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Abstract

Arctic sea ice is an important component of the global climate system and due to feedback
effects the Arctic ice cover is changing rapidly. Predictive mathematical models are of
paramount importance for accurate estimates of the future ice trajectory. However, the
sea ice components of Global Climate Models (GCMs) vary significantly in their prediction
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of the future state of Arctic sea ice and have generally underestimated the rate of decline in
minimum sea ice extent seen over the past thirty years. One of the contributing factors to
this variability is the sensitivity of the sea ice to model physical parameters.

A new sea ice model that has the potential to improve sea ice predictions incorporates an
anisotropic elastic-decohesive rheology and dynamics solved using the material-point method
(MPM), which combines Lagrangian particles for advection with a background grid for gra-
dient computations. We evaluate the variability of the Los Alamos National Laboratory
CICE code and the MPM sea ice code for a single year simulation of the Arctic basin using
consistent ocean and atmospheric forcing. Sensitivities of ice volume, ice area, ice extent,
root mean square (RMS) ice speed, central Arctic ice thickness, and central Arctic ice speed
with respect to ten different dynamic and thermodynamic parameters are evaluated both in-
dividually and in combination using the Design Analysis Kit for Optimization and Terascale
Applications (DAKOTA). We find similar responses for the two codes and some interesting
seasonal variability in the strength of the parameters on the solution.
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Nomenclature

ρ - ice density
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µ - ridging parameter
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Chapter 1

Introduction

Arctic sea ice is an important component of the global climate system [3, 6]. It reflects a
significant amount of solar radiation, insulates the ocean from the atmosphere, and influences
ocean circulation by modifying the salinity of the upper ocean. Due to feedback effects,
changes in the Arctic sea ice cover are accelerating [30]. Predictive mathematical models are
essential for accurate estimates of the future ice trajectory. However, sea ice components
of Global Climate Models (GCMs) vary greatly in their predictions for the future state of
Arctic sea ice and have all underestimated the rate of decline in minimum sea ice extent
over the last thirty years [32]. Additionally, the dynamic predictions of sea ice models differ
substantially from model to model [17]. An important component of this variability is the
sensitivity to model physical parameters. Therefore, understanding the sensitivity of the
model outputs to various physical parameters is needed to further increase their accuracy
and deliver predictive estimates of the future evolution of arctic sea ice. The aim of this
research is to improve sea ice modeling predictions by both working on the development of
a new high-resolution sea ice model that incorporates improved dynamics and alternative
numerical techniques and evaluating the sensitivity of this model to perturbations in input
parameters.

Sea ice is composed of a series of floes or large sections of intact ice separated by water or
thin ice. It is mechanically driven by surface winds and ocean currents, which can result in
cracks that expose open water or pressure ridges formed under convergence. Additionally, sea
ice grows and melts seasonally in response to incoming solar radiation, thermal radiation from
the atmosphere, and heat flux from the ocean. A complete sea ice model must incorporate
variations in ice thickness including ridges and open water in leads, the annual cycle of
growth and melt due to radiative forcing, and the mechanical deformation due to surface
winds, ocean currents, and Coriolis forces. The main variables that must be solved for in a
sea ice simulation are the spatially and temporally varying ice velocity and ice thickness.

Current state-of-the-art sea ice models have limitations in particular in the rheologies used
to determine ice internal forces and in the numerical methods used to model advection. The
typical rheology used for sea ice modeling is an isotropic viscous-plastic model. However,
satellite data indicate that sea ice deformation is focused into narrow linear bands and
overall the ice behaves anisotropically [5]. In addition, sea ice models are typically solved
in an Eulerian frame and, therefore, the solving an advection equation results in artificial
diffusion. We attempt to address these limitations in new model of sea ice [34]. We use an
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elastic-decohesive rheology, which explicitly models the formation and evolution of cracks in
the ice and is inherently anisotropic [29]. Numerical improvements come through solving the
dynamics equations using the material-point method (MPM), which combines Lagrangian
material points with a fixed background grid [33, 36]. The Lagrangian particles handle
advection in a more natural way and tend to introduce less numerical diffusion. In this
analysis, the MPM-elastic-decohesive model is compared with the Los Alamos National
Laboratory (LANL) CICE code version 4.0 [14], which is a state-of-the-art sea ice model
that is incorporated into the Community Earth System Model (CESM).

