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Abstract

The two primary objectives of this LDRD project were to create a lightweight kernel (LWK)
operating system(OS) designed to take maximum advantage of multi-core processors, and
to leverage the virtualization capabilities in modern multi-core processors to create a more
flexible and adaptable LWK environment. The most significant technical accomplishments
of this project were the development of the Kitten lightweight kernel, the co-development of
the SMARTMAP intra-node memory mapping technique, and the development and demon-
stration of a scalable virtualization environment for HPC. Each of these topics is presented
in this report by the inclusion of a published or submitted research paper. The results of
this project are being leveraged by several ongoing and new research projects.
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Summary

This report summarizes the R&D activities of the FY08–FY10 LDRD project “A Lightweight
Operating System for Multi-core Capability Class Supercomputers,” which was funded at a
level of approximately 1.25 FTE per year. The two primary objectives of this project were
to create a lightweight kernel (LWK) operating system (OS) designed to take maximum
advantage of multi-core processors, and to leverage the virtualization capabilities in modern
multi-core processors to create a more flexible and adaptable LWK environment. The most
significant technical accomplishments of this project were:

1. Development of the Kitten LWK OS. Kitten is a modern, open-source LWK plat-
form that supports many-core processors (100’s of cores), advanced intra-node data
movement (via SMARTMAP), current multi-threaded programming models (via Linux
user-space compatibility), commodity HPC networking (Infiniband), and full-featured
guest operating systems (via the Palacios virtual machine monitor). The Kitten LWK
has been downloaded 100’s of times, and there are several external researchers actively
working to extend its capabilities. Several projects are leveraging the platform and we
are positioning it as an ideal platform for conducting exascale supercomputer hard-
ware/software co-design research. Kitten can be downloaded from
http://software.sandia.gov/trac/kitten.

2. Co-development of SMARTMAP (Chapter 1). SMARTMAP is a virtual memory map-
ping technique that significantly reduces intra-node memory bandwidth requirements,
which is a bottleneck on multi-core processors. For example, SMARTMAP allows
intra-node MPI point-to-point messages to be copied directly to the target process’s
address space with a single copy, compared to multiple copies with traditional ap-
proaches. This reduces memory bandwidth requirements by a factor of two or more.
SMARTMAP also allows many MPI collective operations to be implemented in-place
without any data copies within a node, leading to substantial performance advantages
with multi-core compute nodes. The SMARTMAP technique applies more broadly
than MPI and can be used to optimize SHMEM and PGAS communication and data
sharing. SMARTMAP was an important component of the 2009 “Catamount N-way
Kernel” R&D100 award and we have applied for a patent.

3. Created a scalable virtualization environment for HPC (Chapters 2 and 3). We teamed
with separately funded researchers at Northwestern University and the University of
New Mexico to incorporate their embeddable virtual machine monitor (VMM), called
Palacios, into the Kitten LWK, and customize it for HPC workloads. Our solution
is unique compared to other cloud/utility computing virtualization layers in that it is
focused on HPC and takes advantage of the unique characteristics of the LWK environ-
ment to reduce virtualization overhead. We used the Kitten and Palacios combination
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to perform large-scale testing on up to 6, 240 nodes of Red Storm Cray XT4 system us-
ing HPC micro-benchmarks and several real applications. The observed virtualization
overhead of less than 5% demonstrated that it is feasible to run real, communication-
intensive HPC applications in a virtualized environment at large scale.

This work is targeted to have impact on exascale supercomputers, which are expected in
the 2018–2020 time frame. Several projects are building upon the outcomes of this project
and are using Kitten and Palacios as tools for conducting research. In the near term, we
are pushing to get virtualization technology incorporated into the production supercomputer
system software stack so that end-users and system software researchers can take advantage
of the new capabilities that it provides. This, and other topics, will be pursued in the context
of a FY11-13 DOE ASCR “X-Stack Software Research” project that we proposed and that
was selected for funding. This effort is a consortium of researchers from University of New
Mexico, Northwestern University, Sandia National Laboratories, and Oak Ridge National
Laboratory.

The remainder of this report is a compilation of three selected research papers resulting
from this project. The first two papers are peer-reviewed conference papers and the third
paper has been submitted for consideration to a peer-reviewed conference. Each paper
is prefaced with a short paragraph describing the research history leading up to the paper.
Appendix A includes a full listing of the publications, invited talks, follow-on funded projects,
and other forms of external impact derived from this project.

12



Chapter 1

SMARTMAP: Operating System
Support for Efficient Data Sharing
Among Processes on a Multi-Core
Processor

The content of this chapter was originally published in a paper by the same name at the 2008
International Conference for High Performance Computing, Networking, Storage, and Anal-
ysis (SC’08). The proper citation is [10]. The ideas leading to SMARTMAP sprung from ob-
servations made in an SC’07 poster [54] and discussions with Ron Brightwell. SMARTMAP
was originally implemented for the Catamount LWK in FY08, and later implemented for the
Kitten LWK in FY09. SMARTMAP (patent pending) was an important component of the
2009 “Catamount N-Way Lightweight Kernel” R&D100 award winning submission.

Abstract

This paper describes SMARTMAP, an operating system technique that implements
fixed offset virtual memory addressing. SMARTMAP allows the application processes on
a multi-core processor to directly access each other’s memory without the overhead of ker-
nel involvement. When used to implement MPI, SMARTMAP eliminates all extraneous
memory-to-memory copies imposed by UNIX-based shared memory strategies. In addition,
SMARTMAP can easily support operations that UNIX-based shared memory cannot, such
as direct, in-place MPI reduction operations and one-sided get/put operations. We have im-
plemented SMARTMAP in the Catamount lightweight kernel for the Cray XT and modified
MPI and Cray SHMEM libraries to use it. Micro-benchmark performance results show that
SMARTMAP allows for significant improvements in latency, bandwidth, and small message
rate on a quad-core processor.
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1.1 Introduction

As the core count on processors used for high-performance computing continues to increase,
the performance of the underlying memory subsystem becomes significantly more important.
In order to make effective use of the available compute power, applications will likely have
to become much more sensitive to the way in which they access memory. Applications
that are memory bandwidth bound will need to avoid any extraneous memory-to-memory
copies. For many applications, the memory bandwidth limitation is compounded by the fact
that the most popular and effective parallel programming model, MPI, mandates copying
of data between processes. MPI implementors have worked to make use of shared memory
for communication between processes on the same node. Unfortunately, the current schemes
for using shared memory for MPI can require either excessive memory-to-memory copies or
potentially large overheads inflicted by the operating system (OS).

In order to avoid the memory copy overhead of MPI altogether, more and more ap-
plications are exploring mixed-mode programming models where threads and/or compiler
directives are used on-node and MPI is used off-node. Unfortunately, the complexity of
shared memory programming using threads has hindered both the development of appli-
cations as well as the development of thread-safe and thread-aware MPI implementations.
The initial attractiveness of mixed-mode programming was tempered by the additional com-
plexity induced by finding multi-level parallelism and by initial disappointing performance
results [20, 34, 22]. Recently, however, unpublished data on mixed-mode applications suggest
more encouraging results on multi-core processors.

In this paper, we introduce a scheme for using fixed-offset virtual address mappings for the
parallel processes within a node to enable efficient direct access shared memory. This scheme,
called Simple Mapping of Address Region Tables for Multi-core Aware Programming, or
SMARTMAP, achieves a significant performance increase for on-node MPI communications
and eliminates all of the extraneous memory-to-memory copies that shared memory MPI
implementations incur. SMARTMAP can also be used for more than MPI. It maps very
well to the partitioned global address space (PGAS) programming model and can be used to
implement one-sided get/put operations, such as those available in the Cray SHMEM model.
This strategy can also be used directly by applications to eliminate the need for on-node
memory-to-memory copying altogether.

The main contributions of this paper are:

• an OS virtual memory mapping strategy that allows direct access shared memory
between processes on a multi-core processor

• a description of how this strategy can be used for on-node data movement between
processes on a multi-core processor

• a detailed analysis of the performance impacts of using this strategy for MPI peer
communication, MPI collective communication, and Cray SHMEM data movement
operations
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The rest of this paper is organized as follows. The next section provides background on the
current approaches to using shared memory for intra-node data movement. In Section 1.3, we
describe the implementation of the SMARTMAP and its advantages over other approaches.
Section 1.4 provides a detailed description of the enhancements that we have made to MPI
and SHMEM implementations on the Cray XT to use it. Section 1.5 presents performance
results using several micro-benchmarks. Relevant conclusions of this paper are summarized
in Section 3.8, and we close by discussing possible avenues of future work in Section 1.7.

1.2 Background

POSIX-based operating systems generally support shared memory capability through two
fundamental mechanisms: threads and memory mapping. Unlike processes, which allow
for a single execution context inside an address space, threads allow for multiple execution
contexts inside a single address space. When one thread updates a memory location, all
of the threads sharing the same address space also see the update. A major drawback of
threads is that great care must be taken to ensure that common library routines are reentrant,
meaning that multiple threads could be executing the same piece of code simultaneously. For
non-reentrant functions, some form of locking must be used to ensure atomic execution. The
same is true for data accessed by multiple threads – updates must be atomic with respect
to one another or else difficult to debug race conditions will occur. Race conditions and
fundamentally non-deterministic behavior make threads difficult to use correctly.

In memory mapping, cooperating processes request a shared region of memory from the
operating system and then map it into their private address space, possibly at a different
virtual address in each process. Once initialized, a process may access the shared memory
region in exactly the same way as any other memory in its private address space. As with
threads, updates to shared data structures in this region must be atomic.

Explicit message passing is an alternative to shared memory for intra-node data sharing.
In message passing, processes pass messages carrying data between one another. No data
is shared directly, but rather is copied between processes on an as necessary basis. This
eliminates the need for re-entrant coding practices and careful updates of shared data, since
no data is shared. The main downside to this approach is the extra overhead involved in
copying data between processes.

In order to accelerate message passing, memory mapping is often used as a high-performance
mechanism for moving messages between processes [23]. Unfortunately, such approaches to
using page remapping are not sufficient to support MPI semantics, and general-purpose op-
erating systems lack the appropriate mechanisms. The sender must copy the message into
a shared memory region and the receiver must copy it out – a minimum of two copies must
occur. It would be ideal if messages could be moved directly between the two processes with
a single copy. This would be possible if all processes operated entirely out of the shared
memory region, but this would amount to the processes essentially becoming threads, with
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all of their inherit problems. Furthermore, message passing APIs such as MPI allow message
buffers to be located anywhere in an address space, including the process’s data, heap and
stack.

As of MPI 2.0, MPI applications may make use of both threads and memory mapping,
although few MPI implementations provide full support for threads. More commonly, MPI
implementations utilize memory mapping internally to provide efficient intra-node commu-
nication. During MPI initialization, the processes on a node elect one process to create the
shared memory region and then the elected process broadcasts the information about the
region to the other processes on the node (e.g., via a file or the sockets API). The other
processes on the node then “attach” to the shared memory region, by requesting that the
OS map it into their respective address spaces.

Note that the approach of using shared memory for intra-node MPI messages only works
for the point-to-point operations, collective communication operations, and a subset of the
MPI-2 remote memory access operations. Copying mandates active participation of the two
processes involved in the transfer. Single-sided put/get operations, such as those in the Cray
SHMEM programming interface, cannot be implemented using POSIX shared memory.

1.2.1 Intra-Node MPI

There are several limitations in using regions of shared memory to support intra-node
MPI [18, 17, 16]. First, the MPI model doesn’t allow applications to allocate memory
out of this special shared region, so messages must first be copied into shared memory by
the sender and then copied out of the shared region by the receiver. This copy overhead
can be a significant performance issue. Typically there is a limitation on the amount of
shared memory that a process can allocate, so the MPI implementation must make decisions
about how to most effectively use this memory in terms of how many per-process messages
to support relative to the size of the contents of each message. The overhead of copying mes-
sages using shared memory has led researchers to explore alternative single-copy strategies
for intra-node MPI message passing.

One such strategy is to use the operating system to perform the copy between separate
address spaces [40]. In this method, the kernel maps the user buffer into kernel space and does
a single memory copy between user space and kernel space. The drawback of this approach is
that the overhead of trapping to the kernel and manipulating memory maps can be expensive.
Another limitation is that all transfers must be serialized through the operating system. As
the number of cores on a node increases, serialization and management of shared kernel
data structures for mapping is likely to be a significant performance limitation. Another
important drawback of this approach is that there are two MPI receive queues – one in
the MPI library and one in the kernel. When the application posts a non-specific receive
using MPI ANY SOURCE, great care must be taken to insure that the atomicity and ordering
semantics of MPI are preserved. There is a potential race for a non-specific receive request to
be satisfied by both the MPI library and the operating system. Managing atomicity between
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events in kernel space and user space is non-trivial.

Another strategy for optimizing intra-node transfers is to use hardware assistance beyond
the host processors. The most common approach is to use an intelligent or programmable
network interface to perform the transfer. Rather than sending a local message out to the
network and back, the network interface can simply use its DMA engines to do a single copy
between the communicating processes. The major drawback of this approach is serialization
through the network interface, which is typically much slower than the host processor(s).
Also, large coherent shared memory machines typically have hardware support for creat-
ing a global shared memory environment. This hardware can also be used when running
distributed memory programs to map arbitrary regions of memory to provide direct shared
memory access between processes. SGI’s NUMAlink hardware is one such example [26]. The
obvious drawback of this approach is the additional cost of this hardware.

A comprehensive analysis of the different approaches for intra-node MPI communication
was presented in [15]. More recently, a two-level protocol approach that uses shared mem-
ory regions for small messages and OS support for page remapping individual buffers for
large messages was proposed and evaluated [21]. There has also been some recent work on
optimizing MPI collective operations using shared memory for multi-core systems [33].

1.2.2 Intra-Node Communication on the Cray XT

All communication between processes on the Cray XT use the Portals [11] data movement
layer. Two implementations of Portals are available for the SeaStar [12] network. The default
implementation is interrupt driven and all Portals data structures are contained inside the
operating system. When a message arrives at the SeaStar, it interrupts the Opteron host
processor, which then inspects the message header, traverses the Portals data structures and
programs the DMA engines on the SeaStar to deliver the message to the appropriate location
in the application process’ memory. This implementation is referred to as “Generic Portals”
(GP) because it works for both Catamount on compute nodes and in Linux on service and
I/O nodes. The other implementation supports a complete offload of Portals processes and
uses no interrupts. When a message arrives at the SeaStar, all of the Portals processing
occurs on the SeaStar itself. This implementation is known as “Accelerated Portals” (AP)
and is available only on Catamount, largely due to the simplified address translation that
Catamount offers.

For intra-node transfers, the Generic Portals implementation takes advantage of the fact
that Portals structures for both the source and destination are in kernel space. The kernel
is able to traverse the structures and perform a single memory copy to move data between
processes, since all of user space is also mapped into kernel space. At large message sizes,
it becomes more efficient for the kernel to use the DMA engines on the SeaStar to perform
the copy, so there is a crossover point where it switches to using this approach. For the
Accelerated Portals implementation, all Portals data structures are in SeaStar memory, so
it must traverse these structures in the same way it does for incoming network messages,
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so there is little advantage to intra-node transfers. In fact, intra-node transfers are slower
going through the SeaStar rather then the operating system, due to the speed of the host
processor (2+ GHz) relative to the network processor (500 MHz).

1.3 SMARTMAP Implementation

SMARTMAP is a virtual memory mapping technique that allows for direct access shared
memory between the processes running on a multi-core processor. This technique leverages
many of the characteristics of a lightweight compute node kernel to achieve shared memory
capability without the limitations of POSIX shared memory mapping or the complexity
of multi-threading. SMARTMAP preserves the idea of running a single execution context
within a separate address space, but also provides the ability to easily access the address
space of the other execution contexts within the same parallel job on the same node. The
following provides a description the implementation of SMARTMAP and its advantages over
existing approaches for intra-node data movement.

1.3.1 Catamount

The Catamount lightweight kernel [43] is a third-generation compute node operating system
developed by Sandia National Laboratories along with Cray, Inc., as part of the Red Storm
project [19]. Red Storm is the prototype for what has become the commercially successful
Cray XT line of massively parallel processing systems. Catamount has several unique fea-
tures that are designed to optimize performance and scalability specifically for a distributed
memory message passing-based parallel computing platform.

