time_value

THICKNESS SCALE FACTOR = <real>thick_scale_factor(1.0)

INTEGRATION RULE = TRAPEZOID|GAUSS|LOBATTO|SIMPSONS|

USER(TRAPEZOID)

NUMBER OF INTEGRATION POINTS = <integer>num_int_points(5)

FORMULATION = MEAN_QUADRATURE|NQUAD (MEAN_QUADRATURE)

BEGIN USER INTEGRATION RULE

<real>location_1 <real>weight_1

<real>location_2 <real>weight_2

.

.

246

<real>location_n <real>weight_n

END [USER INTEGRATION RULE]

LOFTING FACTOR = <real>lofting_factor(0.5)

OFFSET MESH VARIABLE = <string>var_name

ORIENTATION = <string>orientation_name

DRILLING STIFFNESS FACTOR = <real>stiffness_factor(0.0)

RIGID BODY = <string>rigid_body_name

RIGID BODIES FROM ATTRIBUTES = <integer>first_id

TO <integer>last_id

USE LAME|STRUMENTO(LAME)

END [SHELL SECTION <string>shell_section_name]

The SHELL SECTION command block is used to specify the properties for a shell element. If this

command block is referenced in an element block of three-dimensional, four-node elements, the

elements in the block will be treated as shell elements. The parameter, shell_section_name,

is user-defined and is referenced by a SECTION command line in a PARAMETERS FOR BLOCK

command block.

Either a THICKNESS command line or a THICKNESS MESH VARIABLE command line must ap-

pear in the SHELL SECTION command block.

If a shell element block references a SHELL SECTION command block with the command line:

THICKNESS = <real>shell_thickness

then all the shell elements in the block will have their thickness initialized to the value shell_

thickness.

Adagio can also initialize the thickness using an attribute defined on elements in the mesh file.

Meshing programs such as PATRAN and CUBIT typically set the element thickness as an at-

tribute on the elements. If the elements have one and only one attribute defined on the mesh, the

THICKNESS MESH VARIABLE command line should be specified as:

THICKNESS MESH VARIABLE = THICKNESS

which causes the thickness of the element to be initialized to the value of the attribute for that

element. If there are zero attributes or more than one attribute, the thickness variable will not be

automatically defined, and the command will fail.

The thickness may also be initialized by any other field present on the input mesh. To specify a

field other than the single-element attribute, use this form of the THICKNESS MESH VARIABLE

command line:

THICKNESS MESH VARIABLE = <string>var_name

Here, the string var_name is the name of the initializing field.

The input mesh may have values defined at more than one point in time. To choose the point in

time in the mesh file that the variable should be read, use the command line:

THICKNESS TIME STEP = <real>time_value

The default time point in the mesh file at which the variable is read is 0.0.

247

Once the thickness of a shell element is initialized by using either the THICKNESS command line

or the THICKNESS MESH VARIABLE command line, this initial thickness value can then be scaled

using the scale-factor command line:

THICKNESS SCALE FACTOR = <real>thick_scale_factor

If the initial thickness of the shell is 0.15 inch, and the value for thick_scale_factor is 0.5,

then the scaled thickness of the membrane will be 0.075.

The thickness mesh variable specification may be coupled with the THICKNESS SCALE FACTOR

command line. In this case, the thickness mesh variable is scaled by the specified factor.

The shell formulation can be selected via the FORMULATION command line. The default formula-

tion is MEAN_QUADRATURE. A fully elastic formulation may be selected with the NQUAD option.

For shell elements, the user can select from a number of integration rules, including a user-defined

integration option. The integration rule is selected with the command line:

INTEGRATION RULE = <string>TRAPEZOID|GAUSS|LOBATTO|SIMPSONS|

USER(TRAPEZOID)

Consult the element documentation [6] for a description of different integration schemes for shell

elements.

The default integration scheme is TRAPEZOID with five integration points through the thickness.

The number of integration points for TRAPEZOID can be set to any number greater than one by

using the following command line:

NUMBER OF INTEGRATION POINTS = <integer>num_int_points(5)

The SIMPSONS, GAUSS, and LOBATTO integration schemes in the INTEGRATION RULE command

line all default to five integration points. The number of integration points for these three schemes

can be reset by using the NUMBER OF INTEGRATION POINTS command line. There are limita-

tions on the number of integration points for some of these integration rules. The SIMPSONS rule

can be set to any number greater than one, the GAUSS scheme can be set to one through seven in-

tegration points, and the LOBATTO integration scheme can be set to two through seven integration

points.

In addition to these standard integration schemes, you may also define an integration scheme by

using the USER INTEGRATION RULE command block.

BEGIN USER INTEGRATION RULE

<real>location_1 <real>weight_1

<real>location_2 <real>weight_2

.

.

<real>location_n <real>weight_n

END [USER INTEGRATION RULE]

You may NOT specify both a standard integration scheme and a user scheme. If the USER option

is specified in the INTEGRATION RULE command line, a set of integration locations with associ-

ated weight factors must be specified. This is done with tabular input command lines inside the

248

USER INTEGRATION RULE command block. The number of command lines inside this command

block should match the number of integration points specified in the NUMBER OF INTEGRATION

POINTS command line. For example, suppose we wish to use a user-defined scheme with three

integration points. The NUMBER OF INTEGRATION POINTS command line should specify three

(3) integration points and the number of command lines inside the USER INTEGRATION RULE

command block should be three (to give three locations and three weight factors).

For the user-defined rule, the integration point locations should fall between –1 and +1, and the

weights should sum to 1.0.

The command line

LOFTING FACTOR = <real>lofting_factor(0.5)

allows the user to shift the location of the mid-surface of a shell element relative to the geometric

location of the shell element. The lofting factor must be greater than or equal to 0.0 and less than

or equal to 1.0. By default, the geometric location of a shell element in a mesh represents the

mid-surface of the shell. If a shell has a thickness of 0.2 inch, the top surface of the shell is 0.1

inch above the geometric surface defined by the shell element, and the bottom surface of the shell

is 0.1 inch below the geometric surface defined by the shell element. (The top surface of the shell

is the surface with a positive element normal; the bottom surface of the shell is the surface with a

negative element normal.)

Figure 5.2 shows an edge-on view of shell elements with a thickness of t and the location of the

geometric plane in relation to the shell surfaces for three different values of the lofting factor—0.0,

0.5, and 1.0. For a lofting factor of 0.0, the geometric surface defined by the shell corresponds

to the top surface of the shell element. A lofting factor of 1.0 puts the geometric surface at the

bottom surface of the shell element. The geometric surface is midway between the top and bottom

surfaces for a lofting factor of 0.5, which is the default. Lofting factors greater than 1.0 or less than

0.0 would put the geometric surface outside the shell element and are not allowed.

Figure 5.2: Location of geometric plane of shell for various lofting factors.

Consider the example of a lofting factor set to 1.0 for a shell with thickness of 0.2 inch. In this

case, the top surface of the shell will be located at a distance of 0.2 inch from the geometric surface

249

(measuring in the direction of the positive shell normal), and the bottom surface will be located at

the geometric surface.

Both the shell mechanics and contact use shell lofting. See Section 7.3 for a discussion of lofting

surfaces for shells and contact. It is recommended that shell lofting values other than 0.5 not be

used if the shell is thick. If the shell is thicker than its in-plane width, the shell lofting algorithms

may become unstable.

Lofting as described above may also be implemented through

OFFSET MESH VARIABLE = <string>var_name.

This command allows an offset value to be read from an attribute (or variable) on the mesh file.

This attribute (or variable) must be named but may have any name, and this name is specified

in place of var_name in the command. An offset is a dimensional value (i.e. not scaled by the

shell thickness) that gives the shell mid-plane shift in the positive shell normal direction. Internal

to Adagio the offset value is converted to an equivalent lofting factor by dividing by the initial

thickness and adding 0.5. Thus, an offset of zero gives a lofting factor of 0.5, an offset of one half

of the thickness gives a lofting factor of one, and an offset of negative one half of the thickness

gives a lofting factor of zero. There is no check that given offset values produce lofting values

between zero and one, which allows any offset to be specified but requires that care be exercised

to avoid unstable lofted shells.

Warning: An offset and a lofting factor may not be specified in the same shell

section. Both determine the shell lofting and may conflict.

The ORIENTATION command line lets you select a coordinate system for output of in-plane

stresses and strains. The ORIENTATION option makes use of an embedded coordinate system

rst associated with each shell element. The rst coordinate system for a shell element is shown

in Figure 5.3. The r-axis extends from the center of the shell to the midpoint of the side of the

shell defined by nodes 1 and 2. The t-axis is located at the center of the shell and is normal to the

surface of the shell at the center point. The s-axis is the cross-product of the t-axis and the r-axis.

The rst-axes form a local coordinate system at the center of the shell; this local coordinate system

moves with the shell element as the element deforms.

The ORIENTATION command line in the SHELL SECTION command block references an

ORIENTATION command block that appears in the SIERRA scope. As described in Chapter 2

of this document, the ORIENTATION command block can be used to define a local co-rotational

coordinate system X′′Y ′′Z′′ at the center of a shell element. In the original shell configuration (time

0), one of the axes—X′′, Y ′′, or Z′′—is projected onto the plane of the shell element. The angle

between this projected axis of the X′′Y ′′Z′′ coordinate system and the r-axis is used to establish

the transformation for in-plane stresses and strains. We will illustrate this with an example.

Suppose that in our ORIENTATION command block we have specified a rotation of 30 degrees

about the 1-axis (X′-axis). The command line for this rotation in the ORIENTATION command

block would be:

ROTATION ABOUT 1 = 30

250

Figure 5.3: Local rst coordinate system for a shell element.

For this case, we project the Y ′′-axis onto the plane of the shell (Figure 5.4). The angle between

this projection and the r-axis establishes a transformation for the in-plane stresses of the shell (the

stresses in the center of the shell lying in the plane of the shell). What will be output as the in-plane

stress σip
xx will be in the Y ′′-direction; what will be output as the in-plane stress σip

yy will be in the

Z′′-direction. The in-plane stress σip
xy is a shear stress in the Y ′′Z′′-plane. The X′′Y ′′Z′′ coordinate

system maintains the same relative position in regard to the rst coordinate system. This means that

the X′′Y ′′Z′′ coordinate system is a local coordinate system that moves with the shell element as

the element deforms.

Figure 5.4: Rotation of 30 degrees about the 1-axis (X′-axis).

251

The following permutations for output of the in-plane stresses occur depending on the axis (1, 2,

or 3) specified in the ROTATION ABOUT command line:

• Rotation about the 1-axis (X′-axis): The in-plane stress σip
xx will be in the Y ′′-direction; the

in-plane stress σip
yy will be in the Z′′-direction. The in-plane stress σip

xy is a shear stress in the

Y ′′Z′′-plane.

• Rotation about the 2-axis (Y ′-axis): The in-plane stress σip
xx will be in the Z′′-direction; the

in-plane stress σip
yy will be in the X′′-direction. The in-plane stress σip

xy is a shear stress in the

Z′′X′′-plane.

• Rotation about the 3-axis (Z′-axis): The in-plane stress σip
xx will be in the X′′-direction; the

in-plane stress σip
yy will be in the Y ′′-direction. The in-plane stress σip

xy is a shear stress in the

X′′Y ′′-plane.

If no orientation is specified, the in-plane stresses and strains are output in the consistent axes from

a default orientation, which is a rectangular system with the X′ and Y ′ axes taken as the global X

and Y axes, respectively, and ROTATION ABOUT 1 = 0.0.

The command line

DRILLING STIFFNESS FACTOR = <real>stiffness_factor

adds stiffness in the drilling degrees of freedom to quadrilateral shells. Drilling degrees of freedom

are rotational degrees of freedom in the direction orthogonal to the plane of the shell at each node.

The formulation used for the quadrilateral shells has no rotational stiffness in this direction. This

can lead to spurious zero-energy modes of deformation similar in nature to hourglass deformation.

This makes obtaining a solution difficult in quasistatic problems and can result in singularities

when using the full tangent preconditioner.

The stiffness_factor should be chosen as a quantity small enough to add enough stiffness

to allow the solve to be successful without unduly affecting the solution. The default value for

stiffness_factor is 0. If singularities are encountered in the solution or hourglass-like defor-

mation is observed in the drilling degrees of freedom, it is recommend to try using a small amount

of drilling stiffness. A suggested trial value for stiffness_factor is 1.0e-4.

Elements in a section can be made rigid by including the RIGID BODY command line. The

RIGID BODY command line specifies an indenter that maps to a rigid body command block. See

Section 5.3.1 for a full discussion of how to create rigid bodies and Section 5.3.1.1 for information

on the use of the RIGID BODIES FROM ATTRIBUTES command.

You can request that the material model that will be used with this shell section come from the

Strumento material model library by using the USE STRUMENTO line command. LAME is the

default material model library for all shell sections [9], but can be explicitly requested with the

USE LAME line command. The versions of the material models in the Strumento library will be

removed in a future release of Adagio, so it is advised to switch to the LAME versions as soon as

possible.

252

5.2.5 Membrane Section

BEGIN MEMBRANE SECTION <string>membrane_section_name

THICKNESS = <real>mem_thickness

THICKNESS MESH VARIABLE =

<string>THICKNESS|<string>var_name

THICKNESS TIME STEP = <real>time_value

THICKNESS SCALE FACTOR = <real>thick_scale_factor(1.0)

FORMULATION = <string>MEAN_QUADRATURE|

SELECTIVE_DEVIATORIC(MEAN_QUADRATURE)

DEVIATORIC PARAMETER = <real>deviatoric_param

LOFTING FACTOR = <real>lofting_factor(0.5)

RIGID BODY = <string>rigid_body_name

RIGID BODIES FROM ATTRIBUTES = <integer>first_id

TO <integer>last_id

END [MEMBRANE SECTION <string>membrane_section_name]

The MEMBRANE SECTION command block is used to specify the properties for a membrane el-

ement. If a section defined by this command block is referenced in the parameters for a block

of four-noded elements, the elements in that block will be treated as membranes. The parameter

membrane_section_name is user-defined and is referenced by a SECTION command line in a

PARAMETERS FOR BLOCK command block.

Either a THICKNESS command line or a THICKNESS MESH VARIABLE command line must ap-

pear in the MEMBRANE SECTION command block.

If a membrane element block references a MEMBRANE SECTION command block with the com-

mand line:

THICKNESS = <real>mem_thickness

then all the membrane elements in the block will have their thickness initialized to the value mem_

thickness.

Adagio can also initialize the thickness using an attribute defined on elements in the mesh file.

Meshing programs such as PATRAN and CUBIT typically set the element thickness as an at-

tribute on the elements. If the elements have one and only one attribute defined on the mesh, the

THICKNESS MESH VARIABLE command line should be specified as:

THICKNESS MESH VARIABLE = THICKNESS

which causes the thickness of the element to be initialized to the value of the attribute for that

element. If there are zero attributes or more than one attribute, the thickness variable will not be

automatically defined, and the command will fail.

The thickness may also be initialized by any other field present on the input mesh. To specify a

field other than the single-element attribute, use this form of the THICKNESS MESH VARIABLE

command line:

THICKNESS MESH VARIABLE = <string>var_name

where the string var_name is the name of the initializing field.

253

The input mesh may have values defined at more than one point in time. To choose the point in

time in the mesh file that the variable should be read, use the command line:

THICKNESS TIME STEP = <real>time_value

The default time point in the mesh file at which the variable is read is 0.0.

Once the thickness of a membrane element is initialized by using either the THICKNESS command

line or the THICKNESS MESH VARIABLE command line, this initial thickness value can then be

scaled by using the scale-factor command line:

THICKNESS SCALE FACTOR = <real>thick_scale_factor

If the initial thickness of the membrane is 0.15 inch, and the value for thick_scale_factor is

0.5, then the scaled thickness of the membrane will be 0.075.

The FORMULATION command line specifies whether the element will use a single-point integration

rule (mean quadrature) or a selective-deviatoric integration rule:

FORMULATION = <string>MEAN_QUADRATURE|SELECTIVE_DEVIATORIC

(MEAN_QUADRATURE)

If the user wishes to use the selective-deviatoric rule, the DEVIATORIC PARAMETER command

line must also appear in the MEMBRANE SECTION command block:

DEVIATORIC PARAMETER = <real>deviatoric_param

The selective-deviatoric elements, when used with a parameter greater than 0.0, provide hourglass

control without artificial hourglass parameters. The selective-deviatoric parameter, deviatoric_

param, which is valid from 0.0 to 1.0, indicates how much of the deviatoric response should be

taken from a uniform-gradient integration and how much should be taken from a full integration of

the element. A value of 0.0 will give a pure uniform-gradient response with no hourglass control.

Thus, this value is of little practical use. A value of 1.0 will give a fully integrated deviatoric

response. Although any value between 0.0 and 1.0 is perfectly valid, lower values are generally

preferred.

The command line

LOFTING FACTOR = <real>lofting_factor(0.5)

allows the user to shift the location of the mid-surface of a membrane element relative to the

geometric location of the membrane element. By default, the geometric location of a membrane

element in a mesh represents the mid-surface of the membrane. If a membrane has a thickness

of 0.2 inch, the top surface of the membrane is 0.1 inch above the geometric surface defined by

the membrane element, and the bottom surface of the membrane is 0.1 inch below the geometric

surface defined by the membrane element. (The top surface of the membrane is the surface with a

positive element normal; the bottom surface of the membrane is the surface with a negative element

normal.)

Figure 5.2, which shows lofting for shells, is also applicable to membranes. For membranes,

Figure 5.2 represents an edge-on view of membrane elements with a thickness of t and the location

of the geometric plane in relation to the membrane surfaces for three different values of the lofting

254

factor—0.0, 0.5, and 1.0. For a lofting factor of 0.0, the geometric surface defined by the membrane

corresponds to the top surface of the membrane element. A lofting factor of 1.0 puts the geometric

surface at the bottom surface of the membrane element. The geometric surface is midway between

the top and bottom surfaces for a lofting factor of 0.5, which is the default.

Consider the example of a lofting factor set to 1.0 for a membrane with thickness of 0.2 inch.

In this case, the top surface of the membrane will be located at a distance of 0.2 inch from the

geometric surface (measuring in the direction of the positive shell normal), and the bottom surface

will be located at the geometric surface.

Both the membrane mechanics and contact use membrane lofting. See Section 7.3 for a discussion

of lofting surfaces for membranes and contact.

Elements in a section can be made rigid by including the RIGID BODY command line. The RIGID

BODY command line specifies an indenter that maps to a rigid body command block. Consult

Section 5.3.1 for a full description of how to create rigid bodies and Section 5.3.1.1 for information

on the use of the RIGID BODIES FROM ATTRIBUTES command.

255

5.2.6 Beam Section

BEGIN BEAM SECTION <string>beam_section_name

SECTION = <string>ROD|TUBE|BAR|BOX|I

WIDTH = <real>section_width

WIDTH VARIABLE = <string>width_var

HEIGHT = <real>section_width

HEIGHT VARIABLE= <string>height_var

WALL THICKNESS = <real>wall_thickness

WALL THICKNESS VARIABLE = <string>wall_thickness_var

FLANGE THICKNESS = <real>flange_thickness

FLANGE THICKNESS VARIABLE = <string>flange_thickness_var

T AXIS = <real>tx <real>ty <real>tz

T AXIS VARIABLE = <string>t_axis_var

REFERENCE AXIS = <string>CENTER|RIGHT|

TOP|LEFT|BOTTOM(CENTER)

AXIS OFFSET = <real>s_offset <real>t_offset

AXIS OFFSET GLOBAL = <real>x_offset <real>y_offset <real>z_offset

AXIS OFFSET VARIABLE = <string>axis_offset_var

RIGID BODY = <string>rigid_body_name

RIGID BODIES FROM ATTRIBUTES = <integer>first_id

TO <integer>last_id

USE LAME|STRUMENTO(LAME)

END [BEAM SECTION <string>beam_section_name]

The BEAM SECTION command block is used to specify the properties for a beam element. If this

command block is referenced in an element block of three-dimensional, two-node elements, the

elements in the block will be treated as beam elements. The parameter, beam_section_name,

is user-defined and is referenced by a SECTION command line in a PARAMETERS FOR BLOCK

command block.

Five different cross sections can be specified for the beam—ROD, TUBE, BAR, BOX, and I—via

use of the SECTION command line. Each section requires a specific set of command lines for

a complete geometric description. The command lines related to section geometry are WIDTH,

HEIGHT, WALL THICKNESS, and FLANGE THICKNESS. We present a summary of the geometric

parameter command lines required for each section as a quick reference.

• If the section is ROD, the following geometry command lines are required:

WIDTH or WIDTH VARIABLE

HEIGHT or HEIGHT VARIABLE

• If the section is TUBE, the following geometry command lines are required:

WIDTH or WIDTH VARIABLE

HEIGHT or HEIGHT VARIABLE

WALL THICKNESS or WALL THICKNESS VARIABLE

256

• If the section is BAR, the following geometry command lines are required:

WIDTH or WIDTH VARIABLE

HEIGHT or HEIGHT VARIABLE

• If the section is BOX, the following geometry command lines are required:

WIDTH or WIDTH VARIABLE

HEIGHT or HEIGHT VARIABLE

WALL THICKNESS or WALL THICKNESS VARIABLE

• If the section is I, the following geometry command lines are required:

WIDTH or WIDTH VARIABLE

HEIGHT or HEIGHT VARIABLE

WALL THICKNESS or WALL THICKNESS VARIABLE

FLANGE THICKNESS or FLANGE THICKNESS VARIABLE

Most of the sections require the T AXIS or T AXIS VARIABLE command line. If the beam has a

circular or tube cross section, and the width of the beam exactly equals the height, then the T_AXIS

need not be specified. If the T_AXIS is not specified for one of these circularly symmetric cross

sections the code will arbitrarily pick a t axis at each beam that is perpendicular to the the beam.

Beam section parameters can be specified as constant for all beams in the section with com-

mands such as WIDTH or T AXIS. Alternatively a set of beam parameters that vary from ele-

ment to element can be specified with variants of these commands with VARIABLE at the end,

such as WIDTH VARIABLE or T AXIS VARIABLE. When the VARIABLE variants of commands

are used, the command specifies the name of an attribute field on the input mesh that contains

the parameter. For WIDTH VARIABLE, HEIGHT VARIABLE, WALL THICKNESS VARIABLE,

and FLANGE THICKNESS VARIABLE, the field should contain one entry per element. For

AXIS OFFSET VARIABLE the field should contain either two or three entries per element. If

the field for the axis offset contains two entries, it specifies the offset in the local s, t coordinate

system. If it contains three entries, it specifies the offset in the global x, y, z coordinate system. For

T AXIS VARIABLE the field should contain three entries per element.

Before presenting details about the various sections, we will discuss the local coordinate system

for the beam. (The geometric properties are related to this local coordinate system.) For the beam,

it is necessary to specify a local Cartesian coordinate system, which will be designated as r, s, and

t. The r-axis lies along the length of the beam and passes through the centroid of the beam. The

t-axis is specified by the user as a vector in the global coordinate system. The s-axis is computed

from the cross product of the t-axis and the r-axis. The t-axis is then recomputed as the cross

product of the r-axis and the s-axis to ensure that the t-axis is orthogonal to the r-axis. These local

direction vectors are all normalized, so the user-input vectors do not have to be unit vectors.

If we want the initial position of the t-axis to be parallel to the global Z-axis, then we would use

the command line:

T AXIS = 0 0 1

257

If we wanted the initial position of the t-axis to be parallel to a vector (0.5, 0.8660, 0) in the global

coordinate system, then we would use the command line:

T AXIS = 0.5 0.8660 0.0

The t-axis will change position as the beam deforms (rotates about the r-axis). This change in

position is tracked internally by the computations for the beam element. The HEIGHT for the beam

cross section is in the direction of the t-axis, and the WIDTH of the beam cross section is in the

direction of the s-axis.

Now that the local coordinate system for the beam has been defined, we can describe the definition

of each section.

• The ROD section is a solid elliptical section. The diameter along the height is specified by

the HEIGHT command line, and the diameter along the width is specified by the WIDTH

command line.

• The TUBE section is a hollow elliptical section. The diameter along the height is specified by

the HEIGHT command line, and the diameter along the width is specified by the WIDTH com-

mand line. The wall thickness for the tube is specified by the WALL THICKNESS command

line.

• The BAR section is a solid rectangular section. The height is specified by the HEIGHT com-

mand line, and the width is specified by the WIDTH command line.

• The BOX section is a hollow rectangular section. The height is specified by the HEIGHT

command line, and the width is specified by the WIDTH command line. The wall thickness

for the box is specified by the WALL THICKNESS command line.

• The I section is the standard I-section associated with a beam. The height of the I-section

is given by the HEIGHT command line, and the width of the flanges is given by the WIDTH

command line. The thickness of the vertical member is given by the WALL THICKNESS

command line, and the thickness of the flanges is given by the FLANGE THICKNESS com-

mand line.

By default, the r-axis coincides with the geometric centerline of the beam. The geometric center-

line of the beam is defined by the location of the two nodes defining the beam connectivity. It is

possible to offset the local r-axis, s-axis, and t-axis from the geometric centerline of the beam. To

do this, one can use either the REFERENCE AXIS command line or the AXIS OFFSET command

line, but not both.

The REFERENCE AXIS command line has the options CENTER, TOP, RIGHT, BOTTOM, and LEFT.

The CENTER option is the default, which means that the r-axis coincides with the geometric cen-

terline of the beam. If the TOP option is used, the r-axis is moved in the direction of the original

t-axis by a positive distance HEIGHT/2 from the centroid so that it passes through the top of the

beam section (top being defined in the direction of the positive t-axis). If the RIGHT option is used,

the r-axis is moved in the direction of the original s-axis by a positive distance WIDTH/2 so that it

passes through the right side of the beam section (the section being viewed in the direction of the

258

negative r-axis). If the BOTTOM option is used, the r-axis is moved in the direction of the original

t-axis by a distance HEIGHT/2 so that it passes through the bottom of the beam section (bottom

being defined in the direction of the negative t-axis). If the LEFT option is used, the r-axis is moved

in the direction of the original s-axis by a negative distance WIDTH/2 so that it passes through the

left side of the beam section (the section being viewed in the direction of the negative r-axis). For

all options, the s-axis and the t-axis remain parallel to their original positions before the translation

of the r-axis.

The AXIS OFFSET command line allows the user to offset the local coordinate system from the

geometric centerline by an arbitrary distance. The first parameter on the command line moves the

r-axis a distance s_offset from the centroid of the section along the original s-axis. The second

parameter on the command line moves the r-axis a distance t_offset from the centroid of the

section along the original t-axis. The s-axis and t-axis remain parallel to their original positions

before the translation of the r-axis.

Alternatively, the axis offset can be specified in global coordinates using the AXIS OFFSET

GLOBAL command. This command takes three parameters, which are the x, y, and z components

of the offset in the global coordinate system.

Strains and stresses are computed at the midpoint of the beam. The integration of the stresses over

the cross section at the midpoint is used to compute the internal forces in the beam. Each beam

section has its own integration scheme. The integration scheme for each of the sections is shown

in Figure 5.5 through Figure 5.7. The numbers in these figures show the relative location of the

integration points in regard to the centroid of the section and the s-axis and the t-axis.

Figure 5.5: Integration points for rod and tube

At each integration point, there is an axial strain (with a corresponding axial stress) and an in-

plane (in the plane of the cross section) shear strain (with a corresponding shear stress). The user

can output this stress and strain information by using the RESULTS OUTPUT commands described

in Chapter 8. The variable that will let users access the strain at the beam integration points is

259

Figure 5.6: Integration points for bar and box.

Figure 5.7: Integration points for I-section.

beam_strain_inc, and the variable that will let users access the stress at the beam integration

points is stress. If the user requests output for the beam strain, 32 values are given for the strain.

The first value (designated in the output as 01) is the axial strain at the first integration point, the

second value (designated in the output as 02) is the shear strain at the first integration point, etc.

The odd values for the strain output (01, 03, 05, etc.) are the axial strains at the integration points.

The even values of the strain output (02, 04, 06, etc.) are the shear strains at the integration points.

For the case where there are only nine integration points (the rod), only the first 18 values for strain

have any meaning for the section (the values 19 through 32 are zero). For the I-section, only the

first 30 of the strain values have meaning since this section only has 15 integration points. For all

other sections, all 32 values have meaning. Output of stress is slightly different than the output

260

of strain because the stress is stored as a symmetric tensor that contains six components, although

four of these components are never used. The axial stress at the first integration point is designated

by stress_xx_01 and the shear stress at the first integration point is stress_xy_01. The other

four components, stress_yy_01, stress_zz_01, stress_yz_01 and stress_xz_01, are

unused and are set to zero. The stresses at other integration points are named stress_xx_NN and

stress_xy_NN, where NN is a number from 01 to 16.

As an alternative for the stress output, you may use the variables beam_stress_axial and

beam_stress_shear. The variable beam_stress_axial contains only the axial stresses.

The first value associated with beam_stress_axial (designated as 01) corresponds to the ax-

ial stress at integration point 1, the second value associated with beam_stress_axial (des-

ignated as 02) corresponds to the axial stress at integration point 2, and so on. The variable

beam_stress_shear contains only shear stresses. The correlation between numbering the

values for beam_stress_shear (01, 02, . . .) and the integration points is the same as for

beam_stress_axial.

It is possible to access mean values for the internal forces at the midpoint of the beam. The axial

force at the midpoint of the beam is obtained by referencing the variable beam_axial_force.

The transverse forces at the midpoint of the beam in the s-direction and the t-direction are obtained

by referencing beam_transverse_force_s and beam_transverse_force_t, respectively.

The torsion at the midpoint of the beam (the moment about the r-axis), is obtained by referencing

beam_moment_r. The moments about the s-axis and the t-axis are obtained by referencing beam_

moment_s and beam_moment_t, respectively.

Elements in a section can be made rigid by including the RIGID BODY command line. The

RIGID BODY command line specifies an identifier that maps to a rigid body command block. See

Section 5.3.1 for a full discussion of how to create rigid bodies and Section 5.3.1.1 for information

on the use of the RIGID BODIES FROM ATTRIBUTES command.

You can request that the material model that will be used with this beam section come from the

Strumento material model library with the USE STRUMENTO line command. LAME is the default

material model library for all beam sections [9] but can be explicitly requested by using the USE

LAME line command. The versions of the material models in the Strumento library will be removed

in a future release of Adagio, so it is advised to switch to the LAME versions as soon as possible.

5.2.7 Truss Section

BEGIN TRUSS SECTION <string>truss_section_name

AREA = <real>cross_sectional_area

INITIAL LOAD = <real>initial_load

PERIOD = <real>period

RIGID BODY = <string>rigid_body_name

RIGID BODIES FROM ATTRIBUTES = <integer>first_id

TO <integer>last_id

USE LAME|STRUMENTO(LAME)

END [TRUSS SECTION <string>truss_section_name]

261

The TRUSS SECTION command block is used to specify the properties for a truss element. If this

command block is referenced in an element block of three-dimensional, two-node elements, the

elements in the block will be treated as truss elements. The parameter, truss_section_name,

is user-defined and is referenced by a SECTION command line in a PARAMETERS FOR BLOCK

command block.

The cross-sectional area for truss elements is specified by the AREA command line. The value

cross_sectional_area is the cross-sectional area of the truss members in the element block.

The truss can be given some initial load over some given time period. The magnitude of the load is

specified by the INITIAL LOAD command line. If the load is compressive, the sign on the value

initial_load should be negative; if the load is tensile, the sign on the value initial_value

should be positive. The period is specified by the PERIOD command line.

The initial load is applied over some period by specifying the axial strain rate in the truss, ε̇, over

some period p. At some given time t, the strain rate is

ε̇ =
ap

2

[

1 − cos (πt/p)
]

, (5.2)

where

a =
2Fi

EAp
. (5.3)

In Equation (5.3), Fi is the initial load, E is the modulus of elasticity for the truss, and A is the area

of the truss. Over the period p, the total strain increment generates the desired initial load in the

truss.

During the initial load period, the time increments should be reasonably small so that the integra-

tion of ε̇ over the period is accurate. The period should be set long enough so that if the model was

held in a steady state after time p, there would only be a small amount of oscillation in the load in

the truss.

When doing an analysis, you may not want to activate certain boundary conditions until after

the prestressing is done. During the prestressing, time-independent boundary conditions such as

fixed displacement will most likely be turned on. Time-dependent boundary conditions such as

prescribed acceleration or prescribed force will most likely be activated after the prestressing is

complete.

Elements in a section can be made rigid by including the RIGID BODY command line. The

RIGID BODY command line specifies an indenter that maps to a rigid body command block. See

Section 5.3.1 for a full discussion of how to create rigid bodies and Section 5.3.1.1 for information

on the use of the RIGID BODIES FROM ATTRIBUTES command.

It should be noted that the axial stress, which is the only stress component for a truss element, is

output as a symmetric tensor with six components to be compatible with the notion of volumetric

stress. Because of this, for every truss element, six values of stress are stored and output, but

only the fist value is ever used. The axial stress is therefore output as stress_xx and the other

five stress components, stress_yy, stress_zz, stress_xy, stress_yz, stress_zx are all

262

unused and set to zero.

You can request that the material model that will be used with this truss section come from the

Strumento material model library with the USE STRUMENTO line command. LAME is the default

material model library for all truss sections [9] but can be explicitly requested with the USE LAME

line command. The versions of the material models in the Strumento library will be removed in a

future release of Adagio, so it is advised to switch to the LAME versions as soon as possible.

5.2.8 Superelement Section

BEGIN SUPERELEMENT SECTION <string>section_name

BEGIN MAP

<integer>node_index_1 <integer>component_index_1

<integer>node_index_2 <integer>component_index_2

...

<integer>node_index_n <integer>component_index_n

END

BEGIN STIFFNESS MATRIX

<real>k_1_1 <real>k_1_2 ... <real>k_1_n

<real>k_2_1 <real>k_2_2 ... <real>k_2_n

...

<real>k_n_1 <real>k_n_2 ... <real>k_n_n

END

BEGIN DAMPING MATRIX

<real>c_1_1 <real>c_1_2 ... <real>c_1_n

<real>c_2_1 <real>c_2_2 ... <real>c_2_n

...

<real>c_n_1 <real>c_n_2 ... <real>c_n_n

END

BEGIN MASS MATRIX

<real>m_1_1 <real>m_1_2 ... <real>m_1_n

<real>m_2_1 <real>m_2_2 ... <real>m_2_n

...

<real>m_n_1 <real>m_n_2 ... <real>m_n_n

END

FILE = <string>netcdf_file_name

END [SUPERELEMENT SECTION <string>section_name]

A superelement allows definition of an element with a user defined stiffness, damping, and mass

matrix. The superelement stiffness is linear and remains constant in time.

The superelement must be represented by an element in the mesh file. A block of elements used to

define a superelement must contain exactly one finite element. The finite element that represents

the superelement may have any topology. The topology may either be a valid geometric topology

(hex, rod, tet, etc.) or may be be an arbitrary topology as defined in the input mesh file. The nodes

of a superelement can be shared with other elements, or can be attached only to the superelement.

In addition, the superelement can have additional internal degrees of freedom that are not present

263

in the mesh file. If output values are desired on a node, that node must be present in the input mesh

file.

Superelement nodes have all the same variables as regular nodes (mass, displacement, velocity,

etc.) Only the element time step is defined as an output variable on the superelement itself.

5.2.8.1 Input Commands

BEGIN MAP

The MAP command block defines the mapping from nodal degrees of freedom to the local degrees

of freedom in the stiffness and mass matrix for the superelement. The map should contain N pairs

of integers, where N is the number of nodes in the superelement. The first integer of each pair is

the index of the node in the superelement in the range 0 . . .N. The second integer is the component

in the range 0 . . . 6.

A node index of 0 is a special value and marks the degree of freedom that is internal to the superele-

ment. A superelement may have any number of internal degrees of freedom. Internal degrees of

freedom are created internal to the code do not correspond to any nodes actually present in the

mesh. A node index greater than zero represents that node index in the element. For example if

the superelement was represented by an eight node hex element then node indexes could vary from

one to eight and would match the first through eighth nodes in the hex element.

If an internal degree of freedom is used, the component index should be set to 0 along with the node

index. If a regular node is used, components 1, 2, and 3 correspond to the X, Y, and Z translational

degrees of freedom. Components 4, 5, and 6 correspond to the X, Y, and Z rotational degrees of

freedom.

The following is an example superelement definition for a three degree of freedom truss element

lying along the x-axis. The superelement is defined in the mesh file using a two node rod element.

Degrees of freedom 1 and 3 are mapped to x degrees of freedom of the end nodes of the rod

element. Degree of freedom 2 is internal to the superelement.

BEGIN SUPERELEMENT SECTION truss_x3

BEGIN MAP

1 1

0 0

2 1

END

BEGIN STIFFNESS MATRIX

100 -100 0

-100 200 -100

0 -100 100

END

BEGIN DAMPING MATRIX

1 -1 0

-1 2 -1

0 -1 1

264

END

BEGIN MASS MATRIX

0.25 0.00 0.00

0.00 0.50 0.00

0.00 0.00 0.025

END

END [SUPERELEMENT SECTION <string>section_name]

BEGIN STIFFNESS MATRIX

The STIFFNESS MATRIX command block defines the NxN stiffness matrix for the superelement.

The number of rows and columns in the stiffness matrix must be the same as the number of rows

in the MAP command block. The stiffness matrix should be symmetric. If the input matrix is not

symmetric, it will be made symmetric by Ksym = 0.5 ∗ (Kinput + KT
input). To guarantee stability

for explicit dynamics and solution convergence for implicit statics/dynamics, the stiffness matrix

should be positive definite.

BEGIN DAMPING MATRIX

The DAMPING MATRIX command block defines the NxN damping matrix for the superelement.

The number of rows and columns in the damping matrix must be the same as the number of rows

in the MAP command block. The damping matrix should generally be symmetric. This command

block is optional. If a damping matrix is not defined, no damping will be used by default.

BEGIN MASS MATRIX

The MASS MATRIX command block defines the NxN mass matrix for the superelement. The mass

matrix must have the same dimensions as the stiffness matrix. The mass matrix need not be sym-

metric, however to guarantee stability for explicit dynamics and solution convergence for implicit

statics/dynamics the mass matrix should be positive definite.

FILE = <string>netcdf_file_name

As an alternative to defining stiffness and mass matrices in the input file, the stiffness and mass

matrices may be imported from a NetCDF file. External codes (such as Salinas) are able to

compress larger models into superelements and output the matrices in the NetCDF format. The

netcdf_file_name defines the path to the file that contains the mass, damping, and stiffness

matrix definitions. All superelement matrices should be defined either in the input deck or in the

NetCDF file. The damping matrix is optional, so if it is not defined in the NetCDF file, no damping

will be used by default. The connectivity map needs to be specified in the input file in either case.

In the netcdf file the stiffness matrix must be named Kr, the mass matrix Mr, and the damping

matrix Cr.

Known Issue: Superelements are not compatible with several modeling capabil-

ities. They cannot be used with element death. They cannot be used with node-

based, power method, or Lanczos critical time step estimation methods. They are

also not compatible with some preconditioners (such as FETI) for implicit solu-

tions.

265

5.3 Element-like Functionality

This section describes the rigid body functionality in Adagio. The rigid body functionality de-

scribed in this section is specified through command blocks that appear in the SIERRA scope.

5.3.1 Rigid Body

BEGIN RIGID BODY <string>rb_name

MASS = <real>mass

POINT MASS = <real>mass [AT <real>X <real>Y <real>Z]

REFERENCE LOCATION = <real>X <real>Y <real>Z

INERTIA = <real>Ixx <real>Iyy <real>Izz <real>Ixy

<real>Iyz <real>Izx

POINT INERTIA = <real>Ixx <real>Iyy <real>Izz <real>Ixy

<real>Iyz <real>Izx

MAGNITUDE = <real>magnitude_of_velocity

DIRECTION = <string>direction_definition

ANGULAR VELOCITY = <real>omega

CYLINDRICAL AXIS = <string>axis_definition

INCLUDE NODES IN <string>surface_name

[IF <string>field_name <|<=|=|>=|> <real>value]

END [RIGID BODY <string>rb_name]

A rigid body can consist of any combination of elements—solid elements, structural elements,

and point masses. All nodes associated with a rigid body maintain their relative position to each

other as determined at time 0 when there is no deformation of the body. This means that the

elements associated with the rigid body can translate and rotate through space, but they cannot

deform. Element blocks defining the rigid body do not have to be contiguous. They can also

adjoin deformable element blocks. Multiple rigid bodies are allowed in a model.

The non-deformable nature of the rigid body can put it in conflict with other constraints. Refer to

Appendix D for information on how conflicting constraints are handled.

Warning: Kinematic boundary conditions prescribed on a rigid body must be ap-

plied to the rigid body reference node. Kinematic boundary conditions prescribed

on a rigid body that are not prescribed on the rigid body reference node will be unen-

forced. To apply kinematic boundary conditions to a rigid body, use the BLOCK =

or the RIGID BODY = line command with the rigid body’s block id or name, re-

spectively, in the appropriate boundary condition command block. Refer to Chap-

ter 6.

Adagio creates a new node for each rigid body in the analysis. The new nodes are true nodes in

that they are associated with solution fields such as displacement, velocity, and rotational velocity.

These nodes will appear in a results file along with other nodes. The global node number given

266

to the new nodes is simply the total number of nodes in the mesh plus one, repeated for each new

rigid body node.

Specification of a rigid body requires the above command block, which appears in the SIERRA

scope, plus the RIGID BODY command line that appears in the various SECTION command blocks

described in this chapter. Suppose, for example, rigidbody_1 consists of element blocks 100,

110, and 280. The PARAMETERS FOR BLOCK command blocks for element blocks 100, 110, and

280 must all contain a SECTION command line. In each case, the Section must contain a line such

as:

RIGID BODY = rigidbody_1

Once you have declared an element block or some collection of element blocks to be a rigid body

and created a rigid body name (through the Section chosen), that rigid body name must appear

as the name in a RIGID BODY command block. In our example, we must have a RIGID BODY

command block with the value for rb_name set to rigidbody_1. Therefore, at a minimum, you

must have a command block in the SIERRA scope with the form

BEGIN RIGID BODY rigidbody_1

END RIGID BODY rigidbody_1

for our example.

The RIGID BODY command block has several optional command lines, composing four groups

of commands. One group consists of the MASS, POINT MASS, REFERENCE LOCATION, POINT

INERTIA, and INERTIA command lines, a second group consists of the paired MAGNITUDE

and DIRECTION command lines, a third group consists of the paired ANGULAR VELOCITY and

CYLINDRICAL AXIS command lines, and a final group consists of the INCLUDE NODES IN com-

mand line. The command block can include none or any combination of these groups. If none of

these commands is included, the command block simply supplies the value for rb_name.

Input to the MASS command line consists of a single real number that defines the total mass of the

rigid body. If this line command is not present, the mass of the rigid body will be computed using

the elements in the rigid body and their densities. This is the translational mass at the reference

location. This command does not change the inertia terms.

The POINT MASS command line requires a real number specifying the amount of mass added to

the rigid body. Optionally, the location of that mass may be specified with three real numbers. If

the location is not given, the additional mass will be placed at the reference location (and will not

affect the moments and products of inertia).

The REFERENCE LOCATION command line requires three real numbers defining the reference

location for the rigid body. If this line command is not present, the center of mass will be used.

The center of mass is calculated from the mesh and the element densities.

Input to the INERTIA command line consists of six real numbers. If present, this command line

will set the inertia for the rigid body. If it is not present, moments and products of inertia are

computed for the rigid body based on the reference location of the rigid body and the element

masses.

267

Input to the POINT INERTIA command line consists of six real numbers that define moments

(Ixx, Iyy, Izz) and products (Ixy, Iyx, Izx) of inertia to be added to the inertia tensor of the

rigid body. This modified inertia tensor (rather than the inertia tensor based solely on element

mass) is then used to calculate the motion of the rigid body.

It should be noted, if a rigid body contains an element that has rotational resistance, i.e. shell,

beam, etc, the nodal moment of inertia of that element is added to the diagonal components of the

rigid body’s inertia tensor.

An initial, translational-only velocity for the rigid body reference location should be specified

with the MAGNITUDE and DIRECTION command lines. The MAGNITUDE command line gives the

magnitude of the initial velocity applied to the reference location, and the DIRECTION command

line gives a defined direction.

An initial rotational and translational velocity for a rigid body can be specified with the ANGULAR

VELOCITY and CYLINDRICAL AXIS command lines. The ANGULAR VELOCITY command line

gives the initial translational velocity of and rotational velocity about the reference location due to

an angular velocity about some defined axis given on the CYLINDRICAL AXIS command line. If

the defined cylindrical axis passes through the reference location, this command will impart only

an initial rotational velocity to the rigid body reference node. If the axis does not pass through

the reference location, this command will impart an initial translational velocity on the rigid body

node as well as the initial rotational velocity.

The INCLUDE NODES IN command line allows a rigid body to include nodes of a surface or block

of the mesh. Optionally, the nodes in the surface or block will be included in the rigid body only

if the value of a field on the nodes meets a given criterion. For example, consider the rigid body

block below.

begin rigid body rigid1

include nodes in block_1

include nodes in surface_3 if height = -1.0

end

Rigid body rigid1 will include all nodes in block_1 and those nodes on surface_3 whose value of

the height field are equal to -1.0. The optional field (height in this case) must be a field known

in the analysis. This field may be read in from restart, be a native field initialized upon startup,

or be an initialized user-defined field. Since the entire set of nodes in block_1 will be in the rigid

body, internal forces will not be computed for elements in block_1.

Adagio automatically outputs quantities such as displacement for the reference location of the

rigid body. The name assigned to a rigid body will be used to construct variable names that give

the quantities. This lets you identify the output associated with a rigid body based on the name you

assigned for the rigid body.

In summary, if you use a rigid body in an analysis, you will do one or more of the following steps:

- Include a RIGID BODY command block in the SIERRA scope. If desired, set reference

location, mass, point mass, etc.

268

- Create a rigid body using one or more element blocks (except PARTICLE or PERIDYNAMICS

element blocks). A RIGID BODY command line must appear in the SECTION command

block used in the PARAMETERS FOR BLOCK command block for any element block associ-

ated with a rigid body.

- Include point mass element blocks with the rigid body if appropriate. To include point mass

element blocks in a rigid body, a RIGID BODY command line must appear in the SECTION

command block used in the PARAMETERS FOR BLOCK command block for those point mass

element blocks.

- Associate an initial velocity or initial rotation about an axis with the rigid body, if appro-

priate. If any of the blocks associated with a rigid body have been given an initial velocity

or initial rotation, the rigid body must have the same specification for the initial velocity or

initial rotation.

The above steps involve a number of different command blocks. To demonstrate how to fully

implement a rigid body, we will provide a specific example that exercises the various options

available to a user.

Let us assume that we want to create a rigid body named part_a consisting of three element

blocks. Two of the element blocks, element block 100 and element block 535, are eight-node

hexahedra; one of the element blocks, element block 600, consists of only point masses. The

RIGID BODY command block, SECTION command block, and the element blocks we want to

associate with the rigid body will be as follows:

begin solid section hex_section

rigid body = part_a

end

begin point mass section pm_section

rigid body = part_a

volume = 0.1

end

begin parameters for block block_100

material steel

solid mechanics model use elastic

section = hex_section

end

begin parameters for block block_535

material = aluminum

solid mechanics model use elastic

section = hex_section

end

begin parameters for block block_600

material = mass_for_pointmass

solid mechanics model use elastic

section = pm_section

end

269

Suppose we want to have the rigid body initially rotating at 600 radians/sec about an axis parallel to

the x-axis and passing through a point at (0, 10, 20). We would define this axis using the following

set of DEFINE command lines:

define direction parallel_to_x with vector 2.0 0.0 0.0

define point off_axis with coordinates 0.0 10.0 20.0

define axis body_axis with point off_axis direction parallel_to_x

The initial angular velocity specification in the RIGID BODY command block is as follows:

begin rigid body part_a

cylindrical axis = body_axis

angular velocity = 600

end rigid body part_a

Adagio automatically generates and outputs global data associated with the rigid body (e.g. dis-

placement and quaternion). See Section 8.8 for details on global variable output. Individual field

components may be output as discussed in Section 8.1.4 and Table 8.2. In general the field com-

ponent fieldi of the rigid body named part_a will be written to the output file(s) with the name

FIELDI_PART_A.

5.3.1.1 Multiple Rigid Bodies from a Single Block

Typically, all of the elements in a block are assigned to a single rigid body. However, it is some-

times necessary to define a very large number of rigid bodies. It would be unwieldy to create a

separate block for each rigid body. To avoid this, it is possible to create an element attribute in the

input mesh file that contains an integer ID used to denote the rigid body in which each element

should belong. The RIGID BODIES FROM ATTRIBUTES command is used to associate the at-

tribute with the rigid body IDs. This command must be used in conjunction with the RIGID BODY

command. These commands are used in the context of the section block. They are shown here in

the SOLID SECTION block, but they can be used with any section type that supports rigid bodies.

BEGIN SOLID SECTION <string>sec_name

RIGID BODIES FROM ATTRIBUTES = <integer>first_id to

<integer>last_id

RIGID BODY = <string>rigid_body_name

END

If the RIGID BODIES FROM ATTRIBUTES command is used, a series of rigid bodies will be cre-

ated. These rigid bodies are named using the specified rigid_body_name, followed by an under-

score (_), and then by an integer ID, which ranges between the specified value of first_id and

last_id. Elements having an attribute value equal to a given ID are added to the corresponding

rigid body.

When referencing the rigid body name for to apply boundary conditions, it is important to specify

the entire name of the rigid body, including the underscore and ID. For example, a name such as

part_a_1 would be used in a boundary condition.

270

5.4 Mass Property Calculations

BEGIN MASS PROPERTIES

#

block set commands

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE BLOCK = <string list>block_names

#

structure command

STRUCTURE NAME = <string>structure_name

END [MASS PROPERTIES]

Adagio automatically gives mass property information for the total model, which consists of all

the element blocks. (The mass for the total model, for example, is the total mass of all the element

blocks.) Adagio also automatically gives mass property information for each element block.

In addition to the mass property information that is generated, Adagio gives you the option of

defining a structure that represents some combination of element blocks and then of calculating the

mass properties for this particular structure. If you wish to define a structure that is a combination

of some group of element blocks, you must use the MASS PROPERTIES command block. This

command block appears in the region scope.

For the total model, each element block, and any user-defined structure, Adagio reports the mass

and the center of mass in the global coordinate system. It also reports the moments and products

of inertia, as computed in the global coordinate system about the center of mass.

The MASS PROPERTIES command block contains two groups of commands—block set and struc-

ture. Each of these groups is basically independent of the other. Following are descriptions of the

two command groups.

5.4.1 Block Set Commands

The block set commands portion of the MASS PROPERTIES command block defines a set of

blocks for which mass properties are being requested, and can include some combination of the

following command lines:

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators for constructing

a set of blocks. See Section 6.1.1 for more information about the use of these command lines

for creating a set of blocks used by the command block. There must be at least one BLOCK or

INCLUDE ALL BLOCKS command line in the command block.

271

The REMOVE BLOCK command line allows you to delete blocks from the set specified in the BLOCK

and/or INCLUDE ALL BLOCKS command line(s) through the string list block_names. Typically,

you would use the REMOVE BLOCK command line with the INCLUDE ALL BLOCKS command

line. If you want to include all but a few of the element blocks, a combination of the REMOVE

BLOCK command line and INCLUDE ALL BLOCKS should minimize input information.

Suppose that only one element block, block_300, is specified on the BLOCK command line. Then

only the mass properties for that block will be calculated. If several element blocks are specified

on the BLOCK command line, then that collection of blocks will be treated as one entity, and the

mass properties for that single entity will be calculated. For example, if two element blocks,

block_150 and block_210, are specified on the BLOCK command line, the total mass for the

two element blocks will be reported as the total mass property.

5.4.2 Structure Command

The output for the mass properties will be identified by the command line:

STRUCTURE NAME = <string>structure_name

where the string structure_name is a user-defined name for the structure.

272

5.5 Element Death

BEGIN ELEMENT DEATH <string>death_name

#

block set commands

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE BLOCK = <string list>block_names

#

criterion commands

CRITERION IS GLOBAL VALUE OF

<string>var_name <|<=|=|>=|> <real>tolerance

MATERIAL CRITERION

= <string list>material_model_names [KILL WHEN

<integer>num_intg INTEGRATION POINTS REMAIN]

SUMMARY OUTPUT STEP INTERVAL = <integer>output_step_interval

SUMMARY OUTPUT TIME INTERVAL = <real>output_time_interval

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

#

cohesive zone setup commands

COHESIVE SECTION = <string>sect_name

COHESIVE MATERIAL = <string>mat_name

COHESIVE MODEL = <string>model_name

COHESIVE ZONE INITIALIZATION METHOD = <string>NONE|

ELEMENT STRESS AVG(NONE)

END [ELEMENT DEATH <string>death_name]

The ELEMENT DEATH command block is used to remove elements from an analysis. For example,

the command block can be used to remove elements that have fractured, that are no longer im-

portant to the analysis results.This command block is located within the ADAGIO REGION scope.

The name of the command block, death_name, is user-defined and can be referenced in other

commands to update boundary or contact conditions based on the death of elements creating new

exposed surfaces.

Any element in an element block or element blocks selected in the ELEMENT DEATH command

block is removed (killed) when one of the criteria specified in the ELEMENT DEATH command

block is satisfied by that element. When an element dies, it is removed permanently. Any number

of ELEMENT DEATH command blocks may exist within a region.

When an element is killed, the contribution of that element’s mass to the attached nodal mass is

removed from the attached nodes. If all of the elements attached to a node are killed, the mass for

the node and all associated nodal quantities will be set to zero. If all of the elements in a region are

killed, the analysis will terminate.

273

In Adagio elements may be killed based off a global variable or a material state variable and must

be used in conjunction with control failure in a multilevel solver block. Control failure is described

in Section 3.7. Element death will not be activated unless control failure is specified.

The ELEMENT DEATH command block contains five groups of commands—block set, criteria,

evaluation, miscellaneous, and cohesive zone setup. The command block must contain commands

from the block set and criteria groups. Command lines from the evaluation and miscellaneous

groups are optional, as are the cohesive zone commands.

Following are descriptions of the different command groups, an example of using the ELEMENT

DEATH command block, and some concluding remarks related to element death visualization.

5.5.1 Block Set Commands

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE BLOCK = <string list>block_names

The block set commands portion of the ELEMENT DEATH command block defines a set of

blocks for selecting the elements to be referenced. These command lines, taken collectively, con-

stitute a set of Boolean operators for constructing a set of blocks, as described in Section 6.1.1.

Element death must apply to a group of elements. There are two commands for selecting the

elements to be referenced: BLOCK and INCLUDE ALL BLOCKS. In the BLOCK command line, you

can list a series of blocks through the string list block_names. This command line may also be

repeated multiple times. The INCLUDE ALL BLOCKS command line adds all the element blocks

present in the region to the current element death definition. There must be at least one BLOCK or

INCLUDE ALL BLOCKS command line in the ELEMENT DEATH command block.

The REMOVE BLOCK command line allows you to delete blocks from the set specified in the BLOCK

and/or INCLUDE ALL BLOCKS command line(s) through the string list block_names. Typically,

you will use the REMOVE BLOCK command line with the INCLUDE ALL BLOCKS command line.

If you want to include all but a few of the element blocks, a combination of the REMOVE BLOCK

command line and INCLUDE ALL BLOCKS command line should minimize input information.

5.5.2 Criterion Commands

Both CRITERION IS GLOBAL and MATERIAL CRITERION can be specified within a single

ELEMENT DEATH command block. If multiple death criteria are specified for a given element,

it will be killed when the first of those criteria are met. In other words, element death with multiple

criteria is an OR condition rather than an AND condition.

5.5.2.1 Global Death Criterion

CRITERION IS GLOBAL VALUE OF

274

<string>var_name[(<integer>component_num)]

<|<=|=|>=|> <real>tolerance

Any global variable may be used in an element death criterion. Once the global criterion is reached,

all elements specified in the ELEMENT DEATH command block are killed. The variable name,

component number, and tolerance can be specified in the same manner as defined for the nodal or

element criterion command line.

The input parameters are described as follows:

- The string var_name gives the name of the global variable. See Section 8.9 for a listing of

the global variables.

- Parenthesis syntax may be used in the variable name to specify specific components of the

variable, see 8.1

- The specified variable, with an optional component specification if the variable has com-

ponents, may be compared to a given tolerance with one of five operators. The operator is

specified with the appropriate symbol for less than (<), less than or equal to (<=), equal to

(=), greater than or equal to (>=), or greater than (>). The given tolerance is specified with

the real value tolerance.

5.5.2.2 Material Death Criterion

MATERIAL CRITERION = <string list>material_model_names [KILL WHEN

<integer>num_intg INTEGRATION POINTS REMAIN]

Some material models have a failure criterion. When this failure criterion is satisfied within an

element, the element has fractured or disintegrated. The material models reduce the stress in

these fractured or disintegrated elements to zero. The MATERIAL CRITERION command line can

be used to remove these fractured or disintegrated elements from an analysis. Removal of the

fractured elements can speed computations, enhance visualization, and prevent spurious inversion

of these elements that may stop the analysis.

The material models currently supported for use with the MATERIAL CRITERION command line

are:

- ELASTIC_FRACTURE (Solid only, see Section 4.2.4)

- DUCTILE_FRACTURE (Solid only, see Section 4.2.7)

- ML_EP_FAIL (Solid and Shell, see Section 4.2.9)

Element death will kill an element based on a material criterion when the material model indicates

that the element is failed and can carry no more load. For a single integration point element, this

occurs when the one integration point in the element fails. For elements with multiple integration

275

points, the default behavior is for the element to be killed when all but one of the integration points

has failed. This behavior is the default because for multi-integration point elements, particularly

shells, if there is only a single integration point left, the element is severely under-integrated. The

final integration point will generally not attract more load and will never fail. This default behavior

can be changed by using the optional KILL WHEN num_intg INTEGRATION POINTS REMAIN

command. In this command, num_intg specifies the number of remaining integration points when

the element is to be killed.

Suppose you have an element block named part1_ss304 that references a material named

SS304. This material, SS304, uses the DUCTILE_FRACTURE material model (see Section 4.2.7).

You also have an element block named ring5_al6061 that references a material named al6061.

This material, al6061, uses the ML_EP_FAIL material model (see Section 4.2.9). If you have an

ELEMENT DEATH command block with the command line:

BLOCK = part1_ss304 ring5_al6061

and the command line:

MATERIAL CRITERION = DUCTILE_FRACTURE ML_EP_FAIL

then any element in part1_ss304 that fails according to the material model DUCTILE_FRACTURE

(in material SS304) and any element in ring5_al6061 that fails according to the material model

ML_EP_FAIL (in material al6061) will be killed by element death.

5.5.3 Miscellaneous Option Commands

The command lines listed below need not be present in the ELEMENT DEATH command block

unless the conditions addressed by each call for their inclusion.

5.5.3.1 Summary Output Commands

At the end of a run, a summary of all element death blocks is output to the log file. The SUMMARY

OUTPUT STEP INTERVAL or SUMMARY OUTPUT STEP INTERVAL commands can be used to

request that the summary be output to the log file at regular intervals during the run. The SUMMARY

OUTPUT TIME INTERVAL command results in the summary being printed every output_step_

interval steps, while the SUMMARY OUTPUT TIME INTERVAL results in the summary being

printed once every output_time_interval time units. These two commands can be supplied

individually, together or not at all. If neither are used, the summary is printed only at the end of

execution.

It should be noted that this command applies to all element death blocks. If these commands

appear in multiple element death blocks, the values specified in the last instance of each of these

commands prevails.

5.5.3.2 Death Steps

DEATH STEPS = <integer>death_steps(1)

276

If the DEATH STEPS command line is used and the value for death_steps is set to some value

greater than 1, the stress in a killed element will not be set to 0 until the prescribed number of steps

has occurred. The stress in the killed element will decrease (if it is positive) to 0 in a linear fashion

over the prescribed number of steps; the stress in the killed element will increase (if it is negative)

to 0 over the prescribed number of steps. If the stress in a killed element is set to 0 over a single

time step, the resulting change in stress can sometimes cause instabilities due to the sudden release

of energy. However, elimination of the stress over an excessive number of load steps can make it

appear as if the element is present long after it has been killed. The default number of steps, as

provided in the integer value death_steps, is 1.

The value you select for death_steps will depend on your analysis. A small number such as 3

or 5 may be sufficient to prevent instabilities for most cases. However, in some cases it may be

necessary to use a value for death_steps of 10 or larger. The loads, material models, and model

complexity in your analysis will impact the value of death_steps.

5.5.3.3 Death Method

DEATH METHOD = <string>DEACTIVATE ELEMENT|DEACTIVATE NODAL MPCS|

DISCONNECT ELEMENT|INSERT COHESIVE ZONES(DEACTIVATE ELEMENT)

The DEATH METHOD command specifies what happens when an element meets the death crite-

rion. The following strings can be used as arguments to this command: DEACTIVATE ELEMENT,

DEACTIVATE NODAL MPCS, DISCONNECT ELEMENT, and INSERT COHESIVE ZONES. The be-

havior controlled by these options is described below.

• With the default option, DEACTIVATE ELEMENT, the element is deactivated, effectively re-

moving it from the mesh.

• The DEACTIVATE NODAL MPCS option removes the nodes of a killed element from any

multi-point constraints. This only has an effect if the element has nodes that are in multi-

point constraints. The multi-point constraint deactivation option can be used to break an

element away from the mesh, allowing it to move independently. It can also be used to

activate cohesive zones.

• The DISCONNECT ELEMENT option disconnects the element from the mesh, allowing the

element to move independently. The disconnected element will no longer share any nodes

with neighboring elements, and will only interact with the remainder of the mesh through

contact.

• The INSERT COHESIVE ZONE option disconnects the element from the mesh and places

a cohesive zone between the element and each face-adjacent neighbor. If this option is

used, the commands COHESIVE SECTION, COHESIVE MATERIAL, and COHESIVE MODEL

must be used to define the type of cohesive zone to be inserted, and are documented in

Section 5.5.4.

277

When using element disconnection, it is necessary to use at least some hourglass stiffness and/or

viscosity to prevent large deformations of the disconnected elements in zero energy modes. In

addition, it is recommended that a secondary shape-based criterion be used in a separate element

death command block to fully remove the disconnected elements if they begin to deform too much.

The following example of an additional element death block to be used together with element

disconnection shows recommended shape criteria:

begin element death

include all blocks

#Kill an element if it has negative volume

death on inversion = on

#Kill an element if it has become locally inverted (i.e., concave)

criterion is element value of nodal_jacobian_ratio <= 0.0

#Kill an element that is becoming very large (shells only)

criterion is element value of perimeter_ratio > 10.0

end

5.5.3.4 Active Periods

The following command lines can optionally be used in the ELEMENT DEATH command block:

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

These command lines determine when element death is active. See Section 2.5 for more informa-

tion about these optional command lines.

5.5.4 Cohesive Zone Setup Commands

The commands listed here are all related to adaptive insertion or activation of cohesive zones by

element death.

COHESIVE SECTION = <string>sect_name

COHESIVE MATERIAL = <string>mat_name

COHESIVE MODEL = <string>model_name

COHESIVE ZONE INITIALIZATION METHOD = <string>NONE|

ELEMENT STRESS AVG(NONE)

The first three of these commands are only applicable to adaptive insertion of cohesive elements

by element death. They are used together to fully define the properties of the elements that are

adaptively inserted.

The COHESIVE SECTION command is used to specify the name of a section used to define the

section properties of the cohesive zone elements to be adaptively inserted. See Section 5.2.2 for a

description of cohesive sections.

278

The COHESIVE MATERIAL command is used to specify the name of the material model to be

used for the newly-created cohesive elements. This material model name is the user-provide name

for the cohesive zone material provided by the parameter mat_name in the BEGIN PROPERTY

SPECIFICATION FOR MATERIAL mat_name command block. The material models available

for cohesive zones are documented in Section 4.3.

The COHESIVE MODEL command is used to select the material model to be used for the newly-

created cohesive elements. This references the name of the material model model_name defined

in a BEGIN PARAMETERS FOR MODEL model_name block. The material models available for

cohesive zones are documented in Section 4.3.

The COHESIVE ZONE INITIALIZATION METHOD command controls the initialization of co-

hesive zones that are dynamically inserted or activated through element death. This command

should only be used if there are cohesive zones between elements and all nodes of those ele-

ments are initially attached together via multi-point constraints, or the INSERT COHESIVE ZONES

death method is being used. When element death is used to deactivate the constraints or

insert a cohesive element (with the DEATH METHOD = DEACTIVATE NODAL MPCS option or

DEATH METHOD = INSERT COHESIVE ZONES option), the exposed cohesive zone can be given

an initial state. The options are to either do nothing (NONE) or to initialize the tractions in the

cohesive element based on the stresses in the two elements on either side of the cohesive zone

(ELEMENT STRESS AVG). How the cohesive zone uses the initial traction will depend on the

cohesive surface material model used.

5.5.5 Element Death Visualization

When an element dies, information about this element will still be sent, along with information for

all other elements, to the Exodus II results file. (Chapter 8 describes the output of element variables

to the results file.) The death status of the elements may be output to the results file by requesting

element variable output for the element variable DEATH_STATUS. Including the command line

ELEMENT DEATH_STATUS as death_var

in a RESULTS OUTPUT command block (Chapter 8) will output this element variable with the

name death_var in the results file.

The convention for DEATH_STATUS is as follows: An element with a value of 1.0 for DEATH_

STATUS is a living element. An element with a value of 0.0 for DEATH_STATUS is a dead element.

A value less than 0.0 indicates that the element was killed due to a code related issue (e.g. an

unsupported geometry issue related to ACME). A value between 1.0 and 0.0 indicates an element

in the process of dying. A dying element has its material stress scaled down over a number of

time steps. The current scaling factor for an element is given by DEATH_STATUS. Whether or

not an element can have a value for DEATH_STATUS other than 0.0 or 1.0 will depend on whether

or not you have used the DEATH STEPS option in the ELEMENT DEATH command block. If the

number of steps over which death occurs is greater than 1, then DEATH_STATUS can be some value

between 0.0 and 1.0.

If DEATH_STATUS is written to a results file, and the results file is used in a visualization program

279

to examine the mesh for the model, it is possible to use DEATH_STATUS to exclude killed elements

from any view of the model. A subset of the mesh showing just the living elements can be created

by visualizing only those elements for which DEATH_STATUS = 1.0. The procedure for visualizing

results in this way varies for different postprocessing tools.

When an analysis is using element death the log file contains a table of marker values that will

be applied to dead elements. The marker values allow determining which elements where killed

and by which criterion. The marker variables are stored in the element variable KILLED_BY_

CRITERION and are available for output on the mesh results file. Additionally, a global count of

how many elements were killed by each criterion is printed at the end of the run log file.

280

5.6 Explicitly Computing Derived Quantities

BEGIN DERIVED OUTPUT

COMPUTE AND STORE VARIABLE =

<string>derived_quantity_name

END DERIVED OUTPUT

The above command block is used to explicitly compute and store a derived quantity into an in-

ternal field. This is useful if the field is needed by an outside capability such as a transfer or error

estimation.

For example, to use a derived quantity in a transfer, you must use a DERIVED OUTPUT command

block. To transfer the von Mises stress norm, you would use the following command block:

BEGIN DERIVED OUTPUT

COMPUTE AND STORE VARIABLE = von_mises

END DERIVED OUTPUT

Tables 8.10 through 8.13 in Section 8 list element variables available for different types of ele-

ments. Variables that are only computed at user request are designated with a yes in the Derived

column of these tables. These are the quanities that must be listed in a BEGIN DERIVED OUTPUT

command block if they are to be transferred during a coupled analysis.

5.7 References

1. Taylor, L. M., and D. P. Flanagan. Pronto3D: A Three-Dimensional Transient Solid Dy-

namics Program, SAND87-1912. Albuquerque, NM: Sandia National Laboratories, March

1989. pdf.

2. Rashid, M. M. “Incremental Kinematics for Finite Element Applications.” International

Journal for Numerical Methods in Engineering 36 (1993): 3937–3956. doi.

3. Dohrman, C. R., M. W. Heinstein, J. Jung, S. W. Key, and W. R. Witkowski. “Node-Based

Uniform Strain Elements for Three-Node Triangular and Four-Node Tetrahedral Meshes.”

International Journal for Numerical Methods in Engineering 47 (2000): 1549–1568. doi.

4. Key, S. W., M. W. Heinstein, C. M. Stone, F. J. Mello, M. L. Blanford, and K. G. Budge.

“A Suitable Low-Order, Tetrahedral Finite Element for Solids.” International Journal for

Numerical Methods in Engineering 44 (1999) 1785–1805. doi.

5. Key, S. W., and C. C. Hoff. “An Improved Constant Membrane and Bending Stress Shell

Element for Explicit Transient Dynamics.” Computer Methods in Applied Mechanics and

Engineering 124, no. 1–2 (1995): 33–47. doi.

6. Laursen, T. A., S. W. Attaway, and R. I. Zadoks. SEACAS Theory Manuals: Part III. Fi-

nite Element Analysis in Nonlinear Solid Mechanics, SAND98-1760/3. Albuquerque, NM:

Sandia National Laboratories, 1999. pdf.

281

http://infoserve.sandia.gov/sand_doc/1987/871912.pdf
http://dx.doi.org/10.1002/nme.1620362302
http://dx.doi.org/10.1002/(SICI)1097-0207(20000330)47:9<1549::AID-NME842>3.0.CO;2-K
http://dx.doi.org/10.1002/(SICI)1097-0207(19990430)44:12<1785::AID-NME561>3.0.CO;2-5
http://dx.doi.org/10.1016/0045-7825(95)00785-Y
http://infoserve.sandia.gov/sand_doc/1998/981760-3.pdf

7. Flanagan, D. P., and T. Belytschko. “A Uniform Strain Hexahedron and Quadrilateral with

Orthogonal Hourglass Control.” International Journal for Numerical Methods in Engineer-

ing 17 (1981): 679–706. doi.

8. Swegle, J. W. SIERRA: PRESTO Theory Documentation: Energy Dependent Materials Ver-

sion 1.0. Albuquerque, NM: Sandia National Laboratories, October 2001.

9. Scherzinger, W. M., and D. C. Hammerand. Constitutive Models in LAME, SAND2007-

5873. Albuquerque, NM: Sandia National Laboratories, September 2007. pdf.

10. Swegle, J. W., S. W. Attaway, M. W. Heinstein, F. J. Mello, and D. L. Hicks. An Analysis

of Smoothed Particle Hydrodynamics, SAND93-2513. Albuquerque, NM: Sandia National

Laboratories, March 1994. pdf.

11. Sjaardema, G. D. Overview of the Sandia National Laboratories Engineering Analysis Code

Access System, SAND92-2292. Albuquerque, NM: Sandia National Laboratories, January

1993. pdf.

12. Brown, K. H., R. M. Summers, M. W. Glass, A. S. Gullerud, M. W. Heinstein, and R. E.

Jones. ACME: Algorithms for Contact in a Multiphysics Environment, API Version, 2.2,

SAND2004-5486. Albuquerque, NM: Sandia National Laboratories, October 2001. pdf.

13. Karen Devine, Erik Boman, Robert Heapby, Bruce Hendrickson, Courtenay Vaughan,

"Zoltan Data Management Service for Parallel Dynamic Applications." Computing in Sci-

ence and Engineering 4 (2002): 90–97. doi. See also ZOLTAN web site. link.

14. Monaghan, J. “SPH without a tensile instability.” Journal of Computational Physics 12,

(2000): 622. doi.

15. Q. Yang, A. Mota, M. Ortiz. “A class of variational strain-localization finite elements.”

International Journal for Numerical Methods in Engineering, (2005) 62:1013-1037. doi.

282

http://dx.doi.org/10.1002/nme.1620170504
http://infoserve.sandia.gov/sand_doc/2007/075873.pdf
http://infoserve.sandia.gov/sand_doc/1993/932513.pdf
http://infoserve.sandia.gov/sand_doc/1992/922292.pdf
http://infoserve.sandia.gov/sand_doc/2004/045486.pdf
http://doi.ieeecomputersociety.org/10.1109/5992.988653
http://www.cs.sandia.gov/zoltan/
http://dx.doi.org/10.1006/jcph.2000.6439
http://dx.doi.org/10.1002/nme.1199

Chapter 6

Boundary Conditions and Initial Conditions

Adagio offers a variety of options for defining boundary and initial conditions. Typically, boundary

and initial conditions are defined on some subset of mesh entities (node, element face, element)

defining a model. Adagio offers a flexible means to define subsets of mesh entities. Section 6.1.1

describes commands that will let you define some subset of a mesh entity using a collection of

commands that constitute a set of Boolean operators.

The remaining parts of this chapter discuss the following functionality:

- Section 6.2 presents methods for setting the initial values of variables in Adagio. Adagio

has the flexibility to set a complex initial state for some variable such as nodal velocity or

element stress.

- Kinematic boundary conditions typical of those you would expect in a solid mechanics code

(fixed displacement, prescribed acceleration, etc.) are options in Adagio and described in

Section 6.3. Most of these boundary conditions let you specify a time history using a func-

tion, a user subroutine, or by reading values from a mesh file.

- Section 6.4 documents a number of initial velocity options available in Adagio.

- Force boundary conditions typical of those you would expect in a solid mechanics code

(prescribed force, traction, etc.) are options in Adagio and described in Section 6.5. Most

of these force boundary conditions let you specify a time history using a function or a user

subroutine.

- Section 6.6 discusses the gravity load option. A gravity load is a body force boundary

condition.

- Section 6.7 details a number of options available for describing a temperature field in Adagio.

- Section 6.8 details the options available for describing a pore pressure field.

- Section 6.10 describes a number of specialized boundary conditions.

283

6.1 General Boundary Condition Concepts

There are general principles that apply to all of the available types of boundary conditions. To apply

a boundary condition, a set of mesh entities and the magnitude and/or direction in which it is to

be applied must be specified. Adagio provides several methods for both specifying the set of mesh

entities and for prescribing how the boundary condition is to be applied. The general concepts on

how this is done are applicable to all of the boundary condition types, and are described in the

following sections.

6.1.1 Mesh-Entity Assignment Commands

A number of standard command lines exist to define a set of mesh entities (node, element face,

element) associated with some type of boundary, initial, or load condition. All these command

lines exist within the command blocks for the various prescribed conditions, which in turn exist

within the region scope. These command lines, taken collectively, constitute a set of Boolean

operators for constructing sets of mesh entities.

The first set of command lines we will consider is as follows:

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

In the above command lines, the string list nodelist_names is used to represent one or more

node sets as discussed in Section 1.5. A node set is referenced as nodelist_id, where id is some

integer. For example, suppose you have three node lists in your model: 10, 23, and 105. If you

want to combine all these node lists so that they form one set of nodes for, say, your boundary

condition or initial condition, then you would use the command line:

NODE SET = nodelist_10 nodelist_23 nodelist_105

This convention applies as well to any surface-related command line that uses the string list

surface_names or any block-related command line that uses the string list block_names.

The NODE SET command line associates a set of nodes with an initial, boundary, or load condi-

tion. A condition may be applied to multiple node sets by putting multiple node set names on the

command line or by repeating the command line multiple times.

The SURFACE command line associates a set of element faces or their attached nodes with a bound-

ary, initial, or load condition. A condition may be applied to multiple surfaces by putting multiple

surface names on the command line or by repeating the command line multiple times. For exam-

ple, suppose we wish to use the fixed displacement kinematic boundary condition. Although this

is a nodal boundary condition (the condition is applied to individual nodes), a SURFACE command

line can be used to establish the set of nodes. If the command line

284

SURFACE = surface_101

appears in a fixed displacement boundary condition, then all the nodes associated with surface 101

will be associated with the boundary condition.

The BLOCK command line associates a set of elements and its nodes and faces with a boundary

condition. A boundary condition may be applied to multiple blocks by putting multiple block

names on the command line or by repeating the command line multiple times.

The BLOCK must be used for kinematic boundary conditions on rigid bodies. If a block has been

defined as a rigid body, the specified kinematic condition will be applied to the rigid body reference

node.

For example, suppose we wish to use the fixed displacement kinematic boundary condition as in

the previous example. If the command line

BLOCK = block_50

appears in a fixed displacement kinematic boundary condition, then all the nodes associated with

block 50 will be associated with the boundary condition.

The INCLUDE ALL BLOCKS command line associates all blocks and hence all elements and nodes

in the model with a boundary, initial, or load condition. The block command lines associated with

boundary conditions, initial conditions, and gravity will NOT generate surfaces.

Any combination of the above command lines can be used to create a union of mesh entities.

Suppose, for example, that the command lines

NODE SET = nodelist_2

SURFACE = surface_3

appear in a FIXED DISPLACEMENT command block for a kinematic boundary condition. The set

of nodes associated with the boundary condition will be the union of the set of nodes associated

with surface 3 and the set of nodes associated with node set 2.

When a union of mesh entities is created by using two or more of the above command lines, a node

or element face may appear in more than one node set, surface or block. However, the prescribed

condition is applied to each node or face only once. For example, node 67 may be a part of nodelist

2 and surface 3 but the boundary condition will only be applied to node 67 once.

The set of mesh entities associated with a boundary, initial, or load condition can be edited (mesh

entities can be deleted from the set) by using the following command lines:

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

285

The REMOVE NODE SET command line deletes the nodes in the specified node set from the set of

nodes used by the condition.

The REMOVE SURFACE command line deletes a set of element faces and their associated nodes

from the set of element faces used by the prescribed condition.

The REMOVE BLOCK command line deletes a set of elements and their associated nodes from the

set of elements used by the prescribed condition.

6.1.2 Methods for Specifying Boundary Conditions

There are three main methods which can be used to prescribe most types of boundary conditions

available in Adagio.

• The boundary condition can be prescribed using commands in the input file. These com-

mands are categorized as “specification commands” in this document. Depending on the

type of the boundary condition, it is be necessary to prescribe its direction and/or magnitude.

Boundary conditions can be specified this way when a set of mesh entities is to experience a

similar condition with a time variation that can be expressed by a function. One of the fol-

lowing commands is used to specify the direction of the boundary condition: COMPONENT,

DIRECTION, CYLINDRICAL AXIS, or RADIAL AXIS. The magnitude is defined using one

of MAGNITUDE, FUNCTION or ANGULAR VELOCITY. These commands are used in various

combinations depending on the type of the boundary condition. The details of how to use

them are provided in the descriptions of the various boundary condition types.

• If the nature of the boundary condition is such its variation in time and space can not be

described easily by the combination of a function and a direction, it may be necessary to

use a user-defined subroutine. User subroutines provide a very general capability to define

how kinematic or force boundary conditions are applied. The use of user-defined subroutines

does increase the complexity of defining the model, however. The user must write and debug

the subroutine and compile and link it in with Adagio. Because of the added complexity, user

subroutines should only be used if the needed capability is not provided by the other methods

of prescribing boundary conditions.

• For some types of boundary conditions, the values of the field to be prescribed can be read

in from an existing output database. This is often used as a method to transfer results from

one analysis code to another. One of the common uses for this capability is to compute

temperatures using a thermal code, and then transfer the temperature fields to Adagio to

study combined mechanical and thermal effects. This capability can be used either to read

in initial values or to read in a series of values that vary over time.

In the following sections describing specific types of boundary conditions, the commands are

grouped according to these three categories.

286

6.2 Initial Variable Assignment

BEGIN INITIAL CONDITION

#

mesh-entity set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

variable identification commands

INITIALIZE VARIABLE NAME = <string>var_name

VARIABLE TYPE = NODE|EDGE|FACE|ELEMENT|GLOBAL

#

specification command

MAGNITUDE = <real list>initial_values

#

probability distribution commands

DISTRIBUTION = WEIBULL PARAMETERS = <real list>dist_values

SEED = <integer>dist_seed

DISTRIBUTION REFERENCE = NODE|EDGE|FACE|ELEMENT|GLOBAL

<string>size_var_name VALUE = <real>size_ref_val

#

external database commands

READ VARIABLE = <string>var_name

COPY VARIABLE = <string>var_name [FROM MODEL <string>model_name]

TIME = <real>time

#

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name |

SURFACE SUBROUTINE = <string>subroutine_name |

ELEMENT BLOCK SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

additional command

SCALE FACTOR = <real>scale_factor(1.0)

END [INITIAL CONDITION]

287

Adagio supports a general initialization procedure for setting the value of any variable. This proce-

dure can be used to set material state variables, shell thickness, initial stress, etc. The initialization

is performed both before and after the element and material model initialization. This allows the

elements and material models to compute other initial variables based on variables specified by the

user and also ensures that the variables specified by the user are not overwritten by the elements

and material models. However, there is minimal checking in Adagioto ensure that the changes

made yield a consistent system. There is also no guarantee that the changes will not be overwrit-

ten or misinterpreted by some other internal routine depending on what variable is being changed.

Thus, caution is advised when using this capability.

The INITIAL CONDITION command block, which appears in the region scope, is used to select

a method and set values for initializing a variable. The command block specifies the initial value

of a global variable or a variable associated with a set of mesh entities, i.e., nodes, edges, faces, or

elements. The user has three options for setting initial values: with a constant magnitude, with an

input mesh variable, or by a user subroutine. Only one of these three options can be specified in

the command block.

The command block contains five groups of commands—mesh-entity set, variable identification,

magnitude, input mesh variable, and user subroutine. In addition to the command lines in the five

groups, there is one additional command line: SCALE FACTOR. Following are descriptions of the

different command groups and the SCALE FACTOR command line.

6.2.1 Mesh-Entity Set Commands

The mesh-entity set commands portion of the INITIAL CONDITION command block spec-

ifies the nodes, element faces, or elements associated with the variable to be initialized. This

portion of the command block can include some combination of the following command lines:

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators for constructing a

set of nodes, element faces, or elements. See Section 6.1.1 for more information about the use of

these command lines for mesh entities. There must be at least one NODE SET, SURFACE, BLOCK,

or INCLUDE ALL BLOCKS command line in the command block.

6.2.2 Variable Identification Commands

Any variable used in the INITIAL CONDITION command block must exist in Adagio. The vari-

able can be any currently defined variable in Adagio or any user-defined variable created with the

288

USER VARIABLE command block (see Section 10.2.4).

There are two command lines that identify the variable:

INITIALIZE VARIABLE NAME = <string>var_name

VARIABLE TYPE = [NODE|EDGE|FACE|ELEMENT|GLOBAL]

The INITIALIZE VARIABLE NAME command line gives the name of the variable for which initial

values are being assigned. As mentioned, the string var_name must be some variable known to

Adagio; it cannot be an arbitrary user-selected name.

The VARIABLE TYPE command line provides additional information about the variable being ini-

tialized. The options NODE, EDGE, FACE, ELEMENT, and GLOBAL on the command line indicate

whether the variable is, respectively, a nodal, edge, face, element, or global quantity. One of these

options must appear in the VARIABLE TYPE command line.

Both of these command lines are required regardless of the option selected to set values for the

variable.

6.2.3 Specification Command

If the constant magnitude command is used, one or more initial values are specified directly in the

command block. This is done using the following command line:

MAGNITUDE = <real list>initial_values

The initial_values specified on the MAGNITUDE command line will set the values for the

variable given by var_name in the INITIALIZE VARIABLE NAME command line. The number

of values is dependent on the type of the variable specified in the INITIALIZE VARIABLE NAME

command line. For example, if the user wanted to initialize the velocity at a set of nodes, three

quantities would have to be specified since the velocity at a node is a vector quantity. If the user

wanted to initialize the stress tensor for a set of uniform-gradient, eight-node hexahedral elements,

six quantities would have to be specified since the stress tensor for this element type is described

with six values.

6.2.4 Probability Distribution Commands

The field to be initialized can optionally be populated with random numbers generated to conform

to a specified probability distribution function. This is accomplished by including the following

command:

DISTRIBUTION = WEIBULL PARAMETERS = <real list>dist_values

SEED = <integer>dist_seed

289

Currently, the Weibull distribution is the only supported probability distribution, but this command

is intended to eventually support other types of probability distributions. The parameters that

describe the probability distribution, dist_values, are provided as a list of real numbers.

There are two parameters to the Weibull distribution: the shape parameter, k, and the scale pa-

rameter λ. In this implementation, only one parameter, k is input in dist_values. The scale

parameter λ is hardcoded to be 1.0.

The DISTRIBUTION command must be used in conjunction with the MAGNITUDE command. The

specified magnitude is applied as a scale factor to the randomly generated numbers. Thus, the scale

parameter for the Weibull distribution is specified through the MAGNITUDE command.

If a field is populated with randomly generated values conforming to the Weibull distribution, the

realizations of random values at each point can be scaled to account for the size of the mesh at that

location. This is accomplished by including the following command:

DISTRIBUTION REFERENCE = NODE|EDGE|FACE|ELEMENT|GLOBAL

<string>size_var_name VALUE = <real>size_ref_value

In this command, size_var_name is the name of a variable, which can be of either nodal, edge,

face, or element, or global type, and which should represent the size of the mesh at each point.

The element volume field is a good example of such a variable. The reference value: size_ref_

value, is a reference size for which no scaling is performed.

The randomly generated value for the variable is multiplied by the factor α, which is computed as:

α =

(

vi

vre f

)− 1
k

(6.1)

where vi is the value of a field variable specified in size_var_name at the current point i, vre f is

the reference size, size_ref_value, and k is the Weibull shape parameter (also referred to as the

Weibull modulus). The result of this scaling is that realizations of the random variable on larger

elements are scaled down and those on smaller elements are scaled up. This accounts for the fact

that a defect is more likely to be found within the volume represented by an element as the size of

that element increases.

6.2.5 External Mesh Database Commands

If the external database option is used, the initial values for a variable are read from an external

mesh database. As an example, suppose the mesh file contains a set of element temperatures.

These temperature values (which can vary for each element) can be used to initialize a temperature

value associated with each element.

The values are read from a finite element model defined via the FINITE ELEMENT MODEL com-

mand block described in Section 5.1. The finite element model can either be the model used by

the region for its mesh definition as specified with the USE FINITE ELEMENT MODEL command

(see Section 2.3), or it can be a different (but compatible) model. The following command lines

control the use of an external mesh database to prescribe initial conditions:

290

READ VARIABLE = <string>var_name

COPY VARIABLE = <string>var_name [FROM MODEL <string>model_name]

TIME = <real>time

The READ VARIABLE = <string>var_name command is used to read the variable from the

region’s finite element mesh database. The var_name string specifies the name of the vari-

able as it appears on the mesh database. The number of values associated with the variable

in the mesh file must be the same number associated with the variable name specified in the

INITIALIZE VARIABLE NAME command line. For example, if the variable specified by the

INITIALIZE VARIABLE NAME has a single value, then the variable specified in the mesh file

must also have a single value.

If the analysis will cause topology modifications due to the use of load balancing, remeshing, or

other techniques that can result in nodes and/or elements being moved among processors, then

the COPY VARIABLE command should be used. This command specifies that the variable named

var_name will be used to specify the initial conditions. The FROM MODEL <string>model_

name portion of the command is optional. If it is specified, the results are read from the mesh

database named model_name. Otherwise, the region’s finite element mesh database will be used

as the model.

The primary difference between the behavior of the COPY VARIABLE command and the READ

VARIABLE command is that the copy command handles topology modifications caused by load

balancing and remeshing, which can move nodes and elements to different processors. The

COPY VARIABLE command will correctly match the nodes from the external database to the cor-

responding nodes in the analysis and communicate the data between processors if needed. Note

that the nodes in the two finite element models must match spatially, but they can be distributed on

different processors.

The variable name used on the mesh file can be arbitrary. The name can be identical to or different

from the variable name specified on the INITIALIZE VARIABLE NAME command line.

The field to be read may be specified at an arbitrary number of different times on the mesh file. The

default behavior is to use the value of the variable at the initial time in the analysis to prescribe the

initial condition. The time history is interpolated as needed for an initial analysis time that does not

correspond exactly to a time on the mesh file. The TIME command line can optionally be used to

select a specific time to initialize a variable. If the specified time on the TIME command line does

not correspond exactly to a time on the mesh file, the data on the mesh file will be interpolated as

needed.

6.2.6 User Subroutine Commands

If the user subroutine option is used, the initial values will be calculated by a subroutine that is

written by the user explicitly for this purpose. The subroutine will be called by Adagio at the

appropriate time to perform the calculations.

Following are the command lines related to the user subroutine option:

NODE SET SUBROUTINE = <string>subroutine_name |

291

SURFACE SUBROUTINE = <string>subroutine_name |

ELEMENT BLOCK SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

Only one of the first three command lines listed above can be specified in the command block.

The particular command line selected depends on the mesh-entity type of the variable being ini-

tialized. For example, variables associated with nodes would be initialized if you are using the

NODE SET SUBROUTINE command line, variables associated with faces if you are using the

SURFACE SUBROUTINE command line, and variables associated with elements if you are using

the ELEMENT BLOCK SUBROUTINE command line. The string subroutine_name is the name

of a FORTRAN subroutine that is written by the user.

Following the selected subroutine command line are other command lines that may be used to

implement the user subroutine option. These command lines are described in Section 10.2.2 and

consist of SUBROUTINE DEBUGGING OFF, SUBROUTINE DEBUGGING ON, SUBROUTINE REAL

PARAMETER, SUBROUTINE INTEGER PARAMETER, and SUBROUTINE STRING PARAMETER.

Examples of using these command lines are provided throughout Chapter 10.

The application of user subroutines for variable initialization is essentially the same as the ap-

plication of user subroutines in general. See Section 6.3.9 and Chapter 10 for more details on

implementing the user subroutine option.

When the user subroutine option is used for variable initialization, the user subroutine is called

only once. Also, when a user subroutine is being used, the returned value is the new (initial)

variable value at each mesh entity, and the flags array is ignored.

6.2.7 Additional Command

This command line provides an additional option for the INITIAL CONDITION command block:

SCALE FACTOR = <real>scale_factor(1.0)

Any initial value can be scaled by use of the SCALE FACTOR command line. An initial value

generated by any one of the three initial-value-setting options in this command block (i.e., constant

magnitude, input mesh, or user subroutine) will be scaled by the real value scale_factor.

292

6.3 Kinematic Boundary Conditions

The various kinematic boundary conditions available in Adagio are described in this section. The

kinematic boundary conditions are nested inside the region scope.

Kinematic constraints can potentially be in conflict with other constraints. Refer to Appendix D

for information on how conflicting constraints are handled.

6.3.1 Fixed Displacement Components

BEGIN FIXED DISPLACEMENT

#

node set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

specification commands

COMPONENT = <string>X/Y/Z | COMPONENTS = <string>X/Y/Z

#

additional commands

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [FIXED DISPLACEMENT]

The FIXED DISPLACEMENT command block fixes displacement components (X, Y, Z, or some

combination thereof) for a set of nodes. This command block contains two groups of commands—

node set and component. Each of these command groups is basically independent of the other.

In addition to the command lines in the two command groups, there are two additional command

lines: ACTIVE PERIODS and INACTIVE PERIODS. These are used to activate or deactivate this

kinematic boundary condition for certain time periods.