A number of authors have previously evaluated sea ice model sensitivities with the pur-
pose of improving the models through parameter tuning. Holland et al . [10] calculated
sensitivities of a dynamic-thermodynamic sea ice model to numerical conditions including
time step and boundary conditions, parameter values such as albedo and drag coefficients,
and physical processes such as ice rheology. The results displayed variation over the param-
eter space, however, the overall conclusion was that the model solution is robust to most
perturbations. Chapman et al . [4] varied thirteen parameters of a dynamic-thermodynamic
sea ice model simultaneously to gauge the sensitivity interdependencies concluding that many
parameters are, in fact, interdependent.

More recently, Miller et al . [25] tuned the LANL CICE code by varying three parameters:
the air-ice drag coefficient, an ice strength parameter, and the albedo of cold ice. They then
matched observational data for the sea ice extent, velocity, and thickness. Kim et al . [16]
used automatic differentiation implemented within CICE to determine parameters with the
highest sensitivities. In this study they found that parameters other than albedo, such as ice
conductivity were important. A selection of the important parameters from the Kim et al .
study were considered in more detail in a paper by Hunke [11] that addressed the sensitivity
of sea ice thickness.

Although, it is important to understand the sensitivity to changes in various physical
parameters used in the code, it should be noted that other processes can have considerable
effect on the solution. Miller et al . [24] and Hunke and Holland [13] found that variations in
external (ocean and atmospheric) forcing are, unsurprisingly, very important and Losch et
al . [22] found that numerical methods used in the solution of the governing equations also
have a significant impact.

In this analysis we focus on the physical parameters within the model keeping the external
forcing constant. This work builds on the previous studies by systematically comparing two
codes with different physical and numerical components and incorporating more rigorous
statistical analysis with the Design Analysis Kit for Optimization and Terascale Applications
(DAKOTA) [1]. In this report the two sea ice models are run for one year in the Arctic basin.
Sensitivities in volume, area, thickness, and velocity are calculated by varying ten parameters
found in both the models.

The next section provides an overview of the sea ice governing equations with a focus
on the aspects of the equations that contain parameters used in the sensitivity analysis. In
Section 3 a description of the pan-Arctic calculation used in the sensitivity analysis and
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a summary of the numerical implementation of each code is given. Section 4 includes a
description of the sensitivity analysis and a discussion of the results. Conclusions are then
given in Section 5.
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Chapter 2

Governing Equations

As discussed in the introduction sea ice models must incorporate the dynamic deformation
due to atmospheric winds, ocean currents and Coriolis forces, variations in the distribution
of ice thickness, and seasonal thermodynamic growth and melt of the ice in order to solve for
the spatial and temporally varying ice velocity and thickness. The following sections describe
the governing equations for the ice velocity (2.1), the ice thickness distribution (2.2), and
the thermodynamic change in ice thickness (2.3).

2.1 Dynamics

A conservation of linear momentum equation is solved to determine the sea ice velocity. Due
to the large extent to thickness ratio of sea ice, a shallow ice formulation is used, which
is derived by integrating the full three-dimensional sea ice momentum equation over the
thickness and making suitable assumptions [7, 9]. Using this formulation the equation for
two-dimensional ice velocity (v) as a function of the average ice thickness at a point (h̄) has
the following form

ρh̄
dv

dt
= ∇ · (h̄σ) + ta + tw − fc − ρh̄g∇H. (2.1.1)

Note that d/dt here represents the material derivative, ∂/∂t+ v · ∇. External forces acting
on the ice include the atmospheric drag (ta), the ocean drag (tw), the Coriolis force (fc),
and a sea surface tilt force (ρh̄g∇H). In the case of the calculations presented here the sea
surface tilt effect, which is a lower-order term, is neglected. The Coriolis force depends on
the rotation of the Earth (ω) and the latitude (φ) in the following form

fc = 2ρh̄ω sinφ(e3 × v) (2.1.2)

where ee is the unit vector in the vertical direction. A quadratic drag law (Equation 2.1.3)
is typically used for the ocean drag term. Here ρw is the ocean density, vw is the two-
dimensional ocean velocity, and cw is the ocean drag coefficient that is taken as one of the
sensitivity parameters for the analysis.

τw = cwρw‖v − vw‖(v − vw). (2.1.3)

In the MPM sea ice code a quadratic drag law is also used for the atmospheric drag term
(Equation 2.1.4), and similar to the ocean drag depends on the atmospheric density (ρa),
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the wind velocity (va), and an atmospheric drag coefficient (ca).