One such important feature is memory management. Unlike traditional UNIX-based
operating systems, Catamount does not support demand-paged virtual memory and uses
a linear mapping from virtual addresses to physical pages of memory. This approach can
potentially have several advantages. For instance, there is no need to register memory or
“lock” memory pages involved in network transfers to prevent the operating system from
unmapping or remapping pages. The mapping in Catamount is done at process creation time
and is never changed. This greatly simplifies translation and validation of virtual address for
the network interface. Virtual address validation is a simple bounds check and translating
virtual addresses to physical addresses is a simple offset calculation.

The SMARTMAP approach for direct access shared memory takes advantage of Cata-
mount’s simple memory management model, specifically the fact that Catamount only uses
a single entry in the top-level page table mapping structure (PML4) on each X86-64 (AMD
Opteron or Intel EM64T) core. Each PML4 slot covers 39 bits of address space, or 512 GB
of memory. Normally, Catamount only uses the first entry covering physical addresses in the
range 0x0 to 0x007FFFFFFFFF. The X86-64 architecture supports a 48-bit address space, so
there are 512 entries in the PML4.
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1 s t a t i c void i n i t i a l i z e sha r ed memory ( void )
2 {
3 extern VA PML4T ENTRY ∗KN pml4 table cpu [ ] ;
4 i n t cpu ;
5 f o r ( cpu=0 ; cpu < MAX NUM CPUS ; cpu++ ) {
6 VA PML4T ENTRY ∗ pml4 = KN pml4 table cpu [ cpu ] ;
7 i f ( ! pml4 )
8 cont inue ;
9 KERNEL PCB TYPE ∗ kpcb = (KERNEL PCB TYPE∗) KN cur kpcb ptr [ cpu ] ;

10 i f ( ! kpcb ) cont inue ;
11 VA PML4T ENTRY d i rba s e p t r = (VA PML4T ENTRY)
12 (KVTOP( ( s i z e t ) kpcb−>kpcb d i rbase ) | PDE P | PDE W | PDE U ) ;
13 i n t other ;
14 f o r ( other=0 ; other<MAX NUM CPUS ; other++ ) {
15 VA PML4T ENTRY ∗ other pml4 = KN pml4 table cpu [ other ] ;
16 i f ( ! other pml4 ) cont inue ;
17 other pml4 [ cpu+1 ] = d i r ba s e p t r ;
18 }
19 }
20 }

Figure 1.1: SMARTMAP kernel code

1 s t a t i c i n l i n e void ∗ remote address ( unsigned core ,
2 v o l a t i l e void ∗ vaddr )
3 {
4 u i n t p t r t addr = ( u i n t p t r t ) vaddr ;
5 addr |= (( u i n t p t r t ) ( core +1)) << 39 ;
6 re turn ( void ∗) addr ;
7 }

Figure 1.2: User function for converting a local
virtual address to a remote virtual address

Each core writes the pointer to its PML4 table into an array at core 0 when a new parallel
job is started. Each time the kernel enters the routine to run the user-level process, it copies
all of the PML4 entries from each core into the local core. This allows every core on a node
to see every other core’s view of the virtual memory across the node, at a fixed offset into
its own virtual address space. Figure 1.1 shows the 20 lines of kernel code that implement
direct access shared memory in Catamount.

Another feature of Catamount is that the mapping of virtual addresses for the same
executable image is identical across all of the processes on all of the nodes. The starting
address of the data, stack, and heap is the same. This means that the virtual address of
variables with global scope is the same everywhere. The Cray SHMEM environment refers
to such addresses as symmetric addresses, whereas other addresses, such as those allocated
off of the stack as the application is running, are termed to be non-symmetric. Figure 1.2
shows the user-level function for converting a local virtual address into a remote virtual
address for a process on a different core. Symmetric addresses combined with this simple
remote address translation function make it extremely easy for one process to read or write
the corresponding data structure in another process’ address space running on a different
core of the same processor.

Catamount’s memory management design is much simpler than a general-purpose OS
like Linux. Linux memory management is based on the principle that processes execute in
different address spaces and threads execute in the same address space. Most architecture
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ports, x86 included, maintain a unique set of address translation structures (e.g., a page
table tree on x86) for each process and a single set for each group of threads. SMARTMAP
operates differently in that a process’s address space and associated translation structures
are neither fully-unique or fully-shared. For example, SMARTMAP on the x86 architecture
maintains a unique top-level page table (the PML4) for each process; however, all processes
share a common set of leaves linked from this top-level table. Linux memory management
does not support this form of page-table sharing, so each process must be given a replicated
copy of each shareable leaf. This results in more memory being wasted on page tables (2 MB
per GB of address space on x86) and a larger cache footprint than necessary. Modifications
to Linux to support sharing a single page table entry for shared memory mapped regions
has been proposed, but the changes have not been accepted in the mainline kernel.

1.3.2 Limitations

SMARTMAP is currently limited to what the top-level X86-64 page table supports – 511
processes (one slot is needed for the local process) and 512 GB of memory per process.
However, this will likely be sufficient for a typical compute node for the foreseeable future.
Since Catamount only runs on X86-64 processors, SMARTMAP is currently limited to this
processor family as well. However, the concepts are generally applicable to other architec-
tures that support virtual memory. For example, even though the PowerPC uses an inverted
page table scheme that is very different from x86-64, the hardware’s support for segmen-
tation can be used to implement SMARTMAP just as efficiently. On other architectures
with software-based virtual memory support (i.e., a software managed translation look-aside
buffer), SMARTMAP is straightforward to implement.

1.4 Using SMARTMAP

We have used the SMARTMAP capability in Catamount to optimize intra-node data move-
ment for the Cray SHMEM one-sided operations, as well as for MPI point-to-point and
collective operations. This section describes the modifications to these libraries.

1.4.1 Cray SHMEM

The Cray SHMEM library was first available on the Cray T3 series of machine circa 1994.
It supports a variety of one-sided get/put data movement functions as well as collective
reduction functions and remote atomic memory operations, such as atomic-swap and fetch-
and-increment.

The existing implementation for Catamount on the Cray XT uses Portals for all data
movement operations. Similar to MPI’s profiling interface, Cray has implemented an alter-
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1 void shmem putmem( void ∗ target , void ∗ source , s i z e t length , i n t pe )
2 {
3 in t core ;
4
5 i f ( ( core = smap pe i s l o c a l ( pe ) ) != −1 ) {
6 void ∗ t a r g e t r = ( void ∗) remote address ( core , t a r g e t ) ;
7 memcpy( t a r g e t r , source , l ength ) ;
8 } e l s e {
9 pshmem putmem( target , source , length , pe ) ;

10 }
11 }

Figure 1.3: SHMEM Put Function

native library interface to all SHMEM functions to support user-level redefinition of library
routines. All functions are defined as weak symbols with a set of shadow functions whose
names are prefaced by a ’p’. For example, the library defines shmem put() as a weak symbol
and defines pshmem put() as the actual function. This makes it possible for an application to
define it’s own version of the function that in turn calls the underlying library function. This
mechanism makes it easy to extend the implementation to use SMARTMAP for intra-node
transfers.

At library initialization time, we determine which destination ranks are on the local
node. We do this using information from the Catamount runtime system that conveys
the rank, node id, and core of each process in the job. We actually use the SMARTMAP
capability for each process on a node to determine a global rank to core rank mapping. Once
this mapping is determined, we simply add logic to each function to determine whether
the destination process is on-node or off-node. For on-node communications, we use the
virtual address conversion function to determine the remote virtual address to use and then
perform the appropriate operation. If the destination rank is off-node, we fall through to the
actual function. Figure 1.3 shows the implementation of the shmem putmem() routine using
SMARTMAP. We have done this for the basic put and get operations in order to measure
the performance gain from SMARTMAP. Implementations of the strided get/put operations
as well as the atomic memory operations would be similarly straightforward. Changes to the
internal implementation of the collective operations would be needed to differentiate between
on-node and off-node data movement.

1.4.2 MPI Point-to-Point Communication

We have modified the Open MPI implementation to make use of SMARTMAP. We chose
Open MPI because it is the only open-source implementation that supports shared memory
that already has support for the Cray XT. Recently, Cray has released an implementation of
MPI for their compute node Linux environment that supports shared memory. However, this
implementation is encumbered with SGI contributions and is not available outside of Cray.
Cray is continuing to maintain a completely separate MPI implementation for Catamount,
which is also not available as open source. The modular component-based architecture of
Open MPI also simplifies the introduction of a new transport layer.
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There are two different paths that Open MPI can use for MPI point-to-point commu-
nications using Portals. The default path is to use a PML module that implements MPI
matching semantics inside the MPI library and uses the underlying Byte Transport Layer
(BTL) to simply move bytes. This layer can make use of several BTL modules at one time,
including shared memory or the network as appropriate for the destination. The second path
is for the PML to use a Matching Transport Layer (MTL). This path assumes that the un-
derlying module is responsible for implementing MPI matching semantics. Unlike the BTL,
there can only be one of these modules in use at any given time. An important distinction
between these two paths is the location of the MPI receive queue. For the BTLs, the MPI
receive queue is inside the library, but for an MTL, the receive queue is managed outside of
the MPI library.

We modified both the shared memory BTL in Open MPI as well as the Portals MTL to
use SMARTMAP. This approach allows us to better quantify the advantage of avoiding an
extra copy in the shared memory BTL.

Relatively few changes were necessary to allow the shared memory BTL to use SMARTMAP.
Rather than having the individual processes use mmap() to map the same block of shared
memory, the core 0 process on a node simply publishes the location of the block of memory
that it has allocated from its local heap. Using SMARTMAP, the other processes read this
location from core 0’s memory and convert it to the appropriate remote address.

More extensive changes were required to enable the Portals MTL to use SMARTMAP.
A detailed description of a prototype of this implementation can be found in [9]. The
prototype only had support for intra-node transfers, but it has since been extended to support
both on-node and off-node communication. This implementation has two posted receive
queues – one inside Portals for off-node transfers and one inside the MPI library for on-node
transfers – so it is subject to the same complexity that other such implementations are. In
particular, non-specific receives are not currently fully supported. If a receive request using
MPI ANY SOURCE cannot be immediately completed, a failure is returned. We are currently
extending the implementation to handle this situation. We do not expect this extra logic to
have a significant impact on performance, especially for communication micro-benchmarks
and codes that do not employ a large number of wildcard receive requests.

A key difference between the BTL and MTL implementations is that the BTL is able to
copy user data along with the MPI envelope information, allowing for short send operations
to complete before the data has actually been transfered to the receiver’s buffer. Given that
the focus of SMARTMAP is to decrease the number of memory-to-memory copies, we chose
not to employ this optimization for the MTL. Therefore, short messages using SMARTMAP
are synchronous – the data is only copied when the matching receive buffer has been posted.
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1.4.3 MPI Collective Communication

We have also created an Open MPI collective communication module that uses SMARTMAP
to implement the barrier, broadcast, reduce, allreduce, and alltoall collective operations. We
briefly describe the implementation here.

The SMARTMAP collective module uses a structure containing the following informa-
tion:

• counter

• context

• address

• turn

• finished

This structure is globally-scoped so that it is at the same memory location in all of the
processes on a node. The first two items, counter and context, are specific to the MPI com-
municator involved in the collective operation. Since MPI collective operations are blocking,
a process can be participating in at most one collective at a time. The communicator’s
counter is incremented each time a collective operation is started and the context is used
to identify the specific communicator that is being used. This prevents sub-communicators
in overlapping collective operations from interfering with each other.

When a process enters a collective operation, it first determines whether it is the root
of the collective operation, For non-rooted operations, the root defaults to rank 0 within
the communicator. Once the root is determined, the process determines the core on which
the root process is running. If a process is not the root, it gets the remote address of the
collective structure in the root process’ address space and waits for the counter and context

values to indicate that the root has entered the same collective operation.

For the barrier operation, the root process initializes the finished value to 1, sets the
counter and context values appropriately, and then spins on this value waiting for it to
be equal to the size of the communicator. Once the non-root processes enter the collective
operation, they increment the finished value in the root’s address space using an assembly
language atomic increment operation. As with the root, they also spin waiting for this value
to be equal to the size of the communicator.

For the broadcast operation, the root process again initializes the finished value to 1
and sets the address value to the location of the user buffer. It then waits for the other
processes to increment the finished value. Once the non-root processes enter the collective
operation, they read the address value in the other process’ address space, convert this
value to a remote address, and then copy the data from the source buffer directly to the
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destination buffer in its address space. When the copy is complete, the process atomically
increments the finished value.

For the reduce operation, the root process first copies the send buffer to the receive
buffer (provided the MPI IN PLACE flag is not used), initializes the finished value to
1, and initializes the turn value to 0. It sets the context and counter values, and then
proceeds as the non-root processes do. Once in the collective operation, a non-root process
recognizes the destination address and converts it to a remote address in the root core’s
address space. It then waits for the turn value to be equal to its rank. Once this occurs, the
process performs the reduce operation with the its buffer and the root’s buffer. When the
reduce operation is complete, it atomically increments the turn value to let the next rank
proceed, and atomically increments the finished value to indicate that it is done. When the
root process’ turn is up, it simply increments the counter to let the following rank proceed.
As with the other SMARTMAP collectives, the root waits for the finished value to reach
the size of the communicator.

Currently, the allreduce operation is implemented as a reduce followed by a broadcast.
The alltoall operation is implemented as a broadcast with each process taking turns being the
root. The current implementation of alltoall is cache friendly, since all cores are copying the
same buffer at the same time. An alternative implementation could allow for each process
to copy its chunk of data to the other processes.

1.5 Performance Evaluation

1.5.1 Test Environment

The platform used to gather our performance results is a Red Storm development system
that contains four 2.2 GHz quad-core Opterons. We have added SMARTMAP capability
to the Catamount N-Way (CNW) kernel version 2.0.41. Our changes to Open MPI were
performed on the head of the development tree.

For intra-node results, we limited our results to the interrupt-driven version of Portals
because it is more efficient at intra-node transfers. The ability to have the operating system
perform a copy between processes outperforms having the SeaStar adapter do the copy.
Due to limitations of the SeaStar, send operations must go through the OS, so in addition
to serializing requests through a slower network interface, requests must also be serialized
through the OS.

1.5.2 SHMEM

Figure 1.4 shows the ping-pong latency and bandwidth performance for a Cray SHMEM
put operation using the default implementation and the SMARTMAP-enabled implemen-
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Figure 1.4: SHMEM Put Performance

tation as measured with the NetPIPE [63] benchmark. Single-byte latency for the default
implementation is more than 5 µs, while the SMARTMAP latency is 230 ns. Bandwidth per-
formance for the SMARTMAP-enabled SHMEM also significantly outperforms the default
implementation, having a much steeper curve and achieving much higher asymptotic perfor-
mance. The erratic nature of the bandwidth curve for the SMARTMAP-enabled SHMEM is
due to the sensitivity of the memory sub-system to misalignment as a result of the various
transfer lengths that NetPIPE uses. The dip at 32 KB is repeatable and is also likely due
to the memory hierarchy, since this is half of the size of the first-level cache. We used a
memory copy routine with non-temporal stores, which we believe is responsible for the jump
in bandwidth performance at 2 MB. For SHMEM over Portals, the crossover point from
using shared memory to using the network is clearly visible at 512 KB.

1.5.3 MPI Point-to-Point

Figure 1.5 shows the performance of widely-used Intel MPI Benchmark suite version 2.3
for the point-to-point operations. We compare the default Portals BTL (btl-gp) and MTL
(mtl-gp) with the shared memory BTL (btl-sm) using SMARTMAP and the SMARTMAP
Portals MTL (mtl-smap).

Ping-pong latency performance is shown in Figure 1.5(a). The Portals MTL with SMARTMAP
is able to achieve a zero-byte latency of 630 ns, with the shared memory BTL using SMARTMAP
slightly higher at 830 ns. This is a significant improvement over the 3 µsPortals MTL, where
the OS performs the memory copy between the processes. The difference in performance
between the MTL and BTL is likely due to the additional memory operations needed by
the BTL to enqueue a request in a shared data structure. For the MTL, each process has
exclusive access to the data structures necessary for enqueing a request.