For rigid bodies, any kinematic boundary condition is applied directly to the rigid body reference

node. The kinematics for the nodes attached to the rigid body are applied via the rigid body con-

straint conditions. Since rigid bodies are defined using element blocks, only the BLOCK command

may be used to specify fixed displacement conditions on rigid bodies.

Following are descriptions of the different command groups.

293

6.3.1.1 Node Set Commands

The node set commands portion of the FIXED DISPLACEMENT command block specifies the

nodes associated with the boundary condition. This portion of the command block can include

some combination of the following command lines:

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators for constructing a

set of nodes. See Section 6.1.1 for more information about the use of these command lines for

creating a set of nodes used by the boundary condition. There must be at least one NODE SET,

SURFACE, BLOCK, or INCLUDE ALL BLOCKS command line in the command block.

6.3.1.2 Specification Commands

There are two component specification commands available in the FIXED DISPLACEMENT com-

mand block:

COMPONENT = X/Y/Z | COMPONENTS = X/Y/Z

The displacement components that are to be fixed can be specified with either the COMPONENT

command line or the COMPONENTS command line. There can be only one COMPONENT command

line or one COMPONENTS command line in the command block. The user can specify any combi-

nation of the components to be fixed, as in X, Z, X Z, Y X, etc.

6.3.1.3 Additional Commands

The ACTIVE PERIODS and INACTIVE PERIODS command lines can optionally appear in the

FIXED DISPLACEMENT command block:

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

These command lines determine when the boundary condition is active. See Section 2.5 for more

information about these optional command lines.

294

6.3.2 Prescribed Displacement

BEGIN PRESCRIBED DISPLACEMENT

#

node set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

specification commands

DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z |

CYLINDRICAL AXIS = <string>defined_axis |

RADIAL AXIS = <string>defined_axis

FUNCTION = <string>function_name

#

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

external database commands

READ VARIABLE = <string>var_name

COPY VARIABLE = <string>var_name [FROM MODEL <string>model_name]

TIME = <real>time

#

additional commands

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [PRESCRIBED DISPLACEMENT]

The PRESCRIBED DISPLACEMENT command block prescribes a displacement field for a given

set of nodes. The displacement field associates a vector giving the magnitude and direction of the

displacement with each node in the set of nodes. The displacement field may vary over time and

space. If the displacement field has only a time-varying magnitude and uses one of four methods

for setting direction, the specification commands in the above command block can be used to

specify the displacement field. If the displacement field is more complex, a user subroutine is

295

used to specify the displacement field. The displacement field can also be read from an external

mesh database. In a given boundary condition command block, commands from only one of

the command groups (specification commands, user subroutine commands, or external database

commands) may be used.

For rigid bodies, any kinematic boundary condition is applied directly to the rigid body reference

node. The kinematics for the mesh nodes attached to the rigid body are applied via the rigid

body constraint conditions. Since rigid bodies are defined using element blocks, only the BLOCK

command may be used to specify prescribed displacement conditions on rigid bodies.

The PRESCRIBED DISPLACEMENT command block contains four groups of commands—node

set, function, user subroutine, and external database. Each of these command groups is basically

independent of the others. In addition to the command lines in the four command groups, there are

three additional command lines: SCALE FACTOR, ACTIVE PERIODS, and INACTIVE PERIODS.

The SCALE FACTOR command line can be used in conjunction with the specification commands

the user subroutine commands, or the external database command. The ACTIVE PERIODS and

INACTIVE PERIODS command lines are used to activate or deactivate this kinematic boundary

condition for certain time periods. Following are descriptions of the different command groups

and the SCALE FACTOR and ACTIVE PERIODS command lines.

6.3.2.1 Node Set Commands

The node set commands portion of the PRESCRIBED DISPLACEMENT command block defines

a set of nodes associated with the prescribed displacement field and can include some combination

of the following command lines:

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators for constructing a

set of nodes. See Section 6.1.1 for more information about the use of these command lines for

creating a set of nodes used by the boundary condition. There must be at least one NODE SET,

SURFACE, BLOCK, or INCLUDE ALL BLOCKS command line in the command block.

6.3.2.2 Specification Commands

If the specification commands are used, the displacement vector at any given time is the same for

all nodes in the node set associated with the particular PRESCRIBED DISPLACEMENT command

block.

296

Following are the command lines used to specify the prescribed displacement with a direction and

a function:

DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z |

CYLINDRICAL AXIS = <string>defined_axis |

RADIAL AXIS = <string>defined_axis

FUNCTION = <string>function_name

The displacement can be specified along an arbitrary user-defined direction, along a component

direction (X, Y, or Z), along the azimuthal direction in a cylindrical coordinate system (defined

in reference to an axis), or along a radial direction (defined in reference to an axis). Only one

of these options (i.e., command lines) is allowed. The displacement is prescribed only in the

specified direction. A prescribed displacement boundary condition does not influence the motion

in directions orthogonal to the prescribed direction.

- The DIRECTION command line is used to prescribe displacement in an arbitrary user-defined

direction. The name in the string defined_direction is a reference to a direction, which

is defined using the DEFINE DIRECTION command block within the SIERRA scope.

- The COMPONENT command line is used to specify that the prescribed displacement vector

lies along one of the component directions. The COMPONENT command line is a shortcut

to an internally defined direction vector; for example, component x corresponds to using

direction vector (1, 0, 0).

- The CYLINDRICAL AXIS command line is used to specify that the prescribed displacement

is to be applied in the azimuthal direction of a cylindrical coordinate system. The string

defined_axis refers to the name of the axis of the cylindrical coordinate system, and

which is defined via a DEFINE AXIS command block in the SIERRA scope. The displace-

ment is prescribed as a rotation in radians about the axis. Nodes with this type of boundary

condition are free to move in the radial and height directions in the cylindrical coordinate

system. Restraints can be placed on the node set in those directions if desired by applying

separate kinematic boundary conditions that contain RADIAL AXIS or DIRECTION com-

mands that refer to the same axis. Note that this type of boundary condition is not a rotational

boundary condition; it only affects translational degrees of freedom.

Known Issue: If a prescribed displacement with the CYLINDRICAL AXIS

option is applied to nodes that fall on the axis, it will have no effect. Separate

boundary conditions should be applied to those nodes to fix them in the plane

normal to the axis.

- The RADIAL AXIS command line requires an axis definition that appears in the SIERRA

scope. The string defined_axis uses an axis_name that is defined in the SIERRA scope

(via a DEFINE AXIS command line). For this option, a radial line is drawn from a node to

the radial axis. The prescribed displacement vector lies along this radial line from the node

to the radial axis.

297

The magnitude of the displacement is specified by the FUNCTION command line. This references a

function_name (defined in the SIERRA scope using a DEFINITION FOR FUNCTION command

block) that specifies the magnitude of the displacement vector as a function of time. The magnitude

can be scaled by use of the SCALE FACTOR command line described in Section 6.3.2.5.

6.3.2.3 User Subroutine Commands

If the user subroutine option is used, the displacement vector may vary spatially at any given time

for each of the nodes in the node set associated with the particular PRESCRIBED DISPLACEMENT

command block. The user subroutine option allows for a more complex description of the dis-

placement field than do the specification commands, but the user subroutine option also requires

that you write a user subroutine to implement this capability. The user subroutine will be used to

define a displacement direction and a magnitude for every node to which the boundary condition

will be applied. The subroutine will be called by Adagio at the appropriate time to generate the

displacement field.

Following are the command lines related to the user subroutine option:

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

The user subroutine option is invoked by using the NODE SET SUBROUTINE command line. The

string subroutine_name is the name of a FORTRAN subroutine that is written by the user.

Following the NODE SET SUBROUTINE command line are other command lines that may be used

to implement the user subroutine option. These command lines are described in Section 10.2.2 and

consist of SUBROUTINE DEBUGGING OFF, SUBROUTINE DEBUGGING ON, SUBROUTINE REAL

PARAMETER, SUBROUTINE INTEGER PARAMETER, and SUBROUTINE STRING PARAMETER.

Examples of using these command lines are provided throughout Chapter 10.

The magnitude set in the user subroutine can be scaled by use of the SCALE FACTOR command

line, as described in Section 6.3.2.5.

See Section 6.3.9 and Chapter 10 for more details on implementing the user subroutine option.

6.3.2.4 External Mesh Database Commands

If the external database option is used, the displacement vector (or specified components of the

vector) is read from an external mesh database. The displacements are read from a finite element

model defined via the FINITE ELEMENT MODEL command block described in Section 5.1. The

298

finite element model can either be the model used by the region for its mesh definition as specified

with the USE FINITE ELEMENT MODEL command (see Section 2.3), or it can be a different (but

compatible) model. The following command lines control the use of an external mesh database to

prescribe the displacement:

READ VARIABLE = <string>var_name

COPY VARIABLE = <string>var_name [FROM MODEL <string>model_name]

TIME = <real>time

The READ VARIABLE = <string>var_name command is used to read the displacement vector

from the region’s finite element mesh database. The var_name string specifies the name of the

variable as it appears on the mesh database.

If the analysis will cause topology modifications due to the use of load balancing, remeshing, or

other techniques that can result in nodes and/or elements being moved among processors, then

the COPY VARIABLE command should be used. This command specifies that the variable named

var_name will be used to specify the displacement. The FROM MODEL <string>model_name

portion of the command is optional. If it is specified, the results are read from the mesh database

named model_name. Otherwise, the region’s finite element mesh database will be used as the

model.

The primary difference between the behavior of the COPY VARIABLE command and the READ

VARIABLE command is that the copy command handles topology modifications caused by load

balancing and remeshing, which can move nodes and elements to different processors. The

COPY VARIABLE command will correctly match the nodes from the external database to the cor-

responding nodes in the analysis and communicate the data between processors if needed. Note

that the nodes in the two finite element models must match spatially, but they can be distributed on

different processors.

The field to be read may be specified at an arbitrary number of different times on the mesh file.

The default behavior is for the time history of the variable read from the file to be used to prescribe

the boundary condition. The time history is interpolated as needed for analysis times that do not

correspond exactly to times on the mesh file. The TIME command line can optionally be used

to specify that the boundary condition be constant over time, based on the value of the variable

read from the file at the specified time. If the specified time on the TIME command line does not

correspond exactly to a time on the mesh file, the data on the mesh file will be interpolated as

needed.

6.3.2.5 Additional Commands

These command lines in the PRESCRIBED DISPLACEMENT command block provide additional

options for the boundary condition:

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

299

The SCALE FACTOR command line is used to apply an additional scaling factor, which is constant

in both time and space, to all vector magnitude values of the field defined by the specification

commands or the user subroutine. For example, if the magnitude of the displacement in a time

history function is given as 1.5 from time 1.0 to time 2.0 and the scale factor is 0.5, then the

magnitude of the displacement from time 1.0 to 2.0 is 0.75. The default value for the scale factor

is 1.0.

The ACTIVE PERIODS and INACTIVE PERIODS command lines determine when the boundary

condition is active. See Section 2.5 for more information about these command lines.

300

6.3.3 Prescribed Velocity

BEGIN PRESCRIBED VELOCITY

#

node set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

specification commands

DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z |

CYLINDRICAL AXIS = <string>defined_axis |

RADIAL AXIS = <string>defined_axis

FUNCTION = <string>function_name

#

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

external database commands

READ VARIABLE = <string>var_name

COPY VARIABLE = <string>var_name [FROM MODEL <string>model_name]

TIME = <real>time

#

additional commands

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [PRESCRIBED VELOCITY]

The PRESCRIBED VELOCITY command block prescribes a velocity field for a given set of nodes.

The velocity field associates a vector giving the magnitude and direction of the velocity with each

node in the node set. The velocity field may vary over time and space. If the velocity field has only

a time-varying magnitude and uses one of four methods for setting direction, the specification com-

mands in the above command block can be used to specify the velocity field. If the velocity field is

more complex, a user subroutine is used to specify the velocity field. The velocity field can also be

301

read from an external mesh database. In a given boundary condition command block, commands

from only one of the command groups (specification commands, user subroutine commands, or

external database commands) may be used.

For rigid bodies, any kinematic boundary condition is applied directly to the rigid body reference

node. The kinematics for the mesh nodes attached to the rigid body are applied via the rigid

body constraint conditions. Since rigid bodies are defined using element blocks, only the BLOCK

command may be used to specify prescribed velocity conditions on rigid bodies.

The PRESCRIBED VELOCITY command block contains four groups of commands—node set,

function, user subroutine, and external database. Each of these command groups is basically inde-

pendent of the others. In addition to the command lines in the four command groups, there are three

additional command lines: SCALE FACTOR, ACTIVE PERIODS, and INACTIVE PERIODS. The

SCALE FACTOR command line can be used in conjunction with either the specification commands

or the user subroutine commands. The ACTIVE PERIODS and INACTIVE PERIODS command

lines are used to activate or deactivate this kinematic boundary condition for certain time periods.

Following are descriptions of the different command groups.

6.3.3.1 Node Set Commands

The node set commands portion of the PRESCRIBED VELOCITY command block defines a set

of nodes associated with the prescribed velocity field and can include some combination of the

following command lines:

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators for constructing a

set of nodes. See Section 6.1.1 for more information about the use of these command lines for

creating a set of nodes used by the boundary condition. There must be at least one NODE SET,

SURFACE, BLOCK, or INCLUDE ALL BLOCKS command line in the command block.

6.3.3.2 Specification Commands

If the specification commands are used, the velocity vector at any given time is the same for all

nodes in the node set associated with the particular PRESCRIBED VELOCITY command block.

Following are the command lines used to specify the prescribed velocity with a direction and a

function:

DIRECTION = <string>defined_direction |

302

COMPONENT = <string>X|Y|Z |

CYLINDRICAL AXIS = <string>defined_axis |

RADIAL AXIS = <string>defined_axis

FUNCTION = <string>function_name

The velocity can be specified along an arbitrary user-defined direction, along a component direction

(X, Y, or Z), along the azimuthal direction in a cylindrical coordinate system (defined in reference

to an axis), or along a radial direction (defined in reference to an axis). Only one of these options

(i.e., command lines) is allowed. The velocity is prescribed only in the specified direction. A

prescribed velocity boundary condition does not influence the motion in directions orthogonal to

the prescribed direction.

- The DIRECTION command line is used to prescribe velocity in an arbitrary user-defined

direction. The name in the string defined_direction is a reference to a direction, which

is defined using the DEFINE DIRECTION command block within the SIERRA scope.

- The COMPONENT command line is used to specify that the prescribed velocity vector lies

along one of the component directions. The COMPONENT command line is a shortcut to an

internally defined direction vector; for example, component x corresponds to using direction

vector (1, 0, 0).

- The CYLINDRICAL AXIS command line is used to specify that the prescribed velocity is

to be applied in the azimuthal direction of a cylindrical coordinate system. The string

defined_axis refers to the name of the axis of the cylindrical coordinate system, and

which is defined via a DEFINE AXIS command block in the SIERRA scope. The velocity

is prescribed as a rotation in radians about the axis. Nodes with this type of boundary condi-

tion are free to move in the radial and height directions in the cylindrical coordinate system.

Restraints can be placed on the node set in those directions if desired by applying separate

kinematic boundary conditions that contain RADIAL AXIS or DIRECTION commands that

refer to the same axis. Note that this type of boundary condition is not a rotational boundary

condition; it only affects translational degrees of freedom.

Known Issue: If a prescribed velocity with the CYLINDRICAL AXIS op-

tion is applied to nodes that fall on the axis, it will have no effect. Separate

boundary conditions should be applied to those nodes to fix them in the plane

normal to the axis.

- The RADIAL AXIS command line requires an axis definition that appears in the SIERRA

scope. The string defined_axis uses an axis_name that is defined in the SIERRA scope

(via a DEFINE AXIS command line). For this option, a radial line is drawn from a node to

the radial axis. The velocity vector lies along this radial line from the node to the radial axis.

The magnitude of the velocity is specified by the FUNCTION command line. This references a

function_name (defined in the SIERRA scope using a DEFINITION FOR FUNCTION command

block) that specifies the magnitude of the velocity vector as a function of time. The magnitude can

be scaled by use of the SCALE FACTOR command line described in Section 6.3.3.5.

303

6.3.3.3 User Subroutine Commands

If the user subroutine option is used, the velocity vector may vary spatially at any given time for

each of the nodes in the node set associated with the particular PRESCRIBED VELOCITY command

block. The user subroutine option allows for a more complex description of the velocity field than

do the specification commands, but the user subroutine option also requires that you write a user

subroutine to implement this capability. The user subroutine will be used to define a velocity

direction and a magnitude for every node to which the boundary condition will be applied. The

subroutine will be called by Adagio at the appropriate time to generate the velocity field.

Following are the command lines related to the user subroutine option:

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

The user subroutine option is invoked by using the NODE SET SUBROUTINE command line. The

string subroutine_name is the name of a FORTRAN subroutine that is written by the user.

Following the NODE SET SUBROUTINE command line are other command lines that may be used

to implement the user subroutine option. These command lines are described in Section 10.2.2 and

consist of SUBROUTINE DEBUGGING OFF, SUBROUTINE DEBUGGING ON, SUBROUTINE REAL

PARAMETER, SUBROUTINE INTEGER PARAMETER, and SUBROUTINE STRING PARAMETER.

Examples of using these command lines are provided throughout Chapter 10.

The magnitude set in the user subroutine can be scaled by use of the SCALE FACTOR command

line, as described in Section 6.3.3.5.

6.3.3.4 External Mesh Database Commands

If the external database option is used, the velocity vector (or specified components of the vector)

is read from an external mesh database. The velocities are read from a finite element model defined

via the FINITE ELEMENT MODEL command block described in Section 5.1. The finite element

model can either be the model used by the region for its mesh definition as specified with the USE

FINITE ELEMENT MODEL command (see Section 2.3), or it can be a different (but compatible)

model. The following command lines control the use of an external mesh database to prescribe the

velocity:

READ VARIABLE = <string>var_name

COPY VARIABLE = <string>var_name [FROM MODEL <string>model_name]

TIME = <real>time

304

The READ VARIABLE = <string>var_name command is used to read the velocity vector from

the region’s finite element mesh database. The var_name string specifies the name of the variable

as it appears on the mesh database.

If the analysis will cause topology modifications due to the use of load balancing, remeshing, or

other techniques that can result in nodes and/or elements being moved among processors, then the

COPY VARIABLE command should be used. This command specifies that the variable named var_

name will be used to specify the velocity. The FROM MODEL <string>model_name portion of

the command is optional. If it is specified, the results are read from the mesh database named

model_name. Otherwise, the region’s finite element mesh database will be used as the model.

The primary difference between the behavior of the COPY VARIABLE command and the READ

VARIABLE command is that the copy command handles topology modifications caused by load

balancing and remeshing, which can move nodes and elements to different processors. The

COPY VARIABLE command will correctly match the nodes from the external database to the cor-

responding nodes in the analysis and communicate the data between processors if needed. Note

that the nodes in the two finite element models must match spatially, but they can be distributed on

different processors.

The field to be read may be specified at an arbitrary number of different times on the mesh file.

The default behavior is for the time history of the variable read from the file to be used to prescribe

the boundary condition. The time history is interpolated as needed for analysis times that do not

correspond exactly to times on the mesh file. The TIME command line can optionally be used

to specify that the boundary condition be constant over time, based on the value of the variable

read from the file at the specified time. If the specified time on the TIME command line does not

correspond exactly to a time on the mesh file, the data on the mesh file will be interpolated as

needed.

6.3.3.5 Additional Commands

These command lines in the PRESCRIBED VELOCITY command block provide additional options

for the boundary condition:

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

The SCALE FACTOR command line is used to apply an additional scaling factor, which is constant

in both time and space, to all vector magnitude values of the field defined by the specification

commands or the user subroutine. For example, if the magnitude of the velocity in a time history

function is given as 1.5 from time 1.0 to time 2.0 and the scale factor is 0.5, then the magnitude of

the velocity from time 1.0 to 2.0 is 0.75. The default value for the scale factor is 1.0.

The ACTIVE PERIODS and INACTIVE PERIODS command lines determine when the boundary

condition is active. See Section 2.5 for more information about these command lines.

305

6.3.4 Prescribed Acceleration

BEGIN PRESCRIBED ACCELERATION

#

node set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

specification commands

DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z

FUNCTION = <string>function_name

#

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

external database commands

READ VARIABLE = <string>var_name

COPY VARIABLE = <string>var_name [FROM MODEL <string>model_name]

TIME = <real>time

#

additional commands

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [PRESCRIBED ACCELERATION]

The PRESCRIBED ACCELERATION command block prescribes an acceleration field for a given

set of nodes. The acceleration field associates a vector giving the magnitude and direction of

the acceleration with each node in the node set. The acceleration field may vary over time and

space. If the acceleration field has only a time-varying component, the specification commands in

the above command block can be used to specify the acceleration field. If the acceleration field

has both time-varying and spatially varying components, a user subroutine is used to specify the

acceleration field. The acceleration field can also be read from an external mesh database. In

a given boundary condition command block, commands from only one of the command groups

306

(specification commands, user subroutine commands, or external database commands) may be

used.

For rigid bodies, any kinematic boundary condition is applied directly to the rigid body reference

node. The kinematics for the mesh nodes attached to the rigid body are applied via the rigid

body constraint conditions. Since rigid bodies are defined using element blocks, only the BLOCK

command may be used to specify prescribed acceleration conditions on rigid bodies.

The PRESCRIBED ACCELERATION command block contains four groups of commands—node

set, function, user subroutine, and external database. Each of these command groups is basically

independent of the others. In addition to the command lines in the four command groups, there are

three additional command lines: SCALE FACTOR, ACTIVE PERIODS, and INACTIVE PERIODS.

The SCALE FACTOR command line can be used in conjunction with either the specification com-

mands or the user subroutine commands. The ACTIVE PERIODS and INACTIVE PERIODS com-

mand lines are used to activate or deactivate this kinematic boundary condition for certain time

periods. Following are descriptions of the different command groups.

6.3.4.1 Node Set Commands

The node set commands portion of the PRESCRIBED ACCELERATION command block defines

a set of nodes associated with the prescribed acceleration field and can include some combination

of the following command lines:

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators for constructing a

set of nodes. See Section 6.1.1 for more information about the use of these command lines for

creating a set of nodes used by the boundary condition. There must be at least one NODE SET,

SURFACE, BLOCK, or INCLUDE ALL BLOCKS command line in the command block.

6.3.4.2 Specification Commands

If the specification commands are used, the acceleration vector at any given time is the same for

all nodes in the node set associated with the particular PRESCRIBED ACCELERATION command

block. The direction of the acceleration vector is constant for all time; the magnitude of the accel-

eration vector may vary with time, however.

Following are the command lines used to specify the prescribed acceleration with a direction and

a function:

307

DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z

FUNCTION = <string>function_name

The acceleration can be specified either along an arbitrary user-defined direction or along a com-

ponent direction (X, Y, or Z), but not both. The acceleration is prescribed only in the specified

direction. A prescribed acceleration boundary condition does not influence the motion in direc-

tions orthogonal to the prescribed direction.

- The DIRECTION command line is used to prescribe acceleration in an arbitrary user-defined

direction. The name in the string defined_direction is a reference to a direction, which

is defined using the DEFINE DIRECTION command block within the SIERRA scope.

- The COMPONENT command line is used to specify that the prescribed acceleration vector lies

along one of the component directions. The COMPONENT command line is a shortcut to an

internally defined direction vector; for example, component x corresponds to using direction

vector (1, 0, 0).

The magnitude of the acceleration is specified by the FUNCTION command line. This references a

function_name (defined in the SIERRA scope using a DEFINITION FOR FUNCTION command

block) that specifies the magnitude of the acceleration vector as a function of time. The magnitude

can be scaled by use of the SCALE FACTOR command line described in Section 6.3.4.5.

6.3.4.3 User Subroutine Commands

If the user subroutine option is used, the acceleration vector may vary spatially at any given time

for each of the nodes in the node set associated with the particular PRESCRIBED ACCELERATION

command block. The user subroutine option allows for a more complex description of the ac-

celeration field than do the specification commands, but the user subroutine option also requires

that you write a user subroutine to implement this capability. The user subroutine will be used to

define an acceleration direction and a magnitude for every node to which the boundary condition

will be applied. The subroutine will be called by Adagio at the appropriate time to generate the

acceleration field.

Following are the command lines related to the user subroutine option:

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

308

The user subroutine option is invoked by using the NODE SET SUBROUTINE command line. The

string subroutine_name is the name of a FORTRAN subroutine that is written by the user.

Following the NODE SET SUBROUTINE command line are other command lines that may be used

to implement the user subroutine option. These command lines are described in Section 10.2.2 and

consist of SUBROUTINE DEBUGGING OFF, SUBROUTINE DEBUGGING ON, SUBROUTINE REAL

PARAMETER, SUBROUTINE INTEGER PARAMETER, and SUBROUTINE STRING PARAMETER.

Examples of using these command lines are provided throughout Chapter 10.

The magnitude set in the user subroutine can be scaled by use of the SCALE FACTOR command

line, as described in Section 6.3.4.5.

See Section 6.3.9 and Chapter 10 for more details on implementing the user subroutine option.

6.3.4.4 External Mesh Database Commands

If the external database option is used, the acceleration vector (or specified components of the

vector) is read from an external mesh database. The accelerations are read from a finite element

model defined via the FINITE ELEMENT MODEL command block described in Section 5.1. The

finite element model can either be the model used by the region for its mesh definition as specified

with the USE FINITE ELEMENT MODEL command (see Section 2.3), or it can be a different (but

compatible) model. The following command lines control the use of an external mesh database to

prescribe the acceleration:

READ VARIABLE = <string>var_name

COPY VARIABLE = <string>var_name [FROM MODEL <string>model_name]

TIME = <real>time

The READ VARIABLE = <string>var_name command is used to read the acceleration vector

from the region’s finite element mesh database. The var_name string specifies the name of the

variable as it appears on the mesh database.

If the analysis will cause topology modifications due to the use of load balancing, remeshing, or

other techniques that can result in nodes and/or elements being moved among processors, then

the COPY VARIABLE command should be used. This command specifies that the variable named

var_name will be used to specify the acceleration. The FROM MODEL <string>model_name

portion of the command is optional. If it is specified, the results are read from the mesh database

named model_name. Otherwise, the region’s finite element mesh database will be used as the

model.

The primary difference between the behavior of the COPY VARIABLE command and the READ

VARIABLE command is that the copy command handles topology modifications caused by load

balancing and remeshing, which can move nodes and elements to different processors. The

COPY VARIABLE command will correctly match the nodes from the external database to the cor-

responding nodes in the analysis and communicate the data between processors if needed. Note

that the nodes in the two finite element models must match spatially, but they can be distributed on

different processors.

309

The field to be read may be specified at an arbitrary number of different times on the mesh file.

The default behavior is for the time history of the variable read from the file to be used to prescribe

the boundary condition. The time history is interpolated as needed for analysis times that do not

correspond exactly to times on the mesh file. The TIME command line can optionally be used

to specify that the boundary condition be constant over time, based on the value of the variable

read from the file at the specified time. If the specified time on the TIME command line does not

correspond exactly to a time on the mesh file, the data on the mesh file will be interpolated as

needed.

6.3.4.5 Additional Commands

These command lines in the PRESCRIBED ACCELERATION command block provide additional

options for the boundary condition:

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

The SCALE FACTOR command line is used to apply an additional scaling factor, which is constant

in both time and space, to all vector magnitude values of the field defined by the specification

commands or the user subroutine. For example, if the magnitude of the acceleration in a time

history function is given as 1.5 from time 1.0 to time 2.0 and the scale factor is 0.5, then the

magnitude of the acceleration from time 1.0 to 2.0 is 0.75. The default value for the scale factor is

1.0.

The ACTIVE PERIODS and INACTIVE PERIODS command lines determine when the boundary

condition is active. See Section 2.5 for more information about these command lines.

310

6.3.5 Fixed Rotation

BEGIN FIXED ROTATION

#

node set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

specification commands

COMPONENT = <string>X/Y/Z | COMPONENTS = <string>X/Y/Z

#

additional commands

ACTIVE PERIODS = <string list>periods_names

INACTIVE PERIODS = <string list>periods_names

END [FIXED ROTATION]

The FIXED ROTATION command is only applied to nodes that have rotational degrees of free-

dom such as shell element nodes and rigid body reference nodes. In the case of rigid bodies, the

boundary condition must be specified on the block that defines the rigid body using the BLOCK line

command.

The FIXED ROTATION command block fixes rotation about direction components (X, Y, Z, or

some combination thereof) for a set of nodes. This command block contains two groups of

commands—node set and component. Each of these command groups is basically independent

of the other. In addition to the command lines in the two command groups, there are additional

command lines: ACTIVE PERIODS and INACTIVE PERIODS. These command lines are used to

activate or deactivate this kinematic boundary condition for certain time periods. Following are

descriptions of the different command groups.

6.3.5.1 Node Set Commands

The node set commands portion of the command block specifies the nodes associated with the

boundary condition. This portion of the command block can include some combination of the

following command lines:

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

311

These command lines, taken collectively, constitute a set of Boolean operators for constructing a

set of nodes. See Section 6.1.1 for more information about the use of these command lines for

creating a set of nodes used by the boundary condition. There must be at least one NODE SET,

SURFACE, BLOCK, or INCLUDE ALL BLOCKS command line in the command block.

6.3.5.2 Specification Commands

There are two component specification commands available in the FIXED ROTATION command

block:

COMPONENT = X/Y/Z | COMPONENTS = X/Y/Z

The rotation components that are to be fixed can be specified with either the COMPONENT command

line or the COMPONENTS command line. There can be only one COMPONENT command line or one

COMPONENTS command line in the command block. The user can specify any combination of the

components to be fixed, as in X, Z, X Z, Y X, etc.

6.3.5.3 Additional Commands

The ACTIVE PERIODS and INACTIVE PERIODS command lines can optionally appear in the

FIXED ROTATION command block:

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

This command line determines when the boundary condition is active. See Section 2.5 for more

information about this optional command line.

312

6.3.6 Prescribed Rotation

BEGIN PRESCRIBED ROTATION

#

node set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

specification commands

DIRECTION = <string>defined_direction

FUNCTION = <string>function_name

#

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

external database commands

READ VARIABLE = <string>var_name

COPY VARIABLE = <string>var_name [FROM MODEL

<string>model_name]

TIME = <real>time

#

additional commands

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [PRESCRIBED ROTATION]

Warning: The BEGIN PRESCRIBED ROTATION command is only applied to

nodes that have rotational degrees of freedom such as shell element nodes and rigid

body reference nodes. Displacements consistent with rotation about a fixed axis

for nodes that do not have rotational degrees of freedom, are imposed using the

CYLINDRICAL AXIS command line in the PRESCRIBED DISPLACEMENT com-

mand block described in Section 6.3.2.

313

For nodal rotational degrees of freedom, the rotations applied using the BEGIN PRESCRIBED

ROTATION command are the three components of the rotational degree of freedom itself. In the

case of rigid bodies, the rotations must be the nonlinear components that result in the desired

quaternion on the rigid body reference node. For rigid bodies, the boundary condition is applied to

the reference node and therefore must be specified on the block that defines the rigid body using

the BLOCK line command.

The PRESCRIBED ROTATION command block prescribes the rotation about an axis for a given set

of nodes. The rotation field associates a vector giving the magnitude and direction of the rotation

with each node in the node set. The rotation field may vary over time and space. If the rotation field

has only a time-varying component, the specification commands in the above command block can

be used to specify the rotation field. If the rotation field has both time-varying and spatially varying

components, a user subroutine is used to specify the rotation field. The rotation field can also be

read from an external mesh database. In a given boundary condition command block, commands

from only one of the command groups (specification commands, user subroutine commands, or

external database commands) may be used.

The PRESCRIBED ROTATION command block contains four groups of commands—node set,

function, user subroutine, and external database. Each of these command groups is basically inde-

pendent of the others. In addition to the command lines in the four command groups, there are three

additional command lines: SCALE FACTOR, ACTIVE PERIODS, and INACTIVE PERIODS. The

SCALE FACTOR command line can be used in conjunction with either the specification commands

or the user subroutine commands. The ACTIVE PERIODS and INACTIVE PERIODS command

lines are used to activate or deactivate this kinematic boundary condition for certain time periods.

Following are descriptions of the different command groups.

6.3.6.1 Node Set Commands

The node set commands portion of the PRESCRIBED ROTATION command block defines a set

of nodes associated with the prescribed rotation field and can include some combination of the

following command lines:

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators for constructing a

set of nodes. See Section 6.1.1 for more information about the use of these command lines for

creating a set of nodes used by the boundary condition. There must be at least one NODE SET,

SURFACE, BLOCK, or INCLUDE ALL BLOCKS command line in the command block.

314

6.3.6.2 Specification Commands

If the specification commands are used, the rotation vector at any given time is the same for all

nodes in the node set associated with the particular PRESCRIBED ROTATION command block.

The direction of the rotation vector is constant for all time; the magnitude of the rotation vector

may vary with time, however.

Following are the command lines used to specify the prescribed rotation with a direction and a

function:

DIRECTION = <string>defined_direction

FUNCTION = <string>function_name

The DIRECTION command line is used to prescribe rotation in an arbitrary user-defined direction.

The name in the string defined_direction is a reference to a direction, which is defined using

the DEFINE DIRECTION command block within the SIERRA scope. The rotation is prescribed

only in the specified direction. A prescribed rotation boundary condition does not influence the

rotation in directions orthogonal to the prescribed direction.

The magnitude of the rotation is specified by the FUNCTION command line. This references a

function_name (defined in the SIERRA scope in a DEFINITION FOR FUNCTION command

block) that specifies the magnitude of the rotation vector as a function of time. The magnitude can

be scaled by use of the SCALE FACTOR command line described in Section 6.3.6.5.

The magnitude of the rotation, as specified by the product of the function and the scale factor, has

units of radians per second.

6.3.6.3 User Subroutine Commands

If the user subroutine option is used, the rotation vector may vary spatially at any given time for

each of the nodes in the node set associated with the particular PRESCRIBED ROTATION command

block. The user subroutine option allows for a more complex description of the rotation field than

do the specification commands, but the user subroutine option also requires that you write a user

subroutine to implement this capability. The user subroutine will be used to define a rotation

direction and a magnitude for every node to which the boundary condition will be applied. The

subroutine will be called by Adagio at the appropriate time to generate the rotation field.

Following are the command lines related to the user subroutine option:

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

315

The user subroutine option is invoked by using the NODE SET SUBROUTINE command line. The

string subroutine_name is the name of a FORTRAN subroutine that is written by the user.

Following the NODE SET SUBROUTINE command line are other command lines that may be used

to implement the user subroutine option. These command lines are described in Section 10.2.2 and

consist of SUBROUTINE DEBUGGING OFF, SUBROUTINE DEBUGGING ON, SUBROUTINE REAL

PARAMETER, SUBROUTINE INTEGER PARAMETER, and SUBROUTINE STRING PARAMETER.

Examples of using these command lines are provided throughout Chapter 10.

The magnitude set in the user subroutine can be scaled by use of the SCALE FACTOR command

line, as described in Section 6.3.6.5.

See Section 6.3.9 and Chapter 10 for more details on implementing the user subroutine option.

6.3.6.4 External Mesh Database Commands

If the external database option is used, the rotation vector (or specified components of the vector)

is read from an external mesh database. The rotations are read from a finite element model defined

via the FINITE ELEMENT MODEL command block described in Section 5.1. The finite element

model can either be the model used by the region for its mesh definition as specified with the USE

FINITE ELEMENT MODEL command (see Section 2.3), or it can be a different (but compatible)

model. The following command lines control the use of an external mesh database to prescribe the

rotation:

READ VARIABLE = <string>mesh_var_name

COPY VARIABLE = <string>var_name [FROM MODEL <string>model_name]

TIME = <real>time

The READ VARIABLE = <string>var_name command is used to read the rotation vector from

the region’s finite element mesh database. The var_name string specifies the name of the variable

as it appears on the mesh database.

If the analysis will cause topology modifications due to the use of load balancing, remeshing, or

other techniques that can result in nodes and/or elements being moved among processors, then the

COPY VARIABLE command should be used. This command specifies that the variable named var_

name will be used to specify the rotation. The FROM MODEL <string>model_name portion of

the command is optional. If it is specified, the results are read from the mesh database named

model_name. Otherwise, the region’s finite element mesh database will be used as the model.

The primary difference between the behavior of the COPY VARIABLE command and the READ

VARIABLE command is that the copy command handles topology modifications caused by load

balancing and remeshing, which can move nodes and elements to different processors. The

COPY VARIABLE command will correctly match the nodes from the external database to the cor-

responding nodes in the analysis and communicate the data between processors if needed. Note

that the nodes in the two finite element models must match spatially, but they can be distributed on

different processors.

316

The field to be read may be specified at an arbitrary number of different times on the mesh file.

The default behavior is for the time history of the variable read from the file to be used to prescribe

the boundary condition. The time history is interpolated as needed for analysis times that do not

correspond exactly to times on the mesh file. The TIME command line can optionally be used

to specify that the boundary condition be constant over time, based on the value of the variable

read from the file at the specified time. If the specified time on the TIME command line does not

correspond exactly to a time on the mesh file, the data on the mesh file will be interpolated as

needed.

6.3.6.5 Additional Commands

These command lines in the PRESCRIBED ROTATION command block provide additional options

for the boundary condition:

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

The SCALE FACTOR command line is used to apply an additional scaling factor, which is constant

in both time and space, to all vector magnitude values of the field defined by the specification

commands or the user subroutine. For example, if the magnitude of the rotation in a time history

function is given as 1.5 from time 1.0 to time 2.0 and the scale factor is 0.5, then the magnitude of

the rotation from time 1.0 to 2.0 is 0.75. The default value for the scale factor is 1.0.

The ACTIVE PERIODS and INACTIVE PERIODS command lines determine when the boundary

condition is active. See Section 2.5 for more information about these command lines.

317

6.3.7 Prescribed Rotational Velocity

BEGIN PRESCRIBED ROTATIONAL VELOCITY

#

node set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

specification commands

DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z

FUNCTION = <string>function_name

#

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

external database commands

READ VARIABLE = <string>variable_name

COPY VARIABLE = <string>variable_name [FROM MODEL

<string>model_name]

TIME = <real>time

#

additional commands

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [PRESCRIBED ROTATIONAL VELOCITY]

Warning: The PRESCRIBED ROTATIONAL VELOCITY command is only applied

to nodes that have rotational degrees of freedom such as shell element nodes and

rigid body reference nodes. Velocities consistent with rotation about a fixed axis

for nodes that do not have rotational degrees of freedom, are imposed with the

CYLINDRICAL AXIS command line in the PRESCRIBED VELOCITY command

block described in Section 6.3.3.

318

This command provides the total rotational velocity of the body about an axis.For rigid bodies, the

boundary condition is applied to the reference node and therefore must be specified on the block

that defines the rigid body using the BLOCK line command.

The PRESCRIBED ROTATIONAL VELOCITY command block prescribes the rotational velocity

about an axis for a given set of nodes. The rotational velocity field associates a vector giving the

magnitude and direction of the rotational velocity with each node in the node set. The rotational

velocity field may vary over time and space. If the rotational velocity field has only a time-varying

component, the specification commands in the above command block can be used to specify the

rotational velocity field. If the rotational velocity field has both time-varying and spatially varying

components, a user subroutine is used to specify the rotational velocity field. The rotational veloc-

ity field can also be read from an external mesh database. In a given boundary condition command

block, commands from only one of the command groups (specification commands, user subroutine

commands, or external database commands) may be used.

The PRESCRIBED ROTATIONAL VELOCITY command block contains four groups of

commands—node set, function, user subroutine, and external database. Each of these com-

mand groups is basically independent of the others. In addition to the command lines in the four

command groups, there are three additional command lines: SCALE FACTOR, ACTIVE PERIODS,

and INACTIVE PERIODS. The SCALE FACTOR command line can be used in conjunction with

either the specification commands or the user subroutine commands. The ACTIVE PERIODS and

INACTIVE PERIODS command lines are used to activate or deactivate this kinematic boundary

condition for certain time periods. Following are descriptions of the different command groups.

6.3.7.1 Node Set Commands

The node set commands portion of the PRESCRIBED ROTATIONAL VELOCITY command

block defines a set of nodes associated with the prescribed rotational velocity field and can in-

clude some combination of the following command lines:

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators for constructing a

set of nodes. See Section 6.1.1 for more information about the use of these command lines for

creating a set of nodes used by the boundary condition. There must be at least one NODE SET,

SURFACE, BLOCK, or INCLUDE ALL BLOCKS command line in the command block.

319

6.3.7.2 Specification Commands

If the specification commands are used, the rotational velocity vector at any given time is the same

for all nodes in the node set associated with the particular PRESCRIBED ROTATIONAL VELOCITY

command block. The direction of the rotational velocity vector is constant for all time; the magni-

tude of the rotational velocity vector may vary with time, however.

Following are the command lines used to specify the prescribed rotational velocity with a direction

and a function:

DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z

FUNCTION = <string>function_name

The rotational velocity can be specified either along an arbitrary user-defined direction or along

a component direction (X, Y, or Z), but not both. The rotational velocity is prescribed only in

the specified direction. A prescribed rotational velocity boundary condition does not influence the

rotational velocity in directions orthogonal to the prescribed direction.

- The DIRECTION command line is used to prescribe rotational velocity in an arbitrary user-

defined direction. The name in the string defined_direction is a reference to a direction,

which is defined using the DEFINE DIRECTION command block within the SIERRA scope.

- The COMPONENT command line is used to specify that the prescribed rotational velocity

vector lies along one of the component directions. The COMPONENT command line is a

shortcut to an internally defined direction vector; for example, component x corresponds to

using direction vector (1, 0, 0).

The magnitude of the rotational velocity is specified by the FUNCTION command line. This ref-

erences a function_name (defined in the SIERRA scope in a DEFINITION FOR FUNCTION

command block) that specifies the magnitude of the rotational velocity vector as a function of

time. The magnitude can be scaled by use of the SCALE FACTOR command line described in

Section 6.3.7.5.

The magnitude of the rotational velocity, as specified by the product of the function and the scale

factor, has units of radians per second.

6.3.7.3 User Subroutine Commands

If the user subroutine option is used, the rotational velocity vector may vary spatially at any

given time for each of the nodes in the node set associated with the particular PRESCRIBED

ROTATIONAL VELOCITY command block. The user subroutine option allows for a more com-

plex description of the rotational velocity field than do the specification commands, but the user

subroutine option also requires that you write a user subroutine to implement this capability. The

user subroutine will be used to define a rotational velocity direction and a magnitude for every

320

node to which the boundary condition will be applied. The subroutine will be called by Adagio at

the appropriate time to generate the rotational velocity field.

Following are the command lines related to the user subroutine option:

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

The user subroutine option is invoked by using the NODE SET SUBROUTINE command line. The

string subroutine_name is the name of a FORTRAN subroutine that is written by the user.

Following the NODE SET SUBROUTINE command line are other command lines that may be used

to implement the user subroutine option. These command lines are described in Section 10.2.2 and

consist of SUBROUTINE DEBUGGING OFF, SUBROUTINE DEBUGGING ON, SUBROUTINE REAL

PARAMETER, SUBROUTINE INTEGER PARAMETER, and SUBROUTINE STRING PARAMETER.

Examples of using these command lines are provided throughout Chapter 10.

The magnitude set in the user subroutine can be scaled by use of the SCALE FACTOR command

line, as described in Section 6.3.7.5.

See Section 6.3.9 and Chapter 10 for more details on implementing the user subroutine option.

6.3.7.4 External Mesh Database Commands

If the external database option is used, the rotational velocity vector (or specified components

of the vector) is read from an external mesh database. The rotational velocities are read from

a finite element model defined via the FINITE ELEMENT MODEL command block described in

Section 5.1. The finite element model can either be the model used by the region for its mesh

definition as specified with the USE FINITE ELEMENT MODEL command (see Section 2.3), or it

can be a different (but compatible) model. The following command lines control the use of an

external mesh database to prescribe the rotational velocity:

READ VARIABLE = <string>mesh_var_name

COPY VARIABLE = <string>var_name [FROM MODEL <string>model_name]

TIME = <real>time

The READ VARIABLE = <string>var_name command is used to read the rotational velocity

vector from the region’s finite element mesh database. The var_name string specifies the name of

the variable as it appears on the mesh database.

If the analysis will cause topology modifications due to the use of load balancing, remeshing, or

other techniques that can result in nodes and/or elements being moved among processors, then

321

the COPY VARIABLE command should be used. This command specifies that the variable named

var_name will be used to specify the rotational velocity. The FROM MODEL <string>model_

name portion of the command is optional. If it is specified, the results are read from the mesh

database named model_name. Otherwise, the region’s finite element mesh database will be used

as the model.

The primary difference between the behavior of the COPY VARIABLE command and the READ

VARIABLE command is that the copy command handles topology modifications caused by load

balancing and remeshing, which can move nodes and elements to different processors. The

COPY VARIABLE command will correctly match the nodes from the external database to the cor-

responding nodes in the analysis and communicate the data between processors if needed. Note

that the nodes in the two finite element models must match spatially, but they can be distributed on

different processors.

The field to be read may be specified at an arbitrary number of different times on the mesh file.

The default behavior is for the time history of the variable read from the file to be used to prescribe

the boundary condition. The time history is interpolated as needed for analysis times that do not

correspond exactly to times on the mesh file. The TIME command line can optionally be used

to specify that the boundary condition be constant over time, based on the value of the variable

read from the file at the specified time. If the specified time on the TIME command line does not

correspond exactly to a time on the mesh file, the data on the mesh file will be interpolated as

needed.

6.3.7.5 Additional Commands

These command lines in the PRESCRIBED ROTATIONAL VELOCITY command block provide ad-

ditional options for the boundary condition:

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

The SCALE FACTOR command line is used to apply an additional scaling factor, which is constant

in both time and space, to all vector magnitude values of the field defined by the specification

commands or the user subroutine. For example, if the magnitude of the rotational velocity in a

time history function is given as 1.5 from time 1.0 to time 2.0 and the scale factor is 0.5, then the

magnitude of the rotational velocity from time 1.0 to 2.0 is 0.75. The default value for the scale

factor is 1.0.

The ACTIVE PERIODS and INACTIVE PERIODS command lines determine when the boundary

condition is active. See Section 2.5 for more information about these command lines.

322

6.3.8 Reference Axis Rotation

BEGIN REFERENCE AXIS ROTATION

#

block command

BLOCK = <string list>block_names

#

specification commands

REFERENCE AXIS X FUNCTION = <string>function_name

REFERENCE AXIS Y FUNCTION = <string>function_name

REFERENCE AXIS Z FUNCTION = <string>function_name

#

rotation commands

ROTATION = <string>function_name

ROTATIONAL VELOCITY = <string>function_name

#

torque command

TORQUE = <string>function_name

#

additional commands

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [REFERENCE AXIS ROTATION]

The REFERENCE AXIS ROTATION command block is intended to control the rotation of a rigid

body. The three REFERENCE AXIS line commands are required and together define a time-varying

reference axis or vector. The rigid body will rotate to follow the vector. Depending on other

line commands in the block, the rigid body will have either zero or one free rotational degree of

freedom. If one degree of freedom is present, it is the rotation about the time-varying reference

vector.

At most, one of the ROTATION, ROTATIONAL VELOCITY, or TORQUE line commands may be

present. If the ROTATION or ROTATIONAL VELOCITY command line is present, the rigid body

will be fully prescribed for rotation. The ACTIVE PERIODS and INACTIVE PERIODS command

lines are used to activate or deactivate this kinematic boundary condition for certain time periods.

Use of the REFERENCE AXIS ROTATION command block will cause extra global variables to be

written to the results file. These variables describe the reaction force, rotational reaction moment,

rotational displacement, and rotational velocity associated with the boundary condition and in the

local coordinate system described by the boundary condition. The names of the variables are:

REACTR_<NAME>

REACTS_<NAME>

REACTT_<NAME>

RREACTR_<NAME>

323

RREACTS_<NAME>

RREACTT_<NAME>

ROTDS_<NAME>

ROTVR_<NAME>

ROTVS_<NAME>

ROTVT_<NAME>

The variables beginning with REACT give the reaction forces in the boundary condition’s local

coordinate system. Those beginning with RREACT give the reaction moments.

Only the S component is given for the rotational displacement. This is due to the fact that the other

coordinate directions are poorly defined, and therefore, rotational displacements in those directions

provide no value.

The variables beginning with ROTV give the rotational velocity in the local coordinate system.

For each global variable, <NAME> is the name of the rigid body controlled by this boundary condi-

tion.

6.3.8.1 Block Command

The block command portion of the REFERENCE AXIS ROTATION command block defines a

block associated with the prescribed rotation field and must include the following command line:

BLOCK = <string list>block_names

See Section 6.1.1 for more information about the use of this command line.

6.3.8.2 Specification Commands

The three specification commands are required and together define a time-varying vector that gives

the orientation of a reference axis for rotation. The magnitude of the vector is ignored.

Following are the command lines used to specify the reference axis rotation with a direction:

REFERENCE AXIS X FUNCTION = <string>function_name

REFERENCE AXIS Y FUNCTION = <string>function_name

REFERENCE AXIS Z FUNCTION = <string>function_name

At a given time, the function referred to by the REFERENCE AXIS X FUNCTION line command

gives the x component of a vector defining the reference axis. The pattern holds for the y and

z components as well. Since the magnitude of the resulting axis or vector is not used, the three

functions do not need to describe a unit vector in time.

324

6.3.8.3 Rotation Commands

It is possible to prescribe the complete rotation of a rigid body through the use of the ROTATION

or ROTATIONAL VELOCITY line commands. Without these line commands, the rigid body is free

to rotate about the reference axis.

Following are the command lines to prescribe the rotation about the reference axis:

ROTATION = <string>function_name

ROTATIONAL VELOCITY = <string>function_name

The function referred to by the ROTATION line command gives the magnitude of rotation in radians

about the reference axis as a function of time. This function should not be changed across a

restarted analysis.

The function referred to by the ROTATIONAL VELOCITY line command gives the rotational veloc-

ity in radians per second about the reference axis as a function of time. This function should not

be changed across a restarted analysis.

6.3.8.4 Torque Command

A user may specify a moment about the reference axis through the use of the TORQUE line com-

mand.

TORQUE = <string>function_name

The function referred to by the TORQUE line command gives the torque or moment about the

reference axis as a function of time.

6.3.8.5 Additional Commands

The SCALE FACTOR, ACTIVE PERIODS, and INACTIVE PERIODS command lines can option-

ally appear in the REFERENCE AXIS ROTATION command block:

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

The SCALE FACTOR command line applies the specified value as a scale factor to the rotation,

rotational velocity, or torque functions.

The final two command lines can activate or deactivate the reference axis rotation for certain time

periods. See Section 2.5 for more information about these command lines.

325

6.3.9 Subroutine Usage for Kinematic Boundary Conditions

The prescribed kinematic boundary conditions may be defined by a user subroutine. All these

conditions use a node set subroutine. See Chapter 10 for an in-depth discussion of user subroutines.

The kinematic boundary conditions will be applied to nodes. The subroutine that you write will

have to return six output values per node and one output flag per node. The usage of the output

values depends on the returned flag value for a node, as follows:

• If the flag value is negative, no constraint will be applied to the node.

• If the flag value is equal to zero, the constraint will be absolute. All components of the

boundary condition will be specified. For example, suppose you have written a user sub-

routine to be called from a prescribed displacement subroutine. The prescribed displace-

ments are to be passed through an array output_values. For a given node inode, the

output_values array would have the following values:

output_values(1,inode) = displacement in x at inode

output_values(2,inode) = displacement in y at inode

output_values(3,inode) = displacement in z at inode

output_values(4,inode) = not used

output_values(5,inode) = not used

output_values(6,inode) = not used

• If the flag value is equal to one, the constraint will be a specified amount in a given direction.

For example, suppose you have written a user subroutine to be called from a prescribed

displacement subroutine. The prescribed displacements are to be passed through an array

output_values. For a given node inode, the output_values array would have the

following values:

output_values(1,inode) = magnitude of displacement

output(values(2,inode) = not used

output_values(3,inode) = not used

output_values(4,inode) = x component of direction vector

output_values(5,inode) = y component of direction vector

output_values(6,inode) = z component of direction vector

The direction in which the constraint will act is given by output_values 4 through 6 for inode.

The magnitude of the displacement in the specified direction is given by output_values 1 at

inode. To compute the constraint, Adagio first normalizes the direction vector. Next, Adagio

multiplies the normalized direction vector by the magnitude of the displacement and applies the

resultant constraint vector.

Displacements or velocities orthogonal to the prescribed direction will not be constrained. (This is

true regardless of whether or not one uses a user subroutine for the prescribed kinematic boundary

conditions.) Take the case of a prescribed displacement condition. The displacement orthogonal

to a prescribed direction of motion depends on the internal and external forces orthogonal to the

prescribed direction. Displacement orthogonal to the prescribed direction may or may not be zero.

326

6.4 Initial Velocity Conditions

BEGIN INITIAL VELOCITY

#

node set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

direction specification commands

COMPONENT = <string>X|Y|Z |

DIRECTION = <string>defined_direction

MAGNITUDE = <real>magnitude_of_velocity

#

angular velocity specification commands

CYLINDRICAL AXIS = <string>defined_axis

ANGULAR VELOCITY = <real>angular_velocity

#

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

END [INITIAL VELOCITY]

The INITIAL VELOCITY command block specifies an initial velocity field for a set of nodes.

There are two simple options for specifying the initial velocity field: by direction and by angular

velocity. The user subroutine option available is also available to specify an initial velocity. You

may use only one of the available options—direction specification, angular velocity specification,

or user subroutine.

The INITIAL VELOCITY command block contains four groups of commands—node set, direction

specification, angular velocity specification, and user subroutine. Command lines associated with

the node set commands must appear. As mentioned, command lines associated with one of the

options must also appear. Following are descriptions of the different command groups.

327

6.4.1 Node Set Commands

The node set commands portion of the INITIAL VELOCITY command block defines a set of

nodes associated with the initial velocity field and can include some combination of the following

command lines:

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators for constructing a

set of nodes. See Section 6.1.1 for more information about the use of these command lines for

creating a set of nodes used by the boundary condition. There must be at least one NODE SET,

SURFACE, BLOCK, or INCLUDE ALL BLOCKS command line in the command block.

6.4.2 Direction Specification Commands

If the direction specification commands are used, the initial velocity is applied along a defined

direction with a specific magnitude. Following are the command lines for the direction option:

COMPONENT = <string>X|Y|Z |

DIRECTION = <string>defined_direction

MAGNITUDE = <real>magnitude_of_velocity

The initial velocity can be specified either along an arbitrary user-defined direction or along a

component direction (X, Y, or Z), but not both. The velocity is prescribed only in the specified

direction. A prescribed velocity boundary condition does not influence the movement in directions

orthogonal to the prescribed direction.

- The DIRECTION command line is used to prescribe initial velocity in an arbitrary user-

defined direction. The name in the string defined_direction is a reference to a direction,

which is defined using the DEFINE DIRECTION command block within the SIERRA scope.

- The COMPONENT command line is used to specify that the initial velocity vector lies along

one of the component directions. The COMPONENT command line is a shortcut to an in-

ternally defined direction vector; for example, component x corresponds to using direction

vector (1, 0, 0).

The magnitude of the initial velocity is given by the MAGNITUDE command line with the real value

magnitude_of_velocity.

Either the COMPONENT command line or the DIRECTION command line must be specified with the

MAGNITUDE command line if you use the direction specification commands.

328

6.4.3 Angular Velocity Specification Commands

If the angular velocity specification commands are used, the initial velocity is applied as an initial

angular velocity about some axis. Following are the command lines for angular velocity specifica-

tion:

CYLINDRICAL AXIS = <string>defined_axis

ANGULAR VELOCITY = <real>angular_velocity

The axis about which the body is initially rotating is given by the CYLINDRICAL AXIS command

line. The string defined_axis uses an axis_name that is defined in the SIERRA scope (via a

DEFINE AXIS command line).

The magnitude of the angular velocity about this axis is specified by the ANGULAR VELOCITY

command line with the real value angular_velocity. This value is specified in units of radians

per unit of time. Typically, the value for the angular velocity will be radians per second.

Both the CYLINDRICAL AXIS command line and the ANGULAR VELOCITY command line are

required if you use the angular velocity specification commands.

6.4.4 User Subroutine Commands

If the user subroutine option is used, the initial velocity vector may vary spatially at any given

time for each of the nodes in the node set associated with the particular INITIAL CONDITION

command block. The user subroutine option allows for a more complex description of the initial

velocity field than do the direction and angular-velocity options, but the user subroutine option also

requires that you write a user subroutine to implement this capability. The user subroutine will be

used to define a velocity direction and a magnitude for every node to which the initial velocity field

will be applied. The subroutine will be called by Adagio at the appropriate time to generate the

initial velocity field.

Following are the command lines related to the user subroutine option:

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

The user subroutine option is invoked by using the NODE SET SUBROUTINE command line. The

string subroutine_name is the name of a FORTRAN subroutine that is written by the user.

Following the NODE SET SUBROUTINE command line are other command lines that may be used

to implement the user subroutine option. These command lines are described in Section 10.2.2 and

329

consist of SUBROUTINE DEBUGGING OFF, SUBROUTINE DEBUGGING ON, SUBROUTINE REAL

PARAMETER, SUBROUTINE INTEGER PARAMETER, and SUBROUTINE STRING PARAMETER.

Examples of using these command lines are provided throughout Chapter 10.

See Section 6.3.9 and Chapter 10 for more details on implementing the user subroutine option.

330

6.5 Force Boundary Conditions

A variety of force boundary conditions are available in Adagio. This section describes these bound-

ary conditions.

6.5.1 Pressure

BEGIN PRESSURE

#

surface set commands

SURFACE = <string list>surface_names

REMOVE SURFACE = <string list>surface_names

#

specification command

FUNCTION = <string>function_name

#

user subroutine commands

SURFACE SUBROUTINE = <string>subroutine_name |

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

external pressure sources

READ VARIABLE = <string>variable_name

OBJECT TYPE = <string>NODE|FACE(NODE)

TIME = <real>time

FIELD VARIABLE = <string>field_variable

#

output external forces from pressure

EXTERNAL FORCE CONTRIBUTION OUTPUT NAME =

<string>variable_name

#

additional commands

USE DEATH = <string>death_name

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [PRESSURE]

The PRESSURE command block applies a pressure to each face in the associated surfaces. The

pressure field can either be constant over the faces and vary in time, or it can be determined by

331

a user subroutine. If the pressure field is constant over the faces and has only a time-varying

component, the function command in the above command block can be used to specify the pressure

field. If the pressure field has both time-varying and spatially varying components, user subroutine

commands are used to specify the pressure field. The pressure field may also be obtained from

a mesh file or from another SIERRA code through a transfer operator. You can use only one of

these four options—function, user subroutine, mesh file, transfer from another code—to specify

the pressure field.

Currently, the PRESSURE command block can be used for surfaces that have faces derived from

solid elements (eight-node hexahedra, four-node tetrahedra, eight-node tetrahedra, etc.), mem-

branes, and shells.

A pressure boundary condition generates nodal forces that are summed into the external force

vector that is used to calculate the motion of a body. The external force vector contains the con-

tribution from all forces acting on the body. There is an option in the PRESSURE command block

to save information about the contribution to the external force vector due only to pressure loads.

This option does not change the magnitude or time history of the pressure load (regardless of how

they are defined), but merely stores information in a user-accessible variable.

The PRESSURE command block contains five groups of commands—surface set, function, user

subroutine, external pressure, and output external forces. Each of these command groups is ba-

sically independent of the others. In addition to the command lines in the five command groups,

there are three additional command lines: USE DEATH, SCALE FACTOR and ACTIVE PERIODS.

The USE DEATH command line links the pressure boundary condition to an element death defini-

tion so that the underlying surface geometry is updated as elements are killed. The SCALE FACTOR

command line can be used in conjunction with either the function command or the user subroutine

commands. The ACTIVE PERIODS and INACTIVE PERIODS command lines are used to activate

or deactivate this force boundary condition for certain time periods. Following are descriptions of

the different command groups.

6.5.1.1 Surface Set Commands

The surface set commands portion of the PRESSURE command block defines a set of surfaces

associated with the pressure field and can include some combination of the following command

lines:

SURFACE = <string list>surface_names

REMOVE SURFACE = <string list>surface_names

In the SURFACE command line, you can list a series of surfaces through the string list surface_

names. There must be at least one SURFACE command line in the command block. The

REMOVE SURFACE command line allows you to delete surfaces from the set specified in the

SURFACE command line(s) through the string list surface_names. See Section 6.1.1 for more in-

formation about the use of these command lines for creating a set of surfaces used by the boundary

condition.

332

6.5.1.2 Specification Commands

If the function command is used, the pressure vector at any given time is the same for all surfaces

associated with the particular PRESSURE command block. The direction of the pressure vector is

constant for all time; the magnitude of the pressure vector may vary with time, however.

Following is the command line used to specify the pressure with a function:

FUNCTION = <string>function_name

The pressure is applied in the opposite direction to the outward normals of the faces that define

the surfaces. The magnitude of the pressure is specified by the FUNCTION command line. This

references a function_name (defined in the SIERRA scope in a DEFINITION FOR FUNCTION

command block) that specifies the magnitude of the pressure vector as a function of time. The

magnitude can be scaled by use of the SCALE FACTOR command line described in Section 6.5.1.6.

6.5.1.3 User Subroutine Commands

If the user subroutine option is used, the pressure may vary spatially at any given time for each of

the surfaces associated with the particular PRESSURE command block. The user subroutine option

allows for a more complex description of the pressure field than does the function command, but the

user subroutine option also requires that you write a user subroutine to implement this capability.

The user subroutine will be used to define a pressure for every face to which the boundary condition

will be applied. The subroutine will be called by Adagio at the appropriate time to generate the

pressure field.

Following are the command lines related to the user subroutine option:

SURFACE SUBROUTINE = <string>subroutine_name |

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

The user subroutine option is invoked by using the SURFACE SUBROUTINE command line or the

NODE SET subroutine command line. The string subroutine_name in both command lines is

the name of a FORTRAN subroutine that is written by the user. The particular command line

selected depends on the mesh-entity type for which the pressure field is being calculated. Asso-

ciating pressure values with faces would require the use of a SURFACE SUBROUTINE command

line. Associating pressure values with nodes would require the use of a NODE SET SUBROUTINE

command line.

333

Following the selected subroutine command line are other command lines that may be used to

implement the user subroutine option. These command lines are described in Section 10.2.2 and

consist of SUBROUTINE DEBUGGING OFF, SUBROUTINE DEBUGGING ON, SUBROUTINE REAL

PARAMETER, SUBROUTINE INTEGER PARAMETER, and SUBROUTINE STRING PARAMETER.

Examples of using these command lines are provided throughout Chapter 10.

The magnitude set in the user subroutine can be scaled by use of the SCALE FACTOR command

line, as described in Section 6.5.1.6.

Usage requirements. Following are the usage requirements for the two types of subroutines:

• The surface subroutine operates on a group of faces. The subroutine that you write will

return one output value per face. Suppose you write a user subroutine that returns the pres-

sure information through an array output_value. The value output_value(1,iface)

corresponds to the average pressure on face iface. The values of the flags array are not

used.

• The node set subroutine that you write will return one value per node. Suppose you write

a user subroutine that returns the pressure information through an array output_value.

The return value output_value(1,inode) is the pressure at the node inode. The total

pressure on the each face is found by integrating the pressures at the nodes. The values of

the flags array are not used.

See Chapter 10 for more details on implementing the user subroutine option.

6.5.1.4 External Pressure Sources

Pressure may be obtained from two different external sources. The first option for obtaining pres-

sure from an external source uses a mesh file. The commands for obtaining pressure information

from a mesh file are as follows:

READ VARIABLE = <string>variable_name

OBJECT TYPE = <string>NODE|FACE(NODE)

TIME = <real>time

The READ VARIABLE command line specifies the name of the variable on the mesh file,

variable_name, that is used to prescribe the pressure field. The OBJECT TYPE command line

specifies whether the pressure field on the mesh file is specified for nodes (the mesh object type

is NODE) or for faces (the mesh object type is FACE). If the OBJECT TYPE command line is not

present, it is assumed that the variable is for nodes. If the TIME command line is present, only

the pressure field information at a given time, as set by the time parameter, is read from the mesh

file. If the TIME command line is not present, the pressure field information for all times is read.

Pressure field information will then be interpolated as necessary during an analysis.

The second option for obtaining pressure from and external sources relies on the transfer of infor-

mation from another SIERRA code. The command for obtaining pressure information by transfer

from another code is:

334

FIELD VARIABLE = <string>variable_name

Here variable_name is the name of the variable where pressure information is to be stored. The

pressure information will be transferred into this variable from another SIERRA code via a transfer

operator.

6.5.1.5 Output Command

This command line lets the user create a variable that stores information about the contribution to

the external force vector at a node arising solely from a pressure:

EXTERNAL FORCE CONTRIBUTION OUTPUT NAME =

<string>variable_name

If the above command line appears in a PRESSURE command block, then there will be a vari-

able created with whatever name the user specifies for variable_name. The variable defines a

three-dimensional vector at each node associated with this particular command block. The three-

dimensional vector at each node represents the external force due solely to the pressure on the

elements attached to that node. For example, if one of the nodes associated with this particu-

lar command block has four elements attached to it and each element has a pressure load, then

the external force contribution at the node would be summed from the pressure load for all four

elements.

Once this variable for the external force contribution from a pressure load is specified, it may be

used like any other nodal variable. The user can, for example, specify the variable as a nodal vari-

able to be output in a RESULTS OUTPUT command block. Or the user can reference the variable

in a user subroutine.

6.5.1.6 Additional Commands

These command lines in the PRESSURE command block provide additional options for the bound-

ary condition:

USE DEATH = <string>death_name

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

The USE DEATH command line links the pressure boundary condition to an element death defini-

tion. The string death_name must match a name used in an ELEMENT DEATH command block.

When elements are killed by the named element death definition, the pressure boundary condition

will be applied to the newly exposed faces.

The SCALE FACTOR command line is used to apply an additional scaling factor, which is constant

in both time and space, to all vector magnitude values of the field defined by the function command

335

or the user subroutine. For example, if the magnitude of the pressure in a time history function is

given as 1.5 from time 1.0 to time 2.0 and the scale factor is 0.5, then the magnitude of the pressure

from time 1.0 to 2.0 is 0.75. The default value for the scale factor is 1.0.

The ACTIVE PERIODS and INACTIVE PERIODS command lines determine when the boundary

condition is active. See Section 2.5 for more information about these command lines.

336

6.5.2 Traction

BEGIN TRACTION

#

surface set commands

SURFACE = <string list>surface_names

REMOVE SURFACE = <string list>surface_names

#

specification commands

DIRECTION = <string>direction_name

FUNCTION = <string>function_name

#

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

additional commands

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [TRACTION]

The TRACTION command block applies a traction to each face in the associated surfaces. The

traction has units of force per unit area. (A traction, unlike a pressure, may not necessarily be in

the direction of the normal to the face to which it is applied.) The given traction is integrated over

the surface area of a face.

The traction field can be determined by a SIERRA function or a user subroutine. If the traction

field is constant over the faces and has only a time-varying component, the specification commands

in the above command block can be used to specify the traction field. If the traction field has both

time-varying and spatially varying components, a user subroutine is used to specify the traction

field.

The traction field can only be controlled by one method. Accordingly, a TRACTION command

block can only contain one of the options: function or user subroutine.

Currently, the TRACTION command block can be used for surfaces that have faces derived from

solid elements (eight-node hexahedra, four-node tetrahedra, eight-node tetrahedra, etc.), mem-

branes, and shells.

The TRACTION command block contains three groups of commands—surface set and user sub-

routine. Each of these command groups is basically independent of the others. In addition

to the command lines in the four command groups, there are three additional command lines:

337

SCALE FACTOR, ACTIVE PERIODS, and INACTIVE PERIODS. The SCALE FACTOR command

line can be used in conjunction with the specification commands or the user subroutine option.

The ACTIVE PERIODS and INACTIVE PERIODS command lines are used to activate or deac-

tivate this force boundary condition for certain time periods. Following are descriptions of the

different command groups.

6.5.2.1 Surface Set Commands

The surface set commands portion of the TRACTION command block defines a set of surfaces

associated with the traction field and can include some combination of the following command

lines:

SURFACE = <string list>surface_names

REMOVE SURFACE = <string list>surface_names

In the SURFACE command line, you can list a series of surfaces through the string list surface_

names. There must be at least one SURFACE command line in the command block. The

REMOVE SURFACE command line allows you to delete surfaces from the set specified in the

SURFACE command line(s) through the string list surface_names. See Section 6.1.1 for more in-

formation about the use of these command lines for creating a set of surfaces used by the boundary

condition.

6.5.2.2 Specification Commands

If the specification commands are used, the traction vector at any given time is the same for all

surfaces associated with the particular TRACTION command block. The direction of the traction

vector is constant for all time; the magnitude of the traction vector may vary with time, however.

Following are the command lines used to specify the traction with a direction and a function:

DIRECTION = <string>defined_direction

FUNCTION = <string>function_name

The traction is specified in an arbitrary user-defined direction, and is defined using the DIRECTION

command line. The name in the string defined_direction is a reference to a direction, which

is defined using the DEFINE DIRECTION command block within the SIERRA scope.

The magnitude of the traction is specified by the FUNCTION command line. This references a

function_name (defined in the SIERRA scope in a DEFINITION FOR FUNCTION command

block) that specifies the magnitude of the traction vector as a function of time. The magnitude can

be scaled by use of the SCALE FACTOR command line described in Section 6.5.2.4.

338

6.5.2.3 User Subroutine Commands

If the user subroutine option is used, the traction vector may vary spatially at any given time for

each of the surfaces associated with the particular TRACTION command block. The user subroutine

option allows for a more complex description of the traction field than does the function option,

but the user subroutine option also requires that you write a user subroutine to implement this

capability. The user subroutine will be used to define a traction for every face to which the bound-

ary condition will be applied. The subroutine will be called by Adagio at the appropriate time to

generate the traction field.

Following is the command line related to the user subroutine option:

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

The user subroutine option is invoked by using the NODE SET subroutine command line. The

string subroutine_name is the name of a FORTRAN subroutine that is written by the user.

Associating traction values with nodes requires the use of a NODE SET SUBROUTINE command

line.

Following the NODE SET SUBROUTINE command line are other command lines that may be used

to implement the user subroutine option. These command lines are described in Section 10.2.2 and

consist of SUBROUTINE DEBUGGING OFF, SUBROUTINE DEBUGGING ON, SUBROUTINE REAL

PARAMETER, SUBROUTINE INTEGER PARAMETER, and SUBROUTINE STRING PARAMETER.

Examples of using these command lines are provided throughout Chapter 10.

The magnitude set in the user subroutine can be scaled by use of the SCALE FACTOR command

line, as described in Section 6.5.2.4.

Usage requirements for the node set subroutine. The node set subroutine that you write will

return six values per node. Suppose you have written a user subroutine that passes the output

values through an array output_values. For a given node inode, the output_values array

would have the following values:

output_values(1,inode) = magnitude of traction

output(values(2,inode) = not used

output_values(3,inode) = not used

output_values(4,inode) = x component of direction vector

output_values(5,inode) = y component of direction vector

output_values(6,inode) = z component of direction vector

339

The direction in which the traction will act is given by components 4 through 6 of output_values

for inode. The magnitude of the traction in the specified direction is given by component 1 of

output_values at inode. The total force on each node is found by integrating the local nodal

tractions using the associated directions, which are normalized by Adagioover the face areas. The

values of the flags array are not used.

See Chapter 10 for more details on implementing the user subroutine option.

6.5.2.4 Additional Commands

These command lines in the TRACTION command block provide additional options for the bound-

ary condition:

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

The SCALE FACTOR command line is used to apply an additional scaling factor, which is constant

in both time and space, to all vector magnitude values of the field defined by the specification

commands or the user subroutine. For example, if the magnitude of the traction in a time history

function is given as 1.5 from time 1.0 to time 2.0 and the scale factor is 0.5, then the magnitude of

the traction from time 1.0 to 2.0 is 0.75. The default value for the scale factor is 1.0.

The ACTIVE PERIODS and INACTIVE PERIODS command lines determine when the boundary

condition is active. See Section 2.5 for more information about these command lines.

340

6.5.3 Prescribed Force

BEGIN PRESCRIBED FORCE

#

node set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

specification commands

DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z

FUNCTION = <string>function_name

#

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

additional commands

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [PRESCRIBED FORCE]

The PRESCRIBED FORCE command block prescribes a force field for a given set of nodes. The

force field associates a vector giving the magnitude and direction of the force with each node

in the node set. The force field may vary over time and space. If the force field has only a

time-varying component, the specification commands in the above command block can be used to

specify the force field. If the force field has both time-varying and spatially varying components,

a user subroutine is used to specify the force field. In a given boundary condition command block,

commands from only one of the command groups (specification commands or user subroutine

commands) may be used.

The PRESCRIBED FORCE command block contains three groups of commands—node set, func-

tion, and user subroutine. Each of these command groups is basically independent of the others. In

addition to the command lines in the three command groups, there are three additional command

lines: SCALE FACTOR, ACTIVE PERIODS, and INACTIVE PERIODS. The SCALE FACTOR com-

341

mand line can be used in conjunction with either the specification commands or the user subroutine

commands. The ACTIVE PERIODS and INACTIVE PERIODS command lines are used to activate

or deactivate this force boundary condition for certain time periods. Following are descriptions of

the different command groups.

6.5.3.1 Node Set Commands

The node set commands portion of the PRESCRIBED FORCE command block defines a set of

nodes associated with the prescribed force field and can include some combination of the following

command lines:

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators for constructing a

set of nodes. See Section 6.1.1 for more information about the use of these command lines for

creating a set of nodes used by the boundary condition. There must be at least one NODE SET,

SURFACE, BLOCK, or INCLUDE ALL BLOCKS command line in the command block.

6.5.3.2 Specification Commands

If the specification commands are used, the force vector at any given time is the same for all nodes

in the node set associated with the particular PRESCRIBED FORCE command block. The direction

of the force vector is constant for all time; the magnitude of the force vector may vary with time,

however.

Following are the command lines used to specify the prescribe force with a direction and a function:

DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z

FUNCTION = <string>function_name

The force can be specified either along an arbitrary user-defined direction or along a component

direction (X, Y, or Z), but not both.

- The DIRECTION command line is used to prescribe force in an arbitrary user-defined direc-

tion. The name in the string defined_direction is a reference to a direction, which is

defined using the DEFINE DIRECTION command block within the SIERRA scope.

342

- The COMPONENT command line is used to specify that the force vector lies along one of the

component directions. The COMPONENT command line is a shortcut to an internally defined

direction vector; for example, component x corresponds to using direction vector (1, 0, 0).

The magnitude of the force is specified by the FUNCTION command line. This references a

function_name (defined in the SIERRA scope in a DEFINITION FOR FUNCTION command

block) that specifies the magnitude of the force vector as a function of time. The magnitude can be

scaled by use of the SCALE FACTOR command line described in Section 6.5.3.4.

The force is applied only in the prescribed direction, and is not applied in any direction orthogonal

to that direction.

6.5.3.3 User Subroutine Commands

If the user subroutine option is used, the force vector may vary spatially at any given time for each

of the nodes in the node set associated with the particular PRESCRIBED FORCE command block.

The user subroutine option allows for a more complex description of the force field than does

the function option, but the user subroutine option also requires that you write a user subroutine

to implement this capability. The user subroutine will be used to define a force direction and a

magnitude for every node to which the boundary condition will be applied. The subroutine will be

called by Adagio at the appropriate time to generate the force field.

Following are the command lines related to the user subroutine option:

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

The user subroutine option is invoked by using the NODE SET SUBROUTINE command line. The

string subroutine_name is the name of a FORTRAN subroutine that is written by the user.

Following the NODE SET SUBROUTINE command line are other command lines that may be used

to implement the user subroutine option. These command lines are described in Section 10.2.2 and

consist of SUBROUTINE DEBUGGING OFF, SUBROUTINE DEBUGGING ON, SUBROUTINE REAL

PARAMETER, SUBROUTINE INTEGER PARAMETER, and SUBROUTINE STRING PARAMETER.

Examples of using these command lines are provided throughout Chapter 10.

The magnitude set in the user subroutine can be scaled by use of the SCALE FACTOR command

line, as described in Section 6.5.3.4.

Usage requirements for the node set subroutine. The subroutine that you write will return three

output values per node. Suppose you write a user subroutine that passes the output values through

343

an array output_values. For a given node inode, the output_values array would have the

following values:

output_values(1,inode) = x component of force at inode

output_values(2,inode) = y component of force at inode

output_values(3,inode) = z component of force at inode

The three components of the force vector are given in output_values 1 through 3. The values

of the flags array are ignored.

See Chapter 10 for more details on implementing the user subroutine option.

6.5.3.4 Additional Commands

These command lines in the PRESCRIBED FORCE command block provide additional options for

the boundary condition:

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

The SCALE FACTOR command line is used to apply an additional scaling factor, which is constant

in both time and space, to all vector magnitude values of the field defined by the specification

commands or the user subroutine. For example, if the magnitude of the force in a time history

function is given as 1.5 from time 1.0 to time 2.0 and the scale factor is 0.5, then the magnitude of

the force from time 1.0 to 2.0 is 0.75. The default value for the scale factor is 1.0.

The ACTIVE PERIODS and INACTIVE PERIODS command lines determine when the boundary

condition is active. See Section 2.5 for more information about these command lines.

344

6.5.4 Prescribed Moment

BEGIN PRESCRIBED MOMENT

#

node set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

specification commands

DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z

FUNCTION = <string>function_name

#

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

additional commands

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [PRESCRIBED MOMENT]

The PRESCRIBED MOMENT command block prescribes a moment field for a given set of nodes.

Moments can only be defined for nodes attached to beam or shell elements. The moment field

associates a vector giving the magnitude and direction of the moment with each node in the node

set. If the moment field has only a time-varying component, the specification commands in the

above command block can be used to specify the moment field. If the moment field has both time-

varying and spatially varying components, a user subroutine option is used to specify the moment

field. In a given boundary condition command block, commands from only one of the command

groups (specification commands or user subroutine commands) may be used.

The PRESCRIBED MOMENT command block contains three groups of commands—node set, func-

tion, and user subroutine. Each of these command groups is basically independent of the others.

In addition to the command lines in the four command groups, there are three additional command

lines: SCALE FACTOR, ACTIVE PERIODS, and INACTIVE PERIODS. The SCALE FACTOR com-

345

mand line can be used in conjunction with either the specification commands or the user subroutine

commands. The ACTIVE PERIODS and INACTIVE PERIODS command lines are used to activate

or deactivate this force boundary condition for certain time periods. Following are descriptions of

the different command groups.

6.5.4.1 Node Set Commands

The node set commands portion of the PRESCRIBED MOMENT command block defines a set

of nodes associated with the prescribed moment field and can include some combination of the

following command lines:

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators for constructing a

set of nodes. See Section 6.1.1 for more information about the use of these command lines for

creating a set of nodes used by the boundary condition. There must be at least one NODE SET,

SURFACE, BLOCK, or INCLUDE ALL BLOCKS command line in the command block.

6.5.4.2 Specification Commands

If the specification commands are used, the moment vector at any given time is the same for all

nodes in the node set associated with the particular PRESCRIBED MOMENT command block. The

direction of the moment vector is constant for all time; the magnitude of the moment vector may

vary with time, however.

Following are the command lines used to specify the prescribed moment with a function and a

direction:

DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z

FUNCTION = <string>function_name

The moment can be specified either along an arbitrary user-defined direction or along a component

direction (X, Y, or Z), but not both.

- The DIRECTION command line is used to prescribe the moment in an arbitrary user-defined

direction. The name in the string defined_direction is a reference to a direction, which

is defined using the DEFINE DIRECTION command block within the SIERRA scope.

346

- The COMPONENT command line is used to specify that the moment vector lies along one

of the component directions. The COMPONENT command line is a shortcut to an internally

defined direction vector; for example, component x corresponds to using direction vector (1,

0, 0).

The magnitude of the moment is specified by the FUNCTION command line. This references a

function_name (defined in the SIERRA scope in a DEFINITION FOR FUNCTION command

block) that specifies the magnitude of the moment vector as a function of time. The magnitude can

be scaled by use of the SCALE FACTOR command line described in Section 6.5.4.4.

The moment is applied only in the prescribed direction, and is not applied in any direction orthog-

onal to that direction.

6.5.4.3 User Subroutine Commands

If the user subroutine option is used, the moment vector may vary spatially at any given time for

each of the nodes in the node set associated with the particular PRESCRIBED MOMENT command

block. The user subroutine option allows for a more complex description of the moment field

than do specification commands, but the user subroutine option also requires that you write a user

subroutine to implement this capability. The user subroutine will be used to define a moment

direction and a magnitude for every node to which the boundary condition will be applied. The

subroutine will be called by Adagio at the appropriate time to generate the moment field.

Following are the command lines related to the user subroutine option:

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

The user subroutine option is invoked by using the NODE SET SUBROUTINE command line. The

string subroutine_name is the name of a FORTRAN subroutine that is written by the user.

Following the NODE SET SUBROUTINE command line are other command lines that may be used

to implement the user subroutine option. These command lines are described in Section 10.2.2 and

consist of SUBROUTINE DEBUGGING OFF, SUBROUTINE DEBUGGING ON, SUBROUTINE REAL

PARAMETER, SUBROUTINE INTEGER PARAMETER, and SUBROUTINE STRING PARAMETER.

Examples of using these command lines are provided throughout Chapter 10.

The magnitude set in the user subroutine can be scaled by use of the SCALE FACTOR command

line, as described in Section 6.5.4.4.

Usage requirements for the node set subroutine. The subroutine that you write will return three

output values per node. Suppose you write a user subroutine that passes the output values through

347

an array output_values. For a given node inode, the output_values array would have the

following values:

output_values(1,inode) = moment about x-direction at inode

output_values(2,inode) = moment about y-direction at inode

output_values(3,inode) = moment about z-direction at inode

The three components of the moment vector are given in output_values 1 through 3. The values

of the flags array are ignored.

See Chapter 10 for more details on implementing the user subroutine option.

6.5.4.4 Additional Commands

These command lines in the PRESCRIBED MOMENT command block provide additional options

for the boundary condition:

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

The SCALE FACTOR command line is used to apply an additional scaling factor, which is constant

in both time and space, to all vector magnitude values of the field defined by the specification

commands or the user subroutine. For example, if the magnitude of the moment in a time history

function is given as 1.5 from time 1.0 to time 2.0 and the scale factor is 0.5, then the magnitude of

the moment from time 1.0 to 2.0 is 0.75. The default value for the scale factor is 1.0.

The ACTIVE PERIODS and INACTIVE PERIODS command lines determine when the boundary

condition is active. See Section 2.5 for more information about these command lines.

348

6.6 Gravity

BEGIN GRAVITY

#

node set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

DIRECTION = <string>defined_direction

FUNCTION = <string>function_name

GRAVITATIONAL CONSTANT = <real>g_constant

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [GRAVITY]

A gravity load is generally referred to as a body force boundary condition. A gravity load generates

a force at a node that is proportional to the mass of the node. This section describes how to apply

a gravity load to a body.

The GRAVITY command block is used to specify a gravity load that is applied to all nodes selected

within a command block. The gravity load boundary condition uses the function and scale (grav-

itational constant and scale factor) information to generate a body force at a node based on the

mass of the node. Multiple GRAVITY command blocks can be defined on different sets of nodes.

If two different GRAVITY command blocks reference the same node, the node will have gravity

loads applied by both of the command blocks. Care must be taken to make sure you do not apply

multiple gravity loads to one block if you only want one gravity load condition applied.

The node set commands portion of the GRAVITY command block defines a set of nodes asso-

ciated with the gravity load and can include some combination of the following command lines:

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators for constructing a

set of nodes. See Section 6.1.1 for more information about the use of these command lines for

349

creating a set of nodes used by the boundary condition. There must be at least one NODE SET,

SURFACE, BLOCK, or INCLUDE ALL BLOCKS command line in the command block.

The gravity load is specified along an arbitrary user-defined direction, and is defined using the

DIRECTION command line. The name in the string defined_direction is a reference to a

direction, which is defined using the DEFINE DIRECTION command block within the SIERRA

scope.

The strength of the gravitational field can be varied with time by using the FUNCTION com-

mand line. This command line references a function_name defined in the SIERRA scope in

a DEFINITION FOR FUNCTION command block.

A gravitational constant is specified by the GRAVITATIONAL CONSTANT command line in the real

value g_constant. For example, the gravitational constant in units of inches and seconds would

be 386.4 inches per second squared. You must set this quantity based on the actual units for your

model.

The dependent variables in the function can be scaled by the real value scale_factor in the

SCALE FACTOR command line. At any given time, the strength of the gravitational field is a

product of the gravitational constant, the value of the function at that time, and the scale factor.

The ACTIVE PERIODS and INACTIVE PERIODS command lines provides an additional option

for the gravity load condition. These command lines can activate or deactivate the gravity load for

certain time periods. See Section 2.5 for more information about these command lines.

350

6.7 Prescribed Temperature

BEGIN PRESCRIBED TEMPERATURE

#

block set commands

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE BLOCK = <string list>block_names

#

specification command

FUNCTION = <string>function_name

#

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

external database commands

READ VARIABLE = <string>var_name

COPY VARIABLE = <string>var_name [FROM MODEL <string>model_name]

TIME = <real>time

TEMPERATURE TYPE = SOLID_ELEMENT|SHELL_ELEMENT (SOLID_ELEMENT)

#

coupled analysis commands

RECEIVE FROM TRANSFER [FIELD TYPE = NODE|ELEMENT(NODE)]

#

additional commands

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [PRESCRIBED TEMPERATURE]

The PRESCRIBED TEMPERATURE command block prescribes a temperature field for a given set

of nodes. The prescribed temperature is for each node in the node set. The temperature field

may vary over time and space. If the temperature field has only a time-varying component, the

function command in the above command block can be used to specify the temperature field. If

the temperature field has both time-varying and spatially varying components, a user subroutine

option can be used to specify the temperature field. Finally, you may also read the temperature as

a variable from the mesh file. You can select only one of these options—function, user subroutine,

or read variable—in a command block.

Temperature is applied to nodes, but it is frequently used at the element level, such as in the case

for thermal strains. If the temperatures are used at the element level, the nodal values are averaged

(depending on element) connectivity to produce an element temperature. The temperatures must

351

be defined for all the nodes defining the connectivity for any given element. For this reason, we

use block commands to derive a set of nodes at which to define temperatures. If the temperatures

are used on an element basis, then the temperature at all the necessary nodes will be defined.

The PRESCRIBED TEMPERATURE command block contains four groups of commands—block set,

function, user subroutine, and read variable. Each of these command groups is basically indepen-

dent of the others. In addition to the command lines in the four command groups, there are three

additional command lines: SCALE FACTOR, ACTIVE PERIODS, and INACTIVE PERIODS. The

SCALE FACTOR command line can be used in conjunction with the function command, the user

subroutine option, or the read variable option. The ACTIVE PERIODS and INACTIVE PERIODS

command lines are used to activate or deactivate this kinematic boundary condition for certain time

periods. Following are descriptions of the different command groups.

6.7.1 Block Set Commands

The block set commands portion of the PRESCRIBED TEMPERATURE command block defines

a set of nodes associated with the prescribed temperature field and can include some combination

of the following command lines:

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators for constructing

a set of nodes derived from some combination of element blocks. See Section 6.1.1 for more

information about the use of these command lines for creating a set of nodes used by the boundary

condition. There must be at least one BLOCK or INCLUDE ALL BLOCKS command line in the

command block.

6.7.2 Specification Command

If the function command is used, the temperature at any given time is the same for all nodes in

the node set associated with the particular PRESCRIBED TEMPERATURE command block. The

command line

FUNCTION = <string>function_name

references a function_name (defined in the SIERRA scope using a DEFINITION FOR

FUNCTION command block) that specifies the temperature as a function of time. The tempera-

ture can be scaled by use of the SCALE FACTOR command line described in Section 6.7.6.

352

6.7.3 User Subroutine Commands

If the user subroutine option is used, the temperature field may vary spatially at any given time

for each of the nodes in the node set associated with the particular PRESCRIBED TEMPERATURE

command block. The user subroutine option allows for a more complex description of the temper-

ature field than does the function command, but the user subroutine option also requires that you

write a user subroutine to implement this capability. The user subroutine will be used to define a

temperature for every node to which the boundary condition will be applied. The subroutine will

be called by Adagio at the appropriate time to generate the temperature field.

Following are the command lines related to the user subroutine option:

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

The user subroutine option is invoked by using the NODE SET SUBROUTINE command line. The

string subroutine_name is the name of a FORTRAN subroutine that is written by the user.

Several other commands control the behavior of user subroutines: SUBROUTINE DEBUGGING

OFF, SUBROUTINE DEBUGGING ON, SUBROUTINE REAL PARAMETER, SUBROUTINE INTEGER

PARAMETER, and SUBROUTINE STRING PARAMETER. These are described in Section 10.2.2. Ex-

amples of using these command lines are provided throughout Chapter 10.

The temperature set in the user subroutine can be scaled by use of the SCALE FACTOR command

line, as described in Section 6.7.6.

See Chapter 10 for more details on implementing the user subroutine option.

6.7.4 External Mesh Database Commands

If the external database option is used, the temperature field is read from an external mesh database.

The temperatures are read from a finite element model defined via the FINITE ELEMENT MODEL

command block described in Section 5.1. The finite element model can either be the model used by

the region for its mesh definition as specified with the USE FINITE ELEMENT MODEL command

(see Section 2.3), or it can be a different (but compatible) model. The following command lines

control the use of an external mesh database to prescribe the temperature:

READ VARIABLE = <string>mesh_var_name

COPY VARIABLE = <string>var_name [FROM MODEL <string>model_name]

TIME = <real>time

TEMPERATURE TYPE = SOLID_ELEMENT|SHELL_ELEMENT (SOLID_ELEMENT)

353

The READ VARIABLE command is used to read the temperature from the region’s finite element

mesh database. The var_name string specifies the name of the variable as it appears on the mesh

database.

If the analysis will cause topology modifications due to the use of load balancing, remeshing, or

other techniques that can result in nodes and/or elements being moved among processors, then

the COPY VARIABLE command should be used. This command specifies that the variable named

var_name will be used to specify the temperature. The FROM MODEL <string>model_name

portion of the command is optional. If it is specified, the results are read from the mesh database

named model_name. Otherwise, the region’s finite element mesh database will be used as the

model.

The primary difference between the behavior of the COPY VARIABLE command and the READ

VARIABLE command is that the copy command handles topology modifications caused by load

balancing and remeshing, which can move nodes and elements to different processors. The

COPY VARIABLE command will correctly match the nodes from the external database to the cor-

responding nodes in the analysis and communicate the data between processors if needed. Note

that the nodes in the two finite element models must match spatially, but they can be distributed on

different processors.

The field to be read may be specified at an arbitrary number of different times on the mesh file.

The default behavior is for the time history of the variable read from the file to be used to prescribe

the boundary condition. The time history is interpolated as needed for analysis times that do not

correspond exactly to times on the mesh file. The TIME command line can optionally be used

to specify that the boundary condition be constant over time, based on the value of the variable

read from the file at the specified time. If the specified time on the TIME command line does not

correspond exactly to a time on the mesh file, the data on the mesh file will be interpolated as

needed.