τa = caρa‖va‖va. (2.1.4)

The CICE code, however, has an atmospheric boundary layer routine where the atmospheric
drag is calculated based on turbulent scales for the velocity [14]. Therefore, the atmospheric
drag coefficient was not chosen as a sensitivity parameter for this study.

The internal force term (∇· h̄σ) depends on the stress tensor (σ), which is obtained from
the rheology or constitutive relation that relates stress to strain or strain rate. Most sea
ice models use variations on the viscous-plastic constitutive model developed by Hibler [9].
CICE uses an elastic-viscous-plastic rheology, which is a modification of the viscous-plastic
rheology that incorporates a non-physical elasticity for regularization purposes [12]. In the
MPM sea ice model an elastic-decohesive rheology is used, which incorporates displacement
discontinuities that corresponds to cracks in the ice [29]. Details of each of these rheologies
can be found in the references, but will not be discussed in detail here since parameters from
the distinct constitutive models are not used in the sensitivity analysis.

2.2 Ice Thickness Distribution

Variations in thickness are incorporated through a subgridscale ice thickness distribution
[37]. The evolution equation for ice thickness is shown in Equation 2.2.1, where f is the
rate of change in thickness due to thermodynamic effects and ψ is the ridging redistribution
function. The thickness distribution evolves in time due to horizontal transport ((∇ · v)g),
transport in thickness space (∂(fg)/∂h), and redstribution of thin ice to thicker ice in the
ridging process (ψ).

dg

dt
+ (∇ · v)g +

∂(fg)

∂h
= ψ. (2.2.1)

The ice thickness distribution (g) is analogous to a probability distribution and when
integrated over thickness space is equal to one. Numerically, discrete thickness bins are used
to define fractional areas that approximate the distribution. If the limits of the nth thickness
bin are Hn−1 and Hn then the fractional area and volume associated with it are

gn =

∫ Hn

Hn−1

gdh, vn =

∫ Hn

Hn−1

hgdh. (2.2.2)

The average thickness over the distribution used in the momentum equation can then be
calculated as

h̄ =

∫ Hmax

H0

hgdh =

Nbins∑
n=1

vn. (2.2.3)

An important component of the redistribution function, ψ, is the distribution of ice that
participates in ridging (an). This is the function that determines what fraction of thinner ice
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will compress to form a ridge. The distribution of ice that participates in ridging presented
in Lipscomb et al . [21] is used for this analysis due to its improved stability over the original
Thorndike et al . [37] function. The discrete form of the participating ice distribution after
dividing into thickness bins is given by

an =
exp(−Gn−1/a

∗)− exp(−Gn/a
∗)

1− exp(−1/a∗)
. (2.2.4)

Here Gn =
∑n

m=0 am is the discrete cumulative distribution function and a∗ is a fixed pa-
rameter, which has been selected as a parameter in the sensitivity analysis.

The other component of the redistribution function is the distribution of ice that has
undergone ridging. The ridged ice distribution used for this analysis is also in the form of
an exponential. Given an average thickness in each bin defined as hn = vn/an then the
distribution of ridged ice is proportional to

exp

(
−(h− 2hn)

µ(hn)1/2

)
, (2.2.5)

where µ is another parameter varied in the sensitivity analysis.

2.3 Thermodynamics

Growth and melt of ice is incorporated in the governing equations through a one-dimensional
heat equation that is solved to obtain the temperature distribution in a vertical column of
ice as shown here [23, 2]

ρc
∂T

∂t
=

∂

∂z

(
k
∂T

∂z

)
+ κi0FSW e−κz. (2.3.1)

The internal heat source (κi0FSW e−κz) in the equation depends on the extinction coefficient
(κ), the fraction of solar radiation absorbed by the ice (i0), and the total downward shortwave
(solar) flux (FSW ). The heat capacity (c), and conductivity (k) are functions of temperature
and salinity, where the salinity is described by a fixed profile depending on the vertical
coordinate (z) as shown in Equation 2.3.2 where a = 0.407, b = 0.573, and Smax = 3.2 ppt.

