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Abstract

MPI is the dominant programming model for distributed memory parallel computers, and
is often used as the intra-node programming model on multi-core compute nodes. However,
application developers are increasingly turning to hybrid models that use threading within
a node and MPI between nodes. In contrast to MPI, most current threaded models do not
require application developers to deal explicitly with data locality. With increasing core
counts and deeper NUMA hierarchies seen in the upcoming LANL/SNL “Cielo” capability
supercomputer, data distribution poses an upper boundary on intra-node scalability within
threaded applications. Data locality therefore has to be identified at runtime using static
memory allocation policies such as first-touch or next-touch, or specified by the application
user at launch time. We evaluate several existing techniques for managing data distribution
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using micro-benchmarks on an AMD “Magny-Cours” system with 24 cores among 4 NUMA
domains and argue for the adoption of a dynamic runtime system implemented at the kernel
level, employing a novel page table replication scheme to gather per-NUMA domain memory
access traces.
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Summary

This report summarizes the R&D activities of the FY10 late-start LDRD project “Managing
Shared Memory Data Distribution in Hybrid HPC Applications”, which was funded at a
level of approximately 0.15 FTE for the year. The project was carried out by Kevin Pedretti
(1423) and Alexander Merritt, a 2010 summer student from Georgia Tech.

The primary objectives of this project were to examine existing intra-node data distri-
bution approaches on Non-Uniform Memory Access (NUMA) platforms and to develop new
approaches that address their observed weaknesses. In particular, we were interested in
pursuing a dynamic runtime approach that observes thread–data affinity at runtime and mi-
grates memory pages accordingly. The report in Chapter 1 contains our analysis of existing
mechanisms on an AMD “Magny-Cours” 24-core, 4 NUMA node test system that is similar
to the upcoming LANL/SNL Cielo supercomputer. The results provide valuable insights
into the issues that can arise when running shared-memory applications on such a system.
The results also provide motivation for a dynamic runtime approach, and we have begun im-
plementing one. This work was accepted as a poster at the ACM/IEEE 2010 International
Conference for High Performance Computing, Networking, Storage and Analysis (SC’10),
and we plan to expand it to a full paper in the future.
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Chapter 1

Techniques for Managing Data
Distribution in NUMA Systems

Authors: Alexander M. Merritt (Georgia Institute of Technology) and Kevin T. Pedretti
(Sandia)

The content of this chapter was originally published in the 2010 CSRI (Computer Science
Research Institute) Summer Proceedings. Every CSRI summer student is required to write
a report for the proceedings, and each report is peer-reviewed by one or more CSRI staff
members. The proceedings are publicly available on the CSRI web page, http: // www. cs.
sandia. gov/ CSRI/ . The results in this paper will be included in a poster at the ACM/IEEE
2010 International Conference for High Performance Computing, Networking, Storage and
Analysis (SC’10), and we plan to expand it to a full paper in the future.

Abstract

MPI is the dominant programming model for distributed memory parallel computers, and
is often used as the intra-node programming model on multi-core compute nodes. However,
application developers are increasingly turning to hybrid models that use threading within
a node and MPI between nodes. In contrast to MPI, most current threaded models do not
require application developers to deal explicitly with data locality. With increasing core
counts and deeper NUMA hierarchies seen in the upcoming LANL/SNL “Cielo” capability
supercomputer, data distribution poses an upper boundary on intra-node scalability within
threaded applications. Data locality therefore has to be identified at runtime using static
memory allocation policies such as first-touch or next-touch, or specified by the application
user at launch time. We evaluate several existing techniques for managing data distribution
using micro-benchmarks on an AMD “Magny-Cours” system with 24 cores among 4 NUMA
domains and argue for the adoption of a dynamic runtime system implemented at the kernel
level, employing a novel page table replication scheme to gather per-NUMA domain memory
access traces.