Ping-pong bandwidth performance is shown in Figure 1.5(b). Here again we see that the
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Figure 1.5: IMB MPI Point-to-Point Results
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Figure 1.6: MPI Message Rate

SMARTMAP-enabled MTL is able to outperform the others, peaking at 9.4 GB/s. This is
significantly higher than the peak 5.7 GB/s of the Portals MTL without SMARTMAP. We
can also see that the performance of the shared memory BTL starts to be affected by doing
two memory copies rather than one. Unlike the previous SHMEM bandwidth test that uses
NetPIPE, the IMB bandwidth test does not actually read the receive buffer, so the improved
performance of MPI over SHMEM is due to cache effects.

Figures 1.5(c) and 1.5(d) show performance for the IMB Sendrecv and Exchange bench-
marks. We chose these benchmarks to illustrate the capability of SMARTMAP to allow
for simultaneous communications within a node. The Sendrecv benchmark measures perfor-
mance between pairs of processes communicating with the MPI Sendrecv() function, while
the Exchange benchmark measures the performance of exchanging data with a pair of neigh-
bor processes. The Portals BTL and MTL are limited by serialization through the OS, while
with the shared memory based transports, the processes are able to communicate without
any serialization. We can also see the penalty that the two-copy shared memory strategy
has for these operations as well.

Another important measurement of MPI point-to-point performance is message rate. We
used the PathScale (now QLogic) MPI message rate benchmark, which is a modified version
of an MPI bandwidth benchmark from Ohio State University. The original benchmark was
enhanced to support reporting message rate as well as bandwidth, to calculate and report
the N1/2 message size and rate, and to allow for running multiple processes per node to
calculate aggregate performance. Figures 1.6(a) and 1.6(a) show the message rate for one
pair of communicating processes and two pairs of processes respectively. For one pair, the
shared memory BTL is able to achieve more than 3.5 million messages per second, while
the Portals MTL with SMARTMAP achieves about 2.4 million message per second. The
non-SMARTMAP layers achieve less than 300 thousand messages per second. The memory
copies in the shared memory BTL allow for decoupling the sender and the receiver. For
short messages, the BTL is able to copy the message into shared memory and, from the MPI
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Figure 1.7: MPI Halo Exchange Performance

perspective, the send is complete. However, since the SMARTMAP MTL is synchronous,
it does not perform the memory copy until the receiver has posted a receive request. The
overhead of this synchronization degrades message rate performance, but the single-copy
ability of SMARTMAP eventually catches up at larger message sizes. For two pairs of
processes, message rate for the MTL scales nearly linearly, almost doubling to 4.6 million
messages per second, while the BTL rate remains constant. The message rate actually
decreases slightly for the Portals-based transports.

We finish our analysis of MPI point-to-point communication with a halo exchange bench-
mark from Argonne National Lab. We ran this benchmark across four quad-core nodes using
sixteen processes. The results are shown in Figure 1.7. Unlike the intra-node performance
results, this benchmark shows the advantage of the AP version of Portals. The Portals MTL
with SMARTMAP enabled allows for efficient on-node transfers, while the AP implementa-
tion of Portals allows for more efficient off-node transfers.

1.5.4 MPI Collectives

Figure 1.8 shows performance for the broadcast, reduce, allreduce, alltoall, and barrier MPI
collective operations on a single quad-core node. This graph also includes performance of
the SMARTMAP collective module (smap-coll). As with the point-to-point operations, we
can again see the significant performance gain for using SMARTMAP. For the broadcast and
alltoall operations in Figures 1.8(a) and 1.8(d) respectively, we can also see the advantage
that the single copy approach has for larger message sizes over the two-copy approach of the
shared memory BTL. Barrier performance in Figure 1.8(e) demonstrates the advantage of
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Figure 1.8: IMB MPI Collective Performance
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using a counter in shared memory rather than using message passing in shared memory.

1.6 Conclusion

The SMARTMAP capability in Catamount is able to deliver significant performance im-
provements for intra-node MPI point-to-point and collective operations. It is able to dra-
matically outperform the current approaches for intra-node data movement using Portals
on the Cray XT. We expect the shared memory BTL performance to be similar to what
Cray’s Compute Node Linux (CNL) environment could achieve using shared memory in
Linux. However, we have also shown that the single-copy ability of SMARTMAP in Cata-
mount is able to significantly outperform the mulitple-copy approach that must be used in
a POSIX-based shared memory environment like Linux. Additionally, SMARTMAP can
support operations that Linux shared memory cannot. First, SMARTMAP can eliminate
all extraneous memory-to-memory copies for intra-node MPI communications. This is a
significant advantage in light of the growing memory bandwidth limitation of multi-core
processors. SMARTMAP can also support true one-sided get/put operations and extremely
efficient collective operations, including the ability to perform reduction operations directly
on the destination buffer.

1.7 Future Work

There is more work left to do to fully utilize the SMARTMAP capability for MPI. First,
because the Portals data movement layer encapsulates the MPI posted receive queue, the
complexity of handling MPI ANY SOURCE receives is significantly increased. The current im-
plementation does not fully support non-specific receives, but we do not expect the logic
needed to support them to significantly impact performance. We would also like to imple-
ment single-copy non-contiguous data transfers and MPI-2 remote memory access operations.

We are currently working on additional collective operations for the SMARTMAP collec-
tive module, specifically the gather operations. We would like to do an in-depth analysis of
collective performance using Open MPI’s hierarchical collective module, where on-node col-
lectives would use the SMARTMAP module in combination with a network-based collective
module.

With the recent release of a Cray implementation of MPI for CNL that supports shared
memory transfers, we would like to do an in-depth analysis of on-node MPI communication
performance between Catamount and CNL.

Once we have complete point-to-point and collective layers, we would also like to perform
and in-depth analysis of application performance. Our current 4-node quad-core environment
is not sufficient to analyze application performance and scalability. The center section of the
Red Storm system, approximately six thousand nodes, will soon be upgraded to quad-core
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processors, and we expect to perform an exhaustive analysis of applications as part of the
upgrade. It would also be interesting to measure SMARTMAP performance on larger core
counts, such as a dual-socket quad-core Cray XT5 node.

SMARTMAP is also a natural fit for implementation of the Partitioned Global Address
Space (PGAS) Model. The implementations of Unified Parallel C, Co-Array Fortran, and
Global Arrays could be enhanced to leverage SMARTMAP capabilities.

We are also exploring ways for applications to use the SMARTMAP capability directly,
through library interfaces that allow processes to do direct remote loads and stores. We
currently have MPI applications that are conducive to recoding pieces of them to use shared-
memory style communications. The advantage of SMARTMAP for this is that we can avoid
the memory copy overhead of using MPI and also avoid the complexity of mixing MPI with
threads or OpenMP compiler directives.

Finally, we are also considering exposing the topology of the underlying machine to ap-
plications using MPI communicators. We can easily create communicators to be used for
on-node or off-node communications (e.g, MPI COMM NODE and MPI COMM NET). Some appli-
cations may be able to decompose communication into two levels to better leverage the
advantages of intra-node communication performance.
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Chapter 2

Palacios and Kitten: New High
Performance Operating Systems For
Scalable Virtualized and Native
Supercomputing

The content of this chapter was originally published in a paper by the same name at the
2010 International Parallel and Distributed Processing Symposium (IPDPS’10). The proper
citation is [45]. This LDRD project began focusing on adding a virtualization layer to the
Kitten LWK in FY09, and teamed up with separately funded researchers from Northwestern
University and the University of New Mexico who were developing an embeddable virtual
machine monitor called Palacios. Together, we embedded Palacios in Kitten, tuned the com-
bination for HPC workloads, and got it running on a 48 node Cray XT4 test system. This
paper describes Palacios and Kitten and includes performance results obtained on the test
system. A subsequent paper, listed in Chapter 3, describes the optimizations for HPC in
more depth and includes results obtained on up to 6, 240 nodes of the Red Storm Cray XT4
supercomputer.

The authors of this paper are John Lange (Univ. Pittsburgh, formerly Northwestern Univ.),
Kevin Pedretti (SNL), Trammell Hudson (OS Research), Peter Dinda (Northwestern Univ.),
Zheng Cui (Univ. New Mexico), Lei Xia (Northwestern Univ.), P. Bridges (Univ. New Mex-
ico), Andy Gocke (Northwestern Univ.), Steven Jaconette (Northwestern Univ.), Michael
Levenhagen (SNL), and Ron Brightwell (SNL).

Abstract

Palacios is a new open-source VMM under development at Northwestern University and the
University of New Mexico that enables applications executing in a virtualized environment
to achieve scalable high performance on large machines. Palacios functions as a modular-
ized extension to Kitten, a high performance operating system being developed at Sandia
National Laboratories to support large-scale supercomputing applications. Together, Pala-
cios and Kitten provide a thin layer over the hardware to support full-featured virtualized
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environments alongside Kitten’s lightweight native environment. Palacios supports exist-
ing, unmodified applications and operating systems by using the hardware virtualization
technologies in recent AMD and Intel processors. Additionally, Palacios leverages Kitten’s
simple memory management scheme to enable low-overhead pass-through of native devices
to a virtualized environment. We describe the design, implementation, and integration of
Palacios and Kitten. Our benchmarks show that Palacios provides near native (within 5%),
scalable performance for virtualized environments running important parallel applications.
This new architecture provides an incremental path for applications to use supercomputers,
running specialized lightweight host operating systems, that is not significantly performance-
compromised.1

1This project is made possible by support from the National Science Foundation (NSF) via grants CNS-
0709168, CNS-0707365, and the Department of Energy (DOE) via a subcontract from Oak Ridge National
Laboratory on grant DE-AC05-00OR22725. John Lange was partially supported by a Symantec Research
Labs Fellowship. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin
Company, for the United States Department of Energy’s National Nuclear Security Administration under
contract DE-AC04-94AL85000.
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2.1 Introduction

This paper introduces Palacios, a new high performance virtual machine monitor (VMM)
architecture, that has been embedded into Kitten, a high performance supercomputing op-
erating system (OS). Together, Palacios and Kitten provide a flexible, high performance
virtualized system software platform for HPC systems. This platform broadens the applica-
bility and usability of HPC systems by:

• providing access to advanced virtualization features such as migration, full system
checkpointing, and debugging;

• allowing system owners to support a wider range of applications and to more easily
support legacy applications and programming models when changing the underlying
hardware platform;

• enabling system users to incrementally port their codes from small-scale development
systems to large-scale supercomputer systems while carefully balancing their perfor-
mance and system software service requirements with application porting effort; and

• providing system hardware and software architects with a platform for exploring hard-
ware and system software enhancements without disrupting other applications.

Palacios is a “type-I” pure VMM [32] under development at Northwestern University
and the University of New Mexico that provides the ability to virtualize existing, unmod-
ified applications and their operating systems with no porting. Palacios is designed to be
embeddable into other operating systems, and has been embedded in two so far, including
Kitten. Palacios makes extensive, non-optional use of hardware virtualization technologies
and thus can scale with improved implementations of those technologies.

Kitten is an OS being developed at Sandia National Laboratories that is being used
to investigate system software techniques for better leveraging multicore processors and
hardware virtualization in the context of capability supercomputers. Kitten is designed in the
spirit of lightweight kernels [58], such as Sandia’s Catamount [42] and IBM’s CNK [60], that
are well known to perform better than commodity kernels for HPC. The simple framework
provided by Kitten and other lightweight kernels facilitates experimentation, has led to
novel techniques for reducing the memory bandwidth requirements of intra-node message
passing [10], and is being used to explore system-level options for improving resiliency to
hardware faults.

Kitten and Palacios together provide a scalable, flexible HPC system software platform
that addresses the challenges laid out earlier and by others [49]. Applications ported to
Kitten will be able to achieve maximum performance on a given machine. Furthermore,
Kitten is itself portable and open, propagating the benefits of such porting efforts to multiple
machines. Palacios provides the ability to run existing, unmodified applications and their
operating systems, requiring no porting. Furthermore, as Palacios has quite low overhead,
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it could potentially be used to manage a machine, allowing a mixture of workloads running
on commodity and more specialized OSes, and could even run ported applications on more
generic hardware.

Palacios and Kitten can be used separately or together, and run on a variety of machines
ranging from commodity clusters and servers to large scale parallel machines at Sandia. Both
Palacios and Kitten are open source tools that are currently available to download and use.

In the remainder of this paper, we describe the design and implementation of both Pala-
cios and Kitten, and evaluate their performance. The core contributions of this paper are
the following:

• We introduce and describe the Palacios VMM.

• We introduce and describe the Kitten HPC OS.

• We show how the combination of Palacios and Kitten can provide an incremental path
to using many different kinds of HPC resources for the mutual benefit of users and
machine owners.

• We show that an integrated virtualization system combining Palacios and Kitten can
provide nearly native performance for existing codes, even when extensive communi-
cation is involved.

• We present evaluations of parallel application and benchmark performance and over-
heads using virtualization on high-end computing resources. The overheads we see,
particularly using hardware nested paging, are typically less than 5%.

2.2 Motivation

Palacios and Kitten are parts of larger projects that have numerous motivations. Here we
consider their joint motivation in the context of high performance computing, particularly
on large scale machines.

Maximizing performance through lightweight kernels Lightweight compute node
OSes maximize the resources delivered to applications to maximize their performance. As
such, a lightweight kernel does not implement much of the functionality of a traditional oper-
ating system; instead, it provides mechanisms that allow system services to be implemented
outside the OS, for example in a library linked to the application. As a result, they also
require that applications be carefully ported to their minimalist interfaces.

Increasing portability and compatibility through commodity interfaces Stan-
dardized application interfaces, for example partial or full Linux ABI compatibility, would
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make it easier to port parallel applications to a lightweight kernel. However, a lightweight
kernel cannot support the full functionality of a commodity kernel without losing the benefits
noted above. This means that some applications cannot be run without modification.

Achieving full application and OS compatibility through virtualization Full sys-
tem virtualization provides full compatibility at the hardware level, allowing existing un-
modified applications and OSes to run. The machine is thus immediately available to be
used by any application code, increasing system utilization when ported application jobs
are not available. The performance of the full system virtualization implementation (the
VMM) partially drives the choice of either using the VMM or porting an application to
the lightweight kernel. Lowering the overhead of the VMM, particularly in communication,
allows more of the workload of the machine to consist of VMMs.

Preserving and enabling investment in ported applications through virtualiza-
tion A VMM which can run a lightweight kernel provides straightforward portability to
applications where the lightweight kernel is not available natively. Virtualization makes it
possible to emulate a large scale machine on a small machine, desktop, or cluster. This em-
ulation ability makes commodity hardware useful for developing and debugging applications
for lightweight kernels running on large scale machines.

Managing the machine through virtualization Full system virtualization would allow
a site to dynamically configure nodes to run a full OS or a lightweight OS without requiring
rebooting the whole machine on a per-job basis. Management based on virtualization would
also make it possible to backfill work on the machine using loosely-coupled programming
jobs [56] or other low priority work. A batch-submission or grid computing system could
be run on a collection of nodes where a new OS stack could be dynamically launched; this
system could also be brought up and torn down as needed.

Augmenting the machine through virtualization Virtualization offers the option to
enhance the underlying machine with new capabilities or better functionality. Virtualized
lightweight kernels can be extended at runtime with specific features that would otherwise
be too costly to implement. Legacy applications and OSes would be able to use features such
as migration that they would otherwise be unable to support. Virtualization also provides
new opportunities for fault tolerance, a critical area that is receiving more attention as the
mean time between system failures continues to decrease.

Enhancing systems software research in HPC and elsewhere The combination of
Palacios and Kitten provides an open source toolset for HPC systems software research that
can run existing codes without the need for victim hardware. Palacios and Kitten enable new
systems research into areas such as fault-tolerant system software, checkpointing, overlays,
multicore parallelism, and the integration of high-end computing and grid computing.
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2.3 Palacios

Palacios2 is an OS independent VMM designed as part of the the V3VEE project (http:
//v3vee.org). Palacios currently targets the x86 and x86 64 architectures (hosts and guests)
and is compatible with both the AMD SVM [4] and Intel VT [38] extensions. Palacios
supports both 32 and 64 bit host OSes as well as 32 and 64 bit guest OSes3. Palacios
supports virtual memory using either shadow or nested paging. Palacios implements full
hardware virtualization while providing targeted paravirtualized extensions.