If temperature is to be prescribed for shell elements, a linear or quadratic thermal gradient can

optionally be specified through the thickness of the shells using the TEMPERATURE TYPE com-

mand line. The SOLID_ELEMENT option to this command is the default behavior, and results

in a single temperature being read for each node into the temperature variable. With the

SHELL_ELEMENT option, temperatures are read into the shell_temperature variable. Shell

elements may potentially define a temperature gradient though the thickness, in which case there

will be multiple temperatures at a node to describe the temperature gradient through the shell. The

TEMPERATURE_TYPE command is only valid in conjunction with the READ VARIABLE command.

Though-thickness shell temperatures follow the Aria/Calore convention. If there is a single shell

temperature defined at a node, the temperature is constant through the thickness.

If there are two shell temperatures defined at a node, the first is the temperature on the bottom of

the shell and the second the temperature at the top. The temperature varies linearly between the

top and bottom.

If there are three shell temperatures defined at node, the first is the temperature at the bottom of the

shell, the second the temperature at the middle of the shell, and the third the temperature at the top

of the shell. The temperature varies quadratically through the thickness.

354

SOLID_ELEMENT and SHELL_ELEMENT temperatures may be defined simultaneously in the same

analysis through two different temperature command blocks. If both are defined, the shell element

temperature results override any solid element temperature results on the shell elements.

6.7.5 Coupled Analysis Commands

The RECEIVE FROM TRANSFER command provides the ability to set the temperature in a coupled

analysis by transferring results from another SIERRA code, such as Aria.

RECEIVE FROM TRANSFER [FIELD TYPE = NODE|ELEMENT(NODE)]

If this command is used in its default form, it is expected that the temperature is transferred to a

nodal field named temperature in the Adagio region. Adagio performs an interpolation from

the nodal field to an element field named temperature. The temperature can also be transferred

directly to the element temperature field by using the optional FIELD TYPE = ELEMENT ar-

gument to this command.

If the RECEIVE FROM TRANSFER command is used, but the appropriate commands to perform

the transfer between the two regions are missing, the temperature will be zero during the entire

simulation.

It is also possible to use this line command to cause the initial temperatures obtained from a restart

file to remain constant in time.

6.7.6 Additional Commands

These command lines in the PRESCRIBED TEMPERATURE command block provide additional op-

tions for the boundary condition:

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

The SCALE FACTOR command line is used to apply an additional scaling factor, which is constant

in both time and space, to all temperature values of the field defined by the function command,

the user subroutine, or the read variable option. For example, if the temperature in a time history

function is given as 100.5 from time 1.0 to time 2.0 and the scale factor is 0.5, then the temperature

from time 1.0 to 2.0 is 50.25. The default value for the scale factor is 1.0.

The ACTIVE PERIODS and INACTIVE PERIODS command lines determine when the boundary

condition is active. See Section 2.5 for more information about these command lines.

355

6.8 Pore Pressure

BEGIN PORE PRESSURE

#

block set commands

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE BLOCK = <string list>block_names

#

specification command

FUNCTION = <string>function_name

#

user subroutine commands

ELEMENT BLOCK SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

external database commands

READ VARIABLE = <string>var_name

COPY VARIABLE = <string>var_name [FROM MODEL <string>model_name]

TIME = <real>time

#

coupled analysis commands

RECEIVE FROM TRANSFER [FIELD TYPE = NODE|ELEMENT(NODE)]

#

additional commands

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [PORE PRESSURE]

The PORE PRESSURE command block prescribes a pore pressure field for a given set of elements.

The pore pressure is prescribed for each element in the block. The pore pressure field may vary

over time and space. If the pore pressure field has only a time-varying component, the function

command in the above command block can be used to specify the pore pressure field. If the pore

pressure field has both time-varying and spatially varying components, a user subroutine option

can be used to specify the pore pressure field. Finally, the pore pressure can be read as a variable

from the mesh file. You can select only one of these options—function, user subroutine, or read

variable—in a command block.

The PORE PRESSURE command block contains four groups of commands—block set, function,

user subroutine, and read variable. Each of these command groups is basically independent of

the others. In addition to the command lines in the four command groups, there are three ad-

ditional command lines: SCALE FACTOR, ACTIVE PERIODS, and INACTIVE PERIODS. The

356

SCALE FACTOR command line can be used in conjunction with the function command, the user

subroutine option, or the read variable option. The ACTIVE PERIODS and INACTIVE PERIODS

command lines are used to activate or deactivate this kinematic boundary condition for certain time

periods. Following are descriptions of the different command groups.

Biot’s coefficient can be defined when prescribing pore pressure. See Section 4.1.2 for more infor-

mation on Biot’s coefficient.

6.8.1 Block Set Commands

The block set commands portion of the PORE PRESSURE command block defines a set of

elements associated with the pore pressure field and can include a combination of the following

command lines:

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators for constructing

a set of elements derived from some combination of element blocks. See Section 6.1.1 for more

information about the use of these command lines for creating a set of elements used by the bound-

ary condition. There must be at least one BLOCK or INCLUDE ALL BLOCKS command line in the

command block.

6.8.2 Specification Command

If the FUNCTION command is used, the pore pressure at any given time is the same for all elements

in the element set associated with the particular PORE PRESSURE command block. The command

line

FUNCTION = <string>function_name

references a function_name (defined in the SIERRA scope using a DEFINITION FOR

FUNCTION command block) that specifies the pore pressure as a function of time. The pore pres-

sure can be scaled using the SCALE FACTOR command line described in Section 6.8.6.

6.8.3 User Subroutine Commands

If the user subroutine option is used, the pore pressure field may vary spatially at any given time for

each of the elements in the element set associated with the particular PORE PRESSURE command

block. The user subroutine option allows for a more complex description of the pore pressure

field than does the FUNCTION command, but the user subroutine option also requires that a user

357

subroutine be written to implement this capability. The user subroutine will be used to define a

pore pressure for every element to which the boundary condition will be applied. The subroutine

will be called by Adagio at the appropriate time to generate the pore pressure field.

Following are the command lines related to the user subroutine option:

ELEMENT BLOCK SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

The user subroutine option is invoked by using the ELEMENT BLOCK SUBROUTINE command

line. The string subroutine_name is the name of a FORTRAN subroutine that is written by the

user.

Several other commands control the behavior of user subroutines: SUBROUTINE DEBUGGING

OFF, SUBROUTINE DEBUGGING ON, SUBROUTINE REAL PARAMETER, SUBROUTINE INTEGER

PARAMETER, and SUBROUTINE STRING PARAMETER. These are described in Section 10.2.2. Ex-

amples of using these command lines are provided throughout Chapter 10.

The pore pressure set in the user subroutine can be scaled by use of the SCALE FACTOR command

line, as described in Section 6.8.6.

See Chapter 10 for more details on implementing the user subroutine option.

6.8.4 External Mesh Database Commands

The pore pressure field can be read from an external mesh database. The finite element model

from which pore pressures are read is defined via the FINITE ELEMENT MODEL command block

described in Section 5.1. The finite element model can either be the model used by the region for its

mesh definition as specified with the USE FINITE ELEMENT MODEL command (see Section 2.3),

or it can be a different (but compatible) model. The following command lines control the use of an

external mesh database to prescribe the pore pressure:

READ VARIABLE = <string>mesh_var_name

COPY VARIABLE = <string>var_name [FROM MODEL <string>model_name]

TIME = <real>time

The READ VARIABLE command is used to read the pore pressure from the region’s finite element

mesh database. The var_name string specifies the name of the variable as it appears on the mesh

database.

If the analysis will cause topology modifications due to the use of load balancing, remeshing,

or other techniques that can result in nodes and/or elements being moved among processors, the

358

COPY VARIABLE command should be used. This command specifies that the variable named

var_name will be used to specify the pore pressure. The FROM MODEL <string>model_name

portion of the command is optional. If it is specified, the results are read from the mesh database

named model_name. Otherwise, the region’s finite element mesh database will be used as the

model.

The primary difference between the behavior of the COPY VARIABLE command and the READ

VARIABLE command is that the copy command handles topology modifications caused by load

balancing and remeshing, which can move nodes and elements to different processors. The

COPY VARIABLE command will correctly match the nodes from the external database to the cor-

responding nodes in the analysis and communicate the data between processors if needed. Note

that the nodes in the two finite element models must match spatially, but they can be distributed on

different processors.

The field to be read may be specified at an arbitrary number of different times on the mesh file.

The default behavior is for the time history of the variable read from the file to be used to prescribe

the boundary condition. The time history is interpolated as needed for analysis times that do not

correspond exactly to times on the mesh file. The TIME command line can optionally be used

to specify that the boundary condition be constant over time, based on the value of the variable

read from the file at the specified time. If the specified time on the TIME command line does not

correspond exactly to a time on the mesh file, the data on the mesh file will be interpolated as

needed.

6.8.5 Coupled Analysis Commands

The RECEIVE FROM TRANSFER command provides the ability to set the pore pressure in a cou-

pled analysis by transferring results from another SIERRA code, such as Aria.

RECEIVE FROM TRANSFER [FIELD TYPE = NODE|ELEMENT(NODE)]

If this command is used in its default form, it is expected that the pore pressure is transferred to

a nodal field named pore_pressure in the Adagio region. Adagio performs an interpolation

from the nodal field to an element field named pore_pressure. The pore pressure can also be

transferred directly to the element pore_pressure field by using the optional FIELD TYPE =

ELEMENT argument to this command.

If the RECEIVE FROM TRANSFER command is used, but the appropriate commands to perform

the transfer between the two regions are missing, the pore pressure will be zero during the entire

simulation.

6.8.6 Additional Commands

These command lines in the PORE PRESSURE command block provide additional options for the

boundary condition:

359

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

The SCALE FACTOR command line is used to apply an additional scaling factor, which is constant

in both time and space, to all pore pressure values of the field defined by the function command,

the user subroutine, or the read variable option. For example, if the pore pressure in a time history

function is given as 100.5 from time 1.0 to time 2.0 and the scale factor is 0.5, then the pore

pressure from time 1.0 to 2.0 is 50.25. The default value for the scale factor is 1.0.

The ACTIVE PERIODS and INACTIVE PERIODS command lines determine when the boundary

condition is active. See Section 2.5 for more information about these command lines.

360

6.9 Fluid Pressure

BEGIN FLUID PRESSURE

#

surface set commands

SURFACE = <string list>surface_names

#

specification commands

DENSITY = <real>fluid_density

DENSITY FUNCTION = <string>density_function_name

GRAVITATIONAL CONSTANT = <real>gravitational_acceleration

FLUID SURFACE NORMAL = <string>global_component_names

DEPTH = <real>fluid_depth

DEPTH FUNCTION = <string>depth_function_name

REFERENCE POINT = <string>reference_point_name

#

additional commands

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [PRESSURE]

The FLUID PRESSURE command block applies a hydrostatic pressure to each node of each face

in the associated surfaces. The pressure at any node is determined from

P = ρgh (6.2)

where P is the pressure, ρ is the fluid density at the current time, g is the gravitational constant, and

h is the current depth of the fluid above the node. The depth of the fluid is computed as the distance

from the current fluid surface to the node in the direction of the fluid surface normal. The normal

must be specified as one of the three global coordinate directions, x, y, or z. The global location

of the fluid surface is found by adding the current depth to the appropriate coordinate component

(the direction defined in the FLUID SURFACE NORMAL command) of a datum point. The datum

point is either the point specified in the REFERENCE POINT line command, or, in the absence of

this command, the minimum coordinate on the applied pressure surface in the component direction

defined in the FLUID SURFACE NORMAL command. Once the current location of the fluid surface

is computed, the depth at each node on the pressure surface is computed as the distance from the

node to the fluid surface in the direction of the fluid surface normal.

Currently, the FLUID PRESSURE command block can be used for surfaces that have faces de-

rived from solid elements (eight-node hexahedra, four-node tetrahedra, eight-node tetrahedra, etc.),

membranes, and shells.

The FLUID PRESSURE command block contains three groups of commands—surface set, specifi-

cation, and additional optional commands.

361

6.9.1 Surface Set Commands

The surface set commands portion of the FLUID PRESSURE command block defines a set of

surfaces associated with the pressure field and consists of the following line:

SURFACE = <string list>surface_names

In the SURFACE command line, a series of surfaces can be listed through the string list surface_

names. There must be at least one SURFACE command line in the command block. See Sec-

tion 6.1.1 for more information about the use of command lines for creating a set of surfaces used

by the boundary condition. The force computed from the hydrostatic pressure will be in the oppo-

site direction of the face normal. When using shells or membranes, the analyst must ensure that all

face normals composing the pressure application surface are in the correct direction.

6.9.2 Specification Commands

The density and the gravitational acceleration must be input by the user in units consistent with

other material properties and the lengths in the mesh. To facilitate convergence of the initial load

step, the gradual application of a hydrostatic load may be specified through a time history function

for the density. A combination of the DENSITY and the DENSITY FUNCTION sets the value for

the fluid density at each time. Either the DENSITY or the DENSITY FUNCTION must be input and

both can be used together. If the DENSITY command is input without the DENSITY FUNCTION

command, the density will be constant in time at that value. If the DENSITY FUNCTION command

is input without a DENSITY command, the function is used as a time history of the density. If both

the DENSITY and the DENSITY FUNCTION commands are input, the density value is used as a

scale factor on the time history function. Finally, the GRAVITATIONAL CONSTANT sets the value

for the acceleration due to gravity, g.

DENSITY = <real>fluid_density

DENSITY FUNCTION = <string>fluid_density_function

GRAVITATIONAL CONSTANT = <real>G

The following command lines are used to define the location of the fluid surface at any time during

the analysis:

FLUID SURFACE NORMAL = <string>normal_component

DEPTH = <real>initial_fluid_depth

DEPTH FUNCTION = <string>depth_function_name

REFERENCE POINT = <string>point_name

The FLUID SURFACE NORMAL command sets the outward normal of the fluid surface to be one of

the global component directions, x, y, or z. The fluid depth is then assumed to be in the direction

opposite this global direction. The DEPTH command is used with the DEPTH FUNCTION command

362

to determine the fluid depth at any time. At least one of these commands must be input. If the

DEPTH command is input without the DEPTH FUNCTION command, the fluid depth will be constant

in time with that value. If the DEPTH FUNCTION command is input without a DEPTH command,

the function is used as a time history of the depth. If both the DEPTH and the DEPTH FUNCTION

commands are input, the specified depth is used as a scale factor on the time history function.

The depth and/or depth function are used to determine the current depth, which is added to the

appropriate position of a datum point to compute the current location of the fluid surface in the

FLUID SURFACE NORMAL component direction. The datum point is assumed to be the minimum

coordinate in the component direction on the pressure surface defined in the SURFACE command

if the optional REFERENCE POINT command described below is not used.

The REFERENCE POINT command line is used to specify the fluid surface relative to an external

datum. When applying an external fluid pressure in a quasistatic analysis, a corresponding stiffness

due to the external fluid is added to the diagonal terms of the stiffness matrix for the full tangent

preconditioner to enhance convergence of the solver.

6.9.3 Additional Commands

These command lines in the FLUID PRESSURE command block provide additional options for the

boundary condition:

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

By default, the FLUID PRESSURE boundary condition will be active throughout an analysis. How-

ever, use of the ACTIVE PERIODS and INACTIVE PERIODS commands can be used to limit the

action of the boundary condition to specific time periods. The ACTIVE PERIODS command line

specifies when the boundary condition is active implying that it is inactive during any periods

not included on the command line. Alternatively, the INACTIVE PERIODS determines when the

boundary condition will not be active. See Section 2.5 for more information about these com-

mands.

363

6.10 Specialized Boundary Conditions

Specialized boundary conditions that are provided to enforce kinematic conditions or apply loads

are described in this section.

6.10.1 Blast Pressure

BEGIN BLAST PRESSURE

SURFACE = <string list>surface_ids

REMOVE SURFACE = <string list>surface_ids

BURST TYPE = <string>SURFACE|AIR

TNT MASS IN LBS = <real>tnt_mass_lbs

BLAST TIME = <real>blast_time

BLAST LOCATION = <real>loc_x <real>loc_y <real>loc_z

ATMOSPHERIC PRESSURE IN PSI = <real>atmospheric_press

AMBIENT TEMPERATURE IN FAHRENHEIT = <real>temperature

FEET PER MODEL UNITS = <real>feet

MILLISECONDS PER MODEL UNITS = <real>milliseconds

PSI PER MODEL UNITS = <real>psi

PRESSURE SCALE FACTOR = <real>pressure_scale(1.0)

IMPULSE SCALE FACTOR = <real>impulse_scale(1.0)

POSITIVE DURATION SCALE FACTOR = <real>duration_scale(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [BLAST PRESSURE]

The BLAST PRESSURE command block is used to apply a pressure load resulting from a con-

ventional explosive blast. This boundary condition is based on Reference 2 and Reference 3, and

Sachs scaling is implemented to match the ConWep code (Reference 4). Angle of incidence is

accounted for by transitioning from reflected pressure to incident pressure according to:

Ptotal = Pre f ∗ cosθ + Pinc ∗ (1 − cosθ) (6.3)

where θ is the angle between the face normal vector and the direction to the blast from the face,

Ptotal is the total pressure, Pre f is the reflected portion of the pressure, and Pinc is the incident portion

of the pressure. Pre f and Pinc are based on Friedlander’s equation, as described in Reference 3.

If θ is greater than 90 degrees (i.e. the face is pointing away from the blast), only Pinc is applied to

the face. In this case, the face variable cosa, which contains cosθ, is set to zero.

This boundary condition is applied to the surfaces in the finite element model specified by the

SURFACE command line. (Any surface specified on the SURFACE command line can be removed

from the list of surfaces by using a REMOVE SURFACE command line.)

364

Warning: Multiple BLAST PRESSURE command blocks may be used in an analy-

sis to apply blast loads at different locations. However, only one should be applied

to a given element face. Each instance of this boundary condition should be applied

to a different set of surfaces, and those surfaces should not overlap surfaces used by

other instances of this boundary condition. This is because face variables are used

to store information used by this boundary condition, and those variables would be

over-written by another instance of the boundary condition.

Table 8.9 lists the face variables used by the BLAST PRESSURE boundary condition. These can be

requested for output in the standard manner (see Chapter 8), and can be useful for verifying that

this boundary condition is correctly applied.

The type of burst load is specified with the BURST TYPE command, which can be SURFACE or

AIR. The SURFACE option is used to define a hemispherical burst, while the AIR option is used for

a spherical burst.

The equivalent TNT mass (in pounds) is defined with the TNT MASS IN LBS command. The time

of the explosion is defined using the BLAST TIME command. This can be negative, and can be

used to start the analysis at the time when the blast reaches the structure, saving computational

time. The location of the blast is defined with the BLAST LOCATION command.

The current ambient pressure and temperature are defined using the ATMOSPHERIC PRESSURE

IN PSI and AMBIENT TEMPERATURE IN FAHRENHEIT commands, respectively. As implied

by the command names, these must be supplied in units of pounds per square inch and degrees

Fahrenheit.

Because of the empirical nature of this method for computing an explosive load, appropriate con-

version factors for the unit system used in the model must be supplied. The commands FEET PER

MODEL UNITS, MILLISECONDS PER MODEL UNITS, and PSI PER MODEL UNITS are used to

specify the magnitude of one foot, one millisecond, and one pound per square inch in the unit

system of the model.

All of the commands listed above are required. Scaling factors can optionally be applied to modify

the peak pressure, the impulse, and the duration of the loading. The PRESSURE SCALE FACTOR

command scales the the peak value of both the reflected and incident portions of the applied pres-

sure. The IMPULSE SCALE FACTOR command scales the impulse of the reflected and incident

portions of the applied pressure. The POSITIVE DURATION SCALE FACTOR command scales

the duration of the reflected and incident portions of the applied pressure. Each of these scaling

factors only affects the quantity that it modifies, for example, scaling the pressure does not affect

the impulse or duration.

The ACTIVE PERIODS and INACTIVE PERIODS command lines can optionally be used to ac-

tivate or deactivate this boundary condition for certain time periods. See Section 2.5 for more

information about these command lines.

365

6.10.2 General Multi-Point Constraints

BEGIN MPC

#

Master/Slave MPC commands

MASTER NODE SET = <string list>master_nset

MASTER NODES = <integer list>master_nodes

MASTER SURFACE = <string list>master_surf

MASTER BLOCK = <string list>master_block

SLAVE NODE SET = <string list>slave_nset

SLAVE NODES = <integer list>slave_nodes

SLAVE SURFACE = <string list>slave_surf

SLAVE BLOCK = <string list>slave_block

#

Tied contact search commands

SEARCH TOLERANCE = <real>tolerance

VOLUMETRIC SEARCH TOLERANCE = <real>vtolerance

#

Tied MPC commands

TIED NODES = <integer list>tied_nodes

TIED NODE SET = <string list>tied_nset

#

DOF subset selection

COMPONENTS = <enum>X|Y|Z|RX|RY|RZ

END [MPC]

Control handling of multiple MPCs

RESOLVE MULTIPLE MPCS = ERROR|FIRST WINS|LAST WINS(ERROR)

Adagio provides a general multi-point constraint (MPC) capability that allows a code user to spec-

ify arbitrary constraints between sets of nodes. The commands to define a MPC are all listed within

a MPC command block. There are three types of MPCs: master/slave, tied contact, and tied. All of

these types of MPCs are defined within the MPC command block, but different commands are used

within that block for each case. The commands for each of these types of MPCs are described in

detail below.

MPCs can potentially be in conflict with other constraints. Refer to Appendix D for information

on how conflicting constraints are handled.

6.10.2.1 Master/Slave Multi-Point Constraints

The master/slave type of MPC imposes a constraint between a set of master nodes and a set of slave

nodes. The motion of the three translational degrees of freedom of the slave nodes is constrained

to be equal to the average motion of the master nodes. This type of MPC is typically most useful

if there is either a single master node and one or more slave nodes, or multiple master nodes and a

single slave node. If there are multiple slave nodes, they are constrained to move together as a set.

366

The sets of master and slave nodes used in the MPC can be defined by using a node set on the

mesh file, a list of nodes provided in the input file, or a surface on the mesh file from which a list of

nodes is extracted. This can be done for the set of master nodes using one or more of the following

commands:

MASTER NODE SET = <string list>master_nset

MASTER NODES = <integer list>master_nodes

MASTER SURFACE = <string list>master_surf

MASTER BLOCK = <string list>master_block

SLAVE NODE SET = <string list>slave_nset

SLAVE NODES = <integer list>slave_nodes

SLAVE SURFACE = <string list>slave_surf

SLAVE BLOCK = <string list>slave_block

The MASTER NODE SET and SLAVE NODE SET command lines specify the names of node sets in

the mesh file. The nodes in these node sets are included in the sets of master or slave nodes for the

constraint.

The MASTER NODES and SLAVE NODES command lines specify lists of integer IDs of nodes to be

included in the sets of master or slave nodes for the constraint.

The MASTER SURFACE and SLAVE SURFACE command lines specify the name of a surface in the

mesh file. The nodes contained in this surface are included in the sets of master or slave nodes for

the constraint.

The MASTER BLOCK and SLAVE BLOCK command lines specify the names of a block in the mesh

file. The nodes contained in these blocks are included in the sets of master or slave nodes for the

constraint.

6.10.2.2 Tied Contact

A proximity search can optionally be performed to create a set of MPCs that act as tied contact

constraints. If the MPCs are created in this way, the search is performed at the time of initialization

to find pairings of slave nodes to master faces. A separate constraint is created for each slave node.

This is equivalent to using pure master/slave tied contact.

SEARCH TOLERANCE = <real> tolerance

The SEARCH TOLERANCE command line is used to request that a search be performed to create

node/face constraints. This line must be present to use MPCs for tied contact. The tolerance value

given on the line specifies the maximum distance between a node and a face to create an MPC.

This has a similar meaning to the search tolerance used in standard tied contact.

Warning: The SEARCH TOLERANCE command line must be present to use MPCs

for tied contact. If this command is not present in the MPC command block, a

master/slave MPC as described in Section 6.10.2.1 will result. All slave nodes

would be tied to all master nodes, which is very different from tied contact.

367

VOLUMETRIC SEARCH TOLERANCE = <real> vtolerance

In addition to creating node/face constraints, a search can be used to create volumetric constraints,

in which a slave node is constrained to a volume bounded by master faces. The VOLUMETRIC

SEARCH TOLERANCE command is used to enable volumetric constraints and sets the tolerance

used for the search. The slave node is constrained to all nodes on the master surface that are within

the volumetric search tolerance, vtolerance.

Currently the primary usage of volumetric constraints is to constrain a meshed void placed inside

another mesh. The volumetric search is used in conjunction with the node/face search. A set

of node/face constraints is first created for slave nodes within the standard search tolerance of

any master face. Next, a volumetric constraint is created for any remaining unconstrained slave

node within the volumetric search tolerance of the node/face constrained nodes. The volumetric

constraint is formulated in a way that approximates an isoparametric map.

To use MPCs for tied contact, the master and slave surfaces must be defined. These may be defined

using the MASTER SURFACE, MASTER BLOCK, SLAVE NODE SET, SLAVE SURFACE, and SLAVE

BLOCK line commands. These are a subset of the commands available to define master/slave MPCs,

as described in Section 6.10.2.1. It is important to note that the MASTER NODE SET can not be

used to use MPCs for tied contact. The master surface must have information about faces, and this

is not available with a node set.

The following example demonstrates how to use MPCs for tied contact between two surfaces:

BEGIN MPC

MASTER SURFACE = surface_10

SLAVE SURFACE = surface_11

SEARCH TOLERANCE = 0.0001

END MPC

The following example demonstrates the usage of MPCs for both tied and volumetric constraints.

Assuming that surface_10 surrounds the exterior surface of block_1, this block would result

in tied contact between the nodes on the exterior of block_1 and surface_10, and volumetric

constraints between the nodes on the interior of block_1 and surface_1.

BEGIN MPC

MASTER SURFACE = surface_10

SLAVE BLOCK = block_1

SEARCH TOLERANCE = 0.0001

VOLUMETRIC SEARCH TOLERANCE = 3.0

END MPC

368

6.10.2.3 Tied Multi-Point Constraints

The tied type of MPC imposes a constraint that ties together the motion of the three translational

degrees of freedom for a set of nodes. Nodes are not specified as being masters or slaves for this

type of constraint. The set of nodes to be tied together can be specified as either a list of node IDs

or with a node set by using the TIED NODES or TIED NODE SET command.

TIED NODES = <integer list>tied_nodes

TIED NODE SET = <string list>tied_nset

The TIED NODES command line is used to specify an integer list of IDs of the nodes to be tied

together. The TIED NODE SET can be used to specify the name of a node set that contains the

nodes to be tied together. Only one of these commands can be used in a given MPC command block.

Warning: The tied MPC described here does not do a contact search. For the MPC

to behave like tied contact, use the commands described in Section 6.10.2.2.

6.10.2.4 Resolve Multiple MPCs

The behavior of multi-point constraints is ill-defined when a master node is constrained to more

than one set of slave nodes. Adagio’s MPC capability can handle chained MPCs, where a master

node is a slave node in another constraint, but it cannot simultaneously enforce multiple MPCs that

have the same master.

RESOLVE MULTIPLE MPCS = ERROR|FIRST WINS|LAST WINS(ERROR)

The RESOLVE MULTIPLE MPCS command line, used within the region scope, controls how to

resolve cases where a slave node is constrained to more than one set of master nodes. Although

multiple MPCs cannot be simultaneously enforced, this command provides ways to work around

this problem that may be acceptable in many situations. The default option is ERROR, which results

in an error message and terminates the code if this occurs. Alternatively, this command can be set

to FIRST WINS to keep the first MPC found for a given slave node or LAST WINS to keep the last

MPC found. This command line controls the behavior of all MPCs in the model.

6.10.2.5 Constraining a Subset of all DOFs

By default, multi-point constraints are applied to all degrees of freedom of the nodes involved.

For nodes that only have translational degrees of freedom, all three components (X, Y and Z) are

constrained. Likewise, for nodes that have both translational and rotational degrees of freedom, all

six components (X, Y, Z, RX, RY and RZ) are constrained. The COMPONENTS command line can be

used to enforce the constraint on a subset of the degrees of freedom. If the COMPONENTS command

line is included in a MPC command block, only the components listed would be constrained.

369

6.10.3 Submodel

BEGIN SUBMODEL

#

EMBEDDED BLOCKS = <string list>embedded_block

ENCLOSING BLOCKS = <string list>enclosing_block

END [SUBMODEL]

Adagio provides a method to embed a submodel in a larger finite element model. The element

blocks for both the submodel and the larger system model should exist in the same mesh file. The

space occupied by the embedded blocks should also be occupied by the enclosing blocks.

This capability ties each node of the submodel to an element in the larger finite element model.

The code makes no correction for mass due to volume overlap. However, this correction in many

cases can be done easily by hand simply by adjusting the density of the submodel block so that it

is the difference between the density of the submodel block and the enclosing block.

The embedded blocks (the submodel blocks) and the enclosing blocks (the system model blocks)

are specified using the following two line commands:

EMBEDDED BLOCKS = <string list>embedded_block

ENCLOSING BLOCKS = <string list>enclosing_block

For example, to embed block_7 and block_8 inside a system model where the embedded blocks

are within block_2, block_3, and block_5, the following can be used:

BEGIN SUBMODEL

EMBEDDED BLOCKS = block_7 block_8

ENCLOSING BLOCKS = block2 block_3 block_5

END

370

6.11 References

1. Brown, K. H., J. R. Koteras, D. B. Longcope, and T. L. Warren. CavityExpansion: A Library

for Cavity Expansion Algorithms, Version 1.0. SAND2003-1048. Albuquerque, NM: Sandia

National Laboratories, April 2003. pdf.

2. Kingery, C. N. and Bulmash, G. Airblast Parameters from TNT Spherical Air Burst and

Hemispherical Surface Burst, Technical Report ARBBRL-TR-02555, Aberdeen Proving

Ground, MD: Ballistic Research Laboratory, April 1984.

3. Randers-Pehrson, G. and Bannister, K. A. Airblast Loading Model for DYNA2D and

DYNA3D, ARL-TR-1310, Army Research Laboratory, March 1997.

4. Protective Design Center, United States Army Corps of Engineers, ConWep 2.1.0.8. link.

5. Lysmer, J., and R. L. Kuhlmeyer. “Finite Dynamic Model for Infinite Media.” Journal of the

Engineering Mechanics Division, Proceedings of the American Society of Civil Engineers

(August 1979): 859–877.

6. Cook, R. D., Malkus, D. S., and Plesha, M. E. Concepts and Applications of Finite Element

Analysis, Third Edition. New York: John Wiley and Sons, 1989.

371

http://infoserve.sandia.gov/sand_doc/2003/031048.pdf
https://pdc.usace.army.mil/software/conwep

372

Chapter 7

Contact

This chapter describes the input syntax for defining interactions of contact surfaces in a Adagio

analysis. For more information on contact and its computational details, consult References 1

and 2.

Contact constraints can potentially be in conflict with other constraints. Refer to Appendix D for

information on how conflicting constraints are handled.

Contact refers to the interaction of bodies when they physically touch. This can include the inter-

action of one part of a surface against another part of the same surface, the surface of one body

against the surface of another body, and so forth. The contact algorithms within Adagio are de-

signed to ensure that surfaces do not interpenetrate in a nonphysical way, and that the interface

behavior is computed correctly (e.g., energy dissipation from a friction model). Adagio uses a

kinematic approach rather than a penalty approach to eliminate the interpenetration of surfaces. In

the kinematic approach, a series of constraint equations that remove interpenetration are satisfied.

A penalty approach can be thought of as introducing “stiff” springs between contact surfaces as a

means of preventing interpenetration.

Contact between surfaces is enforced as node-face interactions. Consider the two-dimensional

contact problem shown in Figure 7.1. Block a is enclosed by surface a, and block b is enclosed by

surface b. A surface is defined by a collection of finite element faces. The surface of a block of

hexahedral elements, for example, is a collection of quadrilateral faces on the surface of the block.

For this two-dimensional drawing, the faces are straight lines between two nodes. Only the faces

on the portions of the surfaces that will come into contact are shown.

Figure 7.1 shows the two blocks at time step n. Figure 7.2 shows the blocks at time step n + 1

when the blocks have moved and deformed under the influence of external forces. Before contact

is taken into account, the two blocks interpenetrate one another. This interpenetration is removed

by applying the contact algorithm.

For interpenetration to occur as shown in Figure 7.2, any node on surface a that penetrates surface

b must pass through some face on surface b. Likewise, each node on surface b that penetrates

surface a must pass through some face on surface a. All the nodes on surface a could be forced to

lie on surface b, where surface b has the configuration shown in Figure 7.2. In this case, surface b

would be a master surface and surface a would be a slave surface. Or all nodes on surface b could

373

Figure 7.1: Two blocks at time step n before contact.

Figure 7.2: Two blocks at time step n + 1, after penetration.

be forced to lie on surface a, in which case surface a is a master surface and surface b is the slave.

In Adagio one surface of an interaction must be designated as the master and the other as the slave.

The preceding two-dimensional example is analogous to much of the contact that is encountered

when contact is used in an analysis. Surfaces are generated that consist of a collection of faces,

each face being defined by a nodal connectivity. Node-face interactions from these surfaces are

used to move nodes to account for any interpenetration of the surfaces. Adagio will also handle

variations of the node-face contact described as follows:

374

• A special case of contact called “tied contact” allows you to tie two surfaces on different

objects together. The two surfaces that are tied together share a coincident surface or are

in very close proximity at time 0.0. The initial point of contact between a tied node and an

opposing face at time 0.0 is maintained for all times. At each time step, the node is moved

so that it as the same point on the face regardless of where the faces move or how the face

deforms.

• Instead of having two surfaces in contact, you can have a set of nodes not associated with

faces that contacts a surface. We refer to this set of nodes as a “contact node set.” The nodes

in the contact node set cannot penetrate the surface.

There are some special considerations for contact with structural elements (i.e. shells) with the

current implementation of contact. A shell element has both a top face and a bottom face that are

defined by the same geometric entity.

Shell elements are handled by the contact algorithm, but they are much more difficult to handle

than solid elements. Determining whether a node has penetrated a shell element is more difficult

than determining whether a node has penetrated a solid. For a solid element with an external face,

there is only one normal for the face. For a shell element, there are two faces—one on each side of

the geometric entity that defines the shell. Each face has a normal, and the two normals for the shell

element point in opposite directions. For shell elements, two faces are constructed for the element

within the contact algorithm. The faces, each with a unique outward normal, can be coincident, or

they can be separated by the thickness of the shell. Separating the two shell faces that are originally

coincident at the geometric plane of the shell by the thickness of the shell is referred to as “lofting.”

To implement lofting, we need information about the thickness of the shell. This information is

specified in the SHELL SECTION command block described in Section 5.2.4.

Contact for shell elements is only considered on shell faces; shell edges are currently not consid-

ered. The contact of a shell edge with another shell edge is not detected, and the contact of a shell

edge with a continuum element edge is not detected. A shell element can coincide with the face

of a continuum element. The contact algorithm will properly account for this situation. Two shell

elements can also overlay each other, i.e., share the same set of nodes. The contact algorithm will

also properly account for this situation. For a block of shell elements, two surfaces are created in

contact.

Contact in Adagio is implemented in two distinct phases: a search algorithm and an enforcement

algorithm. The search algorithm identifies nodes that have penetrated a face, while the enforcement

algorithm computes the forces to remove penetration and the forces that observe the user-specified

surface physics. The contact search within Adagio focuses on large-scale global contact in a mas-

sively parallel environment. The search algorithm relies on normal and tangential tolerances to

describe a region around each face within which any nodes found are identified as potential inter-

actions. The size of these tolerances is problem dependent.

The enforcement algorithm is based on a kinematic approach as opposed to a penalty approach. A

kinematic approach is more accurate than the penalty approach.

A number of friction models are available to describe the surface interactions. In this chapter on

contact, we will use the term friction model for what is really a surface-physics model.

375

Contact within a Adagio analysis is defined within a CONTACT DEFINITION command block.

Within the contact definition scope, there are command lines and command blocks that define the

specifics for the interaction of surfaces via the contact algorithm. Some of the command lines

and command blocks within the contact scope set up default parameters that affect all contact

calculations. Some of the command blocks in the contact scope affect only the interaction between

a pair of surfaces.

There are three approaches that can be used to define a contact problem:

1. Accept all the Adagio default parameters for a problem.

2. Accept the Adagio default parameters for some of the contact surfaces. For the rest of the

contact surfaces, the user can set values in interactions.

3. Define all surface-pair interactions separately.

The general pattern of syntax for describing contact is as follows:

- Identify all surfaces that need to be considered for contact. This is done with command lines

(or command blocks) within the contact scope.

- Describe friction models used in the surface interactions for this analysis. Currently, there

are 4 types of friction models.

- Set contact search options that will serve as defaults for all the surface interactions. These

values are set in the SEARCH OPTIONS command block.

- Set default interaction values that apply to all the surface interactions. These values are set

in the INTERACTION DEFAULTS command block.

- Specify values for interactions between specific contact surfaces. This is done within an

INTERACTION command block. Values specified in this command block override the de-

faults for the particular pair of surface interactions.

376

7.1 Contact Definition Block

All commands for contact occur within a CONTACT DEFINITION command block. A summary

of these commands follows.

BEGIN CONTACT DEFINITION <string>name

#

ENFORCEMENT = <string>TIED|FRICTIONLESS|FRICTIONAL

#

CONTACT SURFACE <string>name

CONTAINS <string list>surface_names

#

BEGIN CONTACT SURFACE <string>name

BLOCK = <string list>block_names

SURFACE = <string list>surface_names

NODE SET = <string list>node_set_names

REMOVE BLOCK = <string list>block_names

REMOVE SURFACE = <string list>surface_names

REMOVE NODE SET = <string list>nodelist_names

END [CONTACT SURFACE <string>name]

#

CONTACT NODE SET <string>surface_name

CONTAINS <string>nodelist_names

#

BEGIN SURFACE NORMAL SMOOTHING

ANGLE = <real>angle_in_deg

DISTANCE = <real>distance

RESOLUTION = <string>NODE|EDGE

END [SURFACE NORMAL SMOOTHING]

#

BEGIN FRICTIONLESS MODEL <string>name

END [FRICTIONLESS MODEL <string>name]

#

BEGIN CONSTANT FRICTION MODEL <string>name

FRICTION COEFFICIENT = <real>coeff

END [CONSTANT FRICTION MODEL <string>name]

#

BEGIN TIED MODEL <string>name

END [TIED MODEL <string>name]

#

BEGIN GLUED MODEL <string>name

END [GLUED MODEL <string>name]

#

BEGIN SEARCH OPTIONS [<string>name]

GLOBAL SEARCH INCREMENT = <integer>num_steps(1)

GLOBAL SEARCH ONCE = <string>ON|OFF(OFF)

SEARCH TOLERANCE = <string>AUTOMATIC|USER_DEFINED(AUTOMATIC)

377

NORMAL TOLERANCE = <real>norm_tol

TANGENTIAL TOLERANCE = <real>tang_tol

CAPTURE TOLERANCE = <real>cap_tol

TENSION RELEASE = <real>ten_release

SLIP PENALTY = <real>slip_pen

FACE MULTIPLIER = <real>face_multiplier(0.1)

SECONDARY DECOMPOSITION = <string>ON|OFF(OFF)

END [SEARCH OPTIONS <string>name]

#

BEGIN INTERACTION DEFAULTS [<string>name]

CONTACT SURFACES = <string list>surface_names

GENERAL CONTACT = <string>ON|OFF(OFF)

FRICTION MODEL = <string>friction_model_name|

FRICTIONLESS(FRICTIONLESS)

END [INTERACTION DEFAULTS <string>name]

#

BEGIN INTERACTION [<string>name]

MASTER = <string>surface

SLAVE = <string>surface

CAPTURE TOLERANCE = <real>cap_tol

NORMAL TOLERANCE = <real>norm_tol

TANGENTIAL TOLERANCE = <real>tang_tol

FRICTION MODEL = <string>friction_model_name|

FRICTIONLESS(FRICTIONLESS)

PUSHBACK FACTOR = <real>pushback_factor(1.0)

TENSION RELEASE = <real>ten_release

TENSION RELEASE FUNCTION = <string>ten_release_func

FRICTION COEFFICIENT = <real>coeff

FRICTION COEFFICIENT FUNCTION = <string>coeff_func

END [INTERACTION <string>name]

#

END [CONTACT DEFINITION <string>name]

The command block begins with the input line:

BEGIN CONTACT DEFINITION <string>name

and is terminated with the input line:

END [CONTACT DEFINITION <string>name]

where name is a name for this contact definition. The name should be unique among all the contact

definitions in an analysis. All other contact commands are encapsulated within this command

block, as shown in the summary of the block presented previously. These other contact commands

are described in Section 7.1through Section 7.9. Section 7.11 explains how to implement contact

for several example problems.

378

A typical analysis will have only one CONTACT DEFINITION command block. However, more

than one contact definition can be used. As each CONTACT DEFINITION command block creates

its own contact entity, fewer of these command blocks provide more efficient contact processing.

379

7.2 Enforcement

ENFORCEMENT = <string>TIED|FRICTIONLESS|FRICTIONAL

The ENFORCEMENT command line indicates which of three types of contact enforcement available

in Adagio should be used in this CONTACT DEFINITION block. The first of these, TIED, will

match slave nodes to master surfaces during initialization. Thereafter, the slave nodes will not be

allowed to move relative to their master surfaces.

The FRICTIONLESS option allows slave nodes to slide along master surfaces but prevents pene-

tration.

The FRICTIONAL option also allows slave nodes to slide along master surfaces. However, the

sliding motion is affected by a frictional law. No penetration is allowed.

380

7.3 Descriptions of Contact Surfaces

Contact determines whether two surfaces, each defined by either an analytic representation or a

collection of finite element faces, have interpenetrated. This section describes how to define a

surface composed of finite element faces. It also describes how to define a set of nodes (zero-

dimensional entities) not associated with faces that can contact a surface.

A surface is defined as a collection of finite element faces. Both continuum elements and shell

elements have faces. For a continuum element, any face that is not shared with another element

can be considered for contact. On the other hand, a shell element has both a top face and a bottom

face. Top and bottom surfaces are automatically created for the contact algorithm and may be

lofted by a user-specified thickness. Shell contact is done by computing the contact forces on the

top and bottom surfaces of the shells and then moving the resulting forces back to the original shell

nodes.

The contact enforcement algorithm only allows for a face to be associated with a single contact

surface. If a face were allowed to belong to more than one surface involved in contact, ambiguities

would arise in determining the interaction properties for that face. This situation could occur if

multiple sidesets used in contact overlap. It could also occur if a sideset used in contact included

the surface of a skinned block.

If a face is part of more than one contact surface, the face is included in the first contact surface

to which it belongs that is listed in the CONTACT DEFINITION block. If it belongs to any other

contact surface listed later in that block, it is excluded from that surface for the purpose of contact

enforcement, and a warning message is generated.

To enforce contact between unassociated nodes and a surface, a contact node set must be defined.

The contact of one-dimensional elements (springs, trusses, beams) with a surface can be mod-

eled as unassociated nodes contacting a surface, although, as in the case of shells, there are some

limitations.

Surfaces involved in contact can be defined using the CONTACT SURFACE command line or the

CONTACT SURFACE command block. Unassociated nodes involved in contact can be defined us-

ing the CONTACT NODE SET command line or the CONTACT SURFACE command block. The

CONTACT DEFINITION command block can contain any combination of these command lines

and command blocks provided that contact surface names are not duplicated. The CONTACT

DEFINITION command block must include some type of surface definition. Any element faces or

unassociated nodes for use in a contact interaction must be identified as contact surfaces or contact

node sets, respectively.

Section 7.3.1 through Section 7.3.3 describe the command lines and command blocks for defining

contact surfaces composed of finite element faces and node sets that can contact surfaces.

7.3.1 Contact Surface Command Line

CONTACT SURFACE <string>name CONTAINS <string list>surface_names

This command line identifies a set of surfaces (specified as side sets) and element blocks that

381

will be considered as a single contact surface; the string name is the unique name for this contact

surface. The list denoted by surfaces_names is a list of strings identifying surfaces that are to

be associated with this contact surface name. The surfaces can be side sets, element blocks, or any

combination of the two as defined in the exodus file. These are not names of analytic surfaces. Any

specified element blocks are “skinned,” i.e., a surface is created from the exterior of the element

block. See the previous discussion on skinning. Blocks of shell elements will be skinned, and the

shell surfaces generated from a CONTACT SURFACE command line will be lofted for contact if the

lofting algorithm is ON in the SHELL LOFTING command block.

If a block of one-dimensional elements (springs, trusses, beams) is included in the list of surface_

names, the element block will be ignored. Thus, to include the one-dimensional elements for

contact, a CONTACT NODE SET command line should be used. See Section 7.3.3.

The name you create for a surface can be referenced in command blocks that specify how that

surface will interact with another contact surface or with itself. See Section 7.9.1.

The surfaces can contain a heterogeneous set of face types as well as any number of side sets and

element blocks.

If a face appears in a side set and also in a set of faces generated by the skinning of an element

block, that face will produce an error. As indicated previously, a given face may not appear in more

than one contact surface.

7.3.2 Contact Surface Command Block

BEGIN CONTACT SURFACE <string>name

BLOCK = <string list>block_names

SURFACE = <string list>surface_names

NODE SET = <string list>node_set_names

REMOVE BLOCK = <string list>block_names

REMOVE SURFACE = <string list>surface_names

REMOVE NODE SET = <string list>node_set_names

END [CONTACT SURFACE <string>name]

The CONTACT SURFACE command block can be used to define a contact surface consisting of a

collection of finite element faces or a set of unassociated nodes that will be a contact node set. We

can use some combinations of the above command lines as a set of Boolean operations to define

our collection of faces or collection of unassociated nodes. The result of this command block must

be either a set of faces or a set of nodes.

If you want to define a surface named name that is a set of faces, you can use some combination

of the command lines BLOCK, SURFACE, REMOVE BLOCK, and REMOVE SURFACE. For this case,

however, the BLOCK and REMOVE BLOCK command lines must refer to element blocks that are

continuum or shell elements. If the element block referred to is a block of continuum elements, the

block is skinned. If the element block referred to is a block of shell elements, the top and bottom

faces of the shell elements will form the contact faces.

Suppose you specify a BLOCK command line that references several continuum blocks. The set of

382

faces defining the surface will consist of the exterior faces for all the element blocks. If you want to

preserve the list of element blocks on the BLOCK command line while removing the exterior faces

associated with one or more of the blocks, you could simply add a REMOVE BLOCK command line

listing only those blocks whose associated faces are to be removed from the contact surface.

Suppose you specify a BLOCK command line that references a block of continuum elements and

a SURFACE command line that references a side set. Then the contact surface produced by the

command block will be the union of the faces defined by the skinning of the block of continuum

elements and the faces defined in the side set.

Suppose you specify a BLOCK command line that references a block of continuum elements and

a REMOVE SURFACE command line that references a side set. Furthermore, suppose that the side

set is a set of faces that is a subset of the set of faces obtained from skinning the continuum block.

Then the contact surface produced by the command block will be the set of faces obtained by

skinning the continuum block minus the faces in the side set.

As can be seen from the above examples, we can use the command lines BLOCK, SURFACE, REMOVE

BLOCK, and REMOVE SURFACE as Boolean operators to construct a set of finite element faces

defining a surface. The BLOCK and REMOVE BLOCK command lines should produce (or remove)

faces, however, so that we are performing the Boolean operations on like topological entities. See

Section 7.3.3 for further information about using a node set that contacts a surface.

There must be at least one BLOCK, SURFACE, or NODE SET command line in the command block.

7.3.3 Contact Node Set

CONTACT NODE SET <string>surface_name

CONTAINS <string list>nodelist_names

As indicated previously, contact interactions may also be defined between a surface and a set of

nodes. The CONTACT NODE SET command line names a set of nodes (the parameter surface_

name in the above command line) as a collection of nodes in various node sets specified by the

string list nodelist_names. All the nodes in the node set can then interact with a contact surface.

If a node in the node set defined as surface_name attempts to penetrate a contact surface, the

node will be moved to the surface through the contact calculations.

The node defined by the CONTACT NODE SET command line will be paired with a mesh surface

when contact interactions are defined. The easiest way to define the correct relation between the

nodes in the node set and the faces in the actual surface is to pair the surface with the MASTER

command line and the node set with the SLAVE command line. Suppose the set of nodes is named

beam_nodes on the CONTACT NODE SET command line and the surface these nodes are paired

with is named plate. Then the INTERACTION command block for the interaction of the node set

and surface would contain the command lines below.

MASTER = plate

SLAVE = beam_nodes

383

The CONTACT NODE SET command line also presents a simple approach for contact between

one-dimensional elements (beams, trusses) and other contact surfaces—faces on solid elements,

shell/membrane faces, and analytic surfaces. In this case, contact processing will seek to remove

interpenetration of the nodes of the one-dimensional elements into the other contact surfaces. The

contact capabilities in Adagio will not currently handle any contact between two one-dimensional

elements.

384

7.4 Surface Normal Smoothing

BEGIN SURFACE NORMAL SMOOTHING

ANGLE = <real>angle_in_deg(60.0)

DISTANCE = <real>distance(0.01)

RESOLUTION = <string>NODE|EDGE(NODE)

END SURFACE NORMAL SMOOTHING

Finite element discretization often results in models with faceted edges, while the true geometry

of the part is actually smoothly curved. If the faces of adjacent finite elements on a surface have

differing normals, the discontinuities at the edges between those faces can cause problems with

contact. These discontinuities in the face normals are particularly troublesome with an implicit

code such as Adagio, which uses an iterative solver to obtain a converged solution at every step. If

a node is in contact near an edge with a normal discontinuity, the node may slide back and forth

between the two neighboring faces during the iterations. Because the normal directions of the

two faces differ, this can make it difficult to converge on a solution to this discontinuous contact

problem.

Surface normal smoothing is a technique that creates a smooth variation in the normal near edges.

The normal varies linearly from the value on one face to the value on the other face over a distance

that spans the edge. A smoothly varying normal at the edge makes it much easier for an iterative

solver to obtain a converged solution in the case where a node has penetrated near the edge of a

face.

Presto does not use an iterative solver and thus does not encounter the difficulties associated with

face normal discontinuities. Consequently, the SURFACE NORMAL SMOOTHING command block

is not typically useful for Presto models. It is provided in both Presto and Adagio, however,

to provide a consistent transition between the two codes if they are used together in a coupled

analysis.

If the SURFACE NORMAL SMOOTHING command block is present, this feature is activated. There

are three optional commands that can be used within this block to control the behavior of normal

smoothing.

• The ANGLE command is used to control whether smoothing should occur between neighbor-

ing faces. If the angle between two faces is less than the specified angle (given in degrees),

smoothing is activated between them. Otherwise, the discontinuity is considered to be a fea-

ture of the model rather than an artifact of meshing, and they are not smoothed. The default

value for angle is 60.

• The DISTANCE command specifies the distance as a fraction of the face size over which

smoothing should occur. The specified value can vary from 0 to 1. The default value for

distance is 0.01.

• The RESOLUTION command specifies the method used to determine the smoothed normal

direction. The default NODE option uses a node-based algorithm to fit a smooth curve, while

the EDGE option uses an edge-based algorithm.

385

7.5 Contact Output Variables

Contact variables can be output to provide information about enforcement of contact interactions.

Currently, information on only one interaction at each node is provided. If a node has more than

one interaction, the last one in its internal interaction list is reported.

Nodal contact variables that can be output are listed in Table 8.7. Where applicable, names of the

equivalent variables in JAS3D are given in parentheses at the end of the description. The variables

can be output in history files or results files; see Chapter 8 for more information on outputting

nodal variables. Note that currently the variables cannot be calculated at output time so the first

time they are output a request is made to calculate them. This means that the first output step where

they are to appear the data will be all zero. A work around for this is to have at least one output

step in which these variables appear before their values are needed.

386

7.6 Friction Models

To describe the physics of interactions that occur between contact surfaces, the Adagio input for

contact relies upon the definition of friction models. The user then relates these friction models to

pairs of interactions in the interaction-definition blocks (see Section 7.8 and Section 7.9). During

the search phase of contact, node-face interactions are identified, and the designated friction model

is used to determine how the resulting contact forces are resolved between these pairs.

The following friction models are currently available: frictionless contact, constant coulomb fric-

tion, tied contact, glued contact, spring weld, surface weld, area weld, adhesion, cohesive zone,

junction, threaded joint, and pressure-velocity–dependent friction. In addition, models defined by

user subroutines can be used as friction models. By default, interactions between contact sur-

faces that have not had friction models assigned are treated as frictionless. All friction models are

command blocks, although some of the models do not have any command lines inside the com-

mand block. The commands for defining the available friction models are described next. Friction

models are associated with specific pairings of contact surfaces through the interaction-definition

blocks in Section 7.8 and Section 7.9. Adagio uses the ACME library for contact enforcement.

See the documentation for ACME to obtain a more in-depth description of the implementation and

usage for the various friction models.

7.6.1 Frictionless Model

BEGIN FRICTIONLESS MODEL <string>name

END [FRICTIONLESS MODEL <string>name]

The FRICTIONLESS MODEL command block defines frictionless contact between surfaces. In fric-

tionless contact, contact forces are computed normal to the contact surfaces to prevent penetration,

but no forces are computed tangential to the contact surfaces. The string name is a user-selected

name for this friction model that is used when identifying this model in the interaction definitions.

No command lines are needed inside the command block. A default named frictionless model

named frictionless can be used without defining this command block.

7.6.2 Constant Friction Model

BEGIN CONSTANT FRICTION MODEL <string>name

FRICTION COEFFICIENT = <real>coeff

END [CONSTANT FRICTION MODEL <string>name]

The CONSTANT FRICTION MODEL command block defines a constant coulomb friction coeffi-

cient between two surfaces as they slide past each other in contact. No resistance is provided to

keep the surfaces together if they start to separate. The string name is a user-selected name for this

friction model that is used to identify this model in the interaction definitions, and coeff is the

constant coulomb friction coefficient. There is no default value for the friction coefficient.

387

7.6.3 Tied Model

BEGIN TIED MODEL <string>name

END [TIED MODEL <string>name]

The TIED MODEL command block restricts nodes found in initial contact with faces to stay in

the same relative location to the faces throughout the analysis. The string name is a user-selected

name for this friction model that is used to identify this model in the interaction definitions. No

command lines are needed inside the command block. A default named tied model named tied

can be used without defining this command block.

7.6.4 Glued Model

BEGIN GLUED MODEL <string>name

END [GLUED MODEL <string>name]

The GLUED MODEL command block defines a contact interaction that allows the interacting faces

to move independently until they come into contact, but once they come into contact, they behave

as a tied contact interaction, with no relative normal or tangential motion for the rest of the analysis.

The string name is a user-specified name for this friction model that is used to reference this model

in the interaction definitions. No command lines are needed inside the command block. A default

named glued model named glued can be used without defining this command block.

388

7.7 Search Options

BEGIN SEARCH OPTIONS [<string>name]

#

search algorithms

GLOBAL SEARCH INCREMENT = <integer>num_steps(1)

GLOBAL SEARCH ONCE = <string>ON|OFF(OFF)

#

search tolerances

SEARCH TOLERANCE = <string>AUTOMATIC|USER_DEFINED(AUTOMATIC)

NORMAL TOLERANCE = <real>norm_tol

TANGENTIAL TOLERANCE = <real>tang_tol

FACE MULTIPLIER = <real>face_multiplier(0.1)

CAPTURE TOLERANCE = <real>cap_tol

TENSION RELEASE = <real>ten_release

SLIP PENALTY = <real>slip_pen

#

secondary decomposition

SECONDARY DECOMPOSITION = <string>ON|OFF(OFF)

END [SEARCH OPTIONS <string>name]

Contact involves a search phase and an enforcement phase. The contact search algorithm used

to detect interactions between contact surfaces is often the most computationally expensive part

of an analysis. The user can exert some control over how the search phase is carried out via the

SEARCH OPTIONS command block. By selecting different options in this command block, the

user can make trade-offs between the accuracy of the search and computing time.

The most accurate approach to the search phase is a global search at every time step. For a global

search, a box is drawn around each face. The box depends on the shape of the face, the location

of the face in space, and search tolerances. Now suppose we want to determine whether some

node has penetrated that face. We must first determine if the node lies in one or more boxes that

surround a face. This search, although done with an optimal algorithm, is still time consuming.

The search must be done for all nodes that may be in contact with a face. A less accurate approach

for the search phase is to use what is called a local tracking algorithm. For the tracking algorithm

approach, we first do a global search. When a node has contacted a face in the global search, we

record the face (or faces) contacted by the node. Instead of using the global search on subsequent

time steps, we simply rely on the record of the node-face interactions to compute the contact forces.

The last face contacted by a node in the global search is assumed to remain in contact with that

node for subsequent time steps. In actuality, the node may slide off the face it was contacting at the

time of the global search. In this case, faces that share an edge with the original contact face are

searched to determine whether they (the edge adjacent faces) are in contact with the node. If the

node moves across a corner of the face (rather than an edge), we may lose the contact interaction

for the node until the next global search. If we lose the contact interaction, we lose some of the

accuracy in the contact calculations until we do the next global search. Furthermore, it is possible

that additional nodes may actually come into contact in the time steps between global searches.

These nodes are typically caught during the next global search, but inaccuracies can result from

389

missing the exact time of contact. The tracking algorithm, under certain circumstances, can work

quite well even though it is less accurate. We can encounter analyses where we can set the number

of intervals (time steps) between global searches to a relatively small number (5) and lose only

a few or none of the node-to-face contacts between global searches. Likewise, we can encounter

analyses where we can set the interval between global searches to a large number (100 or more)

and lose only a few or none of the node-to-face contacts between global searches. Finally, we can

encounter problems where we may only have to do one global search at the beginning and rely

solely on the tracking information for the rest of the problem (without losing any contact). What

search approach is best for your problem depends on the geometry of your structure, the loads on

your structure, and the amount of deformation of your structure. This section tells you how to

control the search phase for your specific problem.

The SEARCH OPTIONS command block begins with the input line:

BEGIN SEARCH OPTIONS [<string>name]

and ends with:

END [SEARCH OPTIONS <string>name]

The name for the command block is optional.

Without a SEARCH OPTIONS command block, the default search with associated default search

parameters is used for all contact pairs. If you want to override the default search method for

all contact pairs, you should add a SEARCH OPTIONS command block. By adding a SEARCH

OPTIONS command block, you establish a new set of global defaults for the search for all contact

pairs. The default for the search is that tracking is turned on and the number of intervals (time

steps) between a global search is one (GLOBAL SEARCH INCREMENT = 1 and GLOBAL SEARCH

ONCE = OFF).

The valid command lines within a SEARCH OPTIONS command block are described in Sec-

tion 7.7.1, Section 7.7.2, and Section 7.7.3. The values specified by these commands are applied

by default to all interaction contact surfaces, unless overridden by a specific interaction definition.

7.7.1 Search Algorithms

GLOBAL SEARCH INCREMENT = <integer>num_steps(1)

GLOBAL SEARCH ONCE = <string>ON|OFF(OFF)

Known Issue: Attempting to use GLOBAL SEARCH INCREMENT with a value

greater than 1, especially in a problem that contains shells and/or restart, will, in

most cases, cause code failure. A GLOBAL SEARCH INCREMENT value greater than

1 will, under the best circumstances, give only a marginal improvement in speed.

390

The above two command lines let you determine the frequency of the global search. Although

these command lines are mutually exclusive, they provide for three search options:

1. If you want to do only one global search and have all subsequent searches be tracking

searches, then you should use the GLOBAL SEARCH ONCE command line with the string

parameter set to ON. By default, the GLOBAL SEARCH ONCE option is OFF. If you set

GLOBAL SEARCH ONCE to ON, then this should be the only command line for the search al-

gorithms in the command block. The GLOBAL SEARCH INCREMENT command line should

not be used.

2. If you want to use the global search only intermittently, with the tracking search in between

the global search, you should use the GLOBAL SEARCH INCREMENT set to some integer

value greater than 1. The integer value num_steps determines the number of time steps

between global searches. The GLOBAL SEARCH ONCE command line should not be used.

3. If you want to do a global search at every time step, you should use the GLOBAL SEARCH

INCREMENT command line with num_steps set to 1 or just simply omit this line since the

default for the search increment is 1. The GLOBAL SEARCH ONCE command line should not

be used.

In summary, you have three options for the global search. You can do a global search only once (the

first time step), and do a tracking search for all subsequent searches by setting GLOBAL SEARCH

ONCE to ON. You can do a global search for the beginning time step and intermittently thereafter;

the time steps between the global searches will use a tracking search. For this approach, you

will need only the GLOBAL SEARCH INCREMENT command line. Finally, you can set GLOBAL

SEARCH INCREMENT to 1 and do a global search at every time step.

7.7.2 Search Tolerances

SEARCH TOLERANCE = <string>AUTOMATIC|USER_DEFINED(AUTOMATIC)

NORMAL TOLERANCE = <real>norm_tol

TANGENTIAL TOLERANCE = <real>tang_tol

FACE MULTIPLIER = <real>face_multiplier(0.1)

As indicated previously, the contact functionality in Adagio uses a box defined around each face to

locate nodes that may potentially contact the face. This box is defined by a tolerance normal to the

face and another tolerance tangential to the face (see Figure 7.3). The code adds to these tolerances

the maximum motion over a time step when identifying interactions. In the above command lines,

the parameter norm_tol is the normal tolerance (defined on the NORMAL TOLERANCE command

line) for the search box and the parameter tang_tol is the tangential tolerance (defined on the

TANGENTIAL TOLERANCE command line) for the search box.

By default, Adagio will automatically calculate normal and tangential tolerances based on the mini-

mum characteristic length multiplied by the value input by the FACE MULTIPLIER command. The

face multiplier is 0.1. The automatic tolerances add the maximum motion over a time step just like

391

the user defined tolerances. If you leave automatic search on and also specify normal and/or tan-

gential tolerances with the NORMAL TOLERANCE and TANGENTIAL TOLERANCE command lines,

the larger of the two (automatic or user specified) tolerances will be used. For example, suppose

you specify a normal tolerance of 1.0 × 10−3 and the automatic tolerancing computes a normal

tolerance of 1.05 × 10−3. Then Adagio will use a normal tolerance of 1.05 × 10−3.

When the USER_DEFINED option is specified for the SEARCH TOLERANCE command line, these

normal and tangential tolerances must be specified. If these tolerances are not specified, code

execution will be terminated with an error.

Figure 7.3: Illustration of normal and tangential tolerances.

Both of these tolerances are absolute distances in the same units as the analysis. The proper

tolerances are problem dependent. If a normal or tangential tolerance is specified in the SEARCH

OPTIONS command block, they apply to all interactions. These default search tolerances can

be overwritten for a specific interaction by specifying a value for the normal tolerance and/or

tangential tolerance for that interaction inside the INTERACTION command block (see Section 7.9).

7.7.3 Secondary Decomposition

SECONDARY DECOMPOSITION = <string>ON|OFF(ON)

The SECONDARY DECOMPOSITION command line controls internal options used by the ACME

contact search algorithm. Computational results for secondary decomposition ON should be iden-

tical to those for secondary decomposition OFF. However, the computational time for these two

distinct options may vary significantly.

When a mesh is divided for parallel processing, it is usually divided such that each processor has

the same number of elements. The element-based load balance needs to achieve good parallel per-

formance for element and material calculations. It is possible to have the number of elements per

processor balanced but the number of contact faces per processor highly unbalanced. If contact is

highly localized in one region of the model, it may happen that a small subset of the processors

contains most of the contact interactions. A secondary decomposition is a parallel decomposi-

tion that balances the number of contact faces. When secondary decomposition is on, the contact

392

algorithm first moves all data to the secondary decomposition and then it runs the contact calcula-

tions. When the secondary decomposition is off, all contact calculations are done in the primary

decomposition.

The computational effort to move data to the secondary decomposition can be quite large. Thus,

if the contact surfaces are well balanced in the primary decomposition, a large cost savings can

be realized by turning off the secondary decomposition. Three conditions must be met for turning

off the secondary decomposition to achieve cost savings. First, the number of contact faces per

processor must be somewhat balanced in the primary decomposition. Second, faces in contact

should be on the same processor as much as possible. Inertial and RCB decomposition tend to

meet this condition of having contact faces in proximity on the same processor, while Multi-KL

does not. Third, conditions one and two must persist throughout the entire analysis. An initially

well balanced, well distributed mesh may become poorly balanced through element death or large

deformations.

393

7.8 Default Values for Interactions

BEGIN INTERACTION DEFAULTS

CONTACT SURFACES = <string list>surface_names

GENERAL CONTACT = <string>ON|OFF(OFF)

FRICTION MODEL = <string>friction_model_name|FRICTIONLESS

(FRICTIONLESS)

END [INTERACTION DEFAULTS]

This section discusses the INTERACTION DEFAULTS command block. This command block en-

ables contact enforcement either on all contact surfaces or on a subset of the contact surfaces. It is

also used to set default parameters for contact interactions. Those defaults can be overridden for

specific interactions by specifying them separately in INTERACTION blocks.

It is important to note that unless some combination of the INTERACTION DEFAULTS command

block and INTERACTION command blocks (Section 7.9) exists in the CONTACT DEFINITION

command block, enforcement will not take place. Up to this point, all command lines and com-

mand blocks have provided information to set up the search phase and have provided details for

surface interaction. However, contact enforcement for surfaces—the actual removal of interpene-

tration between surfaces and the calculation of surface forces consistent with friction models—will

not take place unless some combination of the INTERACTION DEFAULTS command block and

INTERACTION command blocks is used to set up surface interactions.

Contact between surfaces requires data to describe the interaction between these surfaces. You

may specify defaults for the surface interactions for some or all surface pairs by using the

INTERACTION DEFAULTS command block. Within this command block, you can provide a

list of surfaces that are a subset of the contact surfaces. Any pair of surfaces listed in the

INTERACTION DEFAULTS command block will acquire the default values that are defined within

the INTERACTION DEFAULTS command block. If you omit the CONTACT SURFACES command

line, defaults in the INTERACTION DEFAULTS command block are applied to all surfaces. Any

default set within an INTERACTION DEFAULTS command block can be overridden by commands

in an INTERACTION command block. See Section 7.9.

If you consider only the use of the INTERACTION DEFAULTS command block (and not the use of

the INTERACTION command block), you have three options for the surface interaction values:

• You can specify default surface interaction values for all the contact surface pairs by speci-

fying all the contact surfaces in an INTERACTION DEFAULTS command block.

• You can specify default surface interaction values for some of the contact surface pairs by

specifying a subset of the contact surfaces in an INTERACTION DEFAULTS command block.

• You can leave all interactions off by default by not specifying an INTERACTION DEFAULTS

command block.

The values specified by the command lines in the INTERACTION DEFAULTS command block are

394

applied by default to all interaction contact surfaces unless overridden by a specific interaction

definition.

7.8.1 Surface Identification

CONTACT SURFACES = <string list>surface_names

This command line identifies the contact surfaces to which the surface interaction values defined

in the INTERACTION DEFAULTS command block will apply. The string list on the CONTACT

SURFACES command line specifies the names of these contact surfaces. The CONTACT SURFACES

command line can include any surface specified in a CONTACT SURFACE command line, a

CONTACT SURFACE command block, or a SKIN ALL BLOCKS command line.

The SURFACES command line is optional. If you want the defaults to apply to all the surfaces you

have defined, you will NOT use the SURFACES command line in this command block. If you want

the defaults to apply to a subset of all contact surfaces, then you will list the specific set of surfaces

on a SURFACES command line. The names of all the surfaces with the default values will be listed

in the string list designated as surface_names.

7.8.2 General Contact

GENERAL CONTACT = <string>ON|OFF(OFF)

The GENERAL CONTACT command line, if set to ON, specifies that the default values set in the

command lines of this command block apply to contact between the listed surfaces (or all sur-

faces if no surfaces are listed) excluding self-contact. The default values for this command line is

OFF. To enforce general contact between all surfaces specified in the INTERACTION DEFAULTS

command block, this line must be present:

GENERAL CONTACT = ON

If no individual contact interactions have been specified with INTERACTION command blocks,

contact will only be enforced if general contact is enabled.

7.8.3 Friction Model

FRICTION MODEL = <string>friction_model_name|FRICTIONLESS

(FRICTIONLESS)

The FRICTION MODEL command line permits the description of how surfaces interact with each

other using a friction model defined in a friction-model command block (see Section 7.6). In

the above command line, the string friction_model_name should match the name assigned to

395

some friction model command block. For example, if you specified the name of an AREA WELD

command block as AW1 and wanted to reference that name in the FRICTION MODEL command

line, the value of friction_model_name would be AW1.

The default interaction is frictionless contact.

396

7.9 Values for Interactions

BEGIN INTERACTION [<string>name]

MASTER = <string_list>surfaces [EXCLUDE <string_list>surfaces]

SLAVE = <string_list>surfaces [EXCLUDE <string_list>surfaces]

CAPTURE TOLERANCE = <real>cap_tol

NORMAL TOLERANCE = <real>norm_tol

TANGENTIAL TOLERANCE = <real>tang_tol

FRICTION MODEL = <string>friction_model_name|FRICTIONLESS

(FRICTIONLESS)

PUSHBACK FACTOR = <real>pushback_factor(1.0)

TENSION RELEASE = <real>ten_release

TENSION RELEASE FUNCTION = <string>ten_release_func

FRICTION COEFFICIENT = <real>coeff

FRICTION COEFFICIENT FUNCTION = <string>coeff_func

END [INTERACTION <string>name]

The Adagio contact input also permits the setting of values for specific interactions using the

INTERACTION command block.

The INTERACTION command block begins with:

BEGIN INTERACTION [<string>name]

and ends with:

END [INTERACTION <string>name]

where name is a name for the interaction. Note that this name is currently used only for informa-

tional output purposes and is not required.

The valid commands within an INTERACTION command block are described in Section 7.9.1

through Section 7.9.8.

7.9.1 Surface Identification

MASTER = <string_list>surfaces [EXCLUDE <string_list>surfaces]

SLAVE = <string_list>surfaces [EXCLUDE <string_list>surfaces]

In Adagio, contact surfaces must be identified using the MASTER and SLAVE command lines. The

nodes of the slave surfaces are searched against the faces of the master surfaces. Each of these

command lines takes as input a list of names of contact surfaces defined in the contact block. A

master slave interaction will be defined between each surface in the master list and each surface in

the slave list. A surface may not be present in both the master and the slave list.

397

The surface named all_surfaces is a special reserved word that is equivalent to typing all

contact surfaces known by the contact block into the string list. Optionally, the EXCLUDE keyword

can be placed on the command line and followed by a list of surface names to exclude from the list.

If the MASTER or SLAVE command lines appear multiple times within a CONTACT INTERACTION

block, their surface lists will be concatenated. The effect is equivalent to specifying all of the

surface names on a single line.

The following examples demonstrate ways to identify contact surfaces involved in an interaction:

These commands define a one-way interaction between the nodes of s1 and the faces of m1:

MASTER = m1

SLAVE = s1

These commands define a set of one-way interactions between the nodes of s1 and the faces of m1,

the nodes of s1 and the faces of m2, the nodes of s2 and the faces of m1, the nodes of s2 and the

faces of m2.

MASTER = m1 m2

SLAVE = s1 s2

These commands define that the nodes of surface s1 are slaved to all other contact faces in the

contact definition block.

MASTER = all_surfaces exclude s1

SLAVE = s1

7.9.2 Tolerances

CAPTURE TOLERANCE = <real>cap_tol

NORMAL TOLERANCE = <real>norm_tol

TANGENTIAL TOLERANCE = <real>tang_tol

FACE MULTIPLIER = <real>face_multiplier(0.1)

You can set tolerances for the interaction for a specific contact surface pair by using the above

tolerance-related command lines in an INTERACTION command block.

As indicated previously, the contact functionality in Adagio uses a box defined around each face to

locate nodes that may potentially contact the face. This box is defined by a tolerance normal to the

face and another tolerance tangential to the face (see Figure 7.3). The code adds to these tolerances

the maximum motion over a time step when identifying interactions. In the above command lines,

the parameter norm_tol is the normal tolerance (defined on the NORMAL TOLERANCE command

line) for the search box and the parameter tang_tol is the tangential tolerance (defined on the

TANGENTIAL TOLERANCE command line) for the search box.

The CAPTURE TOLERANCE, which should be no larger than the NORMAL TOLERANCE, is used to

determine which slave nodes near a master surface should be pulled to the master surface and

398

considered for contact. (This applies to slave nodes which have not penetrated the master surface.

Slave nodes that have penetrated the master surface will be pushed to the surface regardless of the

CAPTURE TOLERANCE.) If later checks determine that a slave node that was pulled to the surface

(because it was nearer the surface than the CAPTURE TOLERANCE value) is in fact in tension and

should be released, that slave node will not be considered as a potential contact node again during

the load step as long as the node remains within the NORMAL TOLERANCE.

7.9.3 Friction Model

FRICTION MODEL = <string>friction_model_name|FRICTIONLESS

(FRICTIONLESS)

You can set the friction model for the interaction for a specific contact surface pair or for self-

contact of a surface by using the above command line in an INTERACTION command block. See

Section 7.8.3 for a discussion of this command line.

7.9.4 Pushback Factor

PUSHBACK FACTOR = <real>pushback_factor

The command line PUSHBACK FACTOR can be used to set the fraction of the gap to be removed

in a contact model problem. The default value is 1.0 which removes the entire gap in one contact

model problem. Setting the pushback factor to 0.25 will result in the gap being removed in 4

contact model problems.

7.9.5 Tension Release

TENSION RELEASE = <real>ten_release

The command line TENSION RELEASE can be used to set a traction threshold below which slave

nodes that have come into contact with master faces will not be released. When this value is set

and a slave node is in tension, it will only be allowed to pull away from the master surface if the

slave node’s traction is greater than the TENSION RELEASE tolerance.

7.9.6 Tension Release Function

TENSION RELEASE FUNCTION = <real>ten_release_func

The command line TENSION RELEASE FUNCTION provides a way for the tension release thresh-

old to be set using a function from the input file. If the TENSION RELEASE line command is also

present, the threshold used by the code will be the TENSION RELEASE value multiplied by the

value obtained from the function.

399

7.9.7 Friction Coefficient

FRICTION COEFFICIENT = <real>coeff

You can set the coefficient of friction for the interaction for a specific contact surface pair by using

the above command line in an INTERACTION command block.

7.9.8 Friction Coefficient Function

FRICTION COEFFICIENT FUNCTION = <real>coeff_func

The command line FRICTION COEFFICIENT FUNCTION provides a way for the friction coeffi-

cient to be set using a function from the input file. If the FRICTION COEFFICIENT line command

is also present, the friction coefficient used by the code will be the FRICTION COEFFICIENT

value multiplied by the value obtained by the function.

400

7.10 Legacy Contact

This section describes the use of the contact library written for JAS3D. This library is referred to

as the Legacy Contact Library or LCLib.

Adagio has two contact search and enforcement options. The first option, the default, is to use

ACME for the contact search and Adagio’s own enforcement library. The second option is to use

JAS3D’s contact library for both the search and the enforcement. While the capabilities of the two

options are nominally the same, one may perform better than the other for certain problems.

To invoke the use of LCLib, include the line command

JAS MODE

in the region.

When using LCLib, only one CONTACT DEFINITION block is allowed in the region. The

ENFORCEMENT line command must invoke the FRICTIONAL type. If frictionless contact is de-

sired for an interaction, set the FRICTION COEFFICIENT to zero. If tied contact is desired for an

interaction, set the FRICTION COEFFICIENT to −1.

401

7.11 Examples

This section has several example problems. We present the geometric configuration for the prob-

lems and the appropriate command lines to describe contact for the problems.

7.11.1 Example 1

Our first example problem has two blocks that come into contact due to initial velocity conditions.

Block 1 has an initial velocity equal to v1, and block 2 has an initial velocity equal to v2. The

geometric configuration for this problem is shown in Figure 7.4.

Figure 7.4: Problem with two blocks coming into contact.

The simplest input for this problem will be named EXAMPLE1 and is shown as follows:

BEGIN CONTACT DEFINITION EXAMPLE1

enforcement option

ENFORCEMENT = FRICTIONLESS

contact surfaces

CONTACT SURFACE B1 CONTAINS BLOCK_1

CONTACT SURFACE B2 CONTAINS BLOCK_2

set interactions

BEGIN INTERACTION EX1

MASTER = B1

SLAVE = B2

CAPTURE TOLERANCE = 1.0E-3

NORMAL TOLERANCE = 1.0E-3

TANGENTIAL TOLERANCE = 1.0E-3

END INTERACTION EX1

END

In this example, we define frictionless contact.

402

Now, let us consider the same problem (two blocks coming into contact) with frictional contact.

The input for this variation of our two-block problem will be named EXAMPLE1A and is shown as

follows:

BEGIN CONTACT DEFINITION EXAMPLE1A

enforcement option

ENFORCEMENT = FRICTIONAL

contact surfaces

CONTACT SURFACE B1 CONTAINS BLOCK_1

CONTACT SURFACE B2 CONTAINS BLOCK_2

set interactions

BEGIN INTERACTION EX1A

MASTER = B1

SLAVE = B2

FRICTION COEFFICIENT = 0.5

CAPTURE TOLERANCE = 1.0E-3

NORMAL TOLERANCE = 1.0E-3

TANGENTIAL TOLERANCE = 1.0E-3

END INTERACTION EX1A

END

For EXAMPLE1A, we want to have frictional contact between the two blocks. For the frictional

contact, we specify the coefficient of friction as 0.5.

7.11.2 Example 2

Our second example problem has three blocks that come into contact due to initial velocity con-

ditions. Block 1 has an initial velocity equal to v1, and block 3 has an initial velocity equal to v3.

The geometric configuration for this problem is shown in Figure 7.5.

The input for this three-block problem will be named EXAMPLE2 and is shown as follows:

BEGIN CONTACT DEFINITION EXAMPLE2

enforcement

ENFORCEMENT = FRICTIONLESS

define contact surfaces

CONTACT SURFACE surface_1 CONTAINS block_1

CONTACT SURFACE surface_2 CONTAINS block_2

CONTACT SURFACE surf_3 CONTAINS surface_3

403

Figure 7.5: Problem with three blocks coming into contact.

set interaction

BEGIN INTERACTION S1TOS2

MASTER = surface_2

SLAVE = surface_1

NORMAL TOLERANCE = 1.0E-3

TANGENTIAL TOLERANCE = 1.0E-3

END INTERACTION S2TOS3

set interaction

BEGIN INTERACTION S2TOS3

MASTER = surface_2

SLAVE = surf_3

NORMAL TOLERANCE = 0.5E-3

TANGENTIAL TOLERANCE = 0.5E-3

END INTERACTION S2TOS3

END

For the EXAMPLE2 command block, we have defined three surfaces. The first surface, surface_

1, is obtained by skinning block_1. The second surface, surface_2 is obtained by skinning

block_2. The third surface, surf_3, is the user-defined surface surface_3. The user-defined

surface, surface_3, can contain a subset of the external element faces that define block_3 or all

the external element faces that define block_3.

404

7.12 References

1. Brown, K. H., R. M. Summers, M. W. Glass, A. S. Gullerud, M. W. Heinstein, and R. E.

Jones. ACME: Algorithms for Contact in a Multiphysics Environment, API Version, 2.2,

SAND2004-5486. Albuquerque, NM: Sandia National Laboratories, October 2001. pdf.

2. Heinstein, M. W., and T. E. Voth. Contact Enforcement for Explicit Transient Dynamics,

Draft SAND report. Albuquerque, NM: Sandia National Laboratories, 2005.

405

http://infoserve.sandia.gov/sand_doc/2004/045486.pdf

406

Chapter 8

Output

Adagio produces a variety of output. This chapter discusses how to control the four major types

of output: results output, history output, heartbeat output, and restart output. Results output lets

the user select a set of variables (internal, user-defined, or some combination thereof). If the user

selects a nodal variable such as displacement for results output, the displacements for all the nodes

in a model will be output to a results file. If the user selects an element variable such as stress for

results output, the stress for all elements in the model that calculate this quantity (stress) will be

output. The history output option lets the user select a very specific set of information for output.

For example, if you know that the displacement at a particular node is critical, then you can select

only the displacement at that particular node as history output. The heartbeat output is similar to

the history output except that the output is written to a text file instead of to a binary (exodusII [1])

file. The restart output is written so that any calculation can be halted at some arbitrary analysis

time and then restarted at this time. The user has no control over what is written to the restart file.

When a restart file is written, it must be a complete state description of the calculations at some

given time. A restart file contains a great deal of information and is typically much larger than a

results file. You need to carefully limit how often a restart file is written.

Section 8.2 describes the results output. Included in the results output is a description of commands

for user-defined output (Section 8.2.2). User-defined output lets the user postprocess analysis re-

sults as the code is running to produce a reduced set of output information. Section 8.3 describes

the history output, Section 8.4 describes the heartbeat output, and Section 8.5 describes the restart

output. All four types of output (results, history, heartbeat, and restart) can be synchronized for

analyses with multiple regions. This scheduling functionality is discussed in Section 8.6. In Sec-

tion 8.9, there is a list of key variables.

Unless otherwise noted, the command blocks and command lines discussed in Chapter 8 appear in

the region scope.

407

8.1 Syntax for Requesting Variables

Variables may be accessed in the code either in whole or by component. Values at specific compo-

nents or integration points of multi-component variables may be accessed via parenthesis syntax.

Parenthesis syntax may be applied to results output, history output, element death, or any other

command where variable names are specified. Values of single-component variables indexed in

some other way may be accessed with underscore syntax, which is primarily applicable to rigid

body fields as discussed in Section 8.1.4.

Parenthesis syntax is a variable name of the form:

<string>var_name[(<index>component[,<integer>integration_point)]]

For a variable named var, a variable name of the form var(A,B) asks for the A component of

the variable at integration point B. If a variable is a vector, x, y, or z may be specified as the

component. If a variable is 3x3 tensor, xx, yy, zz, xy, xz, yz, yx, zx, or zy may be specified as

the component. For other types of variables components of the variable may be requested through

an integer index.

The characters : and * are wild cards if used for specifying either the component or the integration

point. var(:,B) asks for all components of var at integration point B. var(A,:) asks for compo-

nent A of var at all integration points. var(:,:) asks for all components of var at all integration

points. var is shorthand for var(:,:).

var(A) will behave slightly differently depending on the nature of the variable. If the variable

has multiple components, then Var(A) is treated like var(A,:). If a variable has one and only

one component then it is assumed that A refers to the integration point number rather than the

component number and Var(A) is treated like var(1,A).

8.1.1 Example 1

Let stress be a tensor defined on a single integration point element and a displacement vector be

defined at all model nodes. The following output variable specification:

element stress as str

nodal displacement as disp

asks for all the components of the stress tensor on elements and all components of the displacement

vector on nodes. The code would write the following variables to the output file:

str_xx

str_yy

str_zz

str_xy

str_xz

408

str_yz

disp_x

disp_y

disp_z

If only the yy component of stress is desired, either of the following could be used:

element stress(yy) as my_yy_str1

element stress(2) as my_yy_str2

If only the z component of displacement is desired either of the following could be specified:

nodal displacement(z) as my_z_disp1

nodal displacement(3) as my_z_disp2

Note, index 2 of a tensor corresponds to the yy component of the tensor and index 3 of a vector

corresponds to the z component of the vector.

8.1.2 Example 2

Let stress be a tensor defined on each integration point of a three integration point element. Let

eqps be a scalar material state variable also defined at each element integration point. To ask for all

stress components on all integration points and all eqps data at all integration points the following

could be specified:

element stress as str

element eqps as eqps

Which would output the variables:

str_xx_1, str_yy_1, str_zz_1, str_xy_1, str_xz_1, str_yz_1

str_xx_2, str_yy_2, str_zz_2, str_xy_2, str_xz_2, str_yz_2

str_xx_3, str_yy_3, str_zz_3, str_xy_3, str_xz_3, str_yz_3

eqps_1, eqps_2, eqps_2

To ask for just the stress tensor and eqps value on the second integration point the following syntax

can be used:

element stress(:,2) as str_intg2

element eqps(2) as eqps_intg2

This would output the variables:

409

str_intg2_xx

str_intg2_yy

str_intg2_zz

str_intg2_xy

str_intg2_xz

str_intg2_yz

eqps_intg2

To ask for the xy component of stress on all integration points any of the following could be used:

element stress(xy,*) as str_xy_all

element stress(xy,:) as str_xy_all

element stress(xy) as str_xy_all

Any of the above would output:

str_xy_all_1

str_xy_all_2

str_xy_all_3

8.1.3 Other command blocks

The parenthesis syntax described above for results output can also be used in most other commands

involving variable names. For example, to kill elements based on yy stress or z displacement the

following could be specified:

begin element death

criterion is element value of stress(yy) > 1000

criterion is average nodal value of displacement(z) > 3.0

end

8.1.4 Rigid Body Variables

Variables of rigid bodies are provided as separate components of the rigid body fields. To access

variables of rigid bodies you must output the desired field component(s), and to access the field

component of individual rigid bodies an underscore syntax is employed (the parenthesis syntax

applies to multi-component fields and integration points). The underscore syntax simply takes the

desired field component and appends it with an underscore and the desired rigid body name.

For example the following lines in a history output block (see Section 8.3)

global ax_rb1

global displz_rb4

410

would output to the history file the variables

ax_rb1

displz_rb4

which are the translational acceleration in the x-direction of rigid body rb1 and the translational

displacement in the z-direction of rigid body rb4, respectively (see Table 8.2).

8.2 Results Output

The results output capability lets you select some set of variables that will be written to a file at

various intervals. As previously indicated, all the values for each selected variable will be written

to the results file. (The interval at which information is written can be changed throughout the

analysis time.) The name of the results file is set in the RESULTS OUTPUT command block.

411

8.2.1 Exodus Results Output File

BEGIN RESULTS OUTPUT <string>results_name

DATABASE NAME = <string>results_file_name

DATABASE TYPE = <string>database_type(exodusII)

OVERWRITE = <string>OFF|ON|TRUE|FALSE|YES|NO

(ON|TRUE|YES)

TITLE <string>user_title

NODE <string>variable_name

[AS <string>dbase_variable_name] ...

<string>variable_name [AS

<string>dbase_variable_name]

| NODAL <string>variable_name

[AS <string>dbase_variable_name] ...

<string>variable_name [AS

<string>dbase_variable_name]

NODESET <string>variable_name

[AS <string>dbase_variable_name] ...

<string>variable_name [AS

<string>dbase_variable_name]

| NODESET <string>variable_name

[AS <string>dbase_variable_name]

INCLUDE|ON|EXCLUDE <string list>nodelist_names

... <string>variable_name

[AS <string>dbase_variable_name] INCLUDE|ON|EXCLUDE

<string list>nodelist_names

FACE <string>variable_name

[AS <string>dbase_variable_name] ...

<string>variable_name [AS

<string>dbase_variable_name]

| FACE <string>variable_name

[AS <string>dbase_variable_name]

INCLUDE|ON|EXCLUDE <string list>surface_names

... <string>variable_name

[AS <string>dbase_variable_name] INCLUDE|ON|EXCLUDE

<string list>surface_names

ELEMENT <string>variable_name

[AS <string>dbase_variable_name] ...

<string>variable_name [AS

<string>dbase_variable_name]

| ELEMENT <string>variable_name

[AS <string>dbase_variable_name]

INCLUDE|ON|EXCLUDE <string list>block_names

... <string>variable_name

[AS dbase_variable_name] INCLUDE|ON|EXCLUDE

<string list>block_names

GLOBAL <string>variable_name

412

[AS <string>dbase_variable_name] ...

<string>variable_name [AS

<string>dbase_variable_name]

OUTPUT MESH = EXPOSED_SURFACE|BLOCK_SURFACE

COMPONENT SEPARATOR CHARACTER = <string>character|NONE

EXCLUDE = <string>list_of_excluded_element_blocks

INCLUDE = <string>list_of_included_element_blocks

START TIME = <real>output_start_time

TIMESTEP ADJUSTMENT INTERVAL = <integer>steps

AT TIME <real>time_begin INCREMENT =

<real>time_increment_dt

ADDITIONAL TIMES = <real>output_time1

<real>output_time2 ...

AT STEP <integer>step_begin INCREMENT =

<integer>step_increment

ADDITIONAL STEPS = <integer>output_step1

<integer>output_step2 ...

TERMINATION TIME = <real>termination_time_value

SYNCHRONIZE_OUTPUT

USE OUTPUT SCHEDULER <string>scheduler name

OUTPUT ON SIGNAL = <string>SIGALRM|SIGFPE|SIGHUP|SIGINT|

SIGPIPE|SIGQUIT|SIGTERM|SIGUSR1|SIGUSR2|SIGABRT|

SIGKILL|SIGILL|SIGSEGV

END [RESULTS OUTPUT <string>results_name]

You can specify a results file, the results to be included in this file, and the frequency at which

results are written by using a RESULTS OUTPUT command block. The command block appears

inside the region scope.

More than one results file can be specified for an analysis. Thus for each results file, there will be

one RESULTS OUTPUT command block. The command block begins with:

BEGIN RESULTS OUTPUT <string>results_name

and is terminated with:

END [RESULTS OUTPUT <string>results_name]

where results_name is a user-selected name for the command block. Nested within the

RESULTS OUTPUT command block is a set of command lines, as shown in the block summary

given above. The first two command lines listed (DATABASE NAME and DATABASE TYPE) give

pertinent information about the results file. The command line

DATABASE NAME = <string>results_file_name

gives the name of the results file with the string results_file_name. If the results file is to

appear in the current directory and is named job.e, this command line would appear as:

DATABASE NAME = job.e

If the results file is to be created in some other directory the command line must include the path

to that directory.

413

Two metacharacters can appear in the name of the results file. If the %P character is found in the

name, it will be replaced with the number processors being used for the run. For example, if you

are running on 1024 processors and use the name results-%P/job.e, then the name would be

expanded to results-1024/job.e and the actual results files would be results-1024/job.

e.1024.0000 to results-1024/job.g.1024.1023. The other recognized metacharacter is

%B which is replaced with the base name of the input file containing the input commands. For

example, if the commands are in the file my_analysis_run.i and the results database name is

specified as %B.e, then the results would be written to the file my_analysis_run.e.

If the results file does not use the Exodus II format [1], you must specify the format for the results

file using the command line:

DATABASE TYPE = <string>database_type(exodusII)

Currently, both the Exodus II database and the XDMF database [2] are supported in Presto and

Adagio. Exodus II is more commonly used than XDMF. Other options may be added in the future.

The OVERWRITE command line can be used to prevent the overwriting of existing results files.

OVERWRITE = <string>OFF|ON|TRUE|FALSE|YES|NO

(ON|TRUE|YES)

The OVERWRITE command line allows only a single value. If you set the value to FALSE, NO, or

OFF, the code will terminate before existing results files can be overwritten. If you set the value to

TRUE, YES, or ON, then existing results files can be overwritten (the default status). Suppose, for

example, that we have an existing results file named job21.e. Suppose also that we have an input

file with a RESULTS OUTPUT command block that contains the OVERWRITE command line set to

ON and the DATABASE NAME command line set to:

DATABASE NAME = job21.e

If you run the code under these conditions, the existing results file job21.e will be overwritten.