11



1.1 Introduction

Scalability plays an important role in high-performance computing. Large-scale simulations
of nuclear reactions, nuclear decay, climate modeling, fluid dynamics and combustion all
require greater precision and reduced time-to-solution to achieve accurate and timely pre-
dictions. In order to achieve this goal hardware and software must scale well together. With
the onset of exascale computing current parallel programming models approach their limits
in scalability as supercomputing hardware transitions from distributed-memory single-core
processor architectures to hybrids of distributed-memory and shared-memory, heterogeneous
and accelerator-supported systems.

Our work is focused on the architecture of the upcoming LANL/SNL “Cielo” capability
supercomputer, which consists of AMD Opteron “Magny-Cours” non-uniform memory ac-
cess (NUMA) processors. In contrast to previous SNL systems such as ASCI Red and Red
Storm, Cielo’s hardware exhibits greater complexity within the node and processor itself,
adding more cores and greater variation in memory access latencies. Non-local memory ac-
cesses comprise multiple levels of non-uniformity, incurring different penalties depending on
the path traveled. Figure 1.1 illustrates our 24-core 4 NUMA domain dual-socket Magny-
Cours experimental system. Off-chip diagonal HyperTransport links exhibit the largest la-
tencies and are 8-bit wide, which is half as wide as all other processor interconnects in the
system. Each Cielo compute node is similar to our test system except that Cielo uses 8-
core processors instead of 12-core, and that the Cielo cores operate at 2.4 GHz instead of
2.2 GHz on our test system. As parallel applications become increasingly hybrid—utilizing
threaded programming models combined with message passing, for example—performance
degradation from inadequate intra-node data distribution on this architecture becomes more
pronounced.
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Figure 1.1: Two AMD Opteron 6174 processors.

In this paper we discuss the hybridization of parallel programming models and how they
perform in light of this new architecture, focusing on the evaluation of current intra-node
approaches to data distribution that attempt to minimize the influence of NUMA latencies

12



in multithreaded applications. We demonstrate that these approaches are not adequate to
address losses in performance and additionally require developers to modify their application
code. We argue for the use of a dynamic runtime system within the operating system to
identify data access patterns of an application and use this information to redistribute data,
avoiding code changes and user intervention current approaches require.

1.1.1 Parallel Programming Models

Programming languages have evolved along with the hardware on which they run. MPI [1]
is a library-based message-passing extension to existing languages, such as C and Fortran.
This model is a good fit for the distributed-memory architectures of supercomputers. Par-
allel units of execution called ranks exist in their own address space, each occupying one
CPU core per compute node. In this model, communication and data sharing are explicit
and must be known to the application developer1 enabling him or her to finely tune algo-
rithms for minimizing communication overheads. This advantage of MPI is, however, also
its drawback: scaling applications to the extreme of exascale computing with hundreds of
millions of processors [12] detracts from programmer productivity in addition to making
debugging difficult. More limitations on scalability arise with the introduction of modern
supercomputing hardware: higher core counts—more ranks—within a node increase memory
consumed by global state replication and increase communication, causing contention on pro-
cessor interconnects. Furthermore, a recent research study [14] compared the performances
of message-passing and threaded programming implementations of spare matrix-vector mul-
tiplication code, demonstrating that threaded models perform better on SMP hardware.
These are all motivations for relaxing the trend of running “MPI everywhere”.

Thread-based parallel programming models such as OpenMP [2] and Pthreads operate in
a single address space, avoiding the overheads of MPI. One address space allows global access
to shared state and communication to be achieved through shared variables. Compared to
other models, OpenMP is an automated parallelization tool designed to move the burden of
explicit parallelization from the programmer to the compiler using simple #pragma directives
in code. While combining threaded and message-passing programming models for intra-node
and inter-node parallelization may show improvements [11], support for threading models
on SMP NUMA systems is still immature. OpenMP was designed assuming homogenous
processing and uniform memory access architectures (UMA), but this is no longer true as
commodity processor technologies are becoming increasingly NUMA. Without data replica-
tion, distribution is proving to be an inhibitor on software scalability with the advancement
of parallel hardware present in the Cielo supercomputer.