Palacios is a fully original VMM architecture developed at Northwestern University. Fig-
ure 2.1 shows the scale of Palacios as of the 1.1 release (and the Kitten 1.1.0 release). Note
that the Palacios core is quite small. The entire VMM, including the default set of virtual
devices is on the order of 28 thousand lines of C and assembly. The combination of Pala-
cios and Kitten is 89 thousand lines of code. In comparison, Xen 3.0.3 consists of almost
580 thousand lines of which the hypervisor core is 50–80 thousand lines, as measured by
the wc tool. Similarly, Kernel Virtual Machine (KVM) is massive when its Linux kernel de-
pendencies are considered (a performance comparison with KVM is given in Section 2.6.7).
Palacios is publicly available from http://v3vee.org, with additional documentation about
its theory of operation available in a technical report [46]. Palacios is released under a BSD
license.

Palacios supports multiple physical host and virtual guest environments. Palacios is
compatible with both AMD SVM and Intel VT architectures, and has been evaluated on
commodity Ethernet based servers, a high end Infiniband cluster, as well as Red Storm
development cages consisting of Cray XT nodes. Palacios also supports the virtualization of a
diverse set of guest OS environments, including commodity Linux and other OS distributions,
modern Linux kernels, and several lightweight HPC OSes such as CNL [41], Catamount [42],
and Kitten itself.

2.3.1 Architecture

Palacios is an OS independent VMM, and as such is designed to be easily portable to
diverse host operating systems. Currently Palacios supports multiple operating systems,
but specifically supports Kitten for high performance environments. Palacios integrates
with a host OS through a minimal and explicitly defined functional interface that the host
OS is responsible for supporting. Furthermore, the interface is modularized so that a host
environment can decide its own level of support and integration. Less than 300 lines of
code needed to be written to embed Palacios into Kitten. Palacios’s architecture, shown
in Figure 2.2, is designed to be internally modular and extensible and provides common
interfaces for registering event handlers for common operations.

2Palacios, TX is the “Shrimp Capital of Texas.”
364 bit guests are only supported on 64 bit hosts
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Lines of
Component Code

Palacios
Palacios Core (C+Assembly) 15,084
Palacios Virtual Devices (C) 8,708
Total 28,112

Kitten
Kitten Core (C) 17,995
Kitten Arch Code (C+Assembly) 14,604
Misc. Contrib Code (Kbuild/lwIP) 27,973
Palacios Glue Module (C) 286
Total 60,858

Grand Total 88,970

Figure 2.1: Lines of code in Palacios and Kitten as measured with the SLOCCount tool.
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Figure 2.2: Palacios architecture.
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Configurability Palacios is designed to be highly modular to support the generation of
specialized VMM architectures. The modularity allows VMM features and subsystems to be
selected at compile time to generate a VMM that is specific to the target environment. The
configuration system is also used to select from the set of available OS interfaces, in order to
enable Palacios to run on a large number of OS architectures. The build and compile time
configuration system is based on a modified version of KBuild ported from Linux.

Palacios also includes a runtime configuration system that allows guest environments to
specifically configure the VMM to suit their environments. Virtual devices are implemented
as independent modules that are inserted into a runtime generated hash table that is keyed
to a device’s ID. The guest configuration also allows a guest to specify core configuration
options such as the scheduling quantum and the mechanism used for shadow memory.

The combination of the compile time and runtime configurations make it possible to
construct a wide range of guest environments that can be targeted for a large range of host
OS and hardware environments.

Resource hooks The Palacios core provides an extensive interface to allow VMM com-
ponents to register to receive and handle guest and host events. Guest events that can be
hooked include accesses to MSRs, IO ports, specific memory pages, and hypercalls. Palacios
also includes functionality to receive notifications of host events such as general interrupts,
keystrokes and timer ticks.

Palacios interfaces with the host OS through a small set of function hooks that the
host OS is required to provide. These functions include methods for allocating and freeing
physical memory pages as well as heap memory, address conversion functions for translating
physical addresses to the VMMs virtual address space, a function to yield the CPU when a
VM is idle, and an interface for interfacing with the host’s interrupt handling infrastructure.
In addition to this interface, Palacios also includes an optional socket interface that consists
of a small set of typical socket functions.

Interrupts Palacios includes two models for hardware interrupts, passthrough interrupts
and specific event notifications. Furthermore, Palacios is capable of disabling local and
global interrupts in order to have interrupt processing on a core run at times it chooses. The
interrupt method used is determined by the virtual device connected to the guest.

For most virtual devices, interrupts are delivered via a host event notification interface.
This interface requires the presence of a host OS device driver to handle the interrupt and
transfer any data to or from the device. The data from the device operation is then encap-
sulated inside a host event and delivered to Palacios. The event is then delivered to any
virtual devices listening on the notification channel. The virtual device is then responsible
for raising virtual interrupts as needed.

For high performance devices, such as network cards, Palacios supports passthrough
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operation which allows the guest to interact directly with the hardware. For this mechanism
no host OS driver is needed. In this case, Palacios creates a special virtual passthrough
device that interfaces with the host to register for a given device’s interrupt. The host OS
creates a generic interrupt handler that first masks the interrupt pin, acks the interrupt to
the hardware interrupt controller, and then raises a virtual interrupt in Palacios. When the
guest environment acks the virtual interrupt, Palacios notifies the host, which then unmasks
the interrupt pin. This interface allows direct device IO to and from the guest environment
with only a small increase to the interrupt latency that is dominated by the hardware’s world
context switch latency.

2.3.2 Palacios as a HPC VMM

Part of the motivation behind Palacios’s design is that it be well suited for high performance
computing environments, both on the small scale (e.g., multicores) and large scale parallel
machines. Palacios is designed to interfere with the guest as little as possible, allowing it to
achieve maximum performance.

Palacios is currently designed for distributed memory parallel computing environments.
This naturally maps to conventional cluster and HPC architectures. Multicore CPUs are
currently virtualized as a set of independent compute nodes that run separate guest contexts.
Support for single image multicore environments (i.e., multicore guests) is currently under
development.

Several aspects of Palacios’s design are suited for HPC:

• Minimalist interface: Palacios does not require extensive host OS features, which allows
it to be easily embedded into even small kernels, such as Kitten and GeekOS [36].

• Full system virtualization: Palacios does not require guest OS changes. This allows
it to run existing kernels without any porting, including Linux kernels and whole
distributions, and lightweight kernels [58] like Kitten, Catamount, Cray CNL [41] and
IBM’s CNK [60].

• Contiguous memory preallocation: Palacios preallocates guest memory as a physically
contiguous region. This vastly simplifies the virtualized memory implementation, and
provides deterministic performance for most memory operations.

• Passthrough resources and resource partitioning: Palacios allows host resources to be
easily mapped directly into a guest environment. This allows a guest to use high
performance devices, with existing device drivers, with no virtualization overhead.

• Low noise: Palacios minimizes the amount of OS noise [27] injected by the VMM layer.
Palacios makes no use of internal timers, nor does it accumulate deferred work.

• Extensive compile time configurability: Palacios can be configured with a minimum
set of required features to produce a highly optimized VMM for specific environments.

41



This allows lightweight kernels to include only the features that are deemed necessary
and remove any overhead that is not specifically needed.

2.4 Kitten

Kitten is an open-source OS designed specifically for high performance computing. It em-
ploys the same “lightweight” philosophy as its predecessors—SUNMOS, Puma, Cougar, and
Catamount4—to achieve superior scalability on massively parallel supercomputers while at
the same time exposing a more familiar and flexible environment to application developers,
addressing one of the primary criticisms of previous lightweight kernels. Kitten provides
partial Linux API and ABI compatibility so that standard compiler tool-chains and system
libraries (e.g., Glibc) can be used without modification. The resulting ELF executables
can be run on either Linux or Kitten unchanged. In cases where Kitten’s partial Linux
API and ABI compatibility is not sufficient, the combination of Kitten and Palacios enables
unmodified guest OSes and applications to be loaded on demand.

The general philosophy being used to develop Kitten is to borrow heavily from the Linux
kernel when doing so does not compromise scalability or performance (e.g., adapting the
Linux bootstrap code for Kitten). Performance critical subsystems, such as memory man-
agement and task scheduling, are replaced with code written from scratch for Kitten. To
avoid potential licensing issues, no code from prior Sandia-developed lightweight kernels is
used. Like Linux, the Kitten code base is structured to facilitate portability to new architec-
tures. Currently only the x86 64 architecture is officially supported, but NEC has recently
ported Kitten to the NEC SX vector architecture for research purposes[30]. Kitten is pub-
licly available from http://software.sandia.gov/trac/kitten and is released under the
terms of the GNU Public License (GPL) version 2.

2.4.1 Architecture

Kitten (Figure 2.3) is a monolithic kernel that runs symmetrically on all processors in the sys-
tem. Straightforward locking techniques are used to protect access to shared data structures.
At system boot-up, the kernel enumerates and initializes all hardware resources (processors,
memory, and network interfaces) and then launches the initial user-level task, which runs
with elevated privilege (the equivalent of root). This process is responsible for interfacing
with the outside world to load jobs onto the system, which may either be native Kitten
applications or guest operating systems. The Kitten kernel exposes a set of resource man-
agement system calls that the initial task uses to create virtual address spaces, allocate
physical memory, create additional native Kitten tasks, and launch guest operating systems.

The Kitten kernel supports a subset of the Linux system call API and adheres to the

4The name Kitten continues the cat naming theme, but indicates a new beginning.
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Figure 2.3: Kitten architecture.

Linux ABI to support native user-level tasks. Compatibility includes system call calling con-
ventions, user-level stack and heap layout, thread-local storage conventions, and a variety of
standard system calls such as read(), write(), mmap(), clone(), and futex(). The sub-
set of system calls that Kitten implements natively is intended to support the requirements
of existing scalable scientific computing applications in use at Sandia. The subset is also
sufficient to support Glibc’s NPTL POSIX threads implementation and GCC’s OpenMP
implementation without modification. Implementing additional system calls is a relatively
straightforward process.

The Kitten kernel contains functionality aimed at easing the task of porting of Linux
device drivers to Kitten. Many device drivers and user-level interface libraries create or
require local files under /dev, /proc, and /sys. Kitten provides limited support for such
files. When a device driver is initialized, it can register a set of callback operations to be
used for a given file name. The open() system call handler then inspects a table of the
registered local file names to determine how to handle each open request. Remote files are
forwarded to a user-level proxy task for servicing. Kitten also provides support for kernel
threads, interrupt registration, and one-shot timers since they are required by many Linux
drivers. The Open Fabrics Alliance (OFA) Infiniband stack was recently ported to Kitten
without making any significant changes to the OFA code.
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2.4.2 Memory Management

Unlike traditional general-purpose kernels, Kitten delegates most virtual and physical mem-
ory management to user-space. The initial task allocates memory to new native applications
and Palacios virtual machines by making a series of system calls to create an address space,
create virtual memory regions, and bind physical memory to those regions. Memory topology
information (i.e., NUMA) is provided to the initial-task so it can make intelligent decisions
about how memory should be allocated.

Memory is bound to a context of execution before it starts executing and a contiguous
linear mapping is used between virtual and physical addresses. The use of a regular mapping
greatly simplifies virtual to physical address translation compared to demand-paged schemes,
which result in an unpredictable mapping with complex performance implications. Network-
ing hardware and software can take advantage of the simple mapping to increase performance
(which is the case on Cray XT) and potentially decrease cost by eliminating the need for
translation table memory and table walk hardware on the network interface. The simple
mapping also enables straightforward pass-through of physical devices to para-virtualized
guest drivers.

2.4.3 Task Scheduling

All contexts of execution on Kitten, including Palacios virtual machines, are represented by
a task structure. Tasks that have their own exclusive address space are considered processes
and tasks that share an address space are threads. Processes and threads are identical from
a scheduling standpoint. Each processor has its own run queue of ready tasks that are
preemptively scheduled in a round-robin fashion. Currently Kitten does not automatically
migrate tasks to maintain load balance. This is sufficient for the expected common usage
model of one MPI task or OpenMP thread per processor.

The privileged initial task that is started at boot time allocates a set of processors to
each user application task (process) that it creates. An application task may then spawn
additional tasks on its set of processors via the clone() system call. By default spawned
tasks are spread out to minimize the number of tasks per processor but a Kitten-specific
task creation system call can be used to specify the exact processor that a task should be
spawned on.

2.5 Integrating Palacios and Kitten

Palacios was designed to be easily integrated with different operating systems. This leads
to an extremely simple integration with Kitten consisting of an interface file of less than
300 lines of code. The integration includes no internal changes in either Kitten or Palacios,
and the interface code is encapsulated with the Palacios library in an optional compile time
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module for Kitten. This makes Palacios a natural virtualization solution for Kitten when
considered against existing solutions that target a specific OS with extensive dependencies
on internal OS infrastructures.

Kitten exposes the Palacios control functions via a system call interface available from
user space. This allows user level tasks to instantiate virtual machine images directly from
user memory. This interface allows VMs to be loaded and controlled via processes received
from the job loader. A VM image can thus be linked into a standard job that includes
loading and control functionality.

SeaStar Passthrough Support Because Palacios provides support for passthrough I/O,
it is possible to support high performance, partitioned access to particular communication
devices. We do this for the SeaStar communication hardware on the Red Storm machine.
The SeaStar is a high performance network interface that utilizes the AMD HyperTransport
Interface and proprietary mesh interconnect for data transfers between Cray XT nodes [14].
At the hardware layer the data transfers take the form of arbitrary physical-addressed DMA
operations. To support a virtualized SeaStar the physical DMA addresses must be translated
from the guest’s address space. However, to ensure high performance the SeaStar’s command
queue must be directly exposed to the guest. This requires the implementation of a simple
high performance translation mechanism. Both Palacios and Kitten include a simple memory
model that makes such support straightforward.

The programmable SeaStar architecture provides several possible avenues for optimizing
DMA translations. These include a self-virtualizable firmware as well as an explicitly vir-
tualized guest driver. In the performance study we conducted for this paper we chose to
modify the SeaStar driver running in the guest to support Palacios’s passthrough I/O. This
allows the guest to have exclusive and direct access to the SeaStar device. Palacios uses the
large contiguous physical memory allocations supported by Kitten to map contiguous guest
memory at a known offset. The SeaStar driver has a tiny modification that incorporates
this offset into the DMA commands sent to the SeaStar. This allows the SeaStar to execute
actual memory operations with no performance loss due to virtualization overhead. Because
each Cray XT node contains a single SeaStar device, the passthrough configuration means
that only a single guest is capable of operating the SeaStar at any given time.

Besides memory-mapped I/O, the SeaStar also directly uses an APIC interrupt line to
notify the host of transfer completions as well as message arrivals. Currently, Palacios
exits from the guest on all interrupts. For SeaStar interrupts, we immediately inject such
interrupts into the guest and resume. While this introduces an VM exit/entry cost to each
SeaStar interrupt, in practice this only results in a small increase in latency. We also note
that the SeaStar interrupts are relatively synchronized, which does not result in a significant
increase in noise. We are investigating the use of next generation SVM hardware that
supports selective interrupt exiting to eliminate this already small cost.

While implicitly trusting guest environments to directly control DMA operations is not
possible in normal environments, the HPC context allows for such trust.
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Infiniband and Ethernet Passthrough Support Our integration of Palacios and Kit-
ten also includes an implementation of passthrough I/O for Mellanox Infiniband NICs and
Intel E1000 Ethernet NICs. These are similar to the SeaStar implementation.

2.6 Performance

We conducted a careful performance evaluation of the combination of Palacios and Kitten
on diverse hardware, and at scales up to 48 nodes. We focus the presentation of our evalua-
tion on the Red Storm machine and widely recognized applications/benchmarks considered
critical to its success. As far as we are aware, ours is the largest scale evaluation of paral-
lel applications/benchmarks in virtualization to date, particularly for those with significant
communication. It also appears to be the first evaluation on petaflop-capable hardware.
Finally, we show performance numbers for native lightweight kernels, which create a very
high bar for the performance of virtualization. The main takeaways from our evaluation are
the following.

1. The combination of Palacios and Kitten is generally able to provide near-native per-
formance. This is the case even with large amounts of complex communication, and
even when running guest OSes that themselves use lightweight kernels to maximize
performance.