S(z) =
1

2
Smax

(
1− cos(πz

a
z+b

)
. (2.3.2)

Given this salinity profile, the heat capacity and conductivity are calculated as

c(S, T ) = c0 +
µmeltL0S(z)

T 2
(2.3.3)

k(S, T ) = k0 +
βS(z)

T
. (2.3.4)
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Here c0, k0, and L0 are the fresh ice values for heat capacity, conductivity and latent heat,
respectively, and µmelt and β are fixed parameters. Based on their importance in a previous
sensitivity study [16], Smax and k0 were chosen as parameters in this analysis.

To obtain the change in thickness of the ice due to thermodynamic forcing the following
balance of flux equations must be solved at the atmosphere and ocean interfaces

Fw − k
∂T

∂z
= −qdh

dt

Fa + k
∂T

∂z
= −qdh

dt

(2.3.5)

where the enthalpy (q) is also dependent on the temperature and salinity. Note that dh/dt
from both the ocean and atmosphere boundary in Equation (2.3.5) are combined to obtain
the rate of change in thickness (f) in the ice thickness distribution equation (2.2.1).

The flux at the ocean interface (Fw) is simply the heat flux from the ocean to the ice
calculated as a function of the ocean surface temperature and salinity. The net flux at the
atmosphere interface (Fa) is a combination of flux terms as shown in Equation (2.3.6).

Fa = FSW − FSW↑ − FSW,trans + FLW − εσT 4
0 + Fsh + Flh (2.3.6)

It includes the total shortwave flux due to solar radiation (FSW ) minus the fraction which
is reflected based on the albedo of the surface (FSW↑) and the fraction that is transmitted
through the ice FSW,trans. It additionally includes the downward longwave flux due to atmo-
spheric heating (FLW ) and the upward longwave flux from the ice surface (εσT 4

0 ), which is
defined in terms of the surface temperature (T0), the Stefan-Boltzmann constant (σ) and the
longwave emissivity of the surface (ε). The final terms in the balance are the flux of sensible
heat (Fsh) and the flux of latent heat (Flh), which are derived on the basis of atmospheric
forcing input.

An important component of the thermodynamics is the proportion of shortwave flux that
is reflected, which is dependent on the albedo (α), or reflectivity, of the ice or snow surface.
In both codes an albedo parameterization that is temperature and thickness dependent is
used [14]. The parameterization depends on inputs of the visual ice albedo (αice,v), the
near-infrared ice albedo (αice,i), the visual snow albedo (αsnow,v), and the near-infrared snow
albedo (αsnow,i). The ice albedo is first modified based on the thickness (h) of the column
to produce a smooth decrease in ice albedo to the value of the ocean albedo (αocean) as the
thickness decreases. The following functional form is used

αice,v = αice,vfh + αocean (1− fh)

αice,i = αice,ifh + αocean (1− fh)
(2.3.7)

where the fractional thickness is defined using a maximum thickness for constant albedo of
hmax = 0.5 as

fh =
tan−1(4h)

tan−1(4hmax)
. (2.3.8)
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The temperature dependence modification of the albedos is then applied based on the surface
temperature (T0) in the following manner

αice,v = αice,v − 0.075(T0 + 1)

αice,i = αice,i − 0.075(T0 + 1)

αsnow,v = αsnow,v − 0.1(T0 + 1)

αsnow,i = αsnow,i − 0.15(T0 + 1).

(2.3.9)

The total albedo is calculated from the snow and ice albedos, which are combined based on
the snow thickness (hsnow) and the snow fraction, fsnow = hsnow/(hsnow + 0.02) as

αv = αice,v(1− fsnow) + αsnow,vfsnow

αi = αice,i(1− fsnow) + αsnow,ifsnow.
(2.3.10)

Given the total shortwave radiation on the snow or ice surface, (FSW ), and the fractions
of shortwave radation in the visual (fv) and near-infrared range (fi) the surface reflected,
transmitted, and absorbed portions can then be calculated as

FSW↑ = FSWfiαi + FSWfvαv

FSW,trans = (FSW − FSW↑)(1− fsnow)i0

FSW,abs = FSW − FSW↑ − FSW,trans.

(2.3.11)

For the sensitivity calculations the fraction of shortwave radiation that is transmitted through
the ice (i0) is evaluated along with the visual and near-infrared ice albedos (αice,v, αice,i) and
the visual snow albedo (αsnow,v).
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Chapter 3

Simulations

3.1 Model Configurations

To evaluate the sensitivity of the two models to selected parameters, one year simulations
of the Arctic basin were used. As discussed in the previous sections, the MPM sea ice
code and the CICE model differ in both the rheology used to calculate stress and in the
horizontal discretizations for the solution of the momentum equation and for advection of the
ice thickness distribution. For the horizontal discretization CICE uses a staggered Eulerian
grid (the Arakawa B-grid), which locates the ice area, volume, and energy at the cell centers
and the ice velocity at the cell vertices [14]. Advection is modeled with a linear remapping
scheme, which uses a limiter to preserve monotonicity [20].