1Programmer and developer are used interchangeably in this paper.
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1.1.2 Related Work

Current approaches take advantage of the virtual memory subsystem that the operating
system kernel provides [5], use hardware counters provided by the CPU [13] as well as
combine techniques at the user-level [3, 4].

User-level support for data distribution [3] combines knowledge from both a NUMA-
aware memory manager and custom thread scheduler, provided as an extension to OpenMP
to best minimize remote memory references. As with our work, this research advocates a
dynamic runtime system that can adapt to changes in thread-data affinities throughout an
application’s execution. In contrast to our proposed technique for managing data distribu-
tion, this work still requires applications to use a supplementary API where ours aims for
an application-independent implementation.

1.2 Evaluation

In this section we discuss recent research in literature and their effects on relevant micro-
benchmarks at Sandia as our motivation for runtime analysis.

1.2.1 Background

We begin by giving some background on virtual memory support and use that as discussion
for the various techniques in the literature.

Domain 0 Domain 1 Domain 2 Domain 3

Task A Task B

Physical Memory

Virtual Memory

Figure 1.2: Virtual memory mapping.

Hardware and operating system support for virtual memory allow for flexibility when
designing models for data distribution. Each process is allowed to believe it has complete
control over the entire system—full access to all of memory and the processor. In figure
1.2 we see the state of two processes at a given point in time. Memory (both virtual and
physical) are divided into equal-sized regions called pages. When a process performs a
memory operation such as a load or a store on data not present in memory, the hardware
traps the faulting process and automatically transfers control to the operating system. The
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operating system then loads an entire page of data from an external source into an empty
page in memory and establishes a translation. Each translation’s state is represented by a
structure in memory maintained by the kernel—called a page table—containing among other
information, protection and access bits. Applications run as a combination of processes
and threads, unaware of this mechanism that controls the distribution of its data in real
hardware.

Within a NUMA system, all processors and memory regions are divided into domains.
A domain is defined as a set of processors or cores and a region of memory between which
is the lowest latency. Figure 1.3 depicts normalized latency costs of accessing all regions
of memory for domain 0 in both an UMA and four-domain NUMA environment. Should a
process be scheduled to execute in domain 0, any data accesses to domain 3 would incur the
highest latency.

D0

System Memory
0x0000 0xFFFF

D0 D1 D3D2
0x0000 0xFFFF

1.0

1.0 x y z< < <

Figure 1.3: UMA vs NUMA: memory latencies relative to domain 0.

In the following subsections we review micro-benchmarks and their memory access pat-
terns, current techniques examined, finally concluding with a discussion on the impact of
these techniques as motivation for a dynamic runtime memory migration system.

1.2.2 Benchmarks

In this subsection we discuss two micro-benchmarks used to evaluate current approaches
to data distribution, describe them in terms of phases and how current approaches affect
these phases. Both micro-benchmarks model common characteristics seen in scientific code
at Sandia and are used as the foundation for further study. Benchmarks designed around
MPI rewritten to use OpenMP have all explicit data movement removed.

We define a phase in a multithreaded application to mean an interval of time within
which data access patterns remain deterministic or constant for each thread, within some
threshold. A change in the number of threads also constitutes a phase change as data access
characteristics must either be established for newly-spawned threads, or forgotten with fewer
threads.

The use of a dynamic binary instrumentation tool called Pin [9] allows us to capture all
instructions of an application that access memory. With this information we are able to
visualize the data access patterns for both micro-benchmarks.
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Evaluation System

Our evaluation system is a single shared-memory system with two AMD Opteron 6174
“Magny-Cours” processors. Each is a multichip module (MCM) containing two processor
dies each with six symmetric cores running at 2.2 GHz, two memory controllers rated at 10.6
GiBps and a local subset of system memory. All four dies are connected with 10.4 GiBps
HyperTransport (HT) links in each direction, forming a complete graph. All HT links are
16-bit wide except for two 8-bit wide diagonal crosslinks connecting domains 0-3 and 1-2.
Figure 1.1 illustrates this design. Four memory and processor domains are available, each
with 8 GiB of memory. Our study of this processor is significant as it forms the basis of the
upcoming Los Alamos/Sandia National Labs “Cielo” capability supercomputer.