2. It is generally preferable for a VMM to use nested paging (a hardware feature of
AMD SVM and Intel VT) over shadow paging (a software approach) for guest physical
memory virtualization. However, for guest OSes that use simple, high performance
address space management, such as lightweight kernels, shadow paging can sometimes
be preferable due to its being more TLB-friendly.

The typical overhead for virtualization is ≤ 5%.

2.6.1 Testbed

We evaluated the performance and scaling of Palacios running on Kitten on the development
system rsqual, part of the Red Storm machine at Sandia National Laboratories. Each XT4
node on this machine contains a quad-core AMD Budapest processor running at 2.2 GHz
with 4 GB of RAM. The nodes are interconnected with a Cray SeaStar 2.2 mesh network [14].
Each node can simultaneously send and receive at a rate of 2.1 GB/s via MPI. The measured
node to node MPI-level latency ranges from 4.8 µsec (using the Catamount [42] operating
system) to 7.0 µsec (using the native CNL [41] operating system). As we stated earlier, even
though we can run multiple guests on a multicore Cray XT node by instantiating them on
separate cores, our current implementation only allows the SeaStar to be exposed to a single
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guest context. Due to this limitation, our performance evaluation is restricted to a single
guest per Cray XT node.

In addition, we used two dual-socket quad-core 2.3 GHz AMD Shanghai systems with
32GB of memory for communication benchmark testing on commodity HPC hardware.
Nodes in this system are connected with Mellanox ConnectX QDR Infiniband NICs and
a Mellanox Infiniscale-IV 24 port switch. When not running Kitten, these systems run
Linux 2.6.27 and the OpenFabrics 1.4 Infiniband stack.

All benchmark timing in this paper is done using the AMD cycle counter. When virtu-
alization is used, the cycle counter is direct mapped to the guest and not virtualized. Every
benchmark receives the same accurate view of the passage of real time regardless of whether
virtualization is in use or not.

2.6.2 Guests

We evaluated Palacios running on Kitten with two guest environments:

• Cray Compute Node Linux (CNL). This is Cray’s stripped down Linux operating
system customized for Cray XT hardware. CNL is a minimized Linux (2.6 kernel) that
leverages BusyBox [68] and other embedded OS tools/mechanism. This OS is also
known as Unicos/LC and the Cray Linux Environment (CLE).

• Catamount. Catamount is a lightweight kernel descended from the SUNMOS and
PUMA operating systems developed at Sandia National Labs and the University of New
Mexico [62][5]. These OSes, and Catamount, were developed, from-scratch, in reaction
to the heavyweight operating systems for parallel computers that began to proliferate
in the 1990s. Catamount provides a simple memory model with a physically-contiguous
virtual memory layout, parallel job launch, and message passing facilities.

We also use Kitten as a guest for our Infiniband tests. It is important to note that Palacios
runs a much wider range of guests than reported in this evaluation. Any modern x86 or
x86 64 guest can be booted.

2.6.3 HPCCG Benchmark Results

We used the HPCCG benchmark to evaluate the impact of virtualization on application
performance and scaling. HPCCG [35] is a simple conjugate gradient solver that represents
an important workload for Sandia. It is commonly used to characterize the performance of
new hardware platforms that are under evaluation. The majority of its runtime is spent in
a sparse matrix-vector multiply kernel.
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(a) CNL Guest (b) Catamount Guest

Figure 2.4: HPCCG benchmark comparing scaling for virtualization with shadow paging,
virtualization with nested paging, and no virtualization. Palacios/Kitten can provide scaling
to 48 nodes with less than 5% performance degradation.

We ran HPCCG on top of CNL and Catamount on Red Storm, considering scales from
1 to 48 nodes. A fixed-size problem per node was used to obtain these results. The specific
HPCCG input arguments were “100 100 100”, requiring approximately 380 MB per node.
This software stack was compiled with the Portland Group pgicc compiler version 7, and was
run both directly on the machine and on top of Palacios. Both shadow paging and nested
paging cases were considered. Communication was done using the passthrough-mapped
SeaStar interface, as described earlier.

Figures 2.4a and 2.4b show the results for CNL and Catamount guests. Each graph com-
pares the performance and scaling of the native OS, the virtualized OS with shadow paging,
and the virtualized OS with nested paging. The graph shows both the raw measurements of
multiple runs and the averages of those runs. The most important result is that the over-
head of virtualization is less than 5% and this overhead remains essentially constant at the
scales we considered, despite the growing amount of communication. Note further that the
variance in performance for both native CNL and virtualized CNL (with nested paging) is
minuscule and independent of scale. For Catamount, all variances are tiny and independent,
even with shadow paging.

The figure also illustrates the relative effectiveness of Palacios’s shadow and nested paging
approaches to virtualizing memory. Clearly, nested paging is preferable for this benchmark
running on a CNL guest, both for scaling and for low variation in performance. There are
two effects at work here. First, shadow paging results in more VM exits than nested paging.
On a single node, this overhead results in a 13% performance degradation compared to native
performance. The second effect is that the variance in single node performance compounds
as we scale, resulting in an increasing performance difference.
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(a) CNL Guest (b) Catamount Guest

Figure 2.5: CTH application benchmark comparing scaling for virtualization with shadow
paging, virtualization with nested paging, and no virtualization. Palacios/Kitten can provide
scaling to 32 nodes with less than 5% performance degradation.

Surprisingly, shadow paging is slightly preferable to nested paging for the benchmark
running on the Catamount guest. In Catamount the guest page tables change very infre-
quently, avoiding the exits for shadow page table refills that happen with CNL. Additionally,
instead of the deep nested page walk (O(nm) for n-deep guest and m-deep host page tables)
needed on a TLB miss with nested pages, only a regular m-deep host page table walk occurs
on a TLB miss with shadow paging. These two effects explain the very different performance
of shadow and nested paging with CNL and Catamount guests.

It is important to point out that the version of Palacios’s shadow paging implementation
we tested only performs on demand updates of the shadow paging state. With optimizations,
such as caching, the differences between nested and shadow paging are likely to be smaller.

2.6.4 CTH Application Benchmark

CTH [25] is a multi-material, large deformation, strong shock wave, solid mechanics code
developed by Sandia National Laboratories with models for multi-phase, elastic viscoplastic,
porous, and explosive materials. CTH supports three-dimensional rectangular meshes; two-
dimensional rectangular, and cylindrical meshes; and one-dimensional rectilinear, cylindrical,
and spherical meshes, and uses second-order accurate numerical methods to reduce dispersion
and dissipation and to produce accurate, efficient results. It is used for studying armor/anti-
armor interactions, warhead design, high explosive initiation physics, and weapons safety
issues.

Figures 2.5a and 2.5b show the results using the CNL and Catamount guests. We can
see that adding virtualization, provided the appropriate choice of shadow or nested paging
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(a) CNL Guest (b) Catamount Guest

Figure 2.6: IMB PingPong Bandwidth in MB/sec as a function of message size

is made, has virtually no effect on performance or scaling. For this highly communication
intensive benchmark, virtualization is essentially free.

2.6.5 Intel MPI Benchmarks

The Intel MPI Benchmarks (IMB) [39], formerly known as PALLAS, are designed to char-
acterize the MPI communication performance of a system. IMB employs a range of MPI
primitive and collective communication operations, at a range of message sizes and scales
to produce numerous performance characteristics. We ran IMB on top of CNL and Cata-
mount on Red Storm using SeaStar at scales from 2 to 48 nodes. We compared native
performance, virtualized performance using shadow paging, and virtualized performance us-
ing nested paging. IMB generates large quantities of data. Figures 2.6 through 2.7 illustrate
the most salient data on CNL and Catamount.

Figure 2.6 shows the bandwidth of a ping-pong test between two nodes for different
message sizes. For large messages, bandwidth performance is identical for virtualized and
native operating systems. For small messages where ping-pong bandwidth is latency-bound,
the latency costs of virtualization reduce ping-pong bandwidth. We have measured the extra
latency introduced by virtualization as either 5 µsec (nested paging) or 11 µsec (shadow
paging) for the CNL guest. For the Catamount guest, shadow paging has a higher overhead.
Although the SeaStar is accessed via passthrough I/O, interrupts are virtualized. When the
SeaStar raises an interrupt, a VM exit is induced. Palacios quickly transforms the hardware
interrupt into a virtual interrupt that it injects into the guest on VM entry. The guest will
quickly cause another VM exit/entry interaction when it acknowledges the interrupt to its
(virtual) APIC. Shadow paging introduces additional overhead because of the need to refill
the TLB after these entries/exits. This effect is especially pronounced in Catamount since,
other than capacity misses, there is no other reason for TLB refills; in addition, Catamount
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(a) CNL Guest (b) Catamount Guest

Figure 2.7: IMB Allreduce 16 byte latency in µsec as a function of nodes up to 48 nodes

has a somewhat more complex interrupt path that causes two additional VM exits per
interrupt. Avoiding all of these VM exits via nested paging allows us to measure the raw
overhead of the interrupt exiting process.

In Figure 2.7, we fix the message size at 16 bytes and examine the effect on an IMB
All-Reduce as we scale from 2 to 48 nodes. We can see that the performance impacts of
nested and shadow paging diverges as we add more nodes—nested paging is superior here.

The upshot of these figures and the numerous IMB results which we have excluded for
space reasons is that the performance of a passthrough device, such as the SeaStar, in
Palacios is in line with the expected hardware overheads due to interrupt virtualization.
This overhead is quite small. Virtualized interrupts could be avoided using the AMD SVM
interrupt handling features, which we expect would bring IMB performance with nested
paging-based virtualization in line with native performance. However, at this point, we
expect that doing so would require minor guest changes.

2.6.6 Infiniband microbenchmarks

To quantify the overhead of Palacios virtualization on a commodity NIC, we ported OpenIB
MLX4 (ConnectX) drivers to Kitten along with the associated Linux driver. We also imple-
mented passthrough I/O support for these drivers in Palacios. We then measured round-trip
latency for 1 byte messages averaged over 100000 round trips and 1 megabyte message
round trip bandwidth averaged over 10000 trips using a ported version of the OpenFabrics
ibv rc pingpong. The server system ran Linux 2.6.27, while the client machine ran either
Kitten natively, Kitten as a guest on Palacios using shadow paging, or Linux.

As can be seen in Figure 3.8, Palacios’s pass-through virtualization imposes almost no
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Latency Bandwidth
(µsec) (Gb/sec)

Kitten (Native) 5.24 12.40
Kitten (Virtualized) 5.25 12.40
Linux 4.28 12.37

Figure 2.8: Bandwidth and latency of node-to-node Infiniband on Kitten, comparing native
performance with guest performance. Linux numbers are provided for reference.

HPCCG
MFLOPS

Native CNL 588.0
Palacios/Kitten + CNL Guest 556.4
KVM/CNL + CNL Guest 546.4

% Diff Palacios vs. KVM 1.8%

Figure 2.9: Comparison of Palacios to KVM for HPCCG benchmark.

measurable overhead on Infiniband message passing. Compared to Linux, Kitten both native
and virtualized using Palacios slightly outperform Linux in terms of end-to-end bandwidth,
but suffers a 1 µsec/round trip latency penalty. We believe this is due to a combination of
the lack of support for message-signaled interrupts (MSI) in our current Linux driver support
code, as well as our use of a comparatively old version of the OpenIB driver stack. We are
currently updating Linux driver support and the OpenIB stack used in in Kitten to address
this issue.

2.6.7 Comparison with KVM

To get a feel for the overhead of Palacios compared to existing virtualization platforms, we
ran the HPCCG benchmark in a CNL guest under both KVM running on a Linux host
and Palacios running on a Kitten host. KVM (Kernel-based Virtual Machine) is a popular
virtualization platform for Linux that is part of the core Linux kernel as of version 2.6.20.
Due to time constraints we were not able to expose the SeaStar to KVM guest environments,
so only single node experiments were performed. The same ”100 100 100” test problem that
was used in Section 2.6.3 was run on a single Cray XT compute node. HPCCG was compiled
in serial mode (non-MPI) leading to slightly different performance results. As can be seen
in Figure 2.9, Palacios delivers approximately 1.8% better performance than KVM for this
benchmark. Each result is an average of three trials and has a standard deviation less of
than 0.66. Note that small performance differences at the single node level typically magnify
as the application and system are scaled up.
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2.7 Future Work

Larger Scale Studies While our initial results show that Palacios and Kitten are capable
of providing scalable virtualization for HPC environments, we intend to continue the evalu-
ation at ever larger scales. We have completed a preliminary large scale study of up to 4096
nodes on the full Red Storm system. The preliminary results show that Palacios continues
to impose minimal overhead, delivering performance within 5% as scaling increases.

Symbiotic Virtualization Based on our results to date, it is evident that the best VMM
configuration is heavily dependent on the OS and application behavior inside the guest
environment. In other words, there is no singular VMM configuration suitable for HPC
environments. In order to provide the best performance for every HPC application, a VMM
must be able to adapt its own behavior to the guest’s. This adaptability requires that
both the VMM and OS cooperate to coordinate their actions. Symbiotic virtualization is a
new approach to system virtualization where a guest OS and a VMM use high level software
interfaces to communicate with each other in order to increase performance and functionality.
We are currently exploring the use of Symbiotic Virtualization for HPC environments.

2.8 Related Work

Recent research activities on operating systems for large-scale supercomputers generally fall
into two categories: those that are Linux-based and those that are not. A number of research
projects are exploring approaches for configuring and adapting Linux to be more lightweight.
Alternatively, there are a few research projects investigating non-Linux approaches, using
either custom lightweight kernels or adapting other existing open-source OSes for HPC.

The Cray Linux Environment [41] is the most prominent example of using a stripped-
down Linux system in an HPC system, and is currently being used on the petaflop-class
Jaguar system at Oak Ridge National Laboratories. Other examples of this approach are
the efforts to port Linux to the IBM BlueGene/L and BlueGene/P systems [61, 6]. Since
a full Linux distribution is not used, this approach suffers many of the same functionality
weaknesses as non-Linux approaches. In some cases, these systems have also encountered
performance issues, for example due to the mismatch between the platform’s memory man-
agement hardware and the Linux memory management subsystem.

Examples of the non-Linux approach include IBM’s Compute Node Kernel (CNK) [51]
and several projects being led by Sandia, including the Catamount [58] and Kitten projects
as well as an effort using Plan9 [50]. Both CNK and Kitten address one of the primary
weaknesses of previous lightweight operating systems by providing an environment that is
largely compatible with Linux. Kitten differs from CNK in that it supports commodity
x86 64 hardware, is being developed in the open under the GPL license, and provides the
ability to run full-featured guest operating systems when linked with Palacios.
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The desire to preserve the benefits of a lightweight environment but provide support a
richer feature set has also led other lightweight kernel developers to explore more full-featured
alternatives [60]. We have also explored other means of providing a more full-featured set of
system services [67], but the complexity of building a framework for application-specific OSes
is significantly greater than simply using an existing full-featured virtualized OS, especially
if the performance impact is minimal.

There has been considerable interest, both recently and historically, in applying existing
virtualization tools to HPC environments [59, 24, 31, 37, 65, 66, 70]. However, most of
the recent work has been exclusively in the context of adapting or evaluating Xen and
Linux on cluster platforms. Palacios and Kitten are a new OS/VMM solution developed
specifically for HPC systems and applications. There are many examples of the benefits
available from a virtualization layer [52] for HPC. There is nothing inherently restrictive
about the virtualization tools used for these implementations, so these approaches could be
directly applied to this work.

2.9 Conclusion

Palacios and Kitten are new open source tools that support virtualized and native supercom-
puting on diverse hardware. We described the design and implementation of both Palacios
and Kitten, and evaluated their performance. Virtualization support, such as Palacios’s,
that combines hardware features such as nested paging with passthrough access to commu-
nication devices can support even the highest performing guest environments with minimal
performance impact, even at relatively large scale. Palacios and Kitten provide an incre-
mental path to using supercomputer resources that has few compromises for performance.
Our analysis points the way to eliminating overheads that remain.
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Chapter 3

Minimal-overhead Virtualization of a
Large Scale Supercomputer

The content of this chapter was submitted for consideration to the 2011 ACM International
Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS’2011). The paper describes the optimizations incorporated into the virtualization
layer for HPC workloads, and includes performance results obtained on up to 6, 240 nodes of
the Red Storm Cray XT4 supercomputer. We believe this to be the largest study of its kind by
at least two orders of magnitude. The results confirm that the small-scale results presented
in Chapter 2 continue to scale, and that < 5% virtualization overhead is achievable even for
real, communication intensive applications.