The MPM sea ice model is based on the material-point method, which combines La-
grangian particles to handle advection of the ice properties, and a background grid where
the momentum equation is solved and where gradients may be calculated easily [35, 36, 33].
At each time step particle information is mapped to a regular background grid where the
momentum equation is solved using bilinear nodal finite elements. Quantities such as ice
area, volume, and energy are transported in the velocity field with the particles and the
constitutive model is solved at each material point. External forces are applied at the nodes
of the background grid for the momentum equation solution.

The horizontal transport component of the ice thickness distribution equation is solved
using the remapping scheme in the case of CICE and in a Lagrangian manner in the case
of MPM. However, transport in thickness space is solved in the same way for both MPM
and CICE using a linear remapping algorithm due to Lipscomb [19]. Also, the same ridging
function is used for both codes. The ice thickness distribution is divided into five fixed
categories of ice and one category for open water in both CICE and MPM and the same
uniform thickness distribution was used for initial conditions. The distribution is assumed
to be parabolic with a maximum at h = 3m and values of zero at h = 0m and h = 6m and
is shown in Figure 3.1.1.

The energy conserving Bitz and Lipscomb [2] algorithm is used to solve the vertical
temperature equation for the change in thickness due to thermodynamics in both the MPM
sea ice code and the LANL CICE code. For the discretization, five layers of ice and one layer
of snow were used.
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Figure 3.1.1: The ice thickness distribution used in both the MPM and CICE calculations
for regions where ice is initially assumed to exist.

The initial configuration of the grid is shown in Figure 3.1.2. A grid with 148x124 square
cells of length 50 km was used for CICE and for the background grid in MPM. Additionally,
four material points per cell were used in the MPM calculation. In CICE, a cell land mask
is used to determine which cells are active within the calculation. In the MPM sea ice code
fixed particles are used to represent the land boundaries. This results in a slight difference in
the definition of the land boundary, since the MPM calculation allows for cells with partial
land fill. Although CICE is generally run in spherical coordinates, the simulations were done
in Cartesian coordinates using an azimuthal equal area mapping. This was done to provide
a direct comparison with the MPM sea ice code, which is currently limited to a Cartesian
grid.
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Figure 3.1.2: The computational domain for the pan-Arctic calculation (land regions in red)
showing initial average thickness for (a) the MPM calculation and (b) the CICE calculation.
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3.2 External Forcing

Both ice models are run in stand alone mode and therefore ocean and atmospheric forcing
are required to drive the simulations. The ocean forcing data comes from the Pan-Arctic
Ice-Ocean Modeling and Assimilation System (PIOMAS) data sets [38], and consists of
monthly spatially varying sea surface salinity (SSS), sea surface temperature (SST), and
ocean currents. The SSS is used to calculate a freezing temperature for the ocean water,
which is used with the SST to calculate the ocean flux. In the case of CICE, a simple ocean
mixed layer is used where the ocean temperature and salinity may change during a run due
to radiative fluxes that pass through the ice and fresh water or salt fluxes ejected from the
ice as it melts or freezes. Although CICE modifies the SST, the code is set up to restore the
calculated SST values to the data over the period of thirty days. However, the MPM sea ice
calculation simply uses the prescribed SST and SSS fields.

Atmospheric data from the Common Ocean-ice Reference Experiments (CORE) version 2
[18], which contain high latitude corrections to the National Center for Atmospheric Research
(NCAR) / National Center for Environmental Protection (NCEP) reanalysis data [15], are
used to drive the simulations. The data include spatially varying six-hourly atmospheric
winds, specific humidity, and air temperature as well as daily spatially varying downward
shortwave (solar) flux and monthly precipitation. Monthly spatially varying cloud fractions
are taken from the Ocean Model Intercomparison Project (OMIP) data [27]. The downward
longwave flux from the atmosphere is then derived from the air temperature (Ta) and cloud
fraction (cfrac) using the Parkinson and Washington formula [26].

In all cases linear interpolation in time is used to derive the forcing for a given time step
in both the MPM and CICE codes.