Results from current approaches were obtained on this system running RHEL 5.4 with a
vanilla 2.6.27 kernel patched with support for the next-touch [5] memory policy.

STREAM

STREAM [10] is a memory bandwidth micro-benchmark parallelized with OpenMP. Each
thread executes multiple kernels over its subset of data within three global arrays. Two
kernels are represented in our data, “copy” and “triad” illustrated in figure 1.4. STREAM
was configured to use 333 MiB-sized arrays to minimize caching effects (our test system has
20 MiB of effective last-level cache 2). Additionally, array elements are only accessed within
parallel regions to create high affinities between threads and their data.

Kernel Code
Copy c[j] = a[j]

Triad a[j] = b[j] + scalar * c[j]

Figure 1.4: STREAM micro-kernels.

Each of the three arrays are visible in figure 1.5 clearly indicating the regular access
patterns of all threads. A fourth line towards the end of its virtual memory space represents
the result vector storing timing measurements. STREAM exhibits this behavior throughout
its entire execution.

HPCCG

HPCCG [6] is a sparse-matrix vector multiply application with parallel implementations in
both MPI and OpenMP. HPCCG allocates multiple arrays of data before entering repeated
iterations of its parallel sections where, like STREAM, each thread performs work on a subset

2While the system has 24 MiB of L3 cache, the HT Assist optimization uses 4 MiB of L3 to store directory
information.
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Figure 1.5: STREAM per-thread data locality (entire execution).

of data. Two phases have been identified in this micro-benchmark, both visualized in figure
1.6 for the OpenMP implementation.
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(b) Phase 2.

Figure 1.6: HPCCG per-thread data locality.

Figure 1.6a depicts the master thread allocating and initializing all data. Figure 1.6b
depicts the second phase of HPCCG’s execution, wherein multiple parallel sections perform
work on subsets of the overall data. The majority of work performed by this micro-benchmark
is within this phase. Affinities between threads and data are strong but different in the two
phases.
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1.2.3 Techniques

In this subsection we discuss current approaches to data distribution at or below the op-
erating system level and investigate their advantages and disadvantages as they apply to
application phases seen in STREAM and HPCCG.

First-Touch

This is the default policy in the Linux kernel. It is not a solution to the NUMA problem
per se, but rather a means to enable memory allocated by applications to be local to the
domain in which they are executing. The Linux kernel memory allocator maintains a pool
of memory for each domain in the system. This policy has no means to assist applications
exhibiting strong phase changes, as data is never moved once allocated. Applications must
be designed accordingly to minimize remote memory accesses, requiring that all data be
touched first by the thread using it the most.

Memory Interleaving

Memory interleaving allows for an even distribution of memory over NUMA domains at the
page and cache line granularity. Two configurations were available to us for experimenta-
tion and were simple to configure; these are presented in figure 1.7. Figure 1.7a illustrates
operating system control over an application’s virtual memory pages. The kernel memory
allocator maintains pools of memory for each domain, cycling among them when creating
translations from the virtual memory space of an application. Accessing virtual memory
linearly physically iterates over all available NUMA domains at a page granularity. Figure
1.7b illustrates a second method of interleaving. Here the memory controllers are configured
by the BIOS to modify its mapping of physical addresses to machine memory, interleaving
them among the NUMA domains. In contrast, this method operates at the granularity of
a cache line, is transparent to the operating system and allows for a finer distribution of
memory among the domains (interleaving the kernel address space as well as all application
address spaces). Both methods distribute memory such that the chance of accessing either
a page or cache line locally is 1

D
for D domains.

Page interleaving support is provided by the numactl command line tool in Linux. It
allows for various NUMA-related operations on processes, such as memory and domain
execution pinning, CPU core pinning and memory interleaving.