The authors of this paper are John Lange (Univ. Pittsburgh, formerly Northwestern Univ.),
Kevin Pedretti (SNL), Peter Dinda (Northwestern Univ.), Patrick Bridges (Univ. New Mex-
ico), Chang Bae (Northwestern Univ.), Philip Soltero (Univ. New Mexico), and Alexander
Merritt (Georgia Tech).

Abstract

Virtualization has the potential to dramatically increase the usability and reliability of high
performance computing (HPC) systems. However, this potential will remain unrealized
unless overheads can be minimized. This is particularly challenging on large scale machines
that run carefully crafted HPC OSes supporting tightly-coupled, parallel applications. In this
paper, we show how careful use of hardware and VMM features enables the virtualization of a
large-scale HPC system with ≤5% overhead on a range of application- and microbenchmarks
at scales of up to 4096 nodes. We describe three techniques essential for achieving such low
overhead: passthrough I/O, workload-sensitive selection of paging mechanisms, and carefully
controlled preemption. These techniques are forms of symbiotic virtualization, an approach
on which we elaborate.
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3.1 Introduction

Virtualization has the potential to dramatically increase the usability and reliability of high
performance computing (HPC) systems [37, 49, 31, 53]. However, HPC systems are char-
acterized by an overriding focus on performance. Virtualization cannot succeed in HPC
systems unless the performance overheads are truly minimal and do not compound as the
system and its applications scale up.

This challenge is amplified on high-end machines for several reasons. First, these ma-
chines frequently run carefully crafted custom HPC OSes that already minimizes overheads
and asynchronous OS interference (OS noise) [28, 55], as well as make the capabilities of
the raw hardware readily available to the application developer. Second, the applications
on these machines are intended to run at extremely large scales, involving thousands or
tens of thousands of nodes. Finally, the applications are typically tightly coupled and com-
munication intensive, making them very sensitive to performance overheads, particularly
unpredictable overheads. For this reason, they often rely on the deterministic behavior of
the HPC OSes on which they run.

In this paper, we show how scalable virtualization with ≤5% overhead can be achieved
in a high-end message-passing parallel supercomputer, in this case a Cray XT4 supercom-
puter [3] at scales in excess of 4096 nodes. For guests, we examined the behavior of both the
custom Catamount HPC OS [42] and the Cray CNL guest [41], an HPC OS derived from the
Linux operating system. Our performance overheads are measured using three application
benchmarks and a range of microbenchmarks.

The virtual machine monitor that we employ is Palacios, an open source, publicly avail-
able VMM designed to support the virtualization of HPC systems and other platforms. We
have previously reported on the design, implementation, and evaluation of Palacios [8]. The
evaluation included limited performance studies on 32–48 nodes of a Cray XT system. In
addition to considering much larger scales, this paper focuses on the essential techniques
needed to achieve scalable virtualization at that scale and how a range of different VMM
and hardware virtualization techniques impact the scalability of virtualization.

The essential techniques needed to achieve low overhead virtualization at these scales are
passthrough I/O, workload-sensitive selection of paging mechanisms, and carefully controlled
preemption. Passthrough I/O provides direct guest / application access to the specialized
communication hardware of the machine. This in turn enables not only high bandwidth
communication, but also preserves the extremely low latency properties of this hardware,
which is essential in scalable collective communication.

The second technique we have determined to be essential to low overhead virtualization
at scale is the workload-sensitive selection of the paging mechanisms used to implement the
guest physical to host physical address translation. Palacios supports a range of approaches,
from those with significant hardware assistance (e.g., nested paging, which has several im-
plementations across Intel and AMD hardware), and those that do not (e.g., shadow paging,
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which has numerous variants). There is no single best paging mechanism; the choice is work-
load dependent, primarily on guest context switching behavior and the memory reference
pattern.

The final technique we found to be essential to low overhead virtualization at scale is
carefully controlled preemption within the VMM. By preemption, we mean both interrupt
handling and thread scheduling, specifically carefully controlling when interrupts are han-
dled, and using cooperative threading in the VMM. This control mostly avoids introducing
timing variation in the environment that the guest OS sees, in turn meaning that carefully
tuned collective communication behavior in the application remains effective.

What these techniques effectively accomplish is keeping the virtual machine as true to the
physical machine as possible in terms of its communication and timing properties. This in
turn allows the guest OS’s and the application’s assumptions about the physical machine it is
designed for to continue to apply to the virtual machine environment. In the virtualization
of a commodity machine, such authenticity is not needed. However, if a machine is part
of a scalable computer, disparities between guest OS and application assumptions and the
behavior of the actual virtual environment can lead to performance impacts that grow with
scale.

We generalize beyond the three specific techniques described above to argue that to truly
provide scalable performance for virtualized HPC environments, the black box approach of
commodity VMMs should be abandoned in favor of a symbiotic virtualization model. In
the symbiotic virtualization model, the guest OS and VMM function cooperatively in order
to function in a way that optimizes performance. Our specific techniques are examples of
symbiotic techniques, and are, in fact, built on the SymSpy passive symbiotic information
interface in Palacios.

Beyond supercomputers, our experiences with these symbiotic techniques are increas-
ingly relevant to system software for general-purpose and enterprise computing systems. For
example, the increasing scale of multicore desktop and enterprise systems has led OS de-
signers to consider treating multicore systems like tightly-coupled distributed systems. As
these systems continue to scale up toward hundreds or thousands of cores with distributed
memory hierarchies and substantial inter-core communication delays, lessons learned in de-
signing scalable system software for tightly-coupled distributed memory supercomputers will
be increasingly relevant to them.

3.2 Virtualization system overview

Our contributions are made in the context of the Palacios VMM and Kitten lightweight
kernel. For our experiments in this paper, Palacios is embedded into Kitten, making possible
a system call for instantiating a VM from a guest OS image. A detailed description of these
sytems and their interaction is available elsewhere [8]. We now summarize these systems.
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3.2.1 Palacios

Palacios is a publicly available, open source, OS-independent VMM developed from scratch
that targets the x86 and x86 64 architectures (hosts and guests) with either AMD SVM [4]
or Intel VT [38] extensions. It is designed to be embeddable into diverse host OSes. When
embedded into Kitten, the combination acts as a type-I VMM—guest OSes do not require
any modification to run. Palacios can run on generic PC hardware, in addition to specialized
hardware such as Cray XT supercomputer systems.

Palacios creates a PC-compatible virtual environment for guest OSes by handling exits
that are raised by the hardware on guest operations that the VMM defines as requiring in-
terception. This is a common structure for a VMM, often referred to as “trap-and-emulate”.
For example, VM exits frequently occur on interrupts, reads and writes to I/O ports and
specific areas of memory, and use of particular hardware instructions and registers (e.g. CPU
control registers). These exits allow the VMM to intervene on key hardware operations when
necessary, emulating or changing requested hardware behavior as needed. Because exit han-
dling incurs overhead, carefully controlling what operations exit and what is done on each
exit is essential to providing scalability and performance.

3.2.2 Kitten host OS

Kitten is a publicly available, GPL-licensed, open source OS designed specifically for high
performance computing. The general philosophy being used to develop Kitten is to borrow
heavily from the Linux kernel when doing so does not compromise scalability or performance
(e.g., adapting the Linux bootstrap code). Performance critical subsystems, such as memory
management and task scheduling, are replaced with code written from scratch.

Kitten’s focus on HPC scalability makes it an ideal host OS for a VMM on HPC systems,
and Palacios’s design made it easy to embed it into Kitten. In particular, host OS/VMM
integration was accomplished with a single interface file of less than 300 lines of code. The
integration includes no internal changes in either the VMM or host OS, and the interface
code is encapsulated with the VMM library in an optional compile time module for the host
OS.

The Kitten host OS exposes VMM control functions via a system call interface available
from user space. This allows user level tasks to instantiate VM images directly. The result
is that VMs can be loaded and controlled via processes received from the job loader. A VM
image can thus be linked into a standard job that includes loading and control functionality.
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3.3 Virtualization at scale

In our initial experiments, we conducted a detailed performance study of virtualizing a Cray
XT 4 supercomputer. The study included both application and microbenchmarks, and was
run at the largest scales possible on the machine (at least 4096 nodes, sometimes 6240 nodes).
The upshot of our results is that it is possible to virtualize a large scale supercomputer with
≤5% performance penalties, even when running communication-intensive, tightly-coupled
applications. In the subsequent sections, we explain how and present additional studies that
provide insight into how different architectural and OS approaches to virtualization impact
the performance of HPC applications and micro-benchmarks.

3.3.1 Hardware platform

Testing was performed during an eight hour window of dedicated system time on a Cray
XT4 supercomputer made up of 12,960 single-socket compute nodes, each containing either
a dual-core or quad-core processor. Because Palacios requires virtualization support not
present in the older dual-core processors, testing was limited to the system’s 6,240 quad-core
nodes. These nodes each consist of a 2.2 GHz AMD Opteron Barcelona quad-core processor,
8 GB of DDR2 memory, and a Cray SeaStar 2.1 network interface. The nodes are arranged
in a 13x20x24 3-D mesh topology with wrap-around connections in the Z dimension (i.e.,
the system is a torus in the Z-dimension only).

Red Storm was jointly developed by Sandia and Cray, and was the basis for Cray’s
successful line of Cray XT supercomputers. There are many Cray XT systems in operation
throughout the world, the largest of which currently being the 18,688 node, 2.3 PetaFLOP
peak “Jaguar” XT5-HE system at Oak Ridge National Laboratory. The experiments and
results described in this paper are relevant to these systems and could be repeated on systems
with quad-core or newer processors. We are in the process of negotiating time to repeat them
on Jaguar.

3.3.2 Software environment

Each test was performed in at least three different system software configurations: native,
guest with nested paging, and guest with shadow paging. In the native configuration, the
test application or micro-benchmark is run using the Catamount HPC operating system [42]
running on the bare hardware. Some tests were also run, at much smaller scales, using Cray’s
Linux-derived CNL [41] operating system.

The environment labeled “Guest, Nested Paging” in the figures consists of the VMM
running on the bare hardware, managing an instance of Catamount running as a guest
operating system in a virtual machine environment. In this mode, the AMD processor’s
nested paging memory management hardware is used to implement the guest physical address
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to host physical address mapping that is chosen by Palacios. The guest’s page tables and
a second set of page tables managed by the VMM are used for translation. Palacios does
not need to track guest page table manipulations in this case; however, every virtual address
in the guest is translated using a “two dimensional” page walk involving both sets of page
tables [7]. This expensive process is sped up through the use of a range of hardware-level
TLB and page walk caching structures.

In contrast, the “Guest, Shadow Paging” mode uses software-based memory management
disables the processor’s nested paging hardware. Shadow paging avoids the need for a two
dimensional page walk, but requires that the VMM track guest page tables. Every update
to the guest’s page tables causes an exit to the VMM, which must then validate the request
and commit it to a set of protected “shadow” page tables, which are the actual page tables
used by the hardware. We elaborate on the choice of paging mechanism later in the paper.

Virtualizing I/O devices is critical to VM performance, and, here, the critical device is
the SeaStar communications interface [13]. Palacios provides guest access to the SeaStar
using passthrough I/O, an approach we elaborate on later. We consider two ways of using
the SeaStar, the default way, which is unnamed in our figures, and an alternative approach
called “Accelerated Portals.” The default approach uses interrupt-driven I/O and host-based
message matching1, while accelerated portals performs message matching on the NIC and
does not generally require interrupt delivery.

In the version of AMD SVM available on the Cray XT4, intercepting any interrupt re-
quires that all interrupts be intercepted. Because a variety of non-SeaStar interrupts must
be intercepted by the VMM, this adds a VM exit cost to SeaStar interrupts. Essentially,
when the VMM detects an exit has occurred due to SeaStar interrupt, it immediately re-
enters the guest, re-injecting the SeaStar interrupt as a software interrupt. This process
requires O(1000) cycles, resulting in interrupt-driven SeaStar performance having a higher
latency under virtualization than natively. Because accelerated portals uses user-level polling
instead, the interrupt exit cost described above does not occur when the guest is virtual-
ized. As a result, virtualized accelerated portals performance is nearly identical to native
accelerated portals performance.

It is important to point out that more recent versions of AMD’s SVM hardware (and
of Intel’s VT hardware) can support much more selective interrupt exiting. If such hard-
ware were available, we would use it to avoid exiting on SeaStar interrupts, which should
make interrupt-driven SeaStar performance under virtualization identical to that without
virtualization.

The guest Catamount OS image we used was based on the same Cray XT 2.0.62 Cata-
mount image used for the native experiments. Minor changes were required to port Cata-
mount to the PC-compatible virtual machine environment provided by Palacios (the native
Cray XT environment is not fully PC-compatible). Additionally, the SeaStar portals driver
was updated to allow passthrough operation as described in Section 3.4.

1Many high-performance messaging systems match incoming large messages with pre-posted user buffers
into which the data is directly received, avoiding unnecessary data copies.
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3.3.3 MPI microbenchmarks

The Intel MPI Benchmark Suite version 3.0 [39] was used to evaluate point-to-point mes-
saging performance and scalability of collective operations.

Point-to-point performance

Figure 3.1 shows the results of a ping-pong test between two adjacent nodes. Small message
latency, shown in Figure 3.1a, is approximately 2.5 times worse with nested or shadow guest
environments compared to native. This is a result of the larger interrupt overhead in the
virtualized environment. However, note that in absolute terms, for the smallest messages,
the latency for the virtualized case is already a relatively low 12 µs, compared to the native
5 µs. Eliminating this virtualized interrupt overhead, as is the case with accelerated portals
and would be the case with more recent AMD SVM hardware implementations, results in
virtually identical performance in native and guest environments.

Figure 3.1b plots the same data but extends the domain of the x-axis to show the full
bandwidth curves. The nested and shadow guest environments show degraded performance
for mid-range messages compared to native, but eventually reach the same asymptotic band-
width once the higher interrupt cost is fully amortized. Bandwidth approaches 1.7 GByte/s.
Avoiding the interrupt virtualization cost with accelerated portals results again in similar
native and guest performance.
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Figure 3.1: MPI PingPong microbenchmark measuring (a) latency and (b) bandwidth
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Collective performance

Figures 3.2, 3.3, and 3.4 show the performance of the MPI Barrier, Allreduce, and Alltoall
operations, respectively. The operations that have data associated with them, Allreduce
and Alltoall, are plotted for the 16-byte message size since a common usage pattern in HPC
applications is to perform an operation on a single double-precision number (8 bytes) or a
complex double precision number (16 bytes).

Both Barrier and Allreduce scale logarithmically with node count, with Allreduce having
slightly higher latency at all points. In contrast, Alltoall scales quadratically and is there-
fore plotted with a log y-axis. In all cases, the choice of nested vs. shadow paging is not
significant. What does matter, however, is the use of interrupt-driven versus polling-based
communication in the guest environment. Similarly to what was observed in the point-
to-point benchmarks, eliminating network interrupts by using the polling-based accelerated
portals network stack results in near native performance. As noted previously, more re-
cent AMD SVM implementations support selective interrupt exiting, which would make the
virtualized interrupt-driven performance identical to the native or virtualized accelerated
portals numbers. Still, even with this limitation, virtualized interrupt-driven communica-
tion is quite fast in absolute terms, with a 6240 node barrier or all-reduce taking less than
275 µs to perform.

The Alltoall operation is interesting because the size of the messages exchanged between
nodes increases with node count. This causes all of the configurations to converge at high
node counts, since the operation becomes bandwidth limited, and the cost of interrupt
virtualization is amortized.
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Figure 3.2: MPI barrier scaling microbenchmark results measuring the latency of a full
barrier.
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Figure 3.3: MPI all-reduce scaling microbenchmark results measuring the latency of a 16
byte all-reduce operation.
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Figure 3.4: MPI all-to-all scaling microbenchmark results measuring the latency of a 16 byte
all-to-all operation.

3.3.4 HPCCG application

HPCCG [35] is a simple conjugate gradient solver that is intended to mimic the characteristics
of a broad class of HPC applications while at the same time is simple to understand and
run. A large portion of its runtime is spent performing sparse matrix-vector multiplies, a
memory bandwidth intensive operation.