Whether or not results files are overwritten is also impacted by the use of the automatic read

and write option for restart files described in Section 8.5.1.1. If you use the automatic read and

write option for restart files, the results files, like the restart files, are automatically managed.

The automatic read and write option in restart adds extensions to file names and prevents the

overwriting of any existing restart or results files. For the case of a user-controlled read and write

of restart files (Section 8.5.1.2) or of no restart, however, the OVERWRITE command line is useful

for preventing the overwriting of results files.

You may add a title to the results file by using the TITLE command line. Whatever you specify for

the user_title will be written to the results file. Some of the programs that process the results

file (such as various SEACAS programs [3]) can read and display this information.

The other command lines that appear in the RESULTS OUTPUT command block determine the

type and frequency of information that is output. Descriptions of these command lines follow in

Section 8.2.1.1 through Section 8.2.1.18.

414

8.2.1.1 Output Nodal Variables

NODE <string>variable_name

[AS <string>dbase_variable_name] ...

<string>variable_name [AS <string>dbase_variable_name]

| NODAL <string>variable_name

[AS <string>dbase_variable_name] ...

<string>variable_name [AS <string>dbase_variable_name]

Any nodal variable in Adagio can be selected for output in the results file by using a command

line in one of the two forms shown above. The only difference between the two forms is the use

of NODE or NODAL. The string variable_name is the name of the nodal variable to output. The

string variable_name can be either a variable listed in Section 8.9 or a user-defined variable (see

Section 8.2.2 and Section 10.2.4).

For the above two command lines, any nodal variable requested for output is output for all nodes.

It is possible to specify an alias for any of the nodal variables by using the AS specification.

Suppose, for example, you wanted to output the external forces in Adagio, which are defined

as force_external, with the alias f_ext. You would then enter the command line:

NODE force_external AS f_ext

In this example, the external force is a vector quantity. For a vector quantity at a node, suffixes

are appended to the variable name (or alias name) to denote each vector component. The results

database would have three variable names associated with the external force: f_ext_x, f_ext_y,

and f_ext_z. You can change the component separator, an underscore in this example, by using

the COMPONENT SEPARATOR CHARACTER command line (see Section 8.2.1.7).

The NODE command line can be used an arbitrary number of times within a RESULTS OUTPUT

command block. It is also possible to specify more than one nodal variable for output on a

command line, as indicated by the ellipsis in the command line format. In the following ex-

ample, two nodal variables are specified for output. Note that the internal forces are defined as

force_internal.

NODE force_external force_internal

Aliases can be specified for each of the variables in a single command line. Thus, If you wanted to

output the alias f_ext for external forces and also wanted to output the alias f_int for internal

forces, you would enter the command line:

NODE force_external AS f_ext

force_internal AS f_int

The specification of an alias is optional.

8.2.1.2 Output Node Set Variables

NODESET <string>variable_name

[AS <string>dbase_variable_name] ...

415

<string>variable_name [AS <string>dbase_variable_name]

| NODESET <string>variable_name

[AS <string>dbase_variable_name]

INCLUDE|ON|EXCLUDE <string list>nodelist_names

... <string>variable_name [AS <string>dbase_variable_name]

INCLUDE|ON|EXCLUDE <string list>nodelist_names

A nodal variable may be defined on a subset of the total set of nodes defining a model. A nodal

variable that is defined only on a subset of nodes is referred to as a node set variable. The NODESET

command line lets you specify a node set variable for output to the results file.

There are two forms of the NODESET command line. Either form will let you output a node set

variable.

The first form of the command line is as follows:

NODESET <string>variable_name

[AS <string>dbase_variable_name] ...

<string>variable_name [AS <string>dbase_variable_name]

Here, the string variable_name is a node set variable associated with one or more node sets. In

this form, the node set variable is output for all node sets associated with that node set variable.

It is possible to specify an alias in the results file for any of the node set variables by using the AS

option. Suppose, for example, you wanted to output the node set variable force_nsetype, but

have that variable have the name fnsetype in the results file. You would then enter the command

line:

NODESET force_nsetype AS fnsetype

The NODESET command line can be used an arbitrary number of times within a RESULTS OUTPUT

command block. It is also possible to specify more than one node set variable for output on a

command line, as indicated by the ellipsis in the command line format. In the following example,

two node set variables are specified for output. Here, the second node set variable is defined as

force_nsetype2.

NODESET force_nsetype force_nsetype2

Aliases can be specified for each of the variables in a single command line. Thus, if you wanted to

output the alias fnsetype for node set variable force_nsetype and also wanted to output the

alias fnsetype2 for node set variable force_nsetype2, you would enter the command line:

NODESET force_nsetype AS fnsetype

force_nsetype2 AS fnsetype2

The specification of an alias is optional.

The second form of the command line is as follows:

NODESET <string>variable_name

[AS <string>dbase_variable_name]

416

INCLUDE|ON|EXCLUDE <string list>nodelist_names

... <string>variable_name [AS <string>dbase_variable_name]

INCLUDE|ON|EXCLUDE <string list>nodelist_names

This form of the NODESET command line is similar to the first, except that the user can control

which node sets are used for output. The user can include a specific list of node sets for output

by using the INCLUDE option or the ON option. (The keyword INCLUDE is synonymous with the

keyword ON.) Alternatively, the user can exclude a specific list of node sets for output by using the

EXCLUDE option.

Suppose that the node set variable force_nsetype from the above example has been defined for

nodelist_10, nodelist_11, nodelist_20, and nodelist_21. If we only want to output the

node set variable for node sets nodelist_10, nodelist_11, and nodelist_21, then we could

specify the NODESET command line as follows:

NODESET force_nsetype AS fnsetype

INCLUDE nodelist_10, nodelist_11, nodelist_21

(In the above command line, the keyword ON could be substituted for INCLUDE.) Alternatively, we

could use the command line:

NODESET force_nsetype AS fnsetype

EXCLUDE nodelist_20

In the above command lines, an alias for a node set can be substituted for a node set identifier.

For example, if center_case is an alias for nodelist_10, then the string center_case could

be substituted for nodelist_10 in the above command lines. Because a node set identifier is a

mesh entity, the alias for the node set identifier would be defined via an ALIAS command line in a

FINITE ELEMENT MODEL command block.

Note that the list of identifiers uses a comma to separate one node set identifier from the next node

set identifier.

8.2.1.3 Output Face Variables

FACE <string>variable_name

[AS <string>dbase_variable_name] ...

<string>variable_name [AS <string>dbase_variable_name]

| FACE <string>variable_name

[AS <string>dbase_variable_name]

INCLUDE|ON|EXCLUDE <string list>surface_names

... <string>variable_name [AS <string>dbase_variable_name]

INCLUDE|ON|EXCLUDE <string list>surface_names

A variable may be defined on some set of faces that constitute a surface. A variable defined on a set

of faces is referred to as a face variable. The FACE command line lets you specify a face variable

for output to the results file.

There are two forms of the FACE command line. Either form will let you output a face variable.

417

The first form of the command line is as follows:

FACE <string>variable_name

[AS <string>dbase_variable_name] ...

<string>variable_name [AS

<string>dbase_variable_name]

Here, the string variable_name is a face variable associated with one or more surfaces. In this

form, the face variable is output for all surfaces associated with that face variable.

It is possible to specify an alias in the results file for any face variable by using the AS option. Sup-

pose, for example, you wanted to output a face variable pressure_face, but have that variable

have the name pressuref in the results file. You would then enter the command line:

FACE pressure_face AS pressuref

The FACE command line can be used an arbitrary number of times within a RESULTS OUTPUT

command block. It is also possible to specify more than one face variable for output on a command

line, as indicated by the ellipsis in the command line format. In the following example, two face

variables are specified for output. Here, the second face variable is defined as scalar_face2.

FACE pressure_face scalar_face2

Aliases can be specified for each of the variables in a single command line. Thus, If you wanted

to output the alias pressuref for face variable pressure_face and also wanted to output the

alias scalarf2 for face variable scalar_face2, you would enter the command line:

FACE pressure_face AS pressuref

scalar_face2 AS scalarf2

The specification of an alias is optional.

The second form of the command line is as follows:

FACE <string>variable_name

[AS <string>dbase_variable_name]

INCLUDE|ON|EXCLUDE <string list>surface_names

... <string>variable_name

[AS <string>dbase_variable_name] INCLUDE|ON|EXCLUDE

<string list>surface_names

This form of the FACE command line is similar to the first, except that the user can control which

surfaces are used for output. The user can include a specific list of surfaces for output by using

the INCLUDE option or the ON option. (The keyword INCLUDE is synonymous with the keyword

ON.) Alternatively, the user can exclude a specific list of surfaces for output by using the EXCLUDE

option.

Suppose that the face variable pressure_face from the above example has been defined for

surface_10, surface_11, surface_20, and surface_21. If we only want to output the

face variable for surface_10, surface_11, and surface_21, then we could specify the FACE

command line as follows:

418

FACE pressure_face AS pressuref

INCLUDE surface_10, surface_11,

surface_21

(In the above command line, the keyword ON could be substituted for INCLUDE.) Alternatively, we

could use the command line:

FACE pressure_face AS pressuref

EXCLUDE surface_20

In the above command lines, an alias for a surface can be substituted for a surface identifier.

For example, if center_case is an alias for surface_10, then the string center_case could

be substituted for surface_10 in the above command lines. Because a surface identifier is a

mesh entity, the alias for the surface identifier would be defined via an ALIAS command line in a

FINITE ELEMENT MODEL command block.

Note that the list of identifiers uses a comma to separate one surface identifier from the next surface

identifier.

8.2.1.4 Output Element Variables

ELEMENT <string>variable_name

[AS <string>dbase_variable_name] ...

<string>variable_name [AS

<string>dbase_variable_name]

| ELEMENT <string>variable_name

[AS <string>dbase_variable_name]

INCLUDE|ON|EXCLUDE <string list>block_names

... <string>variable_name

[AS dbase_variable_name] INCLUDE|ON|EXCLUDE

<string list>block_names

Any element variable in Adagio can be selected for output in the results file by using the ELEMENT

command line.

There are two forms of the ELEMENT command line. Either form will let you output an element

variable.

The first form of the command line is as follows:

ELEMENT <string>variable_name

[AS <string>dbase_variable_name] ...

<string>variable_name [AS

<string>dbase_variable_name]

Here, the string variable_name is the name of the element variable to output. The string

variable_name can be a variable listed in Section 8.9 or a user-defined variable (see Section 8.2.2

and Section 10.2.4).

419

In the first form of the ELEMENT command line, the element variable is output for all element

blocks that have the element variable as a defined variable. For example, all the solid elements

have stress as a defined variable. If you had a mesh consisting of hexahedral and tetrahedral

elements and requested output of the element variable stress, then stress would be output for

all element blocks consisting of hexahedral and tetrahedral elements.

It is possible to specify an alias for any of the element variables by using the AS specification.

Suppose, for example, you wanted to output the stress in Adagio, which is defined as stress,

with the alias str. You would then enter the command line:

ELEMENT stress AS str

In this example, stress is a symmetric tensor quantity. For a symmetric tensor quantity, suffixes are

appended to the variable name (or alias name) to denote each symmetric tensor component. The re-

sults database would have six variable names associated with the stress: stress_xx, stress_yy,

stress_zz, stress_xy, stress_xz, and stress_yz. You can change the tensor compo-

nent separator, an underscore in this example, by using the COMPONENT SEPARATOR CHARACTER

command line (see Section 8.2.1.7).

The ELEMENT command line can be used an arbitrary number of times within a RESULTS OUTPUT

command block. It is also possible to specify more than one element variable for output on a

command line, as indicated by the ellipsis in the command line format. In the following example,

two element variables are specified for output. Here, the second element variable is defined as

left_stretch.

ELEMENT stress left_stretch

Aliases can be specified for each of the variables in a single command line. Thus, If you wanted

to output the alias str for element variable stress and also wanted to output the alias strch for

face variable lseft_stretch, you would enter the command line:

ELEMENT stress AS str

left_stretch AS strch

The specification of an alias is optional.

The second form of the command line is as follows:

ELEMENT <string>variable_name

[AS <string>dbase_variable_name]

INCLUDE|ON|EXCLUDE <string list>block_names

... <string>variable_name

[AS dbase_variable_name] INCLUDE|ON|EXCLUDE

<string list>block_names

This form of the ELEMENT command line is similar to the first, except that the user can control

which element blocks are used for output. The user can include a specific list of element blocks

for output by using the INCLUDE option or the ON option. (The keyword INCLUDE is synonymous

with the keyword ON.) Alternatively, the user can exclude a specific list of element blocks for

output by using the EXCLUDE option.

420

Suppose that the element variable stress from the above example exists for element blocks

block_10, block_11, block_20, and block_21. If we only want to output the element vari-

able for block_10, block_11, and block_21, then we could specify the ELEMENT command

line as follows:

ELEMENT stress AS str

INCLUDE block_10, block_11,

block_21

(In the above command line, the keyword ON could be substituted for INCLUDE.) Alternatively, we

could use the command line:

ELEMENT stress AS str

EXCLUDE block_20

In the above command lines, an alias for an element block can be substituted for an element block

identifier. For example, if center_case is an alias for block_10, then the string center_

case could be substituted for block_10 in the above command lines. Because an element block

identifier is a mesh entity, the alias for the element block identifier would be defined via an ALIAS

command line in a FINITE ELEMENT MODEL command block. Note that the list of identifiers

uses a comma to separate one element block identifier from the next element block identifier.

For multi-integration point elements, quantities from the integration points are appended with a

numerical index indicating the integration point. A suffix ranging from 1 to the number of integra-

tion points is attached to the quantity to indicate the corresponding integration point. The suffix is

padded with leading zeros. If the number of integration points is less than 10, the suffix has the

form _i, where i ranges from 1 to the number of integration points. If the number of integration

points is greater than or equal to 10 and less than 100, the sequence of suffixes takes the form

_01, _02, _03, and so forth. Finally, if the number of integration points is greater than or equal to

100, the sequence of suffixes takes the form _001, _002, _003, and so forth. As an example, if

the von Mises stress is requested for a shell element with 15 integration points, then the quantities

von_mises_01, von_mises_02, . . . , von_mises_15 are output for the shell element.

In the above discussion concerning the format for output at multiple integration points, the un-

derscore character preceding the integration point number can be replaced by another delimiter or

the underscore character can be eliminated by use of the COMPONENT SEPARATOR CHARACTER

command line (see Section 8.2.1.7).

Shell tensor quantities transform_shell_stress, transform_shell_strain and

transform_shell_rate_of_deformation may be transformed to a user specified shell lo-

cal co-rotational coordinate system (i.e. an in-plane coordinate system that rotates with the shell

element) for output using the ORIENTATION shell section command. If no orientation is specified,

these in-plane stresses and strains are output in the default orientation. See Section 5.2.4 for more

details.

421

8.2.1.5 Subsetting of Output Mesh

A specified subset of the element blocks in the mesh can be output to the results database using the

INCLUDE or EXCLUDE commands. The syntax is:

INCLUDE = <string>list_of_included_element_blocks

EXCLUDE = <string>list_of_excluded_element_blocks

Either command can appear multiple times within the results output block, but the two cannot

be mixed within a single results output block. If the INCLUDE command is specified, the results

database will only contain the listed element blocks; if the EXCLUDE command is specified, the

results database will contain all element blocks except for the listed element blocks. If the model

has surfaces or nodesets, only the portion of the surfaces or nodesets on the selected element blocks

will be output.

8.2.1.6 Output Mesh Selection

OUTPUT MESH = EXPOSED_SURFACE|BLOCK_SURFACE

The OUTPUT MESH command provides a way to reduce the amount of data that is written to the

results database. There are two options that can be selected:

EXPOSED_SURFACE Only output the element faces that make up the “skin” of the finite element

model; no internal nodes or elements will be written to the results database. The element

results variables will be applied to the skin faces. If the mesh is visualized without any

cutting planes, the display should look the same as if the original full mesh were visualized;

however, the amount of data written to the output file can be much less than is needed if the

full mesh were output.

BLOCK_SURFACE This option is similar to the EXPOSED_SURFACE option except that the skinning

process is done an element block at a time instead of for the full model. In this option, faces

shared between element blocks will appear in the output model.

8.2.1.7 Component Separator Character

COMPONENT SEPARATOR CHARACTER = <string>character|NONE

The component separator character is used to separate an output-variable base name from any

suffixes. For example, the variable stress can have the suffixes xx, yy, etc. By default, the base

name is separated from the suffixes with an underscore character so that we have stress_xx,

stress_yy, etc. in the results output file.

You can replace the underscore as the default separator by using the above command line. If you

wanted to use the period as the separator, then you would use the following command line:

422

COMPONENT SEPARATOR CHARACTER = .

For our example with stress, the stress components would then appear in the results output file

as stress.xx, stress.yy, etc. If the stress is for a shell element, there is also an integration

point suffix preceded, by default, with an underscore. The above command line also resets the

underscore character that precedes the integration point suffix. For our example with the stress

base name and the underscore replaced by the period, the results file would have stress.xx.01,

stress.xx.02, etc., for the shell elements.

You can eliminate the separator with an empty string or NONE.

8.2.1.8 Output Global Variables

GLOBAL <string>variable_name

[AS <string>dbase_variable_name

<string>variable_name AS <string>dbase_variable_name ...]

Any global variable in Adagio can be selected for output in the results file by using the GLOBAL

command line. The string variable_name is the name of the global variable. The string

variable_name can be either a variable listed in Section 8.9 or a user-defined variable (see

Section 8.2.2 and Section 10.2.4).

Kinetic, external, hourglass, and internal energies can be requested as the sum over the entire

mesh or as sums over individual element blocks as noted in Section 8.9. For example, if the mesh

contains element blocks with IDs 100 and 200, the kinetic and hourglass energy summed over each

of these blocks individually can be requested with the commands

GLOBAL ke_block100 as ke100

GLOBAL ke_block200 as ke200

GLOBAL hge_block100 as hge100

GLOBAL hge_block200 as hge200

and the total kinetic energy as

GLOBAL kinetic_energy as ke

Kinetic, internal, and external energies are computed as nodal values. Since nodes may be shared

by element blocks, the total sum of an energy quantity over individual element blocks will not nec-

essarily be equal to the global sum requested using the kinetic_energy, internal_energy,

or external_energy variable names.

With the AS specification, you can specify the variable and select an alias for this variable in the

results file. Suppose, for example, you wanted to output the time steps in Adagio, which are

identified as timestep, with the alias tstep. You would then enter the command line:

GLOBAL timestep AS tstep

423

The GLOBAL command line can be used an arbitrary number of times within a RESULTS OUTPUT

command block. It is also possible to specify more than one global variable for output on a

command line. If you also wanted to output the total number of iterations , which is defined

as total_iter, with the alias ti, you would enter the command line:

GLOBAL timestep as tstep

total_iter as ti

The specification of an alias is optional.

8.2.1.9 Set Begin Time for Results Output

START TIME = <real>output_start_time

Using the START TIME command line, you can write output to the results file beginning at time

output_start_time. No results will be written before this time. If other commands set times

for results (AT TIME, ADDITIONAL TIMES) that are less than output_start_time, those times

will be ignored, and results will not be written at those times.

8.2.1.10 Adjust Interval for Time Steps

TIMESTEP ADJUSTMENT INTERVAL = <integer>steps

This command line is used to specify that the output will be at exactly the times specified. To hit the

output times exactly in an explicit, transient dynamics code, it is necessary to adjust the time step

as the time approaches an output time. The integer value steps in the TIMESTEP ADJUSTMENT

INTERVAL command line specifies the number of time steps to look ahead in order to adjust the

time step.

If this command line does not appear, results are output at times closest to the specified output

times.

8.2.1.11 Output Interval Specified by Time Increment

AT TIME <real>time_begin INCREMENT = <real>time_increment_dt

At the time specified by time_begin, results will be output every time increment given by the

real value time_increment_dt.

8.2.1.12 Additional Times for Output

ADDITIONAL TIMES = <real>output_time1 <real>output_time2 ...

In addition to any times specified by the command line in Section 8.2.1.11, you can use the

ADDITIONAL TIMES command line to specify an arbitrary number of additional output times.

424

8.2.1.13 Output Interval Specified by Step Increment

AT STEP <integer>step_begin INCREMENT =

<integer>step_increment

At the step specified by step_begin, results will be output every step increment given by the

integer value step_increment.

8.2.1.14 Additional Steps for Output

ADDITIONAL STEPS = <integer>output_step1

<integer>output_step2 ...

In addition to any steps specified by the command line in Section 8.2.1.13, you can use the

ADDITIONAL STEPS command line to specify an arbitrary number of additional output steps.

8.2.1.15 Set End Time for Results Output

TERMINATION TIME = <real>termination_time_value

Results will not be written to the results file after time termination_time_value. If other com-

mands set times for results (AT TIME, ADDITIONAL TIMES) that are greater than termination_

time_value, those times will be ignored, and results will not be written at those times.

8.2.1.16 Synchronize Output

SYNCHRONIZE OUTPUT

In an analysis with multiple regions, it is sometimes desirable to synchronize the output of results

data between the regions. This can be done by adding the SYNCHRONIZE OUTPUT command line

to the results output block. If a results block has this set, then it will write output whenever a

previous region writes output. The ordering of regions is based on the order in the input file,

algorithmic considerations, or by solution control specifications.

Although the USE OUTPUT SCHEDULER command line can also synchronize output between re-

gions, the SYNCHRONIZE OUTPUT command line will synchronize the output with regions where

the output frequency is not under the direct control of the Sierra IO system. Examples of this

are typically coupled applications where one or more of the codes are not Sierra-based applica-

tions such as Alegra and CTH. A results block with SYNCHRONIZE OUTPUT specified will also

synchronize its output with the output of the external code.

The SYNCHRONIZE OUTPUT command can be used with other output scheduling commands such

as time-based or step-based output specifications.

425

8.2.1.17 Use Output Scheduler

USE OUTPUT SCHEDULER <string>scheduler_name

In an analysis with multiple regions, it can be difficult to synchronize output such as re-

sults files. To help synchronize output for analyses with multiple regions, you can define an

OUTPUT SCHEDULER command block at the SIERRA scope. The scheduler can then be referenced

in the RESULTS OUTPUT command block via the USE OUTPUT SCHEDULER command line. The

string scheduler_name must match a name used in an OUTPUT SCHEDULER command block.

See Section 8.6 for a description of using this command block and the USE OUTPUT SCHEDULER

command line.

8.2.1.18 Write Results If System Error Encountered

OUTPUT ON SIGNAL = <string>SIGALRM|SIGFPE|SIGHUP|SIGINT|

SIGPIPE|SIGQUIT|SIGTERM|SIGUSR1|SIGUSR2|SIGABRT|

SIGKILL|SIGILL|SIGSEGV

The OUTPUT ON SIGNAL command line is used to initiate the writing of a results file when the

system encounters a type of system error. Only one error type in the list of error types should be

entered for this command line. Generally, these system errors cause the code to terminate before

the code can add any current results output (results output past the last results output time step) to

the results output file. If the code encounters the specified type of error during execution, a results

file will be written before execution is terminated.

This command line can also be used to force the writing of a results file at some point during

execution of the code. Suppose the command line

OUTPUT ON SIGNAL = SIGUSR2

is included in the input file. While the code is running, a user can execute (from the keyboard) the

system command line

kill -s SIGUSR2 pid

to terminate execution and force the writing of a results file. In the above system command line,

pid is the process identifier, which is an integer.

Note that the OUTPUT ON SIGNAL command line is primarily a debugging tool for code develop-

ers.

426

8.2.2 User-Defined Output

BEGIN FILTER <string>filter_name

ACOEFF = <real_list>a_coeff

BCOEFF = <real_list>b_coeff

INTERPOLATION TIME STEP = <real>ts

END [FILTER]

BEGIN USER OUTPUT

mesh-entity set commands

NODE SET = <string_list>nodelist_names

SURFACE = <string_list>surface_names

BLOCK = <string_list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list> surface_names

REMOVE BLOCK = <string list>block_names

#

compute result commands

COMPUTE GLOBAL <string>result_var_name AS

SUM|AVERAGE|MAX|MIN OF NODAL|ELEMENT <string>value_var_name

COMPUTE NODAL <string>result_var_name AS

MAX OVER TIME|MIN OVER TIME|ABSOLUTE VALUE MAX

OVER TIME OF NODAL <string>value_var_name

COMPUTE ELEMENT <string>result_var_name AS

MAX OVER TIME|MIN OVER TIME|ABSOLUTE VALUE MAX

OVER TIME OF ELEMENT <string>value_var_name

#

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name |

SURFACE SUBROUTINE = <string>subroutine_name |

ELEMENT BLOCK SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

copy command

COPY ELEMENT VARIABLE <string>ev_name TO NODAL VARIABLE

<string>nv_name

variable transformation command

TRANSFORM NODAL|ELEMENT VARIABLE <string>variable_name

TO COORDINATE SYSTEM <string>coord_sys_name

427

AS <string> transformed_name

#

Data filtering

FILTER <string>new_var FROM NODAL|ELEMENT <string>source_var

USING <string>filter_name

#

additional command

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [USER OUTPUT]

The USER OUTPUT command block lets the user generate specialized output information derived

from analysis results such as element stresses, displacements, and velocities. For example, the

USER OUTPUT command block could be used to sum the contact forces in a particular direction in

the global axes and on a certain surface to give a net resultant contact force on that surface. In this

example, we essentially postprocess contact information and reduce it to a single value for a surface

(or set of surfaces). This, then, is one of the purposes of the USER OUTPUT command block—

to postprocess analysis results as the code is running and produce a reduced set of specialized

output information. The USER OUTPUT command block offers an alternative to writing out large

quantities of data and then postprocessing them with an external code to produce specialized output

results.

There are three options for calculating user-defined quantities. In the first option, a single command

line in the command block is used to compute reductions of variables on subsets of the mesh. This

option makes use of one of the compute result command lines. For instance, the above example of

the contact force is a case where we can accomplish the desired result simply by using the COMPUTE

GLOBAL command line. In the second option, the command block specifies a user subroutine to

run immediately preceding output to calculate any desired variable. This option makes use of

a NODE SET, SURFACE, or ELEMENT BLOCK SUBROUTINE command line. Finally, there is an

option to copy an element variable for an element to the nodes associated with the element, via

the COPY ELEMENT VARIABLE command line. This copy option is a specialized option that has

been made available primarily for creating results files for some of the postprocessing tools used

with Adagio. You can use only one of the three options—compute global result, user subroutine,

or copy—in a given command block.

For the compute result option, a user-defined variable is automatically generated. This user-defined

variable is given whatever name the user selects for results_var_name in the above specifica-

tion for any of the three compute result command lines. Parenthesis syntax (Section 8.1) may be

used to define reductions on specific integration points or components of a variable. By default, a

reduction operation operates on each integration point. For example, if the compute global com-

mand was used to average values of element stress it would average the values of stress at all

integration points of all elements. If the command was used to average stress(:,1), the result

would only be the average of stress on the first integration points.

428

If the user subroutine or copy option is used, the user will need to define some type of user variable

with the USER VARIABLE command block described in Section 10.2.4.

User-defined variables, whether they are generated via the compute result option or the USER

VARIABLE command block, are not automatically written to a results or history file. If the user

wants to output any user-defined variables, these variables must be referenced in a results or history

output specification (see Section 8.2.1 and Section 8.3, which describe the output of variables to

results files and history files, respectively).

The USER OUTPUT command block contains four groups of commands—mesh-entity set, compute

result, user subroutine, and copy. Each of these command groups is basically independent of the

others. In addition to the command lines in the four command groups, there is an additional

command line: ACTIVE PERIODS. The following sections provide descriptions of the different

command groups and the ACTIVE PERIODS command line.

8.2.2.1 Mesh-Entity Set Commands

The mesh-entity set commands portion of the USER OUTPUT command block specifies the

nodes, element faces, or elements associated with the variable to be output. This portion of the

command block can include some combination of the following command lines:

NODE SET = <string_list>nodelist_names

SURFACE = <string_list>surface_names

BLOCK = <string_list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list> surface_names

REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators for constructing a

set of nodes, element faces, or elements. See Section 6.1.1 for more information about the use of

these command lines for mesh entities. There must be at least one NODE SET, SURFACE, BLOCK,

or INCLUDE ALL BLOCKS command line in the command block.

8.2.2.2 Compute Result Commands

The compute result commands are used to compute new variables by performing operations on an

existing variable. Currently three general forms of the compute results command are supported:

COMPUTE GLOBAL result_var_name AS SUM|AVERAGE|MAX|MIN

OF NODAL|ELEMENT source_var_name

COMPUTE NODAL result_var_name AS

MAX OVER TIME|MIN OVER TIME|ABSOLUTE VALUE MAX OVER TIME

OF NODAL source_var_name

COMPUTE ELEMENT result_var_name AS

429

MAX OVER TIME|MIN OVER TIME|ABSOLUTE VALUE MAX OVER TIME

OF ELEMENT source_var_name

The compute global result command returns a single global value or a set of global values by

examining the current values for a named nodal or element variable and then calculating the output

according to a user-specified operation. A single global value, for example, might be the maximum

value of one of the stress components of all the elements in our specified set; a set of global values

would be the maximum value of each stress component of all elements in our specified set.

The compute nodal and element variable commands compute a new nodal or element field by

operating on an existing field. These commands can be used for computing such things as the

maximum stress in each element over the course of the analysis.

In the above command lines, the following definitions apply:

- The string result_var_name is the name of a new variable in which the computed results

are stored. To output this variable in a results file, a heartbeat file, or a history file, you will

simply use whatever you have selected for results_var_name as the variable name in the

output block.

- Four different global reduction methods are available for computing global variables: SUM,

AVERAGE, MAX, and MIN. SUM adds the variable value of all included mesh entities. AVERAGE

takes the average value of the variable over all included mesh entities. MAX finds the maxi-

mum value over all included mesh entities. MIN finds the minimum value over all included

mesh entities.

- Three different over time methods are available for computing nodal or element variables:

MAX OVER TIME, MIN OVER TIME, and ABSOLUTE VALUE MAX OVER TIME. These op-

tions compute the max, min, or absolute max over time of values in the source variable.

- The source variable used to compute a global variable must be either a nodal quantity or

an element quantity, as specified by the NODAL or ELEMENT option. The variable source

variable used to compute a nodal or element variable must be of the same type as the result

variable.

- The string source_var_name is the name of the variable used to compute the result vari-

able. (see Section 8.9 for a listing of available code variables).

- Standard component syntax may also be used in the source_variable_name to specify

operating on sub-components of a given variable (such as only stress(xx)).

The following is an example of using the COMPUTE command line to compute the net x-direction

reaction force:

COMPUTE GLOBAL wall_x_reaction AS SUM OF NODAL reaction(x)

The following is an example of using the COMPUTE command line to compute the maximum force

seen by the spot welds.

COMPUTE NODAL max_spotn AS MAXIMUM OVER TIME OF NODAL spot_weld_

normal_force

430

8.2.2.3 User Subroutine Commands

If the user subroutine option is used, the user-defined output quantities will be calculated by a

subroutine that is written by the user explicitly for this purpose. The subroutine will be called

by Adagio at the appropriate time to perform the calculations. User subroutines allow for more

generality in computing user-defined results than the COMPUTE GLOBAL command line. Suppose,

for example, you had an analytic solution for a problem and wanted to compute the difference

between some analytic value and a corresponding computed value throughout an analysis. The user

subroutine option would allow you to make this comparison. The full details for user subroutines

are given in Chapter 10.

The following command lines are related to the user subroutine option:

NODE SET SUBROUTINE = <string>subroutine_name |

SURFACE SUBROUTINE = <string>subroutine_name |

ELEMENT BLOCK SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

The user subroutine option is invoked by using the NODE SET SUBROUTINE command line, the

SURFACE SUBROUTINE command line, or the ELEMENT BLOCK SUBROUTINE command line.

The particular command line selected depends on the mesh-entity type of the variable for which

the result quantities are being calculated. For example, variables associated with nodes would be

calculated by using a NODE SET SUBROUTINE command line, variables associated with faces by

using a SURFACE SUBROUTINE command line, and variables associated with elements by using

the ELEMENT BLOCK SUBROUTINE command line. The string subroutine_name is the name

of a FORTRAN subroutine that is written by the user. A user subroutine in the USER OUTPUT

command block returns no values. Instead, it performs its operations directly with commands

such as aupst_put_nodal_var, aupst_put_elem_var, and aupst_put_global_var. See

Chapter 10 for further discussion of these various put commands.

Following the selected command line (NODE SET SUBROUTINE, SURFACE SUBROUTINE, or

ELEMENT BLOCK SUBROUTINE) are other command lines that may be used to implement

the user subroutine option. These command lines are described in Section 10.2.2 and con-

sist of SUBROUTINE DEBUGGING OFF, SUBROUTINE DEBUGGING ON, SUBROUTINE REAL

PARAMETER, SUBROUTINE INTEGER PARAMETER, and SUBROUTINE STRING PARAMETER.

Examples of using these command lines are provided in Chapter 10.

Importantly, to implement the user subroutine option and output the calculated information, you

would also need to do the following:

1. Create the user-defined variable with a USER VARIABLE command block.

431

2. Calculate the results for the user-defined variable in the user subroutine.

3. Write the results for the user-defined variable to an output file by referencing it in a

RESULTS OUTPUT command block and/or a HISTORY OUTPUT command block and/or a

HEARTBEAT OUTPUT command block. In the RESULTS OUTPUT command block, you

would use a NODAL command line, an ELEMENT command line, or a GLOBAL command

line, depending on how you defined the variable in the USER VARIABLE command block.

Similarly, in the HISTORY OUTPUT or HEARTBEAT OUTPUT command block, you would

use the applicable form of the variable command line, depending on how you defined the

variable in the USER VARIABLE command block.

8.2.2.4 Copy Command

COPY ELEMENT VARIABLE <string>ev_name TO NODAL VARIABLE

<string>nv_name

The COPY ELEMENT VARIABLE command line copies the value of an element variable to a node

associated with the element. The element variable to be copied is specified by ev_name; the name

of the nodal variable to which the value is being transferred is nv_name. The nodal variable must

be specified as a user-defined variable.

8.2.2.5 Variable Transformation Command

TRANSFORM NODAL|ELEMENT VARIABLE <string>variable_name

TO COORDINATE SYSTEM <string>coord_sys_name

AS <string> transformed_name

The TRANSFORM NODAL|ELEMENT VARIABLE command line transforms a nodal vector (dis-

placement, velocity, acceleration, etc) or an element tensor (stress, strain, etc.) from com-

ponents in the global coordinate system to components in the coordinate system defined in a

BEGIN COORDINATE SYSTEM command block having the name coord_sys_name (see Sec-

tion 2.1.8). The transformed variables will be output to the results file as transformed_name.

Warning: This command cannot be used to transform shell element tensors which

are not computed in the global coordinate system. Output of shell stress and

strain components in a user-defined, local co-rotational coordinate system are ob-

tained with the element variables transform_shell_stress and transform_

shell_strain as described in Section 8.2.1.

8.2.2.6 Data Filtering Commands

BEGIN FILTER <string>filter_name

432

ACOEFF = <real_list>a_coeff

BCOEFF = <real_list>b_coeff

INTERPOLATION TIME STEP = <real>ts

END [FILTER]

BEGIN USER OUTPUT

FILTER <string>new_var FROM NODAL|ELEMENT <string>source_var

USING <string>filter_name

END

The user output FILTER command creates a new variable “new_var” by performing an on-the-

fly frequency filter of the named element or nodal variable “source_var”. The BEGIN FILTER

command block defines a filter with the name “filter_name”. The filter defined by the begin filter

command block is then referenced by the USER OUTPUT filter command.

In the BEGIN FILTER command block the A and B filtering coefficients are defined with the

ACOEFF and BCOEFF command lines. The filter must define at least one A and one B coefficient,

there is no maximum number coefficients and the length of A and B do not need to match.

Filter operations assume that the data given at a constant time step. The explicit dynamics time

step will tend to vary during the analysis. The INTERPOLATION TIME STEP command is used

to linearly interpolate the data that is being produced at a non-constant time step down to some

specified constant time step. The interpolation time step must be larger than zero and ideally

should be specified such that it is smaller than the smallest time step with which the computations

will iterate.

One way to obtain the filtering coefficients is with MATLAB. The following is an example of

defining a third order Butterworth filter with a pass frequency of 100Hz at data interpolated to a

time step of 1.0e-5 seconds. The filter is then used to filter acceleration histories of the nodes to

100Hz. The MATLAB code below will give the desired filtering coefficients. Note that the full

16-digit precision of the coefficients returned by MATLAB should be used. If truncated precision

numbers are used, the filters can potentially be unstable.

clear;

format long e;

passFrequency = 100;

interp_ts = 1.0e-5;

butterCoeff = 2.0*interp_ts*passFrequency;

[bcoeff,acoeff] = butter(3,butterCoeff);

acoeff

bcoeff

The computed filtering coefficients can be used in a USER OUTPUT block as show below. If the

analysis time step always remains above 1.0e-5 the filter will be valid. If the analysis time step

drops below 1.0e-5 there could be aliasing issues, and a smaller interpolation time step should be

specified.

433

BEGIN FILTER filt_100Hz

ACOEFF = 1.000000000000000e+00 -2.987433650055722e+00 $

2.974946132665442e+00 -9.875122361107358e-01

BCOEFF = 3.081237301416628e-08 9.243711904249885e-08 $

9.243711904249885e-08 3.081237301416628e-08

INTERPOLATION TIME STEP = 1.0e-5

END

BEGIN USER OUTPUT

FILTER ax100Hz FROM NODAL acceleration(x) USING filt_100Hz

FILTER ay100Hz FROM NODAL acceleration(y) USING filt_100Hz

FILTER az100Hz FROM NODAL acceleration(z) USING filt_100Hz

END

8.2.2.7 Compute at Every Step Command

COMPUTE AT EVERY TIME STEP

If this command line appears in the USER OUTPUT command block, a user-defined variable in

the command block will be written at every time step. (Section 10.2.4 discusses user-defined

variables.)

8.2.2.8 Additional Command

The ACTIVE PERIODS or INACTIVE PERIODS command lines can appear as an option in the

USER OUTPUT command block:

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

These command lines determine when the boundary condition is active. See Section 2.5 for more

information about this optional command line.

434

8.3 History Output

BEGIN HISTORY OUTPUT <string>history_name

DATABASE NAME = <string>history_file_name

DATABASE TYPE = <string>database_type(exodusII)

OVERWRITE = <string>OFF|ON|TRUE|FALSE|YES|NO

(ON|TRUE|YES)

TITLE <string>user_title

#

for global variables

GLOBAL <string>variable_name

[AS <string>history_variable_name]

#

for mesh entity - node, edge, face,

element - variables

NODE|NODAL|EDGE|FACE|ELEMENT <string>variable_name

AT NODE|NODAL|EDGE|FACE|ELEMENT <integer>entity_id

AS <string>history_variable_name

#

for nearest point output of mesh entity - node,

edge, face, element - variables

NODE|NODAL|EDGE|FACE|ELEMENT <string>variable_name

NEAREST LOCATION <real>global_x,

<real>global_y>, <real>global_z

AS <string>history_variable_name

START TIME = <real>output_start_time

TIMESTEP ADJUSTMENT INTERVAL = <integer>steps

AT TIME <real>time_begin INCREMENT =

<real>time_increment_dt

ADDITIONAL TIMES = <real>output_time1

<real>output_time2 ...

AT STEP <integer>step_begin INCREMENT =

<integer>step_increment

ADDITIONAL STEPS = <integer>output_step1

<integer>output_step2 ...

TERMINATION TIME = <real>termination_time_value

SYNCHRONIZE_OUTPUT

USE OUTPUT SCHEDULER <string>scheduler_name

OUTPUT ON SIGNAL = <string>SIGALRM|SIGFPE|SIGHUP|SIGINT|

SIGPIPE|SIGQUIT|SIGTERM|SIGUSR1|SIGUSR2|SIGABRT|

SIGKILL|SIGILL|SIGSEGV

END [HISTORY OUTPUT <string>history_name]

A history file gives nodal variable results (displacements, forces, etc.) for specific nodes, edge

variable results for specific edges, face variable results for specific faces, element results (stress,

strain, etc.) for specific elements, and global results at specified times. You can specify a history

file, the results to be included in this file, and the frequency at which results are written by using

435

a HISTORY OUTPUT command block. The command block appears inside the region scope. For

history output, you will typically work with node and element variables, and, on some occasions,

face variables.

More than one history file can be specified for an analysis. For each history file, there will be

one HISTORY OUTPUT command block. The command block for a history file description begins

with:

BEGIN HISTORY OUTPUT <string>history_name

and is terminated with:

END [HISTORY OUTPUT <string>history_name]

where history_name is a user-selected name for the command block. Nested within the

HISTORY OUTPUT command block are a set of command lines, as shown in the block summary

given above. The first two command lines listed (DATABASE NAME and DATABASE TYPE) give

pertinent information about the history file. The command line

DATABASE NAME = <string>history_file_name

gives the name of the history file with the string history_file_name. If the history file is to

appear in the current directory and is named job.h, this command line would appear as:

DATABASE NAME = job.h

If the history file is to be created in some other directory, the command line would have to show

the path to that directory.

Two metacharacters can appear in the name of the history file. If the %P character is found in the

name, it will be replaced with the number processors being used for the run. For example, if you

are running on 1024 processors and use the name history-%P/job.h, then the name would be

expanded to history-1024/job.h. The other recognized metacharacter is %B which is replaced

with the base name of the input file containing the input commands. For example, if the commands

are in the file my_analysis_run.i and the history database name is specified as %B.h, then the

history would be written to the file my_analysis_run.h.

If the history file does not use the Exodus II format [1], you must specify the format for the history

file using the command line:

DATABASE TYPE = <string>database_type(exodusII)

Currently, both the Exodus II database and the XDMF database [2] are supported in Presto and

Adagio. Exodus II is more commonly used than XDMF. Other options may be added in the future.

The OVERWRITE command line can be used to prevent the overwriting of existing history files.

OVERWRITE = <string>OFF|ON|TRUE|FALSE|YES|NO

(ON|TRUE|YES)

The OVERWRITE command line allows only a single value. If you set the value to FALSE, NO, or

OFF, the code will terminate before existing history files can be overwritten. If you set the value

to TRUE, YES, or ON, then existing history files can be overwritten (the default status). Suppose,

for example, that we have an existing history file named job21.h. Suppose also that we have an

436

input file with a HISTORY OUTPUT command block that contains the OVERWRITE command line

set to ON and the DATABASE NAME command line set to:

DATABASE NAME = job21.h

If you run the code under these conditions, the existing history file job21.h will be overwritten.

Whether or not history files are overwritten is also impacted by the use of the automatic read

and write option for restart files described in Section 8.5.1.1. If you use the automatic read and

write option for restart files, the history files, like the restart files, are automatically managed.

The automatic read and write option in restart adds extensions to file names and prevents the

overwriting of any existing restart or history files. For the case of a user-controlled read and write

of restart files (Section 8.5.1.2) or of no restart, however, the OVERWRITE command line is useful

for preventing the overwriting of history files.

You may add a title to the history file by using the TITLE command line. Whatever you specify for

the user_title will be written to the history file. Some of the programs that process the history

file (such as various SEACAS programs [3]) can read and display this information.

The other command lines that appear in the HISTORY OUTPUT command block determine the

type and frequency of information that is output. Descriptions of these command lines follow in

Section 8.3.1 through Section 8.3.12. Note that the command lines for controlling the frequency

of history output (in Section 8.3.1 through Section 8.3.12) are the same as those for controlling

the frequency of results output. These frequency-related command lines are repeated here for

convenience.

8.3.1 Output Variables

The GLOBAL, NODE (or NODAL), EDGE, FACE, or ELEMENT command line is used to select variables

for output in the history file. One of several types of variables can be selected for output. The form

of the command line varies depending on the type of variable that is selected for output.

8.3.1.1 Global Output Variables

GLOBAL <string>variable_name

[AS <string>history_variable_name]

This form of the command line lets you select any global variable for output in the history file. The

variable is selected with the string variable_name. The string variable_name is the name of

the global variable and can be either a variable listed in Section 8.9 or a user-defined variable (see

Section 8.2.2 and Section 10.2.4).

You can also specify a name, history_variable_name, for the selected entity following the AS

keyword. For example, suppose you want to output the total number of iterations (total_iter) as ti.

The command line to obtain the total number of iterationsin the history file would be

GLOBAL total_iter AS ti

The specification of an alias is optional for output of a global variable.

437

8.3.1.2 Mesh Entity Output Variables

NODE|NODAL|EDGE|FACE|ELEMENT <string>variable_name

AT NODE|NODAL|EDGE|FACE|ELEMENT <integer>entity_id

AS <string>history_variable_name

This form of the command line lets you select any nodal, edge, face, or element variable for a

specific mesh entity for output in the history file. For example, this form of the command line

will let you pick the displacement at a specific node and output the displacement to the history file

using an alias that you have chosen.

For this form of the command line, the mesh entity type is set to NODE (or NODAL), EDGE, FACE,

or ELEMENT depending on the variable (set by variable_name) to be output. If the mesh entity

type is set to NODE (or NODAL), EDGE, or FACE, the string variable_name can be either a variable

listed in Section 8.9 or a user-defined variable (see Section 8.2.2 and Section 10.2.4). If the mesh

entity type is set to ELEMENT, the string variable_name can be a variable listed in Section 8.9

or a user-defined variable (see Section 8.2.2 and Section 10.2.4.

Selection of a specific mesh entity follows the AT keyword. You select a mesh entity type (NODE

[or NODAL], EDGE, FACE, or ELEMENT) followed by the specific integer identifier, entity_id,

for the mesh entity. You must specify a name, history_variable_name, for the selected entity

following the AS keyword. For example, suppose you want to output the accelerations at node 88.

The command line to obtain the accelerations at node 88 for the history file would be:

NODE ACCELERATION AT NODE 88 AS accel_88

where accel_88 is the name that will be used for this history variable in the history file.

Note that either the keyword NODE or NODAL can be used for nodal quantities.

As an example, the command line to obtain the von Mises stress for element 1024 for the history

file would be:

ELEMENT VON_MISES AT ELEMENT 1024 AS vm_1024

where vm_1024 is the name that will be used for this history variable in the history file.

8.3.1.3 Nearest Point Output Variables

NODE|NODAL|EDGE|FACE|ELEMENT <string>variable_name

NEAREST LOCATION <real>global_x,

real<global_y>, real<global_z>

AS <string>history_variable_name

This form of the command line lets you select any nodal, edge, face, or element variable for output

in the history file using a nearest point criterion. The command line described in this subsection is

an alternative to the command line described in the preceding section, Section 8.3.1.2, for obtaining

history output. The command line in this section or the command line in Section 8.3.1.2 produces

history files with variable information. The difference in these two command lines (Section 8.3.1.3

and Section 8.3.1.2) is simply in how the variable information is selected.

438

For the above form of the command line, the mesh entity type is set to NODE (or NODAL), EDGE,

FACE, or ELEMENT depending on the variable (set by variable_name) to be output. If the mesh

entity type is set to NODE (or NODAL), EDGE, or FACE, the string variable_name can be either

a variable listed in Section 8.9 or a user-defined variable (see Section 8.2.2 and Section 10.2.4).

If the mesh entity type is set to ELEMENT, the string variable_name can be a variable listed in

Section 8.9 or a user-defined variable (see Section 8.2.2 and Section 10.2.4).

The specific mesh entity used for output is determined by global coordinates specified by

the NEAREST LOCATION keyword and its associated input parameters—global_x, global_y,

global_z. The specific mesh entity chosen for output is as follows:

• If the mesh entity has been set to NODE (or NODAL), the node in the mesh selected for output

is the node whose initial position is nearest the input global X, Y, and Z coordinates specified

with the parameters global_x, global_y, and global_z.

• If the mesh entity has been set to EDGE, the edge in the mesh selected for output is the edge

with a center point (the average location of the two end points of the edge) whose initial

position is nearest the input global X, Y, and Z coordinates specified with the parameters

global_x, global_y, and global_z.

• If the mesh entity has been set to FACE, the face in the mesh selected for output is the face

with a centroid whose initial position is nearest the input global X, Y, and Z coordinates

specified with the parameters global_x, global_y, and global_z.

• If the mesh entity has been set to ELEMENT, the element in the mesh selected for output is

the element with a centroid whose initial position is nearest the input global X, Y, and Z

coordinates specified with the parameters global_x, global_y, and global_z.

Note that, in all the above cases, the original model coordinates are used when selecting the nearest

entity, not the current coordinates.

You must specify a name, history_variable_name, for the selected entity following the AS

keyword. As an example, suppose you want to output the accelerations at a node closest to the point

with global coordinates (1012.0, 54.86, 103.3141). The command line to obtain the accelerations

at the node closest to this location for the history file would be:

NODE ACCELERATION

NEAREST LOCATION 1012.0, 54.86, 103.3141 AS accel_near

where accel_near is the name that will be used for this history variable in the history file.

Note that either the keyword NODE or NODAL can be used for nodal quantities.

8.3.2 Outputting History Data on a Node Set

It is commonly desired to output history data on a single-node node set. If a mesh file is slightly

modified, the node and element numbers will completely change. The node associated with a node

set, however, remains the same, i.e., the node in the node set retains the same initial geometric

439

location with the same connectivity to other elements even when its node number changes. There-

fore, we might want to specify the history output for a node set with a single node rather than with

the global identifier for a node. This can easily be accomplished, as follows:

begin user output

node set = nodelist_1

compute global disp_ns_1 as average of nodal displacement

end

begin history output

global disp_ns_1

end

If nodelist_1 contains only a single node, the history output variable disp_ns_1 will contain

the displacement for the single node in the node set. If nodelist_1 contains multiple nodes, the

average displacement of the nodes will be output.

8.3.3 Set Begin Time for History Output

START TIME = <real>output_start_time

Using the START TIME command line, you can write history variables to the history file begin-

ning at time output_start_time. No history variables will be written before this time. If

other commands set times for history output (AT TIME, ADDITIONAL TIMES) that are less than

output_start_time, those times will be ignored, and history output will not be written at those

times.

8.3.4 Adjust Interval for Time Steps

TIMESTEP ADJUSTMENT INTERVAL = <integer>steps

This command line is used to specify that the output will be at exactly the times specified. To hit the

output times exactly in an explicit, transient dynamics code, it is necessary to adjust the time step

as the time approaches an output time. The integer value steps in the TIMESTEP ADJUSTMENT

INTERVAL command line specifies the number of time steps to look ahead in order to adjust the

time step.

If this command line does not appear, history variables are output at times closest to the specified

output times.

8.3.5 Output Interval Specified by Time Increment

AT TIME <real>time_begin INCREMENT = <real>time_increment_dt

440

At the time specified by time_begin, history variables will be output every time increment given

by the real value time_increment_dt.

8.3.6 Additional Times for Output

ADDITIONAL TIMES = <real>output_time1 <real>output_time2 ...

In addition to any times specified by the command line in Section 8.3.5, you can use the

ADDITIONAL TIMES command line to specify an arbitrary number of additional output times.

8.3.7 Output Interval Specified by Step Increment

AT STEP <integer>step_begin INCREMENT =

<integer>step_increment

At the step specified by step_begin, history variables will be output every step increment given

by the integer value step_increment.

8.3.8 Additional Steps for Output

ADDITIONAL STEPS = <integer>output_step1

<integer>output_step2 ...

In addition to any steps specified by the command line in Section 8.3.7, you can use the

ADDITIONAL STEPS command line to specify an arbitrary number of g

8.3.9 Set End Time for History Output

TERMINATION TIME = <real>termination_time_value

History output will not be written to the history file after time termination_time_value. If

other commands set times for history output (AT TIME, ADDITIONAL TIMES) that are greater

than termination_time_value, those times will be ignored, and history output will not be

written at those times.

8.3.10 Synchronize Output

SYNCHRONIZE OUTPUT

441

In an analysis with multiple regions, it is sometimes desirable to synchronize the output of history

data between the regions. This can be done by adding the SYNCHRONIZE OUTPUT command line

to the history output block. If a history block has this set, then it will write output whenever a

previous region writes output. The ordering of regions is based on the order in the input file,

algorithmic considerations, or by solution control specifications.

Although the USE OUTPUT SCHEDULER command line can also synchronize output between re-

gions, the SYNCHRONIZE OUTPUT will synchronize the output with regions where the output fre-

quency is not under the direct control of the Sierra IO system. Examples of this are typically

coupled applications where one or more of the codes are not Sierra-based applications such as

Alegra and CTH. A history block with SYNCHRONIZE OUTPUT specified will also synchronize its

output with the output of the external code.

The SYNCHRONIZE OUTPUT command can be used with other output scheduling commands such

as time-based or step-based output specifications.

8.3.11 Use Output Scheduler

USE OUTPUT SCHEDULER <string>scheduler_name

In an analysis with multiple regions, it can be difficult to synchronize output such as his-

tory files. To help synchronize output for analyses with multiple regions, you can define an

OUTPUT SCHEDULER command block at the SIERRA scope. The scheduler can then be referenced

in the HISTORY OUTPUT command block via the USE OUTPUT SCHEDULER command line. The

string scheduler_name must match a name used in an OUTPUT SCHEDULER command block.

See Section 8.6 for a description of using this command block and the USE OUTPUT SCHEDULER

command line.

8.3.12 Write History If System Error Encountered

OUTPUT ON SIGNAL = <string>SIGALRM|SIGFPE|SIGHUP|SIGINT|

SIGPIPE|SIGQUIT|SIGTERM|SIGUSR1|SIGUSR2|SIGABRT|

SIGKILL|SIGILL|SIGSEGV

The OUTPUT ON SIGNAL command line is used to initiate the writing of a history file when the

system encounters a type of system error. Only one error type in the list of error types should be

entered for this command line. Generally, these system errors cause the code to terminate before

the code can add any current history output (history output past the last history output time step)

to the history file. If the code encounters the specified type of error during execution, a history file

will be written before execution is terminated.

This command line can also be used to force the writing of a history file at some point during

execution of the code. Suppose the command line

OUTPUT ON SIGNAL = SIGUSR2

442

is included in the input file. While the code is running, a user can execute (from the keyboard) the

system command line

kill -s SIGUSR2 pid

to terminate execution and force the writing of a results file. In the above system command line,

pid is the process identifier, which is an integer.

Note that the OUTPUT ON SIGNAL command line is primarily a debugging tool for code develop-

ers.

443

8.4 Heartbeat Output

BEGIN HEARTBEAT OUTPUT <string>heartbeat_name

Can also use predefined streams "cout", "stdout",

"cerr", "clog", "log", "output", or "outputP0"

STREAM NAME = <string>heartbeat_file_name

#

Specify whether heartbeat file will be in spyhis (cth)

format, or default format

FORMAT = SPYHIS|DEFAULT

#

for global variables

GLOBAL <string>variable_name

[AS <string>heartbeat_variable_name]

#

for mesh entity - node, edge, face,

element - variables

NODE|NODAL|EDGE|FACE|ELEMENT <string>variable_name

AT NODE|NODAL|EDGE|FACE|ELEMENT <integer>entity_id

AS <string>heartbeat_variable_name

#

for nearest point output of mesh entity - node,

edge, face, element - variables

NODE|NODAL|EDGE|FACE|ELEMENT <string>variable_name

NEAREST LOCATION <real>global_x,

<real>global_y>, <real>global_z

AS <string>heartbeat_variable_name

START TIME = <real>output_start_time

TIMESTEP ADJUSTMENT INTERVAL = <integer>steps

AT TIME <real>time_begin INCREMENT =

<real>time_increment_dt

ADDITIONAL TIMES = <real>output_time1

<real>output_time2 ...

AT STEP <integer>step_begin INCREMENT =

<integer>step_increment

ADDITIONAL STEPS = <integer>output_step1

<integer>output_step2 ...

TERMINATION TIME = <real>termination_time_value

SYNCHRONIZE_OUTPUT

USE OUTPUT SCHEDULER <string>scheduler_name

OUTPUT ON SIGNAL = <string>SIGALRM|SIGFPE|SIGHUP|SIGINT|

SIGPIPE|SIGQUIT|SIGTERM|SIGUSR1|SIGUSR2|SIGABRT|

SIGKILL|SIGILL|SIGSEGV

PRECISION = <integer>precision

LABELS = <string>OFF|ON

LEGEND = <string>OFF|ON

TIMESTAMP FORMAT <string>timestamp_format

444

MONITOR = <string>RESULTS|RESTART|HISTORY

END [HEARTBEAT OUTPUT <string>heartbeat_name]

The heartbeat output is text output file that gives:

• nodal variable results (displacements, forces, etc.) for specific nodes,

• edge variable results for specific edges,

• face variable results for specific faces,

• element results (stress, strain, etc.) for specific elements, and

• global results

at specified times.

Known Issue: User defined variables (see Section 10.2.4) are not currently sup-

ported with heartbeat output.

The output is written as text instead of the binary history output. You can specify a heartbeat file,

the results to be included in this file, the formatting of the output, and the frequency at which results

are written by using a HEARTBEAT OUTPUT command block. The command block appears inside

the region scope. For heartbeat output, you will typically work with global, node, and element

variables, and, on some occasions, face variables.

More than one heartbeat file can be specified for an analysis. For each heartbeat file, there will be

one HEARTBEAT OUTPUT command block. The command block for a heartbeat file description

begins with

BEGIN HEARTBEAT OUTPUT <string>heartbeat_name

and is terminated with

END [HEARTBEAT OUTPUT <string>heartbeat_name]

where heartbeat_name is a user-selected name for the command block. Nested within the

HEARTBEAT OUTPUT command block are a set of command lines, as shown in the block sum-

mary given above. The first command line listed (STREAM NAME) gives pertinent information

about the heartbeat file. The command line

STREAM NAME = <string>heartbeat_file_name

gives the name of the heartbeat file with the string heartbeat_file_name. If the file already

exists, it is overwritten. If the heartbeat file is to appear in the current directory and is named

job.h, this command line would appear as

STREAM NAME = job.h

If the heartbeat file is to be created in some other directory, the command line would have to show

the absolute path to that directory.

445

In addition to specifying a specific filename, there are several predefined streams that can be spec-

ified. The predefined streams are:

• ’cout’ or ’stdout’ specifies standard output;

• ’cerr’, ’stderr’, ’clog’, or ’log’ specifies standard error;

• ’output’ or ’outputP0’ specifies Sierra’s standard output which is redirected to the file speci-

fied by the ’-o’ option on the command line.

Two metacharacters can appear in the name of the heartbeat file. If the %P character is found in the

name, it will be replaced with the number processors being used for the run. For example, if you

are running on 1024 processors and use the name heartbeat-%P/job.h, then the name would

be expanded to heartbeat-1024/job.h. The other recognized metacharacter is %B which is

replaced with the base name of the input file containing the input commands. For example, if

the commands are in the file my_analysis_run.i and the heartbeat stream name is specified as

%B.h, then the heartbeat data would be written to the file my_analysis_run.h.

The other command lines that appear in the HEARTBEAT OUTPUT command block determine the

type, frequency, and format of information that is output. Descriptions of these command lines

follow in Section 8.4.1 through Section 8.4.14. Note that the command lines for controlling the

frequency of heartbeat output (in Section 8.4.3 through Section 8.4.12) are the same as those for

controlling the frequency of results and history output. These frequency-related command lines

are repeated here for convenience.

8.4.1 Output Variables

The GLOBAL, NODE (or NODAL), EDGE, FACE, or ELEMENT command line is used to select variables

for output in the heartbeat file. One of several types of variables can be selected for output. The

form of the command line varies depending on the type of variable that is selected for output.

8.4.1.1 Global Output Variables

GLOBAL <string>variable_name

[AS <string>heartbeat_variable_name]

This form of the command lets you select any global variable for output in the heartbeat file. The

variable is selected with the string variable_name. The string variable_name is the name of

the global variable and can be either a variable listed in Section 8.9 or a user-defined variable (see

Section 8.2.2 and Section 10.2.4). The variable_name can also specify time, timestep, or

step to output the current simulation time, timestep, or execution step, respectively.

You can also specify a name, heartbeat_variable_name, for the selected entity following the

AS keyword. For example, suppose you want to output the total number of iterations (total_iter) as

ti. The command line to obtain the total number of iterationsin the heartbeat file would be:

446

GLOBAL total_iter AS ti

The specification of an alias is optional for a global variable.

8.4.1.2 Mesh Entity Output Variables

NODE|NODAL|EDGE|FACE|ELEMENT <string>variable_name

AT NODE|NODAL|EDGE|FACE|ELEMENT <integer>entity_id

AS <string>heartbeat_variable_name

This form of the command lets you select any nodal, edge, face, or element variable for a specific

mesh entity for output in the heartbeat file. For example, this command line will let you pick the

displacement at a specific node and output the displacement to the heartbeat file using an alias that

you have chosen.

For this form of the command, the mesh entity type is set to NODE (or NODAL), EDGE, FACE,

or ELEMENT depending on the variable (set by variable_name) to be output. If the mesh entity

type is set to NODE (or NODAL), EDGE, or FACE, the string variable_name can be either a variable

listed in Section 8.9 or a user-defined variable (see Section 8.2.2 and Section 10.2.4). If the mesh

entity type is set to ELEMENT, the string variable_name can be a variable listed in Section 8.9

or a user-defined variable (see Section 8.2.2 and Section 10.2.4).

Selection of a specific mesh entity follows the AT keyword. You select a mesh entity type (NODE

[or NODAL], EDGE, FACE, or ELEMENT) followed by the specific integer identifier, entity_id, for

the mesh entity. You must specify a name, heartbeat_variable_name, for the selected entity

following the AS keyword. For example, suppose you want to output the accelerations at node 88.

The command line to obtain the accelerations at node 88 for the heartbeat file would be:

NODE ACCELERATION AT NODE 88 AS accel_88

where accel_88 is the name that will be used for this heartbeat variable in the heartbeat file.

Note that either the keyword NODE or NODAL can be used for nodal quantities.

As an example, the command line to obtain the von Mises stress for element 1024 for the heartbeat

file would be:

ELEMENT VON_MISES AT ELEMENT 1024 AS vm_1024

where vm_1024 is the name that will be used for this heartbeat variable in the heartbeat file.

8.4.1.3 Nearest Point Output Variables

NODE|NODAL|EDGE|FACE|ELEMENT <string>variable_name

NEAREST LOCATION <real>global_x,

real<global_y>, real<global_z>

AS <string>heartbeat_variable_name

This form of the command lets you select any nodal, edge, face, or element variable for output in

the heartbeat file using a nearest point criterion. The command line described in this subsection

447

is an alternative to the command line described in the preceding section, Section 8.4.1.2, for ob-

taining heartbeat output. The command line in this section or the command line in Section 8.4.1.2

produces heartbeat files with variable information. The difference in these two command lines

(Section 8.4.1.3 and Section 8.4.1.2) is simply in how the variable information is selected.

For the above form of the command, the mesh entity type is set to NODE (or NODAL), EDGE, FACE,

or ELEMENT depending on the variable (set by variable_name) to be output. If the mesh entity

type is set to NODE (or NODAL), EDGE, or FACE, the string variable_name can be either a variable

listed in Section 8.9 or a user-defined variable (see Section 8.2.2 and Section 10.2.4). If the mesh

entity type is set to ELEMENT, the string variable_name can be a variable listed in Section 8.9

or a user-defined variable (see Section 8.2.2 and Section 10.2.4).

The specific mesh entity used for output is determined by global coordinates specified by

the NEAREST LOCATION keyword and its associated input parameters—global_x, global_y,

global_z. The specific mesh entity chosen for output is as follows:

• If the mesh entity has been set to NODE (or NODAL), the node in the mesh selected for output

is the node whose initial position is nearest the input global X, Y, and Z coordinates specified

with the parameters global_x, global_y, and global_z.

• If the mesh entity has been set to EDGE, the edge in the mesh selected for output is the edge

with a center point (the average location of the two end points of the edge) whose initial

position is nearest the input global X, Y, and Z coordinates specified with the parameters

global_x, global_y, and global_z.

• If the mesh entity has been set to FACE, the face in the mesh selected for output is the face

with a centroid whose initial position is nearest the input global X, Y, and Z coordinates

specified with the parameters global_x, global_y, and global_z.

• If the mesh entity has been set to ELEMENT, the element in the mesh selected for output is

the element with a centroid whose initial position is nearest the input global X, Y, and Z

coordinates specified with the parameters global_x, global_y, and global_z.

Note that, in all the above cases, the original model coordinates are used when selecting the nearest

entity, not the current coordinates.

You must specify a name, heartbeat_variable_name, for the selected entity following the AS

keyword. As an example, suppose you want to output the accelerations at a node closest to the point

with global coordinates (1012.0, 54.86, 103.3141). The command line to obtain the accelerations

at the node closest to this location for the heartbeat file would be:

NODE ACCELERATION

NEAREST LOCATION 1012.0, 54.86, 103.3141 AS accel_near

where accel_near is the name that will be used for this heartbeat variable in the heartbeat file.

Note that either the keyword NODE or NODAL can be used for nodal quantities.

448

8.4.2 Outputting Heartbeat Data on a Node Set

It is commonly desired to output heartbeat data on a single-node node set. If a mesh file is slightly

modified, the node and element numbers will completely change. The node associated with a node

set, however, remains the same, i.e., the node in the node set retains the same initial geometric

location with the same connectivity to other elements even when its node number changes. There-

fore, we might want to specify the heartbeat output for a node set with a single node rather than

with the global identifier for a node. This can easily be accomplished, as follows:

begin user output

node set = nodelist_1

compute global disp_ns_1 as average of nodal displacement

end

begin heartbeat output

global disp_ns_1

end

If nodelist_1 contains only a single node, the heartbeat output variable disp_ns_1 will contain

the displacement for the single node in the node set. If nodelist_1 contains multiple nodes, the

average displacement of the nodes will be output.

8.4.3 Set Begin Time for Heartbeat Output

START TIME = <real>output_start_time

Using the START TIME command line, you can write heartbeat variables to the heartbeat file

beginning at time output_start_time. No heartbeat variables will be written before this time.

If other commands set times for heartbeat output (AT TIME, ADDITIONAL TIMES) that are less

than output_start_time, those times will be ignored, and heartbeat output will not be written

at those times.

8.4.4 Adjust Interval for Time Steps

TIMESTEP ADJUSTMENT INTERVAL = <integer>steps

This command line is used to specify that the output will be at exactly the times specified. To hit the

output times exactly in an explicit, transient dynamics code, it is necessary to adjust the time step

as the time approaches an output time. The integer value steps in the TIMESTEP ADJUSTMENT

INTERVAL command line specifies the number of time steps to look ahead in order to adjust the

time step.

If this command line does not appear, heartbeat variables are output at times closest to the specified

output times.

449

8.4.5 Output Interval Specified by Time Increment

AT TIME <real>time_begin INCREMENT = <real>time_increment_dt

At the time specified by time_begin, heartbeat variables will be output every time increment

given by the real value time_increment_dt.

8.4.6 Additional Times for Output

ADDITIONAL TIMES = <real>output_time1 <real>output_time2 ...

In addition to any times specified by the command line in Section 8.4.5, you can use the

ADDITIONAL TIMES command line to specify an arbitrary number of additional output times.

8.4.7 Output Interval Specified by Step Increment

AT STEP <integer>step_begin INCREMENT =

<integer>step_increment

At the step specified by step_begin, heartbeat variables will be output every step increment

given by the integer value step_increment.

8.4.8 Additional Steps for Output

ADDITIONAL STEPS = <integer>output_step1

<integer>output_step2 ...

In addition to any steps specified by the command line in Section 8.3.7, you can use the

ADDITIONAL STEPS command line to specify an arbitrary number of g

8.4.9 Set End Time for Heartbeat Output

TERMINATION TIME = <real>termination_time_value

Heartbeat output will not be written to the heartbeat file after time termination_time_value.

If other commands set times for heartbeat output (AT TIME, ADDITIONAL TIMES) that are greater

than termination_time_value, those times will be ignored, and heartbeat output will not be

written at those times.

450

8.4.10 Synchronize Output

SYNCHRONIZE OUTPUT

In an analysis with multiple regions, it is sometimes desirable to synchronize the output of heart-

beat data between the regions. This can be done by adding the SYNCHRONIZE OUTPUT command

line to the heartbeat output block. If a heartbeat block has this set, then it will write output when-

ever a previous region writes output. The ordering of regions is based on the order in the input file,

algorithmic considerations, or by solution control specifications.

Although the USE OUTPUT SCHEDULER command line can also synchronize output between re-

gions, the SYNCHRONIZE OUTPUT will synchronize the output with regions where the output fre-

quency is not under the direct control of the Sierra IO system. Examples of this are typically

coupled applications where one or more of the codes are not Sierra-based applications such as

Alegra and CTH. A heartbeat block with SYNCHRONIZE OUTPUT specified will also synchronize

its output with the output of the external code.

The SYNCHRONIZE OUTPUT command can be used with other output scheduling commands such

as time-based or step-based output specifications.

8.4.11 Use Output Scheduler

USE OUTPUT SCHEDULER <string>scheduler_name

In an analysis with multiple regions, it can be difficult to synchronize output such as heart-

beat files. To help synchronize output for analyses with multiple regions, you can define an

OUTPUT SCHEDULER command block at the SIERRA scope. The scheduler can then be ref-

erenced in the HEARTBEAT OUTPUT command block via the USE OUTPUT SCHEDULER com-

mand line. The string scheduler_name must match a name used in an OUTPUT SCHEDULER

command block. See Section 8.6 for a description of using this command block and the

USE OUTPUT SCHEDULER command line.

8.4.12 Write Heartbeat On Signal

OUTPUT ON SIGNAL = <string>SIGALRM|SIGFPE|SIGHUP|SIGINT|

SIGPIPE|SIGQUIT|SIGTERM|SIGUSR1|SIGUSR2|SIGABRT|

SIGKILL|SIGILL|SIGSEGV

The OUTPUT ON SIGNAL command line is used to initiate the writing of a heartbeat file when the

system encounters the specified signal. The signal can either occur as the result of a system error,

or the user can explicitly send the specified signal to the application (See the system documentation

man pages for “signal” or “kill” for more information). Only one signal type in the list of signal

types should be entered for this command line. Generally, these signals cause the code to terminate

before the code can add any current heartbeat output (heartbeat output past the last heartbeat output

451

time step) to the heartbeat file. If the code encounters the specified type of error during execution,

a heartbeat file will be written before execution is terminated.

This command line can also be used to force the writing of a heartbeat file at some point during

execution of the code. Suppose the command line

OUTPUT ON SIGNAL = SIGUSR2

is included in the input file. While the code is running, a user can execute (from the keyboard) the

system command line

kill -s SIGUSR2 pid

to force the writing of a results file. In the above system command line, pid is the process identifier,

which is an integer.

Note that the OUTPUT ON SIGNAL command line is primarily a debugging tool for code develop-

ers.

8.4.13 Heartbeat Output Formatting Commands

There are several command lines for the heartbeat section that modify the formatting of the heart-

beat text output. The default output for the heartbeat data consists of a line beginning with a

timestamp showing the current wall-clock time followed by multiple columns of data, for exam-

ple:

Begin HeartBeat Region_1_Heartbeat

Stream Name = output

At Step 0, Increment = 10

precision is 5

global step

global timestep as dt

global time

global total_energy as te

End

+[12:18:51] step=240, dt=3.13933e-04, time=7.56578e-02, te=4.02795e-06

+[12:18:51] step=250, dt=3.13933e-04, time=7.87971e-02, te=1.32125e-06

+[12:18:51] step=260, dt=3.13933e-04, time=8.19365e-02, te=6.88142e-07

+[12:18:51] step=270, dt=3.13933e-04, time=8.50758e-02, te=3.93574e-06

+[12:18:52] step=280, dt=3.13933e-04, time=8.82151e-02, te=7.46609e-06

+[12:18:52] step=290, dt=3.13933e-04, time=9.13545e-02, te=1.03856e-05

+[12:18:52] step=300, dt=3.13933e-04, time=9.44938e-02, te=1.36822e-05

+[12:18:52] step=310, dt=3.13933e-04, time=9.76331e-02, te=1.64630e-05

The above example begins each line with a timestamp followed by five labeled data columns. The

precision of the real data is 5. There is no legend in the above example. This format can be

modified with the following commands.

452

8.4.13.1 CTH SpyHis output format

FORMAT = SPYHIS|DEFAULT

If the FORMAT=SPYHIS is specified, then the heartbeat output will be formatted such that it can be

processed with the CTH spyhis application which is a post-processor for time-history data.

8.4.13.2 Specify floating point precision

PRECISION = <integer>precision

By default, the real data is written with a precision of 5 which gives 5 digits following the decimal

point. This can be altered with the PRECISION command. If the command line PRECISION = 2

is specified, then the above data would look like:

Begin HeartBeat Region_1_Heartbeat

...

precision = 2

...

End

+[12:18:51] step=240, dt=3.14e-04, time=7.57e-02, te=4.03e-06

+[12:18:51] step=250, dt=3.14e-04, time=7.88e-02, te=1.32e-06

+[12:18:51] step=260, dt=3.14e-04, time=8.19e-02, te=6.88e-07

Note that the precision applies to all real data; it is not possible to specify a different precision for

each variable.

8.4.13.3 Specify Labeling of Heartbeat Data

LABELS = <string>OFF|ON

The above example shows the default output which consists of a label and the data separated by

“=”. The existence of the labels is controlled with the LABELS command. If LABELS = OFF is

specified, then the above data would look like:

Begin HeartBeat Region_1_Heartbeat

...

labels = off

precision = 2

...

End

+[12:17:37] 240, 3.14e-04, 7.57e-02, 4.03e-06

+[12:17:37] 250, 3.14e-04, 7.88e-02, 1.32e-06

+[12:17:38] 260, 3.14e-04, 8.19e-02, 6.88e-07

453

8.4.13.4 Specify Existence of Legend for Heartbeat Data

LEGEND = <string>OFF|ON

Outputting the data without labels can make it easier to work with the data in a spreadsheet program

or other data manipulation program, but with no labels, it is difficult to determine what the data

really represents. The LEGEND output will print a line at the beginning of the heartbeat output

identifying the data in each column. For example:

Begin HeartBeat Region_1_Heartbeat

...

legend = on

labels = off

precision = 2

...

End

+[12:17:37] Legend: step, dt, time, te

+[12:17:37] 240, 3.14e-04, 7.57e-02, 4.03e-06

+[12:17:37] 250, 3.14e-04, 7.88e-02, 1.32e-06

+[12:17:38] 260, 3.14e-04, 8.19e-02, 6.88e-07

8.4.13.5 Specify format of timestamp

TIMESTAMP FORMAT <string>"timestamp_format"

Each line of the heartbeat output is preceded by a timestamp which shows the wall-clock time

at the time that the line was output. This can be useful to verify that the code is still running

and producing output and to determine how fast the code is running. The default timestamp is

in the format “[12:34:56]” which is specified by the format [̈%H:%M:%S].̈ If a different format

is desired, it can be specified with the TIMESTAMP FORMAT command line. The format must be

surrounded by double or single quotes and the format is defined to be the string between the first

single or double quote and the last matching quote type. If you want to modify the format, see the

documentation for the UNIX strftime command for details on how to specify the format. The

example below shows a timestamp format delimited by “{” and “}”. The timestamp consists of a

ISO-8601 date format followed by the current time.

...

timestamp format "{%F %H:%M:%S}"

...

+{2008-03-17 09:26:17} 2212, 1.34244e-06, 2.96948e-03, 2.96948e-03

+{2008-03-17 09:26:17} 2213, 1.34244e-06, 2.97082e-03, 2.97082e-03

+{2008-03-17 09:26:17} 2214, 1.34244e-06, 2.97216e-03, 2.97216e-03

+{2008-03-17 09:26:17} 2215, 1.34244e-06, 2.97350e-03, 2.97350e-03

+{2008-03-17 09:26:17} 2216, 1.34244e-06, 2.97485e-03, 2.97485e-03

454

8.4.14 Monitor Output Events

MONITOR = <string>RESULTS|RESTART|HISTORY

It is sometimes a benefit to know when the code has written a new set of data to one of the other

output files (restart output, history output, or results output). The heartbeat output will report this

data if the MONITOR command line is specified. Each time output is performed to any of the

monitored output types, a line will be written to the heartbeat file specifying the timestamp, the

simulation time and step, and the label name of the output type. For example:

begin results output my_results

at step 0, increment = 10

...

end results output results

begin heartbeat data hb

stream name = stdout

monitor = results

labels = off

legend = on

timestamp format "%F %H:%M:%S "

at step 0, increment = 2

global step

global timestep as dt

global time

element spring_engineering_strain at \#

element 1 as sp1
end

Will give the following output:

....

+2008-03-17 10:03:22 718, 1.34244e-06, 9.63871e-04, 9.63871e-04

-2008-03-17 10:03:22 Results data written at time = 0.00096656,

step = 720. my_results

+2008-03-17 10:03:22 720, 1.34244e-06, 9.66556e-04, 9.66556e-04

+2008-03-17 10:03:22 722, 1.34244e-06, 9.69241e-04, 9.69241e-04

+2008-03-17 10:03:22 724, 1.34244e-06, 9.71926e-04, 9.71926e-04

+2008-03-17 10:03:22 726, 1.34244e-06, 9.74611e-04, 9.74611e-04

+2008-03-17 10:03:22 728, 1.34244e-06, 9.77296e-04, 9.77296e-04

-2008-03-17 10:03:22 Results data written at time = 0.00097998,

step = 730. my_results

+2008-03-17 10:03:22 730, 1.34244e-06, 9.79981e-04, 9.79981e-04

....

455

8.5 Restart Data

BEGIN RESTART DATA <string>restart_name

DATABASE NAME = <string>restart_file

INPUT DATABASE NAME = <string>restart_input_file

OUTPUT DATABASE NAME = <string>restart_output_file

DATABASE TYPE = <string>database_type(exodusII)

OVERWRITE = <string>OFF|ON|TRUE|FALSE|YES|NO

(ON|TRUE|YES)

START TIME = <real>restart_start_time

TIMESTEP ADJUSTMENT INTERVAL = <integer>steps

AT TIME <real>time_begin INCREMENT =

<real>time_increment_dt

ADDITIONAL TIMES = <real>output_time1

<real>output_time2 ...

AT STEP <integer>step_begin INCREMENT =

<integer>step_increment

ADDITIONAL STEPS = <integer>output_step1

<integer>output_step2 ...

TERMINATION TIME = <real>termination_time_value

OVERLAY COUNT = <integer>overlay_count

CYCLE COUNT = <integer>cycle_count

SYNCHRONIZE_OUTPUT

USE OUTPUT SCHEDULER <string>scheduler_name

OUTPUT ON SIGNAL = <string>SIGALRM|SIGFPE|SIGHUP|SIGINT|

SIGPIPE|SIGQUIT|SIGTERM|SIGUSR1|SIGUSR2|SIGABRT|

SIGKILL|SIGILL|SIGSEGV

OPTIONAL

END [RESTART DATA <string>restart_name]

You can specify restart files, either to be written to or read from, and the frequency at which restarts

are written by using a RESTART DATA command block. The command block appears inside the

region scope. To initiate a restart, the RESTART TIME command line (see Section 2.1.3.1) or the

RESTART command line (see Section 2.1.3.2) must also be used. These command lines appear in

the SIERRA scope.

NOTE: In addition to the times at which you request restart information to be written, restart

information is automatically written when an element inverts.

The RESTART DATA command block begins with the input line:

BEGIN RESTART DATA <string>restart_name

and is terminated with:

END [RESTART DATA <string>restart_name]

where restart_name is a user-selected name for the RESTART DATA command block.

Nested within the RESTART DATA command block are a set of command lines, as shown in the

456

block summary given above.

We begin the discussion of the RESTART DATA command block with various options regarding the

use of restart in general. In Section 8.5.1, you will learn how to use the DATABASE NAME, INPUT

DATABASE NAME, OUTPUT DATABASE NAME, DATABASE TYPE, and OPTIONAL command lines.

Usage of the first three of these command lines is tied to the two restart-related command lines

RESTART and RESTART TIME, which are found in the SIERRA scope.

Section 8.5.2 discusses use of the OVERWRITE command line, which will prevent or allow the

overwriting of existing restart files. (Note that this command line also appears in the command

blocks for results output and history output.)

The other command lines that appear in the RESTART DATA command block determine the fre-

quency at which restarts are written. Descriptions of these command lines follow in Section 8.5.3

through Section 8.5.14. Note that the command lines for controlling the frequency of restart out-

put are the same as those for controlling the frequency of results output and history output. These

frequency-related command lines are repeated here for convenience.

8.5.1 Restart Options

DATABASE NAME = <string>restart_file

INPUT DATABASE NAME = <string>restart_input_file

OUTPUT DATABASE NAME = <string>restart_output_file

DATABASE TYPE = <string>database_type(exodusII)

OPTIONAL

You can read from and create restart files in an automated fashion, the preferred method, or you can

carefully control how you read from and create restart files. In our discussion of the overall options

for the use of restart, we begin with the first three command lines listed above (DATABASE NAME,

INPUT DATABASE NAME, and OUTPUT DATABASE NAME). All three of these command lines

specify a parameter that is a file name or a directory path and file name. If the parameter begins

with the “/” character, it is an absolute path; otherwise, the path to the current directory will be

prepended to the parameter on the command line. Suppose, for example, that we want to work with

a restart file named component.rst in the current directory. If we are using the DATABASE NAME

command line, then this command line would appear as:

DATABASE NAME = component.rst

To read or create files in some other directory, the command line must include the path to that

directory. The directory must exist, it will not be created.

The DATABASE NAME command line will let you read restart information and write restart infor-

mation to the same file. Section 8.5.1.1 through Section 8.5.1.4 show how this command line is

used in particular instances.

You can specify a restart file to read from by using the command line:

INPUT DATABASE NAME = <string>restart_input_file

You can specify a restart file to write to by using the command line:

457

OUTPUT DATABASE NAME = <string>restart_output_file

Note that you must use either a DATABASE NAME command line or the INPUT DATABASE NAME

command line/OUTPUT DATABASE NAME command line pair, but not both, in a RESTART DATA

command block.

Two metacharacters can appear in the name of the restart file. If the %P character is found in the

name, it will be replaced with the number processors being used for the run. For example, if you

are running on 1024 processors and use the name restart-%P/job.rs, then the name would be

expanded to restart-1024/job.rs and the actual restart files would be restart-1024/job.

rs.1024.0000 to restart-1024/job.rs.1024.1023. The other recognized metacharacter

is %B which is replaced with the base name of the input file containing the input commands. For

example, if the commands are in the file my_analysis_run.i and the restart database name is

specified as %B.rs, then the restart data would be written to or read from the file my_analysis_

run.rs.

If the restart file does not use the Exodus II format [1], you must specify the format for the results

file using the DATABASE TYPE command line:

DATABASE TYPE = <string>database_type(exodusII)

Currently, the Exodus II database and the XDMF database [2] are supported in Presto and Adagio.

Exodus II is more commonly used than XDMF. Other options may be added in the future.

In certain coupled physics analyses in which there are multiple regions, only a subset of the regions

may have a restart database associated with them. The OPTIONAL command (Section 8.5.1) is

used to tell the application that it is acceptable to restart the analysis even though a region does not

have an associated restart database. Note that this is only allowed in analyses containing multiple

regions; if there is only a single region, it must have a restart database in order to restart.

8.5.1.1 Automatic Read and Write of Restart Files

You can use the restart option in an automated fashion by using a combination of the RESTART

command line in the SIERRA scope and the DATABASE NAME command line in the RESTART

DATA command block. This automated use of restart can best be explained by an example. We

will use a two-processor example and assume all files will be in our current directory.

The option of automated restart will not only manage the restart files to prevent overwriting, it will

also manage the results files and history files to prevent overwriting. In the example we give, we

will assume our run includes a RESULTS OUTPUT command block with the command line

DATABASE NAME = rslt.e

to generate results files with the root file name rslt.e. We will also assume a run includes a

HISTORY OUTPUT command block with the command line

DATABASE NAME = hist.h

to generate history files with the root file name hist.h.

For the first run in our restart sequence, we will have the command line

458

RESTART = AUTOMATIC

in the SIERRA scope of our input file. In a TIME STEPPING command block, which is embedded

in a TIME CONTROL command block (Section 3.11.1) in the procedure scope of our input file, we

will have the command line:

START TIME = 0.0

In the TIME CONTROL command block we will have the command line

TERMINATION TIME = 2.5E-3

to set the limits for the begin and end times of the first restart run. These time-related command

lines should not be confused with the START TIME and TERMINATION TIME command lines that

appear in the RESTART DATA command block.

Finally, for the first run in our restart sequence, the RESTART DATA command block in our input

file will be as follows:

BEGIN RESTART DATA RESTART_DATA

DATABASE NAME = g.rsout

AT TIME 0.0 INCREMENT = 0.25E-3

END RESTART DATA RESTART_DATA

In this block, the DATABASE NAME command line specifies a root file name for the restart file. The

AT TIME command line gives the time when we will start to write the restart information and the

interval at which the restart information will be written (see Section 8.5.5).

For our first run, the automatic restart option will generate the following restart files:

restart files

g.rsout.2.0

g.rsout.2.1

results files

rslt.e.2.0

rslt.e.2.1

history files

hist.h.2.0

hist.h.2.1

For the above files, there are extensions on the file names that indicate we have a two-processor run.

The 2.0 and 2.1 extensions associate the restart files with the corresponding individual mesh files

on each processor. (If our mesh file is mesh.g, then our mesh files on the individual processors

will be mesh.g.2.0 and mesh.g.2.1.) All restart information in the above files appears at time

intervals of 0.25 × 10−3, and the last restart information is written at time 2.5 × 10−3. We have also

listed the results and history files that will be generated for this run due to the file definitions in the

command blocks for the results and history files.

For the second run in our sequence of restart runs, we want to start at the previous termination time,

2.5 × 10−3, and terminate at time 5.0 × 10−3. We leave everything in our input file (including the

459

START TIME = 0.0 command line in the TIME STEPPING command block, the RESTART com-

mand line, and the RESTART DATA command block) the same except for the TERMINATION TIME

command line (in the TIME CONTROL command block). The TERMINATION TIME command line

will now become:

TERMINATION TIME = 5.0E-3

It is important to note here that the actual start time for the second run in our analysis is now set

by the last time (2.5× 10−3) that restart information was written. The command line START TIME

= 0.0 in the TIME STEPPING command block is now superseded as the actual starting time for

the second run by the restart commands. Any START TIME command line in a TIME STEPPING

command block is still valid in terms of defining time stepping blocks (these blocks being used

to set activation periods), but the restart process sets the actual start time for our analysis. This

pattern of control for setting the actual start time holds for any run in our sequence of restart runs.

For the second run in our sequence of restart runs, the restart files will be from time 2.5 × 10−3 to

time 5.0 × 10−3. The restart files in our current directory after the second run will be as follows:

restart files

g.rsout.2.0

g.rsout.2.1

g.rsout-s0002.2.0

g.rsout-s0002.2.1

results files

rslt.e.2.0

rslt.e.2.1

rslt.e-s0002.2.0

rslt.e-s0002.2.1

history files

hist.h.2.0

hist.h.2.1

hist.h-s0002.2.0

hist.h-s0002.2.1

Notice that we have generated new restart files with a -s0002 extension in addition to the ex-

tension associated with the individual processors. All restart information in the above files with

the -s0002 extension appears at time intervals of 0.25 × 10−3, the restart information is written

between time 2.5 × 10−3 and time 5.0 × 10−3, and the final restart information is written at time

5.0 × 10−3. The restart files for the first run in our sequence of restart runs, g.rsout.2.0 and

g.rsout.2.1, have been preserved. New results and history files have been created using the

same extension, -s0002, as that used for the restart files. The original results and history files

have been preserved.

Now, we want to do a third run in our sequence of restart runs. For the third run in our sequence

of restart runs, we want to start at the previous termination time, 5.0 × 10−3, and terminate at

time 8.5 × 10−3. We leave everything in our input file (including the START TIME command

line, the RESTART command line, and the RESTART DATA command block) the same except for

460

the TERMINATION TIME command line. The TERMINATION TIME command line (within the

TIME CONTROL command block) will now become:

TERMINATION TIME = 8.5E-3

For the third run in our sequence of restart runs, the restart files will be from time 5.0 × 10−3 to

time 8.5 × 10−3. The restart files in our current directory after the third run will be as follows:

restart files

g.rsout.2.0

g.rsout.2.1

g.rsout-s0002.2.0

g.rsout-s0002.2.1

g.rsout-s0003.2.0

g.rsout-s0003.2.1

results files

rslt.e.2.0

rslt.e.2.1

rslt.e-s0002.2.0

rslt.e-s0002.2.1

rslt.e-s0003.2.0

rslt.e-s0003.2.1

history files

hist.h.2.0

hist.h.2.1

hist.h-s0002.2.0

hist.h-s0002.2.1

hist.h-s0003.2.0

hist.h-s0003.2.1

Notice that we have generated new restart files with a -s0003 extension in addition to the ex-

tension associated with the individual processors. All restart information in the above files with

the -s0003 extension appears at time intervals of 0.25 × 10−3, the restart information is written

between time 5.0 × 10−3 and time 8.5 × 10−3, and the final restart information is written at time

8.5 × 10−3. The restart files for the first and second runs in our sequence of restart runs have been

preserved. New results and history files have been created using the same extension, -s0003, as

that used for the restart files. The original results and history files have been preserved.

The process just described can be continued as long as necessary. We will continue the process of

generating new restart files with extensions that indicate their place in the sequence of runs.

8.5.1.2 User-Controlled Read and Write of Restart Files

You can use the restart option and select specific restart times and specific restart files to read from

and write to by using a combination of the RESTART TIME command line in the SIERRA scope

and the INPUT DATABASE NAME and OUTPUT DATABASE NAME command line in the RESTART

DATA command block. This “controlled” use of restart can best be explained by an example.

461

We will use a two-processor example and assume all files will be in our current directory. In this

example, we will manage the creation of new restart files so as not to overwrite existing restart files.

Unlike the automated option for restart, this controlled use of restart requires that the user manage

restart file names so as to prevent overwriting previously generated restart files. The same is true

for the results and history files. The user will have to manage the creation of new results and history

files so as not to overwrite existing results and history files. Creating new results and history files

for each run in the sequence of restart runs requires changing the DATABASE NAME command line

in the RESULTS OUTPUT and HISTORY OUTPUT command blocks. We will not show examples

for use of the DATABASE NAME command line in the RESULTS OUTPUT and HISTORY OUTPUT

command blocks here, as the actual use of the DATABASE NAME command line in the results and

history command blocks would closely parallel the pattern we see for management of the restart

file names.

For the first run in our restart sequence, we will have only a RESTART DATA command block in

the region; there will be no restart-related command line in the SIERRA scope of our input file.