3.3 Results for Nominal Simulation

At the start of the simulations the ice is assumed to be at rest with a surface temperature
equal to the air temperature and an initial energy that corresponds to the linear temperature
profile through the ice. The simulation is run for a single year. A timestep of two hours is used
in the CICE calculations with 120 subcycles for the dynamics. For the MPM calculations the
timestep is limited to a maximum of 500 seconds due to dynamic instabilities that develop
at the ice-ocean edge along the East coast of Greenland when higher values are used.

The spatial distribution of ice thickness at the end of September (close to the ice extent
minimum) and at the end of December (the final time for the calculation) for the standard
simulation is shown in Figure 3.3.1. The ice thickness plots show considerable variation
between the codes, in particular the December ice thickness plot for the MPM code has
considerably more thick ice (∼ 3 meters) than the CICE code. This may be due in part
to the different rheologies implemented in the code. The ice is assumed to be intact in
the initial conditions, making it stiffer and less likely to deform significantly over the year.
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This difference may be also due in part to small differences in the implementation of the
thermodynamics. An additional difference is the prominence of the thick ice boundary in the
MPM results compared to the CICE results. This is due primarily to the fact that the ice
thickness distribution is associated with a Lagrangian point in the MPM code and therefore
there is less diffusion in the ice thickness from the advection scheme.

Similarly, the ice velocity comparison (Figure 3.3.2) also indicates some discrepancy be-
tween the codes. This, however, is expected because the rheologies are considerably different.
The ice velocity in the central Arctic tends to be smaller in the MPM simulation consistent
with an ice pack having greater strength. However, both codes predict large velocities off
the Eastern coast of Greenland and have circulation patterns consistent with a gyre in the
Beaufort Sea region.
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Figure 3.3.1: The ice thickness in meters for (a) the MPM calculation at the end of
September, (b) the MPM calculation at the end of December, (c) the CICE calculation at
the end of September, (d) the CICE calculation at the end of December.
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Figure 3.3.2: The ice velocity for (a) the MPM calculation at the end of September, (b) the
MPM calculation at the end of December, (c) the CICE calculation at the end of September,
(d) the CICE calculation at the end of December.
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Chapter 4

Sensitivity Analysis

4.1 Parameter Selection

Parameters of interest for the sensitivity analysis were chosen based on their impact in
previous sensitivity studies and their common inclusion in both the CICE and MPM sea
ice models [16, 14]. They can be broadly classified as either dynamic or thermodynamic
parameters depending on whether they primarily influence ice deformation or ice growth
and melt. The model parameters evaluated in the sensitivity analysis are shown in Table

Table 4.1.1: Model Parameters for Sensitivity Analysis.

Nominal
Parameter Value Range Description
αice,v 0.78 0.7-0.86 Visual ice albedo
αice,i 0.36 0.32-0.4 Near-infrared ice albedo
αsnow,v 0.98 0.88-1.0 Visual snow albedo
ε 0.95 0.85-1.0 Emissivity
i0 0.70 0.63-0.77 Fraction of shortwave radiation penetrating ice
k0 2.03 1.827-2.233 Fresh ice conductivity (W/(mK))
Smax 3.2 2.88-3.52 Maximum salinity (ppt)
cw 0.0055 .00495-.00605 Ice-ocean drag parameter
a∗ 0.05 0.045-0.055 Ridging parameter
µ 4 3.6-4.4 Ridging parameter

4.1.1 with their given nominal values and the sampling ranges used in the sensitivity analysis.
The ranges are centered around the nominal value and the upper and lower bounds of the
ranges are represented by +/− 10% spread around the nominal values, except in the cases
of the emissivity and visual snow albedo where the upper limit cannot go beyond one.

The dynamic parameters for consideration in the study are limited given that the MPM
and CICE models use different rheologies. Additionally, the treatment of atmospheric dy-
namic forcing is different in each code. Therefore, the dynamic parameters were chosen
from the ocean dynamic forcing and ridging algorithms. These include the ice-ocean drag
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coefficient (cw) and two ridging parameters (a∗, µ). Among the set of possible thermody-
namic parameters, albedo is known to have a strong effect on ice seasonal growth and melt.
Therefore, three albedo parameters were used in this analysis, the visual ice albedo (αice,v),
near-infrared ice albedo (αice,i), and visual snow albedo (αsnow,v). Like the albedo, the frac-
tion of shortwave radiation that penetrates the ice (i0) and the longwave emissivity of the
surface (ε) can also have an important effect on the growth and melt of ice. The study of
Kim et al . [16] found that the fresh ice conductivity (k0) and maximum salinity (Smax) were
important parameters and were used in this analysis to complete the set of thermodynamic
parameters.