HPCCG was used in weak-scaling mode with a “100x100x100” subproblem on each node,
using approximately 380 MB of memory per node. This configuration is representative of
typical usage, and results in relatively few and relatively large messages being communi-
cated between neighboring nodes. Every iteration of the CG algorithm performs an 8-byte
Allreduce, and there are 149 iterations during the test problem’s approximately 30 second
runtime. The portion of runtime consumed by communication is reported by the benchmark
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to be less than 5% in all cases. Interrupt-driven communication was used for this and other
application benchmarks. Recall that the microbenchmarks show virtualized interrupt-driven
communication is the slower of the two options we considered.

As shown in Figure 3.5, HPCCG scales extremely well in both guest and native environ-
ments. Performance with shadow paging is essentially identical to native performance, while
performance with nested paging is 2.5% worse at 2048 nodes.
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Figure 3.5: HPCCG application benchmark performance. Weak scaling is measured. Virtu-
alized performance is within 5% of native.

3.3.5 CTH application

CTH [25] is a multi-material, large deformation, strong shock wave, solid mechanics code
used for studying armor/anti-armor interactions, warhead design, high explosive initiation
physics, and weapons safety issues. A shaped charge test problem was used to perform a
weak scaling study in both native and guest environments. As reported in [8], which used
the same test problem, at 512 nodes approximately 40% of the application’s runtime is due
to MPI communication, 30% of which is due to MPI Allreduce operations with an average
size of 32 bytes. The application performs significant point-to-point communication with
nearest neighbors using large messages.

Figure 3.6 shows the results of the scaling study for native and guest environments. At
2048 nodes, the guest environment with shadow paging is 3% slower than native, while the
nested paging configuration is 5.5% slower. Since network performance is virtually identical
with either shadow or nested paging, the performance advantage of shadow paging is likely
due to the faster TLB miss processing that it provides.
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Figure 3.6: CTH application benchmark performance. Weak scaling is measured. Virtualized
performance is within 5% of native.

3.3.6 SAGE application

SAGE (SAIC’s Adaptive Grid Eulerian hydrocode) is a multidimensional hydrodynamics
code with adaptive mesh refinement [44]. The timing c input deck was used to perform a
weak scaling study. As reported in [8], which used the same test problem, at 512 nodes
approximately 45% of the application’s runtime is due to MPI communication, of which
roughly 50% is due to MPI Allreduce operations with an average size of 8 bytes.

Figure 3.7 shows the results of executing the scaling study in the native and virtualized
environments. At 2048 nodes, shadow paging is 2.4% slower compared to native while nested
paging is 3.5% slower. As with CTH, the slightly better performance of shadow paging is
due to its faster TLB miss processing.
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Figure 3.7: Sage application benchmark performance. Weak scaling is measured. Virtualized
performance is within 5% of native.
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3.4 Passthrough I/O

One of the principle goals in designing Palacios was to allow a large amount of configura-
bility in order to target multiple diverse environments. This allows us to use a number
of configuration options specific to HPC environments to minimize virtualization overheads
and maximize performance. The special HPC configuration of Palacios makes a number
of fundamental choices in order to provide guest access to hardware devices with as little
overhead as possible. These choices were reflected both in the architecture of Palacios as
configured for HPC, as well as two assumptions about the environment Palacios executes in.

The first assumption we make for HPC environments is that only a single guest will be
running on a node at any given time. Node here refers to some specific partition of the
physical resources, be that a single CPU core, a single multicore CPU, or a collection of
multicore CPUs. Restricting each partition to run a single guest environment ensures that
there is no resource contention between multiple VMs. This is the common case for large-scal
supercomputers as each application requires dedicated access to the entirety of the system
resources, and is also the common case for many smaller space-shared high performance
systems. The restriction vastly simplifies device management because Palacios does not
need to support sharing of physical devices between competing guests; Palacios can directly
map an I/O device into a guest domain without having to manage the device itself.

The second assumption we make for HPC environments is that we can place considerable
trust in the guest OS because HPC system operators typically have full control over the entire
software stack. Under this assumption, the guest OS is unlikely to attempt to compromise
the VMM intentionally, and may even be designed to help protect the VMM from any errors.

3.4.1 Passthrough I/O implementation

In Palacios, passthrough I/O is based on a virtualized PCI bus. The virtual bus is imple-
mented as an emulation layer inside Palacios, and has the capability of providing access
to both virtual as well as physical (passthrough) PCI devices. When a guest is configured
to use a passthrough device directly, Palacios scans the physical PCI bus searching for the
appropriate device and then attaches a virtual instance of that device to the virtual PCI bus.
Any changes that a guest makes to the device’s configuration space are applied only to the
virtualized version. These changes are exposed to the physical device via reconfigurations of
the guest environment to map the virtual configuration space onto the physical one.

As an example, consider a PCI Base Address Register (BAR) that contains a memory
region that is used for memory-mapped access to the device. Whenever a guest tries to
change this setting by overwriting the BAR’s contents, instead of updating the physical
device’s BAR, Palacios instead updates the virtual device’s BAR and reconfigures the guest’s
physical memory layout so that the relevant guest physical memory addresses are redirected
to the host physical memory addresses mapped by the real BAR register. In this way,
Palacios virtualizes configuration operations but not the actual data transfer.
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Most devices do not rely on the PCI BAR registers to define DMA regions for I/O. Instead
the BAR registers typically point to additional, non-standard configuration spaces, that
themselves contain locations of DMA descriptors. Palacios makes no attempt to virtualize
these regions, and instead relies on the guest OS to supply valid DMA addresses for its own
physical address space. While this requires that Palacios trust the guest OS to use correct
DMA addresses as they appear in the host, it is designed such that there is a a high assurance
that the DMA addresses used by the guest are valid.

The key design choice that provides high assurance of secure DMA address translation
from the guest physical addresses to the host physical addresses is the shape of the guest’s
physical address space. A Palacios guest is initially configured with a physically contiguous
block of memory that maps into the contiguous portion of the guest’s physical address space
that contains memory. This allows the guest to compute a host physical address from a guest
physical address by simply adding an offset value. This means that a passthrough DMA
address can be immediately calculated as long as the guest knows what offset the memory
in its physical address space begins at. Furthermore, the guest can know definitively if the
address is within the bounds of its memory by checking that it does not exceed the range
of guest physical addresses that contain memory, information that is readily available to the
guest via the e820 map and other standard mechanisms. Because guest physical to host
physical address translation for actual physical memory is so simple, DMA addresses can
be calculated and used with a high degree of certainty that they are correct and will not
compromise the host or VMM.

It is also important to point out that as long as the guest uses physical addresses valid
with respect to its memory map, it is impossible for it to affect the VMM or other passthrough
or virtual devices with a DMA request on a passthrough device.

To allow the guest to determine when a DMA address needs to be translated (by off-
setting) for passthrough access, Palacios uses a shared memory region to advertise which
PCI devices are in fact configured as passthrough. Each PCI bus location tuple (bus ID,
device ID, and function number) is combined to form an index into a bitmap. If a device
is configured as passthrough the bit at its given index will be set by the VMM and read by
the guest OS. This bitmap allows the guest OS to selectively offset DMA addresses, allow-
ing for compatibility with both passthrough devices (which require offsetting) and virtual
devices (which do not). Furthermore, when the guest is run without the VMM in place, this
mechanism naturally turns off offsetting for all devices.

Comparison with other approaches to high performance virtualized I/O: Due
to both the increased trust and control over the guest environments as well as the simplified
mechanism for DMA address translation, Palacios] can rely on the guest to correctly interact
with the passthrough devices. The passthrough I/O technique allows direct interaction with
hardware devices with as little overhead as possible. In contrast, other approaches designed
to provide passthrough I/O access must add additional overhead. For example, VMM-
Bypass [47], as designed for the Xen Hypervisor, does not provide the same guarantees in
terms of address space contiguousness. Furthermore, its usage model assumes that the guest
environments are not fully trusted entities. The result is that the implementation complexity
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is much higher for VMM-Bypass, and further overheads are added due to the need for the
VMM to validate the device configurations. Furthermore, this technique is highly device
specific (specifically Infiniband) whereas our passthrough architecture is capable of working
with any unmodified PCI device driver.

Self-Virtualization [57] is a technique to allow device sharing without the need for a
separate virtual driver domain. While self virtualization does permit direct guest interaction
with hardware devices, it does so via a simplified virtual interface which places limits on the
usable capabilities of the device. This approach also requires specially architected hardware,
while our passthrough implementation supports any existing PCI device.

Finally, recent work on assuring device driver safety in traditional operating systems [69]
could also be used to supplement passthrough device virtualization. In particular, these
techniques could be used to validate safety-critical guest device manipulations in virtual
machines. Such an approach would enable the high performance of passthrough I/O while
providing additional guest isolation in environments that where guest OSes are less trusted
than in HPC environments.

3.4.2 Current implementations

We have currently implemented passthrough I/O for both a collection of HPC OSes, such
as Catamount and Kitten, as well as for commodity Linux kernels. The Catamount OS
specifically targets the Cray SeaStar as its only supported I/O device, so Catamount did not
require a general passthrough framework. However, Kitten and Linux are designed for more
diverse environments so we have implemented the full passthrough architecture in each of
them. In each case, the implementation is approximately 300 lines of C and assembler built
on the SymSpy guest implementation (Section 3.7). The actual DMA address offsetting and
bounds checking implementation is about 20 lines of C.

Both Kitten and Linux include the concept of a DMA address space that is conceptually
separate from the address space of core memory. This allows a large degree of compatibil-
ity between different architectures that might implement a separate DMA address space.
The environment exposed by Palacios is such an architecture. Every time a device driver
intends to perform a DMA operation it must first transform a memory address into a DMA
address via a DMA mapping service. Our guest versions of both Linux and Kitten include
a modified mapping service that selectively adds the address offset to each DMA address
if the device requesting the DMA translation is configured for passthrough. Our modifica-
tions also perform a sanity check to ensure that the calculated DMA address resides inside
the guests memory space, thus protecting the VMM from any malformed DMA operations.
These modifications are small, easy to understand, and all-encompassing, meaning that the
VMM can have a high degree of confidence that even a complicated OS such as Linux will
not compromise the VMM via malformed DMA operations.
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3.4.3 Infiniband passthrough

To verify that Palacios’s passthrough I/O approach also resulted in low-overhead communica-
tion on commodity NICs in addition to specialized hardware like the Cray SeaStar, we exam-
ined its performance on a small Linux cluster system built around the commodity Infiniband
network interface. Specifically, we examined the performance both a low-level Infiniband
communication microbenchmark (the OpenFabrics ibv rc pingpong test) and the HPCCG
benchmark described earlier. Tests were run on a 4-node 2.4GHz AMD Barcelona cluster
communicating over 64-bit PCI Express Mellanox MLX4 cards configured for passthrough
in Linux. For ping-pong tests, the client system which performed the timings ran native
Fedora 11 with Linux kernel 2.6.30, and the client machine ran a diskless Linux BusyBox
image that also used Linux kernel 2.6.30 with symbiotic extensions either natively or virtu-
alized in Palacios. For HPCCG tests, all nodes ran the Linux BusyBox image, and timings
were taken using the underlying hardware cycle counter to guarantee accuracy.
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Figure 3.8: Infiniband bandwidth at message sizes from 1 byte to 4 megabytes averaged
over 10000 iteration per sample. 1-byte round-trip latency both native and virtualized
was identical at6.46µsec, with peak bandwidth for 4MB messages at 12.49 Gb/s on Linux
virtualized with Palacios compared to 12.51 Gb/s for native Linux.

As Figure 3.8 shows, Palacios’s pass-through virtualization imposes almost no overhead
on Infiniband message passing. In particular, Palacios’s passthrough PCI support enables
virtualized Linux to almost perfectly match the bandwidth of native Linux on Infiniband,
and because Infiniband does not use interrupts for high-speed message passing with reliable-
connected channels, the 1-byte message latencies with and without virtualization are identi-
cal. Similarly, HPCCG ran an average of only 4% slower (43.1 seconds versus 41.4 seconds
averaged over 5 runs) when virtualized using passthrough I/O and nested paging.
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3.4.4 Future extensions

Future advances in hardware virtualization support may obviate the need for the passthrough
techniques described above. For example, AMD’s IOMMU adds hardware support for guest
DMA translations. However, we should note that our approach includes a very minimal
amount of overhead and it is not clear that hardware techniques will necessarily perform
better. An IOMMU would introduce additional performance overhead in the form of page
table lookups, something which our approach completely avoids. As we will show in the
next section and others have demonstrated [2], with the appropriate assumptions software
approaches can often demonstrably operate with less overhead than hardware approaches.

3.5 Workload-sensitive paging mechanisms

In our scaling evaluations, we focused on the two standard techniques for virtualizing the
paging hardware: shadow paging and nested paging as described in Section 3.3.2. These
results demonstrate that while memory virtualization can scale, making it do so is non-
trivial; we discuss the implications of these results in this section. Based on these results,
we also present the results of several additional experiments that examine how more sophis-
ticated architectural and VMM support for memory virtualization impacts HPC benchmark
performance.

3.5.1 Scaling analysis

The basic scaling results presented earlier in Section 3.3 demonstrate that the best performing
technique is heavily dependent on the application workload as well as the architecture of the
guest OS. As an example, Catamount performs a minimal number of page table operations,
and never fully flushes the TLB or switches between different page tables. This means
that very few operations are required to emulate the guest page tables with shadow paging.
Because the overhead of shadow paging is so small, shadow paging performs better than
nested paging due to the better use of the hardware TLB. In contrast, Compute Node Linux
(CNL) another HPC OS, uses multiple sets of page tables to handle multitasking and so
frequently flushes the TLB. For this OS, there is a great deal more overhead in emulating
the page table operations and any improvement in TLB performance is masked by the
frequent flush operations. As a result, for nested paging is clearly the superior choice in this
case.

As these results demonstrate, behavior of the guest OS and applications have a critical
impact on the performance of the virtualized paging implementation. We have found this
to be true in the broader server consolidation context [8] as well as the HPC context we
discuss here. Figures 3.9 and 3.10 illustrate this point for HPC. Figure 3.9 shows the results
of the HPCCG benchmark being run with a CNL guest environment as we scale from 1 to
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Figure 3.9: Weak scaling of HPCCG running on CNL. Nested paging is preferable, and the
overhead of shadow paging compounds as we scale up. This is due to the relatively high
context switch rate in CNL.

48 nodes of a Cray XT. As the results show, the overhead introduced with shadow paging
is large enough to dramatically degrade scalability, while the nested paging configuration
is able to still perform well as it scales up. Figure 3.10 shows the same benchmark run on
Catamount guest OS. Here, the situation is reversed. Shadow paging clearly performs better
than nested paging due to the improved TLB behavior and lower overhead from page table
manipulations.

3.5.2 Memory virtualization optimizations

In light of these results, we also examined the performance of key optimizations to nested and
shadow paging. In particular, we studied the aggressive use of large pages in nested page
tables and two different optimizations to shadow paging. For these evaluations, we used
HPC Challenge 1.3 [64, 48], an HPC-oriented benchmark suite designed to test particular
elements of system performance critical to different HPC applications.

2 MB nested page tables

Aggressively using large pages in nested page tables is an optimization that could dramat-
ically improve the performance of nested paging on applications and benchmarks that are
TLB-intensive. For example, using 2MB nested page tables on the x86 64 architecture re-
duces the length of full page table walks from 24 steps to 14 steps. Note that using large
pages in shadow paging is also possible, but, like using large pages in a traditional operating
system, can be quite challenging as the guest may make permission and mapping requests at
smaller page granularities that could require the VMM to split large pages or merge smaller
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Figure 3.10: Weak scaling of HPCCG running on Catamount. Here shadow paging is prefer-
able. This is due to the relatively low context switch rate in Catamount revealing shadow
paging’s better TLB behavior.

pages.

To evaluate the potential impact of using 2MB nested page tables on HPC applications,
we implemented support for large-page nested page tables in Palacios. We then evaluated
its performance when running the Catamount guest operating system, the guest on which
nested paging performed comparatively worse in our scaling study. Because Catamount can
make aggressive use of large pages (in fact, using 2MB pages if necessary, this also allowed us
to study the impact of these different paging choices on guests that used 4KB pages versus
guests that made aggressive use of 2MB pages.