We will, however, have a

START TIME = 0.0

command line in a TIME STEPPING command block (within the TIME CONTROL command

block) and a

TERMINATION TIME = 2.5E-3

command line within the TIME CONTROL command block to set the limits for the begin and end

times. The RESTART DATA command block in our input file will be as follows:

BEGIN RESTART DATA RESTART_DATA

OUTPUT DATABASE NAME = RS1.rsout

AT TIME 0.0 INCREMENT = 0.5E-3

END RESTART DATA RESTART_DATA

For our first run, the restart option will generate the following restart files:

RS1.rsout.2.0

RS1.rsout.2.1

For the above files, the extensions on the file names indicate that we have a two-processor run. The

2.0 and 2.1 extensions associate the restart files with the corresponding individual mesh files on

each processor. If our mesh file is mesh.g, then our mesh files on the individual processors will be

mesh.g.2.0 and mesh.g.2.1. All restart information in the above files appears at time intervals

of 0.5 × 10−3, and the last restart information is written at time 2.5 × 10−3.

For the second run in our sequence of restart runs, we want to start at the previous termination

time, 2.5 × 10−3, and terminate at time 5.0 × 10−3. To do this, we must add a

RESTART TIME = 2.5E-3

command line to the SIERRA scope and set the termination time to 5.0 × 10−3 by using the com-

mand line

462

TERMINATION TIME = 5.0E-3 \rm

within the TIME CONTROL command block.

It is important to note here that the actual start time for the second run in our analysis is now

set by the restart time set on the RESTART TIME command line, 2.5 × 10−3. The command line

START TIME = 0.0 in the TIME STEPPING command block is now superseded as the actual

starting time for the second run by the restart commands. Any START TIME command line in a

TIME STEPPING command block is still valid in terms of defining time stepping blocks (these

blocks being used to set activation periods), but the restart process sets the actual start time for our

analysis. This pattern of control for setting the actual start time holds for any run in our sequence

of restart runs.

We also must change the RESTART DATA command block to the following:

BEGIN RESTART DATA RESTART_DATA

INPUT DATABASE NAME = RS1.rsout

OUTPUT DATABASE NAME = RS2.rsout

AT TIME 0.0 INCREMENT = 0.5E-3

END RESTART DATA RESTART_DATA

For this second run, we will read from the following files:

RS1.rsout.2.0

RS1.rsout.2.1

And we will write to the following files:

RS2.rsout.2.0

RS2.rsout.2.1

All restart information in the above output files, RS2.rsout.2.0 and RS2.rsout.2.1, appears

at time intervals of 0.5×10−3, restart information is written from time 2.5×10−3 to time 5.0×10−3,

and the last restart information is written at time 5.0×10−3. Notice that we have preserved the restart

files from the first run from our restart sequence of runs because we have specifically given the

input and output databases distinct names—RS2.rsout for the input file name and RS1.rsout

for the output file name.

Now, we want to do a third run in our sequence of restart runs. For this third run, we want to start

at time 4.5 × 10−3 and terminate at time 8.5 × 10−3. We do not want to start at the termination time

for the previous restart, which is 5.0 × 10−3; rather, we want to start at time 4.5 × 10−3. We change

the RESTART TIME command line to

RESTART TIME = 4.5E-3

and the TERMINATION TIME command line within the TIME CONTROL command block to:

TERMINATION TIME = 8.5E-3

And we change the RESTART DATA command block to the following:

463

BEGIN RESTART DATA RESTART_DATA

INPUT DATABASE NAME = RS2.rsout

OUTPUT DATABASE NAME = RS3.rsout

AT TIME 0.0, INCREMENT = 0.5E-3

END RESTART DATA RESTART_DATA

For this third run, we will read from the following files:

RS2.rsout.2.0

RS2.rsout.2.1

And we will write to the following files:

RS3.rsout.2.0

RS3.rsout.2.1

All restart information in the above output files, RS3.rsout.2.0 and RS3.rsout.2.1, appears

at time intervals of 0.5×10−3, restart information is written from time 4.5×10−3 to time 8.5×10−3,

and the last restart information is written at time 8.5 × 10−3. Notice that we have preserved all

restart files from previous runs in our restart sequence of runs because we have specifically given

the input and output databases distinct names for this third run.

8.5.1.3 Overwriting Restart Files

If you use the RESTART TIME command line in conjunction with the DATABASE NAME command

line, you will overwrite restart information (unless you have included an OVERWRITE command

line set to ON). As indicated previously, you will probably want to have a restart file (or files in

the case of parallel runs) associated with each run in a sequence of restart runs. The example in

this section shows how to overwrite restart files if that is an acceptable approach for a particular

analysis.

For our first run, we will set a termination time of 1.0 × 10−3 with the command line

TERMINATION TIME = 1.0E-3

and set the RESTART DATA command block as follows:

BEGIN RESTART DATA

DATABASE NAME = RS.out

AT TIME 0.0 INTERVAL = 0.25E-3

END RESTART DATA

Our first run will generate the following restart files:

RS.out.2.0

RS.out.2.1

464

All restart information in the above output files, RS.out.2.0 and RS.out.2.1, appears at time

intervals of 0.25× 10−3, restart information is written from time 0.0 to time 1.0× 10−3, and the last

restart information is written at time 1.0 × 10−3.

Suppose for our second run we set the termination time to 2.0 × 10−3 with the command line

TERMINATION TIME = 2.0E-3

and add the command line

RESTART TIME = 1.0E-3

to the SIERRA scope. We leave the RESTART DATA command block unchanged.

For our second run, restart information is read from the files RS.out.2.0 and RS.out.2.1.

These files are then overwritten with new restart information beginning at time 1.0 × 10−3. The

files RS.out.2.0 and RS.out.2.1 will have restart information beginning at time 1.0 × 10−3 in

intervals of 0.25 × 10−3. The restart information will terminate at time 2.0 × 10−3.

Now we want to do a third run with a termination time of 3.0 × 10−3. We change the termination

time by using the command line:

TERMINATION TIME = 3.0E-3

And we change the RESTART TIME command line so that it is now:

RESTART TIME = 3.0E-3

For our third run, restart information is read from the files RS.out.2.0 and RS.out.2.1. These

files are then overwritten with new restart information beginning at time 2.0 × 10−3. The files RS.

out.2.0 and RS.out.2.1 will have restart information beginning at time 2.0 × 10−3 in intervals

of 0.25 × 10−3. The restart information will terminate at time 3.0 × 10−3.

8.5.1.4 Recovering from a Corrupted Restart

Suppose you are using the automated option for restart and a system crash occurs when the restart

file is being written. The restart file contains a corrupted entry for one of the restart times. In this

case, you can continue using the automated option for restart. Restart will detect the corrupted en-

try and then find an entry previous to the corrupted entry that can be used for restart. This previous

entry should be the entry prior to the corrupted entry unless something unusual has occurred. If the

first intact restart entry is not the previous entry, restart continues to back up until an intact restart

entry is found.

You could do a manual recovery. The manual recovery requires the use of a RESTART TIME

command line to select some intact restart entry. You will have to use the INPUT DATABASE

NAME and OUTPUT DATABASE NAME command lines to avoid overwriting previous restart files

(see Section 8.5.1.2). You will also have to change file names in the results and history command

blocks to avoid overwriting previous results and history files. Once you have done the manual

recovery, you could then revert to the automatic restart option.

465

8.5.2 Overwrite Command in Restart

OVERWRITE = <string>OFF|ON|TRUE|FALSE|YES|NO

(ON|TRUE|YES)

The OVERWRITE command line can be used to prevent the overwriting of existing restart files. The

use of the automatic read and write option for restart files as described in Section 8.5.1.1 does

not require the OVERWRITE command line. The automatic read and write option adds extensions

to file names and prevents the overwriting of any existing restart files. For the case of a user-

controlled read and write of restart files (Section 8.5.1.2), however, the OVERWRITE command line

is useful for preventing the overwriting of restart files. If the OVERWRITE command line is set to

OFF, FALSE, or NO, then existing restart files will not be overwritten. Execution of the code will

terminate before existing restart files are overwritten. The default option is to overwrite existing

restart files. If the OVERWRITE command line is not included, or the command line is set to ON,

TRUE, or YES, then existing files can be overwritten.

8.5.3 Set Begin Time for Restart Writes

START TIME = <real>restart_start_time

Using the START TIME command line, you can write restarts to the restart file beginning at time

restart_start_time. No restarts will be written before this time. If other commands set times

for restarts (AT TIME, ADDITIONAL TIMES) that are less than restart_start_time, those

times will be ignored, and restarts will not be written at those times.

8.5.4 Adjust Interval for Time Steps

TIMESTEP ADJUSTMENT INTERVAL = <integer>steps

This command line is used to specify that the restarts will be written at exactly the times specified.

To hit the restart times exactly in an explicit transient dynamics code, it is necessary to adjust

the time step as the time approaches a restart time. The integer value steps in the TIMESTEP

ADJUSTMENT INTERVAL command line specifies the number of time steps to look ahead in order

to adjust the time step.

If this command line does not appear, then restarts are written at times closest to the specified

restart times.

8.5.5 Restart Interval Specified by Time Increment

AT TIME <real>time_begin INCREMENT = <real>time_increment_dt

At the time specified by time_begin, restarts will be written every time increment given by the

real value time_increment_dt.

466

8.5.6 Additional Times for Restart

ADDITIONAL TIMES = <real>output_time1 <real>output_time2 ...

In addition to any restart times specified by the command line in Section 8.5.5, you can use the

ADDITIONAL TIMES command line to specify an arbitrary number of additional restart times.

8.5.7 Restart Interval Specified by Step Increment

AT STEP <integer>step_begin INCREMENT =

<integer>step_increment

At the step specified by step_begin, restarts will be written every step increment given by the

integer value step_increment.

8.5.8 Additional Steps for Restart

ADDITIONAL STEPS = <integer>output_step1

<integer>output_step2 ...

In addition to any steps specified by the command line in Section 8.5.7, you can use the

ADDITIONAL STEPS command line to specify an arbitrary number of additional restart steps.

8.5.9 Set End Time for Restart Writes

TERMINATION TIME = <real>termination_time_value

Restarts will not be written to the restart file after time termination_time_value. If

other commands set times for restarts (AT TIME, ADDITIONAL TIMES) that are greater than

termination_time_value, those times will be ignored, and restarts will not be written at those

times.

8.5.10 Overlay Count

OVERLAY COUNT = <integer>overlay_count

The OVERLAY COUNT command line specifies the number of restart output times that will be over-

laid on top of the current step before advancing to the next step. For example, suppose that we set

the overlay_count parameter to 2, and we request that restart information be written every 0.1

second. At time 0.1 second, restart step 1 will be written to the output restart database. At time 0.2

second, restart information will be written over the step 1 information, which originally contained

467

restart information at 0.1 second. At time 0.3 second, restart information will be written over the

step 1 information, which last contained information at 0.2 second. At time 0.4 second, we will

now write step 2 to the output restart database (step 1 has already been written over twice). At time

0.5 second, restart information will be written over the step 2 information, which originally con-

tained information at 0.4 second. At time 0.6 second, restart information will be written over the

step 2 information, which last contained information at 0.5 second. At time 0.7 second, restart step

3 will be written to the output restart database (step 2 has already been written over twice). This

pattern continues so that we would build up a sequence of restart information at times 0.3, 0.6, 0.9,

. . . second until we reach the termination time for the problem. If there was a problem during the

analysis, the last step on the output restart database would be whatever had last been written to the

database. If, for example, we had set our termination time to 1.0 second and a problem occurred

after restart information had been written at 0.7 second but before we completed the time step at

0.8 second, then the last information on the output restart database would be at 0.7 second.

You can use the OVERLAY COUNT command line in conjunction with a CYCLE COUNT command

line. For a description of the CYCLE COUNT command line and its use with the OVERLAY COUNT

command line, see Section 8.5.11.

8.5.11 Cycle Count

CYCLE COUNT = <integer>cycle_count

The CYCLE COUNT command line specifies the number of restart steps that will be written to the

output restart database before previously written steps are overwritten. For example, suppose we

set the cycle_count parameter to 5, and we request that restart information be written every

0.1 second. The restart system will write information to the output restart database at times 0.1,

0.2, 0.3, 0.4, and 0.5 second. At time 0.6 second, the information at step 1, originally written at

time 0.1 second, will be overwritten with information at time 0.6 second. At time 0.7 second, the

information at step 2, originally written at time 0.2 second, will be overwritten with information at

time 0.7 second. At time 0.8 second, the output restart database will contain restart information at

times 0.6, 0.7, 0.8, 0.4, and 0.5 second. Time will not necessarily be monotonically increasing on

a database that uses a CYCLE COUNT command line.

If you only want the last step available on the output restart database, set cycle_count equal to

1.

The CYCLE COUNT and OVERLAY COUNT command lines can be used at the same time. For this

example, we will combine our example with an overlay count of 2 as given in Section 8.5.10 with

our example of a cycle count of 5 as given in this section (Section 8.5.11). Information is written

to the output restart database time step every 0.1 second. The output times at which information is

written to the output restart database are 0.1, 0.2, 0.3, . . . second. Each of these times corresponds

to an output step. Time 0.1 second corresponds to output step 1, time 0.2 second corresponds

to output step 2, time 0.3 corresponds to output step 3, and so forth. An output time of n × 0.1

corresponds to output step n. The overlay command will result in information at time 0.3, 0.6,

0.9, 1.2, and 1.5 seconds written as steps 1, 2, 3, 4, and 5 on the output restart database. For times

greater than 1.6 seconds, the cycle command will now take effect because we have five steps written

468

on the output restart database. Information at times 1.6, 1.7, and 1.8 seconds will now overwrite

the information at step 1, which had information at time 0.3 second. Information at times 1.9, 2.0,

and 2.1 seconds will now overwrite the information at step 2, which had information at time 0.6

second. For any output step n, its position, step number ns, in the restart output database is as

follows:

if ns , 0

ns = int(n/(no + 1))%nc

else

ns = nc

end

In the above equations, nc is the cycle count, and no is the overlay count. The expression int(n/(no+

1)) produces an integer arithmetic result. For example, if n is 4 and no is 2, then we have 4 divided

by 3, and the integer arithmetic result is 1 (any fractional remainder is discarded). The operator %

is the modulus operator; the modulus operator gives the modulus of its first operand with respect

to its second operand, i.e., it produces the remainder of dividing the first operand by the second

operand. The result of 1 % 5 is 1, for example.

8.5.12 Synchronize Output

SYNCHRONIZE OUTPUT

In an analysis with multiple regions, it is sometimes desirable to synchronize the output of restart

data between the regions. This can be done by adding the SYNCHRONIZE OUTPUT command

line to the restart output block. If a restart block has this set, then it will write output whenever

a previous region writes output. The ordering of regions is based on the order in the input file,

algorithmic considerations, or by solution control specifications.

Although the USE OUTPUT SCHEDULER command line can also synchronize output between re-

gions, the SYNCHRONIZE OUTPUT will synchronize the output with regions where the output fre-

quency is not under the direct control of the Sierra IO system. Examples of this are typically

coupled applications where one or more of the codes are not Sierra-based applications such as

Alegra and CTH. A restart block with SYNCHRONIZE OUTPUT specified will also synchronize its

output with the output of the external code.

The SYNCHRONIZE OUTPUT command can be used with other output scheduling commands such

as time-based or step-based output specifications.

8.5.13 Use Output Scheduler

USE OUTPUT SCHEDULER <string>scheduler_name

469

In an analysis with multiple regions, it can be difficult to synchronize output such as restart

files. To help synchronize output for analyses with multiple regions, you can define an OUTPUT

SCHEDULER command block at the SIERRA scope. The scheduler can then be referenced in the

RESTART DATA command block via the USE OUTPUT SCHEDULER command line. The string

scheduler_name must match a name used in an RESTART DATA command block. See Sec-

tion 8.6 for a description of using this command block and the USE OUTPUT SCHEDULER com-

mand line.

8.5.14 Write Restart If System Error Encountered

OUTPUT ON SIGNAL = <string>SIGALRM|SIGFPE|SIGHUP|SIGINT|

SIGPIPE|SIGQUIT|SIGTERM|SIGUSR1|SIGUSR2|SIGABRT|

SIGKILL|SIGILL|SIGSEGV

The OUTPUT ON SIGNAL command line is used to initiate the writing of a restart file when the

system encounters a type of system error. Only one error type in the list of error types should be

entered for this command line. Generally, these system errors cause the code to terminate before

the code can add any current restart output (restart output past the last restart output time step) to

the restart file. If the code encounters the specified type of error during execution, a restart file will

be written before execution is terminated.

This command line can also be used to force the writing of a restart file at some point during

execution of the code. Suppose the command line

OUTPUT ON SIGNAL = SIGUSR2

is included in the input file. While the code is running, a user can execute (from the keyboard) the

system command line

kill -s SIGUSR2 pid

to terminate execution and force the writing of a results file. In the above system command line,

pid is the process identifier, which is an integer.

The most useful application of the command line is to send a signal via a system command line

to write a restart file. Note that the OUTPUT ON SIGNAL command line is primarily a debugging

tool for code developers.

470

8.6 Output Scheduler

In an analysis with multiple regions, it can be difficult to synchronize output such as results files,

history files, and restart files. To help synchronize output for analyses with multiple regions, you

can define an OUTPUT SCHEDULER command block at the SIERRA scope. This scheduler can

then be referenced in several places:

• The scheduler can be referenced in the RESULTS OUTPUT command block to control the

output of results information.

• The scheduler can be referenced in the HISTORY OUTPUT command block to control the

output of history information.

• The scheduler can be referenced in the RESTART DATA command block to control the writ-

ing of restart files.

In summary, the OUTPUT SCHEDULER command block is defined in the SIERRA scope. The

scheduler is referenced by a USE OUTPUT SCHEDULER command line that can appear in a

RESULTS OUTPUT, HISTORY OUTPUT, and RESTART DATA command block. Section 8.6.1 de-

scribes the OUTPUT SCHEDULER command block, and Section 8.6.2 illustrates how this block is

referenced with the USE OUTPUT SCHEDULER command line.

8.6.1 Output Scheduler Command Block

BEGIN OUTPUT SCHEDULER <string>scheduler_name

START TIME = <real>output_start_time

TIMESTEP ADJUSTMENT INTERVAL = <integer>steps

AT TIME <real>time_begin INCREMENT =

<real>time_increment_dt

ADDITIONAL TIMES = <real>output_time1

<real>output_time2 ...

AT STEP <integer>step_begin INCREMENT =

<integer>step_increment

ADDITIONAL STEPS = <integer>output_step1

<integer>output_step2 ...

TERMINATION TIME = <real>termination_time_value

END [OUTPUT SCHEDULER <string>scheduler_name]

An output scheduler is defined with a command block in the SIERRA scope. The OUTPUT

SCHEDULER command block begins with the input line:

BEGIN OUTPUT SCHEDULER <string>scheduler_name

and is terminated with the line:

END OUTPUT SCHEDULER <string>scheduler_name

471

where scheduler_name is a user-defined name for the command block. All the normal schedul-

ing command lines are valid in an OUTPUT SCHEDULER command block.

8.6.1.1 Set Begin Time for Output Scheduler

START TIME = <real>output_start_time

Using the START TIME command line, you can set the start time for a scheduler beginning at time

output_start_time. The scheduler will not take effect before this time. If other commands set

times for scheduling (AT TIME, ADDITIONAL TIMES) that are less than output_start_time,

those times will be ignored.

8.6.1.2 Adjust Interval for Time Steps

TIMESTEP ADJUSTMENT INTERVAL = <integer>steps

This command line is used to specify that, when the scheduler is in effect, output will be at exactly

the times specified. To hit the output times exactly in an explicit, transient dynamics code, it is

necessary to adjust the time step as the time approaches an output time. The integer value steps

in the TIMESTEP ADJUSTMENT INTERVAL command line specifies the number of time steps to

look ahead in order to adjust the time step.

If this command line does not appear, output occurs at times closest to the specified output times.

8.6.1.3 Output Interval Specified by Time Increment

AT TIME <real>time_begin INCREMENT = <real>time_increment_dt

At the time specified by time_begin, output will be scheduled at every time increment given by

the real value time_increment_dt.

8.6.1.4 Additional Times for Output

ADDITIONAL TIMES = <real>output_time1 <real>output_time2 ...

In addition to any times specified by the command line in Section 8.6.1.3, you can use the

ADDITIONAL TIMES command line to specify an arbitrary number of additional output times.

8.6.1.5 Output Interval Specified by Step Increment

AT STEP <integer>step_begin INCREMENT =

<integer>step_increment

472

At the step specified by step_begin, output will be scheduled at every step increment given by

the integer value step_increment.

8.6.1.6 Additional Steps for Output

ADDITIONAL STEPS = <integer>output_step1

<integer>output_step2 ...

In addition to any steps specified by the command line in Section 8.6.1.5, you can use the

ADDITIONAL STEPS command line to specify an arbitrary number of additional output steps.

8.6.1.7 Set End Time for Output Scheduler

TERMINATION TIME = <real>termination_time_value

Using the TERMINATION TIME command line, you can set the termination time for a scheduler

beginning at time termination_time_value. The scheduler will not be in effect after this time.

If other commands set times for scheduling (AT TIME, ADDITIONAL TIMES) that are greater than

termination_time_value, those times will be ignored by the scheduler.

8.6.2 Example of Using the Output Scheduler

Once an output scheduler has been defined via the OUTPUT SCHEDULER command block, it can

be used by inserting a USE OUTPUT SCHEDULER command line in any of the following command

blocks: RESULTS OUTPUT, HISTORY OUTPUT, and RESTART DATA. The following paragraph

provides an example of using output schedulers.

In the SIERRA scope, we define two output schedulers, Timer and Every_Step:

BEGIN OUTPUT SCHEDULER Timer

AT TIME 0.0 INCREMENT = 10.0e-6

TIME STEP ADJUSTMENT INTERVAL = 4

END OUTPUT SCHEDULER Timer

#

BEGIN OUTPUT SCHEDULER Every_Step

AT STEP 0 INCREMENT = 1

END OUTPUT SCHEDULER Every_Step

With the USE OUTPUT SCHEDULER command, we reference the scheduler named Timer for re-

sults output:

BEGIN RESULTS OUTPUT Out_Region_1

.

473

USE OUTPUT SCHEDULER Timer

.

END RESULTS OUTPUT Out_Region_1

With the USE OUTPUT SCHEDULER command, we reference the scheduler named Every_STEP

for history output:

BEGIN HISTORY OUTPUT Out_Region_2

.

USE OUTPUT SCHEDULER Every_Step

.

END HISTORY OUTPUT Out_Region_2

474

8.7 Variable Interpolation

BEGIN VARIABLE INTERPOLATION [<string>var_interp_name]

TRANSFER TYPE = INTERPOLATE FROM NEAREST FACE|

SUM TO NEAREST ELEMENT

SOURCE VARIABLE = ELEMENT|GLOBAL|NODAL|

SURFACE NORMAL NODAL <string>source_var_name

SOURCE ELEMENT BLOCK = <string>source_block

SOURCE SURFACE = <string>source_surface

TARGET VARIABLE = ELEMENT|GLOBAL|NODAL

<string>target_var_name

TARGET SURFACE = <string>target_surface

SEARCH TOLERANCE = <real>search_tol

PROXIMITY SEARCH TYPE = RAY SEARCH|SPHERE SEARCH

RAY SEARCH DIRECTION = <real>vecx <real>vecy <real>vecz

RAY SEARCH DIRECTION = ORTHOGONAL TO LINE <real>p1x

<real>p1y <real>p1z <real>p2x <real>p2y <real>p2z

RAY SEARCH DIRECTION = TARGET SURFACE NORMAL

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [VARIABLE INTERPOLATION <string>var_interp_name]

The command block for a variable interpolation begins with BEGIN VARIABLE INTERPOLATION

[<string>var_interp_name] and is terminated with END [VARIABLE INTERPOLATION

<string>var_interp_name] where var_interp_name is an optional user-selected name for

the command block.

The command TRANSFER TYPE can be set to either INTERPOLATE FROM NEAREST FACE or

SUM TO NEAREST ELEMENT. The TRANSFER TYPE restricts the commands that can be used in

conjunction with it.

When TRANSFER TYPE is set to INTERPOLATE FROM NEAREST FACE the available commands

are restricted to:

BEGIN VARIABLE INTERPOLATION [<string>var_interp_name]

TRANSFER TYPE = INTERPOLATE FROM NEAREST FACE

SOURCE VARIABLE = NODAL|SURFACE NORMAL NODAL

<string>source_var_name

SOURCE SURFACE = <string>source_surface

TARGET VARIABLE = NODAL <string>target_var_name

TARGET SURFACE = <string>target_surface

SEARCH TOLERANCE = <real>search_tol

PROXIMITY SEARCH TYPE = RAY SEARCH|SPHERE SEARCH

RAY SEARCH DIRECTION = <real>vecx <real>vecy <real>vecz

RAY SEARCH DIRECTION = ORTHOGONAL TO LINE <real>p1x

475

<real>p1y <real>p1z <real>p2x <real>p2y <real>p2z

RAY SEARCH DIRECTION = TARGET SURFACE NORMAL

END [VARIABLE INTERPOLATION <string>var_interp_name]

For TRANSFER TYPE = INTERPOLATE FROM NEAREST FACE, a given point on the target sur-

face finds the closest point on the source surface. At that closet point the source variable

is interpolated. The interpolated value is then copied to the given point. Optionally if the

SURFACE NORMAL NODAL component is being used and the variable being transferred is a vector

then only the surface normal component of that variable will be transferred. This is useful for sev-

eral applications involving transferring solid mesh quantities such as velocity to a reference mesh

modeling a fluid (e.g., air).

When TRANSFER TYPE is set to SUM TO NEAREST ELEMENT the available commands are re-

stricted to:

BEGIN VARIABLE INTERPOLATION [<string>var_interp_name]

TRANSFER TYPE = SUM TO NEAREST ELEMENT

SOURCE VARIABLE = ELEMENT <string>source_var_name

SOURCE ELEMENT BLOCK = <string>source_block

TARGET VARIABLE = ELEMENT <string>target_var_name

TARGET SURFACE = <string>target_surface

SEARCH TOLERANCE = <real>search_tol

PROXIMITY SEARCH TYPE = RAY SEARCH|SPHERE SEARCH

RAY SEARCH DIRECTION = <real>vecx <real>vecy <real>vecz

RAY SEARCH DIRECTION = ORTHOGONAL TO LINE <real>p1x

<real>p1y <real>p1z <real>p2x <real>p2y <real>p2z

END [VARIABLE INTERPOLATION <string>var_interp_name]

For TRANSFER TYPE = SUM TO NEAREST ELEMENT, a given element in the source block com-

putes its centroid. Then the closest face to that centroid on the target surface is found. The source

element value is summed to the element associated with the target face.

The command SOURCE VARIABLE specifies the type of variable, ELEMENT, GLOBAL, or NODAL,

and the name of the source variable source_var_name.

The command SOURCE SURFACE specifies the name of the source side set source_surface.

The command TARGET VARIABLE specifies the type of variable, ELEMENT, GLOBAL, or NODAL,

and the name of the target variable target_var_name. The target variable must exist. If nec-

essary, a target variable can be created using the BEGIN USER VARIABLE command block (Sec-

tion 10.2.4).

The command TARGET SURFACE specifies the name of the target side set target_surface.

The command SEARCH TOLERANCE specifies a search distance for use in the proximity search.

The command PROXIMITY SEARCH TYPE can be set to either RAY SEARCH or SPHERE SEARCH.

When PROXIMITY SEARCH TYPE = SPHERE SEARCH the SEARCH TOLERANCE is used as

the radius for closest point searches. When PROXIMITY SEARCH TYPE = RAY SEARCH the

476

SEARCH TOLERANCE and any RAY SEARCH DIRECTION are used together to form rays with

lengths equal to the SEARCH TOLERANCE in both the positive and negative directions from an

associated RAY SEARCH DIRECTION. Faces penetrated by the ray get included in the set of faces

for determining the closest point.

The command RAY SEARCH DIRECTION specifies a search direction for the PROXIMITY

SEARCH = RAY SEARCH DIRECTION case. A RAY SEARCH DIRECTION can be specified di-

rectly with three values, vecx, vecy, and vecz. Alternatively, RAY SEARCH DIRECTION

can be calculated through options ORTHOGONAL TO LINE or TARGET SURFACE NORMAL. For

ORTHOGONAL TO LINE the search direction is the vector between a given point and the closest

point on the infinite line specified with the two points p1x, p1y, p1z and p2x, p2y, p2z.

For TARGET SURFACE NORMAL the search direction is the nodal normal vector calculated from

the TARGET SURFACE.

477

8.8 Global Output Options

The following commands exist at the region scope to control the output of global variables:

GLOBAL ENERGY REPORTING = EXACT|APPROXIMATE|OFF (EXACT)

EXTENSIVE RIGID BODY VARS OUTPUT = OFF|HISTORY|RESULTS|ALL (ALL)

Through the GLOBAL ENERGY REPORTING command line Adagio offers three reporting options

for global energy variables: EXACT, APPROXIMATE, and OFF. The EXACT and APPROXIMATE

reporting options use different algorithms for tracking the global values of external energy, internal

energy, contact energy, and hourglass energy. In many cases, the APPROXIMATE reporting option

will provide a modest performance improvement with a negligible effect on the reported energy

values. The OFF option will result in a further performance improvement and will report energy

values of zero.

Note that the GLOBAL ENERGY REPORTING command has no effect on the analysis itself; the

energy values calculated are used only for reporting purposes.

The line command EXTENSIVE RIGID BODY VARS OUTPUT controls the default output of

global rigid body variables. Regardless of the option choice here, global rigid body variables

may be output by name in the history or results output blocks. See Table 8.2 for a list of available

variables. The EXTENSIVE RIGID BODY VARS OUTPUT options are: OFF to specify no default

rigid body global variable output; HISTORY to specify default rigid body global variable output to

the history file(s) only; RESULTS to specify default rigid body global variable output to the results

file(s) only; ALL to specify default rigid body global variable output to both the history and results

files. This option defaults to ALL so that if this command is not specified both the history and

results files will contain the variables listed in Table 8.2 at every output time.

478

8.9 Variables

This section lists commonly used variables that the user can select as output to the results file and

the history file. The first part of this section lists global, nodal, and element variables. The second

part of this section lists variables associated with material models.

8.9.1 Global, Nodal, Face, and Element Variables

This section lists commonly used global, nodal, and element variables. The variables are presented

in tables based on use, as follows:

- Table 8.1 Global Variables for All Analyses

- Table 8.2 Global Variables for Rigid Bodies

- Table 8.3 Global Variables for J-Integral

- Table 8.4 Nodal Variables for All Analyses

- Table 8.5 Nodal Variables for Shells

- Table 8.7 Nodal Variables for Contact

- Table 8.8 Nodal Variables for J-Integral

- Table 8.9 Face Variables for Blast Pressure Boundary Condition

- Table 8.10 Element Variables for All Elements

- Table 8.11 Element Variables for Solid Elements

- Table 8.12 Element Variables for Membranes

- Table 8.13 Element Variables for Shells

- Table 8.14 Element Variables for Trusses

- Table 8.15 Element Variables for Cohesive Elements

- Table 8.16 Element Variables for J-Integral

The tables provide the following information about each variable:

Variable Name. This is the string that will appear on the GLOBAL, NODE, FACE, or ELEMENT

command line.

Type. This is the variable’s type. The various types are denoted with the labels Integer,

Integer[], Real, Real[], Vector_2D, Vector_3D, SymTen33, and FullTen36. The type

Integer indicates the variable is an integer; the type Integer[] is an integer array; the type

479

Real indicates the variable is a real; the type Real[] is a real array. The type Vector_2D indi-

cates the variable type is a two-dimensional vector. The type Vector_3D indicates the variable

is a three-dimensional vector. For a three-dimensional vector, the variable quantities will be out-

put with suffixes of _x, _y, and _z. For example, if the variable displacement is requested to be

output as displ, the components of the displacement vector on the results file will be displ_x,

displ_y, and displ_z. The type SymTen33 indicates the variable is a symmetric 3 × 3 tensor.

For a 3 × 3 symmetric tensor, the variable quantities will be output with suffixes of _xx, _yy, _zz,

_xy, _yz, and _zx. For example, if the variable stress is requested for output as stress, the

components of the stress tensor on the results file will be stress_xx, stress_yy, stress_zz,

stress_xy, stress_yz, and stress_zx. The type FullTen36 is a full 3 × 3 tensor with three

diagonal terms and six off-diagonal terms.

Derived. Any variable designated with a yes in this column must be included in a BEGIN

DERIVED OUTPUT command block if it is to be transferred to another procedure or region as

described in Section 5.6.

For multi-integration point elements, quantities from the element integration points will be ap-

pended with a numerical suffix indicating the integration point. A suffix ranging from 1 to the

number of integration points is attached to the quantity to indicate the corresponding integration

point. The suffix is padded with leading zeros. If the number of integration points is less than 10,

the suffix has the form _i, where i ranges from 1 to the number of integration points. If the number

of integration points is greater than or equal to 10 and less than 100, the sequence of suffixes takes

the form _01, _02, _03, and so forth. Finally, if the number of integration points is greater than or

equal to 100, the sequence of suffixes takes the form _001, _002, _003, and so forth. As an exam-

ple, if von_mises is requested for a shell element with 15 integration points, then the quantities

von_mises_01, von_mises_02, . . . , von_mises_15 are output for the shell element.

The tables of various types of variables follow.

480

Table 8.1: Global Variables For All Analyses

Variable Name Type Comments

artificial_energy Real

contact_energy Real (A component of external energy)

external_energy Real

ke_blockblockID Real Kinetic energy sum for block blockID

ee_strain_blockblockID Real External energy sum for block blockID

ie_strain_blockblockID Real Internal energy sum for block blockID

momentum_blockblockID Vector_3D Momentum sum for block blockID

hourglass_energy Real (A component of internal energy)

hge_blockblockID Real Hourglass energy sum for block blockID

internal_energy Real

kinetic_energy Real

momentum Vector_3D Momentum vector

timestep Real Current time step

timestep_element Real Time step from element estimator

timestep_nodal Real Time step from nodal estimator

timestep_material Real Time step from material model

timestep_lanczos Real Time step from Lanczos estimator

timestep_powermethod Real Time step from power method estimator

wall_clock_time Real Accumulated wall clock time

wall_clock_time_per_

step

Real Wall clock time for last time step

cpu_time Real Accumulated CPU time

cpu_time_per_step Real CPU time for last time step

Table 8.2: Global Variables for Rigid Bodies. (See Section 8.8 for default output options.)

Variable Name Type Comments

ax,ay,az Real Translational acceleration

velx,vely,velz Real Translational velocity

displx,disply,displz Real Translational displacement

rotax,rotay,rotaz Real Rotational acceleration

rotvx,rotvy,rotvz Real Rotational velocity

rotdx,rotdy,rotdz Real Rotational displacement

reactx,reacty,reactz Real Translational reaction

rreactx,rreacty,

rreactz

Real Rotational reaction

qvec1,qvec2,qvec3,

qvec4

Real Unit quaternion

481

Table 8.3: Global Variables for J-Integral (See Section 9.2)

Variable Name Type Comments

j_average_<jint_name> Real[] Average value of the J-integral over the

crack. Array sized to number of integration

domains and numbered from inner to outer

domain. <jint_name> is the name of the

J INTEGRAL block.

Table 8.4: Nodal Variables for All Analyses

Variable Name Type Comments

model_coordinates Vector_3D Original coordinates of nodes

coordinates Vector_3D Current coordinates of nodes

displacement Vector_3D Total displacement

displacement_increment Vector_3D Displacement increment at current time

step

velocity Vector_3D

acceleration Vector_3D

force_internal Vector_3D

force_external Vector_3D

force external_

transferred

Vector_3D Force transferred from another physics

(coupled problems only)

force_contact Vector_3D

residual Vector_3D Force imbalance at current time step

reaction Vector_3D

mass Real

nodal_time_step Real Nodal stable time step (explicit control

modes, coarse mesh only)

hourglass_energy Real Nodal integrated energy due to hourglass

forces

quaternion Real Current quaternion (rigid body reference

nodes only)

482

Table 8.5: Nodal Variables for Shells and Beams

Variable Name Type Comments

rotational_displacement Vector_3D

rotational_velocity Vector_3D

rotational_acceleration Vector_3D

moment_internal Vector_3D

moment_external Vector_3D

moment external_

transferred

Vector_3D Moment transferred from another physics

(coupled problems only)

rotational_reaction Vector_3D

rotational_mass Real

483

Table 8.6: Nodal Variables for Spot Welds

Variable Name Type Comments

spot_weld_parametric_

coordinates

Vector_2D Coordinates of node on face

spot_weld_normal_force_

at_death

Real Value of force normal to face when spot

weld breaks

spot_weld_tangential_

force_at_death

Real Value of force tangential to face when spot

weld breaks

spot_weld_death_flag Integer alive = 0, dead = FAILURE DECAY

CYCLES (default is 10), -1 = no spot weld

constructed at this node

spot_weld_scale_factor Real Nodal influence area of current node

spot_weld_normal_

displacement

Real Current displacement of weld normal to

face

spot_weld_tangential_

displacement

Real Current displacement of weld tangential to

face

spot_weld_normal_force Real Current force of weld normal to face

spot_weld_tangential_

force

Real Current force of weld tangential to face

spot_weld_stiffness Real Current stiffness of weld

spot_weld_norm_

stiffness

Real Current stiffness of weld normal to face

spot_weld_tang_

stiffness

Real Current stiffness of weld tangential to face

spot_weld_initial_

offset

Vector_3D The initial offset of the spot weld node

from the spot weld surface. Does not

change over time, only output if IGNORE

INITIAL OFFSET = YES is specified at

input.

spot_weld_initial_

normal

Vector_3D The initial normal of the spot weld surface

at the point of interaction. Only output if

IGNORE INITIAL OFFSET = YES is

specified at input.

484

Table 8.7: Nodal Variables for Contact (See Section 7.5)

Variable Type Description

contact_status Real Status of the interactions at the node. Possi-

ble values are as follows:

0.0 = Node is not a contact node (not in a

defined contact surface)

0.5 = Node is not in contact

1.0 = Node is in contact and is slipping

-1.0 = Node is in contact and is sticking

(celement).

contact_normal_

direction

Vector_3D Direction of the constraint. This is, in gen-

eral, the normal of the face in the interaction

(cdirnor).

contact_tangential_

direction

Vector_3D Direction of the contact tangential force

(cdirtan).

contact_normal_force_

magnitude

Real Magnitude of the contact force at the node

in the direction normal to the contact

face. Magnitude of contact_normal_

direction.

contact_tangential_

force_magnitude

Real Magnitude of the contact force at the node

in the plane of the contact face. Magnitude

of contact_tangential_direction.

contact_normal_

traction_magnitude

Real Traction normal to the contact face.

contact_normal_force_magnitude

divided by contact_area. If there are

multiple interactions for this node, the

traction only for the last interaction is given

(cfnor).

contact_tangential_

traction_magnitude

Real Traction in the plane of the contact

face. contact_traction_force_

magnitude divided by contact_area. If

there are multiple interactions for this node,

the traction only for the last interaction is

given (cftan).

Continued on next page

485

Table 8.7 – Continued from previous page

Variable Type Description

contact_incremental_

slip_magnitude

Real Magnitude of incremental slip over the cur-

rent time step (cdtan).

contact_incremental_

slip_direction

Vector_3D Normalized direction of incremental slip

over the current time step (cdirislp).

contact_accumulated_

slip

Real Magnitude of tangential slip accumulated

over the entire analysis. This is the dis-

tance along the slip path, and not the mag-

nitude of contact_accumulated_slip_

vector (cstan).

contact_accumulated_

slip_vector

Vector_

3D)

Total accumulated tangential slip over the

entire analysis (cdirslp).

contact_frictional_

energy

Real Accumulated amount of frictional energy

dissipated over the entire analysis.

contact_frictional_

energy_density

Real Accumulated amount of frictional energy

dissipated over the entire analysis, divided

by the contact area (cetan).

contact_area Real Contact area for the node. This is the trib-

utary area around the node for this interac-

tion. If there are multiple interactions, the

reported area is the area associated with the

last interaction (carea).

contact_normal_gap Real Magnitude of gap in the direction normal to

the face (cgnor).

contact_tangential_gap Real Magnitude of gap in the direction tangent to

the face (only applicable for compliant fric-

tion models) (cgtan).

486

Table 8.8: Nodal Variables for J-Integral (See Section 9.2)

Variable Name Type Comments

j_<jint_name> Real[] Pointwise value of J-integral along crack.

Array sized to number of integration

domains and numbered from inner to outer

domain. <jint_name> is the name of the

J INTEGRAL block.

Table 8.9: Face Variables for Blast Pressure Boundary Condition (See Section 6.10.1)

Variable Name Type Comments

pressure Real Current total pressure. This is the only field

for this boundary condition that varies in

time.

normal Vector_3D Face normal vector

incident_pressure Real Peak incident pressure

reflected_pressure Real Peak reflected pressure

alpha Real Decay coefficient α

beta Real Decay coefficient β

cosa Real Cosine of θ

arrival_time Real Time for arrival of blast at face

positive_duration Real Duration of blast at face

487

Table 8.10: Element Variables for All Elements

Variable Name Type Derived

(Sec 5.6)

Comments

diagonal_ratio Real See Section 2.4

element_mass Real

perimeter_ratio Real See Section 2.4

solid_angle Real See Section 2.4

timestep Real Critical time step for the element.

The element in the model with the

smallest time step controls the

analysis time step.

von_mises Real yes Von Mises stress norm

hydrostatic_stress Real yes One-third the trace of the stress

sensor

fluid_pressure Real yes Negative of

hydrostatic_stress

stress_invariant_1 Real yes Trace of the stress tensor

stress_invariant_2 Real yes Second invariant of the stress

tensor

stress_invariant_3 Real yes Third invariant of the stress tensor

max_principal_stress Real yes Largest eigenvalue of the stress

tensor

intermediate_principal_

stress

Real yes Middle eigenvalue of the stress

tensor

min_principal_stress Real yes Smallest eigenvalue of the stress

tensor

max_shear_stress Real yes Maximum shear stress from

Mohr’s circle

octahedral_shear_stress Real yes Octahedral shear norm of the

stress tensor

488

Table 8.11: Element Variables for Solid Elements

Variable Name Type Derived

(Sec 5.6)

Comments

aspect_ratio Real Tets only. See Section 2.4

dilmod Real

left_stretch SymTen33

nodal_jacobian_ratio Real Hexes only. See Section 2.4

rate_of_deformation SymTen33 Hexes and node-based tets only.

rotation FullTen36

shrmod Real

stress SymTen33

unrotated_stress SymTen33

log_strain SymTen33 Log strain tensor

unrotated_log_strain SymTen33 Log strain tensor in unrotated

configuration

effective_log_strain Real yes Effective log strain

log_strain_invariant_1 Real yes Trace of the log strain tensor

log_strain_invariant_2 Real yes Second invariant of the log strain

tensor

log_strain_invariant_3 Real yes Third invariant of the log strain

tensor

max_principal_log_

strain

Real yes Largest eigenvalue of the log

strain tensor

intermediate_principal_

log_strain

Real yes Middle eigenvalue of the log

strain tensor

min_principal_log_

strain

Real yes Smallest eigenvalue of the log

strain tensor

max_shear_log_strain Real yes Maximum shear log strain from

Mohr’s circle

octahedral_shear_log_

strain

Real yes Octahedral strain norm of the log

strain tensor

volume Real

Table 8.12: Element Variables for Membranes

Variable Name Type Comments

memb_stress SymTen33

element_area Real

element_thickness Real

489

Table 8.13: Element Variables for Shells

Variable Name Type Derived

(Sec 5.6)

Comments

memb_stress SymTen33 Stress at midplane in global X, Y,

and Z coordinates

bottom_stress SymTen33 Stress at bottom integration point

in global X, Y, and Z coordinates

top_stress SymTen33 Stress at top integration point in

global X, Y, and Z coordinates

unrotated_stress SymTen33

transform_shell_stress SymTen21 yes In-plane shell stress

strain SymTen33 Integrated strain at midplane in

local shell coordinate system

effective_strain Real yes Effective strain norm

strain_invariant_1 Real yes Trace of the strain tensor

strain_invariant_2 Real yes Second invariant of the strain

tensor

strain_invariant_3 Real yes Third invariant of the strain tensor

max_principal_strain Real yes Largest eigenvalue of the strain

tensor

intermediate_principal_

strain

Real yes Middle eigenvalue of the strain

tensor

min_principal_strain Real yes Smallest eigenvalue of the strain

tensor

max_shear_strain Real yes Maximum shear strain from

Mohr’s circle

octahedral_shear_strain Real yes Octahedral strain norm of the

strain tensor

transform_shell_strain Real yes In-plane shell strain

element_area Real

element_thickness Real

rate_of_deformation SymTen33 Rate of deformation (stretching)

tensor

490

Table 8.14: Element Variables for Trusses

Variable Name Type Comments

truss_init_length Real

truss_stretch Real

stress SymTen33 Axial stress is stored in stress_xx. All

other components are zero. See

Section 5.2.7 for more details.

truss_strain_incr Real

truss_force Real

Table 8.15: Element Variables for Cohesive Elements

Variable Name Type Comments

cse_traction Vector_3D

cse_separation Vector_3D

cse_initial_trac Vector_3D Available only if traction initialization is

used

cse_activated Integer For intrinsic elements

cse_fracture_area Real Currently not used

Table 8.16: Element Variables for J-Integral (See Section 9.2)

Variable Name Type Comments

energy_momentum_tensor FullTen36 Energy momentum tensor

integration_domains_

<jint_name>

Integer[] Flag indicating elements in integration

domains. Set to 1 if in domain, 0 otherwise.

Array sized to number of domains and

numbered from inner to outer domain.

<jint_name> is the name of the

J INTEGRAL block.

491

8.9.2 Variables for Material Models

It is possible to output the state variables from the material models. Most of the materials, with

the exception of simple models such as the elastic model, have state variables that can be output.

The method used to output state variables depends on how the model is implemented. There are

currently three cases:

- The Strumento version of most of the solid models for which the entire state variable array

can be dumped.

- The Strumento version of a few solid models for which state variables are accessed by name

- The versions of the solid models implemented in the LAME library for which state variables

are accessed by name

In the future, the implementation of the solid material models in LAME will be used by default,

and all state variables will be accessed by name. The following sections describe the different

methods required to output material model variables.

8.9.2.1 State Variable Output by Index for Strumento Solid Material Models

To output all of the state variables for a given material model. Use the ELEMENT command line in

the RESULTS OUTPUT command block of the form:

ELEMENT state_material_name

where material_name is the name of the material model, e.g. state_elastic_plastic,

state_power_law_hardening, state_foam_plasticity, or state_orthotropic_

rate. All of the state variables for the material will be output.

Some of the Strumento material models are implemented in a way such that state variables are

accessed directly by name rather than by index. For example, to access the C10 variable in the

Mooney-Rivlin material model, one would simply list the name C10 to obtain that output. The state

variables for the Mooney-Rivlin, Swanson, and Orthotropic Crush material models are accessed in

this way.

Section 8.9.2.3 provides tables listing the state variables for all solid material models. Models for

which state variable output is requested by name have names entered in a column entitled "Name

(Strumento Model)".

8.9.2.2 State Variable Output for LAME Solid Material Models

The state variables for material models in LAME are accessible directly by name. For instance,

the equivalent plastic strain variable is accessible by the name EQPS for all elastic-plastic material

models.

492

Section 8.9.2.3 provides tables listing the state variables for all solid material models. Models

that are implemented in LAME have state variable names listed in the column entitled "Name

(LAME Model)". If there are no entries in that column for a given material, then that material is

not implemented in LAME.

Available LAME state variables for a material will also be listed in the log file from a run that uses

the material model.

8.9.2.3 State Variable Tables for Solid Material Models

As explained in the preceding sections, there are three cases to be considered for state variable

output from solid material models: Strumento models, Strumento models for which state output

is obtained using the variable name, and LAME models, for which state output is also obtained

by variable name. Tables of state variables for commonly used material models are provided

in Tables 8.21 through 8.43. These tables contain the indices or names used to access the state

variables in the Strumento version of the models, as well as the names used to access the LAME

versions of the models. If there are no entries in the "Strumento Model" column for a model, that

model is only implemented in LAME. Likewise, if there are no entries in the "LAME Model"

column, there is no version of that model in LAME.

Table 8.17: State Variables for ELASTIC Model (Section 4.2.1)

This model has no state variables.

Table 8.18: State Variables for ELASTIC FRACTURE Model (Section 4.2.4)

Index Name Variable Description

(Strumento

Model)

(LAME Model)

1 DEATH_FLAG flag for element death

2 CRACK_OPENING_

STRAIN

critical value of opening strain

3 FAILURE_

DIRECTION_X

crack opening direction - x component

4 FAILURE_

DIRECTION_Y

crack opening direction - y component

5 FAILURE_

DIRECTION_Z

crack opening direction - z component

6 PRINCIPAL_

STRESS

value of maximum principal stress

493

Table 8.19: State Variables for ELASTIC PLASTIC Model (Section 4.2.5)

Index Name Variable Description

(Strumento

Model)

(LAME Model)

1 EQPS equivalent plastic strain

2 BACK_STRESS_XX back stress - xx component

3 BACK_STRESS_YY back stress - yy component

4 BACK_STRESS_ZZ back stress - zz component

5 BACK_STRESS_XY back stress - xy component

6 BACK_STRESS_YZ back stress - yz component

7 BACK_STRESS_ZX back stress - zx component

8 RADIUS radius of yield surface

Table 8.20: State Variables for EP POWER HARD Model (Section 4.2.6)

Index Name Variable Description

(Strumento

Model)

(LAME Model)

1 EQPS equivalent plastic strain

2 RADIUS radius of yield surface

Table 8.21: State Variables for DUCTILE FRACTURE Model (Section 4.2.7)

Index Name Variable Description

(Strumento

Model)

(LAME Model)

1 EQPS equivalent plastic strain

2 TEARING_

PARAMETER

tearing parameter

3 CRACK_OPENING_

STRAIN

crack opening strain

4 FAILURE_

DIRECTION_X

crack opening direction - x component

5 FAILURE_

DIRECTION_Y

crack opening direction - y component

6 FAILURE_

DIRECTION_Z

crack opening direction - z component

7 DEATH_FLAG flag for element death

8 RADIUS radius of yield surface

494

Table 8.22: State Variables for MULTILINEAR EP Model (Section 4.2.8)

Index Name Variable Description

(Strumento

Model)

(LAME Model)

1 EQPS equivalent plastic strain

2 RADIUS radius of yield surface

3 BACK_STRESS_XX back stress - xx component

4 BACK_STRESS_YY back stress - yy component

5 BACK_STRESS_ZZ back stress - zz component

6 BACK_STRESS_XY back stress - xy component

7 BACK_STRESS_YZ back stress - yz component

8 BACK_STRESS_ZX back stress - zx component

Table 8.23: State Variables for ML EP FAIL Model (Section 4.2.9)

Index Name Variable Description

(Strumento

Model)

(LAME Model)

1 EQPS equivalent plastic strain

2 RADIUS radius of yield surface

3 BACK_STRESS_XX back stress - xx component

4 BACK_STRESS_YY back stress - yy component

5 BACK_STRESS_ZZ back stress - zz component

6 BACK_STRESS_XY back stress - xy component

7 BACK_STRESS_YZ back stress - yz component

8 BACK_STRESS_ZX back stress - zx component

9 TEARING_

PARAMETER

tearing parameter

10 CRACK_OPENING_

STRAIN

crack opening strain

11 FAILURE_

DIRECTION_X

crack opening direction - x component

12 FAILURE_

DIRECTION_Y

crack opening direction - y component

13 FAILURE_

DIRECTION_Z

crack opening direction - z component

14 CRACK_FLAG status of the model: 0 for loading, 1 or 2 for

initiation of failure, 3 during unloading, 4 for

completely unloaded

495

Table 8.24: State Variables for FOAM PLASTICITY Model (Section 4.2.15)

Index Name Variable Description

(Strumento

Model)

(LAME Model)

1 ITER iterations

2 EVOL volumetric strain

3 PHI phi

4 EQPS equivalent plastic strain

5 PA A

6 PB B

Table 8.25: State Variables for WIRE MESH Model (Section 4.2.18)

Index Name Variable Description

(Strumento

Model)

(LAME Model)

1 EVOL engineering volumetric strain

2 PHI current yield strength in compression

Table 8.26: State Variables for HONEYCOMB Model

Index Name Variable Description

(Strumento

Model)

(LAME Model)

1 CRUSH minimum volume ratio

2 EQDOT effective strain rate

3 RMULT rate multiplier

5 ITER iterations

6 EVOL volumetric strain

496

Table 8.27: State Variables for HYPERFOAM Model

This model has no state variables.

Table 8.28: State Variables for JOHNSON COOK Model (Section 4.2.10)

Index Name Variable Description

(Strumento

Model)

(LAME Model)

1 RADIUS radius of yield surface

2 EQPS equivalent plastic strain

3 THETA temperature

4 EQDOT effective total strain rate

Table 8.29: State Variables for LOW DENSITY FOAM Model (Section 4.2.16)

Index Name Variable Description

(Strumento

Model)

(LAME Model)

PAIR air pressure

497

Table 8.30: State Variables for MOONEY RIVLIN Model (Section 4.2.24)

Name Name Variable Description

(Strumento

Model)

(LAME Model)

C10 C10

C01 C01

RK K

SFJth SFJTH

RJTH JTH

V_MECH VMECH_XX

VMECH_YY

VMECH_ZZ

VMECH_XY

VMECH_YZ

VMECH_ZX

SFJTH_FLAG

Table 8.31: State Variables for NEO HOOKEAN Model (Section 4.2.3)

This model has no state variables.

Table 8.32: State Variables for ORTHOTROPIC CRUSH Model (Section 4.2.19)

Name Name Variable Description

(Strumento

Model)

(LAME Model)

CRUSH CRUSH minimum volume ratio, crush is

unrecoverable

Table 8.33: State Variables for ORTHOTROPIC RATE Model (Section 4.2.20)

Index Name Variable Description

(Strumento

Model)

(LAME Model)

CRUSH minimum volume ratio, crush is

unrecoverable

498

Table 8.34: State Variables for PIEZO Model

Index Name Variable Description

(Strumento

Model)

(LAME Model)

STATE

Table 8.35: State Variables for POWER LAW CREEP Model (Section 4.2.12)

Index Name Variable Description

(Strumento

Model)

(LAME Model)

1 ECREEP equivalent creep strain

2 SEQDOT equivalent stress rate

Table 8.36: State Variables for SHAPE MEMORY Model

Index Name Variable Description

(Strumento

Model)

(LAME Model)

STATE

Table 8.37: State Variables for SOIL FOAM Model (Section 4.2.13)

Index Name Variable Description

(Strumento

Model)

(LAME Model)

EVOL

499

Table 8.38: State Variables for SWANSON Model (Section 4.2.27)

Name Name Variable Description

(Strumento

Model)

(LAME Model)

SFJTH SFJTH

RJTH RJTH

V_MECH VMECHXX

VMECHYY

VMECHZZ

VMECHXY

VMECHYZ

VMECHZX

SFJTH_FLAG

500

Table 8.39: State Variables for VISCOELASTIC SWANSON Model (Section 4.2.28)

Index Name Variable Description

(Strumento

Model)

(LAME Model)

SFJTH

JTH

VMECHXX

VMECHYY

VMECHZZ

VMECHXY

VMECHYZ

VMECHZX

VSXXDEV1 -

VSXXDEV10

VSYYDEV1 -

VSYYDEV10

VSZZDEV1 -

VSZZDEV10

VSXYDEV1 -

VSXYDEV10

VSYZDEV1 -

VSYZDEV10

VSZXDEV1 -

VSZXDEV10

SOXXDEV

SOYYDEV

SOZZDEV

SOXYDEV

SOYZDEV

SOZXDEV

501

Table 8.40: State Variables for THERMO EP POWER Model

Index Name Variable Description

(Strumento

Model)

(LAME Model)

1 EQPS equivalent plastic strain

2 RADIUS radius of yield surface

3 BACK_STRESS_XX back stress - xx component

4 BACK_STRESS_YY back stress - yy component

5 BACK_STRESS_ZZ back stress - zz component

6 BACK_STRESS_XY back stress - xy component

7 BACK_STRESS_YZ back stress - yz component

8 BACK_STRESS_ZX back stress - zx component

Table 8.41: State Variables for THERMO EP POWER WELD Model

Index Name Variable Description

(Strumento

Model)

(LAME Model)

EQPS equivalent plastic strain

RADIUS radius of yield surface

BACK_STRESS_XX back stress - xx component

BACK_STRESS_YY back stress - yy component

BACK_STRESS_ZZ back stress - zz component

BACK_STRESS_XY back stress - xy component

BACK_STRESS_YZ back stress - yz component

BACK_STRESS_ZX back stress - zx component

WELD_FLAG

502

Table 8.42: State Variables for UNIVERSAL POLYMER Model

Index Name Variable Description

(Strumento

Model)

(LAME Model)

AEND

IGXX1 - IGXX20

IGYY1 - IGYY20

IGZZ1 - IGZZ20

IGXY1 - IGXY20

IGYZ1 - IGYZ20

IGZX1 - IGZX20

IKI11 - IKI120

IKAT1 - IKAT20

IF1P1 - IF1P20

IF2J1 - IF2J20

EPSXX

EPSYY

EPSZZ

EPSXY

EPSYZ

EPSZX

LOGA

503

Table 8.43: State Variables for VISCOPLASTIC Model

Index Name Variable Description

(Strumento

Model)

(LAME Model)

SVBXX

SVBYY

SVBZZ

SVBXY

SVBYZ

SVBZX

EQDOT

COUNT

SHEAR

BULK

RATE

EXP

ALPHA

A1

A2

A4

A5

504

8.9.2.4 Variables for Shell/Membrane Material Models

Shell and membrane material models also make their state variables available through direct nam-

ing of the variables. Tables 8.44 through 8.47 indicate the names of the state variables for the shell

material models.

Table 8.44: State Variables for ELASTIC PLASTIC Model for Shells (Section 4.2.5)

Variable Name Variable Description

eqps Equivalent plastic strain

back_stress Back stress

radius Radius of the yield surface

Table 8.45: State Variables for EP POWER HARD Model for Shells (Section 4.2.6)

Variable Name Variable Description

eqps Equivalent plastic strain

radius Radius of yield surface

Table 8.46: State Variables for MULTILINEAR EP Model for Shells (Section 4.2.8)

Variable Name Variable Description

eqps Equivalent plastic strain

tensile_eqps Equivalent plastic strain only accumulated in tension

back_stress Back stress

radius Radius of the yield surface

505

Table 8.47: State Variables for ML EP FAIL Model for Shells (Section 4.2.9)

Variable Name Variable Description

eqps Equivalent plastic strain

back_stress Back stress

radius Radius of the yield surface

tearing_parameter The current value of the tearing parameter

crack_opening_strain The value of the crack opening strain during the failure

process

crack_flag Status of the model: 0 for loading, 1 or 2 for initiation of

failure, 3 during unloading, 4 for completely unloaded

506

8.9.3 Variables for Surface Models

It is possible to output the state variables from the surface models. The element state variables are

output using the variable name by use of following line command:

ELEMENT surface_model_state_name

Section 8.9.3.1 provides tables listing the state variables for all surface models.

8.9.3.1 State Variable Tables for Surface Models

Table 8.48: State Variables for TRACTION DECAY Surface Model (Section 4.3.1)

Index Name Variable Description

0 MAX_

SEPARATION_S

maximum separation in the first tangential

direction

1 MAX_

SEPARATION_T

maximum separation in the second

tangential direction

2 MAX_

SEPARATION_N

maximum separation in the normal direction

Table 8.49: State Variables for TVERGAARD HUTCHINSON Surface Model (Section 4.3.2)

Index Name Variable Description

0 PEAK_TRACTION maximum traction the model can experience

1 LAMBDA_MAX maximum lambda the model has experienced

2 TRACTION_AT_

LAMBDA_MAX

traction at LAMBDA_MAX

507

Table 8.50: State Variables for THOULESS PARMIGIANI Surface Model (Section 4.3.3)

Index Name Variable Description

0 FRACTION_OF_

FAILURE

current fraction of failure

1 PEAK_TRACTION_

N

maximum normal traction the model can

experience

2 PEAK_TRACTION_

T

maximum tangential traction the model can

experience

3 LAMBDA_MAX_N maximum normal lambda the model has

experienced

4 TRACTION_AT_

LAMBDA_MAX_N

normal traction at LAMBDA_MAX_N

5 LAMBDA_MAX_T maximum tangential lambda the model has

experienced

6 TRACTION_AT_

LAMBDA_MAX_T

tangential traction at LAMBDA_MAX_T

7 G_AT_LAMBDA_

MAX_N

the area under the normal traction separation

curve up to LAMBDA_MAX_N

8 G_AT_LAMBDA_

MAX_T

the area under the tangential traction

separation curve up to LAMBDA_MAX_T

508

8.10 References

1. Larry A. Schoof, Victor R. Yarberry, EXODUS II: A Finite Element Data Model, SAND92-

2137, Sandia National Laboratories, September 1994. pdf. See also documentation available

at EXODUS II sourceforge page. link.

2. The eXtensible Data Model and Format (XDMF). link.

3. Sjaardema, G. D. Overview of the Sandia National Laboratories Engineering Analysis Code

Access System, SAND92-2292. Albuquerque, NM: Sandia National Laboratories, January

1993. pdf.

509

http://infoserve.sandia.gov/sand_doc/1992/922137.pdf
http://sourceforge.net/projects/exodusii
http://www.xdmf.org
http://infoserve.sandia.gov/sand_doc/1992/922292.pdf

510

Chapter 9

Special Modeling Techniques

This chapter describes techniques useful for performing special types of analyses:

- Section 9.1 describes the Representative Volume Element (RVE) capability, which is a mul-

tiscale technique that uses a separate finite element model to represent the material response

at a point.

- Section 9.2 describes the capability to compute J-Integrals as a criterion for fracture growth.

9.1 Representative Volume Elements

The use of representative volume elements (RVEs) is a multiscale technique in which the material

response at element integration points in a reference mesh is computed using an RVE that is itself

discretized with finite elements. RVEs are typically used to represent local, periodic material

inhomogeneities such as fibers or random microstructures to avoid the requirement of a global

mesh with elements small enough to capture local material phenomena.

This capability is currently implemented only for uniform gradient hex elements in the reference

mesh. In the current implementation of RVEs, periodic boundary conditions are applied to each

RVE representing the deformation of a parent element and the stresses are computed in the ele-

ments of the RVE. These stresses are then volume-averaged over the RVE and the resulting ho-

mogenized stresses are passed back to the parent element.

This chapter explains how to use the RVE capability. Section 9.1.1 gives a detailed description of

how RVEs are incorporated into an analysis. Details of the mesh requirements are delineated in

Section 9.1.2 and the commands needed in an input file are described in Section 9.1.3.

511

9.1.1 RVE Processing

The use of the RVE capability requires two regions, each with its own mesh file. One region

processes the reference mesh and the other processes all the RVEs. The commands used in the

input file for the reference mesh region are the same as any other Adagio region with the exception

that a special RVE material model is used for any element blocks that use an RVE. The RVE region

is also very similar to an ordinary region. The only differences are that an RVE region has a line

command for defining the RVEs’ relationship to parent elements in the reference region and has

restrictions on the use of boundary conditions.

The processing of an RVE essentially replaces the constitutive model of the parent element in the

reference mesh. The steps followed at each iteration/time step of the reference mesh during an

analysis using RVEs are:

1. Internal force algorithm is called in the reference region to compute rate of deformation.

2. Each RVE gets the rate of deformation from its parent element in the reference region.

3. The rate of deformation is applied to each RVE as a periodic boundary condition using

prescribed velocity.

4. The RVE region is solved to obtain the stress in each element of each RVE.

5. The stresses in the elements of an RVE are volume-averaged over the RVE.

6. Each RVE passes its homogenized (i.e. volume-averaged) stress tensor back to its parent

element in the reference mesh.

7. The reference region computes internal force again. Element blocks whose elements have

associated RVEs do not compute a stress; they simply use the stress passed to them from

their RVE.

9.1.2 Mesh Requirements

Two mesh files, one each for the reference region and the RVE region, are required for an RVE

analysis. Figure 9.1 shows an example of the two meshes. The reference mesh of a bar with six

elements is shown on the upper left. On the lower right is the mesh for the RVE region containing

six RVEs, one for each element of the reference region. In this case, the first five RVEs each consist

of two element blocks and the last RVE has four.

In general, each RVE should be a cube with any discretization the user desires. All RVEs must be

aligned with the global x, y, and z axes. For stress computations, these axes are rotated into a local

coordinate system that can be specified on the reference mesh elements. In other words, if a local

coordinate system is specified on a reference mesh element, the RVE global axes will be rotated

internally in Adagio to align with the local system on the associated parent element. So the global

X axis for an RVE is actually the local X′ axis in the parent element.

512

Figure 9.1: Example of meshes for RVE analysis

Additional mesh requirements apply if the mesh does not match across opposing surfaces of the

RVE. In this case, the RVE must include a block of membrane elements on the exterior surfaces

with matching discretization on opposing surfaces (+x/-x, +y/-y, +z/-z). In order the minimize the

effects of this membrane layer on the RVE response, it should be made as thin as possible. This

membrane layer then must be tied to the underlying nonmatching RVE surfaces.

The RVE mesh must contain sidesets or nodesets on each surface of every RVE. The RVE may be

enclosed with one sideset that spans all six surfaces of the curb, or the user may specify individual

sidesets or nodesets on each face. These sidesets/nodesets are used to apply the periodic boundary

conditions on the RVE. Adagio generates the boundary conditions internally so the user does not

have to include them in the input file. However, this assumes that the sidesets/nodesets exist in

the mesh file numbered in a specified order. If individual sidesets/nodesets are used on each face

of the RVE, the six sidesets/nodesets must be numbered consecutively, starting with the positive-x

face, followed by the negative-x face, positive-y face, negative-y face, positive-z face, and ending

with the negative-z face. The beginning sideset id (for the positive-x face) is set by the user in the

input file.

9.1.3 Input Commands

There are several input commands that are relevant to RVEs. In the reference region, these com-

mands include a special RVE material model and commands to define and use a local coordinate

system along which an associated RVE will be aligned. In addition to the reference region, an

RVE region is needed using the BEGIN RVE REGION command block. The RVE region com-

513

mand block uses the same nested commands as any other Adagio region (with some restrictions

as explained in this section) and an additional line command that relates the RVEs to their parent

elements in the reference region.

9.1.3.1 RVE Material Model

In an RVE analysis, any elements of the reference mesh that use an RVE must use the RVE material

model. This model is defined similar to other material models as described in Chapter 4 but uses

the RVE keyword on the BEGIN PARAMETERS FOR MODEL command line as follows:

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

#

DENSITY = <real>density_value

#

BEGIN PARAMETERS FOR MODEL RVE

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

END PARAMETERS FOR MODEL RVE

#

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Currently, the RVE material model tells the reference element not to perform a constitutive evalua-

tion but to instead accept the stress tensor obtained from computation on an RVE. However, the use

of an RVE material model still requires the input of Young’s modulus and Poissons ratio. These

values may be used for time time step estimation and hourglass computations even though they are

not used in a constitutive evaluation.

Element blocks in the RVE region can use any material model that is supported in Adagio other

than RVE.

9.1.3.2 Embedded Coordinate System

The finite element model of an element block in the reference mesh that uses RVEs can use an

embedded coordinate system to orient the RVE relative to the reference element. A coordinate

system is defined in the sierra scope as described in Section 2.1.8. A local coordinate system is

then associated with an element block through the use of a COORDINATE SYSTEM command line

within a BEGIN SOLID SECTION command block.

BEGIN SOLID SECTION <string>section_name

#

COORDINATE SYSTEM = <string>coord_sys_name

#

END [SOLID SECTION <string>section_name]

514

The string coord_sys_name must be a name associated in the input file with a BEGIN

COORDINATE SYSTEM command block in the sierra scope. This coordinate system will then be

used on all elements of a block associated with a BEGIN PARAMETERS FOR BLOCK command

block that includes the command line specifying this solid section.

9.1.3.3 RVE Region

A representative volume element (RVE) region must be a quasistatic region specified with the

RVE keyword in the BEGIN RVE REGION command line. The RVE region uses the same block

commands and line commands as any other quasistatic region with the addition of line commands

that define which element blocks of the reference region are associated with RVEs. There are also

some restrictions on boundary conditions as described in Section 9.1.3.6.

BEGIN RVE REGION <string>rve_region_name

#

Definition of RVEs

ELEMENTS <integer>elem_i:<integer>elem_j

BLOCKS <integer>blk_i:<integer>blk_j

SURFACE|NODESET <integer>start_id INCREMENT <integer>k

#

Boundary Conditions

#

Results Output Definition

#

Solver Definition

#

END [RVE REGION <string>rve_region_name]

9.1.3.4 Definition of RVEs

One or more ELEMENTS command lines are used to associate elements of the reference region

mesh with RVEs in the RVE region. In the

ELEMENTS <integer>elem_i:<integer>elem_j

BLOCKS <integer>blk_i:<integer>blk_j

SURFACE|NODESET <integer>start_id INCREMENT <integer>incr

command line, elements numbered elem_i through elem_j of the reference mesh will be asso-

ciated with RVEs (for a total number of RVEs equal to elem_j - elem_i + 1), and each RVE

will consist of blk_i - blk_j + 1 element blocks. The block ids of the first RVE must be blk_i

through blk_j and subsequent RVEs (if elem_j is greater than elem_i) must have consecutively

increasing numbers for their block ids.

Similarly start_id gives the surface_id of the first RVE if a single, encompassing surface

is used, or the first surface_id or nodelist_id of the first RVE (the positive x surface as

515

explained in Section 9.1.2) if six individual sidesets/nodeset are used. The remaining surfaces

(nodesets) of the first RVE and all the surfaces of the following RVEs must be consecutively

numbered following start_id in the mesh file as explained in Section 9.1.2.

The increment value incr indicates the number of sidesets present on the exterior of the RVEs.

This is used to determine how to increment the IDs of the sidesets from one RVE to the next, as

well as to determine how to prescribe periodic boundary conditions on the RVE. The increment

can have a value of either one or six. A value of one indicates that each RVE has one sideset that

encompasses all six faces, while a value of six specifies that six sidesets or nodesets are present,

one on each face. Note that nodesets are not allowed for the case where incr is one.

The following example shows the use of the ELEMENTS command line:

elements 1:5 blocks 1:2 surface 7 increment 6

elements 6:6 blocks 11:14 nodeset 15 increment 6

These commands generate the RVEs shown in Figure 9.1.

The first ELEMENTS command line specifies that elements with element ids 1 through 5 in the

parent region mesh each have an RVE with two element blocks. The RVE associated with element

1 of the parent region will have two element blocks starting with block_id of 1 and ending with

a block_id of 2. Subsequent RVEs will have consecutively numbered element blocks. That is,

parent element 2 will be associated with an RVE that consists of element blocks 3 and 4 in the

RVE region, parent element 3 will be associated with the RVE that has element blocks 5 and 6,

etc., for the first five elements of the parent region mesh. The keyword SURFACE specifies that all

the periodic boundary conditions generated by the code for the RVEs for elements 1 to 5 will use

sidesets in the RVE region mesh. These sidesets will start with id 7 for the positive-x face of the

RVE associated with parent element 1 and continue consecutively for the other faces of the RVE

and the RVEs associated with parent elements 2 through 5 in the order specified in Section 9.1.2.

In other words, the positive-x face of the RVE for parent element 1 is sideset 7, negative-x is sideset

8, positive-y is sideset 9, negative-y is sideset 10, positive-z is sideset 11, and negative-z is sideset

12. The sidesets for the RVE for parent element 2 will start with id 13 and continue consecutively

in the same face order. The process continues for all five RVEs specified in this command line.

The second ELEMENTS line specifies that element 6 of the parent region mesh will be associated

with the RVE that consists of element blocks 11, 12, 13, and 14. The NODESET keyword says this

RVE has a nodeset associated with each face of the RVE, starting with nodeset id 15 on the positive-

x face, with id’s increasing consecutively for the other five faces in the same order described in the

paragraph above.

Note that the six elements specified in these command lines must be in element blocks of the

reference region mesh that use the RVE material model.

9.1.3.5 Multi-Point Constraints

In the case in which the RVE has nonmatching surfaces, and therefore includes a block of mem-

brane elements on the exterior surfaces, the user must specify a set of multi-point constraints

516

(MPCs) to tie the membranes to the surface. This is done in the input file through use of an MPC

command block:

RESOLVE MULTIPLE MPCS = ERROR

BEGIN MPC

MASTER SURFACE = <string>membrane_surface_id

SLAVE SURFACE = <string>RVE_surface_id

SEARCH TOLERANCE = <real>tolerance

END

In this case, the membrane_surface_id corresponds to the single sideset that encompasses the

membrane block is the master and the single sideset that encompasses the exterior surfaces of the

RVE is the slave. While the underlying RVE may have nonmatching exterior surfaces, the opposing

surfaces of the membrane block must have matching discretizations. For more information on the

use of MPCs, see Section 6.10.2.1 and the RESOLVE MULTIPLE MPCS command line is discussed

in Section 6.10.2.4.

9.1.3.6 RVE Boundary Conditions

Strain rates computed by elements in the reference region are applied through periodic prescribed

velocity boundary conditions on the faces of the associated RVEs. These are generated internally

by Adagio so the periodic boundary conditions do not need to be in the user’s input file. However,

because the RVE region is quasistatic, each of the RVEs must be fixed against rigid body motion.

This must be done in the input file through use of the prescribed velocity boundary conditions:

BEGIN PRESCRIBED VELOCITY pres_vel_name

NODE SET = <string>nodelist_name

FUNCTION = <string>function_name

SCALE FACTOR = <real>scale_factor

COMPONENT = <string>X|Y|Z

END [PRESCRIBED VELOCITY pres_vel_name]

This type of boundary condition is described in detail in Chapter 6 but the use for RVEs is re-

stricted. First, either the function must always evaluate to 0.0 or the scale_factor must have

a value of 0. This is essentially a way of using the prescribed velocity boundary condition to fix

the nodes in nodelist_name. However, in order for these conditions to work with the periodic

boundary conditions which are used to apply the strain rate, PRESCRIBED VELOCITY must be

used rather than FIXED DISPLACEMENT or PRESCRIBED DISPLACEMENT boundary conditions.

Generally, three BEGIN PRESCRIBED VELOCITY command blocks will be needed, one each for

X, Y, and Z components. In order to eliminate rigid body motion without over constraining the

motion, each BEGIN PRESCRIBED VELOCITY block should constrain exactly one node of an

RVE in one component direction. (However, nodelist_name may contain nodes from multiple

RVEs. Separate boundary condition blocks are not required for each RVE.). To prevent rigid body

rotations, the three constrained nodes on each RVE should not be collinear.

517

9.2 J-Integrals

Adagio provides a capability to compute the J-integral via a a domain integral.

Known Issue: Currently, the J-Integral evaluation capability is based on assump-

tions of elastostatics and a stationary crack, and is only implemented for uniform

gradient hex elements.

J is analogous to G from linear elastic fracture mechanics (−δπ/δa) and is the driving force on the

crack tip a [1,2]. Crack propagation occurs when J ≥ R, where R is the material resistance and is

often referred to as the critical energy release rate J1c. In the reference configuration, the vectorial

form of the J-integral in finite deformation [4] is

J =

∫

Γ0

ΣNdA (9.1)

where Σ = W I − FT P is referred to as the Eshelby energy-momentum tensor [3]. W is the stored

energy density in the reference configuration and F and P are the deformation gradient and first

Piola-Kirchhoff stress, respectively. Rice [2] realized that because Σ is divergence-free in the

absence of body forces, one can examine J in the direction of the defect L (unit vector) and obtain

a path-independent integral for traction-free crack faces. J can be written as

J =

∫

Γ0

L · ΣNdA (9.2)

and interpreted as a path-independent driving force in the direction of the defect. We note that

one can also express Σ in terms of Σ̄, where Σ̄ = W I − HT P and H = Grad u. Although Σ is

symmetric and Σ̄ is not symmetric, they are equivalent when integrated over the body (DivP = 0).

In fact, differences in the energy-momentum tensor stem from the functional dependence of the

stored energy function W. Σ and Σ̄ derive from W(F) and W(H), respectively. When integrated,

both collapse to the familiar 2-D relation for infinitesimal deformations.

J =

∫

Γ

e1 · Σnds =

∫

Γ

(Wn1 − ui,1σi jn j)ds (9.3)

9.2.1 Technique for Computing J

J is often expressed as a line (2D) or surface (3D) integral on a ring surrounding the crack tip.

Defining a smooth ring over which to compute this surface integral and performing projections of

the required field values onto that ring presents a number of difficulties in the context of a finite

element code.

To compute the J-integral in a finite element code, it is more convenient to perform a volume inte-

gral over a domain surrounding the crack tip. We can then leverage the information at integration

points rather than rely on less accurate projections. To do this, we follow the method described in

518

[5]. We replace L with a smooth function q. On the inner contour of the domain Γ0, q = L. On the

outer contour of the domain C0, q = 0. Because the outer normal of the domain M is equal and

opposite of the normal N on Γ0, there is a change of sign. For traction-free surfaces, we can apply

the divergence theorem, enforce DivΣ = 0, and find that the energy per unit length J̄ is

J̄ = −

∫

Ω0

(Σ : Grad q)dV. (9.4)

We note that the all the field quantities are given via simulation and we choose to define q on

the nodes of the domain qI and employ the standard finite element shape functions to calculate

the gradient. We can specify the crack direction L or assume that the crack will propagate in the

direction normal to the crack front −M. For a “straight” crack front, L = −M. If S is is tangent to

the crack front and T is normal to the lower crack surface, S×M = T. We note that for non-planar,

curving cracks, M, S, and T are functions of the arc length S . For ease, we employ the notation N

rather than −M. For a crack front S 0, we can define the average driving force Javg as

Javg =
J̄

∫

S 0
L · NdS

. (9.5)

While the average driving force is useful for interpreting experimental findings and obtaining a

macroscopic representation of the driving force, we also seek to examine the local driving force

J(S). Using the finite element interpolation functions to discretize L through the smooth function

q, we find q = λI qI . For a specific node K, we can define |qK | = 1 and qI = 0 for all other I , K

on S 0. Note that we still need to specify the function q in the S − T plane from the inner contour

Γ0 to the outer contour C0. The resulting expression for the approximate, pointwise driving force

at node K on the crack front is

JK =
J̄

∫

S 0
λK qK · NdS

. (9.6)

Again, we note that if the direction of propagation L is taken in the direction of the normal N, the

denominator is
∫

S 0
λKdS . More information regarding the pointwise approximation of JK can be

found in [6,7].

9.2.2 Input Commands

A user can request that J-integrals be computed during the analysis by including one or more

J INTEGRAL command blocks in the REGION scope. This block can contain the following com-

mands:

BEGIN J INTEGRAL <jint_name>

#

integral parameter specification commands

CRACK DIRECTION = <real>dir_x <real>dir_y <real>dir_z

CRACK PLANE SIDE SET = <string list>side_sets

CRACK TIP NODE SET = <string list>node_sets

INTEGRATION RADIUS = <real>int_radius

519

NUMBER OF DOMAINS = <integer>num_domains

FUNCTION = PLATEAU|PLATEAU_RAMP|LINEAR(PLATEAU)

SYMMETRY = OFF|ON(OFF)

#

time period selection commands

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END J INTEGRAL <jint_name>

A set of parameters must be provided to define the crack geometry and the integration domains

used in the calculation of the J-integral. The model must be set up so that there is a sideset on one

surface of the crack plane behind the crack tip and a nodeset containing the nodes on the crack

tip. Both the CRACK PLANE SIDE SET and CRACK TIP NODE SET commands must be used to

specify the names of the sideset behind the crack tip and the nodeset on the crack tip, respectively.

By default, the direction of crack propagation is computed from the geometry of the crack

plane and tip as provided in the crack plane sideset and crack tip nodeset (L = N). The

CRACK DIRECTION command can optionally be used to override the direction of crack propa-

gation (L) computed from the geometry. This command takes three real numbers that define the

three components of the crack direction vector as arguments.

To fully define the domains used for the domain integrals, the radius of the domains and the number

of domains must also be specified. A series of disc-shaped integration domains are formed with

varying radii going out from the crack tip. The INTEGRATION RADIUS command is used to

specify the radius of the outermost domain. The number of integration domains is specified using

the NUMBER OF DOMAINS command. The radii of the domains increase linearly going from the

innermost to the outermost domain.

The weight function q used to calculate the J-integral is specified by use of the option FUNCTION

command line. The LINEAR function set the weight function to 1.0 on the crack front Γ0 and 0.0 at

the edge of the domain C0, int_radius away from the crack tip. The PLATEAU function, which

is the default behavior, sets all values of the weight function to 1.0 that lie within the domain of

integration and all values outside of the domain are set to 0.0. This allows for integration over a

single ring of elements at the edge of the domain. The third option for the FUNCTION command is

PLATEAU_RAMP, which for a single domain will take on the same values as the LINEAR function.

However, when there are multiple domains over the radius int_radius, the nth domain will have

weight function values of 1.0 over the inner (n-1) domains and will vary from 1.0 to 0.0 over the

outer nth ring of the domain. These functions can be seen graphically in Figure 9.2.

We note that in employing both the PLATEAU and the PLATEAU_RAMP functions, one is effectively

taking a line integral at finite radius (albeit different radii). In contrast, the LINEAR option can

be viewed as taking the lim Γ0 → 0+. If the model is a half symmetry model with the symmetry

plane on the plane of the crack, the optional SYMMETRY command can be used to specify that

the symmetry conditions be accounted for in the formation of the integration domains and in the

evaluation of the integral. The default behavior is for symmetry to not be used.

The user may optionally specify the time periods during which the J-integral is computed. The

ACTIVE PERIODS and INACTIVE PERIODS command lines are used for this purpose. See Sec-

520

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

W
ei

gh
t F

un
ct

io
n

Integration Domains

Linear
Plateau
Plateau Ramp

Crack Front

Figure 9.2: Example weight functions for a J-integral integration domain. Weight functions shown

for domain 5.

tion 2.5 for more information about these command lines.

9.2.3 Output

A number of variables are generated for output when the computation of the J-integral is requested.

The average value of J for each integration domain is available as a global variables, as described

in Table 8.3. The pointwise value of J at nodes along the crack for each integration domain is

available as a nodal variable, as shown in Table 8.8. Element variables such as the Eshelby energy-

momentum tensor and fields defining the integration domains are also available, as listed in Ta-

ble 8.16.

521

9.3 References

1. Eshelby, J. D., “The Force on an Elastic Singularity.” Philosophical Transactions of the

Royal Society of London A244(1951): 87–112. doi.

2. Rice, J. R., “A Path Independent Integral and the Approximate Analysis of Stress Concen-

tration by Notches and Cracks.” Journal of Applied Mechanics 35(1968): 379-386.

3. Eshelby, J. D., “Energy Relations and the Energy-Momentum Tensor in Continuum Mechan-

ics.” Inelastic Behavior of Solids New York: McGraw-Hill, 1970.

4. Maugin, G. A., Material Inhomogeneities in Elasticity New York: Chapman & Hall/CRC,

1993.

5. Li, F. Z., C. F. Shih, and A. Needleman. “A Comparison of Methods for Calculating Energy

Release Rates.” Engineering Fracture Mechanics 21(1985): 405–421. doi.

6. Shih, C. F., B. Moran, and T. Nakamura. “Energy release rate along a three-dimensional

crack front in a thermally stressed body.” International Journal of Fracture 30 (1986): 79–

102.

7. HKS. ABAQUS Version 6.7, Theory Manual. Providence, RI: Hibbitt, Karlsson and

Sorensen, 2007.

522

http://dx.doi.org/10.1098/rsta.1951.0016
http://dx.doi.org/10.1016/0013-7944(85)90029-3

Chapter 10

User Subroutines

User-defined subroutines is a functionality shared by Adagio and Presto. This chapter discusses

when and how to use user-defined subroutines. There are examples of user-defined subroutines

in the latter part of this chapter. Some of the examples are code specific, i.e., they are applicable

to Presto rather than Adagio or vice versa. All examples, regardless of their applicability, do

provide important information about how to use the command options available for user-defined

subroutines.

In the introductory part of Chapter 10, we first describe, in general, possible applications for the

user subroutine functionality in Adagio. Then, again in general, we describe the various pieces

and steps that are required by the user to implement a user subroutine. Subsequently, we focus

on various aspects of implementing the user subroutine functionality. Section 10.1 describes the

details of the user subroutine. Section 10.2 describes the command lines associated with user

subroutines that appear in the Adagio input file. In Section 10.3, we explain how to build and use a

version of Adagio that incorporates your user subroutine. Finally, Section 10.4 provides examples

of actual user subroutines, and Section 10.5 lists some subroutines that are now in the standard

user library.

Applications. User subroutines are primarily intended as complex function evaluators that are to

be used in conjunction with existing Adagio capability (boundary conditions, , user output, etc.).

For example, suppose we want to have a prescribed displacement boundary condition applied to a

set of nodes, and we want the displacement at each node to vary with both time and spatial location

of the node. The standard function option associated with the prescribed direction displacement

boundary condition in Adagio only allows for time variation; i.e., at any given time, the direction

and the magnitude of the displacement at each node, regardless of the spatial location of the node,

are the same. If we wanted to have a spatial variation of the displacement field in addition to the

time variation, it would be necessary to implement a user subroutine for the prescribed direction

displacement boundary condition. Other examples of possible uses of user subroutines are as

follows:

• The user wants to compute the total contact force acting on a given surface.

• Element stress information must be transformed to a local coordinate system so that the

523

stress values will be meaningful.

• An aerodynamic pressure based on velocity and surface normal is applied to a specified

surface.

Some capability exists for using mesh connectivity. It is possible to compute an element quantity

based on values at the element nodes.

Some difficulties might occur in parallel applications. If computations for element A depend on

quantities in element B and elements A and B are on different processors, then the computations

for A may not have access to quantities in element B. For most computations in user subroutines,

however, this should not be a problem.

Implementing completely new capabilities, particularly if these capabilities involve parallel com-

puting, may be difficult or impossible with user subroutines.

General Pieces and Steps. A number of pieces and steps are required to make use of user sub-

routines. Here, we present a brief description of the pieces and steps that a user will need for user

subroutines without going into detail. The details are discussed in later parts of this chapter.

1. You must first determine whether your application fits in the user subroutine format. This can

be done by considering the above requirements and examining the description of commands

for functionality in Adagio. For example, the basic kinematic boundary conditions and force

conditions allow for the use of user subroutines. The description of these commands includes

a discussion of how a user subroutine could be applied and what command line will invoke

a user subroutine.

2. If you determine that your application can make use of the user subroutine functionality

in Adagio, you will then need to write the subroutine. The parts of the subroutine that

interface to Adagio have specified formats. The details of these interfaces are described in

later sections. One part of the subroutine with a specified format is the call list. Other parts

of the subroutine with a specified format are code that will do the following:

- Read parameters from the Adagio input file

- Access a variety of information—field variables, analysis time, etc.—from Adagio

- Store computed quantities

Parameters are values they may be passed from the Adagio input file to the user subroutine.

Suppose that the spatial variation for some quantity in the user subroutine uses some char-

acteristic length and the user wishes to examine results generated by using several different

values of the characteristic length. By setting up the characteristic length as a parameter, the

value for the parameter in the user subroutine can easily be changed by changing the value

for the parameter in the input file. This lets the user change the value for a variable inside

the user subroutine without having to recompile the user subroutine.

The portion of your subroutine not built on the Adagio specifications will reflect your specific

application. The code to implement your application may include a loop over nodes that

524

prescribes a displacement based on the current time for the analysis and the spatial location

of the node.

3. After you write the user subroutine, you will need to have a command line in your input file

that tells Adagio you want to use the user subroutine you have written. For example, if your

user subroutine is a specialized prescribed displacement boundary condition, then inside a

PRESCRIBED DISPLACEMENT command block, you will have a command line of the form

NODE SET SUBROUTINE = <string>subroutine_name

that provides the name of your user subroutine.

4. Following the invocation of the user subroutine, there may be command lines for various

parameters associated with the user subroutine. There may also be some additional command

lines in other sections of the code required for your application. For example, you may have

to add command lines in the region scope that will create an internal variable associated with

a computed quantity so that the computed quantity can be written to the results file.

5. Once you have constructed the user subroutine, which is a FORTRAN file, and the Adagio

input file, you can build an executable version of Adagio that will run your user subrou-

tine. Your Adagio run will then incorporate the functionality you have created in your user

subroutine.

Figure 10.1 presents a very high-level overview of the various components that work together to

implement the user subroutine functionality. The two main components needed for user subrou-

tines, which are commands in the Adagio input file and the actual user subroutine, are represented

by the two columns in Figure 10.1.

525

Figure 10.1: Overview of components required to implement user subroutine functionality, exclud-

ing compilation and execution commands.

526

10.1 User Subroutines: Programming

Currently, user subroutines are only supported in FORTRAN 77. Any subroutine that can be com-

piled with a FORTRAN 77 compiler on the target execution machine can be used. The user should

be aware that some computers support different FORTRAN language extensions than others. (In

the future, other languages such as FORTRAN 90, C, and C++ may be supported.)

User subroutine variable types must interface directly with the matching variable types used in the

main Adagio code. Thus, the FORTRAN 77 subroutines should use only integer, double precision,

or character types for any data used in the interface or in any query function. Using the wrong

data type may yield unpredictable results. The methods used to pass character types from Adagio

to FORTRAN user subroutines can be machine-dependent, but generally this functionality works

quite well.

The basic structure for the user subroutine is as follows:

subroutine sub_name(call list)

{declaration of variables}

{retrieve parameters from Adagio input file}

{query Adagio for information}

{application-specific code

.

.

}

{write computed values}

END

In general, the user will begin the subroutine with variable declarations. After the variable declara-

tions, the user can then query the Adagio input file for parameters. Additional Adagio information

such as field variables or element topology can then be retrieved from Adagio. Once the user has

collected all the information for the application, the application-specific portion of the code can be

written. After the application-specific code is complete, the user may store computed values.

Section 10.1.1 through Section 10.1.3 describe in detail the format for the interfaces to Adagio

that will allow the user to make the subroutine call, retrieve information from Adagio, and write

computed values. In these sections, mesh entities can be a node, an element face, or an element.

527

10.1.1 Subroutine Interface

The following interface is used for all user subroutines:

subroutine sub_name(int num_objects,

int num_values,

real evaluation_time,

int object_ids[],

real output_values[],

int output_flags[],

int error_code)

The name of the user subroutine, sub_name, is selected by the user. Avoid names for the subrou-

tine that are longer than 10 characters. This may cause build problems on some systems.

A detailed description of the input and output parameters is provided in Table 10.1 and Table 10.2.

Table 10.1: Subroutine Input Parameters

Input Parameter Data Type Parameter Description

num_objects Integer Number of input mesh entities. For

example, if the subroutine is a node set

subroutine, this would be the number of

nodes on which the subroutine will

operate.

num_values Integer Number of return values. This is the

number of values per mesh entity.

evaluation_time Real Time at which the subroutine should be

evaluated. This may vary slightly from the

current analysis time.

object_ids

(num_objects)

Integer Array of mesh-entity identification

numbers. The array has a length of

num_objects. The input numbers are the

global numbers of the input objects. The

object identification numbers can be used

to query information about a mesh entity.