Next-Touch

Next-touch is a memory policy implemented in kernel space. In this scheme, an applica-
tion flags regions of memory that should be migrated to the NUMA domain of the next
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Figure 1.7: Two levels and granularities of memory interleaving.

thread that accesses the region. By manipulating protection bits in the page table we force
the hardware to intercept memory accesses, migrating their pages before resuming process
execution. Recent work [5] provides this implementation as a patch for the 2.6.27 Linux
kernel. The patch adds additional flags to the madvise() system call enabling user-space
applications to inform the kernel’s memory subsystem to modify the appropriate protection
bits on a given range of pages. On subsequent touches the hardware traps the executing
process and migrates pages to whichever domain the process is executing on.

Static code analysis enables the programmer to identify when page migrations are needed.
One difficulty with this approach is ensuring that no thread other than the one intended
touches the pages it will most heavily use. This assumes the appropriate place to call
madvise() can be determined through static analysis. Furthermore, the data access pattern
among threads may change throughout an application’s lifetime. For this approach to be
effective each application phase must be identified and a call to madvise() inserted.

Support for this feature exists in the Oracle Solaris 9 operating system [13], but currently
has not been accepted into the mainstream Linux kernel codebase.

1.2.4 Results

In this subsection we present and compare performance results for the next-touch, first-touch
and memory interleaving strategies with respect to execution phases seen in STREAM and
HPCCG. Results are shown in figures 1.9 and 1.8. Points plotted in each of the three graphs
comprise an average of 20 executions with error bars illustrating one standard deviation. We
used two strategies for pinning threads, round-robin (“Pin RR”) and ascending (“Pin Asc”),
both tied to the Linux-logical core IDs.
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Figure 1.8: Performance of STREAM applying current data distribution techniques.

STREAM performance data was collected from a combination of operating system thread
scheduling and manual thread pinning in addition to the first-touch and page interleave
strategies. Red curves in figures 1.8a and 1.8b show the performance of STREAM with
no modifications and no runtime policies. Variability is high due to the non-deterministic
behavior of the 2.6.27 Linux scheduler and its inability to identify affinities between data
and threads. It may repeatedly schedule multiple threads for execution on the same do-
main before attempting to reduce oversubscription. This behavior causes threads to access
their data from various domains, causing scattered first-touch allocations to occur. Should
the scheduler know to not relocate threads, first-touch would show the best performance.
Forcing thread pinnings reproduces this behavior and indeed shows the best performance,
represented by black curves in both plots.3 Interleaving pages reduces performance consid-
erably, as the probability of accessing local data is reduced to 25% from near 100% when
compared with thread pinning and first-touch.4 Pinning threads in ascending order by Linux-
logical core IDs shows a plateau (gray curve) as the first twelve core assignments alternate
between domains 0 and 3, the latter twelve between domains 1 and 2. This demonstrates
that assumptions cannot be made regarding the logical-to-physical mapping of cores by the
operating system. Next-touch results were not included as first-touch and thread pinning
give the same result. Curves in figure 1.8b are more linear due to a larger percentage of work
coming from computational overhead. Overall trends are however still visible.

HPCCG performance data was collected from the same policy combinations used for
STREAM, with the additional cache line interleaving technique and results from the MPI
implementation. The red curve in figure 1.9 is the same policy as the red curve in figure 1.8,
with no code modifications or runtime policies. This behavior is attributed to the changes

3We do not yet know the cause of the saw-tooth shape in the curve.
4A bug was discovered in the PGI OpenMP runtime library, preventing thread pinning while interleaving

pages. Unfortunately this prevents accurate comparisons as we cannot eliminate the scheduler’s nondeter-
ministic behavior. This bug was reported to PGI and promptly fixed; it will be available in the next release
of the PGI compiler suite.
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Figure 1.9: Performance of HPCCG applying current data distribution techniques.

in the data access patterns mentioned in section 1.2.2: the existence of phase 1 forces the
first-touch policy to allocate all memory pages on single memory domain. Transitioning to
phase 2 shows an increase in threads, all of which are relocated by the scheduler to CPU
cores in other domains, to minimize oversubscription. In doing so memory references for
75% of all threads become almost entirely non-local. In contrast, an MPI implementation
scales much better due to data duplication, yet performance tapers off with many threads
showing large variations most likely attributed again to the nondeterministic behavior of the
Linux scheduler. Without data distribution in a threaded environment first-touch prevents
applications with phases similar to HPCCG from scaling on NUMA hardware.