Our evaluation focused on the HPL, STREAM Triad, and RandomAccess benchmarks
from HPC Challenge. HPL is a compute-intensive HPC benchmark commonly used to bench-
mark HPC systems [1], STREAM Triad is a memory bandwidth intensive benchmark, and
RandomAccess is a simulated large-scale data analytics benchmark that randomly updates
an array approximately the size of physical memory, resulting in a very high TLB miss rate.

Figure 3.11 shows the relative performance of nested paging with different nested and
main page table sizes, with shadow paging and native paging numbers included for compar-
ison. HPL performance shows little variability due to its regular memory access patterns
in these tests, though 2MB nested page tables does improve nested paging performance to
essentially native levels. Using large pages with nested paging makes a dramatic difference
on the TLB miss-intensive RandomAccess benchmark. In particular, using large pages in
the nested page tables reduces the penalty of nested paging from 64% to 31% for guests that
use 4KB pages and from 68% to 19% for guests that use 2MB pages.

The RandomAccess results also show that nested paging is better able to support guests
that aggressively use large pages compared to the shadow paging. While nested paging per-
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Figure 3.11: Performance of 2MB Nested Paging running HPC Challenge HPL, STREAM
Triad, and RandomAccess benchmarks on a Cray XT4 node with a Catamount guest OS.

formance is 19% worse than native, it is significantly better than shadow paging performance,
which is limited by the performance of its underlying 4KB page-based page tables. With
guests that use only 4KB pages, however, shadow paging achieves native-level performance
while nested paging with 2MB pages is 30% slower than native.

Shadow paging optimizations

With stable guest page tables, shadow paging has the benefit of having shorter page walks
on a TLB miss than nested paging. However, context switches in the guest ameliorate this
advantage in a basic shadow paging implementation because they force a flush of the “virtual
TLB” (the shadow page tables). Subsequent to this, a stream of exits occurs as page faults
are used to rebuild the shadow page tables. We have considered two techniques in Palacios
to reduce this cost: shadow page table caching and shadow page table prefetching.

In contrast to a basic shadow paging implementation, both caching and prefetching in-
troduce a new overhead as they must monitor the guest page tables for changes so that the
corresponding cached or prefetched shadow page table entries may be updated or flushed.
While conceptually simple, preserving x86 64 page table consistency requirements is quite
challenging, leading to considerably higher software complexity in the VMM. In particular,
because portions of page tables may be shared across address spaces, page table updates in
one address space may affect page tables mapping additional address spaces. Furthermore, a
physical page containing a page table is allowed to appear at multiple levels in a page table
hierarchy.

In a shadow page table caching implementation, when the guest switches from one context
to another and the VMM already has the corresponding shadow context in its cache, the
cost of the context switch is dramatically reduced. In the best case, where the guest makes
frequent context switches but rarely edits its page tables, a context switch requires only
that the VMM load the page table base register and continue. In the worse case, the guest
frequently edits its page tables, but rarely performs context switches.
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Approach Run-time (s)
Native 15.7
Shadow 798.9
Shadow+Prefetching 1305.6
Shadow+Caching 32.9
Nested (4KB pages) 24.7

Figure 3.12: Performance of HPC Challenge benchmark suite in Palacios for different mem-
ory virtualization approaches.

In a shadow page table prefetching implementation, a guest context switch acts as in
a basic implementation, flushing the shadow page tables. However, on a single page fault,
multiple guest page table entries are visited and reflected into the shadow page table. Our
implementation prefetches an entire page worth of entries on each page fault, so in the best
case, where the guest makes frequent context switches but rarely edits its page tables, the
overhead of a context switch is reduced by a factor of 512 (64 bit) or 1024 (32 bit). In the
worst case, the guest frequently edits page tables but rarely performs context switches. In
contrast to shadow page table caching, shadow page table prefetching requires no more space
than basic shadow paging.

To evaluate the potential benefits of caching and prefetching, we studied their overall
performance on the HPC Challenge benchmark suite. HPC Challenge includes seven bench-
marks, with two, Random Access and HPL, accounting for almost all the variation among
the different paging approaches because of they exhibit a very high context switch rate. The
experiments were run on a Dell PowerEdge SC1450 system with an AMD Opteron 2350
“Barcelona” processor with 2GB of RAM. The guest operating system was running Puppy
Linux 3.01 (32-bit Linux kernel 2.6.18).

Figure 3.12 shows the results. While shadow paging with prefetching is not an effective
optimization for this workload, shadow paging with caching brings performance much closer
to nested paging performance, although there remains a gap. We also evaluated shadow
paging with caching using the more mature implementation in the KVM VMM. There, a
run time of 24.3 s was measured, right on par with nested paging. Note that performance
remains distant from native due to the Random Access benchmark.

3.5.3 Summary

These results show that the choice of virtual paging techniques is critically important to en-
suring scalable performance in HPC environments and that the best technique varies across
OSes, hardware, and applications. This suggests that an HPC VMM should provide a mech-
anism for specifying the initial paging technique as well as for switching between techniques
during execution. Furthermore, an HPC VMM should provide a range of paging techniques
to choose from. Palacios incorporates a modular architecture for paging architectures. New
techniques can be created and linked into the VMM in a straightforward manner, with each
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guest being able to dynamically select among all the available techniques at runtime.

3.6 Controlled preemption

It is well understood that background noise can have a serious performance impact on large
scale parallel applications. This has led to much work in designing OSes such that the
amount of noise they inject into the system is minimized. Palacios is designed not only
minimize the amount of overhead due to virtualization, but also to concentrate necessary
overheads and work into deterministic points in time in an effort to minimize the amount of
noise added to the system by virtualization.

Palacios runs as a non-preemptible kernel thread in Kitten. Only interrupts and explicit
yields by Palacios can change control flow. Palacios controls the global interrupt flag and
guest interrupt exiting and uses this control to allow interrupts to happen only at specific
points during exit handling. This combination of behaviors allows Palacios to provide well-
controlled availability of CPU resources to the guest. Background processes and deferred
work are only allowed to proceed when their impact on performance will be negligible.

When a guest is configured it is allowed to specify its execution quantum which determines
the frequency at which it will yield the CPU to the Kitten scheduler. It is important to note
that the quantum configured by Palacios is separate from the scheduling quantum used
by Kitten for task scheduling. This separation allows each guest to override the host OS
scheduler in order to prevent the host OS from introducing additional OS noise. Furthermore
this quantum can be overridden at runtime such that a guest can specify critical sections
where Palacios should not under any circumstances yield the CPU to another host process.

The result of this is that Palacios perturbs applications much less than other VMMs not
designed for use in HPC systems. To quantify this, we compiled the selfish noise measurement
benchmark frequently used to measure OS interference in HPC systems into a minimal kernel
with interrupts disabled to measure the amount of interference the VMM presents to guest
operating systems. This benchmark spins the CPU while continually reading the timestamp
counter, which is configured by the VMM to passthrough to hardware. We ran this guest
kernel on a Cray XT4 node on both a minimal Linux/KVM VMM (init, /bin/sh, and
/sbin/sshd were the only user-level processes running) and on Palacios.

In these tests, the Linux/KVM virtual machine used almost exactly 10 times as much
CPU for management overhead as Palacios(0.22% for Linux/KVM versus 0.022% for Pala-
cios). This is largely due to the increased timer and scheduler frequency of KVM’s Linux
host OS compared to the Kitten host OS, which can use a much larger scheduling quantum
because of its focus on HPC systems. While these overheads both appear small in absolute
terms, they are in addition to any overhead that the guest OS imposes on an application.
Because past research has shown that even small asynchronous OS overheads can result in
applcation slowdowns of orders of magnitude on large-scale systems [28, 55], keeping these
overheads as small as possible is essential for virtualization to be viable in HPC systems.
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3.6.1 Future extensions

An extant issue in HPC environments is the overhead induced via timer interrupts. A large
goal of Kitten is to implement a system with no dependence on periodic interrupts, and
instead rely entirely on on-demand one shot timers. However, periodic timers are occasionally
necessary when running a guest environment with Palacios, in order to ensure that time
advances in the guest OS. Because some guest OSes do require periodic timer interrupts
at a specified frequency, the VMM needs to ensure that the interrupts can be delivered to
the guest environment at the appropriate rate. We are developing a method in which the
guest OS is capable of both enabling/disabling as well as altering the frequency of the host’s
periodic timer. This would allow a guest OS to specify its time sensitivity2, which will allow
Palacios and Kitten to adapt the timer behavior to best match the current workload.

3.7 A symbiotic approach to virtualization

While our experiences have shown that it is indeed possible to virtualize large scale HPC
systems with minimal overhead, we have found that doing so requires cooperation between
the guest and VMM. Each of the three techniques we have described (Sections 3.4–3.6) relies
on communication and trust across the VMM/guest interface for the mutual benefit of both
entities. We might say that the relationship between the VMM and the guest is symbiotic.
We have been working to generalize the interfaces involved in our techniques into a general
purpose symbiotic interface that could provide VMM↔guest information flow that could be
leveraged in these and future techniques.

Our symbiotic interface allows for both passive, asynchronous and active, synchronous
communication between guest and VMM. The symbiotic interface is optional for the guest,
and a guest which does use it can also run on non-symbiotic VMMs or raw hardware without
any changes. We focus here on the passive interface, SymSpy.

SymSpy builds on the widely used technique of a shared memory region that is accessible
by both the VMM and guest. This shared memory is used by both the VMM and guest to
expose semantically rich state information to each other, as well as to provide asynchronous
communication channels. The data contained in the memory region is well structured and
semantically rich, allowing it to be used for most general purpose cross layer communication.
Each of the three techniques we have given in this paper are implemented on top of SymSpy.
We have implemented SymSpy support in Catamount, Kitten, and in non-HPC guest OSes
such as Linux.

SymSpy is designed to be enabled and configured at run time without requiring any major
structural changes to the guest OS. The discovery protocol is implemented using existing
hardware features, such as CPUID values and Model Specific Registers (MSRs). When run
on a symbiotic VMM, CPUID and MSR access is trapped and emulated, allowing the VMM

2You can think of this as being loosely correlated to the guest’s timer frequency setting
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to provide extended results. Through this, a guest is able to detect the presence of a SymSpy
interface at boot time and selectively enable specific symbiotic features that it supports. Due
to this hardware-like model, the discovery protocol will also work correctly if no symbiotic
VMM is being used; the guest will simply not find a symbiotic interface.

After the guest has detected the presence of SymSpy it chooses an available guest physical
memory address that is not currently in use. This address does not have to be inside the
guest’s allotted physical memory. Once an address has been found the guest writes it to a
virtualized MSR. The VMM intercepts this operation, allocates a new page, and maps it
into the guest at the location specified in the MSR.

The precise semantics and layout of the data on the shared memory region depends on
the symbiotic services that are discovered to be jointly available in the guest and the VMM.
The structured data types and layout are enumerated during discovery. During normal
operation, the guest can read and write this shared memory without causing an exit. The
VMM can also directly access the page during its execution.

The semantic interface also includes an active component, SymCall, which is not used in
this paper. SymCall is a mechanism by which the VMM can execute code synchronously in
the guest context while the VMM is in the process of handling an exit. That is, it provides
synchronous upcalls into the guest at any time.

3.8 Conclusion

Our primary contribution has been to demonstrate that it is possible to virtualize the largest
parallel supercomputers in the world3 at very large scales with minimal performance over-
heads. Even tightly-coupled, communication-intensive applications running on specialized
lightweight OSes that provide maximum hardware capabilities to them can run in a virtu-
alized environment with ≤5% performance overhead at scales in excess of 4096 nodes. This
result suggests that such machines can reap the many benefits of virtualization that have
been articulated before (e.g., [37, 29]). One benefit not previously noted is that virtualization
could open the range of applications of the machines by making it possible to use commodity
OSes on them in capacity modes when they are not needed for capability purposes.

We believe our results represent the largest scale study of HPC virtualization by at
least two orders of magnitude, and we have described how such performance is possible.
Scalable high performance rests on passthrough I/O, workload sensitive selection of paging
mechanisms, and carefully controlled preemption. These techniques are made possible via a
symbiotic interface between the VMM and the guest, an interface we have generalized with
SymSpy. We are now working to further generalize this and other symbiotic interfaces, and
apply them to further enhance virtualized performance of supercomputers, multicore nodes,
and other platforms.

3The machine we used is in the top-20.
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Appendix A

External Impact

A.1 Peer-reviewed Published Papers

1. K. Ferreira, P. Bridges, R. Brightwell, K. Pedretti, The Impact of System Design
Parameters on Application Noise Sensitivity, IEEE International Conference on Cluster
Computing (Cluster’10), September 2010.

2. J. Lange, K. Pedretti, T. Hudson, P. Dinda, Z. Cui, L. Xia, P. Bridges, A. Gocke,
S. Jaconette, M. Levenhagen, R. Brightwell, Palacios and Kitten: New High Perfor-
mance Operating Systems for Scalable Virtualized and Native Supercomputing, IEEE
International Parallel and Distributed Processing Symposium (IPDPS’10), April 2010.

3. R. Brightwell, T. Hudson, K. Pedretti, SMARTMAP: Operating System Support for
Efficient Data Sharing Among Processes on a Multi-Core Processor, ACM/IEEE Con-
ference on Supercomputing (SC’08), November 2008.

A.2 Submitted Papers

1. J. Lange, K. Pedretti, P. Dinda, P. Bridges, C. Bae, P. Soltero, A. Merritt, Minimal-
overhead Virtualization of a Large Scale Supercomputer, submitted to ACM Interna-
tional Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS’2011), March 2011.

A.3 Other Publications

1. K. Pedretti, K. Ferreira, R. Brightwell, Exploring Memory Management Strategies in
Catamount, Paper, Cray User Group Meeting, May 2008.

2. K. Pedretti, S. Kelly, M. Levenhagen, Summary of Multi-Core Hardware and Program-
ming Model Investigations, Sandia Technical Report, SAND2008-3205, May 2008.
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3. K. Pedretti, Characterization of Intra-node Topology and Locality, Poster, Interna-
tional Conference for High Performance Computing, Networking, Storage, and Analysis
(SC07), November 2007.

A.4 Invited Talks

1. K. Pedretti, The Kitten Lightweight Kernel, Presentation at FastOS Phase II Workshop
held in conjunction with ACM International Conference on Supercomputing (ICS’09),
June 2009.

2. K. Pedretti, Lightweight Operating Systems for Scalable Native and Virtualized Su-
percomputing, Presentation at ORNL Future Technologies Colloquium Series, April
2009.

3. K. Pedretti, Quad-core Catamount and R&D in Multi-core Lightweight Kernels, Sal-
ishan Conference on High-Speed Computing, April 2008.

A.5 Service to Professional Societies

1. Kevin Pedretti – program committee member, OS and runtime – 2011 39th Interna-
tional Conference on Parallel Processing.

2. Kevin Pedretti – program committee member, 2010 Workshop on Micro Architectural
Support for Virtualization, Data Center Computing, and Clouds, held in conjunction
with MICRO-43 conference.

A.6 Patent Applications

1. R. Brightwell, K. Pedretti, T. Hudson, Direct Access Inter-Process Shared Memory,
Patent Application, August 2009.

A.7 Awards

1. 2010 Employee Recognition Award – Kitten Operating System Virtualization Team.
Team members: K. Pedretti, R. Brightwell, K. Ferreira, S. Kelly, M. Levenhagen, C.
Vaughan

2. 2009 R&D100 Award – Catamount N-Way Lightweight Kernel, 2009 R&D100 Award.
Team members: R. Brightwell, K. Ferreira, S. Kelly, J. Laros, K. Pedretti, J. Tomkins,
J. Vandyke, C. Vaughan, R. Ballance, T. Hudson
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A.8 New Ideas for R&D

We submitted a proposal to DOE ASCR program “X-Stack Software Research” to continue
and expand on the HPC virtualization research initiated by this LDRD project. This project
was selected for funding and will have a three year duration, beginning in FY11. The project
is a consortium of researchers from University of New Mexico, Northwestern University,
Sandia National Laboratories, and Oak Ridge National Laboratory.

We are also pursuing the use of virtualization to accelerate hardware simulation, and to
expose novel architectural features (e.g., global shared memory) to system software before
hardware is available. This work is in the context of the recently funded DARPA UHPC
project that Sandia is leading, starting in FY11.
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