10.1.2 Query Functions

Adagio follows a design philosophy for user subroutines that a minimal amount of information

should be passed through the call list. Additional information may be queried from within the

subroutine. A user subroutine may query a wide variety of information from Adagio.

528

Table 10.2: Subroutine Output Parameters

Output Parameter Data Type Parameter Description

output_values

(num_values,

num_objects)

Integer Array of output values computed by the

subroutine. The number of output values

will be either the number of mesh entities

or some multiple of the number of mesh

entities. For example, if there were six

nodes (num_objects equals 6) and one

value was to be computed per node, the

length of output_values would be 6.

Similarly, if there were six nodes

(num_objects equals 6) and three values

were to be computed for each node (as for

acceleration, which has X-, Y-, and

Z-components), the length of

output_values would be 18.

output_flags

(num_objects)

Integer Array of returned flags for each set of data

values. When used, this array will

generally have a length of num_objects.

The usage of the flags depends on

subroutine type; the flags are currently

used only for element death and for

kinematic boundary conditions. For the

kinematic boundary conditions

(displacement, velocity, acceleration) a

flag of –1 means ignore the constraint, a

flag of 0 means set the absolute constraint

value, and a flag of 1 means set the

constraint with direction and distance.

error_code Integer Error code returned by the user subroutine.

A value of 0 indicates no errors. Any value

other than zero is an error. If the return

value is nonzero, Adagio will report the

error code and terminate the analysis.

529

10.1.2.1 Parameter Query

A number of user subroutine parameters may be set as described in Section 10.2.2.3. These sub-

routine parameters can be obtained from the Adagio input file via the query functions listed below.

aupst_get_real_param(string var_name, real var_value,

int error_code)

aupst_get_integer_param(string var_name, int var_value,

int error_code)

aupst_get_string_param(string var_name, string var_value,

int error_code)

All three of these subroutine calls are tied to a corresponding “parameter” command line that will

appear in the Adagio input file. The parameter command lines are described in Section 10.2.2.3.

These command lines are named based on the type of value they store, i.e., SUBROUTINE REAL

PARAMETER, SUBROUTINE INTEGER PARAMETER, and SUBROUTINE STRING PARAMETER.

We will use the example of a real parameter to show how the subroutine call works in conjunc-

tion with the SUBROUTINE REAL PARAMETER command line. Suppose we have a real parameter

radius that is set to a value of 2.75 on the SUBROUTINE REAL PARAMETER command line:

SUBROUTINE REAL PARAMETER: radius = 2.75

Also suppose we have a call to aupst_get_real_parameter in the user subroutine:

call aupst_get_real_parameter("radius",cyl_radius,error_code)

In the call to aupst_get_real_parameter, we have var_name set to radius and var_value

defined as the real FORTRAN variable cyl_radius. The call to aupst_get_real_parameter

will assign the value 2.75 to the FORTRAN variable cyl_radius. A similar pattern is followed

for integer and string parameters.

The arguments for the parameter-related query functions are described in Table 10.3, Table 10.4,

and Table 10.5. The function is repeated prior to each table for easy reference.

530

aupst_get_real_param(string var_name, real var_value,

int error_code)

Table 10.3: aupst_get_real_param Arguments

Parameter Usage Data Type Description

var_name Input String Name of a real-valued subroutine

parameter, as defined in the Adagio

input file via the

SUBROUTINE REAL PARAMETER

command line.

var_value Output Real Name of a real variable to be used in

the FORTRAN subroutine. The

FORTRAN variable var_value will be

set to the value specified by the

SUBROUTINE REAL PARAMETER

command line.

error_code Output Integer Error code indicating status of

retrieving the parameter value from

the input file. If the retrieval is

successful, error_code is set to 0. If

the parameter is not found or is the

wrong type, error_code is set to a

value other than 0.

531

aupst_get_integer_param(string var_name, int var_value,

int error_code)

Table 10.4: aupst_get_integer_param Arguments

Parameter Usage Data Type Description

var_name Input String Name of an integer-valued subroutine

parameter, as defined in the Adagio

input file via the

SUBROUTINE INTEGER PARAMETER

command line.

var_value Output Integer Name of an integer variable to be used

in the FORTRAN subroutine. The

FORTRAN variable var_value will be

set to the value specified by the

SUBROUTINE INTEGER PARAMETER

command line.

error_code Output Integer Error code indicating status of

retrieving the parameter value from

the input file. If the retrieval is

successful, error_code is set to 0. If

the parameter is not found or is the

wrong type, error_code is set to a

value other than 0.

532

aupst_get_string_param(string var_name, string var_value,

int error_code)

Table 10.5: aupst_get_string_param Arguments

Parameter Usage Data Type Description

var_name Input String Name of a string-valued subroutine

parameter, as defined in the Adagio

input file via the

SUBROUTINE STRING PARAMETER

command line.

var_value Output String Name of a string variable to be used in

the FORTRAN subroutine. The

FORTRAN variable var_value will be

set to the value specified by the

SUBROUTINE STRING PARAMETER

command line.

error_code Output Integer Error code indicating status of

retrieving the parameter value from

the input file. If the retrieval is

successful, error_code is set to 0. If

the parameter is not found or is the

wrong type, error_code is set to a

value other than 0.

533

10.1.2.2 Function Data Query

The function data query routine listed below may be used for extracting data from a function that

is defined in a DEFINITION FOR FUNCTION command block in the Adagio input file. This query

allows the user to directly access information stored in a function defined in the Adagio input file.

aupst_evaluate_function(string func_name, real input_times[],

int num_times, real output_data[])

The arguments for this function are described in Table 10.6.

Table 10.6: aupst_evaluate_function Arguments

Parameter Usage Data Type Description

func_name Input String Name of the function to look up.

input_times

(num_times)

Input Real Array of times used to extract values

of the function.

num_times Input Integer Length of the array input_times.

output_data

(num_times)

Output Real Array of output values of the named

function at the specified times.

10.1.2.3 Time Query

The time query function can be used to determine the current analysis time. This is the time

associated with the new time step. This time may not be equivalent to the evaluation_time

argument passed into the subroutine (see Section 10.1.1, Table 10.1) as some boundary conditions

need to be evaluated at different times than others. The parameter of the time query function listed

below is given in Table 10.7.

aupst_get_time(real time)

Table 10.7: aupst_get_time Argument

Parameter Usage Data Type Description

time Output Real Current analysis time.

10.1.2.4 Field Variables

Field variables (displacements, stresses, etc.) may be defined on groups of mesh entities. A number

of queries are available for getting and putting field variables. These queries involve passing in a

set of mesh-entity identification numbers to receive field values on the mesh entities. There are

534

query functions to check for the existence and size of a field, functions to retrieve the field values,

and functions to store new variables in a field. The field query functions listed below can be used

to extract any nodal or element variable field.

aupst_check_node_var(int num_nodes, int num_components,

int node_ids[], string var_name,

int error_code)

aupst_check_elem_var(int num_elems, int num_components,

int elem_ids[], string var_name,

int error_code)

aupst_get_node_var(int num_nodes, int num_components,

int node_ids[], real return_data[],

string var_name, int error_code)

aupst_get_elem_var(int num_elems, int num_components,

int elem_ids[], real return_data[],

string var_name, int error_code)

aupst_get_elem_var_offset(int num_elems, int num_components,

int offset, int elem_ids[],

real return_data[], string var_name,

int error_code)

aupst_put_node_var(int num_nodes, int num_components,

int node_ids[], real new_data[],

string var_name, int error_code)

aupst_put_elem_var(int num_elems, int num_components,

int elem_ids[], real new_data[],

string var_name, int error_code)

aupst_put_elem_var_offset(int num_elems, int num_components,

int offset, int elem_ids[],

real new_data[], string var_name,

int error_code)

The arrays where data are stored are static arrays. These arrays of a set size will be declared at the

beginning of a user subroutine. The query functions to check for the existence and size of a field

can be used to ensure that the size of the array of information being returned from Adagio does not

exceed the size of the array allocated by the user.

The arguments to field query functions are defined in Table 10.8 through Table 10.15. The function

is repeated before each table for easy reference.

535

aupst_check_node_var(int num_nodes, int num_components,

int node_ids[], string var_name,

int error_code)

Table 10.8: aupst_check_node_var Arguments

Parameter Usage Data Type Description

num_nodes Input Integer Number of nodes used to extract field

information.

num_components Output Integer Number of components in the field

information. A displacement field at a

node has three components, for

example.

node_ids

(num_nodes)

Input Integer Array of size num_nodes listing the

node identification number for each

node where field information will be

retrieved.

var_name Input String Name of the field variable. The field

variable must be a defined Adagio

variable.

error_code Output Integer Error code indicating status of

retrieving the field. If the retrieval is

successful, error_code is set to 0. If a

nonzero value is returned for

error_code, the field variable does not

exist or is not defined on one or more

of the input nodes.

536

aupst_check_elem_var(int num_elems, int num_components,

int elem_ids[], string var_name,

int error_code)

Table 10.9: aupst_check_elem_var Arguments

Parameter Usage Data Type Description

num_elems Input Integer Number of elements used to extract

field information.

num_components Output Integer Number of components in the field

information. A stress field for a an

eight-node hexahedron element has

six components, for example.

elem_ids

(num_elems)

Input Integer Array of size num_elems listing the

element identification number for each

element where field information will

be retrieved.

var_name Input String Name of the field variable. The field

variable must be a defined Adagio

variable.

error_code Output Integer Error code indicating status of

retrieving the field. If the retrieval is

successful, error_code is set to 0. If a

nonzero value is returned for

error_code, the field variable does not

exist or is not defined on one or more

of the input nodes.

537

aupst_get_node_var(int num_nodes, int num_components,

int node_ids[], real return_data[],

string var_name, int error_code)

Table 10.10: aupst_get_node_var Arguments

Parameter Usage Data Type Description

num_nodes Input Integer Number of nodes used to extract field

information.

num_components Input Integer Number of components in the field

information. A displacement field at a

node has three components, for

example.

node_ids

(num_nodes)

Input Integer Array of size num_nodes listing the

node identification number for each

node where field information will be

retrieved.

return_data

(num_components,

num_nodes)

Output Real Array of size num_components ×

num_nodes containing the field data at

each node.

var_name Input String Name of the field variable. The field

variable must be a defined Adagio

variable.

error_code Output Integer Error code indicating status of

retrieving the field. If the retrieval is

successful, error_code is set to 0. If a

nonzero value is returned for

error_code, the field variable does not

exist or is not defined on one or more

of the input nodes.

538

aupst_get_elem_var(int num_elems, int num_components,

int elem_ids[], real return_data[],

string var_name, int error_code)

Table 10.11: aupst_get_elem_var Arguments

Parameter Usage Data Type Description

num_elems Input Integer Number of elements used to extract

field information.

num_components Input Integer Number of components in the field

information. A stress field for a an

eight-node hexahedron element has

six components, for example.

elem_ids

(num_elems)

Input Integer Array of size num_elems listing the

element identification number for each

element where field information will

be retrieved.

return_data

(num_components,

num_elems)

Output Real Array of size num_components ×

num_elems containing the field data

for each element.

var_name Input String Name of the field variable. The field

variable must be a defined Adagio

variable.

error_code Output Integer Error code indicating status of

retrieving the field. If the retrieval is

successful, error_code is set to 0. If a

nonzero value is returned for

error_code, the field variable does not

exist or is not defined on one or more

of the input nodes.

539

aupst_get_elem_var_offset(int num_elems, int num_components,

int offset, int elem_ids[],

real return_data[], string var_name,

int error_code)

Table 10.12: aupst_get_elem_var_offset Arguments

Parameter Usage Data Type Description

num_elems Input Integer Number of elements used to extract

field information.

num_components Input Integer Number of components in the field

information. A stress field for an

eight-node hexahedron element has

six components, for example.

offset Input Integer Offset into var_name field variable at

which to get data.

elem_ids

(num_elems)

Input Integer Array of size num_elems listing the

element identification number for each

element where field information will

be retrieved.

return_data

(num_components,

num_elems)

Output Real Array of size num_components ×

num_elems containing the field data

for each element.

var_name Input String Name of the field variable. The field

variable must be a defined Adagio

variable.

error_code Output Integer Error code indicating status of

retrieving the field. If the retrieval is

successful, error_code is set to 0. If a

nonzero value is returned for

error_code, the field variable does not

exist or is not defined on one or more

of the input nodes.

540

aupst_put_node_var(int num_nodes, int num_components,

int node_ids[], real new_data[],

string var_name, int error_code)

Table 10.13: aupst_put_node_var Arguments

Parameter Usage Data Type Description

num_nodes Input Integer Number of nodes for which the user

will specify the field data.

num_components Input Integer Number of components in the field

information. A displacement field at a

node has three components, for

example.

node_ids

(num_nodes)

Input Integer Array of size num_nodes listing the

node identification number for each

node where field information will be

retrieved.

new_data

(num_components,

num_nodes)

Input Real Array of size num_components ×

num_nodes containing the new data

for the field.

var_name Input String Name of the field variable. The field

variable must be a defined Adagio

variable.

error_code Output Integer Error code indicating status of

retrieving the field. If the retrieval is

successful, error_code is set to 0. If a

nonzero value is returned for

error_code, the field variable does not

exist or is not defined on one or more

of the input nodes.

541

aupst_put_elem_var(int num_elems, int num_components,

int elem_ids[], real new_data[],

string var_name, int error_code)

Table 10.14: aupst_put_elem_var Arguments

Parameter Usage Data Type Description

num_elems Input Integer Number of elements for which the

user will specify the field data.

num_components Input Integer Number of components in the field

information. A stress field for a an

eight-node hexahedron element has

six components, for example.

elem_ids

(num_elems)

Input Integer Array of size num_elems listing the

element identification number for each

element where field information will

be retrieved.

new_data

(num_components,

num_elems)

Input Real Array of size num_components ×

num_elems containing the new data

for the field.

var_name Input String Name of the field variable. The field

variable must be a defined Adagio

variable.

error_code Output Integer Error code indicating status of

retrieving the field. If the retrieval is

successful, error_code is set to 0. If a

nonzero value is returned for

error_code, the field variable does not

exist or is not defined on one or more

of the input nodes.

542

aupst_put_elem_var_offset(int num_elems, int num_components,

int offset, int elem_ids[],

real new_data[], string var_name,

int error_code)

Table 10.15: aupst_put_elem_var_offset Arguments

Parameter Usage Data Type Description

num_elems Input Integer Number of elements for which the

user will specify the field data.

num_components Input Integer Number of components in the field

information. A stress field for an

eight-node hexahedron element has

six components, for example.

offset Input Integer Offset into var_name field variable at

which to put data.

elem_ids

(num_elems)

Input Integer Array of size num_elems listing the

element identification number for each

element where field information will

be retrieved.

new_data

(num_components,

num_elems)

Input Real Array of size num_components ×

num_elems containing the new data

for the field.

var_name Input String Name of the field variable. The field

variable must be a defined Adagio

variable.

error_code Output Integer Error code indicating status of

retrieving the field. If the retrieval is

successful, error_code is set to 0. If a

nonzero value is returned for

error_code, the field variable does not

exist or is not defined on one or more

of the input nodes.

10.1.2.5 Global Variables

Global variables may be extracted or set from user subroutines. A global variable has a single

value for a given region.

Global variables have limited support for parallel operations. There are two subroutines to perform

parallel modification of global variables: aupst_put_global_var and aupst_local_put_

global_var.

543

• The subroutine aupst_local_put_global_var only modifies a temporary local copy of

the global variable. The local copies on the various processors are reduced to create the

true global value at the end of the time step. Global variables set with aupst_local_put_

global_var do not have the single processor value available immediately. The true global

variable will not be available through the aupst_get_global_var routine until the next

time step.

• The subroutine aupst_put_global_var attempts to immediately modify and perform a

parallel reduction of the value of a global variable. Care must be taken to call this routine on

all processors at the same time with the same arguments. Failure to call the routine from all

processors will result in the code hanging. For some types of subroutines this is not possible

or reliable. For example, a boundary condition subroutine may not be called at all on a

processor that contains no nodes in the set of nodes assigned to the boundary condition. It

is recommended that aupst_local_put_global_var only be used in conjunction with a

user subroutine referenced in a USER OUTPUT command block (Section 8.2.2).

Only user-defined global variables may be modified by the user subroutine (see Section 10.2.4).

However, any global variable that exists on the region may be checked or extracted. The following

subroutine calls pertain to global variables:

aupst_get_global_var(int num_comp, real return_data,

string var_name, int error_code)

aupst_put_global_var(int num_comp, real input_data,

string reduction_type,

string var_name, int error_code)

aupst_local_put_global_var(int num_comp, real input_data,

string var_name, string reduction_type,

int error_code)

The arguments for subroutine calls pertaining to global variables are defined in Table 10.16 through

Table 10.19. The call is repeated before each table for easy reference.

544

aupst_check_global_var(int num_comp, string var_name

int error_code)

Table 10.16: aupst_check_global_var Arguments

Parameter Usage Data Type Description

num_comp Output Integer Number of components of the global

variable.

var_name Input String Name of the global variable.

error_code Output Integer Error code indicating status of

accessing the global variable. If there

is no error in accessing this variable,

error_code is set to 0. A nonzero value

of error_code means the global

variable does not exist or in some way

cannot be accessed.

aupst_get_global_var(int num_comp, real return_data,

string var_name, int error_code)

Table 10.17: aupst_get_global_var Arguments

Parameter Usage Data Type Description

num_comp Input Integer Number of components of the global

variable.

return_data Output Real Value of the global variable.

var_name Input String Name of the global variable.

error_code Output Integer Error code indicating status of

accessing the global variable. If there

is no error in accessing this variable,

error_code is set to 0. A nonzero value

of error_code means the global

variable does not exist or in some way

cannot be accessed.

545

aupst_put_global_var(int num_comp, real input_data,

string reduction_type,

string var_name, int error_code)

Table 10.18: aupst_put_global_var Arguments

Parameter Usage Data Type Description

num_comp Input Integer Number of components of the global

variable.

input_data Input Real New value of the global variable.

reduction_type Input String Type of parallel reduction to perform

on the variable. Options are “sum”,

“min”, “max”, and “none”.

var_name Input String Name of the global variable.

error_code Output Integer Error code indicating status of

accessing the global variable. If there

is no error in accessing this variable,

error_code is set to 0. A nonzero value

of error_code means the global

variable does not exist, in some way

cannot be accessed, or may not be

overwritten.

546

aupst_local_put_global_var(int num_comp, real input_data,

string var_name,

string reduction_type,

int error_code)

Table 10.19: aupst_local_put_global_var Arguments

Parameter Usage Data Type Description

num_comp Input Integer Number of components of the global

variable.

input_data Input Real New value of the global variable.

reduction_type Input String Type of parallel reduction to perform

on the variable. Options are “sum”,

“min”, and “max”. The operation type

specified here must match the

operation type given to the

user-defined global variable when it is

defined in the Adagio input file.

var_name Input String Name of the global variable.

error_code Output Integer Error code indicating status of

accessing the global variable. If there

is no error in accessing this variable,

error_code is set to 0. A nonzero value

of error_code means the global

variable does not exist, in some way

cannot be accessed, or may not be

overwritten.

10.1.2.6 Topology Extraction

The element and surface subroutines operate on groups of elements or faces. The elements and

faces may have a variety of topologies. Topology queries can be used to get topological data about

elements and faces. The topology of an object is represented by an integer. The integer is formed

from a function of the number of dimensions, vertices, and nodes of an object. The topology of an

object is given by:

topology = num_node + 100 * num_vert + 10000 * num_dim

In a FORTRAN routine, the number of nodes can easily be extracted with the mod function:

num_node = mod(topo,100)

num_vert = mod(topo / 100, 100)

num_dim = mod(topo / 10000, 100)

547

Table 10.20: Topologies Used by Adagio

Topology Element / Face Type

00101 One-node particle

10202 Two-node beam, truss, or damper

20404 Four-node quadrilateral

20303 Three-node triangle

20304 Four-node triangle

20306 Six-node triangle

30404 Four-node tetrahedron

30408 Eight-node tetrahedron

30410 Ten-node tetrahedron

30808 Eight-node hexahedron

Table 10.20 lists the topologies currently in use by Adagio.

The following topology query functions are available in Adagio:

aupst_get_elem_topology(int num_elems, int elem_ids[],

int topology[], int error_code)

aupst_get_elem_nodes(int num_elems, int elem_ids[],

int elem_node_ids[], int error_code)

aupst_get_face_topology(int num_faces, int face_ids[],

int topology[], int error_code)

aupst_get_face_nodes(int num_faces, int face_ids[],

int face_node_ids[], int error_code)

The arguments for the topology extraction functions are defined in Table 10.21 through Ta-

ble 10.24. The function is repeated before each table for easy reference.

548

aupst_get_elem_topology(int num_elems, int elem_ids[],

int topology[], int error_code)

Table 10.21: aupst_get_elem_topology Arguments

Parameter Usage Data Type Description

num_elems Input Integer Number of elements from which the

topology will be extracted.

elem_ids

(num_elems)

Input Integer Array of length num_elems listing the

element identification for each

element from which the topology will

be extracted.

topology

(num_elems)

Output Integer Array of length num_elems that has

the topology for each element. See

Table 8.18.

error_code Output Integer Error code indicating status of

retrieving the element identification

numbers. If the retrieval is successful,

error_code is set to 0. A nonzero value

is returned for error_code if one of the

element identification numbers is not

valid.

549

aupst_get_elem_nodes(int num_elems, int elem_ids[],

int elem_node_ids[], int error_code)

Table 10.22: aupst_get_elem_nodes Arguments

Parameter Usage Data Type Description

num_elems Input Integer Number of elements from which the

topology will be extracted.

elem_ids

(num_elems)

Input Integer Array of length num_elems listing the

element identification for each

element from which the topology will

be extracted.

elem_node_ids

(number of nodes

for element type ×

num_elems)

Output Integer Array containing the node

identification numbers for each

element requested. The length of the

array is the total number of nodes

contained in all elements. If the

elements are eight-node hexahedra,

then the number of nodes will be 8 ×

num_elems. The first set of eight

entries in the array will be the eight

nodes defining the first element. The

second set of eight entries will be the

eight nodes defining the second

element, and so on.

error_code Output Integer Error code indicating status of

retrieving the element identification

numbers. If the retrieval is successful,

error_code is set to 0. A nonzero value

is returned for error_code if one of the

element identification numbers is not

valid.

550

aupst_get_face_topology(int num_faces, int face_ids[],

int topology[], int error_code)

Table 10.23: aupst_get_face_topology Arguments

Parameter Usage Data Type Description

num_faces Input Integer Number of faces from which the

topology will be extracted.

face_ids

(num_faces)

Input Integer Array of length num_faces listing the

face identification for each face from

which the topology will be extracted.

topology

(num_faces)

Output Integer Array of length num_faces containing

the output topologies of each face.

error_code Output Integer Error code indicating status of

retrieving the face identification

numbers. If the retrieval is successful,

error_code is set to 0. A nonzero value

is returned for error_code if one of the

face identification numbers is not

valid.

551

aupst_get_face_nodes(int num_faces, int face_ids[],

int face_node_ids[], int error_code)

Table 10.24: aupst_get_face_nodes Arguments

Parameter Usage Data Type Description

num_faces Input Integer Number of faces from which the

topology will be extracted.

face_ids

(num_faces)

Input Integer Array of length num_faces listing the

face identification for each face from

which the topology will be extracted.

face_node_ids

(number of nodes

for face type ×

num_faces)

Output Integer Array containing the node

identification numbers for each face

requested. The length of the array is

the total number of nodes contained in

all faces. If the faces are four-node

quadrilaterals, then the number of

nodes will be 4 × num_faces. The first

set of four entries in the array will be

the four nodes defining the first face.

The second set of four entries will be

the four nodes defining the second

face, and so on.

error_code Output Integer Error code indicating status of

retrieving the face identification

numbers. If the retrieval is successful,

error_code is set to 0. A nonzero value

is returned for error_code if one of the

face identification numbers is not

valid.

552

10.1.3 Miscellaneous Query Functions

A number of miscellaneous query functions are available for computing some commonly used

quantities.

aupst_get_one_elem_centroid(int num_elems, int elem_ids[],

real centroids, int error_code)

aupst_get_point(string point_name, real point_coords,

int error_code)

aupst_get_proc_num(proc_num)

The arguments for the miscellaneous query functions are defined in Table 10.25 through Ta-

ble 10.27. The function is repeated before each table for easy reference.

aupst_get_one_elem_centroid(int num_elems, int elem_ids[],

real centroids[], int error_code)

Table 10.25: aupst_get_one_elem_centroid Arguments

Parameter Usage Data Type Description

num_elems Input Integer Number of elements for which to

extract the topology.

elem_ids

(num_elems)

Input Integer Array of length num_elems listing the

element identification for each

element for which the centroid will be

computed.

centroids

(3, num_elems)

Output Real Array of length 3 × num_elems

containing the centroid of each

element.

error_code Output Integer Error code indicating status of

retrieving the element identification

numbers. If the retrieval is successful,

error_code is set to 0. A nonzero value

is returned for error_code if one of the

element identification numbers is not

valid.

553

aupst_get_point(string point_name, real point_coords,

int error_code)

Table 10.26: aupst_get_point Arguments

Parameter Usage Data Type Description

point_name Input String SIERRA name for a given point.

point_coords

(3)

Output Real Array of length 3 containing the x, y,

and z coordinates of the point.

error_code Output Integer Error code indicating status of

retrieving the point. If the retrieval is

successful, error_code is set to 0. A

nonzero value is returned for

error_code if the point cannot be

found

aupst_get_proc_num(proc_num)

Table 10.27: aupst_get_proc_num Arguments

Parameter Usage Data Type Description

proc_num Output Integer Processor number of the calling

process. This number can be used for

informational purposes. A common

example is that output could only be

written by a single processor, e.g.,

processor 0, rather than by all

processors.

554

10.2 User Subroutines: Command File

In addition to the actual user subroutine, you will need to add command lines to your input file

to make use of your user subroutine. This section describes the command lines that are used in

conjunction with user subroutines. This section also describes two additional command blocks,

TIME STEP INITIALIZATION and USER VARIABLE. The TIME STEP INITIALIZATION

command block lets you execute a user subroutine at the beginning of a time step as opposed

to some later time. The USER VARIABLE command block can be used in conjunction with user

subroutines or for user-defined output.

10.2.1 Subroutine Identification

As described in Section 2.1.4, there is one command line associated with the user subroutine

functionality that must be provided in the SIERRA scope:

USER SUBROUTINE FILE = <string>file_name

The named file may contain one or more user subroutines. The file must have an extension of “.F”,

as in blast.F.

10.2.2 User Subroutine Command Lines

{begin command block}

NODE SET SUBROUTINE = <string>subroutine name |

SURFACE SUBROUTINE = <string>subroutine_name |

ELEMENT BLOCK SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

{end command block}

A number of user subroutine command lines will appear in some Adagio command block. User

subroutine commands can appear in boundary condition, user output, and state initialization com-

mand blocks. The possible command lines are shown above. The following sections describe the

command lines related to user subroutines.

10.2.2.1 Type

User subroutines are currently available in three general types: node set, surface, and element.

555

Node set subroutines operate on groups of nodes. The command line for defining a node set

subroutine is:

NODE SET SUBROUTINE = <string>subroutine_name

where subroutine_name is the name of the user subroutine. The name is case sensitive. A node

set subroutine will operate on all nodes contained in an associated mechanics instance.

Surface subroutines work on groups of surfaces. A surface may be an external face of a solid

element or the face of a shell element associated with either the positive or negative normal for the

surface of the shell. The command line for defining a surface subroutine is:

SURFACE SUBROUTINE = <string>subroutine_name

Element block subroutines work on groups of elements. The command line for defining an element

block subroutine is:

ELEMENT BLOCK SUBROUTINE = <string>subroutine_name

An element may be a solid element such as a hexahedron or a two-dimensional element such as a

shell.

Different Adagio features may accept one or more types of user subroutines. Only one subroutine

is allowed per command block.

10.2.2.2 Debugging

Subroutines may be run in a special debugging mode to help catch memory errors. For example,

there is a potential for a user subroutine to write outside of its allotted data space by writing beyond

the bounds of an input or output array. Generally, this causes Adagio to crash, but it also has the

potential to introduce other very hard-to-trace bugs into the Adagio analysis. Subroutines run in

debug mode require more memory and more processing time than subroutines not run in debug

mode.

Subroutine debugging is on by default in debug executables. It can be turned off with the following

command line:

SUBROUTINE DEBUGGING OFF

Subroutine debugging is off by default in optimized executables. It can be turned on with the

following command line:

SUBROUTINE DEBUGGING ON

10.2.2.3 Parameters

All user subroutines have the ability to use parameters. Parameters are defined in the input file and

are quickly accessible by the user subroutine during run time. Parameters are a way of making

a single user subroutine much more versatile. For example, a user subroutine could be written to

define a periodic loading on a structure. A parameter for the subroutine could be defined specifying

the frequency of the function. In this way, the same subroutine can be used in different parts of

556

the model, and the subroutine behavior can be modified without recompiling the program. These

command lines are placed within the scope of the command block in which the user subroutine is

specified.

Real-valued parameters can be stored with the following command line:

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

Integer-valued parameters can be stored with the following command line:

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

String-valued parameters can be stored with the following command line:

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

Any number of subroutine parameters may be defined. The subroutine parameters may be defined

in any order within the command block. The user subroutine may request the values of the param-

eters but is not required to use them or even have any knowledge of their existence. An example

of subroutine usage with parameters is as follows:

BEGIN PRESSURE

SURFACE = surface_1

SURFACE SUBROUTINE = blast_pressure

SUBROUTINE REAL PARAMETER: blast_time = 1.2

SUBROUTINE REAL PARAMETER: blast_power = 1.3e+07

SUBROUTINE STRING PARAMETER: formulation = alpha

SUBROUTINE INTEGER PARAMETER: decay_exponent = 2

SUBROUTINE DEBUGGING ON

END PRESSURE

In the above example, four parameters are associated with the subroutine blast_pressure. Two

of the parameters are real (blast_time and blast_power), one of the parameters is a string

(formulation), and one of the parameters is an integer (decay_exponent). To access the

parameters in the user subroutine, the user will need to include interface calls described in previous

sections.

557

10.2.3 Time Step Initialization

BEGIN TIME STEP INITIALIZATION

mesh-entity set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list> surface_names

REMOVE BLOCK = <string list>block_names

#

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name |

SURFACE SUBROUTINE = <string>sub_name |

ELEMENT BLOCK SUBROUTINE = <string>sub_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

additional command

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END TIME STEP INITIALIZATION

The TIME STEP INITIALIZATION command block, which appears in the region scope, is used

to flag a user subroutine to run at the beginning of every time step. This subroutine can be used

to compute quantities used by other command types. For example, if the traction on a surface was

dependent on the area, the time step initialization subroutine could be used to calculate the area,

and that area could be stored and later read when calculating the traction. The user initialization

subroutine will pass the specified mesh objects to the subroutine for use in calculating some value.

The TIME STEP INITIALIZATION command block contains two groups of commands—mesh

entity set and user subroutine. In addition to the command lines in the these command groups,

there is an additional command line: ACTIVE PERIODS or INACTIVE PERIODS. Following are

descriptions of the different command groups and the ACTIVE PERIODS or INACTIVE PERIODS

command line.

10.2.3.1 Mesh-Entity Set Commands

The mesh-entity set commands portion of the TIME STEP INITIALIZATION command

block specifies the nodes, element faces, or elements associated with the particular subroutine that

558

will be run at the beginning of the applicable time steps. This portion of the command block can

include some combination of the following command lines:

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list> surface_names

REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators for constructing a

set of nodes, element faces, or elements. See Section 5.1 for more information about the use of

these command lines for mesh entities. There must be at least one NODE SET, SURFACE, BLOCK,

or INCLUDE ALL BLOCKS command line in the command block.

10.2.3.2 User Subroutine Commands

The following command lines are related to the user subroutine specification:

NODE SET SUBROUTINE = <string>subroutine_name |

SURFACE SUBROUTINE = <string>subroutine_name |

ELEMENT BLOCK SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

Only one of the first three command lines listed above can be specified in the command block.

The particular command line selected depends on the mesh-entity type of the variable being ini-

tialized. For example, variables associated with nodes would be initialized if you are using the

NODE SET SUBROUTINE command line, variables associated with faces if you are using the

SURFACE SUBROUTINE command line, and variables associated with elements if you are using

the ELEMENT BLOCK SUBROUTINE command line. The string subroutine_name is the name

of a FORTRAN subroutine that is written by the user.

Following the selected subroutine command line are other command lines that may be used to

implement the user subroutine option. These command lines are described in Section 10.2.2 and

consist of SUBROUTINE DEBUGGING OFF, SUBROUTINE DEBUGGING ON, SUBROUTINE REAL

PARAMETER, SUBROUTINE INTEGER PARAMETER, and SUBROUTINE STRING PARAMETER.

Examples of using these command lines are provided throughout Chapter 10.

559

10.2.3.3 Additional Command

The ACTIVE PERIODS or INACTIVE PERIODS command line can optionally appear in the TIME

STEP INITIALIZATION command block:

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

The ACTIVE PERIODS or INACTIVE PERIODS command line is used to activate or deactivate

the running of the user subroutine at the beginning of every time step for certain time periods. See

Section 2.5 for more information about this optional command line.

560

10.2.4 User Variables

BEGIN USER VARIABLE <string>var_name

TYPE = <string>NODE|ELEMENT|GLOBAL

[<string>REAL|INTEGER LENGTH = <integer>length]|

[<string>SYM_TENSOR|FULL_TENSOR|VECTOR]

GLOBAL OPERATOR = <string>SUM|MIN|MAX

INITIAL VALUE = <real list>values

INITIAL VARIATION = <real list>values LINEAR DISTRIBUTION

USE WITH RESTART

END [USER VARIABLE <string>var_name]

The USER VARIABLE command block is used to create a user-defined variable. This kind of

variable may be used for scratch space in a user subroutine or for some user-defined output. A

user-defined variable may be output to the results file or the history file just like any other defined

variable; i.e., a user-defined variable once defined by the USER VARIABLE command block can

be specified in a USER OUTPUT command block, a RESULTS OUTPUT command block, and a

HISTORY OUTPUT command block.

User-defined variables are associated with mesh entities. For example, a node variable will exist at

every node of the model. An element variable will exist on every element of the model. A global

variable will have a single value for the entire model.

If the user-defined variable functionality is used in conjunction with restart, the USE WITH

RESTART command line must be included.

Known Issue: User defined variables are not currently supported with heartbeat

output (see Section 8.4).

The USER VARIABLE command block is placed within a Adagio region. The command block

begins with the input line:

BEGIN USER VARIABLE <string>var_name

and ends with the input line:

END [USER VARIABLE <string>var_name]

where var_name is a user-selected name for the variable.

In the above command block:

- A user-defined variable has an associated type that is specified by the TYPE command line,

which itself contains several parameters. The TYPE command line is required.

1. The variable must be a nodal quantity, an element quantity, or a global quantity. The

options NODE, ELEMENT, and GLOBAL determine whether the variable will be a nodal,

element, or global quantity. One of these options must appear on the TYPE command

line.

561

2. The user-defined variable can be either an integer or a real, as specified by the INTEGER

or REAL option.

3. The length of the variable must be set by using one of the options SYM_TENSOR,

FULL_TENSOR, VECTOR, or LENGTH = <integer>length. If the LENGTH option

is used, the user must specify whether the variable is an integer number or a real num-

ber by using the INTEGER or REAL option. If the SYM_TENSOR option is used, the

variable has six real components. If the FULL_TENSOR is used, the variable has nine

real components. If the VECTOR option is used, the variable has three real components.

The three options SYM_TENSOR, FULL_TENSOR, and VECTOR all imply real numbers,

and thus the REAL option need not be included in the command line when one of these

three options is specified.

Some examples of the TYPE command line follow:

type = global real length = 1

type = element tensor

type = element real length = 3

type = node sym_tensor

type = node vector

- If you use the GLOBAL option on the TYPE command line, a global variable is created, and

this global variable must be given an associated reduction type, which is specified by the

GLOBAL OPERATOR command line. The reduction type tells Adagio how to reduce the

individual values stored on each processor to a mesh global value. Global reductions are

performed at the end of each time step. Any modifications to a global variable made by an

aupst_local_put_global_var call (see Section 10.1.2.5) will not be seen until the next

time step after the user-defined global variables have been updated and reduced. The SUM

operator sums all processor variable contributions. The MAX operator takes the maximum

value of the aupst_local_put_global_var calls. The MIN operator takes the minimum

value of the aupst_local_put_global_var calls.

- One or more initial values may be specified for the user-defined variable in the INITIAL

VALUE command line. The number of initial values specified should be the same as the

length of the variable, as specified in the TYPE command line either explicitly via the LENGTH

option or implicitly via the SYM_TENSOR, FULL_TENSOR, or VECTOR option. The initial

values will be copied to the variable space on every mesh object on which the variable is

defined. Only real type variables may be given initial values at this time.

- The initial value of the user variable can be given some random distribution by use of the the

INITIAL VARIATION command line. If the INITIAL VARIATION command is used the

INITIAL VALUE command must also be used. In addition the number of values specified

in the initial variation command must exactly match the number of values specified in the

initial value command. When the initial variation command is used the initial values of

the variable will be set as initial value plus or minus some random factor times the initial

variation. Currently the only random distribution supported is the linear distribution. With

562

linear distribution the random values will be distributed evenly from initial value minus

variation to initial value plus variation.

- All intrinsic type options such as REAL, INTEGER, SYM_TENSOR, FULL_TENSOR, VECTOR

and the LENGTH option can be used with any of the mesh entity options (NODE, ELEMENT,

GLOBAL).

- As indicated previously, if the user-defined variable functionality is used in conjunction with

restart, the USE WITH RESTART command line must be included.

563

10.3 User Subroutines: Compilation and Execution

Running a code with user subroutines is a two-step process. First, you must create an executable

version of Adagio that recognizes the user subroutines. Next, you must use this version of Adagio

for an actual Adagio run with an input file that incorporates the proper user subroutine command

lines.

How the above two steps are carried out is site-specific. The actual process will depend on how

Adagio is set up at your installation. We will give an example that shows how the process is

carried out on various systems at Sandia using SIERRA command lines. SIERRA is a general

code framework and code management system at Sandia.

For the first step, you will need the user subroutine, in a FORTRAN file, and a Adagio input file

that makes use of the user subroutine. You will use a system command line of the general form

shown below.

% sierra adagio -i <string>input_file_name --make

Suppose that you have a subdirectory in your area called test and you wish to incorporate a user

subroutine called blast_load. The actual user subroutine will be in a file called blast_load.F,

and the associated input file will be called blast_load_1.i. Both of these files will be in the

directory test. In the input file, you will have the following command line in the SIERRA scope:

USER SUBROUTINE FILE = blast_load.F

You will also have some subset of the command lines described in the previous section in your

Adagio input file. The specific form of the system command line to execute the first step of the

user subroutine process is shown below.

% sierra adagio -i blast_load_1.i --make The above command will create a local

version of Adagio in a local directory named UserSubsProject. The system command line to

run the local version of Presto is shown below.

% sierra adagio -i <string>input_file_name

-x UserSubsProject

The specific form of the system command line you will execute in the subdirectory test is shown

below.

% sierra adagio -i blast_load_1.i -x UserSubsProject

The second command line runs Adagio using blast_load_1.i as an input file and utilizes the

user subroutines in the process. Again, all of this is a site-specific example. You must determine

how Adagio is set up at your installation to determine what system command lines are necessary

to build Adagio with user subroutines and then use this version of Adagio.

564

10.4 User Subroutines: Examples

10.4.1 Pressure as a Function of Space and Time

(The following example provides functionality—a blast load on a surface—more applicable to

Presto than Adagio. It is included in both manuals as it is instructive in the general use of a user-

defined subroutine.)

The following code is an example of a user subroutine to compute blast pressures on a group of

faces. The blast pressure simulates a blast occurring at a specified position and time. The blast

wave radiates out from the center of the blast and dissipates over time. This subroutine is included

in the input file as follows:

#In the SIERRA scope:

user subroutine file = blast_load.F

#In the region scope:

begin pressure

surface = surface_1

surface subroutine = blast_load

subroutine real parameter: pos_x = 5.0

subroutine real parameter: pos_y = 5.0

subroutine real parameter: pos_z = 1.6

subroutine real parameter: wave_speed = 1.5e+02

subroutine real parameter: blast_time = 0.0

subroutine real parameter: blast_energy = 1.0e+09

subroutine real parameter: blast_wave_width = 0.75

end pressure

The FORTRAN 77 subroutine listing follows. Note that it would be possible to increase the speed

of this subroutine by calling the topology functions (see Section 10.1.2.6) on groups of elements,

though this would increase subroutine complexity.

c

c Subroutine to simulate a blast load on a surface

c

subroutine blast_load(num_faces, num_vals,

& eval_time, faceID, pressure, flags, err_code)

implicit none

c

c Subroutine input arguments

c

integer num_faces

double precision eval_time

integer faceID(num_faces)

565

integer num_vals

c

c Subroutine output arguments

c

double precision pressure(num_vals, num_faces)

integer flags(num_faces)

integer err_code

c

c Variables to hold the subroutine parameters

c

double precision pos_x, pos_y, pos_z, wave_speed,

& blast_time, blast_energy,

& blast_wave_width

c

c Local variables

c

integer iface, inode

integer cur_face_id, face_topo, num_nodes

integer num_comp_check

double precision dist, blast_o_rad, blast_i_rad

double precision blast_volume, blast_pressure

integer query_error

double precision face_center(3)

c

c Create some static variables to hold queried

c information. Assume no face has more than 10

c nodes

c

double precision face_nodes(10)

double precision face_coords(3, 10)

c

c Extract the subroutine parameters

c

call aupst_get_real_param("pos_x",pos_x,query_error)

call aupst_get_real_param("pos_y",pos_y,query_error)

call aupst_get_real_param("pos_z",pos_z,query_error)

call aupst_get_real_param("wave_speed",wave_speed,

& query_error)

call aupst_get_real_param("blast_energy",

& blast_energy,query_error)

call aupst_get_real_param("blast_time",

& blast_time,query_error)

call aupst_get_real_param("blast_wave_width",

& blast_wave_width, query_error)

c

c Determine the outer radius of the blast wave

566

c

blast_o_rad = (eval_time - blast_time) * wave_speed

if(blast_o_rad .le. 0.0) return;

c

c Determine the inner radius of the blast wave

c

blast_i_rad = blast_o_rad - blast_wave_width

if(blast_i_rad .le. 0.0) blast_i_rad = 0.0

c

c Determine the total volume the blast wave occupies

c

blast_volume = 3.1415 * (4.0/3.0) *
& (blast_o_rad**2 - blast_i_rad**2)

c

c Determine the total pressure on faces inside the

c blast wave

c

blast_pressure = blast_energy / blast_volume

c

c Loop over all faces in the set

c

do iface = 1, num_faces

c

c Extract the topology of the current face

c

cur_face_id = faceID(iface)

call aupst_get_face_topology(1, cur_face_id,

& face_topo, query_error)

c

c Determine the number of nodes of the current face

c

num_nodes = mod(face_topo,100)

c

c Extract the node ids for nodes contained in the current

c face

c

call aupst_get_face_nodes(1, cur_face_id,

& face_nodes, query_error)

c

c Extract the nodal coordinates of the face nodes

c

call aupst_get_node_var(num_nodes, 3, face_nodes,

& face_coords, "coordinates", query_error)

c

c Compute the centroid of the face

c

face_center(1) = 0.0

567

face_center(2) = 0.0

face_center(3) = 0.0

do inode = 1, num_nodes

face_center(1) = face_center(1) +

& face_coords(1,inode)

face_center(2) = face_center(2) +

& face_coords(2,inode)

face_center(3) = face_center(3) +

& face_coords(3,inode)

enddo

face_center(1) = face_center(1)/num_nodes

face_center(2) = face_center(2)/num_nodes

face_center(3) = face_center(3)/num_nodes

c

c Determine the distance from the current face

c to the blast center

c

dist = sqrt((face_center(1) - pos_x)**2 +

& (face_center(2) - pos_y)**2 +

& (face_center(3) - pos_z)**2)

c

c Apply pressure to the current face if it falls within

c the blast wave

c

if(dist .ge. blast_i_rad .and.

& dist .le. blast_o_rad) then

pressure(1,iface) = blast_pressure

else

pressure(1,iface) = 0.0

endif

enddo

err_code = 0

end

10.4.2 Error Between a Computed and an Analytic Solution

The following code is a user subroutine to compute the error between Adagio-computed results

and results from an analytic manufactured solution. This subroutine is called by a USER OUTPUT

command block immediately prior to producing an output Exodus file. The error for the mesh is

computed by taking the squared difference between the computed and analytic displacements at

every node. Finally, a global sum of the error is produced along with the square root norm of the

error.

This user subroutine requires a user variable, which is defined in the Adagio input file. The com-

mand block for the user variable specified in this user subroutine is as follows:

begin user variable conv_error

568

type = global real length = 1

global operator = sum

initial value = 0.0

end user variable conv_error

The subroutine is called in the Adagio input file as follows:

begin user output

node set = nodelist_10

node set subroutine = conv0_error

subroutine real parameter: char_length = 1.0

subroutine real parameter: char_time = 1.0e-3

subroutine real parameter: x_offset = 0.0

subroutine real parameter: y_offset = 0.0

subroutine real parameter: z_offset = 0.0

subroutine real parameter: t_offset = 0.0

subroutine real parameter: u0 = 0.01

subroutine real parameter: v0 = 0.02

subroutine real parameter: w0 = 0.03

subroutine real parameter: alpha = 1.0

subroutine real parameter: youngs_modulus = 10.0e6

subroutine real parameter: poissons_ratio = 0.3

subroutine real parameter: density = 0.0002588

subroutine real parameter: num_nodes = 125.0

end user output

The FORTRAN listing for the subroutine is as follows:

subroutine conv0_error(num_nodes, num_vals,

& eval_time, nodeID, values, flags, ierror)

implicit none

integer num_nodes

integer num_vals

double precision eval_time

integer nodeID(num_nodes)

double precision values(1)

integer flags(1)

integer ierror

c

c Local vars

c

integer inode

integer error_code

double precision clength, ctime, xoff, yoff, zoff, toff

double precision zero, one, two, three, four, nine

569

double precision mod_coords(3,3000)

double precision cdispl(3,3000)

integer num_comp_check

double precision expat

double precision x, y, z, t

double precision u0, v0, w0, alpha

double precision pi

double precision half

double precision mdisplx, mdisply, mdisplz

double precision xdiff, ydiff, zdiff

double precision conv_error

double precision numnod

pi = 3.141592654

half = 0.5

zero = 0.0

one = 1.0

two = 2.0

three = 3.0

four = 4.0

nine = 9.0

c

c Check that the nodal coordinates will fit into the

c statically allocated array

c

if(num_nodes .gt. 3000) then

write(6,*) ŠERROR in sphere disp, Ś,

& num_nodes exceeds static array sizeŠ

ierror = 1

return

endif

c

c Extract the model coordinates for all nodes

c

call aupst_check_node_var(num_nodes, num_comp_check,

& nodeID, "model_coordinates",

& ierror)

if(ierror .ne. 0) return

if(num_comp_check .ne. 3) return

call aupst_get_node_var(num_nodes, num_comp_check,

& nodeID, mod_coords, "model_coordinates",

& ierror)

c

c Extract the computed displacements for all nodes

c

call aupst_check_node_var(num_nodes, num_comp_check,

& nodeID, "displacement",

570

& ierror)

if(ierror .ne. 0) return

if(num_comp_check .ne. 3) return

call aupst_get_node_var(num_nodes, num_comp_check,

& nodeID, cdispl, "displacement",

& ierror)

c

c Extract the subroutine parameters.

c

call aupst_get_real_param("char_length",

& clength,error_code)

call aupst_get_real_param("char_time",

& ctime,error_code)

call aupst_get_real_param("x_offset",xoff,error_code)

call aupst_get_real_param("y_offset",yoff,error_code)

call aupst_get_real_param("z_offset",zoff,error_code)

call aupst_get_real_param("t_offset",toff,error_code)

call aupst_get_real_param("u0",u0,error_code)

call aupst_get_real_param("v0",v0,error_code)

call aupst_get_real_param("w0",w0,error_code)

call aupst_get_real_param("alpha",alpha,error_code)

call aupst_get_real_param("num_nodes",

& numnod,error_code)

c

c Calculate a solution scaling factor

c

expat = half * (one - cos(pi * eval_time / ctime))

c

c Compute the expected solution at each node and do a

c sum of the differences from the analytic solution

c

conv_error = zero

do inode = 1, num_nodes

c

c Set the displacement value from the manufactured solution

c

x = (mod_coords(1,inode) - xoff) / clength

y = (mod_coords(2,inode) - yoff) / clength

z = (mod_coords(3,inode) - zoff) / clength

c

mdisplx = u0 * sin(x) * cos(two*y) * cos(three*z)

* * expat

mdisply = v0 * cos(three*x) * sin(y) * cos(two*z)

* * expat

mdisplz = w0 * cos(two*x) * cos(three*y) * sin(z)

* * expat

c

571

xdiff = mdisplx - cdispl(1,inode)

ydiff = mdisply - cdispl(2,inode)

zdiff = mdisplz - cdispl(3,inode)

conv_error = conv_error + xdiff*xdiff

* + ydiff*ydiff

* + zdiff*zdiff

c

enddo

c

ierror = 0

c

c Do a parallel sum of the squared errors and extract

c the total summed value on all processors

c

call aupst_put_global_var(1,conv_error,

& "conv_error","sum",ierror)

call aupst_get_global_var(1,conv_error,

& "conv_error",ierror)

c

c Take the square root of the errors and store that as

c the net error norm

c

conv_error = sqrt(conv_error) / sqrt(numnod)

call aupst_put_global_var(1,conv_error,

& "conv_error","none",ierror)

c

return

end

10.4.3 Transform Output Stresses to a Cylindrical Coordinate System

The following code is a user subroutine to transform element stresses in global x, y, and z coor-

dinates to a global cylindrical coordinate system. This subroutine could be used to transform the

relatively meaningless shell stress in x, y, and z coordinates to more meaningful tangential, hoop,

and radial stresses. The subroutine is called from a USER OUTPUT command block. It reads in the

old stresses, transforms them, and writes them back out to a user-created scratch variable, defined

via a USER VARIABLE command block, for output.

begin user variable cyl_stress

type = element sym_tensor length = 1

initial value = 0.0 0.0 0.0 0.0 0.0 0.0

end user variable

begin user output

block = block_1

element block subroutine = aupst_cyl_transform

572

subroutine string parameter: origin_point = Point_O

subroutine string parameter: z_point = Point_Z

subroutine string parameter: xz_point = Point_XZ

subroutine string parameter: input_stress = memb_stress

subroutine string parameter: output_stress = cyl_stress

end user output

The FORTRAN listing for the subroutine is as follows:

subroutine aupst_cyl_transform(num_elems, num_vals,

* eval_time, elemID, values, flags, ierror)

implicit none

#include<framewk/Fmwk_type_sizes_decl.par>

#include<framewk/Fmwk_type_sizes.par>

c

c Subroutine Arguments

c

c num_elems: Input: Number of elements to calculate on

c num_vals : Input: Ignored

c eval_time: Input: Time at which to evaluate the stress.

c elemID : Input: Global sierra IDs of the input elements

c values : I/O : Ignored, stress will be stored manually

c flags : I/O : Ignored

c ierror :Output: Returns non-zero if an error occurs

c

integer num_elems

integer num_vals

double precision eval_time

integer elemID(num_elems)

double precision values(1)

integer flags(1)

integer ierror

c

c Fortran cannot dynamically allocate memory, thus worksets

c will be iterated over by chucks each of size chunk_size.

c

integer chunk_size

parameter (chunk_size = 100)

integer chunk_ids(chunk_size)

c

c Subroutine parameter data

c

character*80 origin_point_name

double precision origin_point(3)

character*80 z_point_name

double precision z_point(3)

character*80 xz_point_name

573

double precision xz_point(3)

character*80 input_stress_name

character*80 output_stress_name

c

c Local element data for centroids and rotation vectors

c

double precision cent(3)

double precision centerline_pos(3)

double precision dot_prod

double precision z_vec(3)

double precision r_vec(3)

double precision theta_vec(3)

double precision rotation_tensor(9)

c

c Chunk data storage

c

double precision elem_centroid(3, chunk_size)

double precision input_stress_val(6, chunk_size)

double precision output_stress_val(6, chunk_size)

c

c Simple iteration variables

c

integer error_code

integer ichunk, ielem

integer zero_elem, nel

c

c Extract the current subroutine parameters. origin_point

c is the origin of the coordinate system

c z_point is a point on the z axis of the coordinate system

c xz_point is a point on the xz plane

c

call aupst_get_string_param("origin_point",

& origin_point_name,

& error_code)

call aupst_get_string_param("z_point",

& z_point_name,

& error_code)

call aupst_get_string_param("xz_point",

& xz_point_name,

& error_code)

call aupst_get_string_param("input_stress",

& input_stress_name,

& error_code)

call aupst_get_string_param("output_stress",

& output_stress_name,

& error_code)

c

574

c Use the point names to look up the coordinates of each

c relevant point

c

call aupst_get_point(origin_point_name, origin_point,

& error_code)

call aupst_get_point(z_point_name, z_point,

& error_code)

call aupst_get_point(xz_point_name, xz_point,

& error_code)

c

c Compute the z axis vector

c

z_vec(1) = z_point(1) - origin_point(1)

z_vec(2) = z_point(2) - origin_point(2)

z_vec(3) = z_point(3) - origin_point(3)

c

c Transform z_vec into a unit vector, abort if it is invalid

c

call aupst_unitize_vector(z_vec, ierror)

if(ierror .ne. 0) return

c

c Loop over chunks of the data arrays

c

do ichunk = 1, (num_elems/chunk_size + 1)

c

c Determine the first and last element number for the

c current chunk of elements

c

zero_elem = (ichunk-1) * chunk_size

if((zero_elem + chunk_size) .gt. num_elems) then

nel = num_elems - zero_elem

else

nel = chunk_size

endif

c

c Copy the elemIDs for all elems in the current chunk to a

c temporary array

c

do ielem = 1, nel

chunk_ids(ielem) = elemID(zero_elem + ielem)

enddo

c

c Extract the element centroids and stresses

c

call aupst_get_elem_centroid(nel, chunk_ids,

& elem_centroid,

& ierror)

575

call aupst_get_elem_var(nel, 6, chunk_ids,

& input_stress_val,

& input_stress_name, ierror)

c

c Loop over each element in the current chunk

c

do ielem = 1, nel

c

c Find the closest point on the cylinder centerline axis

c to the element centroid

c

cent(1) = elem_centroid(1, ielem) - origin_point(1)

cent(2) = elem_centroid(2, ielem) - origin_point(2)

cent(3) = elem_centroid(3, ielem) - origin_point(3)

dot_prod = cent(1) * z_vec(1) +

& cent(2) * z_vec(2) +

& cent(3) * z_vec(3)

centerline_pos(1) = z_vec(1) * dot_prod

centerline_pos(2) = z_vec(2) * dot_prod

centerline_pos(3) = z_vec(3) * dot_prod

c

c Compute the current normal radial vector

c

r_vec(1) = cent(1) - centerline_pos(1)

r_vec(2) = cent(2) - centerline_pos(2)

r_vec(3) = cent(3) - centerline_pos(3)

call aupst_unitize_vector(r_vec, ierror)

if(ierror .ne. 0) return

c

c Compute the current hoop vector

c

theta_vec(1) = z_vec(2)*r_vec(3) - r_vec(2)*z_vec(3)

theta_vec(2) = z_vec(3)*r_vec(1) - r_vec(3)*z_vec(1)

theta_vec(3) = z_vec(1)*r_vec(2) - r_vec(1)*z_vec(2)

c

c The r, theta, and z vectors describe the new stress

c coordinate system, Transform the input stress tensor

c in x,y,z coords to the output stress tensor in r, theta,

c and z coords use the unit vectors to create a rotation

c tensor

c

rotation_tensor(k_f36xx) = r_vec(1)

rotation_tensor(k_f36yx) = r_vec(2)

rotation_tensor(k_f36zx) = r_vec(3)

rotation_tensor(k_f36xy) = theta_vec(1)

rotation_tensor(k_f36yy) = theta_vec(2)

rotation_tensor(k_f36zy) = theta_vec(3)

576

rotation_tensor(k_f36xz) = z_vec(1)

rotation_tensor(k_f36yz) = z_vec(2)

rotation_tensor(k_f36zz) = z_vec(3)

c

c Rotate the current stress tensor to the new configuration

c

call fmth_rotate_symten33(1, 1, 0, rotation_tensor,

& input_stress_val(1,ielem),

& output_stress_val(1,ielem))

enddo

c

c Store the new stress

c

call aupst_put_elem_var(nel, 6, chunk_ids,

& output_stress_val,

& output_stress_name, ierror)

enddo

ierror = 0

end

577

10.5 User Subroutines: Library

A number of user subroutines are used commonly and have been permanently incorporated into

the code. These subroutines are used just like any other subroutines, but they do not need to be

compiled into the code. (The user need be concerned only about the Adagio command lines.) This

section describes the usage of each of these subroutines.

10.5.1 aupst_cyl_transform

Author: Nathan Crane

Purpose:

The purpose of this subroutine is to transform element stresses from a global rectangular coordinate

system to a local cylindrical coordinate system. This subroutine is generally called by a USER

OUTPUT command block. For example:

begin user output

block = block_1

element block subroutine = aupst_cyl_transform

subroutine string parameter: origin_point = Point_O

subroutine string parameter: z_point = Point_Z

subroutine string parameter: xz_point = Point_XZ

subroutine string parameter: input_stress = memb_stress

subroutine string parameter: output_stress = cyl_stress

end user output

Requirements:

This subroutine requires a tensor variable to store the cylindrical stress into a variable for each

element. The variable is created by the following command block in the Adagio region:

begin user variable cyl_stress

type = element sym_tensor length = 1

initial value = 0.0 0.0 0.0 0.0 0.0 0.0

end user variable

578

Parameters:

Parameter Name Usage Description

origin_point String Name of the point at the cylinder origin.

z_point String Point on the cylinder axis.

xz_point String Point on the line that passes through theta

= 0 on the cylinder.

input_stress String Name of the Adagio internal input stress

tensor variable.

output_stress String Name of the Adagio internal output stress

tensor variable.

10.5.2 aupst_rec_transform

Author: Daniel Hammerand

Purpose:

The purpose of this subroutine is to transform element stresses from a global rectangular coordinate

system to a different local rectangular coordinate system. This subroutine is generally called by a

USER OUTPUT command block. For example:

begin user output

block = block_1

element block subroutine = aupst_rec_transform

subroutine string parameter: origin_point = Point_O

subroutine string parameter: z_point = Point_Z

subroutine string parameter: xz_point = Point_XZ

subroutine string parameter: input_stress = memb_stress

subroutine string parameter: output_stress = new_stress

end user output

Requirements:

This subroutine requires a tensor variable to store the new stress into a variable for each element.

The variable is created by the following command block in the Adagio region:

begin user variable new_stress

type = element sym_tensor length = 1

initial value = 0.0 0.0 0.0 0.0 0.0 0.0

end user variable

579

Parameters:

Parameter Name Usage Description

origin_point String Name of the point at the cylinder origin.

z_point String Point on the cylinder axis.

xz_point String Point on the line that passes through theta

= 0 on the cylinder.

input_stress String Name of the Adagio internal input stress

tensor variable.

output_stress String Name of the Adagio internal output stress

tensor variable.

10.5.3 copy_data

Author: Jason Hales

Purpose:

The purpose of this subroutine is to copy data from one variable to another with offsets given

for both variables. This subroutine is generally called by a USER OUTPUT command block. For

example:

begin user output

block = block_1

element block subroutine = copy_data

subroutine integer parameter: source_offset = 4

subroutine string parameter: source_name = stress

subroutine integer parameter: destination_offset = 1

subroutine string parameter: destination_name = uservarxy

end user output

Requirements:

This subroutine requires that the source and destination fields exist and have lengths at least as

great as the values supplied as offsets. The fields used may be defined by the user as variables. In

this example, the variable is created by the following command block in the Adagio region:

begin user variable uservarxy

type = element real length = 1

initial value = 0.0

end user variable

580

Parameters:

Parameter Name Usage Description

source_offset Integer The offset into the source variable.

source_name String The name of the source variable.

destination_offset Integer The offset into the destination variable.

destination_name String The name of the destination variable.

10.5.4 trace

Author: Jason Hales

Purpose:

The purpose of this subroutine is to compute the trace of a tensor. This subroutine is generally

called by a USER OUTPUT command block. For example:

begin user output

block = block_1

element block subroutine = trace

subroutine string parameter: source_name = log_strain

subroutine string parameter: destination_name = uvarbulkstrain

end user output

Requirements:

This subroutine requires that the source and destination fields exist. The source field should have a

length of six. The destination field should have a length of one. The destination field will typically

be defined by the user as a variable. In this example, the variable is created by the following

command block in the Adagio region:

begin user variable uvarbulkstrain

type = element real length = 1

initial value = 0.0

end user variable

581

Parameters:

Parameter Name Usage Description

source_name String The name of the source variable.

destination_name String The name of the destination variable.

582

Chapter 11

Transfers

It is sometimes desirable to chain two or more analyses (procedures) together. A common example

of this is the need to preload an assembly quasistatically and then subject that assembly to a loading

environment best suited to an explicit transient dynamics analysis. The displacements and stresses

produced by the quasistatic preload are initial conditions for the transient dynamics event. These

displacements and stresses must be transferred from the initial analysis to the subsequent one.

This chapter reviews the concept of transfers in SIERRA and outlines the syntax required to per-

form a transfer of information between procedures.

583

11.1 SIERRA Transfers

Applications built on the SIERRA computational framework share underlying data structures. This

makes it convenient to couple applications together using transfers.

The coupling available through SIERRA is of two types. The first is what is called intra-procedural

coupling. In this case, multiple regions within a single procedure share data. This enables multi-

physics analysis such as thermal-mechanical coupling. The details of this type of coupling, along

with the syntax to support it, will not be covered here. Coupled codes such as Calagio and Arpeg-

gio use this type of coupling.

The second type of coupling is inter-procedural coupling. Here, the result from one procedure is

handed to the next procedure. This is the type of coupling used when moving from one analysis

stage to another in Adagio and Presto. When using this type of coupling, the two procedures

generally have only one region each.

11.2 Inter-procedural Transfers

The inter-procedural transfers used by Adagio and Presto can transfer data from one or all blocks

of the preceding or sending procedure to the subsequent or receiving procedure. The commands to

control the transfers should appear at the procedure scope in the second procedure.

When using the inter-procedural transfers, all of the appropriate element data will be transferred

from the sending to the receiving elements. Nodal data will be transferred based on the type of

analysis done in the two procedures. For example, if the first procedure is a quasistatic analysis

and the second is an explicit transient dynamics analysis, the displacements of the nodes will be

transferred but not their velocities.

Warning: Transfer of data for node-based tetrahedra is currently not fully sup-

ported. A coupled analysis with node-based tetrahedra will only be correct if the tet

elements are not deformed in the first (sending) procedure, in which case initializa-

tion in the second (receiving) procedure is appropriate.

The set of available commands are below.

BEGIN PROCEDURAL TRANSFER <string>name

BLOCK = <string list>block_name

INCLUDE ALL BLOCKS

REMOVE BLOCK = <string list>block_name

BEGIN INTERPOLATION TRANSFER <string>name

BLOCK BY BLOCK

NEAREST ELEMENT COPY

584

SEND BLOCKS = <string list>block_name

SEND COORDINATES = ORIGINAL|CURRENT

RECEIVE BLOCKS = <string list>block_name

RECEIVE COORDINATES = original|current

TRANSFORMATION TYPE = NONE|RIGIDBODY

END [INTERPOLATION TRANSFER <string>name]

END [PROCEDURAL TRANSFER <string>name]

The inter-procedural transfers can be invoked in one of two ways. If the sending and receiving

regions use the same finite element model, data can be copied from the sending to the receiving

region. In this case, the first three lines of syntax in the transfer block can be used to copy data for

all blocks except those that are rigid bodies.

If different finite element models are used by the sending and receiving meshes, or if it is desired

to copy data for rigid bodies, the INTERPOLATION TRANSFER block must be used, and the first

three lines in the PROCEDURAL TRANSFER block should not be used. If the lines appropriate for

the copy of data are used when they do not apply, their behavior is undefined.

11.2.1 Copying Data with Inter-procedural Transfers

To copy data from one or more blocks in a sending region to the matching blocks in the receiving

region, use these line commands:

BLOCK = <string list>block_name

INCLUDE ALL BLOCKS

REMOVE BLOCK = <string list>block_name

The first of these, the BLOCK line command, is used to list blocks that should be copied. If it is

desired to copy data for all blocks, use the INCLUDE ALL BLOCKS line command. Finally, one or

more blocks may be removed from the set of all blocks with the REMOVE BLOCK line command.

Either the BLOCK or INCLUDE ALL BLOCKS line command must appear.

11.2.2 Interpolating Data with Interpolation Transfers

When different finite element models are used by the sending and receiving regions, or when it is

desired to transfer data for rigid bodies, the INTERPOLATION TRANSFER must be used.

If data for a rigid body is to be transferred, use the TRANSFORMATION TYPE = RIGIDBODY line

command along with the SEND BLOCKS and RECEIVE BLOCKS line commands. Transfers of rigid

585

body information should be entered for each rigid body separately, which is done simply by listing

only one block on each of the SEND BLOCKS and RECEIVE BLOCKS lines.

When transferring data for non-rigid body blocks, the only required line commands are the SEND

BLOCKS and RECEIVE BLOCKS line commands. These each list one or more blocks to be included

in the transfer.

The interpolation transfers move data from sending to receiving meshes by performing searches

and interpolating using shape functions. For nodal data, a node in the receiving mesh is located

in the sending mesh. The node will be found in (or near) an element in the sending mesh. The

parametric coordinates of the point associated with the receiving node will be calculated based on

the sending element, and those parametric coordinates will be used in conjunction with the shape

functions and the data on the nodes of the sending element to calculate values for the receiving

node.

For the transfer of element data, the location of the center of the receiving element will be located

in the sending mesh. This point will appear in (or near) an element in the sending mesh. A patch

of elements in the sending mesh will be created centered around the element that contains the

point associated with the receiving element. The data in the patch of sending elements will be

interpolated using a least squares approach to the point associated with the receiving element, and

the result will be given to the receiving element.

The interpolation transfer will give the best results when the sending and receiving meshes are very

similar. If the meshes do not represent the same volumes in space, for example, the interpolated

values will be suspect at best.

On rare occasions, it may be desired to use the current coordinates instead of the original coordi-

nates in performing the search used by the transfers. Use the SEND COORDINATES = CURRENT

and/or RECEIVE COORDINATES = CURRENT line commands for this purpose.

In some instances, the sending and receiving meshes are very similar such that there is a one-to-one

correspondence between the list of sending blocks and the list of receiving blocks. In other words,

it may be desired to send data from a given block to a corresponding block, from another block

to its pair, and so forth. If this is the case, use of the BLOCK BY BLOCK line command will cause

a separate transfer to be created for each pair of sending and receiving blocks. This is useful to

ensure that data from a single block will be sent to one and only one receiving block. This could

also be accomplished by listing multiple transfer blocks in the input file.

The NEAREST ELEMENT COPY line command changes the behavior of the transfer of element

variables. Instead of a least squares approach, the use of this line command will cause data to be

sent directly from the nearest sending element to the receiving element.

586

Appendix A

Example Problem

This appendix provides an example problem to illustrate the construction of an input file for an

analysis. The problem is modeled after a pencil/eraser that is pressed against and rubbed across

a tablet. The pencil, eraser and tablet are represented by blocks 1, 2 and 3 respectively. Block

4 is used to apply kinematics directly to the eraser via tied contact between block 4 and block 2.

Block 1 is really superfluous except that when viewed together, blocks 1, 2 and 3 closely resemble

a pencil with an eraser on a tablet. The problem demonstrates the overall structure of an input file

and includes the use of both tied and frictional contact simultaneously, the multilevel solver, and a

linear solver for preconditioning. A schematic of the problem is shown in Figure A.1 and the mesh

is shown in Figure A.2.

The problem kinematics and loading are described briefly here. There are two phases of the load-

ing: preload and sliding. In the preload phase, the tablet (block 3) is kinematically fixed in the x-y

plane and a vertical load (in the z-direction) is applied to the tablet which presses the tablet against

the eraser (block 2). The eraser is kinematically fixed to block 4 via tied contact (see Figure A.2).

Block 4 is held fixed in all three coordinate directions for the compression phase. The initial con-

Y X

Z

Figure A.1: Eraser schematic; Block 1 (yellow) is pencil, block 2 (red) is eraser, block 3 (gray) is

tablet, block 4 (not shown) is tied to eraser and has the kinematics applied to it.

587

Y
X

Z

Block 4
(Tied to Eraser)

Block 3 (Tablet)

Block 1
(Pencil)

Block 2
(Eraser)

Figure A.2: Complete eraser mesh

figuration and deformations of the preload phase are shown in the first two snapshots on the left in

Figure A.1. In the sliding phase, block 4 is kinematically prescribed to move along the x-direction,

thus sliding or dragging the eraser along the tablet (see Figure A.1) while the tablet force is held

constant.

The input file is described below, with comments to explain every few lines. Following the descrip-

tion, the full input file is listed again. Note that all character strings in the input file are presented

in lowercase, which is an acceptable format in Adagio.

The input file starts with a begin sierra statement, as is required for all input files:

begin sierra eraser

We begin by defining vectors corresponding to the coordinate axes. These vectors/directions will

be used to define the input for boundary condition blocks that come later.

define direction X with vector 1.0 0.0 0.0

define direction Y with vector 0.0 1.0 0.0

define direction Z with vector 0.0 0.0 1.0

We now need to define the functions used for this problem. The boundary conditions require a

function for the tablet force as well as the sliding motion. Note that both the tablet force and

sliding motion are prescribed as functions of time.

588

begin definition for function slide

type is piecewise linear

begin values

0.0 0.0

1.0 0.0

2.0 1.0

3.0 1.0

end values

end definition for function slide

begin definition for function tablet_force

type is piecewise linear

begin values

0.0 0.0

1.0 1.0

3.0 1.0

end values

end definition for function tablet_force

begin definition for function zero

type is constant

begin values

0.0 0.0

end values

end definition for function zero

Note that the tablet force ramps up over the time interval (0.0,1.0) and then is held constant over the

interval (1.0,3.0). The sliding function is zero over the time interval (0.0,1.0) and then it linearly

increases over the interval (1.0,2.0). Next, we define the material properties and models that are

used in this problem. In this example, we define two sets of material properties: one is called

stiff (pencil, tablet, and block 4), and the second is called soft (eraser). We use a linear elastic

constitutive model for both cases.

begin property specification for material stiff

density = 1.0

begin parameters for model elastic

youngs modulus = 1.e5

poissons ratio = 0.3

end parameters for model elastic

end property specification for material stiff

begin property specification for material soft

density = 1.0

begin parameters for model elastic

youngs modulus = 1000.

poissons ratio = 0.3

end parameters for model elastic

589

end property specification for material soft

Now, we define the finite element mesh. This includes specification of the file that contains the

mesh, as well as a list of all the element blocks we will use from the mesh and the material associ-

ated with each block. The name of the file is eraser.g. The specification of the database type is

optional-ExodusII is the default. Currently, each element block must be defined individually. Note

that the tablet, pencil and block 4 all reference the same material description (stiff). The material

description is not repeated three times. The material description for stiff appears once and is then

referenced three times.

begin finite element model mesh1

database name = eraser.g

database type = exodusII

begin parameters for block block_1 #Pencil

material stiff

solid mechanics use model elastic

end parameters for block block_1 #Pencil

begin parameters for block block_2 #Eraser

material soft

solid mechanics use model elastic

end parameters for block block_2 #Eraser

begin parameters for block block_3 #Tablet

material stiff

solid mechanics use model elastic

end parameters for block block_3 #Tablet

begin parameters for block block_4 #dummy block

material stiff

solid mechanics use model elastic

end parameters for block block_4 #dummy block

end finite element model mesh1

At this point we have finished specifying physics-independent quantities. We now want to set up

the Adagio procedure and region, along with the time control command block. We start by defining

the beginning of the procedure scope, the time control command block, and the beginning of the

region scope. Three time stepping command blocks are used in this analysis. The termination time

is set to 1.8. Having multiple time blocks is useful because we can make some solver options a

function of the time block.

begin adagio procedure agio_procedure

begin time control

begin time stepping block preload

start time = 0.0

begin parameters for adagio region adagio

number of time steps = 5

end parameters for adagio region adagio

end time stepping block preload

590

begin time stepping block slide_1

start time = 1.0

begin parameters for adagio region adagio

number of time steps = 1

end parameters for adagio region adagio

end time stepping block slide_1

begin time stepping block slide_2

start time = 1.1

begin parameters for adagio region adagio

number of time steps = 7

end parameters for adagio region adagio

end time stepping block slide_2

termination time = 1.8

end time control

begin adagio region agio_region

Next we associate the finite element model we defined above (mesh1) with this Adagio region.

use finite element model mesh1

Now we define the kinematic boundary conditions. First, we prescribe the displacement of sur-

face_200 which is part of block 4. We fix this surface in both the x and z directions and prescribe

the horizontal displacement along the X-direction using the previously defined functions zero and

slide.

movement of pencil prescribed by block 4

begin prescribed displacement

surface = surface_200

direction = X

function = slide

scale factor = 3.0

end prescribed displacement

begin fixed displacement

surface = surface_200

components = Y Z

end fixed displacement

Next, we fix the tablet and prevent it from moving in the X-Y plane. We do this on all tablet nodes

(nodelist_111 and nodelist_112).

Constraints on tablet

begin fixed displacement

node set = nodelist_111

components = X Y

591

end fixed displacement

begin fixed displacement

node set = nodelist_112

components = X Y

end fixed displacement

Finally, we prescribe preload force on the tablet which compresses the tablet against the eraser.

Tablet force

begin prescribed force

node set = nodelist_111

direction = Z

function = tablet_force

scale factor = 100.0

end prescribed force

We now define the contact for this problem. Here we need to define tied contact between block 4

and the eraser. In addition, we have frictional sliding contact between the tablet and the eraser. Two

contact block definitions are required; one for the tied contact and one for the frictional contact.

The first contact block definition is used for the tied contact between block 4 and the eraser, and

the second block is used to define the frictional sliding contact between the eraser and the tablet.

block 4 tied to eraser

begin contact definition

enforcement = tied

contact surface surf_200 contains surface_200

contact surface surf_110 contains surface_110

begin interaction

master = surf_200

slave = surf_110

normal tolerance = 1.0

tangential tolerance = 0.5e-3

end interaction

end contact definition

begin contact definition

enforcement = frictional

contact surface surf_11 contains surface_11

contact surface surf_10 contains surface_10

begin interaction

master = surf_11

slave = surf_10

normal tolerance = 1.0

tangential tolerance = 0.5e-3

capture tolerance = 1.0e-2

friction coefficient = 0.8

592

end interaction

end contact definition

Now we define what variables we want in the output file, as well as how often we want the output

file to be written. The output file will be called eraser.e, and it will be an ExodusII file (the

database type command is optional; it defaults to ExodusII). The variables we are requesting are

the displacements, velocities, and contact diagnostics at the nodes, and stresses and strains at the

elements.

begin results output output_adagio

database name = eraser.e

database type = exodusII

at step 0, increment = 1

nodal displacement as displ

nodal velocity as vel

nodal contact_tangential_direction

nodal contact_normal_direction

nodal contact_accumulated_slip_vector

nodal contact_status

nodal contact_normal_traction_magnitude

nodal contact_tangential_traction_magnitude

nodal contact_incremental_slip_magnitude

nodal contact_accumulated_slip

nodal contact_frictional_energy_density

nodal contact_area

element stress as stress

element log_strain as strain

end results output output_adagio

The final part of the input deck is the Adagio solver commands. Because we have sliding contact,

we must use the solver command block. Nested inside the solver block we define the control

contact block as well as the nonlinear cg solver block.

begin solver

begin control contact name

target relative residual = 0.001

maximum iterations = 2000

end control contact name

begin cg

target residual tolerance = 0.001

maximum iterations = 2000

minimum iterations = 1

orthogonality measure for reset = 0.5

line search type secant

begin full tangent preconditioner

linear solver = feti

593

maximum iterations = 20

constraint enforcement = penalty

reset constraint threshold = 0.001

nodal preconditioner method = elastic

end full tangent preconditioner

end cg

end solver

Now we have defined the Adagio region and procedure blocks and so we close them using the

following lines:

end adagio region agio_region

end adagio procedure agio_procedure

The final thing that we need to define for this file is the linear solver. In the above solver command

block, we included the full tangent preconditioner block, which has a nested command

line linear solver = feti. This command line refers to a linear solver called feti that must

be defined outside the “Procedure” scope but within the “Sierra” scope and can come at the top

of the file prior to the “Procedure” definition or after it as is the case here. The input feti on

this line command is a user defined string that can have any useful label. The following command

block defines the linear solver labeled feti. Note that the command block has the label feti at

the end of the Begin line and that this label is referred to from within the above full tangent

preconditioner command block. The FETI parameters are all set to reasonable values for most

problems, so there is no need to set any of them, but if it were necessary to set any of them to

non-default values, that would be done within the feti equation solver block.

begin feti equation solver feti

end feti equation solver feti

Finally, we finish the input file and close the sierra command block:

end sierra eraser

594

Appendix B

Command Summary

This appendix gives all of the Adagio commands in the proper scope.

SIERRA scope specification

BEGIN SIERRA <string>name

Title

TITLE = <string list>title

Restart time

RESTART TIME = <real>restart_time

RESTART = AUTOMATIC

User subroutine file

USER SUBROUTINE FILE = <string>file name

Function definition

BEGIN DEFINITION FOR FUNCTION <string>function_name

TYPE = <string>CONSTANT|PIECEWISE LINEAR|PIECEWISE CONSTANT|

ANALYTIC

ABSCISSA = <string>abscissa_label

[scale = <real>abscissa_scale(1.0)]

[offset = <real>abscissa_offset(0.0)]

ORDINATE = <string>ordinate_label

[scale = <real>ordinate_scale(1.0)]

[offset = <real>ordinate_offset(0.0)]

X SCALE = <real>x_scale(1.0)

X OFFSET = <real>x_offset(0.0)

Y SCALE = <real>y_scale(1.0)

Y OFFSET = <real>y_offset(0.0)

595

BEGIN VALUES

<real>x_1 <real>y_1

<real>x_2 <real>y_2

...

<real>x_n <real>y_n

END [VALUES]

AT DISCONTINUITY EVALUATE TO <string>LEFT|RIGHT(LEFT)

EVALUATE EXPRESSION = <string>analytic_expression1;

analytic_expression2;...