Having identified both phases of HPCCG, we were able to effectively use next-touch by
placing appropriate calls to madvise() at the end of phase 1. Combined with thread pinning
this method showed the best overall performance as memory pages were migrated to domains
in which the accessing threads were executing, enabling nearly all memory references to be
local. Page and cache line interleaving also improve performance as expected, with cache
line interleaving showing slightly higher performance due to the smaller granularity.

1.3 Future Work

An application’s data access patterns change throughout execution. Approaches discussed in
prior sections function in a one-shot manner, continuously apply the same rule or require user
interaction. We therefore propose a dynamic runtime system for monitoring an application’s
memory access patterns from within the kernel. Active monitoring allows the operating
system to observe affinities between an application’s threads and pages in memory, migrating
pages to reduce remote memory references.

An operating system typically allocates one page table per process. By using one page
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Figure 1.10: Proposed dynamic runtime system for page migration within the kernel.

table per domain per process we will be able to capture where accesses originate and what
regions of memory they reference, as seen in figure 1.10a. The appropriate page table is
installed on a context switch, and access bits within page table entries updated by the
hardware will be read to monitor an application’s data access patterns. A kernel thread will
periodically scan these entries to observe page access patterns, identify frequent accesses of
non-local memory and migrate pages accordingly. Frequent scanning will be required as only
one access bit is available per page, potentially increasing profiling overhead. To prove itself
advantageous, our approach must ensure the savings in execution time of the application
are greater than the combined cost of data migration and active profiling—figure 1.10b.
We argue that this approach will allow for a more flexible and customizable solution to the
problem of data distribution on NUMA hardware.

Overheads introduced by this mechanism can be reduced if implemented in a light-weight
kernel such as Kitten [7]. Kitten creates a complete linear mapping of all virtual memory
addresses on process creation, in other words, pre-populating all page tables. Knowing the
locations of all last-level page table entries can reduce the execution overhead introduced
from frequent access bit scanning by avoiding full page table traversals. Kitten furthermore
supports the use of large pages to map virtual memory. Enabling this will reduce the height
of each page table and lower the number of page table entries needed. Using our proposed
approach, each process will consume four times the amount of memory needed to store their
address translations; large pages will reduce this footprint.

Our approach is a mechanism that will require various policies to show any benefit.
Varying the profiling frequency and defining intervals for page migration and the meaning of
“heavy” page access will have to be adjusted to determine which combinations give the best
results across a range of application phases. Research in the early nineties examined this [8],
but on different hardware and with a different application domain. It was determined that
no single policy proved beneficial across all kernels in their benchmark suite. Our goal is to
re-examine this on modern hardware across a more appropriate set of kernels.
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Future support in hardware may include widening the access bit field in each page table
entry and modifying the processor to treat this field as a saturating counter instead of a bit
flip. While beyond the scope of this research, it would reduce the execution overhead from
profiling, by lowering the frequency at which page table entries need to be scanned.

1.4 Conclusion

In this paper we examined several existing techniques for managing data distribution in a
multicore NUMA environment, the basis for the upcoming “Cielo” capability supercomputer.
As scientific applications are becoming increasingly hybrid, incorporating threaded program-
ming models within nodes, support for data distribution becomes a limit on intra-node scal-
ability. We demonstrated the static nature of current techniques, requiring time-consuming
code modifications or user intervention. With tools developed to visualize application data
access patterns we are better able to identify phase changes in thread-data affinities, enabling
a more complete understanding of our application domain. Combined with an evaluation of
our proposed kernel-level dynamic runtime technique we demonstrate the need for an invisi-
ble and adaptive data distribution model, empowering systems software to continue to scale
as we approach exascale computing.
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