DEBUG = ON|OFF(OFF)

END [DEFINITION FOR FUNCTION <string>function_name]

Definitions

DEFINE POINT <string>point_name WITH COORDINATES

<real>value_1 <real>value_2 <real>value_3

DEFINE DIRECTION <string>direction_name WITH VECTOR

<real>value_1 <real>value_2 <real>value_3

DEFINE AXIS <string>axis_name WITH POINT

<string>point_1 POINT <string>point_2

DEFINE AXIS <string>axis_name WITH POINT

<string>point_name DIRECTION <string>direction

Local coordinate system

BEGIN ORIENTATION <string>orientation_name

SYSTEM = <string>RECTANGULAR|Z RECTANGULAR|CYLINDRICAL|

SPHERICAL(RECTANGULAR)

#

POINT A = <real>global_ax <real>global_ay <real>global_az

POINT B = <real>global_bx <real>global_by <real>global_bz

#

ROTATION ABOUT <integer> 1|2|3(1) = <real>theta(0.0)

END [ORIENTATION <string>orientation_name]

Rigid bodies

BEGIN RIGID BODY <string>rb_name

MASS = <real>mass

POINT MASS = <real>mass [AT <real>X <real>Y <real>Z]

REFERENCE LOCATION = <real>X <real>Y <real>Z

INERTIA = <real>Ixx <real>Iyy <real>Izz <real>Ixy

<real>Iyz <real>Izx

POINT INERTIA = <real>Ixx <real>Iyy <real>Izz <real>Ixy

596

<real>Iyz <real>Izx

MAGNITUDE = <real>magnitude_of_velocity

DIRECTION = <string>direction_definition

ANGULAR VELOCITY = <real>omega

CYLINDRICAL AXIS = <string>axis_definition

INCLUDE NODES IN <string>surface_name

[if <string>field_name <|<=|=|>=|> <real>value]

END [RIGID BODY <string>rb_name]

Elastic material

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL ELASTIC

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

END [PARAMETERS FOR MODEL ELASTIC]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Thermoelastic material

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

597

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL THERMOELASTIC

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

YOUNGS MODULUS FUNCTION = <string>ym_function_name

POISSONS RATIO FUNCTION = <string>pr_function_name

END [PARAMETERS FOR MODEL THERMOELASTIC]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

neo-Hookean material

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL NEO_HOOKEAN

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

END [PARAMETERS FOR MODEL NEO_HOOKEAN]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Elastic fracture material

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

598

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL ELASTIC_FRACTURE

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

MAX STRESS = <real>max_stress

CRITICAL CRACK OPENING STRAIN = <real>critical_strain

END [PARAMETERS FOR MODEL ELASTIC_FRACTURE]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Elastic-plastic material

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL ELASTIC_PLASTIC

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

YIELD STRESS = <real>yield_stress

HARDENING MODULUS = <real>hardening_modulus

BETA = <real>beta_parameter(1.0)

END [PARAMETERS FOR MODEL ELASTIC_PLASTIC]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

599

Elastic-plastic power-law hardening

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL EP_POWER_HARD

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

YIELD STRESS = <real>yield_stress

HARDENING CONSTANT = <real>hardening_constant

HARDENING EXPONENT = <real>hardening_exponent

LUDERS STRAIN = <real>luders_strain

END [PARAMETERS FOR MODEL EP_POWER_HARD]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Elastic plastic power-law hardening with failure

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL DUCTILE_FRACTURE

YOUNGS MODULUS = <real>youngs_modulus

600

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

YIELD STRESS = <real>yield_stress

HARDENING CONSTANT = <real>hardening_constant

HARDENING EXPONENT = <real>hardening_exponent

LUDERS STRAIN <real>luders_strain

CRITICAL TEARING PARAMETER = <real>crit_tearing

CRITICAL CRACK OPENING STRAIN = <real>critical_strain

END [PARAMETERS FOR MODEL DUCTILE_FRACTURE]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Multilinear elastic plastic

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL MULTILINEAR_EP

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

YIELD STRESS = <real>yield_stress

BETA = <real>beta_parameter(1.0)

HARDENING FUNCTION = <string>hardening_function_name

YOUNGS MODULUS FUNCTION = <string>ym_function_name

POISSONS RATIO FUNCTION = <string>pr_function_name

YIELD STRESS FUNCTION =

<string>yield_stress_function_name

END [PARAMETERS FOR MODEL MULTILINEAR_EP]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Multilinear elastic plastic with failure

601

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL ML_EP_FAIL

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

YIELD STRESS = <real>yield_stress

BETA = <real>beta_parameter(1.0)

HARDENING FUNCTION = <string>hardening_function_name

YOUNGS MODULUS FUNCTION = <string>ym_function_name

POISSONS RATIO FUNCTION = <string>pr_function_name

YIELD STRESS FUNCTION =

<string>yield_stress_function_name

CRITICAL TEARING PARAMETER = <real>crit_tearing

CRITICAL CRACK OPENING STRAIN = <real>critical_strain

END [PARAMETERS FOR MODEL ML_EP_FAIL]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

BCJ plasticity

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

602

#

BEGIN PARAMETERS FOR MODEL BCJ

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

C1 = <real>c1

C2 = <real>c2

C3 = <real>c3

C4 = <real>c4

C5 = <real>c5

C6 = <real>c6

C7 = <real>c7

C8 = <real>c8

C9 = <real>c9

C10 = <real>c10

C11 = <real>c11

C12 = <real>c12

C13 = <real>c13

C14 = <real>c14

C15 = <real>c15

C16 = <real>c16

C17 = <real>c17

C18 = <real>c18

C19 = <real>c19

C20 = <real>c20

DAMAGE EXPONENT = <real>damage_exponent

INITIAL ALPHA_XX = <real>alpha_xx

INITIAL ALPHA_YY = <real>alpha_yy

INITIAL ALPHA_ZZ = <real>alpha_zz

INITIAL ALPHA_XY = <real>alpha_xy

INITIAL ALPHA_YZ = <real>alpha_yz

INITIAL ALPHA_XZ = <real>alpha_xz

INITIAL KAPPA = <real>initial_kappa

INITIAL DAMAGE = <real>initial_damage

YOUNGS MODULUS FUNCTION = <string>ym_function_name

POISSONS RATIO FUNCTION = <string>pr_function_name

SPECIFIC HEAT = <real>specific_heat

THETA OPT = <integer>theta_opt

FACTOR = <real>factor

RHO = <real>rho

TEMP0 = <real>temp0

END [PARAMETERS FOR MODEL BCJ]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Power law creep

603

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL POWER_LAW_CREEP

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

CREEP CONSTANT = <real>creep_constant

CREEP EXPONENT = <real>creep_exponent

THERMAL CONSTANT = <real>thermal_constant

END [PARAMETERS FOR MODEL POWER_LAW_CREEP]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Soil and crushable foam

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL SOIL_FOAM

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

604

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

A0 = <real>const_coeff_yieldsurf

A1 = <real>lin_coeff_yieldsurf

A2 = <real>quad_coeff_yieldsurf

PRESSURE CUTOFF = <real>pressure_cutoff

PRESSURE FUNCTION = <string>function_press_volstrain

END [PARAMETERS FOR MODEL SOIL_FOAM]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

Foam plasticity

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL FOAM_PLASTICITY

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

PHI = <real>phi

SHEAR STRENGTH = <real>shear_strength

SHEAR HARDENING = <real>shear_hardening

SHEAR EXPONENT = <real>shear_exponent

HYDRO STRENGTH = <real>hydro_strength

HYDRO HARDENING = <real>hydro_hardening

HYDRO EXPONENT = <real>hydro_exponent

BETA = <real>beta

END [PARAMETERS FOR MODEL FOAM_PLASTICITY]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Low density foam

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

605

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL LOW_DENSITY_FOAM

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

A = <real>A

B = <real>B

C = <real>C

NAIR = <real>NAir

P0 = <real>P0

PHI = <real>Phi

END [PARAMETERS FOR MODEL LOW_DENSITY_FOAM]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Elastic three-dimensional orthotropic

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

BEGIN PARAMETERS FOR MODEL ELASTIC_3D_ORTHOTROPIC

general parameters (any two are required)

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

required parameters

YOUNGS MODULUS AA = <real>Eaa_value

YOUNGS MODULUS BB = <real>Ebb_value

YOUNGS MODULUS CC = <real>Ecc_value

POISSONS RATIO AB = <real>NUab_value

POISSONS RATIO BC = <real>NUbc_value

POISSONS RATIO CA = <real>NUca_value

SHEAR MODULUS AB = <real>Gab_value

606

SHEAR MODULUS BC = <real>Gbc_value

SHEAR MODULUS CA = <real>Gca_value

COORDINATE SYSTEM = <string>coordinate_system_name

DIRECTION FOR ROTATION = <real>1|2|3

ALPHA = <real>alpha_in_degrees

SECOND DIRECTION FOR ROTATION = <real>1|2|3

SECOND ALPHA = <real>second_alpha_in_degrees

THERMAL STRAIN AA FUNCTION = <string>ethaa_function_name

THERMAL STRAIN BB FUNCTION = <string>ethbb_function_name

THERMAL STRAIN CC FUNCTION = <string>ethcc_function_name

END [PARAMETERS FOR MODEL ELASTIC_3D_ORTHOTROPIC]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Wire mesh

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL WIRE_MESH

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

YIELD FUNCTION = <string>yield_function

TENSION = <real>tensile_strength

END [PARAMETERS FOR MODEL WIRE_MESH]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Orthotropic crush

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

607

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL ORTHOTROPIC_CRUSH

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

YIELD STRESS = <real>yield_stress

EX = <real>modulus_x

EY = <real>modulus_y

EZ = <real>modulus_z

GXY = <real>shear_modulus_xy

GYZ = <real>shear_modulus_yz

GZX = <real>shear_modulus_zx

VMIN = <real>min_crush_volume

CRUSH XX = <string>stress_volume_xx_function_name

CRUSH YY = <string>stress_volume_yy_function_name

CRUSH ZZ = <string>stress_volume_zz_function_name

CRUSH XY =

<string>shear_stress_volume_xy_function_name

CRUSH YZ =

<string>shear_stress_volume_yz_function_name

CRUSH ZX =

<string>shear_stress_volume_zx_function_name

END [PARAMETERS FOR MODEL ORTHOTROPIC_CRUSH]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Orthotropic rate

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

608

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL ORTHOTROPIC_RATE

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

YIELD STRESS = <real>yield_stress

MODULUS TTTT = <real>modulus_tttt

MODULUS TTLL = <real>modulus_ttll

MODULUS TTWW = <real>modulus_ttww

MODULUS LLLL = <real>modulus_llll

MODULUS LLWW = <real>modulus_llww

MODULUS WWWW = <real>modulus_wwww

MODULUS TLTL = <real>modulus_tltl

MODULUS LWLW = <real>modulus_lwlw

MODULUS WTWT = <real>modulus_wtwt

TX = <real>tx

TY = <real>ty

TZ = <real>tz

LX = <real>lx

LY = <real>ly

LZ = <real>lz

MODULUS FUNCTION = <string>modulus_function_name

RATE FUNCTION = <string>rate_function_name

T FUNCTION = <string>t_function_name

L FUNCTION = <string>l_function_name

W FUNCTION = <string>w_function_name

TL FUNCTION = <string>tl_function_name

LW FUNCTION = <string>lw_function_name

WT FUNCTION = <string>wt_function_name

END [PARAMETERS FOR MODEL ORTHOTROPIC_RATE]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Elastic laminate

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BEGIN PARAMETERS FOR MODEL ELASTIC_LAMINATE

A11 = <real>a11_value

A12 = <real>a12_value

A16 = <real>a16_value

A22 = <real>a22_value

A26 = <real>a26_value

609

A66 = <real>a66_value

A44 = <real>a44_value

A45 = <real>a45_value

A55 = <real>a55_value

B11 = <real>b11_value

B12 = <real>b12_value

B16 = <real>b16_value

B22 = <real>b22_value

B26 = <real>b26_value

B66 = <real>b66_value

D11 = <real>d11_value

D12 = <real>d12_value

D16 = <real>d16_value

D22 = <real>d22_value

D26 = <real>d26_value

D66 = <real>d66_value

COORDINATE SYSTEM = <string>coord_sys_name

DIRECTION FOR ROTATION = 1|2|3

ALPHA = <real>alpha_value_in_degrees

THETA = <real>theta_value_in_degrees

NTH11 FUNCTION = <string>nth11_function_name

NTH22 FUNCTION = <string>nth22_function_name

NTH12 FUNCTION = <string>nth12_function_name

MTH11 FUNCTION = <string>mth11_function_name

MTH22 FUNCTION = <string>mth22_function_name

MTH12 FUNCTION = <string>mth12_function_name

END [PARAMETERS FOR MODEL ELASTIC_LAMINATE]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Fiber membrane

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL FIBER_MEMBRANE

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

610

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

CORD DENSITY = <real>cord_density

CORD DIAMETER = <real>cord_diameter

MATRIX DENSITY = <real>matrix_density

TENSILE TEST FUNCTION = <string>test_function_name

PERCENT CONTINUUM = <real>percent_continuum

EPL = <real>epl

AXIS X = <real>axis_x

AXIS Y = <real>axis_y

AXIS Z = <real>axis_z

MODEL = <string>RECTANGULAR

STIFFNESS SCALE = <real>stiffness_scale

REFERENCE STRAIN = <real>reference_strain

END [PARAMETERS FOR MODEL FIBER_MEMBRANE]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Incompressible solid

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL INCOMPRESSIBLE_SOLID

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

BULK MODULUS = <real>bulk_modulus

SHEAR MODULUS = <real>shear_modulus

LAMBDA = <real>lambda

K SCALING = <real>k_scaling

2G SCALING = <real>2g_scaling

TARGET E = <real>target_e

MAX POISSONS RATIO = <real>max_poissons_ratio

REFERENCE STRAIN = <real>reference_strain

SCALING FUNCTION = <string>scaling_function_name

END [PARAMETERS FOR MODEL INCOMPRESSIBLE_SOLID]

611

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Mooney Rivlin

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

BEGIN PARAMETERS FOR MODEL MOONEY_RIVLIN

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

BULK MODULUS = <real>bulk_modulus

SHEAR MODULUS = <real>shear_modulus

LAMBDA = <real>lambda

C10 = <real>c10

C01 = <real>c01

C10 FUNCTION = <string>c10_function_name

C01 FUNCTION = <string>c01_function_name

BULK FUNCTION = <string>bulk_function_name

THERMAL EXPANSION FUNCTION = <string>eth_function_name

TARGET E = <real>target_e

TARGET E FUNCTION = <string>etar_function_name

MAX POISSONS RATIO = <real>max_poissons_ratio

REFERENCE STRAIN = <real>reference_strain

END [PARAMETERS FOR MODEL MOONEY_RIVLIN]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

NVLE 3D Orthotropic

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

BEGIN PARAMETERS FOR MODEL NLVE_3D_ORTHOTROPIC

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

COORDINATE SYSTEM = <string>coordinate_system_name

DIRECTION FOR ROTATION = <real>1|2|3

ALPHA = <real>alpha_in_degrees

SECOND DIRECTION FOR ROTATION = <real>1|2|3

SECOND ALPHA = <real>second_alpha_in_degrees

FICTITIOUS LOGA FUNCTION = <string>fict_loga_function_name

FICTITIOUS LOGA SCALE FACTOR = <real>fict_loga_scale_factor

In each of the five ‘‘PRONY’’ command lines and in

612

the RELAX TIME command line, the value of i can be from

1 through 30

1PSI PRONY <integer>i = <real>psi1_i

2PSI PRONY <integer>i = <real>psi2_i

3PSI PRONY <integer>i = <real>psi3_i

4PSI PRONY <integer>i = <real>psi4_i

5PSI PRONY <integer>i = <real>psi5_i

RELAX TIME <integer>i = <real>tau_i

REFERENCE TEMP = <real>tref

REFERENCE DENSITY = <real>rhoref

WLF C1 = <real>wlf_c1

WLF C2 = <real>wlf_c2

B SHIFT CONSTANT = <real>b_shift

SHIFT REF VALUE = <real>shift_ref

WWBETA 1PSI = <real>wwb_1psi

WWTAU 1PSI = <real>wwt_1psi

WWBETA 2PSI = <real>wwb_2psi

WWTAU 2PSI = <real>wwt_2psi

WWBETA 3PSI = <real>wwb_3psi

WWTAU 3PSI = <real>wwt_3psi

WWBETA 4PSI = <real>wwb_4psi

WWTAU 4PSI = <real>wwt_4psi

WWBETA 5PSI = <real>wwb_5psi

WWTAU 5PSI = <real>wwt_5psi

DOUBLE INTEG FACTOR = <real>dble_int_fac

REF RUBBERY HCAPACITY = <real>hcapr

REF GLASSY HCAPACITY = <real>hcapg

GLASS TRANSITION TEM = <real>tg

REF GLASSY C11 = <real>c11g

REF RUBBERY C11 = <real>c11r

REF GLASSY C22 = <real>c22g

REF RUBBERY C22 = <real>c22r

REF GLASSY C33 = <real>c33g

REF RUBBERY C33 = <real>c33r

REF GLASSY C12 = <real>c12g

REF RUBBERY C12 = <real>c12r

REF GLASSY C13 = <real>c13g

REF RUBBERY C13 = <real>c13r

REF GLASSY C23 = <real>c23g

REF RUBBERY C23 = <real>c23r

REF GLASSY C44 = <real>c44g

REF RUBBERY C44 = <real>c44r

REF GLASSY C55 = <real>c55g

REF RUBBERY C55 = <real>c55r

REF GLASSY C66 = <real>c66g

REF RUBBERY C66 = <real>c66r

REF GLASSY CTE1 = <real>cte1g

613

REF RUBBERY CTE1 = <real>cte1r

REF GLASSY CTE2 = <real>cte2g

REF RUBBERY CTE2 = <real>cte2r

REF GLASSY CTE3 = <real>cte3g

REF RUBBERY CTE3 = <real>cte3r

LINEAR VISCO TEST = <real>lvt

T DERIV GLASSY C11 = <real>dc11gdT

T DERIV RUBBERY C11 = <real>dc11rdT

T DERIV GLASSY C22 = <real>dc22gdT

T DERIV RUBBERY C22 = <real>dc22rdT

T DERIV GLASSY C33 = <real>dc33gdT

T DERIV RUBBERY C33 = <real>dc33rdT

T DERIV GLASSY C12 = <real>dc12gdT

T DERIV RUBBERY C12 = <real>dc12rdT

T DERIV GLASSY C13 = <real>dc13gdT

T DERIV RUBBERY C13 = <real>dc13rdT

T DERIV GLASSY C23 = <real>dc23gdT

T DERIV RUBBERY C23 = <real>dc23rdT

T DERIV GLASSY C44 = <real>dc44gdT

T DERIV RUBBERY C44 = <real>dc44rdT

T DERIV GLASSY C55 = <real>dc55gdT

T DERIV RUBBERY C55 = <real>dc55rdT

T DERIV GLASSY C66 = <real>dc66gdT

T DERIV RUBBERY C66 = <real>dc66rdT

T DERIV GLASSY CTE1 = <real>dcte1gdT

T DERIV RUBBERY CTE1 = <real>dcte1rdT

T DERIV GLASSY CTE2 = <real>dcte2gdT

T DERIV RUBBERY CTE2 = <real>dcte2rdT

T DERIV GLASSY CTE3 = <real>dcte3gdT

T DERIV RUBBERY CTE3 = <real>dcte3rdT

T DERIV GLASSY HCAPACITY = <real>dhcapgdT

T DERIV RUBBERY HCAPACITY = <real>dhcaprdT

REF PSIC = <real>psic_ref

T DERIV PSIC = <real>dpsicdT

T 2DERIV PSIC = <real>d2psicdT2

PSI EQ 2T = <real>psitt

PSI EQ 3T = <real>psittt

PSI EQ 4T = <real>psitttt

PSI EQ XX 11 = <real>psiXX11

PSI EQ XX 22 = <real>psiXX22

PSI EQ XX 33 = <real>psiXX33

PSI EQ XX 12 = <real>psiXX12

PSI EQ XX 13 = <real>psiXX13

PSI EQ XX 23 = <real>psiXX23

PSI EQ XX 44 = <real>psiXX44

PSI EQ XX 55 = <real>psiXX55

PSI EQ XX 66 = <real>psiXX66

614

PSI EQ XXT 11 = <real>psiXXT11

PSI EQ XXT 22 = <real>psiXXT22

PSI EQ XXT 33 = <real>psiXXT33

PSI EQ XXT 12 = <real>psiXXT12

PSI EQ XXT 13 = <real>psiXXT13

PSI EQ XXT 23 = <real>psiXXT23

PSI EQ XXT 44 = <real>psiXXT44

PSI EQ XXT 55 = <real>psiXXT55

PSI EQ XXT 66 = <real>psiXXT66

PSI EQ XT 1 = <real>psiXT1

PSI EQ XT 2 = <real>psiXT2

PSI EQ XT 3 = <real>psiXT3

PSI EQ XTT 1 = <real>psiXTT1

PSI EQ XTT 2 = <real>psiXTT2

PSI EQ XTT 3 = <real>psiXTT3

REF PSIA 11 = <real>psiA11

REF PSIA 22 = <real>psiA22

REF PSIA 33 = <real>psiA33

REF PSIA 12 = <real>psiA12

REF PSIA 13 = <real>psiA13

REF PSIA 23 = <real>psiA23

REF PSIA 44 = <real>psiA44

REF PSIA 55 = <real>psiA55

REF PSIA 66 = <real>psiA66

T DERIV PSIA 11 = <real>dpsiA11dT

T DERIV PSIA 22 = <real>dpsiA22dT

T DERIV PSIA 33 = <real>dpsiA33dT

T DERIV PSIA 12 = <real>dpsiA12dT

T DERIV PSIA 13 = <real>dpsiA13dT

T DERIV PSIA 23 = <real>dpsiA23dT

T DERIV PSIA 44 = <real>dpsiA44dT

T DERIV PSIA 55 = <real>dpsiA55dT

T DERIV PSIA 66 = <real>dpsiA66dT

REF PSIB 1 = <real>psiB1

REF PSIB 2 = <real>psiB2

REF PSIB 3 = <real>psiB3

T DERIV PSIB 1 = <real>dpsiB1dT

T DERIV PSIB 2 = <real>dpsiB2dT

T DERIV PSIB 3 = <real>dpsiB3dT

PSI POT TT = <real>psipotTT

PSI POT TTT = <real>psipotTTT

PSI POT TTTT = <real>psipotTTTT

PSI POT XT 1 = <real>psipotXT1

PSI POT XT 2 = <real>psipotXT2

PSI POT XT 3 = <real>psipotXT3

PSI POT XTT 1 = <real>psipotXTT1

PSI POT XTT 2 = <real>psipotXTT2

615

PSI POT XTT 3 = <real>psipotXTT3

PSI POT XXT 11 = <real>psipotXXT11

PSI POT XXT 22 = <real>psipotXXT22

PSI POT XXT 33 = <real>psipotXXT33

PSI POT XXT 12 = <real>psipotXXT12

PSI POT XXT 13 = <real>psipotXXT13

PSI POT XXT 23 = <real>psipotXXT23

PSI POT XXT 44 = <real>psipotXXT44

PSI POT XXT 55 = <real>psipotXXT55

PSI POT XXT 66 = <real>psipotXXT66

END [PARAMETERS FOR MODEL NLVE_3D_ORTHOTROPIC]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Stiff elastic

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL STIFF_ELASTIC

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

BULK MODULUS = <real>bulk_modulus

SHEAR MODULUS = <real>shear_modulus

LAMBDA = <real>lambda

SCALE FACTOR = <real>scale_factor

REFERENCE STRAIN = <real>reference_strain

END [PARAMETERS FOR MODEL STIFF_ELASTIC]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Swanson

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

BEGIN PARAMETERS FOR MODEL SWANSON

616

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

BULK MODULUS = <real>bulk_modulus

SHEAR MODULUS = <real>shear_modulus

LAMBDA = <real>lambda

A1 = <real>a1

P1 = <real>p1

B1 = <real>b1

Q1 = <real>q1

C1 = <real>c1

R1 = <real>r1

CUT OFF STRAIN = <real>ecut

THERMAL EXPANSION FUNCTION = <string>eth_function_name

TARGET E = <real>target_e

TARGET E FUNCTION = <string>etar_function_name

MAX POISSONS RATIO = <real>max_poissons_ratio

REFERENCE STRAIN = <real>reference_strain

END [PARAMETERS FOR MODEL SWANSON]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Viscoelastic Swanson

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

BEGIN PARAMETERS FOR MODEL VISCOELASTIC_SWANSON

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

BULK MODULUS = <real>bulk_modulus

SHEAR MODULUS = <real>shear_modulus

LAMBDA = <real>lambda

A1 = <real>a1

P1 = <real>p1

B1 = <real>b1

Q1 = <real>q1

C1 = <real>c1

R1 = <real>r1

CUT OFF STRAIN = <real>ecut

THERMAL EXPANSION FUNCTION = <string>eth_function_name

PRONY SHEAR INFINITY = <real>ginf

PRONY SHEAR 1 = <real>g1

PRONY SHEAR 2 = <real>g2

PRONY SHEAR 3 = <real>g3

PRONY SHEAR 4 = <real>g4

PRONY SHEAR 5 = <real>g5

PRONY SHEAR 6 = <real>g6

PRONY SHEAR 7 = <real>g7

617

PRONY SHEAR 8 = <real>g8

PRONY SHEAR 9 = <real>g9

PRONY SHEAR 10 = <real>g10

SHEAR RELAX TIME 1 = <real>tau1

SHEAR RELAX TIME 2 = <real>tau2

SHEAR RELAX TIME 3 = <real>tau3

SHEAR RELAX TIME 4 = <real>tau4

SHEAR RELAX TIME 5 = <real>tau5

SHEAR RELAX TIME 6 = <real>tau6

SHEAR RELAX TIME 7 = <real>tau7

SHEAR RELAX TIME 8 = <real>tau8

SHEAR RELAX TIME 9 = <real>tau9

SHEAR RELAX TIME 10 = <real>tau10

WLF COEF C1 = <real>wlf_c1

WLF COEF C2 = <real>wlf_c2

WLF TREF = <real>wlf_tref

NUMERICAL SHIFT FUNCTION = <string>ns_function_name

TARGET E = <real>target_e

TARGET E FUNCTION = <string>etar_function_name

MAX POISSONS RATIO = <real>max_poissons_ratio

REFERENCE STRAIN = <real>reference_strain

END [PARAMETERS FOR MODEL VISCOELASTIC_SWANSON]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Traction Decay

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

#

BEGIN PARAMETERS FOR MODEL TRACTION_DECAY

NORMAL DECAY LENGTH = <real>

TANGENTIAL DECAY LENGTH = <real>

END [PARAMETERS FOR MODEL TRACTION_DECAY]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Tvergaard Hutchinson

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

#

BEGIN PARAMETERS FOR MODEL TVERGAARD_HUTCHINSON

INIT TRACTION METHOD = IGNORE|ADD (IGNORE)

LAMBDA_1 = <real>

LAMBDA_2 = <real>

NORMAL LENGTH SCALE = <real>

TANGENTIAL LENGTH SCALE = <real>

PEAK TRACTION = <real>

618

PENETRATION STIFFNESS MULTIPLIER = <real>

NORMAL INITIAL TRACTION DECAY LENGTH = <real>

TANGENTIAL INITIAL TRACTION DECAY LENGTH = <real>

USE ELASTIC UNLOADING = NO|YES (YES)

END [PARAMETERS FOR MODEL TVERGAARD_HUTCHINSON]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Thouless Parmigiani

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

#

BEGIN PARAMETERS FOR MODEL THOULESS_PARMIGIANI

INIT TRACTION METHOD = IGNORE|ADD (IGNORE)

LAMBDA_1_N = <real>

LAMBDA_2_N = <real>

LAMBDA_1_T = <real>

LAMBDA_2_T = <real>

NORMAL LENGTH SCALE = <real>

TANGENTIAL LENGTH SCALE = <real>

PEAK NORMAL TRACTION = <real>

PEAK TANGENTIAL TRACTION = <real>

PENETRATION STIFFNESS MULTIPLIER = <real>

USE ELASTIC UNLOADING = NO|YES (YES)

END [PARAMETERS FOR MODEL THOULESS_PARMIGIANI]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

RVE

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

#

BEGIN PARAMETERS FOR MODEL RVE

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

END [PARAMETERS FOR MODEL RVE]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Define mesh

BEGIN FINITE ELEMENT MODEL <string>mesh_descriptor

DATABASE NAME = <string>mesh_file_name

DATABASE TYPE = <string>database_type(exodusII)

ALIAS <string>mesh_identifier AS <string>user_name

OMIT BLOCK <string>block_list

COMPONENT SEPARATOR CHARACTER = <string>separator

BEGIN PARAMETERS FOR BLOCK [<string list>block_names]

619

MATERIAL <string>material_name

SOLID MECHANICS USE MODEL <string>model_name

INCLUDE ALL BLOCKS

REMOVE BLOCK = <string list>block_names

SECTION = <string>section_id

HOURGLASS STIFFNESS =

<real>hour_glass_stiff_value(solid = 0.05,

shell/membrane = 0.0)

HOURGLASS VISCOSITY =

<real>hour_glass_visc_value(solid = 0.0,

shell/membrane = 0.0)

MEMBRANE HOURGLASS STIFFNESS =

<real>memb_hour_glass_stiff_value(0.0)

MEMBRANE HOURGLASS VISCOSITY =

<real>memb_hour_glass_visc_value(0.0)

BENDING HOURGLASS STIFFNESS =

<real>bend_hour_glass_stiff_value(0.0)

BENDING HOURGLASS VISCOSITY =

<real>bend_hour_glass_visc_value(0.0)

TRANSVERSE SHEAR HOURGLASS STIFFNESS =

<real>tshr_hour_glass_stiff_value(0.0)

TRANSVERSE SHEAR HOURGLASS VISCOSITY =

<real>tshr_hour_glass_visc_value(0.0)

EFFECTIVE MODULI MODEL = <string>PRESTO|PRONTO|

CURRENT|ELASTIC(PRONTO)

ELEMENT NUMERICAL FORMULATION = <string>OLD|NEW(OLD)

ACTIVE FOR PROCEDURE <string>proc_name DURING PERIODS

<string list>period_names

INACTIVE FOR PROCEDURE <string>proc_name DURING PERIODS

<string list>period_names

END [PARAMETERS FOR BLOCK <string list>block_names]

END [FINITE ELEMENT MODEL <string>mesh_descriptor]

Element sections

BEGIN SOLID SECTION <string>solid_section_name

COORDINATE SYSTEM = <string>Coordinate_system_name

FORMULATION = <string>MEAN_QUADRATURE|

SELECTIVE_DEVIATORIC|VOID(MEAN_QUADRATURE)

DEVIATORIC PARAMETER = <real>deviatoric_param

STRAIN INCREMENTATION = <string>MIDPOINT_INCREMENT|

STRONGLY_OBJECTIVE|NODE_BASED(MIDPOINT_INCREMENT)

NODE BASED ALPHA FACTOR = <real>bulk_stress_weight(0.01)

NODE BASED BETA FACTOR = <real>shear stress_weight(0.35)

HOURGLASS FORMULATION = <string>TOTAL|INCREMENTAL(INCREMENTAL)

HOURGLASS INCREMENT = <string>ENDSTEP|MIDSTEP (ENDSTEP)

HOURGLASS ROTATION = <string> APPROXIMATE|SCALED (APPROXIMATE)

620

RIGID BODY = <string>rigid_body_name

RIGID BODIES FROM ATTRIBUTES = <integer>first_id

TO <integer>last_id

USE LAME|STRUMENTO(LAME)

END [SOLID SECTION <string>solid_section_name]

BEGIN COHESIVE SECTION <string>cohesive_section_name

NUMBER OF INTEGRATION POINTS = <integer>num_int_points(1)

END [COHESIVE SECTION <string>cohesive_section_name]

BEGIN SHELL SECTION <string>shell_section_name

THICKNESS = <real>shell_thickness

THICKNESS MESH VARIABLE =

<string>THICKNESS|<string>var_name

THICKNESS TIME STEP = <real>time_value

THICKNESS SCALE FACTOR = <real>thick_scale_factor(1.0)

INTEGRATION RULE = TRAPEZOID|GAUSS|LOBATTO|SIMPSONS|

USER(TRAPEZOID)

NUMBER OF INTEGRATION POINTS = <integer>num_int_points(5)

FORMULATION = MEAN_QUADRATURE|NQUAD (MEAN_QUADRATURE)

BEGIN USER INTEGRATION RULE

<real>location_1 <real>weight_1

<real>location_2 <real>weight_2

.

.

<real>location_n <real>weight_n

END [USER INTEGRATION RULE]

LOFTING FACTOR = <real>lofting_factor(0.5)

OFFSET MESH VARIABLE = <string>var_name

ORIENTATION = <string>orientation_name

DRILLING STIFFNESS FACTOR = <real>stiffness_factor(0.0)

RIGID BODY = <string>rigid_body_name

RIGID BODIES FROM ATTRIBUTES = <integer>first_id

TO <integer>last_id

USE LAME|STRUMENTO(LAME)

END [SHELL SECTION <string>shell_section_name]

BEGIN MEMBRANE SECTION <string>membrane_section_name

THICKNESS = <real>mem_thickness

THICKNESS MESH VARIABLE =

<string>THICKNESS|<string>var_name

THICKNESS TIME STEP = <real>time_value

THICKNESS SCALE FACTOR = <real>thick_scale_factor(1.0)

FORMULATION = <string>MEAN_QUADRATURE|

SELECTIVE_DEVIATORIC(MEAN QUADRATURE)

DEVIATORIC PARAMETER = <real>deviatoric_param

LOFTING FACTOR = <real>lofting_factor(0.5)

621

RIGID BODY = <string>rigid_body_name

RIGID BODIES FROM ATTRIBUTES = <integer>first_id

TO <integer>last_id

END [MEMBRANE SECTION <string>membrane_section_name]

BEGIN TRUSS SECTION <string>truss_section_name

AREA = <real>cross_sectional_area

INITIAL LOAD = <real>initial_load

PERIOD = <real>period

RIGID BODY = <string>rigid_body_name

RIGID BODIES FROM ATTRIBUTES = <integer>first_id

TO <integer>last_id

USE LAME|STRUMENTO(LAME)

END [TRUSS SECTION <string>truss_section_name]

BEGIN SUPERELEMENT SECTION <string>section_name

BEGIN MAP

<integer>node_index_1 <integer>component_index_1

<integer>node_index_2 <integer>component_index_2

...

<integer>node_index_n <integer>component_index_n

END

BEGIN STIFFNESS MATRIX

<real>k_1_1 <real>k_1_2 ... <real>k_1_n

<real>k_2_1 <real>k_2_2 ... <real>k_2_n

...

<real>k_n_1 <real>k_n_2 ... <real>k_n_n

END

BEGIN DAMPING MATRIX

<real>c_1_1 <real>c_1_2 ... <real>c_1_n

<real>c_2_1 <real>c_2_2 ... <real>c_2_n

...

<real>c_n_1 <real>c_n_2 ... <real>c_n_n

END

BEGIN MASS MATRIX

<real>m_1_1 <real>m_1_2 ... <real>m_1_n

<real>m_2_1 <real>m_2_2 ... <real>m_2_n

...

<real>m_n_1 <real>m_n_2 ... <real>m_n_n

END

FILE = <string>netcdf_file_name

END [SUPERELEMENT SECTION <string>section_name]

Output scheduler

622

BEGIN OUTPUT SCHEDULER <string>scheduler_name

START TIME = <real>output_start_time

TIMESTEP ADJUSTMENT INTERVAL = <integer>steps

AT TIME <real>time_begin INCREMENT =

<real>time_increment_dt

ADDITIONAL TIMES = <real>output_time1

<real>output_time2 ...

AT STEP <integer>step_begin INCREMENT =

<integer>step_increment

ADDITIONAL STEPS = <integer>output_step1

<integer>output_step2 ...

TERMINATION TIME = <real>termination_time_value

END [OUTPUT SCHEDULER <string>scheduler_name]

FETI equation solver

BEGIN FETI EQUATION SOLVER <string>name

#

convergence commands

MAXIMUM ITERATIONS = <integer>max_iter(500)

RESIDUAL NORM TOLERANCE = <real>resid_tol(1.0e-6)

#

memory usage commands

PARAM-STRING "precision" VALUE <string>"single"|"double"

("double")

PRECONDITIONING METHOD = NONE|LUMPED|DIRICHLET(DIRICHLET)

MAXIMUM ORTHOGONALIZATION = <integer>max_orthog(500)

#

solver commands

LOCAL SOLVER = SKYLINE|SPARSE|ITERATIVE(SPARSE)

COARSE SOLVER = SKYLINE|SPARSE|ITERATIVE(SPARSE)

NUM LOCAL SUBDOMAINS = <integer>num_local_subdomains

END [FETI EQUATION SOLVER <string>name]

Begin Procedure scope

BEGIN ADAGIO PROCEDURE <string>adagio_procedure_name

BEGIN PROCEDURAL TRANSFER <string>name

BLOCK = <string list>block_name

INCLUDE ALL BLOCKS

REMOVE BLOCK = <string list>block_name

BEGIN INTERPOLATION TRANSFER <string>name

BLOCK BY BLOCK

NEAREST ELEMENT COPY

623

SEND BLOCKS = <string list>block_name

SEND COORDINATES = ORIGINAL|CURRENT

RECEIVE BLOCKS = <string list>block_name

RECEIVE COORDINATES = ORIGINAL|CURRENT

TRANSFORMATION TYPE = NONE|RIGIDBODY

END [INTERPOLATION TRANSFER <string>name]

END [PROCEDURAL TRANSFER <string>name]

Time block

BEGIN TIME CONTROL

BEGIN TIME STEPPING BLOCK <string>time_block_name

START TIME = <real>start_time_value

BEGIN PARAMETERS FOR ADAGIO REGION

<string>region_name

TIME INCREMENT = <real>time_increment_value

NUMBER OF TIME STEPS = <integer>nsteps

TIME INCREMENT FUNCTION = <string>time_function

END [PARAMETERS FOR ADAGIO REGION

<string>region_name]

END [TIME STEPPING BLOCK <string>time_block_name]

TERMINATION TIME = <real>termination_time

END TIME CONTROL

Begin Region scope

BEGIN ADAGIO REGION <string>adagio_region_name

USE FINITE ELEMENT MODEL <string>model_name

GLOBAL ENERGY REPORTING = EXACT|APPROXIMATE|OFF (EXACT)

EXTENSIVE RIGID BODY VARS OUTPUT = OFF|HISTORY|RESULTS|ALL (ALL)

implicit dynamic time integration

BEGIN IMPLICIT DYNAMICS

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

USE HHT INTEGRATION

ALPHA = <real>alpha(0.0) [DURING <string list>period_names]

GAMMA = <real>beta(0.5) [DURING <string list>period_names]

BETA = <real>beta(0.25) [DURING <string list>period_names]

TIME INTEGRATION CONTROL = <string>ADAPTIVE|COMPUTERESIDUAL|

IGNORE(IGNORE) [DURING <string list>period_names]

624

INCREASE ERROR THRESHOLD = <real>increase_threshold(0.02)

[DURING <string list>period_names]

HOLD ERROR THRESHOLD = <real>hold_threshold(0.10)

[DURING <string list>period_names]

DECREASE ERROR THRESHOLD = <real>decrease_threshold(0.25)

[DURING <string list>period_names]

END [IMPLICIT DYNAMICS]

Element death

BEGIN ELEMENT DEATH <string>death_name

#

block set commands

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE BLOCK = <string list>block_names

#

criterion commands

CRITERION IS AVG|MAX|MIN NODAL VALUE OF

<string>var_name <|<=|=|>=|> <real>tolerance

CRITERION IS ELEMENT VALUE OF

<string>var_name <|<=|=|>=|> <real>tolerance [KILL WHEN

<integer>num_intg INTEGRATION POINTS REMAIN]

CRITERION IS GLOBAL VALUE OF

<string>var_name <|<=|=|>=|> <real>tolerance

ELEMENT BLOCK SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

MATERIAL CRITERION

= <string list>material_model_names [KILL WHEN

<integer>num_intg INTEGRATION POINTS REMAIN]

#

evaluation commands

CHECK STEP INTERVAL = <integer>num_steps

CHECK TIME INTERVAL = <real>delta_t

DEATH START TIME = <real>time

#

miscellaneous option commands

SUMMARY OUTPUT STEP INTERVAL = <integer>output_step_interval

SUMMARY OUTPUT TIME INTERVAL = <real>output_time_interval

DEATH METHOD = <string>DEACTIVATE ELEMENT|

DEACTIVATE NODAL MPCS|DISCONNECT ELEMENT|

625

INSERT COHESIVE ZONES(DEACTIVATE ELEMENT)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

#

cohesive zone setup commands

COHESIVE SECTION = <string>sect_name

COHESIVE MATERIAL = <string>mat_name

COHESIVE MODEL = <string>model_name

COHESIVE ZONE INITIALIZATION METHOD = <string>NONE|

ELEMENT STRESS AVG(NONE)

END [ELEMENT DEATH <string>death_name]

Derived output

BEGIN DERIVED OUTPUT

COMPUTE AND STORE VARIABLE =

<string>derived_quantity_name

END DERIVED OUTPUT

Initial condition

BEGIN INITIAL CONDITION

#

mesh-entity set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

variable identification commands

INITIALIZE VARIABLE NAME = <string>var_name

VARIABLE TYPE = [NODE|EDGE|FACE|ELEMENT|GLOBAL]

#

specification command

MAGNITUDE = <real list>initial_values

#

probability distribution commands

DISTRIBUTION = WEIBULL PARAMETERS = <real list>dist_values

SEED = <integer>dist_seed

DISTRIBUTION REFERENCE = NODE|EDGE|FACE|ELEMENT|GLOBAL

<string>size_var_name VALUE = <real>size_ref_val

#

input mesh commands

READ VARIABLE = <string>var_name

626

COPY VARIABLE = <string>var_name

[FROM MODEL <string>model_name]

TIME = <real>time

#

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name |

SURFACE SUBROUTINE = <string>subroutine_name |

ELEMENT BLOCK SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

additional command

SCALE FACTOR = <real>scale_factor(1.0)

END [INITIAL CONDITION]

Boundary conditions

BEGIN FIXED DISPLACEMENT

#

node set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

component commands

COMPONENT = <string>X/Y/Z | COMPONENTS =

<string>X/Y/Z

#

additional command

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [FIXED DISPLACEMENT]

BEGIN PRESCRIBED DISPLACEMENT

#

node set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

627

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

function commands

DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z |

CYLINDRICAL AXIS = <string>defined_axis |

RADIAL AXIS = <string>defined_axis

FUNCTION = <string>function_name

#

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

external database commands

READ VARIABLE = <string>var_name

COPY VARIABLE = <string>var_name

[FROM MODEL <string>model_name]

TIME = <real>time

#

additional commands

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [PRESCRIBED DISPLACEMENT]

BEGIN PRESCRIBED VELOCITY

#

node set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

function commands

628

DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z |

CYLINDRICAL AXIS = <string>defined_axis |

RADIAL AXIS = <string>defined_axis

FUNCTION = <string>function_name

#

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

external database commands

READ VARIABLE = <string>var_name

COPY VARIABLE = <string>var_name

[FROM MODEL <string>model_name]

TIME = <real>time

#

additional commands

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [PRESCRIBED VELOCITY]

BEGIN PRESCRIBED ACCELERATION

#

node set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

function commands

DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z

FUNCTION = <string>function_name

#

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

629

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

external database commands

READ VARIABLE = <string>var_name

COPY VARIABLE = <string>var_name

[FROM MODEL <string>model_name]

TIME = <real>time

#

additional commands

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [PRESCRIBED ACCELERATION]

BEGIN FIXED ROTATION

#

node set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

component commands

COMPONENT = <string>X/Y/Z | COMPONENTS =

<string>X/Y/Z

#

additional command

ACTIVE PERIODS = <string list>periods_names

INACTIVE PERIODS = <string list>periods_names

END [FIXED ROTATION]

BEGIN PRESCRIBED ROTATION

#

node set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

630

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

function commands

DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z

FUNCTION = <string>function_name

#

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

external database commands

READ VARIABLE = <string>var_name

COPY VARIABLE = <string>var_name

[FROM MODEL <string>model_name]

TIME = <real>time

#

additional commands

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [PRESCRIBED ROTATION]

BEGIN PRESCRIBED ROTATIONAL VELOCITY

#

node set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

function commands

DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z

FUNCTION = <string>function_name

#

user subroutine commands

631

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

external database commands

READ VARIABLE = <string>var_name

COPY VARIABLE = <string>var_name

[FROM MODEL <string>model_name]

TIME = <real>time

#

additional commands

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [PRESCRIBED ROTATIONAL VELOCITY]

BEGIN REFERENCE AXIS ROTATION

#

block command

BLOCK = <string list>block_names

#

specification commands

REFERENCE AXIS X FUNCTION = <string>function_name

REFERENCE AXIS Y FUNCTION = <string>function_name

REFERENCE AXIS Z FUNCTION = <string>function_name

#

rotation commands

ROTATION = <string>function_name

ROTATIONAL VELOCITY = <string>function_name

#

torque command

TORQUE = <string>function_name

#

additional command

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [REFERENCE AXIS ROTATION]

BEGIN INITIAL VELOCITY

#

node set commands

632

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

direction commands

COMPONENT = <string>X|Y|Z |

DIRECTION = <string>defined_direction

MAGNITUDE = <real>magnitude_of_velocity

#

angular velocity commands

CYLINDRICAL AXIS = <string>defined_axis

ANGULAR VELOCITY = <real>angular_velocity

#

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

END [INITIAL VELOCITY]

BEGIN PRESSURE

#

surface set commands

SURFACE = <string list>surface_names

REMOVE SURFACE = <string list>surface_names

#

function command

FUNCTION = <string>function_name

#

user subroutine commands

SURFACE SUBROUTINE = <string>subroutine_name |

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

633

#

external pressure sources

READ VARIABLE = <string>variable_name

OBJECT TYPE = <string>NODE|FACE(NODE)

TIME = <real>time

FIELD VARIABLE = <string>field_variable

#

output external forces from pressure

EXTERNAL FORCE CONTRIBUTION OUTPUT NAME

= <string>variable_name

#

additional commands

USE DEATH = <string>death_name

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [PRESSURE]

BEGIN TRACTION

#

surface set commands

SURFACE = <string list>surface_names

REMOVE SURFACE = <string list>surface_names

#

function commands

DIRECTION = <string>direction_name

FUNCTION = <string>function_name

#

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

additional commands

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [TRACTION]

BEGIN PRESCRIBED FORCE

#

node set commands

634

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

function commands

DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z

FUNCTION = <string>function_name

#

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

additional commands

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [PRESCRIBED FORCE]

BEGIN PRESCRIBED MOMENT

#

node set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

function commands

DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z

FUNCTION = <string>function_name

#

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name

635

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

additional commands

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [PRESCRIBED MOMENT]

BEGIN GRAVITY

#

node set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

DIRECTION = <string>defined_direction

FUNCTION = <string>function_name

GRAVITATIONAL CONSTANT = <real>g_constant

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [GRAVITY]

BEGIN PRESCRIBED TEMPERATURE

#

block set commands

BLOCK = <string_list>block_names

INCLUDE ALL BLOCKS

REMOVE BLOCK

#

function command

FUNCTION = <string>function_name

#

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

636

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

read variable commands

READ VARIABLE = <string>mesh_var_name

COPY VARIABLE = <string>var_name

[FROM MODEL <string>model_name]

TIME = <real>time

TEMPERATURE TYPE = SOLID_ELEMENT|SHELL_ELEMENT(SOLID_ELEMENT)

#

coupled analysis commands

RECEIVE FROM TRANSFER [FIELD TYPE = NODE|ELEMENT(NODE)]

#

additional commands

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [PRESCRIBED TEMPERATURE]

BEGIN PORE PRESSURE

#

block set commands

BLOCK = <string_list>block_names

INCLUDE ALL BLOCKS

REMOVE BLOCK

#

function command

FUNCTION = <string>function_name

#

user subroutine commands

ELEMENT BLOCK SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

read variable commands

READ VARIABLE = <string>mesh_var_name

COPY VARIABLE = <string>var_name

[FROM MODEL <string>model_name]

TIME = <real>time

637

#

coupled analysis commands

RECEIVE FROM TRANSFER [FIELD TYPE = NODE|ELEMENT(NODE)]

#

additional commands

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [PORE PRESSURE]

BEGIN FLUID PRESSURE

#

surface set commands

SURFACE = <string list>surface_names

#

specification commands

DENSITY = <real>fluid_density

DENSITY FUNCTION = <string>density_function_name

GRAVITATIONAL CONSTANT = <real>gravitational_acceleration

FLUID SURFACE NORMAL = <string>global_component_names

DEPTH = <real>fluid_depth

DEPTH FUNCTION = <string>depth_function_name

#

additional commands

REFERENCE POINT = <string>reference_point_name

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [FLUID PRESSURE]

Specialized boundary conditions

BEGIN BLAST PRESSURE

SURFACE = <string list>surface_ids

REMOVE SURFACE = <string list>surface_ids

BURST TYPE = <string>SURFACE|AIR

TNT MASS IN LBS = <real>tnt_mass_lbs

BLAST TIME = <real>blast_time

BLAST LOCATION = <real>loc_x <real>loc_y <real>loc_z

ATMOSPHERIC PRESSURE IN PSI = <real>atmospheric_press

AMBIENT TEMPERATURE IN FAHRENHEIT = <real>temperature

FEET PER MODEL UNITS = <real>feet

MILLISECONDS PER MODEL UNITS = <real>milliseconds

PSI PER MODEL UNITS = <real>psi

PRESSURE SCALE FACTOR = <real>pressure_scale(1.0)

IMPULSE SCALE FACTOR = <real>impulse_scale(1.0)

POSITIVE DURATION SCALE FACTOR = <real>duration_scale(1.0)

ACTIVE PERIODS = <string list>period_names

638

INACTIVE PERIODS = <string list>period_names

END [BLAST PRESSURE]

BEGIN MPC

#

Master/Slave MPC commands

MASTER NODE SET = <string list>master_nset

MASTER NODES = <integer list>master_nodes

MASTER SURFACE = <string list>master_surf

MASTER BLOCK = <string list>master_block

SLAVE NODE SET = <string list>slave_nset

SLAVE NODES = <integer list>slave_nodes

SLAVE SURFACE = <string list>slave_surf

SLAVE BLOCK = <string list>slave_block

#

Tied contact search command

SEARCH TOLERANCE = <real>tolerance

VOLUMETRIC SEARCH TOLERANCE = <real>vtolerance

#

Tied MPC commands

TIED NODES = <integer list>tied_nodes

TIED NODE SET = <string list>tied_nset

END [MPC]

RESOLVE MULTIPLE MPCS = ERROR|FIRST WINS|LAST WINS(ERROR)

BEGIN SUBMODEL

#

EMBEDDED BLOCKS = <string list>embedded_block

ENCLOSING BLOCKS = <string list>enclosing_block

END [SUBMODEL]

Contact

BEGIN CONTACT DEFINITION <string>name

#

ENFORCEMENT = <string>TIED|FRICTIONLESS|FRICTIONAL

#

CONTACT SURFACE <string>name

CONTAINS <string list>surface_names

#

BEGIN CONTACT SURFACE <string>name

BLOCK = <string list>block_names

SURFACE = <string list>surface_names

NODE SET = <string list>node_set_names

REMOVE BLOCK = <string list>block_names

639

REMOVE SURFACE = <string list>surface_names

REMOVE NODE SET = <string list>nodelist_names

END [CONTACT SURFACE <string>name]

#

CONTACT NODE SET <string>surface_name

CONTAINS <string>nodelist_names

#

BEGIN SURFACE NORMAL SMOOTHING

ANGLE = <real>angle_in_deg

DISTANCE = <real>distance

RESOLUTION = <string>NODE|EDGE

END [SURFACE NORMAL SMOOTHING]

#

BEGIN FRICTIONLESS MODEL <string>name

END [FRICTIONLESS MODEL <string>name]

#

BEGIN CONSTANT FRICTION MODEL <string>name

FRICTION COEFFICIENT = <real>coeff

END [CONSTANT FRICTION MODEL <string>name]

#

BEGIN TIED MODEL <string>name

END [TIED MODEL <string>name]

#

BEGIN GLUED MODEL <string>name

END [GLUED MODEL <string>name]

#

BEGIN SEARCH OPTIONS [<string>name]

GLOBAL SEARCH INCREMENT = <integer>num_steps(1)

GLOBAL SEARCH ONCE = <string>ON|OFF(OFF)

SEARCH TOLERANCE = <string>AUTOMATIC|USER_DEFINED(AUTOMATIC)

NORMAL TOLERANCE = <real>norm_tol

TANGENTIAL TOLERANCE = <real>tang_tol

CAPTURE TOLERANCE = <real>cap_tol

TENSION RELEASE = <real>ten_release

SLIP PENALTY = <real>slip_pen

FACE MULTIPLIER = <real>face_multiplier(0.1)

SECONDARY DECOMPOSITION = <string>ON|OFF(OFF)

END [SEARCH OPTIONS <string>name]

#

BEGIN INTERACTION DEFAULTS [<string>name]

CONTACT SURFACES = <string list>surface_names

GENERAL CONTACT = <string>ON|OFF(OFF)

FRICTION MODEL = <string>friction_model_name|

FRICTIONLESS(FRICTIONLESS)

END [INTERACTION DEFAULTS <string>name]

#

BEGIN INTERACTION [<string>name]

640

MASTER = <string>surface

SLAVE = <string>surface

CAPTURE TOLERANCE = <real>cap_tol

NORMAL TOLERANCE = <real>norm_tol

TANGENTIAL TOLERANCE = <real>tang_tol

FRICTION MODEL = <string>friction_model_name|

FRICTIONLESS(FRICTIONLESS)

PUSHBACK FACTOR = <real>pushback_factor(1.0)

TENSION RELEASE = <real>ten_release

TENSION RELEASE FUNCTION = <string>ten_release_func

FRICTION COEFFICIENT = <real>coeff

FRICTION COEFFICIENT FUNCTION = <string>coeff_func

END [INTERACTION <string>name]

#

END [CONTACT DEFINITION <string>name]

Results specification

BEGIN RESULTS OUTPUT <string>results_name

DATABASE NAME = <string>results_file_name

DATABASE TYPE =

<string>database_type(exodusII)

OVERWRITE = <string>OFF|ON|TRUE|FALSE|YES|NO

(ON|TRUE|YES)

TITLE <string>user_title

NODE <string>variable_name

[AS <string>dbase_variable_name] ...

<string>variable_name [AS

<string>dbase_variable_name]

| NODAL <string>variable_name

[AS <string>dbase_variable_name] ...

<string>variable_name [AS

<string>dbase_variable_name]

NODESET <string>variable_name

[AS <string>dbase_variable_name] ...

<string>variable_name [AS

<string>dbase_variable_name]

| NODESET <string>variable_name

[AS <string>dbase_variable_name]

INCLUDE|ON|EXCLUDE <string list>nodelist_names

... <string>variable_name

[AS <string>dbase_variable_name] INCLUDE|ON|EXCLUDE

<string list>nodelist_names

FACE <string>variable_name

[AS <string>dbase_variable_name] ...

<string>variable_name [AS

<string>dbase_variable_name]

641

| FACE <string>variable_name

[AS <string>dbase_variable_name]

INCLUDE|ON|EXCLUDE <string list>surface_names

... <string>variable_name

[AS <string>dbase_variable_name] INCLUDE|ON|EXCLUDE

<string list>surface_names

ELEMENT <string>variable_name

[AS <string>dbase_variable_name] ...

<string>variable_name [AS

<string>dbase_variable_name]

| ELEMENT <string>variable_name

[AS <string>dbase_variable_name]

INCLUDE|ON|EXCLUDE <string list>block_names

... <string>variable_name

[AS dbase_variable_name] INCLUDE|ON|EXCLUDE

<string list>block_names

GLOBAL <string>variable_name

[AS <string>dbase_variable_name] ...

<string>variable_name [AS

<string>dbase_variable_name]

INCLUDE = <string>list_of_included_element_blocks

EXCLUDE = <string>list_of_excluded_element_blocks

OUTPUT MESH = EXPOSED_SURFACE|BLOCK_SURFACE

COMPONENT SEPARATOR CHARACTER = <string>character|NONE

START TIME = <real>output_start_time

TIMESTEP ADJUSTMENT INTERVAL = <integer>steps

AT TIME <real>time_begin INCREMENT =

<real>time_increment_dt

ADDITIONAL TIMES = <real>output_time1

<real>output_time2 ...

AT STEP <integer>step_begin INCREMENT =

<integer>step_increment

ADDITIONAL STEPS = <integer>output_step1

<integer>output_step2 ...

TERMINATION TIME = <real>termination_time_value

SYNCHRONIZE OUTPUT

USE OUTPUT SCHEDULER <string>scheduler name

OUTPUT ON SIGNAL = <string>SIGALRM|SIGFPE|SIGHUP|SIGINT|

SIGPIPE|SIGQUIT|SIGTERM|SIGUSR1|SIGUSR2|SIGABRT|

SIGKILL|SIGILL|SIGSEGV

END [RESULTS OUTPUT <string>results_name]

User output

BEGIN FILTER <string>filter_name

ACOEFF = <real_list>a_coeff

BCOEFF = <real_list>b_coeff

642

INTERPOLATION TIME STEP = <real>ts

END [FILTER]

BEGIN USER OUTPUT

#

mesh-entity set commands

NODE SET = <string_list>nodelist_names

SURFACE = <string_list>surface_names

BLOCK = <string_list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list> surface_names

REMOVE BLOCK = <string list>block_names

#

compute result commands

COMPUTE GLOBAL <string>result_var_name AS

<string>SUM | AVERAGE | MAX | MIN OF <string>NODAL |

ELEMENT <string>value_var_name [(<integer>component_num)]

COMPUTE NODAL <string>result_var_name AS

<string>MAX OVER TIME|MIN OVER TIME|ABSOLUTE VALUE MAX

OVER TIME OF NODAL <string>value_var_name

[(<integer>component_num)]

COMPUTE ELEMENT <string>result_var_name AS

<string>MAX OVER TIME|MIN OVER TIME|ABSOLUTE VALUE MAX

OVER TIME OF ELEMENT <string>value_var_name

[(<integer>component_num)]

#

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name |

SURFACE SUBROUTINE = <string>subroutine_name |

ELEMENT BLOCK SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

copy command

COPY ELEMENT VARIABLE <string>ev_name TO NODAL

VARIABLE <string>nv_name

#

variable transformation

TRANSFORM NODAL|ELEMENT VARIABLE <string>source_variable

TO COORDINATE SYSTEM <string>coord_sys_name AS target_name

#

643

compute for element death

COMPUTE AT EVERY TIME STEP

#

additional command

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [USER OUTPUT]

User variable

BEGIN USER VARIABLE <string>var_name

TYPE = <string>NODE|ELEMENT|GLOBAL

[<string>REAL|INTEGER LENGTH = <integer>length]|

[<string>SYM_TENSOR|FULL_TENSOR|VECTOR]

GLOBAL OPERATOR = <string>SUM|MIN|MAX

INITIAL VALUE = <real list>values

INITIAL VARIATION = <real list>values LINEAR DISTRIBUTION

USE WITH RESTART

END [USER VARIABLE <string>var_name]

History specification

BEGIN HISTORY OUTPUT <string>history_name

DATABASE NAME = <string>history_file_name

DATABASE TYPE =

<string>database_type(exodusII)

OVERWRITE = <string>OFF|ON|TRUE|FALSE|YES|NO

(ON|TRUE|YES)

TITLE <string>user_title

GLOBAL <string>variable_name

[AS <string>history_variable_name]

NODE|NODAL|EDGE|FACE|ELEMENT <string>variable_name

AT NODE|NODAL|EDGE|FACE|ELEMENT <integer>entity_id

[AS <string>history_variable_name]

NODE|NODAL|EDGE|FACE|ELEMENT <string>variable_name

NEAREST LOCATION <real>global_x,

<real>global_y>, <real>global_z

[AS <string>history_variable_name]

START TIME = <real>output_start_time

TIMESTEP ADJUSTMENT INTERVAL = <integer>steps

AT TIME <real>time_begin INCREMENT =

<real>time_increment_dt

ADDITIONAL TIMES = <real>output_time1

<real>output_time2 ...

AT STEP <integer>step_begin INCREMENT =

<integer>step_increment

644

ADDITIONAL STEPS = <integer>output_step1

<integer>output_step2 ...

TERMINATION TIME = <real>termination_time_value

SYNCHRONIZE OUTPUT

USE OUTPUT SCHEDULER <string>scheduler_name

OUTPUT ON SIGNAL = <string>SIGALRM|SIGFPE|

SIGHUP|SIGINT|SIGPIPE|SIGQUIT|SIGTERM|

SIGUSR1|SIGUSR2|SIGABRT|

SIGKILL|SIGILL|SIGSEGV

END [HISTORY OUTPUT <string>history_name]

Heartbeat specification

BEGIN HEARTBEAT OUTPUT <string>heartbeat_name

STREAM NAME = <string>heartbeat_file_name

FORMAT = SPYHIS|DEFAULT

GLOBAL <string>variable_name

[AS <string>heartbeat_variable_name]

NODE|NODAL|EDGE|FACE|ELEMENT <string>variable_name

AT NODE|NODAL|EDGE|FACE|ELEMENT <integer>entity_id

[AS <string>heartbeat_variable_name]

NODE|NODAL|EDGE|FACE|ELEMENT <string>variable_name

NEAREST LOCATION <real>global_x,

<real>global_y>, <real>global_z

[AS <string>heartbeat_variable_name]

START TIME = <real>output_start_time

TIMESTEP ADJUSTMENT INTERVAL = <integer>steps

AT TIME <real>time_begin INCREMENT =

<real>time_increment_dt

ADDITIONAL TIMES = <real>output_time1

<real>output_time2 ...

AT STEP <integer>step_begin INCREMENT =

<integer>step_increment

ADDITIONAL STEPS = <integer>output_step1

<integer>output_step2 ...

TERMINATION TIME = <real>termination_time_value

SYNCHRONIZE OUTPUT

USE OUTPUT SCHEDULER <string>scheduler_name

OUTPUT ON SIGNAL = <string>SIGALRM|SIGFPE|SIGHUP|SIGINT|

SIGPIPE|SIGQUIT|SIGTERM|SIGUSR1|SIGUSR2|SIGABRT|

SIGKILL|SIGILL|SIGSEGV

PRECISION = <integer>precision

LABELS = <string>OFF|ON

LEGEND = <string>OFF|ON

TIMESTAMP FORMAT <string>timestamp_format

MONITOR = <string>RESULTS|RESTART|HISTORY

END [HEARTBEAT OUTPUT <string>heartbeat_name]

645

Restart specification

BEGIN RESTART DATA <string>restart_name

DATABASE NAME = <string>restart_file_name

INPUT DATABASE NAME = <string>restart_input_file

OUTPUT DATABASE NAME =

<string>restart_output_file

DATABASE TYPE =

<string>database_type(exodusII)

OVERWRITE = <string>OFF|ON|TRUE|FALSE|YES|NO

(ON|TRUE|YES)

START TIME = <real>restart_start_time

TIMESTEP ADJUSTMENT INTERVAL = <integer>steps

AT TIME <real>time_begin INCREMENT =

<real>time_increment_dt

ADDITIONAL TIMES = <real>output_time1

<real>output_time2 ...

AT STEP <integer>step_begin INCREMENT =

<integer>step_increment

ADDITIONAL STEPS = <integer>output_step1

<integer>output_step2 ...

TERMINATION TIME = <real>termination_time_value

OVERLAY COUNT = <integer>overlay_count

CYCLE COUNT = <integer>cycle_count

SYNCHRONIZE OUTPUT

USE OUTPUT SCHEDULER <string>scheduler_name

OUTPUT ON SIGNAL = <string>SIGALRM|SIGFPE|SIGHUP|SIGINT|

SIGPIPE|SIGQUIT|SIGTERM|SIGUSR1|SIGUSR2|SIGABRT|

SIGKILL|SIGILL|SIGSEGV

OPTIONAL

END [RESTART DATA <string>restart_name]

Solver commands

BEGIN SOLVER

#

nonlinear conjugate gradient (cg) solver commands

BEGIN CG

#

convergence commands

TARGET RESIDUAL = <real>target_resid

[DURING <string list>period_names]

TARGET RELATIVE RESIDUAL = <real>target_rel_resid

[DURING <string list>period_names]

ACCEPTABLE RESIDUAL = <real>accept_resid

[DURING <string list>period_names]

646

ACCEPTABLE RELATIVE RESIDUAL = <real>accept_rel_resid

[DURING <string list>period_names]

REFERENCE = EXTERNAL|INTERNAL|RESIDUAL(EXTERNAL)

[DURING <string list>period_names]

MINIMUM RESIDUAL IMPROVEMENT = <real>resid_improvement

[DURING <string list>period_names]

MINIMUM ITERATIONS = <integer>min_iter(0)

[DURING <string list>period_names]

MAXIMUM ITERATIONS = <integer>max_iter

[DURING <string list>period_names]

#

preconditioner commands

PRECONDITIONER = BLOCK|BLOCK_INITIAL|DIAGONAL|

DIAGSCALING|ELASTIC|IDENTITY|PROBE|SCHUR(ELASTIC)

[<real>scaling_factor]

BALANCE PROBE = <integer>balance_probe(1.0e-6)

NODAL PROBE FACTOR = <real>probe_factor(1.0e-6)

BEGIN FULL TANGENT PRECONDITIONER [<string>name]

#

solver selection commands

LINEAR SOLVER = <string>linear_solver_name

NODAL PRECONDITIONER METHOD = ELASTIC|PROBE|DIAGONAL

(ELASTIC)

#

tangent matrix formation commands

PROBE FACTOR = <real>probe_factor(1.0e-6)

BALANCE PROBE = <integer>balance_probe(1)

CONSTRAINT ENFORCEMENT = SOLVER|PENALTY(PENALTY)

PENALTY FACTOR = <real>penalty_factor(100.0)

SHELL DRILLING STIFFNESS =

<real>shell_drill_stiff(1.0e-4 for quasistatics)

TANGENT DIAGONAL SCALE = <real>tangent_diag_scale(0.0)

#

reset and iteration commands

MAXIMUM RESETS FOR MODELPROBLEM = <integer>max_mp_resets

(100000) [DURING <string list>period_names]

MAXIMUM RESETS FOR LOADSTEP = <integer>max_ls_resets

(100000) [DURING <string list>period_names]

MAXIMUM ITERATIONS FOR MODELPROBLEM =

<integer>max_mp_iter(100000)

[DURING <string list>period_names]

MAXIMUM ITERATIONS FOR LOADSTEP = <integer>max_ls_iter

(100000) [DURING <string list>period_names]

ITERATION UPDATE = <integer>iter_update

[DURING <string list>period_names]

SMALL NUMBER OF ITERATIONS = <integer>small_num_iter

[DURING <string list>period_names]

647

NUMBER OF SMOOTHING ITERATIONS = <integer>num_smooth_iter

(0) [DURING <string list>period_names]

#

fall-back strategy commands

STAGNATION THRESHOLD = <real>stagnation(1.0e-12)

[DURING <string list>period_names]

MINIMUM CONVERGENCE RATE = <real>min_conv_rate(1.0e-4)

[DURING <string list>period_names]

ADAPTIVE STRATEGY = SWITCH|UPDATE(SWITCH)

[DURING <string list>period_names]

END [FULL TANGENT PRECONDITIONER [<string>name]]

#

line search command, default is secant

LINE SEARCH ACTUAL|TANGENT [DURING <string list>period_names]

LINE SEARCH SECANT [<real>scale_factor]

#

diagnostic output commands

ITERATION PRINT = <integer>iter_print

[DURING <string list>period_names]

ITERATION PLOT = <integer>iter_plot

[DURING <string list>period_names]

ITERATION PLOT OUTPUT BLOCKS = <string list>plot_blocks

#

cg algorithm commands

ITERATION RESET = <integer>iter_reset(10000)

[DURING <string list>period_names]

ORTHOGONALITY MEASURE FOR RESET = <real>ortho_reset(0.5)

[DURING <string list>period_names]

RESET LIMITS <integer>iter_start <integer>iter_reset

<real>reset_growth <real>reset_orthogonality

[DURING <string list>period_names]

BETA METHOD = FletcherReeves|PolakRibiere|

PolakRibierePlus(PolakRibiere)

[DURING <string list>period_names]

END [CG]

#

control contact commands

BEGIN CONTROL CONTACT

#

convergence commands

TARGET RESIDUAL = <real>target_resid

[DURING <string list>period_names]

TARGET RELATIVE RESIDUAL = <real>target_rel_resid

[DURING <string list>period_names]

TARGET RELATIVE CONTACT RESIDUAL =

<real>target_rel_cont_resid

[DURING <string list>period_names]

648

ACCEPTABLE RESIDUAL = <real>accept_resid

[DURING <string list>period_names]

ACCEPTABLE RELATIVE RESIDUAL = <real>accept_rel_resid

[DURING <string list>period_names]

ACCEPTABLE RELATIVE CONTACT RESIDUAL =

<real>accept_rel_cont_resid

[DURING <string list>period_names]

REFERENCE = EXTERNAL|INTERNAL|RESIDUAL(EXTERNAL)

[DURING <string list>period_names]

MINIMUM ITERATIONS = <integer>min_iter(0)

[DURING <string list>period_names]

MAXIMUM ITERATIONS = <integer>max_iter

[DURING <string list>period_names]

#

level selection command

LEVEL = <integer>contact_level(1)

#

diagnostic output commands

ITERATION PLOT = <integer>iter_plot

[DURING <string list>period_names]

ITERATION PLOT OUTPUT BLOCKS = <string list>plot_blocks

END [CONTROL CONTACT]

#

control stiffness commands

BEGIN CONTROL STIFFNESS [<string>stiffness_name]

#

convergence commands

TARGET <string>RESIDUAL|AXIAL FORCE INCREMENT|

PRESSURE INCREMENT|SDEV INCREMENT|STRESS INCREMENT

= <real>target [DURING <string list>period_names]

TARGET RELATIVE <string>RESIDUAL|AXIAL FORCE INCREMENT|

PRESSURE INCREMENT|SDEV INCREMENT|STRESS INCREMENT

= <real>target_rel [DURING <string list>period_names]

ACCEPTABLE <string>RESIDUAL|AXIAL FORCE INCREMENT|

PRESSURE INCREMENT|SDEV INCREMENT|STRESS INCREMENT

= <real>accept [DURING <string list>period_names]

ACCEPTABLE RELATIVE <string>RESIDUAL|AXIAL FORCE INCREMENT|

PRESSURE INCREMENT|SDEV INCREMENT|STRESS INCREMENT

= <real>accept_rel [DURING <string list>period_names]

REFERENCE = EXTERNAL|INTERNAL|RESIDUAL(EXTERNAL)

[DURING <string list>period_names]

MINIMUM ITERATIONS = <integer>min_iter(0)

[DURING <string list>period_names]

MAXIMUM ITERATIONS = <integer>max_iter

[DURING <string list>period_names]

#

level selection command

649

LEVEL = <integer>stiffness_level

#

diagnostic output commands

ITERATION PLOT = <integer>iter_plot

[DURING <string list>period_names]

ITERATION PLOT OUTPUT BLOCKS = <string list>plot_blocks

END [CONTROL STIFFNESS <string>stiffness_name]

#

control failure commands

BEGIN CONTROL FAILURE [<string>failure_name]

#

convergence control command

MAXIMUM ITERATIONS = <integer>max_iter

[DURING <string list>period_names]

#

level selection command

LEVEL = <integer>failure_level

#

diagnostic output commands

ITERATION PLOT = <integer>iter_plot

[DURING <string list>period_names]

ITERATION PLOT OUTPUT BLOCKS = <string list>plot_blocks

END [CONTROL FAILURE <string>failure_name]

#

predictor commands

BEGIN LOADSTEP PREDICTOR

TYPE = <string>SCALE_FACTOR|SECANT|EXTERNAL|EXTERNAL_FIRST

SCALE FACTOR = <real>factor(1.0)

[<real>first_scale_factor]

[DURING <string list>period_names]

SLIP SCALE FACTOR = <real>slip_factor(1.0)

[DURING <string list>period_names]

END [LOADSTEP PREDICTOR]

LEVEL 1 PREDICTOR = <string>NONE|DEFAULT(DEFAULT)

END [SOLVER]

Adaptive time stepping

BEGIN ADAPTIVE TIME STEPPING

METHOD = <string>SOLVER|MATERIAL(SOLVER)

[DURING <string list>period_names]

TARGET ITERATIONS = <integer>target_iter

[DURING <string list>period_names]

ITERATION WINDOW = <integer>iter_window

[DURING <string list>period_names]

CUTBACK FACTOR = <real>cutback_factor(0.5)

[DURING <string list>period_names]

650

GROWTH FACTOR = <real>growth_factor(1.5)

[DURING <string list>period_names]

MAXIMUM FAILURE CUTBACKS = <integer>max_cutbacks(5)

[DURING <string list>period_names]

MAXIMUM MULTIPLIER = <real>max_multiplier

[DURING <string list>period_names]

MINIMUM MULTIPLIER = <real>min_multiplier

[DURING <string list>period_names]

RESET AT NEW PERIOD = TRUE|FALSE(TRUE)

[DURING <string list>period_names]

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [ADAPTIVE TIME STEPPING]

JAS MODE [SOLVER|CONTACT|OUTPUT]

J-Integral

BEGIN J INTEGRAL <jint_name>

#

integral parameter specification commands

CRACK DIRECTION = <real>dir_x <real>dir_y <real>dir_z

CRACK PLANE SIDE SET = <string list>side_sets

CRACK TIP NODE SET = <string list>node_sets

INTEGRATION RADIUS = <real>int_radius

NUMBER OF DOMAINSS = <integer>num_domains

FUNCTION = PLATEAU|PLATEAU_RAMP|LINEAR(PLATEAU)

SYMMETRY = OFF|ON(OFF)

#

time period selection commands

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END J INTEGRAL <jint_name>

END [ADAGIO REGION <string>adagio_region_name]

Control modes region

BEGIN CONTROL MODES REGION

#

model setup

USE FINITE ELEMENT MODEL <string>model_name

CONTROL BLOCKS [WITH <string>coarse_block] =

<string list>control_blocks

#

solver commands

BEGIN SOLVER

651

BEGIN LOADSTEP PREDICTOR

TYPE = <string>SCALE_FACTOR|SECANT|EXTERNAL|EXTERNAL_FIRST

SCALE FACTOR = <real>factor(1.0)

[<real>first_scale_factor(scale_factor)]

[DURING <string list>period_names]

SLIP SCALE FACTOR = <real>slip_factor(1.0)

[DURING <string list>period_names]

END [LOADSTEP PREDICTOR]

BEGIN CG

#

Parameters for CG

#

END [CG]

END SOLVER

JAS MODE [SOLVER|CONTACT|OUTPUT]

#

kinematic boundary condition commands

BEGIN FIXED DISPLACEMENT

#

Parameters for fixed displacement

#

END [FIXED DISPLACEMENT]

BEGIN PERIODIC

#

Parameters for periodic

#

END [PERIODIC]

#

output commands

BEGIN RESULTS OUTPUT <string> results_name

#

Parameters for results output

#

END RESULTS OUTPUT <string> results_name

END [CONTROL MODES REGION]

RVE Region

BEGIN RVE REGION <string>rve_region_name

#

Definition of RVEs

ELEMENTS <integer>elem_i:<integer>elem_j

BLOCKS <integer>blk_i:<integer>blk_j

SURFACE|NODESET <integer>start_id INCREMENT <integer>incr

#

ADAGIO REGION commands valid here with the exceptions

652

discussed in Section 9.1. These include but are

not limited to:

#

Boundary Conditions

#

Results Output Definition

#

Solver Definition

#

END [RVE REGION <string>rve_region_name]

END [ADAGIO PROCEDURE <string>adagio_procedure_name]

END [SIERRA <string>name]

653

654

Appendix C

Consistent Units

This appendix describes common consistent sets of units. In using Adagio, it is crucial to maintain

a consistent set of units when entering material properties and interpreting results. The only vari-

ables that have intrinsic units are rotations, which are in radians. All other variables depend on the

consistent set of units that the user uses in inputting the material properties and dimensioning the

geometry.

A consistent set of units is made by picking the base units, which when using SI unit systems are

length, mass, and time. If English unit systems are used, these base units are length, force, and

time. All other units are then derived from these base units. Table C.1 provides several examples

of commonly used consistent sets of units. In general, the names of the unit systems in this table

are taken from the names of the base units. For example, CGS stands for (centimeters, grams,

seconds) and IPS stands for (inches, pounds, seconds).

One of the most common mistakes related to consistent units comes in when entering density. For

example, in the IPS system, a common error is to enter the density of stainless steel as 0.289 lb/in3,

when it should be entered as 7.48e-4 lb · s2/in. The weight per unit volume should be divided by

the gravitational constant (386.4 in/s2 in this case) to obtain a mass per unit volume.

655

Table C.1: Consistent Unit Sets

Unit System

Unit
SI CGS IPS FPS MMTS

Mass kg g lb·s2

in
slug tonne

Length m cm in f t mm

Time s s s s s

Density
kg

m3

g

cm3
lb·s2

in4

slug

f t3
tonne
mm3

Force N dyne lb lb N

Pressure Pa
dyne

cm2 psi ps f MPa

Moment N · m dyne · cm in · lb f t · lb N · mm

Temperature K K ◦R ◦R K

Energy J erg lb · in lb · f t mJ

Velocity m
s

cm
s

in
s

f t

s
mm

s

Acceleration m
s2

cm
s2

in
s2

f t

s2
mm
s2

656

Appendix D

Constraint Enforcement Hierarchy

When a node has multiple constraints, they are enforced in a specific order. Table D.1 shows the

order of enforcement of the various types of constraints.

Table D.1: Constraint Enforcement Order

1 Contact

2 Kinematic

3 MPC

4 Rigid Body

If any of the constraints are in conflict, the last constraint enforced will override previously en-

forced constraints. For example, if a kinematic boundary condition and a MPC are both active on

a node and conflict with each other, the kinematic boundary condition will be enforced first, fol-

lowed by the MPC. As a result, the MPC will be enforced and will override the kinematic boundary

condition.

657

658

Index

1PSI PRONY

in NLVE 3D Orthotropic material model, 209

2G SCALING

in Incompressible Solid material model, 203

2PSI PRONY

in NLVE 3D Orthotropic material model, 209

3PSI PRONY

in NLVE 3D Orthotropic material model, 209

4PSI PRONY

in NLVE 3D Orthotropic material model, 209

5PSI PRONY

in NLVE 3D Orthotropic material model, 209

A

in Low Density Foam material model, 185

A0

in Soil and Crushable Foam material model, 176

A1

in Soil and Crushable Foam material model, 176

in Swanson material model, 215

in Viscoelastic Swanson material model, 218

A11

in Elastic Laminate material model, 197

A12

in Elastic Laminate material model, 197

A16

in Elastic Laminate material model, 197

A2

in Soil and Crushable Foam material model, 176

A22

in Elastic Laminate material model, 197

A26

in Elastic Laminate material model, 197

A44

in Elastic Laminate material model, 197

A45

in Elastic Laminate material model, 197

A55

in Elastic Laminate material model, 197

A66

in Elastic Laminate material model, 197

ABSCISSA

in Definition for Function, 56

ACCEPTABLE AXIAL FORCE INCREMENT

in Control Stiffness, 116

description of, 117

ACCEPTABLE PRESSURE INCREMENT

in Control Stiffness, 116

description of, 117

ACCEPTABLE RELATIVE AXIAL FORCE

INCREMENT

in Control Stiffness, 116

description of, 117

ACCEPTABLE RELATIVE CONTACT RESIDUAL

in Control Contact, 105

description of, 108

ACCEPTABLE RELATIVE PRESSURE INCREMENT

in Control Stiffness, 116

description of, 117

ACCEPTABLE RELATIVE RESIDUAL

in CG, 85

description of, 86

in Control Contact, 105

description of, 108

in Control Stiffness, 116

description of, 117

ACCEPTABLE RELATIVE SDEV INCREMENT

in Control Stiffness, 116

description of, 117

ACCEPTABLE RELATIVE STRAIN INCREMENT

in Control Stiffness, 116

description of, 117

ACCEPTABLE RELATIVE STRESS INCREMENT

in Control Stiffness, 116

description of, 117

ACCEPTABLE RESIDUAL

in CG, 85

description of, 86

in Control Contact, 105

description of, 108

in Control Stiffness, 116

description of, 117

ACCEPTABLE SDEV INCREMENT

in Control Stiffness, 116

description of, 117

ACCEPTABLE STRESS INCREMENT

in Control Stiffness, 116

description of, 117

ACTIVE FOR PROCEDURE

659

in Finite Element Model – in Parameters For Block,

235

description of, 240

ACTIVE PERIODS, 75

description of, 75

in Adaptive Time Stepping

description of, 137

in Blast Pressure, 364

in Element Death, 273

usage in, 278

in Fixed Displacement, 293

usage in, 294

in Fixed Rotation, 311

usage in, 312

in Fluid Pressure, 361

usage in, 363

in Gravity, 349

in Implicit Dynamics, 139

description of, 139

in J Integral, 519

in Pore Pressure, 356

usage in, 359

in Prescribed Acceleration, 306

usage in, 310

in Prescribed Displacement, 295

usage in, 299

in Prescribed Force, 341

usage in, 344

in Prescribed Moment, 345

usage in, 348

in Prescribed Rotation, 313

usage in, 317

in Prescribed Rotational Velocity, 318

usage in, 322

in Prescribed Temperature, 351

usage in, 355

in Prescribed Velocity, 301

usage in, 305

in Pressure, 331

usage in, 335

in REFERENCE AXIS ROTATION

usage in, 325

in Time Step Initialization, 558

usage in, 560

in Traction, 337

usage in, 340

in User Output, 427

description of, 434

ADAGIO PROCEDURE, 70

description of, 70

ADAGIO REGION

in Adagio Procedure, 70

description of, 71

ADAPTIVE STRATEGY

in Full Tangent Preconditioner, 94

description of, 99

ADAPTIVE TIME STEPPING

in Adagio Region, 134

ADDITIONAL STEPS

in Heartbeat Output, 444

description of, 450

in History Output, 435

description of, 441

in Output Scheduler, 471

description of, 473

in Restart Data, 456

description of, 467

in Results Output, 412

description of, 425

ADDITIONAL TIMES

in Heartbeat Output, 444

description of, 450

in History Output, 435

description of, 441

in Output Scheduler, 471

description of, 472

in Restart Data, 456

description of, 467

in Results Output, 412

description of, 424

ALIAS

in Finite Element Model, 230

description of, 233

ALPHA

in Elastic 3D Orthotropic material model, 186

in Elastic Laminate material model, 197

in Implicit Dynamics, 139

description of, 140

in NLVE 3D Orthotropic material model, 209

AMBIENT TEMPERATURE IN FAHRENHEIT

in Blast Pressure, 364

ANGULAR VELOCITY

in Initial Velocity, 327

description of, 329

in Rigid Body command block, 266

AREA

in Truss Section, 261

AT DISCONTINUITY EVALUATE TO

in Definition for Function, 56

AT STEP

in Heartbeat Output, 444

description of, 450

in History Output, 435

description of, 441

in Output Scheduler, 471

description of, 472

in Restart Data, 456

description of, 467

660

in Results Output, 412

description of, 425

AT TIME

in Heartbeat Output, 444

description of, 450

in History Output, 435

description of, 440

in Output Scheduler, 471

description of, 472

in Restart Data, 456

description of, 466

in Results Output, 412

description of, 424

ATMOSPHERIC PRESSURE IN PSI

in Blast Pressure, 364

aupst_check_elem_var, 535

aupst_check_global_var, 544

aupst_check_node_var, 535

aupst_cyl_transform, 578

aupst_evaluate_function, 534

aupst_get_elem_nodes, 548

aupst_get_elem_topology, 548

aupst_get_elem_var, 535

aupst_get_elem_var_offset, 535

aupst_get_face_nodes, 548

aupst_get_face_topology, 548

aupst_get_global_var, 544

aupst_get_integer_param, 530

aupst_get_node_var, 535

aupst_get_one_elem_centroid, 553

aupst_get_point, 553

aupst_get_proc_num, 553

aupst_get_real_param, 530

aupst_get_string_param, 530

aupst_get_time, 534

aupst_local_put_global_var, 544

aupst_put_elem_var, 535

aupst_put_elem_var_offset, 535

aupst_put_global_var, 544

aupst_put_node_var, 535

aupst_rec_transform, 579

AXIS

in Fiber Membrane material model, 200

AXIS OFFSET

in Beam Section, 256

AXIS OFFSET GLOBAL

in Beam Section, 256

AXIS OFFSET VARIABLE

in Beam Section, 256

AXIS Y

in Fiber Membrane material model, 200

AXIS Z

in Fiber Membrane material model, 200

B

in Low Density Foam material model, 185

B SHIFT CONSTANT

in NLVE 3D Orthotropic material model, 209

B1

in Swanson material model, 215

in Viscoelastic Swanson material model, 218

B11

in Elastic Laminate material model, 197

B12

in Elastic Laminate material model, 197

B16

in Elastic Laminate material model, 197

B22

in Elastic Laminate material model, 197

B26

in Elastic Laminate material model, 197

B66

in Elastic Laminate material model, 197

BALANCE PROBE

in CG, 85

description of, 88

in Full Tangent Preconditioner, 94

description of, 96

BEAM SECTION, 256

BENDING HOURGLASS STIFFNESS

in Finite Element Model – in Parameters For Block,

235

description of, 239

BENDING HOURGLASS VISCOSITY

in Finite Element Model – in Parameters For Block,

235

description of, 239

BETA

in Elastic-Plastic material model, 159

in Foam Plasticity material model, 182

in Implicit Dynamics, 139

description of, 140

in Multilinear Elastic-Plastic Hardening Model

material model, 165

in Multilinear Elastic-Plastic Hardening Model with

Failure material model, 167

BETA METHOD

in CG, 85

description of, 92

BIOT’S COEFFICIENT

about, 147

in BCJ material model, 172

in Ductile Fracture material model, 163

in Elastic 3D Orthotropic material model, 186

in Elastic Fracture material model, 157

in Elastic material model, 151

in Elastic-Plastic material model, 159

661

in Elastic-Plastic Power-Law Hardening material

model, 161

in Foam Plasticity material model, 182

in Johnson-Cook material model, 170

in Karagozian and Case concrete material model,

179

in Low Density Foam material model, 185

in Multilinear Elastic-Plastic Hardening Model

material model, 165

in Multilinear Elastic-Plastic Hardening Model with

Failure material model, 167

in Neo Hookean material model, 155

in Orthotropic Crush material model, 191

in Orthotropic Rate material model, 194

in Power Law Creep material model, 174

in Soil and Crushable Foam material model, 176

in Thermoelastic material model, 153

in Wire Mesh material model, 189

BLAST LOCATION

in Blast Pressure, 364

BLAST PRESSURE, 364

BLAST TIME

in Blast Pressure, 364

BLOCK

description of, 284

in Contact Definition – in Contact Surface (block),

377

usage in, 382

in Element Death, 273

description of, 274

in Fixed Displacement, 293

usage in, 294

in Fixed Rotation, 311

usage in, 311

in Gravity, 349

usage in, 349

in Initial Condition, 287

usage in, 288

in Initial Velocity, 327

usage in, 328

in Mass Properties, 271

usage in, 271

in Pore Pressure, 356

usage in, 357

in Prescribed Acceleration, 306

usage in, 307

in Prescribed Displacement, 295

usage in, 296

in Prescribed Force, 341

usage in, 342

in Prescribed Moment, 345

usage in, 346

in Prescribed Rotation, 313

usage in, 314

in Prescribed Rotational Velocity, 318

usage in, 319

in Prescribed Temperature, 351

usage in, 352

in Prescribed Velocity, 301

usage in, 302

in Procedural Transfer, 584

description of, 585

in Reference Axis, 323

in Rotational Axis Rotation

usage in, 324

in Time Step Initialization, 558

usage in, 559

in User Output, 427

usage in, 429

BLOCK BY BLOCK

in Procedural Transfer, 584

description of, 585

BULK FUNCTION

in Mooney-Rivlin material model, 206

BULK MODULUS

in BCJ material model, 172

in Ductile Fracture material model, 163

in Elastic 3D Orthotropic material model, 186

in Elastic Fracture material model, 157

in Elastic material model, 151

in Elastic-Plastic material model, 159

in Elastic-Plastic Power-Law Hardening material

model, 161

in Fiber Membrane material model, 200

in Foam Plasticity material model, 182

in Incompressible Solid material model, 203

in Johnson-Cook material model, 170

in Karagozian and Case concrete material model,

179

in Low Density Foam material model, 185

in Mooney-Rivlin material model, 206

in Multilinear Elastic-Plastic Hardening Model

material model, 165

in Multilinear Elastic-Plastic Hardening Model with

Failure material model, 167

in Neo Hookean material model, 155

in NLVE 3D Orthotropic material model, 209

in Orthotropic Crush material model, 191

in Orthotropic Rate material model, 194

in Power Law Creep material model, 174

in Soil and Crushable Foam material model, 176

in Stiff Elastic material model, 213

in Swanson material model, 215

in Thermoelastic material model, 153

in Viscoelastic Swanson material model, 218

in Wire Mesh material model, 189

BURST TYPE

in Blast Pressure, 364

662

C

in Low Density Foam material model, 185

C01

in Mooney-Rivlin material model, 206

C01 FUNCTION

in Mooney-Rivlin material model, 206

C1

in BCJ material model, 172

in Swanson material model, 215

in Viscoelastic Swanson material model, 218

C10

in BCJ material model, 172

in Mooney-Rivlin material model, 206

C10 FUNCTION

in Mooney-Rivlin material model, 206

C11

in BCJ material model, 172

C12

in BCJ material model, 172

C13

in BCJ material model, 172

C14

in BCJ material model, 172

C15

in BCJ material model, 172

C16

in BCJ material model, 172

C17

in BCJ material model, 172

C18

in BCJ material model, 172

C19

in BCJ material model, 172

C2

in BCJ material model, 172

C20

in BCJ material model, 172

C3

in BCJ material model, 172

C4

in BCJ material model, 172

C5

in BCJ material model, 172

C6

in BCJ material model, 172

C7

in BCJ material model, 172

C8

in BCJ material model, 172

C9

in BCJ material model, 172

CAPTURE TOLERANCE

in Contact Definition – in Interaction, 377, 397

description of, 398

CG, 85

in Adagio Region, 85

in Solver, 81, 124

usage in, 125

COARSE SOLVER

in FETI Equation Solver, 101

description of, 103

COHESIVE MATERIAL

in Element Death

description of, 278

COHESIVE MODEL

in Element Death

description of, 278

COHESIVE SECTION, 245

in Element Death

description of, 278

COHESIVE ZONE INITIALIZATION METHOD

in Element Death

description of, 278

COINCIDENT SHELL HEX TREATMENT

in Contact Definition – in Shell Lofting, 377

COINCIDENT SHELL TREATMENT

in Contact Definition – in Shell Lofting, 377

COMPONENT

in Fixed Displacement, 293

description of, 294

in Fixed Rotation, 311

description of, 312

in Initial Velocity, 327

description of, 328

in Prescribed Acceleration, 306

description of, 307

in Prescribed Displacement, 295

description of, 297

in Prescribed Force, 341

description of, 342

in Prescribed Moment, 345

description of, 346

in Prescribed Rotational Velocity, 318

description of, 320

in Prescribed Velocity, 301

description of, 302

COMPONENT SEPARATOR CHARACTER

in Finite Element Model, 230

description of, 234

in Results Output, 412

description of, 422

COMPONENTS

in Fixed Displacement, 293

description of, 294

in Fixed Rotation, 311

description of, 312

COMPRESSIVE STRENGTH

663

in Karagozian and Case concrete material model,

179

COMPUTE AT EVERY TIME STEP, 427

in User Output

description of, 434

COMPUTE ELEMENT

in User Output, 427

description of, 429

COMPUTE GLOBAL

in User Output, 427

description of, 429

COMPUTE NODAL

in User Output, 427

description of, 429

CONSTANT FRICTION MODEL

in Contact Definition, 377

description of, 387

CONSTRAINT ENFORCEMENT

in Full Tangent Preconditioner, 94

description of, 96

Constraint Mesh

for Control Modes, 123

CONTACT DEFINITION, 377

use of, 381

CONTACT NODE SET

in Contact Definition, 377

description of, 383

CONTACT SURFACE

in Contact Definition, 377

description of, 381

use of, 381

CONTACT SURFACE (block)

in Contact Definition, 377

description of, 382

use of, 381

CONTACT VARIABLES

in Contact Definition

description of, 386

CONTROL BLOCKS

in Control Modes Region, 124

description of, 125

CONTROL CONTACT

in Solver, 81

description of, 105

CONTROL FAILURE

in Solver, 81

description of, 121

Control Modes, 123

CONTROL MODES REGION, 124

usage of for Control Modes, 123

CONTROL STIFFNESS

in Solver, 81

description of, 116

COORDINATE SYSTEM, 67

in Solid Section, 242

in Elastic 3D Orthotropic material model, 186

in Elastic Laminate material model, 197

in NLVE 3D Orthotropic material model, 209

COPY ELEMENT VARIABLE

in User Output, 427

description of, 432

COPY VARIABLE

in Initial Condition, 287

description of, 290

in Pore Pressure, 356

description of, 358

in Prescribed Acceleration, 306

description of, 309

in Prescribed Displacement, 295

description of, 298

in Prescribed Rotation, 313

description of, 316

in Prescribed Rotational Velocity, 318

description of, 321

in Prescribed Temperature, 351

description of, 353

in Prescribed Velocity, 301

description of, 304

copy_data, 580

CORD DENSITY

in Fiber Membrane material model, 200

CORD DIAMETER

in Fiber Membrane material model, 200

CRACK DIRECTION

in J Integral, 519

CRACK PLANE SIDE SET

in J Integral, 519

CRACK TIP NODE SET

in J Integral, 519

CREEP CONSTANT

in Power Law Creep material model, 174

CREEP EXPONENT

in Power Law Creep material model, 174

CRITERION IS

in Element Death – for Global Value Of, 273

description of, 274

CRITICAL CRACK OPENING STRAIN

in Ductile Fracture material model, 163

in Elastic Fracture material model, 157

in Multilinear Elastic-Plastic Hardening Model with

Failure material model, 167

CRITICAL TEARING PARAMETER

in Ductile Fracture material model, 163

in Multilinear Elastic-Plastic Hardening Model with

Failure material model, 167

CRUSH XX

in Orthotropic Crush material model, 191

CRUSH XY

664

in Orthotropic Crush material model, 191

CRUSH YY

in Orthotropic Crush material model, 191

CRUSH YZ

in Orthotropic Crush material model, 191

CRUSH ZX

in Orthotropic Crush material model, 191

CRUSH ZZ

in Orthotropic Crush material model, 191

CUT OFF STRAIN

in Swanson material model, 215

in Viscoelastic Swanson material model, 218

CUTBACK FACTOR

in Adaptive Time Stepping

description of, 136

CYCLE COUNT

in Restart Data, 456

description of, 468

CYLINDRICAL AXIS

in Initial Velocity, 327

description of, 329

in Prescribed Displacement, 295

description of, 297

in Prescribed Velocity, 301

description of, 302

in Rigid Body command block, 266

D11

in Elastic Laminate material model, 197

D12

in Elastic Laminate material model, 197

D16

in Elastic Laminate material model, 197

D22

in Elastic Laminate material model, 197

D26

in Elastic Laminate material model, 197

D66

in Elastic Laminate material model, 197

DAMAGE EXPONENT

in BCJ material model, 172

DAMPING MATRIX

in Superelement Section, 263

description of, 264

DATABASE NAME

in Finite Element Model, 230

description of, 233

in History Output, 435

in Restart Data, 456

description of, 457

in Results Output, 412

DATABASE TYPE

in Finite Element Model, 230

description of, 233

in History Output, 435

in Restart Data, 456

description of, 457

in Results Output, 412

DEATH METHOD

in Element Death

description of, 277

DEATH STEPS

in Element Death

description of, 276

DECREASE ERROR THRESHOLD

in Implicit Dynamics, 139

description of, 140

DEFINE AXIS

with point and direction, 61

with two points, 61

DEFINE DIRECTION, 61

DEFINE POINT, 39, 61

DEFINITION FOR FUNCTION, 56

usage for thermal strains, 150

DENSITY

in Fluid Pressure, 361

about, 147

in BCJ material model, 172

in Ductile Fracture material model, 163

in Elastic 3D Orthotropic material model, 186

in Elastic Fracture material model, 157

in Elastic Laminate material model, 197

in Elastic material model, 151

in Elastic-Plastic material model, 159

in Elastic-Plastic Power-Law Hardening material

model, 161

in Fluid Pressure

usage in, 362

in Foam Plasticity material model, 182

in Johnson-Cook material model, 170

in Karagozian and Case concrete model, 179

in Low Density Foam material model, 185

in Multilinear Elastic-Plastic Hardening Model

material model, 165

in Multilinear Elastic-Plastic Hardening Model with

Failure material model, 167

in Neo Hookean material model, 155

in Orthotropic Crush material model, 191

in Orthotropic Rate material model, 194

in Power Law Creep material model, 174

in Soil and Crushable Foam material model, 176

in Thermoelastic material model, 153

in Wire Mesh material model, 189

Density

in Fiber Membrane material model, 200

in Incompressible Solid material model, 203

in Mooney-Rivlin material model, 206

in NLVE 3D Orthotropic material model, 209

665

in Stiff Elastic material model, 213

in Swanson material model, 215

in Viscoelastic Swanson material model, 218

DENSITY FUNCTION

in Fluid Pressure, 361

usage in, 362

DEPTH

in Fluid Pressure, 361

in Fluid Pressure

usage in, 362

DEPTH FUNCTION

in Fluid Pressure, 361

usage in, 362

DERIVED LOG STRAIN OUTPUT, 281

DERIVED OUTPUT, 281

DERIVED STRAIN OUTPUT, 281

DEVIATORIC PARAMETER

in Membrane Section, 253

in Solid Section, 242

DIRECTION

in Gravity, 349

in Initial Velocity, 327

description of, 328

in Prescribed Acceleration, 306

description of, 307

in Prescribed Displacement, 295

description of, 297

in Prescribed Force, 341

description of, 342

in Prescribed Moment, 345

description of, 346

in Prescribed Rotation, 313

description of, 315

in Prescribed Rotational Velocity, 318

description of, 320

in Prescribed Velocity, 301

description of, 302

in Rigid Body command block, 266

in Traction, 337

description of, 338

DIRECTION FOR ROTATION

in Elastic 3D Orthotropic material model, 186

in Elastic Laminate material model, 197

in NLVE 3D Orthotropic material model, 209

DISTRIBUTION

in Initial Condition, 287

description of, 289

DISTRIBUTION REFERENCE

in Initial Condition, 287

description of, 289

DOUBLE INTEG FACTOR

in NLVE 3D Orthotropic material model, 209

DRILLING STIFFNESS FACTOR

in Shell Section, 246

EDGE

in Heartbeat Output, 444

in Heartbeat Output – for mesh entities variables

description of, 447

in Heartbeat Output – for nearest point variables

description of, 447

in History Output, 435

about, 437, 446

in History Output – for mesh entities variables

description of, 438

in History Output – for nearest point variables

description of, 438

in Results Output, 412

EFFECTIVE MODULI MODEL

in Finite Element Model – in Parameters For Block,

235

description of, 240

ELEMENT

in Heartbeat Output, 444

in Heartbeat Output – for mesh entities variables

description of, 447

in Heartbeat Output – for nearest point variables

description of, 447

in History Output, 435

about, 437, 446

in History Output – for mesh entities variables

description of, 438

in History Output – for nearest point variables

description of, 438

in Results Output, 412

description of, 419

ELEMENT BLOCK SUBROUTINE

as user subroutine command line, 555

description of, 556

in Initial Condition, 287

description of, 291

in Pore Pressure, 356

in Time Step Initialization, 558

description of, 559

in User Output, 427

description of, 431

ELEMENT DEATH, 273

ELEMENT NUMERICAL FORMULATION

in Finite Element Model – in Parameters For Block,

235

ELEMENTS

in RVE REGION, 515

EMBEDDED BLOCKS

in Submodel

usage in, 370

ENCLOSING BLOCKS

in Submodel

usage in, 370

ENFORCEMENT

666

in Contact Definition

use of, 380

EPL

in Fiber Membrane material model, 200

EVALUATE EXPRESSION

in Definition For Function, 56

examples of, 59

rules and options for composing, 58

EX

in Orthotropic Crush material model, 191

EXCLUDE

in Results Output, 412, 422

EXTERNAL FORCE CONTRIBUTION OUTPUT

NAME, 331

in Pressure

description of, 335

EY

in Orthotropic Crush material model, 191

EZ

in Orthotropic Crush material model, 191

FACE

in Heartbeat Output, 444

in Heartbeat Output – for mesh entities variables

description of, 447

in Heartbeat Output – for nearest point variables

description of, 447

in History Output, 435

about, 437, 446

in History Output – for mesh entities variables

description of, 438

in History Output – for nearest point variables

description of, 438

in Results Output, 412

description of, 417

FACE MULTIPLIER

in Contact Definition – in Interaction

description of, 398

in Contact Definition – in Search Options, 377, 389

description of, 391

FACE MULTIPLIER

in Contact Definition – in Interaction, 397

FACTOR

in BCJ material model, 172

FEET PER MODEL UNITS

in Blast Pressure, 364

FETI EQUATION SOLVER, 101

FICTITIOUS LOGA FUNCTION

in NLVE 3D Orthotropic material model, 209

FICTITIOUS LOGA SCALE FACTOR

in NLVE 3D Orthotropic material model, 209

FIELD VARIABLE

in Pressure, 331

description of, 334

FILE

in Superelement Section, 263

description of, 264

FINITE ELEMENT MODEL, 230

usage of for Control Modes, 123

FIXED DISPLACEMENT, 293

in Control Modes Region, 124

usage in, 126

FIXED ROTATION, 311

FLANGE THICKNESS

in Beam Section, 256

FLUID PRESSURE, 361

FLUID SURFACE NORMAL

in Fluid Pressure, 361

in Fluid Pressure

usage in, 362

FORMAT

in Heartbeat Output, 444

FORMULATION

in Membrane Section, 253

in Solid Section, 242

FRACTIONAL DILATANCY

in Karagozian and Case concrete material model,

179

FRICTION COEFFICIENT

in Contact Definition – in Constant Friction Model,

377

description of, 387

in Contact Definition – in Interaction

description of, 400

FRICTION COEFFICIENT FUNCTION

in Contact Definition – in Interaction

description of, 400

FRICTION MODEL

in Contact Definition – in Interaction, 377, 397

description of, 399

in Contact Definition – in Interaction Defaults, 377,

394

description of, 395

FRICTIONLESS MODEL

in Contact Definition, 377

description of, 387

FULL TANGENT PRECONDITIONER

in CG, 85

description of, 88, 94

FUNCTION

in Gravity, 349

in J Integral, 519

in Pore Pressure, 356

description of, 357

in Prescribed Acceleration, 306

description of, 307

in Prescribed Displacement, 295

description of, 297

667

in Prescribed Force, 341

description of, 342

in Prescribed Moment, 345

description of, 346

in Prescribed Rotation, 313

description of, 315

in Prescribed Rotational Velocity, 318

description of, 320

in Prescribed Temperature, 351

description of, 352

in Prescribed Velocity, 301

description of, 302

in Pressure, 331

description of, 333

in Traction, 337

description of, 338

GAMMA

in Implicit Dynamics, 139

description of, 140

GENERAL CONTACT

in Contact Definition – in Interaction Defaults, 377

GLASS TRANSITION TEM

in NLVE 3D Orthotropic material model, 209

GLOBAL

in Heartbeat Output – for global variables

description of, 446

in History Output – for global variables

description of, 437

in Results Output, 412

description of, 423

GLOBAL OPERATOR

in User Variable, 561

GLOBAL OUTPUT OPTIONS

description of, 478

GLOBAL SEARCH INCREMENT

in Contact Definition – in Search Options, 377, 389

description of, 390

GLOBAL SEARCH ONCE

in Contact Definition – in Search Options, 377, 389

description of, 390

GLUED MODEL

in Contact Definition, 377

description of, 388

GRAVITATIONAL CONSTANT

in Fluid Pressure, 361

in Fluid Pressure

usage in, 362

in Gravity, 349

GRAVITY, 349

GROWTH FACTOR

in Adaptive Time Stepping

description of, 136

GXY

in Orthotropic Crush material model, 191

GYZ

in Orthotropic Crush material model, 191

GZX

in Orthotropic Crush material model, 191

HARDEN-SOFTEN FUNCTION

in Karagozian and Case concrete material model,

179

HARDENING CONSTANT

in Ductile Fracture material model, 163

in Elastic-Plastic Power-Law Hardening material

model, 161

HARDENING EXPONENT

in Ductile Fracture material model, 163

in Elastic-Plastic Power-Law Hardening material

model, 161

HARDENING FUNCTION

in Multilinear Elastic-Plastic Hardening Model

material model, 165

in Multilinear Elastic-Plastic Hardening Model with

Failure material model, 167

HARDENING MODULUS

in Elastic-Plastic material model, 159

HEARTBEAT OUTPUT, 444

HEIGHT

in Beam Section, 256

HISTORY OUTPUT, 435

HOLD ERROR THRESHOLD

in Implicit Dynamics, 139

description of, 140

HOURGLASS FORMULATION

in Solid Section, 242

HOURGLASS INCREMENT

in Solid Section, 242

HOURGLASS ROTATION

in Solid Section, 242

HOURGLASS STIFFNESS

in Finite Element Model – in Parameters For Block,

235

description of, 239

HOURGLASS VISCOSITY

in Finite Element Model – in Parameters For Block,

235

description of, 239

HYDRO EXPONENT

in Foam Plasticity material model, 182

HYDRO HARDENING

in Foam Plasticity material model, 182

HYDRO STRENGTH

in Foam Plasticity material model, 182

IMPLICIT DYNAMICS, 139

IMPULSE SCALE FACTOR

668

in Blast Pressure, 364

INACTIVE PERIODS, 75

description of, 75

in Adaptive Time Stepping

description of, 137

in Blast Pressure, 364

in Element Death, 273

usage in, 278

in Fixed Displacement, 293

usage in, 294

in Fixed Rotation, 311

usage in, 312

in Fluid Pressure, 361

usage in, 363

in Gravity, 349

in Implicit Dynamics, 139

description of, 139

in J Integral, 519

in Pore Pressure, 356

usage in, 359

in Prescribed Acceleration, 306

usage in, 310

in Prescribed Displacement, 295

usage in, 299

in Prescribed Force, 341

usage in, 344

in Prescribed Moment, 345

usage in, 348

in Prescribed Rotation, 313

usage in, 317

in Prescribed Rotational Velocity, 318

usage in, 322

in Prescribed Temperature, 351

usage in, 355

in Prescribed Velocity, 301

usage in, 305

in Pressure, 331

in REFERENCE AXIS ROTATION

usage in, 325

in Traction, 337

usage in, 340

INCLUDE

in Results Output, 412, 422

INCLUDE ALL BLOCKS

description of, 284

in Element Death, 273

description of, 274

in Finite Element Model, 230

description of, 237

in Fixed Displacement, 293

usage in, 294

in Fixed Rotation, 311

usage in, 311

in Gravity, 349

usage in, 349

in Initial Condition, 287

usage in, 288

in Initial Velocity, 327

usage in, 328

in Mass Properties, 271

usage in, 271

in Pore Pressure, 356

usage in, 357

in Prescribed Acceleration, 306

usage in, 307

in Prescribed Displacement, 295

usage in, 296

in Prescribed Force, 341

usage in, 342

in Prescribed Moment, 345

usage in, 346

in Prescribed Rotation, 313

usage in, 314

in Prescribed Rotational Velocity, 318

usage in, 319

in Prescribed Temperature, 351

usage in, 352

in Prescribed Velocity, 301

usage in, 302

in Procedural Transfer, 584

description of, 585

in Time Step Initialization, 558

usage in, 559

in User Output, 427

usage in, 429

INCLUDE NODES IN

in Rigid Body command block, 266

INCLUDEFILE, 45

INCREASE ERROR THRESHOLD

in Implicit Dynamics

description of, 140

INCREASE ERROR THRESHOLD

in Implicit Dynamics, 139

INERTIA

in Rigid Body command block, 266

INITIAL ALPHA_XX

in BCJ material model, 172

INITIAL ALPHA_XY

in BCJ material model, 172

INITIAL ALPHA_XZ

in BCJ material model, 172

INITIAL ALPHA_YY

in BCJ material model, 172

INITIAL ALPHA_YZ

in BCJ material model, 172

INITIAL ALPHA_ZZ

in BCJ material model, 172

INITIAL CONDITION, 287

669

INITIAL DAMAGE

in BCJ material model, 172

INITIAL KAPPA

in BCJ material model, 172

INITIAL LOAD

in Truss Section, 261

INITIAL VALUE

in User Variable, 561

INITIAL VELOCITY, 327

INITIALIZE VARIABLE NAME

in Initial Condition, 287

description of, 289

INPUT DATABASE NAME

in Restart Data, 456

description of, 457

INTEGRATION RADIUS

in J Integral, 519

INTEGRATION RULE

in Shell Section, 246

INTERACTION

in Contact Definition, 377

description of, 397

INTERACTION DEFAULTS

in Contact Definition, 377

description of, 394

INTERPOLATION TRANSFER

in Procedural Transfer, 584

description of, 585

ITERATION PLOT

in CG, 85

description of, 92

in Control Contact, 105

description of, 110

in Control Failure, 121

description of, 122

in Control Stiffness, 116

description of, 120

ITERATION PLOT OUTPUT BLOCKS

in CG, 85

description of, 92

in Control Contact, 105

description of, 110

in Control Failure, 121

description of, 122

in Control Stiffness, 116

description of, 120

ITERATION PRINT

in CG, 85

description of, 92

ITERATION RESET

in CG, 85

description of, 92

ITERATION UPDATE

in Full Tangent Preconditioner, 94

description of, 97

ITERATION WINDOW

in Adaptive Time Stepping

description of, 135

J INTEGRAL, 519

JAS MODE

in Adagio Region, 130

in Control Modes Region, 124

description of, 125

K SCALING

in Incompressible Solid material model, 203

L FUNCTION

in Orthotropic Rate material model, 194

LABELS

in Heartbeat Output, 444

LAMBDA

in BCJ material model, 172

in Ductile Fracture material model, 163

in Elastic 3D Orthotropic material model, 186

in Elastic Fracture material model, 157

in Elastic material model, 151

in Elastic-Plastic material model, 159

in Elastic-Plastic Power-Law Hardening material

model, 161

in Fiber Membrane material model, 200

in Foam Plasticity material model, 182

in Incompressible Solid material model, 203

in Johnson-Cook material model, 170

in Karagozian and Case concrete material model,

179

in Low Density Foam material model, 185

in Mooney-Rivlin material model, 206

in Multilinear Elastic-Plastic Hardening Model

material model, 165

in Multilinear Elastic-Plastic Hardening Model with

Failure material model, 167

in Neo Hookean material model, 155

in NLVE 3D Orthotropic material model, 209

in Orthotropic Crush material model, 191

in Orthotropic Rate material model, 194

in Power Law Creep material model, 174

in Soil and Crushable Foam material model, 176

in Stiff Elastic material model, 213

in Swanson material model, 215

in Thermoelastic material model, 153

in Viscoelastic Swanson material model, 218

in Wire Mesh material model, 189

LAMBDAM

in Karagozian and Case concrete material model,

179

LAMBDAZ

670

in Karagozian and Case concrete material model,

179

LEGEND

in Heartbeat Output, 444

LEVEL

in Control Contact, 105

description of, 109

in Control Failure, 121

description of, 122

in Control Stiffness, 116

description of, 119

LEVEL 1 PREDICTOR

in Solver, 81

description of, 129

LINE SEARCH

in CG, 85

description of, 90

LINEAR BULK VISCOSITY

in Finite Element Model – in Parameters For Block,

235

description of, 238

LINEAR SOLVER

in Full Tangent Preconditioner, 94

description of, 95

LINEAR VISCO TEST

in NLVE 3D Orthotropic material model, 209

LOADSTEP PREDICTOR

in Solver, 124, 127

usage in, 125

LOCAL SOLVER

in FETI Equation Solver, 101

description of, 103

LOCALIZATION SECTION, 245

LOFTING ALGORITHM

in Contact Definition – in Shell Lofting, 377

LOFTING FACTOR

in Membrane Section, 253

in Shell Section, 246

LUDERS STRAIN

in Ductile Fracture material model, 163

in Elastic-Plastic Power-Law Hardening material

model, 161

LW FUNCTION

in Orthotropic Rate material model, 194

LX

in Orthotropic Rate material model, 194

LY

in Orthotropic Rate material model, 194

LZ

in Orthotropic Rate material model, 194

MAGNITUDE

in Initial Condition, 287

description of, 289

in Initial Velocity, 327

description of, 328

in Rigid Body command block, 266

MAP

in Superelement Section, 263

description of, 264

MASS

in Rigid Body command block, 266

MASS MATRIX

in Superelement Section, 263

description of, 264

MASS PROPERTIES, 271

MASTER

in Contact Definition – in Interaction, 377, 397

description of, 397

MASTER BLOCK

in MPC, 366

usage in, 366

MASTER NODE SET

in MPC, 366

usage in, 366

MASTER NODES

in MPC, 366

usage in, 366

MASTER SURFACE

in MPC, 366

usage in, 366

MATERIAL

in Finite Element Model – in Parameters For Block,

235

description of, 236

MATERIAL CRITERION

in Element Death, 273

description of, 275

MATRIX DENSITY

in Fiber Membrane material model, 200

MAX POISSONS RATIO

in Incompressible Solid material model, 203

in Mooney-Rivlin material model, 206

in Swanson material model, 215

in Viscoelastic Swanson material model, 218

MAX STRESS

in Elastic Fracture material model, 157

MAXIMUM AGGREGATE SIZE

in Karagozian and Case concrete material model,

179

MAXIMUM FAILURE CUTBACKS

in Adaptive Time Stepping

description of, 136

MAXIMUM ITERATIONS

in CG, 85

description of, 86

in Control Contact, 105

description of, 108

671

in Control Failure, 121

description of, 121

in Control Stiffness, 116

description of, 117

in FETI Equation Solver, 101

description of, 102

MAXIMUM ITERATIONS FOR LOADSTEP

in Full Tangent Preconditioner, 94

description of, 97

MAXIMUM ITERATIONS FOR MODELPROBLEM

in Full Tangent Preconditioner, 94

description of, 97

MAXIMUM MULTIPLIER

in Adaptive Time Stepping

description of, 136

MAXIMUM ORTHOGONALIZATION

in FETI Equation Solver, 101

description of, 102

MAXIMUM RESETS FOR LOADSTEP

in Full Tangent Preconditioner, 94

description of, 97

MAXIMUM RESETS FOR MODELPROBLEM

in Full Tangent Preconditioner, 94

description of, 97

MEMBRANE HOURGLASS STIFFNESS

in Finite Element Model – in Parameters For Block,

235

description of, 239

MEMBRANE HOURGLASS VISCOSITY

in Finite Element Model – in Parameters For Block,

235

description of, 239

MEMBRANE SECTION, 253

METHOD

in Adaptive Time Stepping

description of, 135

MILLISECONDS PER MODEL UNITS

in Blast Pressure, 364

MINIMUM CONVERGENCE RATE

in Full Tangent Preconditioner, 94

description of, 99

MINIMUM ITERATIONS

in CG, 85

description of, 86

in Control Contact, 105

description of, 108

in Control Stiffness, 116

description of, 117

MINIMUM MULTIPLIER

in Adaptive Time Stepping

description of, 137

MINIMUM RESIDUAL IMPROVEMENT

in CG, 85

description of, 86

MODEL

in Fiber Membrane material model, 200

MODULUS FUNCTION

in Orthotropic Rate material model, 194

MODULUS LLLL

in Orthotropic Rate material model, 194

MODULUS LLWW

in Orthotropic Rate material model, 194

MODULUS LWLW

in Orthotropic Rate material model, 194

MODULUS TLTL

in Orthotropic Rate material model, 194

MODULUS TTLL

in Orthotropic Rate material model, 194

MODULUS TTTT

in Orthotropic Rate material model, 194

MODULUS TTWW

in Orthotropic Rate material model, 194

MODULUS WTWT

in Orthotropic Rate material model, 194

MODULUS WWWW

in Orthotropic Rate material model, 194

MONITOR

in Heartbeat Output, 444

description of, 455

MPC, 366

MTH11 FUNCTION

in Elastic Laminate material model, 197

MTH12 FUNCTION

in Elastic Laminate material model, 197

MTH22 FUNCTION

in Elastic Laminate material model, 197

NAIR

in Low Density Foam material model, 185

NEAREST ELEMENT COPY

in Procedural Transfer, 584

description of, 585

NODAL

in Heartbeat Output, 444

in Heartbeat Output – for mesh entities variables

description of, 447

in Heartbeat Output – for nearest point variables

description of, 447

in History Output, 435

about, 437, 446

in History Output – for mesh entities variables

description of, 438

in History Output – for nearest point variables

description of, 438

in Results Output, 412

description of, 415

NODAL PRECONDITIONER METHOD

in Full Tangent Preconditioner, 94

672

description of, 95

NODAL PROBE FACTOR

in CG, 85

description of, 88

NODE

in Heartbeat Output, 444

in Heartbeat Output – for mesh entities variables

description of, 447

in Heartbeat Output – for nearest point variables

description of, 447

in History Output, 435

about, 437, 446

in History Output – for mesh entities variables

description of, 438

in History Output – for nearest point variables

description of, 438

in Results Output, 412

description of, 415

NODE BASED ALPHA FACTOR

in Solid Section, 242

NODE BASED BETA FACTOR

in Solid Section, 242

NODE SET

description of, 284

in Contact Definition – in Contact Surface (block),

377

usage in, 382

in Fixed Displacement, 293

usage in, 294

in Fixed Rotation, 311

usage in, 311

in Gravity, 349

usage in, 349

in Heartbeat Output, 444

in Heartbeat Output – for mesh entities variables

description of, 447

in Heartbeat Output – for nearest point variables

description of, 447

in History Output, 435

about, 437, 446

in History Output – for mesh entities variables

description of, 438

in History Output – for nearest point variables

description of, 438

in Initial Condition, 287

usage in, 288

in Initial Velocity, 327

usage in, 328

in Prescribed Acceleration, 306

usage in, 307

in Prescribed Displacement, 295

usage in, 296

in Prescribed Force, 341

usage in, 342

in Prescribed Moment, 345

usage in, 346

in Prescribed Rotation, 313

usage in, 314

in Prescribed Rotational Velocity, 318

usage in, 319

in Prescribed Velocity, 301

usage in, 302

in Results Output, 412

description of, 415

in Time Step Initialization, 558

usage in, 559

in User Output, 427

usage in, 429

NODE SET SUBROUTINE

as user subroutine command line, 555

description of, 555

in Initial Condition, 287

description of, 291

in Initial Velocity, 327

description of, 329

in Pore Pressure

description of, 358

in Prescribed Acceleration, 306

description of, 308

in Prescribed Displacement, 295

description of, 298

in Prescribed Force, 341

description of, 343

in Prescribed Moment, 345

description of, 347

in Prescribed Rotation, 313

description of, 315

in Prescribed Rotational Velocity, 318

description of, 321

in Prescribed Temperature, 351

description of, 353

in Prescribed Velocity, 301

description of, 304

in Pressure, 331

description of, 333

in Time Step Initialization, 558

description of, 559

in Traction, 337

description of, 339

in User Output, 427

description of, 431

NODESET

in Heartbeat Output, 444

in Heartbeat Output – for mesh entities variables

description of, 447

in Heartbeat Output – for nearest point variables

description of, 447

in History Output, 435

673

about, 437, 446

in History Output – for mesh entities variables

description of, 438

in History Output – for nearest point variables

description of, 438

in Results Output, 412

description of, 415

NORMAL TOLERANCE

in Contact Definition – in Interaction, 377, 397

description of, 398

in Contact Definition – in Search Options, 377, 389

description of, 391

NTH11 FUNCTION

in Elastic Laminate material model, 197

NTH12 FUNCTION

in Elastic Laminate material model, 197

NTH22 FUNCTION

in Elastic Laminate material model, 197

NUM LOCAL SUBDOMAINS

in FETI Equation Solver, 101

description of, 103

NUMBER OF DOMAINS

in J Integral, 519

NUMBER OF INTEGRATION POINTS

in Cohesive Section, 245

in Localization Section, 245

in Shell Section, 246

NUMBER OF SMOOTHING ITERATIONS

in Full Tangent Preconditioner, 94

description of, 97

NUMBER OF TIME STEPS

in Parameters For Adagio Region, 132, 133

NUMERICAL SHIFT FUNCTION

in Viscoelastic Swanson material model, 218

OBJECT TYPE

in Pressure, 331

description of, 334

OMIT BLOCK

in Finite Element Model, 230

description of, 234

ONE INCH

in Karagozian and Case concrete material model,

179

OPTIONAL

in Restart Data, 456

description of, 457

ORDINATE

in Definition for Function, 56

ORIENTATION, 62

in Shell Section, 246

ORIGIN

in Coordinate System, 67

ORIGIN NODE

in Coordinate System, 67

ORTHOGONALITY MEASURE FOR RESET

in CG, 85

description of, 92

OUTPUT DATABASE NAME

in Restart Data, 456

description of, 457

OUTPUT MESH

BLOCK_SURFACE, 422

EXPOSED_SURFACE, 422

in Results Output, 412

description of, 422

OUTPUT ON SIGNAL

in Heartbeat Output, 444

description of, 451

in History Output, 435

description of, 442

in Restart Data, 456

description of, 470

in Results Output, 412

description of, 426

OUTPUT SCHEDULER, 471

example of, 473

use of, 471

OVERLAY COUNT

in Restart Data, 456

description of, 467

OVERWRITE

in History Output, 435

in Restart Data, 456

description of, 466

in Results Output, 412

P0

in Low Density Foam material model, 185

P1

in Swanson material model, 215

in Viscoelastic Swanson material model, 218

PARAM-STRING precision VALUE

in FETI Equation Solver, 101

description of, 102

PARAMETERS FOR ADAGIO REGION

in Time Stepping Block, 131

contents of, 132

PARAMETERS FOR BLOCK

in Finite Element Model, 230

about, 235

listing of, 235

PARAMETERS FOR MODEL

in Property Specification for Material command

blocks

description of, 144

PARAMETERS FOR MODEL BCJ

in BCJ material model, 172

674

PARAMETERS FOR MODEL DUCTILE FRACTURE

in Ductile Fracture material model, 163

PARAMETERS FOR MODEL ELASTIC

in Elastic material model, 151

in Neo Hookean material model, 155

in Thermoelastic material model, 153

PARAMETERS FOR MODEL

ELASTIC_3D_ORTHOTROPIC

in Elastic 3D Orthotropic material model, 186

PARAMETERS FOR MODEL ELASTIC_FRACTURE

in Elastic Fracture material model, 157

PARAMETERS FOR MODEL ELASTIC_LAMINATE

in Elastic Laminate material model, 197

PARAMETERS FOR MODEL ELASTIC_PLASTIC

in Elastic-Plastic material model, 159

PARAMETERS FOR MODEL EP_POWER_HARD

in Elastic-Plastic Power-Law Hardening material

model, 161

PARAMETERS FOR MODEL FIBER_MEMBRANE

in Fiber Membrane material model, 200

PARAMETERS FOR MODEL FOAM_PLASTICITY

in Foam Plasticity material model, 182

in Karagozian and Case concrete material model,

179

PARAMETERS FOR MODEL

INCOMPRESSIBLE_SOLID

in Incompressible Solid material model, 203

PARAMETERS FOR MODEL JOHNSON_COOK

in Johnson-Cook material model, 170

PARAMETERS FOR MODEL

LOW_DENSITY_FOAM

in Low Density Foam material model, 185

PARAMETERS FOR MODEL ML_EP_FAIL

in Multilinear Elastic-Plastic Hardening Model

material mode, 165

in Multilinear Elastic-Plastic Hardening Model with

Failure material mode, 167

PARAMETERS FOR MODEL MOONEY_RIVLIN

in Mooney-Rivlin material model, 206

PARAMETERS FOR MODEL

NLVE_3D_ORTHOTROPIC

in NLVE 3D Orthotropic material model, 209

PARAMETERS FOR MODEL

ORTHOTROPIC_CRUSH

in Orthotropic Crush material model, 191

PARAMETERS FOR MODEL ORTHOTROPIC_RATE

in Orthotropic Rate material model, 194

PARAMETERS FOR MODEL RVE, 514

PARAMETERS FOR MODEL SOIL_FOAM

in Power Law Creep material model, 174

in Soil and Crushable Foam material model, 176

PARAMETERS FOR MODEL STIFF_ELASTIC

in Stiff Elastic material model, 213

PARAMETERS FOR MODEL SWANSON

in Swanson material model, 215

PARAMETERS FOR MODEL

VISCOELASTIC_SWANSON

in Viscoelastic Swanson material model, 218

PARAMETERS FOR MODEL WIRE_MESH

in Wire Mesh material model, 189

PENALTY FACTOR

in Full Tangent Preconditioner, 94

description of, 96

PERCENT CONTINUUM

in Fiber Membrane material model, 200

PERIOD

in Truss Section, 261

PERIODIC

in Control Modes Region, 124

usage in, 126

PHI

in Foam Plasticity material model, 182

in Low Density Foam material model, 185

POINT

in Coordinate System, 67

POINT A

in Orientation, 62

POINT B

in Orientation, 62

POINT INERTIA

in Rigid Body command block, 266

POINT MASS

in Rigid Body command block, 266

POINT NODE

in Coordinate System, 67

POISSONS RATIO

in BCJ material model, 172

in Ductile Fracture material model, 163

in Elastic 3D Orthotropic material model, 186

in Elastic Fracture material model, 157

in Elastic material model, 151

in Elastic-Plastic material model, 159

in Elastic-Plastic Power-Law Hardening material

model, 161

in Fiber Membrane material model, 200

in Foam Plasticity material model, 182

in Incompressible Solid material model, 203

in Johnson-Cook material model, 170

in Karagozian and Case concrete material model,

179

in Low Density Foam material model, 185

in Mooney-Rivlin material model, 206

in Multilinear Elastic-Plastic Hardening Model

material model, 165

in Multilinear Elastic-Plastic Hardening Model with

Failure material model, 167

in Neo Hookean material model, 155

in NLVE 3D Orthotropic material model, 209

675

in Orthotropic Crush material model, 191

in Orthotropic Rate material model, 194

in Power Law Creep material model, 174

in Soil and Crushable Foam material model, 176

in Stiff Elastic material model, 213

in Swanson material model, 215

in Thermoelastic material model, 153

in Viscoelastic Swanson material model, 218

in Wire Mesh material model, 189

POISSONS RATIO AB

in Elastic 3D Orthotropic material model, 186

POISSONS RATIO BC

in Elastic 3D Orthotropic material model, 186

POISSONS RATIO CA

in Elastic 3D Orthotropic material model, 186

POISSONS RATIO FUNCTION

in BCJ material model, 172

in Multilinear Elastic-Plastic Hardening Model

material model, 165

in Multilinear Elastic-Plastic Hardening Model with

Failure material model, 167

in Thermoelastic material model, 153

PORE PRESSURE, 356

POSITIVE DURATION SCALE FACTOR

in Blast Pressure, 364

PRECISION

in Heartbeat Output, 444

PRECONDITIONER

in CG, 85

description of, 88

PRECONDITIONING METHOD

in FETI Equation Solver, 101

description of, 102

PREDICTOR TYPE

in Loadstep Predictor

description of, 127

PRESCRIBED ACCELERATION, 306

PRESCRIBED DISPLACEMENT, 295

PRESCRIBED FORCE, 341

PRESCRIBED MOMENT, 345

PRESCRIBED ROTATION, 313

PRESCRIBED ROTATIONAL Velocity, 318

PRESCRIBED TEMPERATURE, 351

usage for thermal strains, 150

PRESCRIBED VELOCITY, 301

PRESSURE, 331

PRESSURE CUTOFF

in Soil and Crushable Foam material model, 176

PRESSURE FUNCTION

in Karagozian and Case concrete material model,

179

in Soil and Crushable Foam material model, 176

PRESSURE SCALE FACTOR

in Blast Pressure, 364

PROBE FACTOR

in Full Tangent Preconditioner, 94

description of, 96

PROCEDURAL TRANSFER, 584

PRONY SHEAR 1

in Viscoelastic Swanson material model, 218

PRONY SHEAR 10

in Viscoelastic Swanson material model, 218

PRONY SHEAR 2

in Viscoelastic Swanson material model, 218

PRONY SHEAR 3

in Viscoelastic Swanson material model, 218

PRONY SHEAR 4

in Viscoelastic Swanson material model, 218

PRONY SHEAR 5

in Viscoelastic Swanson material model, 218

PRONY SHEAR 6

in Viscoelastic Swanson material model, 218

PRONY SHEAR 7

in Viscoelastic Swanson material model, 218

PRONY SHEAR 8

in Viscoelastic Swanson material model, 218

PRONY SHEAR 9

in Viscoelastic Swanson material model, 218

PRONY SHEAR INFINITY

in Viscoelastic Swanson material model, 218

PROPERTY SPECIFICATION FOR MATERIAL, 143

about, 236

PSI EQ 2T

in NLVE 3D Orthotropic material model, 209

PSI EQ 3T

in NLVE 3D Orthotropic material model, 209

PSI EQ 4T

in NLVE 3D Orthotropic material model, 209

PSI EQ XT 1

in NLVE 3D Orthotropic material model, 209

PSI EQ XT 2

in NLVE 3D Orthotropic material model, 209

PSI EQ XT 3

in NLVE 3D Orthotropic material model, 209

PSI EQ XTT 1

in NLVE 3D Orthotropic material model, 209

PSI EQ XTT 2

in NLVE 3D Orthotropic material model, 209

PSI EQ XTT 3

in NLVE 3D Orthotropic material model, 209

PSI EQ XX 11

in NLVE 3D Orthotropic material model, 209

PSI EQ XX 12

in NLVE 3D Orthotropic material model, 209

PSI EQ XX 13

in NLVE 3D Orthotropic material model, 209

PSI EQ XX 22

in NLVE 3D Orthotropic material model, 209

676

PSI EQ XX 23

in NLVE 3D Orthotropic material model, 209

PSI EQ XX 33

in NLVE 3D Orthotropic material model, 209

PSI EQ XX 44

in NLVE 3D Orthotropic material model, 209

PSI EQ XX 55

in NLVE 3D Orthotropic material model, 209

PSI EQ XX 66

in NLVE 3D Orthotropic material model, 209

PSI EQ XXT 11

in NLVE 3D Orthotropic material model, 209

PSI EQ XXT 12

in NLVE 3D Orthotropic material model, 209

PSI EQ XXT 13

in NLVE 3D Orthotropic material model, 209

PSI EQ XXT 22

in NLVE 3D Orthotropic material model, 209

PSI EQ XXT 23

in NLVE 3D Orthotropic material model, 209

PSI EQ XXT 33

in NLVE 3D Orthotropic material model, 209

PSI EQ XXT 44

in NLVE 3D Orthotropic material model, 209

PSI EQ XXT 55

in NLVE 3D Orthotropic material model, 209

PSI EQ XXT 66

in NLVE 3D Orthotropic material model, 209

PSI POT TT

in NLVE 3D Orthotropic material model, 209

PSI POT TTT

in NLVE 3D Orthotropic material model, 209

PSI POT TTTT

in NLVE 3D Orthotropic material model, 209

PSI POT XT 1

in NLVE 3D Orthotropic material model, 209

PSI POT XT 2

in NLVE 3D Orthotropic material model, 209

PSI POT XT 3

in NLVE 3D Orthotropic material model, 209

PSI POT XTT 1

in NLVE 3D Orthotropic material model, 209

PSI POT XTT 2

in NLVE 3D Orthotropic material model, 209

PSI POT XTT 3

in NLVE 3D Orthotropic material model, 209

PSI POT XXT 11

in NLVE 3D Orthotropic material model, 209

PSI POT XXT 12

in NLVE 3D Orthotropic material model, 209

PSI POT XXT 13

in NLVE 3D Orthotropic material model, 209

PSI POT XXT 22

in NLVE 3D Orthotropic material model, 209

PSI POT XXT 23

in NLVE 3D Orthotropic material model, 209

PSI POT XXT 33

in NLVE 3D Orthotropic material model, 209

PSI POT XXT 44

in NLVE 3D Orthotropic material model, 209

PSI POT XXT 55

in NLVE 3D Orthotropic material model, 209

PSI POT XXT 66

in NLVE 3D Orthotropic material model, 209

PUSHBACK FACTOR

in Contact Definition – in Interaction

description of, 399

Q1

in Swanson material model, 215

in Viscoelastic Swanson material model, 218

QUADRATIC BULK VISCOSITY

in Finite Element Model – in Parameters For Block,

235

description of, 238

R1

in Swanson material model, 215

in Viscoelastic Swanson material model, 218

RADIAL AXIS

in Prescribed Displacement, 295

description of, 297

in Prescribed Velocity, 301

description of, 302

RATE FUNCTION

in Orthotropic Rate material model, 194

RATE SENSITIVITY FUNCTION

in Karagozian and Case concrete material model,

179

READ VARIABLE

in Initial Condition, 287

description of, 290

in Pore Pressure, 356

description of, 358

in Prescribed Acceleration, 306

description of, 309

in Prescribed Displacement, 295

description of, 298

in Prescribed Rotation, 313

description of, 316

in Prescribed Rotational Velocity, 318

description of, 321

in Prescribed Temperature, 351

description of, 353

in Prescribed Velocity, 301

description of, 304

in Pressure, 331

description of, 334

677

RECEIVE BLOCKS

in Procedural Transfer, 584

description of, 585

RECEIVE COORDINATES

in Procedural Transfer, 584

description of, 585

RECEIVE FROM TRANSFER

in Pore Pressure, 356

in Prescribed Temperature, 351

REF GLASSY C11

in NLVE 3D Orthotropic material model, 209

REF GLASSY C12

in NLVE 3D Orthotropic material model, 209

REF GLASSY C13

in NLVE 3D Orthotropic material model, 209

REF GLASSY C22

in NLVE 3D Orthotropic material model, 209

REF GLASSY C23

in NLVE 3D Orthotropic material model, 209

REF GLASSY C33

in NLVE 3D Orthotropic material model, 209

REF GLASSY C44

in NLVE 3D Orthotropic material model, 209

REF GLASSY C55

in NLVE 3D Orthotropic material model, 209

REF GLASSY C66

in NLVE 3D Orthotropic material model, 209

REF GLASSY CTE1

in NLVE 3D Orthotropic material model, 209

REF GLASSY CTE2

in NLVE 3D Orthotropic material model, 209

REF GLASSY CTE3

in NLVE 3D Orthotropic material model, 209

REF GLASSY HCAPACITY

in NLVE 3D Orthotropic material model, 209

REF PSIA 11

in NLVE 3D Orthotropic material model, 209

REF PSIA 12

in NLVE 3D Orthotropic material model, 209

REF PSIA 13

in NLVE 3D Orthotropic material model, 209

REF PSIA 22

in NLVE 3D Orthotropic material model, 209

REF PSIA 23

in NLVE 3D Orthotropic material model, 209

REF PSIA 33

in NLVE 3D Orthotropic material model, 209

REF PSIA 44

in NLVE 3D Orthotropic material model, 209

REF PSIA 55

in NLVE 3D Orthotropic material model, 209

REF PSIA 66

in NLVE 3D Orthotropic material model, 209

REF PSIB 1

in NLVE 3D Orthotropic material model, 209

REF PSIB 2

in NLVE 3D Orthotropic material model, 209

REF PSIB 3

in NLVE 3D Orthotropic material model, 209

REF PSIC

in NLVE 3D Orthotropic material model, 209

REF RUBBERY C11

in NLVE 3D Orthotropic material model, 209

REF RUBBERY C12

in NLVE 3D Orthotropic material model, 209

REF RUBBERY C13

in NLVE 3D Orthotropic material model, 209

REF RUBBERY C22

in NLVE 3D Orthotropic material model, 209

REF RUBBERY C23

in NLVE 3D Orthotropic material model, 209

REF RUBBERY C33

in NLVE 3D Orthotropic material model, 209

REF RUBBERY C44

in NLVE 3D Orthotropic material model, 209

REF RUBBERY C55

in NLVE 3D Orthotropic material model, 209

REF RUBBERY C66

in NLVE 3D Orthotropic material model, 209

REF RUBBERY CTE1

in NLVE 3D Orthotropic material model, 209

REF RUBBERY CTE2

in NLVE 3D Orthotropic material model, 209

REF RUBBERY CTE3

in NLVE 3D Orthotropic material model, 209

REF RUBBERY HCAPACITY

in NLVE 3D Orthotropic material model, 209

REFERENCE

in CG, 85

description of, 86

in Control Contact, 105

description of, 108

in Control Stiffness, 116

description of, 117

REFERENCE AXIS, 323

in Beam Section, 256

REFERENCE AXIS X FUNCTION

in Reference Axis, 323

description of, 324

REFERENCE AXIS Y FUNCTION

in Reference Axis, 323

description of, 324

REFERENCE AXIS Z FUNCTION

in Reference Axis, 323

description of, 324

REFERENCE DENSITY

in NLVE 3D Orthotropic material model, 209

REFERENCE LOCATION

678

in Rigid Body command block, 266

Reference Mesh

for Control Modes, 123

REFERENCE PLANE AXIS

in Traction, 337

REFERENCE PLANE T1 DIRECTION

in Traction, 337

REFERENCE POINT

in Fluid Pressure, 361

in Fluid Pressure

usage in, 362

REFERENCE STRAIN

in Fiber Membrane material model, 200

in Incompressible Solid material model, 203

in Mooney-Rivlin material model, 206

in Stiff Elastic material model, 213

in Swanson material model, 215

in Viscoelastic Swanson material model, 218

REFERENCE TEMP

in NLVE 3D Orthotropic material model, 209

RELAX TIME

in NLVE 3D Orthotropic material model, 209

REMOVE BLOCK

description of, 285

in Contact Definition – in Contact Surface (block),

377

usage in, 382

in Element Death, 273

description of, 274

in Finite Element Model, 230

description of, 237

in Fixed Displacement, 293

usage in, 294

in Fixed Rotation, 311

usage in, 311

in Gravity, 349

usage in, 349

in Initial Condition, 287

usage in, 288

in Initial Velocity, 327

usage in, 328

in Mass Properties, 271

usage in, 271

in Pore Pressure, 356

usage in, 357

in Prescribed Acceleration, 306

usage in, 307

in Prescribed Displacement, 295

usage in, 296

in Prescribed Force, 341

usage in, 342

in Prescribed Moment, 345

usage in, 346

in Prescribed Rotation, 313

usage in, 314

in Prescribed Rotational Velocity, 318

usage in, 319

in Prescribed Temperature, 351

usage in, 352

in Prescribed Velocity, 301

usage in, 302

in Procedural Transfer, 584

description of, 585

in Time Step Initialization, 558

usage in, 559

in User Output, 427

usage in, 429

REMOVE NODE SET

description of, 285

in Contact Definition – in Contact Surface (block),

377

usage in, 382

in Fixed Displacement, 293

usage in, 294

in Fixed Rotation, 311

usage in, 311

in Gravity, 349

usage in, 349

in Initial Condition, 287

usage in, 288

in Initial Velocity, 327

usage in, 328

in Prescribed Acceleration, 306

usage in, 307

in Prescribed Displacement, 295

usage in, 296

in Prescribed Force, 341

usage in, 342

in Prescribed Moment, 345

usage in, 346

in Prescribed Rotation, 313

usage in, 314

in Prescribed Rotational Velocity, 318

usage in, 319

in Prescribed Velocity, 301

usage in, 302

in Time Step Initialization, 558

usage in, 559

in User Output, 427

usage in, 429

REMOVE SURFACE

description of, 285

in Contact Definition – in Contact Surface (block),

377

usage in, 382

in Fixed Displacement, 293

usage in, 294

in Fixed Rotation, 311

679

usage in, 311

in Gravity, 349

usage in, 349

in Initial Condition, 287

usage in, 288

in Initial Velocity, 327

usage in, 328

in Prescribed Acceleration, 306

usage in, 307

in Prescribed Displacement, 295

usage in, 296

in Prescribed Force, 341

usage in, 342

in Prescribed Moment, 345

usage in, 346

in Prescribed Rotation, 313

usage in, 314

in Prescribed Rotational Velocity, 318

usage in, 319

in Prescribed Velocity, 301

usage in, 302

in Pressure, 331

description of, 332

in Time Step Initialization, 558

usage in, 559

in Traction, 337

description of, 338

in User Output, 427

usage in, 429

REMOVE SURFACE

in Blast Pressure, 364

RESET AT NEW PERIOD

in Adaptive Time Stepping

description of, 137

RESET LIMITS

in CG, 85

description of, 92

RESIDUAL NORM TOLERANCE

in FETI Equation Solver, 101

description of, 102

RESOLVE MULTIPLE MPCS, 366

RESTART, 55

about, 54

RESTART DATA, 456

about, 54

about auto read and write, 458

about overwriting, 464

about recovering, 465

about user-controlled read and write, 461

RESTART TIME, 55

about, 54

with Restart Data, 456

RESULTS OUTPUT, 412

RHO

in BCJ material model, 172

RIGID BODIES FROM ATTRIBUTES

in Beam Section, 256

in Membrane Section, 253

in Shell Section, 246

in Solid Section, 242

in Truss Section, 261

RIGID BODY

as command block, 266

in Beam Section, 256

in Membrane Section, 253

in Shell Section, 246

in Solid Section, 242

in Truss Section, 261

ROTATION

in Reference Axis, 323

in Reference Axis Rotation

description of, 325

ROTATION ABOUT

in Orientation, 62

ROTATIONAL VELOCITY

in Reference Axis, 323

in Reference Axis Rotation

description of, 325

RVE REGION, 515

SCALE FACTOR

in Gravity, 349

in Initial Condition, 287

description of, 292

in Loadstep Predictor, 127

description of, 128

in Pore Pressure, 356

description of, 359

in Prescribed Acceleration, 306

description of, 310

in Prescribed Displacement, 295

description of, 299

in Prescribed Force, 341

description of, 344

in Prescribed Moment, 345

description of, 348

in Prescribed Rotation, 313

description of, 317

in Prescribed Rotational Velocity, 318

description of, 322

in Prescribed Temperature, 351

description of, 355

in Prescribed Velocity, 301

description of, 305

in Pressure, 331

description of, 335

in Reference Axis, 323

in REFERENCE AXIS ROTATION

680

usage in, 325

in Stiff Elastic material model, 213

in Traction, 337

description of, 340

SCALING FUNCTION

in Incompressible Solid material model, 203

SEARCH OPTIONS

in Contact Definition, 377

description of, 389

SEARCH TOLERANCE

in Contact Definition – in Search Options, 377, 389

description of, 391

in MPC, 366

usage in, 366, 367

SECOND ALPHA

in Elastic 3D Orthotropic material model, 186

in NLVE 3D Orthotropic material model, 209

SECOND DIRECTION FOR ROTATION

in Elastic 3D Orthotropic material model, 186

in NLVE 3D Orthotropic material model, 209

SECONDARY DECOMPOSITION

in Contact Definition – in Search Options, 377, 389

description of, 392

SECTION

in Beam Section, 256

in Finite Element Model – in Parameters For Block,

235

description of, 237

general overview, 236

Section command blocks

about, 242

SEND BLOCKS

in Procedural Transfer, 584

description of, 585

SEND COORDINATES

in Procedural Transfer, 584

description of, 585

SHEAR EXPONENT

in Foam Plasticity material model, 182

SHEAR HARDENING

in Foam Plasticity material model, 182

SHEAR MODULUS

in BCJ material model, 172

in Ductile Fracture material model, 163

in Elastic 3D Orthotropic material model, 186

in Elastic Fracture material model, 157

in Elastic material model, 151

in Elastic-Plastic material model, 159

in Elastic-Plastic Power-Law Hardening material

model, 161

in Fiber Membrane material model, 200

in Foam Plasticity material model, 182

in Incompressible Solid material model, 203

in Johnson-Cook material model, 170

in Karagozian and Case concrete material model,

179

in Low Density Foam material model, 185

in Mooney-Rivlin material model, 206

in Multilinear Elastic-Plastic Hardening Model

material model, 165

in Multilinear Elastic-Plastic Hardening Model with

Failure material model, 167

in Neo Hookean material model, 155

in NLVE 3D Orthotropic material model, 209

in Orthotropic Crush material model, 191

in Orthotropic Rate material model, 194

in Power Law Creep material model, 174

in Soil and Crushable Foam material model, 176

in Stiff Elastic material model, 213

in Swanson material model, 215

in Thermoelastic material model, 153

in Viscoelastic Swanson material model, 218

in Wire Mesh material model, 189

SHEAR MODULUS AB

in Elastic 3D Orthotropic material model, 186

SHEAR MODULUS BC

in Elastic 3D Orthotropic material model, 186

SHEAR MODULUS CA

in Elastic 3D Orthotropic material model, 186

SHEAR RELAX TIME 1

in Viscoelastic Swanson material model, 218

SHEAR RELAX TIME 10

in Viscoelastic Swanson material model, 218

SHEAR RELAX TIME 2

in Viscoelastic Swanson material model, 218

SHEAR RELAX TIME 3

in Viscoelastic Swanson material model, 218

SHEAR RELAX TIME 4

in Viscoelastic Swanson material model, 218

SHEAR RELAX TIME 5

in Viscoelastic Swanson material model, 218

SHEAR RELAX TIME 6

in Viscoelastic Swanson material model, 218

SHEAR RELAX TIME 7

in Viscoelastic Swanson material model, 218

SHEAR RELAX TIME 8

in Viscoelastic Swanson material model, 218

SHEAR RELAX TIME 9

in Viscoelastic Swanson material model, 218

SHEAR STRENGTH

in Foam Plasticity material model, 182

SHELL DRILLING STIFFNESS

in Full Tangent Preconditioner, 94

description of, 96

SHELL LOFTING

in Contact Definition, 377

SHELL SECTION, 246

SHIFT REF VALUE

681

in NLVE 3D Orthotropic material model, 209

SIERRA, 53

SINGLE RATE ENHANCEMENT

in Karagozian and Case concrete material model,

179

SLAVE

in Contact Definition – in Interaction, 377, 397

description of, 397

SLAVE BLOCK

in MPC, 366

usage in, 366

SLAVE NODE SET

in MPC, 366

usage in, 366

SLAVE NODES

in MPC, 366

usage in, 366

SLAVE SURFACE

in MPC, 366

usage in, 366

SLIP SCALE FACTOR

in Loadstep Predictor, 127

description of, 128

SMALL NUMBER OF ITERATIONS

in Full Tangent Preconditioner, 94

description of, 97

SOLID MECHANICS USE MODEL

in Finite Element Model – in Parameters For Block,

235

description of, 236

SOLID SECTION, 242

SOLVER, 81

in Control Modes Region, 124

usage in, 125

SPECIFIC HEAT

in BCJ material model, 172

STAGNATION THRESHOLD

in Full Tangent Preconditioner, 94

description of, 99

START TIME

in Heartbeat Output, 444

description of, 449

in History Output, 435

description of, 440

in Output Scheduler, 471

description of, 472

in Restart Data, 456

description of, 466

in Results Output, 412

description of, 424

in Time Stepping Block, 131

STIFFNESS MATRIX

in Superelement Section, 263

description of, 264

STIFFNESS SCALE

in Fiber Membrane material model, 200

STRAIN INCREMENTATION

in Solid Section, 242

STREAM NAME

in Heartbeat Output, 444

STRUCTURE NAME

in Mass Properties, 271

description of, 272

Submodel, 370

SUBROUTINE DEBUGGING OFF

as user subroutine command line, 555

description of, 556

in Initial Condition, 287

usage in, 292

in Initial Velocity, 327

usage in, 329

in Pore Pressure, 356

usage in, 358

in Prescribed Acceleration, 306

usage in, 309

in Prescribed Displacement, 295

usage in, 298

in Prescribed Force, 341

usage in, 343

in Prescribed Moment, 345

usage in, 347

in Prescribed Rotation, 313

usage in, 316

in Prescribed Rotational Velocity, 318

usage in, 321

in Prescribed Temperature, 351

usage in, 353

in Prescribed Velocity, 301

usage in, 304

in Pressure, 331

usage in, 333

in Time Step Initialization, 558

usage in, 559

in Traction, 337

usage in, 339

in User Output, 427

usage in, 431

SUBROUTINE DEBUGGING ON

as user subroutine command line, 555

description of, 556

in Initial Condition, 287

usage in, 292

in Initial Velocity, 327

usage in, 329

in Pore Pressure, 356

usage in, 358

in Prescribed Acceleration, 306

usage in, 309

682

in Prescribed Displacement, 295

usage in, 298

in Prescribed Force, 341

usage in, 343

in Prescribed Moment, 345

usage in, 347

in Prescribed Rotation, 313

usage in, 316

in Prescribed Rotational Velocity, 318

usage in, 321

in Prescribed Temperature, 351

usage in, 353

in Prescribed Velocity, 301

usage in, 304

in Pressure, 331

usage in, 333

in Time Step Initialization, 558

usage in, 559

in Traction, 337

usage in, 339

in User Output, 427

usage in, 431

SUBROUTINE INTEGER PARAMETER

as user subroutine command line, 555

description of, 556

in Initial Condition, 287

usage in, 292

in Initial Velocity, 327

usage in, 329

in Pore Pressure, 356

usage in, 358

in Prescribed Acceleration, 306

usage in, 309

in Prescribed Displacement, 295

usage in, 298

in Prescribed Force, 341

usage in, 343

in Prescribed Moment, 345

usage in, 347

in Prescribed Rotation, 313

usage in, 316

in Prescribed Rotational Velocity, 318

usage in, 321

in Prescribed Temperature, 351

usage in, 353

in Prescribed Velocity, 301

usage in, 304

in Pressure, 331

usage in, 333

in Time Step Initialization, 558

usage in, 559

in Traction, 337

usage in, 339

in User Output, 427

usage in, 431

SUBROUTINE REAL PARAMETER

as user subroutine command line, 555

description of, 556

in Initial Condition, 287

usage in, 292

in Initial Velocity, 327

usage in, 329

in Pore Pressure, 356

usage in, 358

in Prescribed Acceleration, 306

usage in, 309

in Prescribed Displacement, 295

usage in, 298

in Prescribed Force, 341

usage in, 343

in Prescribed Moment, 345

usage in, 347

in Prescribed Rotation, 313

usage in, 316

in Prescribed Rotational Velocity, 318

usage in, 321

in Prescribed Temperature, 351

usage in, 353

in Prescribed Velocity, 301

usage in, 304

in Pressure, 331

usage in, 333

in Time Step Initialization, 558

usage in, 559

in Traction, 337

usage in, 339

in User Output, 427

usage in, 431

usage with query function, 530

SUBROUTINE STRING PARAMETER

as user subroutine command line, 555

description of, 556

in Initial Condition, 287

usage in, 292

in Initial Velocity, 327

usage in, 329

in Pore Pressure, 356

usage in, 358

in Prescribed Acceleration, 306

usage in, 309

in Prescribed Displacement, 295

usage in, 298

in Prescribed Force, 341

usage in, 343

in Prescribed Moment, 345

usage in, 347

in Prescribed Rotation, 313

usage in, 316

683

in Prescribed Rotational Velocity, 318

usage in, 321

in Prescribed Temperature, 351

usage in, 353

in Prescribed Velocity, 301

usage in, 304

in Pressure, 331

usage in, 333

in Time Step Initialization, 558

usage in, 559

in Traction, 337

usage in, 339

in User Output, 427

usage in, 431

Subsetting

in Results Output, 422

SUMMARY OUTPUT STEP INTERVAL

in Element Death, 273

description of, 276

SUMMARY OUTPUT TIME INTERVAL

in Element Death, 273

description of, 276

SUPERELEMENT SECTION, 263

Support, 50

SURFACE

in Fluid Pressure, 361

description of, 284

in Contact Definition – in Contact Surface (block),

377

usage in, 382

in Fixed Displacement, 293

usage in, 294

in Fixed Rotation, 311

usage in, 311

in Fluid Pressure

usage in, 362

in Gravity, 349

usage in, 349

in Initial Condition, 287

usage in, 288

in Initial Velocity, 327

usage in, 328

in Prescribed Acceleration, 306

usage in, 307

in Prescribed Displacement, 295

usage in, 296

in Prescribed Force, 341

usage in, 342

in Prescribed Moment, 345

usage in, 346

in Prescribed Rotation, 313

usage in, 314

in Prescribed Rotational Velocity, 318

usage in, 319

in Prescribed Velocity, 301

usage in, 302

in Pressure, 331

description of, 332

in Time Step Initialization, 558

usage in, 559

in Traction, 337

description of, 338

in User Output, 427

usage in, 429

SURFACE

in Blast Pressure, 364

SURFACE NORMAL SMOOTHING

in Contact Definition, 377

description of, 385

SURFACE SUBROUTINE

as user subroutine command line, 555

description of, 556

in Initial Condition, 287

description of, 291

in Pressure, 331

description of, 333

in Time Step Initialization, 558

description of, 559

in User Output, 427

description of, 431

SURFACES

in Contact Definition – in Interaction Defaults, 394

description of, 395

SYMMETRY

in J Integral, 519

SYNCHRONIZE OUTPUT

in Heartbeat Output, 444

description of, 451

in History Output, 435

description of, 441

in Restart Output, 456

description of, 469

in Results Output, 412

description of, 425

SYSTEM

in Orientation, 62

T 2DERIV PSIC

in NLVE 3D Orthotropic material model, 209

T AXIS

in Beam Section, 256

T DERIV GLASSY C11

in NLVE 3D Orthotropic material model, 209

T DERIV GLASSY C12

in NLVE 3D Orthotropic material model, 209

T DERIV GLASSY C13

in NLVE 3D Orthotropic material model, 209

T DERIV GLASSY C22

684

in NLVE 3D Orthotropic material model, 209

T DERIV GLASSY C23

in NLVE 3D Orthotropic material model, 209

T DERIV GLASSY C33

in NLVE 3D Orthotropic material model, 209

T DERIV GLASSY C44

in NLVE 3D Orthotropic material model, 209

T DERIV GLASSY C55

in NLVE 3D Orthotropic material model, 209

T DERIV GLASSY C66

in NLVE 3D Orthotropic material model, 209

T DERIV GLASSY CTE1

in NLVE 3D Orthotropic material model, 209

T DERIV GLASSY CTE2

in NLVE 3D Orthotropic material model, 209

T DERIV GLASSY CTE3

in NLVE 3D Orthotropic material model, 209

T DERIV GLASSY HCAPACITY

in NLVE 3D Orthotropic material model, 209

T DERIV PSIA 11

in NLVE 3D Orthotropic material model, 209

T DERIV PSIA 12

in NLVE 3D Orthotropic material model, 209

T DERIV PSIA 13

in NLVE 3D Orthotropic material model, 209

T DERIV PSIA 22

in NLVE 3D Orthotropic material model, 209

T DERIV PSIA 23

in NLVE 3D Orthotropic material model, 209

T DERIV PSIA 33

in NLVE 3D Orthotropic material model, 209

T DERIV PSIA 44

in NLVE 3D Orthotropic material model, 209

T DERIV PSIA 55

in NLVE 3D Orthotropic material model, 209

T DERIV PSIA 66

in NLVE 3D Orthotropic material model, 209

T DERIV PSIB 1

in NLVE 3D Orthotropic material model, 209

T DERIV PSIB 2

in NLVE 3D Orthotropic material model, 209

T DERIV PSIB 3

in NLVE 3D Orthotropic material model, 209

T DERIV PSIC

in NLVE 3D Orthotropic material model, 209

T DERIV RUBBERY C11

in NLVE 3D Orthotropic material model, 209

T DERIV RUBBERY C12

in NLVE 3D Orthotropic material model, 209

T DERIV RUBBERY C13

in NLVE 3D Orthotropic material model, 209

T DERIV RUBBERY C22

in NLVE 3D Orthotropic material model, 209

T DERIV RUBBERY C23

in NLVE 3D Orthotropic material model, 209

T DERIV RUBBERY C33

in NLVE 3D Orthotropic material model, 209

T DERIV RUBBERY C44

in NLVE 3D Orthotropic material model, 209

T DERIV RUBBERY C55

in NLVE 3D Orthotropic material model, 209

T DERIV RUBBERY C66

in NLVE 3D Orthotropic material model, 209

T DERIV RUBBERY CTE1

in NLVE 3D Orthotropic material model, 209

T DERIV RUBBERY CTE2

in NLVE 3D Orthotropic material model, 209

T DERIV RUBBERY CTE3

in NLVE 3D Orthotropic material model, 209

T DERIV RUBBERY HCAPACITY

in NLVE 3D Orthotropic material model, 209

T FUNCTION

in Orthotropic Rate material model, 194

TANGENT DIAGONAL SCALE

in Full Tangent Preconditioner, 94

description of, 96

TANGENTIAL TOLERANCE

in Contact Definition – in Interaction, 377, 397

description of, 398

in Contact Definition – in Search Options, 377, 389

description of, 391

TARGET AXIAL FORCE INCREMENT

in Control Stiffness, 116

description of, 117

TARGET E

in Incompressible Solid material model, 203

in Mooney-Rivlin material model, 206

in Swanson material model, 215

in Viscoelastic Swanson material model, 218

TARGET E FUNCTION

in Mooney-Rivlin material model, 206

in Swanson material model, 215

in Viscoelastic Swanson material model, 218

TARGET ITERATIONS

in Adaptive Time Stepping

description of, 135

TARGET PRESSURE INCREMENT

in Control Stiffness, 116

description of, 117

TARGET RELATIVE AXIAL FORCE INCREMENT

in Control Stiffness, 116

description of, 117

TARGET RELATIVE CONTACT RESIDUAL

in Control Contact, 105

description of, 108

TARGET RELATIVE PRESSURE INCREMENT

in Control Stiffness, 116

description of, 117

685

TARGET RELATIVE RESIDUAL

in CG, 85

description of, 86

in Control Contact, 105

description of, 108

in Control Stiffness, 116

description of, 117

TARGET RELATIVE SDEV INCREMENT

in Control Stiffness, 116

description of, 117

TARGET RELATIVE STRAIN INCREMENT

in Control Stiffness, 116

description of, 117

TARGET RELATIVE STRESS INCREMENT

in Control Stiffness, 116

description of, 117

TARGET RESIDUAL

in CG, 85

description of, 86

in Control Contact, 105

description of, 108

in Control Stiffness, 116

description of, 117

TARGET SDEV INCREMENT

in Control Stiffness, 116

description of, 117

TARGET STRESS INCREMENT

in Control Stiffness, 116

description of, 117

TEMPERATURE TYPE

in Prescribed Temperature

description of, 353

TEMPO

in BCJ material model, 172

TENSILE STRENGTH

in Karagozian and Case concrete material model,

179

TENSILE TEST FUNCTION

in Fiber Membrane material model, 200

TENSION

in Wire Mesh material model, 189

TENSION RELEASE

in Contact Definition – in Interaction

description of, 399

TENSION RELEASE FUNCTION

in Contact Definition – in Interaction

description of, 399

TERMINATION TIME

in Heartbeat Output, 444

description of, 450

in History Output, 435

description of, 441

in Output Scheduler, 471

description of, 473

in Restart Data, 456

description of, 467

in Results Output, 412

description of, 425

in Time Control, 131

THERMAL CONSTANT

in Power Law Creep material model, 174

THERMAL EXPANSION FUNCTION

in Mooney-Rivlin material model, 206

in Swanson material model, 215

in Viscoelastic Swanson material model, 218

THERMAL STRAIN AA FUNCTION

in Elastic 3D Orthotropic material model, 186

THERMAL STRAIN BB FUNCTION

in Elastic 3D Orthotropic material model, 186

THERMAL STRAIN CC FUNCTION

in Elastic 3D Orthotropic material model, 186

THERMAL STRAIN FUNCTION

description of, 148

in BCJ material model, 172

in Ductile Fracture material model, 163

in Elastic Fracture material model, 157

in Elastic material model, 151

in Elastic-Plastic material model, 159

in Elastic-Plastic Power-Law Hardening material

model, 161

in Fiber Membrane material model, 200

in Foam Plasticity material model, 182

in Incompressible Solid material model, 203

in Johnson-Cook material model, 170

in Karagozian and Case concrete material model,

179

in Low Density Foam material model, 185

in Multilinear Elastic-Plastic Hardening Model

material model, 165

in Multilinear Elastic-Plastic Hardening Model with

Failure material model, 167

in Neo Hookean material model, 155

in Orthotropic Crush material model, 191

in Orthotropic Rate material model, 194

in Power Law Creep material model, 174

in Soil and Crushable Foam material model, 176

in Stiff Elastic material model, 213

in Thermoelastic material model, 153

in Wire Mesh material model, 189

usage of, 150

THERMAL STRAIN X FUNCTION

description of, 148

in BCJ material model, 172

in Ductile Fracture material model, 163

in Elastic Fracture material model, 157

in Elastic material model, 151

in Elastic-Plastic material model, 159

686

in Elastic-Plastic Power-Law Hardening material

model, 161

in Fiber Membrane material model, 200

in Foam Plasticity material model, 182

in Incompressible Solid material model, 203

in Johnson-Cook material model, 170

in Karagozian and Case concrete material model,

179

in Low Density Foam material model, 185

in Multilinear Elastic-Plastic Hardening Model

material model, 165

in Multilinear Elastic-Plastic Hardening Model with

Failure material model, 167

in Neo Hookean material model, 155

in Orthotropic Crush material model, 191

in Orthotropic Rate material model, 194

in Power Law Creep material model, 174

in Soil and Crushable Foam material model, 176

in Stiff Elastic material model, 213

in Thermoelastic material model, 153

in Wire Mesh material model, 189

usage of, 150

THERMAL STRAIN Y FUNCTION

description of, 148

in BCJ material model, 172

in Ductile Fracture material model, 163

in Elastic Fracture material model, 157

in Elastic material model, 151

in Elastic-Plastic material model, 159

in Elastic-Plastic Power-Law Hardening material

model, 161

in Fiber Membrane material model, 200

in Foam Plasticity material model, 182

in Incompressible Solid material model, 203

in Johnson-Cook material model, 170

in Karagozian and Case concrete material model,

179

in Low Density Foam material model, 185

in Multilinear Elastic-Plastic Hardening Model

material model, 165

in Multilinear Elastic-Plastic Hardening Model with

Failure material model, 167

in Neo Hookean material model, 155

in Orthotropic Crush material model, 191

in Orthotropic Rate material model, 194

in Power Law Creep material model, 174

in Soil and Crushable Foam material model, 176

in Stiff Elastic material model, 213

in Thermoelastic material model, 153

in Wire Mesh material model, 189

usage of, 150

THERMAL STRAIN Z FUNCTION

description of, 148

in BCJ material model, 172

in Ductile Fracture material model, 163

in Elastic Fracture material model, 157

in Elastic material model, 151

in Elastic-Plastic material model, 159

in Elastic-Plastic Power-Law Hardening material

model, 161

in Fiber Membrane material model, 200

in Foam Plasticity material model, 182

in Incompressible Solid material model, 203

in Johnson-Cook material model, 170

in Karagozian and Case concrete material model,

179

in Low Density Foam material model, 185

in Multilinear Elastic-Plastic Hardening Model

material model, 165

in Multilinear Elastic-Plastic Hardening Model with

Failure material model, 167

in Neo Hookean material model, 155

in Orthotropic Crush material model, 191

in Orthotropic Rate material model, 194

in Power Law Creep material model, 174

in Soil and Crushable Foam material model, 176

in Stiff Elastic material model, 213

in Thermoelastic material model, 153

in Wire Mesh material model, 189

usage of, 150

THETA

in Elastic Laminate material model, 197

THETA OPT

in BCJ material model, 172

THICKNESS

in Membrane Section, 253

in Shell Section, 246

THICKNESS MESH VARIABLE

in Membrane Section, 253

in Shell Section, 246

THICKNESS SCALE FACTOR

in Membrane Section, 253

in Shell Section, 246

THICKNESS TIME STEP

in Membrane Section, 253

in Shell Section, 246

TIED MODEL

in Contact Definition, 377

description of, 388

TIED NODE SET

in MPC, 366

TIED NODES

in MPC, 366

usage in, 369

TIME

in Initial Condition, 287

description of, 290

in Pore Pressure, 356

687

description of, 358

in Prescribed Acceleration, 306

description of, 309

in Prescribed Displacement, 295

description of, 298

in Prescribed Rotation, 313

description of, 316

in Prescribed Rotational Velocity, 318

description of, 321

in Prescribed Temperature, 351

description of, 353

in Prescribed Velocity, 301

description of, 304

in Pressure, 331

description of, 334

TIME CONTROL

example of, 138

in Adagio Procedure, 70

contents and description of, 131

overview, 131

in Procedure

about, 70

TIME INCREMENT

in Parameters For Adagio Region, 132, 133

TIME INCREMENT FUNCTION

in Parameters For Adagio Region, 132, 133

TIME INTEGRATION CONTROL

in Implicit Dynamics, 139

description of, 140

TIME STEP INITIALIZATION, 558

TIME STEPPING BLOCK

in Time Control, 131

description of, 132

TIMESTEP ADJUSTMENT INTERVAL

in Heartbeat Output, 444

description of, 449

in History Output, 435

description of, 440

in Output Scheduler, 471

description of, 472

in Restart Data, 456

description of, 466

in Results Output, 412

description of, 424

TIMESTEP FORMAT

in Heartbeat Output, 444

TITLE, 54

in Heartbeat Output, 444

in History Output, 435

in Results Output, 412

TL FUNCTION

in Orthotropic Rate material model, 194

TNT MASS IN LBS

in Blast Pressure, 364

TORQUE

in Reference Axis, 323

in Reference Axis Rotation

description of, 325

TRACTION, 337

Transfers, 583

TRANSFORMATION TYPE

in Procedural Transfer, 584

description of, 585

TRANSVERSE SHEAR HOURGLASS STIFFNESS

in Finite Element Model – in Parameters For Block,

235

description of, 239

TRANSVERSE SHEAR HOURGLASS VISCOSITY

in Finite Element Model – in Parameters For Block,

235

description of, 239

TRUSS SECTION, 261

TX

in Orthotropic Rate material model, 194

TY

in Orthotropic Rate material model, 194

TYPE

in Coordinate System, 67

in Definition For Function, 56

in Loadstep Predictor, 127

in User Variable, 561

TZ

in Orthotropic Rate material model, 194

UNLOAD BULK MODULUS FUNCTION

in Karagozian and Case concrete material model,

179

USE DEATH

in Pressure, 331

description of, 335

USE FINITE ELEMENT MODEL, 72

in Control Modes Region, 124

usage in, 125

USE HHT INTEGRATION

in Implicit Dynamics, 139

description of, 140

USE LAME

in Beam Section, 256

in Shell Section, 246

in Solid Section, 242

in Truss Section, 261

USE OUTPUT SCHEDULER

example of, 473

in Heartbeat Output, 444

description of, 451

in History Output, 435

description of, 442

in Restart Data, 456

688

description of, 469

in Results Output, 412

description of, 426

USE STRUMENTO

in Beam Section, 256

in Shell Section, 246

in Solid Section, 242

in Truss Section, 261

USE WITH RESTART

in User Variable, 561

USER INTEGRATION RULE

in Shell Section, 246

USER OUTPUT, 427

example of, 569

USER SUBROUTINE FILE, 55

example of, 564

usage in context, 555

User Subroutines

aupst_check_elem_var, 535

aupst_check_global_var, 544

aupst_check_node_var, 535

aupst_cyl_transform, 578

aupst_evaluate_function, 534

aupst_get_elem_nodes, 548

aupst_get_elem_topology, 548

aupst_get_elem_var, 535

aupst_get_elem_var_offset, 535

aupst_get_face_nodes, 548

aupst_get_face_topology, 548

aupst_get_global_var, 544

aupst_get_integer_param, 530

aupst_get_node_var, 535

aupst_get_one_elem_centroid, 553

aupst_get_point, 553

aupst_get_proc_num, 553

aupst_get_real_param, 530

aupst_get_string_param, 530

aupst_get_time, 534

aupst_local_put_global_var, 544

aupst_put_elem_var, 535

aupst_put_elem_var_offset, 535

aupst_put_global_var, 544

aupst_put_node_var, 535

aupst_rec_transform, 579

copy_data, 580

ELEMENT BLOCK SUBROUTINE, 555

HEARTBEAT OUTPUT, 444

HISTORY OUTPUT, 435

NODE SET SUBROUTINE, 555

RESULTS OUTPUT, 412

SUBROUTINE DEBUGGING OFF, 555

SUBROUTINE DEBUGGING ON, 555

SUBROUTINE INTEGER PARAMETER, 555

SUBROUTINE REAL PARAMETER, 555

SUBROUTINE STRING PARAMETER, 555

SURFACE SUBROUTINE, 555

USER OUTPUT, 427

USER VARIABLE, 561

USER VARIABLE, 561

VALUES

in Definition For Function, 56

VARIABLE TYPE

in Initial Condition, 287

description of, 289

VECTOR

in Coordinate System, 67

VECTOR NODE

in Coordinate System, 67

VMIN

in Orthotropic Crush material model, 191

Void Elements, 243

VOLUMETRIC SEARCH TOLERANCE

in MPC, 366

W FUNCTION

in Orthotropic Rate material model, 194

WALL THICKNESS

in Beam Section, 256

WEIBULL

in Initial Condition, 287

WIDTH

in Beam Section, 256

WLF C1

in NLVE 3D Orthotropic material model, 209

WLF C2

in NLVE 3D Orthotropic material model, 209

WLF COEF C1

in Viscoelastic Swanson material model, 218

WLF COEF C2

in Viscoelastic Swanson material model, 218

WLF TREF

in Viscoelastic Swanson material model, 218

WT FUNCTION

in Orthotropic Rate material model, 194

WWBETA 1PSI

in NLVE 3D Orthotropic material model, 209

WWBETA 2PSI

in NLVE 3D Orthotropic material model, 209

WWBETA 3PSI

in NLVE 3D Orthotropic material model, 209

WWBETA 4PSI

in NLVE 3D Orthotropic material model, 209

WWBETA 5PSI

in NLVE 3D Orthotropic material model, 209

WWTAU 1PSI

in NLVE 3D Orthotropic material model, 209

WWTAU 2PSI

689

in NLVE 3D Orthotropic material model, 209

WWTAU 3PSI

in NLVE 3D Orthotropic material model, 209

WWTAU 4PSI

in NLVE 3D Orthotropic material model, 209

WWTAU 5PSI

in NLVE 3D Orthotropic material model, 209

YIELD FUNCTION

in Wire Mesh material model, 189

YIELD STRESS

in Ductile Fracture material model, 163

in Elastic-Plastic material model, 159

in Elastic-Plastic Power-Law Hardening material

model, 161

in Johnson-Cook material model, 170

in Multilinear Elastic-Plastic Hardening Model

material model, 165

in Multilinear Elastic-Plastic Hardening Model with

Failure material model, 167

in Orthotropic Crush material model, 191

in Orthotropic Rate material model, 194

YIELD STRESS FUNCTION

in Multilinear Elastic-Plastic Hardening Model

material model, 165

in Multilinear Elastic-Plastic Hardening Model with

Failure material model, 167

YOUNGS MODULUS

in BCJ material model, 172

in Ductile Fracture material model, 163

in Elastic 3D Orthotropic material model, 186

in Elastic Fracture material model, 157

in Elastic material model, 151

in Elastic-Plastic material model, 159

in Elastic-Plastic Power-Law Hardening material

model, 161

in Fiber Membrane material model, 200

in Foam Plasticity material model, 182

in Incompressible Solid material model, 203

in Johnson-Cook material model, 170

in Karagozian and Case concrete material model,

179

in Low Density Foam material model, 185

in Mooney-Rivlin material model, 206

in Multilinear Elastic-Plastic Hardening Model

material model, 165

in Multilinear Elastic-Plastic Hardening Model with

Failure material model, 167

in Neo Hookean material model, 155

in NLVE 3D Orthotropic material model, 209

in Orthotropic Crush material model, 191

in Orthotropic Rate material model, 194

in Power Law Creep material model, 174

in Soil and Crushable Foam material model, 176

in Stiff Elastic material model, 213

in Swanson material model, 215

in Thermoelastic material model, 153

in Viscoelastic Swanson material model, 218

in Wire Mesh material model, 189

YOUNGS MODULUS AA

in Elastic 3D Orthotropic material model, 186

YOUNGS MODULUS BB

in Elastic 3D Orthotropic material model, 186

YOUNGS MODULUS CC

in Elastic 3D Orthotropic material model, 186

YOUNGS MODULUS FUNCTION

in BCJ material model, 172

in Multilinear Elastic-Plastic Hardening Model

material model, 165

in Multilinear Elastic-Plastic Hardening Model with

Failure material model, 167

in Thermoelastic material model, 153

690

Distribution

1 0899 Technical Library, 9536 (1 electronic)

691

	Cover
	Title
	Table of Contents
	List of Figures
	List of Tables
	Release Notes
	Known Issues
	1 Introduction
	1.1 Document Overview
	1.2 Overall Input Structure
	1.3 Conventions for Command Descriptions
	1.3.1 Key Words
	1.3.2 User-Specified Input
	1.3.3 Optional Input
	1.3.4 Default Values
	1.3.5 Multiple Options for Values
	1.3.6 Known Issues and Warnings

	1.4 Style Guidelines
	1.4.1 Comments
	1.4.2 Continuation Lines
	1.4.3 Case
	1.4.4 Commas and Tabs
	1.4.5 Blank Spaces
	1.4.6 General Format of the Command Lines
	1.4.7 Delimiters
	1.4.8 Order of Commands
	1.4.9 Abbreviated END Specifications
	1.4.10 Indentation
	1.4.11 Including Files

	1.5 Naming Conventions Associated with the Exodus II Database
	1.6 Major Scope Definitions for an Input File
	1.7 Input/Output Files
	1.8 Obtaining Support
	1.9 References

	2 General Commands
	2.1 SIERRA Scope
	2.1.1 SIERRA Command Block
	2.1.2 Title
	2.1.3 Restart Control
	2.1.3.1 Restart Time
	2.1.3.2 Automatic Restart

	2.1.4 User Subroutine Identification
	2.1.5 Functions
	2.1.6 Axes, Directions, and Points
	2.1.7 Orientation
	2.1.8 Coordinate System Block Command
	2.1.9 Define Coordinate System Line Command

	2.2 Procedure and Region
	2.2.1 Procedure
	2.2.2 Time Control
	2.2.3 Region

	2.3 Use Finite Element Model
	2.4 Element Distortion Metrics
	2.5 Activation/Deactivation of Functionality
	2.6 Error Recovery
	2.7 Manual Job Control

	3 Solver, Time Stepping, and Implicit Dynamics
	3.1 Multilevel Solver
	3.2 Conjugate Gradient Solver
	3.2.1 Convergence Commands
	3.2.2 Preconditioner Commands
	3.2.3 Line Search Command
	3.2.4 Diagnostic Output Commands
	3.2.5 CG Algorithm Commands

	3.3 Full Tangent Preconditioner
	3.3.1 Solver Selection Commands
	3.3.2 Matrix Formation Commands
	3.3.3 Reset and Iteration Commands
	3.3.4 Fall-Back Strategy Commands

	3.4 FETI Equation Solver
	3.4.1 Convergence Commands
	3.4.2 Memory Usage Commands
	3.4.3 Solver Commands

	3.5 Control Contact
	3.5.1 Convergence Commands
	3.5.2 Level Selection Command
	3.5.3 Diagnostic Output Commands

	3.6 Control Stiffness
	3.6.1 Convergence Commands
	3.6.2 Level Selection Command
	3.6.3 Diagnostic Output Commands

	3.7 Control Failure
	3.7.1 Convergence Command
	3.7.2 Level Selection Command
	3.7.3 Diagnostic Output Commands

	3.8 Control Modes
	3.8.1 Control Modes Region
	3.8.1.1 Model Setup Commands
	3.8.1.2 Solver Commands
	3.8.1.3 Kinematic Boundary Condition Commands

	3.9 Predictors
	3.9.1 Loadstep Predictor
	3.9.1.1 Predictor Type
	3.9.1.2 Scale Factor
	3.9.1.3 Slip Scale Factor

	3.9.2 Level Predictor

	3.10 JAS3D Compatibility Mode
	3.11 Time Step Control
	3.11.1 Command Blocks for Time Control and Time Stepping
	3.11.1.1 Time Increment
	3.11.1.2 Number of Time Steps
	3.11.1.3 Time Increment Function

	3.11.2 Adaptive Time Stepping
	3.11.2.1 Method
	3.11.2.2 Target Iterations
	3.11.2.3 Iteration Window
	3.11.2.4 Cutback Factor
	3.11.2.5 Growth Factor
	3.11.2.6 Maximum Failure Cutbacks
	3.11.2.7 Maximum Multiplier
	3.11.2.8 Minimum Multiplier
	3.11.2.9 Reset at New Period
	3.11.2.10 Active or Inactive Periods

	3.11.3 Time Control Example

	3.12 Implicit Dynamic Time Integration
	3.12.1 Implicit Dynamics
	3.12.1.1 Active or Inactive Periods
	3.12.1.2 Use HHT Integration
	3.12.1.3 HHT Parameters
	3.12.1.4 Implicit Dynamic Adaptive Time Stepping

	3.13 References

	4 Materials
	4.1 General Material Commands
	4.1.1 Density Command
	4.1.2 Biot's Coefficient Command
	4.1.3 Thermal Strain Behavior
	4.1.3.1 Defining Thermal Strains
	4.1.3.2 Activating Thermal Strains

	4.2 Material Models
	4.2.1 Elastic Model
	4.2.2 Thermoelastic Model
	4.2.3 Neo-Hookean Model
	4.2.4 Elastic Fracture Model
	4.2.5 Elastic-Plastic Model
	4.2.6 Elastic-Plastic Power-Law Hardening Model
	4.2.7 Ductile Fracture Model
	4.2.8 Multilinear EP Hardening Model
	4.2.9 Multilinear EP Hardening Model with Failure
	4.2.10 Johnson-Cook Model
	4.2.11 BCJ Model
	4.2.12 Power Law Creep
	4.2.13 Soil and Crushable Foam Model
	4.2.14 Karagozian and Case Concrete Model
	4.2.15 Foam Plasticity Model
	4.2.16 Low Density Foam Model
	4.2.17 Elastic Three-Dimensional Orthotropic Model
	4.2.18 Wire Mesh Model
	4.2.19 Orthotropic Crush Model
	4.2.20 Orthotropic Rate Model
	4.2.21 Elastic Laminate Model
	4.2.22 Fiber Membrane Model
	4.2.23 Incompressible Solid Model
	4.2.24 Mooney-Rivlin Model
	4.2.25 NLVE 3D Orthotropic Model
	4.2.26 Stiff Elastic
	4.2.27 Swanson Model
	4.2.28 Viscoelastic Swanson Model

	4.3 Cohesive Zone Material Models
	4.3.1 Traction Decay
	4.3.2 Tvergaard Hutchinson
	4.3.3 Thouless Parmigiani

	4.4 References

	5 Elements
	5.1 Finite Element Model
	5.1.1 Identification of Mesh File
	5.1.2 Alias
	5.1.3 Omit Block
	5.1.4 Component Separator Character
	5.1.5 Descriptors of Element Blocks
	5.1.5.1 Material Property
	5.1.5.2 Include All Blocks
	5.1.5.3 Remove Block
	5.1.5.4 Section
	5.1.5.5 Linear and Quadratic Bulk Viscosity
	5.1.5.6 Hourglass Control
	5.1.5.7 Effective Moduli Model
	5.1.5.8 Activation/Deactivation of Element Blocks by Time

	5.2 Element Sections
	5.2.1 Solid Section
	5.2.2 Cohesive Section
	5.2.3 Localization Section
	5.2.4 Shell Section
	5.2.5 Membrane Section
	5.2.6 Beam Section
	5.2.7 Truss Section
	5.2.8 Superelement Section
	5.2.8.1 Input Commands

	5.3 Element-like Functionality
	5.3.1 Rigid Body
	5.3.1.1 Multiple Rigid Bodies from a Single Block

	5.4 Mass Property Calculations
	5.4.1 Block Set Commands
	5.4.2 Structure Command

	5.5 Element Death
	5.5.1 Block Set Commands
	5.5.2 Criterion Commands
	5.5.2.1 Global Death Criterion
	5.5.2.2 Material Death Criterion

	5.5.3 Miscellaneous Option Commands
	5.5.3.1 Summary Output Commands
	5.5.3.2 Death Steps
	5.5.3.3 Death Method
	5.5.3.4 Active Periods

	5.5.4 Cohesive Zone Setup Commands
	5.5.5 Element Death Visualization

	5.6 Explicitly Computing Derived Quantities
	5.7 References

	6 Boundary Conditions and Initial Conditions
	6.1 General Boundary Condition Concepts
	6.1.1 Mesh-Entity Assignment Commands
	6.1.2 Methods for Specifying Boundary Conditions

	6.2 Initial Variable Assignment
	6.2.1 Mesh-Entity Set Commands
	6.2.2 Variable Identification Commands
	6.2.3 Specification Command
	6.2.4 Probability Distribution Commands
	6.2.5 External Mesh Database Commands
	6.2.6 User Subroutine Commands
	6.2.7 Additional Command

	6.3 Kinematic Boundary Conditions
	6.3.1 Fixed Displacement Components
	6.3.1.1 Node Set Commands
	6.3.1.2 Specification Commands
	6.3.1.3 Additional Commands

	6.3.2 Prescribed Displacement
	6.3.2.1 Node Set Commands
	6.3.2.2 Specification Commands
	6.3.2.3 User Subroutine Commands
	6.3.2.4 External Mesh Database Commands
	6.3.2.5 Additional Commands

	6.3.3 Prescribed Velocity
	6.3.3.1 Node Set Commands
	6.3.3.2 Specification Commands
	6.3.3.3 User Subroutine Commands
	6.3.3.4 External Mesh Database Commands
	6.3.3.5 Additional Commands

	6.3.4 Prescribed Acceleration
	6.3.4.1 Node Set Commands
	6.3.4.2 Specification Commands
	6.3.4.3 User Subroutine Commands
	6.3.4.4 External Mesh Database Commands
	6.3.4.5 Additional Commands

	6.3.5 Fixed Rotation
	6.3.5.1 Node Set Commands
	6.3.5.2 Specification Commands
	6.3.5.3 Additional Commands

	6.3.6 Prescribed Rotation
	6.3.6.1 Node Set Commands
	6.3.6.2 Specification Commands
	6.3.6.3 User Subroutine Commands
	6.3.6.4 External Mesh Database Commands
	6.3.6.5 Additional Commands

	6.3.7 Prescribed Rotational Velocity
	6.3.7.1 Node Set Commands
	6.3.7.2 Specification Commands
	6.3.7.3 User Subroutine Commands
	6.3.7.4 External Mesh Database Commands
	6.3.7.5 Additional Commands

	6.3.8 Reference Axis Rotation
	6.3.8.1 Block Command
	6.3.8.2 Specification Commands
	6.3.8.3 Rotation Commands
	6.3.8.4 Torque Command
	6.3.8.5 Additional Commands

	6.3.9 Subroutine Usage for Kinematic Boundary Conditions

	6.4 Initial Velocity Conditions
	6.4.1 Node Set Commands
	6.4.2 Direction Specification Commands
	6.4.3 Angular Velocity Specification Commands
	6.4.4 User Subroutine Commands

	6.5 Force Boundary Conditions
	6.5.1 Pressure
	6.5.1.1 Surface Set Commands
	6.5.1.2 Specification Commands
	6.5.1.3 User Subroutine Commands
	6.5.1.4 External Pressure Sources
	6.5.1.5 Output Command
	6.5.1.6 Additional Commands

	6.5.2 Traction
	6.5.2.1 Surface Set Commands
	6.5.2.2 Specification Commands
	6.5.2.3 User Subroutine Commands
	6.5.2.4 Additional Commands

	6.5.3 Prescribed Force
	6.5.3.1 Node Set Commands
	6.5.3.2 Specification Commands
	6.5.3.3 User Subroutine Commands
	6.5.3.4 Additional Commands

	6.5.4 Prescribed Moment
	6.5.4.1 Node Set Commands
	6.5.4.2 Specification Commands
	6.5.4.3 User Subroutine Commands
	6.5.4.4 Additional Commands

	6.6 Gravity
	6.7 Prescribed Temperature
	6.7.1 Block Set Commands
	6.7.2 Specification Command
	6.7.3 User Subroutine Commands
	6.7.4 External Mesh Database Commands
	6.7.5 Coupled Analysis Commands
	6.7.6 Additional Commands

	6.8 Pore Pressure
	6.8.1 Block Set Commands
	6.8.2 Specification Command
	6.8.3 User Subroutine Commands
	6.8.4 External Mesh Database Commands
	6.8.5 Coupled Analysis Commands
	6.8.6 Additional Commands

	6.9 Fluid Pressure
	6.9.1 Surface Set Commands
	6.9.2 Specification Commands
	6.9.3 Additional Commands

	6.10 Specialized Boundary Conditions
	6.10.1 Blast Pressure
	6.10.2 General Multi-Point Constraints
	6.10.2.1 Master/Slave Multi-Point Constraints
	6.10.2.2 Tied Contact
	6.10.2.3 Tied Multi-Point Constraints
	6.10.2.4 Resolve Multiple MPCs
	6.10.2.5 Constraining a Subset of all DOFs

	6.10.3 Submodel

	6.11 References

	7 Contact
	7.1 Contact Definition Block
	7.2 Enforcement
	7.3 Descriptions of Contact Surfaces
	7.3.1 Contact Surface Command Line
	7.3.2 Contact Surface Command Block
	7.3.3 Contact Node Set

	7.4 Surface Normal Smoothing
	7.5 Contact Output Variables
	7.6 Friction Models
	7.6.1 Frictionless Model
	7.6.2 Constant Friction Model
	7.6.3 Tied Model
	7.6.4 Glued Model

	7.7 Search Options
	7.7.1 Search Algorithms
	7.7.2 Search Tolerances
	7.7.3 Secondary Decomposition

	7.8 Default Values for Interactions
	7.8.1 Surface Identification
	7.8.2 General Contact
	7.8.3 Friction Model

	7.9 Values for Interactions
	7.9.1 Surface Identification
	7.9.2 Tolerances
	7.9.3 Friction Model
	7.9.4 Pushback Factor
	7.9.5 Tension Release
	7.9.6 Tension Release Function
	7.9.7 Friction Coefficient
	7.9.8 Friction Coefficient Function

	7.10 Legacy Contact
	7.11 Examples
	7.11.1 Example 1
	7.11.2 Example 2

	7.12 References

	8 Output
	8.1 Syntax for Requesting Variables
	8.1.1 Example 1
	8.1.2 Example 2
	8.1.3 Other command blocks
	8.1.4 Rigid Body Variables

	8.2 Results Output
	8.2.1 Exodus Results Output File
	8.2.1.1 Output Nodal Variables
	8.2.1.2 Output Node Set Variables
	8.2.1.3 Output Face Variables
	8.2.1.4 Output Element Variables
	8.2.1.5 Subsetting of Output Mesh
	8.2.1.6 Output Mesh Selection
	8.2.1.7 Component Separator Character
	8.2.1.8 Output Global Variables
	8.2.1.9 Set Begin Time for Results Output
	8.2.1.10 Adjust Interval for Time Steps
	8.2.1.11 Output Interval Specified by Time Increment
	8.2.1.12 Additional Times for Output
	8.2.1.13 Output Interval Specified by Step Increment
	8.2.1.14 Additional Steps for Output
	8.2.1.15 Set End Time for Results Output
	8.2.1.16 Synchronize Output
	8.2.1.17 Use Output Scheduler
	8.2.1.18 Write Results If System Error Encountered

	8.2.2 User-Defined Output
	8.2.2.1 Mesh-Entity Set Commands
	8.2.2.2 Compute Result Commands
	8.2.2.3 User Subroutine Commands
	8.2.2.4 Copy Command
	8.2.2.5 Variable Transformation Command
	8.2.2.6 Data Filtering Commands
	8.2.2.7 Compute at Every Step Command
	8.2.2.8 Additional Command

	8.3 History Output
	8.3.1 Output Variables
	8.3.1.1 Global Output Variables
	8.3.1.2 Mesh Entity Output Variables
	8.3.1.3 Nearest Point Output Variables

	8.3.2 Outputting History Data on a Node Set
	8.3.3 Set Begin Time for History Output
	8.3.4 Adjust Interval for Time Steps
	8.3.5 Output Interval Specified by Time Increment
	8.3.6 Additional Times for Output
	8.3.7 Output Interval Specified by Step Increment
	8.3.8 Additional Steps for Output
	8.3.9 Set End Time for History Output
	8.3.10 Synchronize Output
	8.3.11 Use Output Scheduler
	8.3.12 Write History If System Error Encountered

	8.4 Heartbeat Output
	8.4.1 Output Variables
	8.4.1.1 Global Output Variables
	8.4.1.2 Mesh Entity Output Variables
	8.4.1.3 Nearest Point Output Variables

	8.4.2 Outputting Heartbeat Data on a Node Set
	8.4.3 Set Begin Time for Heartbeat Output
	8.4.4 Adjust Interval for Time Steps
	8.4.5 Output Interval Specified by Time Increment
	8.4.6 Additional Times for Output
	8.4.7 Output Interval Specified by Step Increment
	8.4.8 Additional Steps for Output
	8.4.9 Set End Time for Heartbeat Output
	8.4.10 Synchronize Output
	8.4.11 Use Output Scheduler
	8.4.12 Write Heartbeat On Signal
	8.4.13 Heartbeat Output Formatting Commands
	8.4.13.1 CTH SpyHis output format
	8.4.13.2 Specify floating point precision
	8.4.13.3 Specify Labeling of Heartbeat Data
	8.4.13.4 Specify Existence of Legend for Heartbeat Data
	8.4.13.5 Specify format of timestamp

	8.4.14 Monitor Output Events

	8.5 Restart Data
	8.5.1 Restart Options
	8.5.1.1 Automatic Read and Write of Restart Files
	8.5.1.2 User-Controlled Read and Write of Restart Files
	8.5.1.3 Overwriting Restart Files
	8.5.1.4 Recovering from a Corrupted Restart

	8.5.2 Overwrite Command in Restart
	8.5.3 Set Begin Time for Restart Writes
	8.5.4 Adjust Interval for Time Steps
	8.5.5 Restart Interval Specified by Time Increment
	8.5.6 Additional Times for Restart
	8.5.7 Restart Interval Specified by Step Increment
	8.5.8 Additional Steps for Restart
	8.5.9 Set End Time for Restart Writes
	8.5.10 Overlay Count
	8.5.11 Cycle Count
	8.5.12 Synchronize Output
	8.5.13 Use Output Scheduler
	8.5.14 Write Restart If System Error Encountered

	8.6 Output Scheduler
	8.6.1 Output Scheduler Command Block
	8.6.1.1 Set Begin Time for Output Scheduler
	8.6.1.2 Adjust Interval for Time Steps
	8.6.1.3 Output Interval Specified by Time Increment
	8.6.1.4 Additional Times for Output
	8.6.1.5 Output Interval Specified by Step Increment
	8.6.1.6 Additional Steps for Output
	8.6.1.7 Set End Time for Output Scheduler

	8.6.2 Example of Using the Output Scheduler

	8.7 Variable Interpolation
	8.8 Global Output Options
	8.9 Variables
	8.9.1 Global, Nodal, Face, and Element Variables
	8.9.2 Variables for Material Models
	8.9.2.1 State Variable Output by Index for Strumento Solid Models
	8.9.2.2 State Variable Output for LAME Solid Material Models
	8.9.2.3 State Variable Tables for Solid Material Models
	8.9.2.4 Variables for Shell/Membrane Material Models

	8.9.3 Variables for Surface Models
	8.9.3.1 State Variable Tables for Surface Models

	8.10 References

	9 Special Modeling Techniques
	9.1 Representative Volume Elements
	9.1.1 RVE Processing
	9.1.2 Mesh Requirements
	9.1.3 Input Commands
	9.1.3.1 RVE Material Model
	9.1.3.2 Embedded Coordinate System
	9.1.3.3 RVE Region
	9.1.3.4 Definition of RVEs
	9.1.3.5 Multi-Point Constraints
	9.1.3.6 RVE Boundary Conditions

	9.2 J-Integrals
	9.2.1 Technique for Computing J
	9.2.2 Input Commands
	9.2.3 Output

	9.3 References

	10 User Subroutines
	10.1 User Subroutines: Programming
	10.1.1 Subroutine Interface
	10.1.2 Query Functions
	10.1.2.1 Parameter Query
	10.1.2.2 Function Data Query
	10.1.2.3 Time Query
	10.1.2.4 Field Variables
	10.1.2.5 Global Variables
	10.1.2.6 Topology Extraction

	10.1.3 Miscellaneous Query Functions

	10.2 User Subroutines: Command File
	10.2.1 Subroutine Identification
	10.2.2 User Subroutine Command Lines
	10.2.2.1 Type
	10.2.2.2 Debugging
	10.2.2.3 Parameters

	10.2.3 Time Step Initialization
	10.2.3.1 Mesh-Entity Set Commands
	10.2.3.2 User Subroutine Commands
	10.2.3.3 Additional Command

	10.2.4 User Variables

	10.3 User Subroutines: Compilation and Execution
	10.4 User Subroutines: Examples
	10.4.1 Pressure as a Function of Space and Time
	10.4.2 Error Between a Computed and an Analytic Solution
	10.4.3 Transform Output Stresses to a Cylindrical Coordinate System

	10.5 User Subroutines: Library
	10.5.1 aupst_cyl_transform
	10.5.2 aupst_rec_transform
	10.5.3 copy_data
	10.5.4 trace

	11 Transfers
	11.1 SIERRA Transfers
	11.2 Inter-procedural Transfers
	11.2.1 Copying Data with Inter-procedural Transfers
	11.2.2 Interpolating Data with Interpolation Transfers

	A Example Problem
	B Command Summary
	C Consistent Units
	D Constraint Enforcement Hierarchy
	Index
	Index

	Distribution