Table 4.1.2: Response Functions for Sensitivity Analysis.

Variable Description
Atot Total ice area (km2)
Etot Total ice extent (km2)
Vtot Total ice volume (m3)
vrms RMS ice speed (m/s)
hCA Central Arctic ice thickness (m)
vCA Central Arctic ice speed(m/s)

The response functions were chosen because of their importance in assessing the state of
the Arctic ice pack and are listed in Table 4.1.2. Total ice area (Atot) and total ice extent
(Etot) are related quantities and are calculated using the ice concentration or fractional area
of ice either in a cell or associated with a material point. In the case of ice area, the partial
area of a cell or material point that is ice covered is summed over the calculational domain.
In contrast, for the ice extent, the total areas of cells or material points that contain at
least fifteen percent ice are summed. Therefore, in the winter when the ice concentration
is high the ice area and ice extent match closely, but in the summer the values diverge as
more open water is exposed reducing the ice concentration. Both ice area and ice extent are
quantities diagnosed from satellite data and are therefore of importance for comparing with
actual Arctic data.

The total ice volume (Vtot) is arguably a more important indicator of the health of the
Arctic ice, which is why it was chosen as a response function here, but it is difficult to measure
remotely and there is not a significant amount of data for comparison. The root mean square
(RMS) speed of the ice (vrms) is strongly dependent on the ocean and atmospheric dynamic
forcing of the ice as well as the strength of the ice and was chosen as a response function
because ice velocity is one of the primary unknowns in the governing equations. In addition
to these four global response functions, ice thickness (hCA) and speed (vCA) at the North
Pole were chosen to assess the variability of local values.
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4.2 Methodology

In this section we provide a necessarily brief summary of the methodology used to carry out
the sensitivity analysis (SA) studies and its specialization to the sea-ice models considered
in this report. Our presentation closely follows the approach outlined in [8].

4.2.1 Background

The definition in [28] states that SA studies the relationships between the information flowing
in and out of the model. Originally, SA was created to deal simply with uncertainties in
the input variables and model parameters. Over the time, the idea has been extended to
incorporate the conceptual uncertainties associated with the model such as uncertainties in
the model structure, assumptions and specifications. In general, SA is used to increase the
confidence in the model structure and in the model predictions, by providing understanding
of how the model outputs respond to changes in the inputs, model structure, or factors such
as models independent components [28]. SA is therefore closely connected to uncertainty
analysis which aims to quantify the overall uncertainty associated with the response as a
result of uncertainty in the model’s inputs.

SA is usually performed to determine [28]:

• whether a model resembles the system or process under study;

• the model’s parameters that contribute most significantly to the output variability and
that require additional research and understanding;

• the model parameters that are insignificant and that can be potentially eliminated
from the final model;

• the region(s) in parameter space where the model variation is the greatest;

• the optimal regions in the parameters space that can be used for model calibration;

• interaction between parameters;

Sampling-based SA is a type of study in which the computational model is executed
multiple times for a combination of parameter values sampled from distributions. Monte
Carlo analysis is an example of sampling-based SA, based on performing multiple solution
evaluations with randomly selected model inputs. Monte Carlo analysis next uses the re-
sults of these evaluations to determine both uncertainty in the model prediction and which
parameters mainly contribute to this uncertainty. In general, Monte Carlo analysis involves
five distinct steps [28, 8]: (1) selection of ranges and distributions for each parameter; (2)
generation of samples from the ranges of the distributions; (3) evaluation of the model for
each sample followed by (4) uncertainty and (5) sensitivity analysis.
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Various sampling procedures can be used for Monte Carlo studies among which are ran-
dom sampling, quasi-random sampling and stratified sampling including Latin Hypercube
Sampling (LHS) [28, 8]. In LHS the range of each input parameter is divided into N equally
likely intervals and one observation of each input parameter is made in each interval. Thus,
there are N non-overlapping realizations for each of the k input parameters. The method
has the advantage of ensuring that the input parameter has all portions of its input distri-
bution represented by its input values. The LHS performs better compared to random and
quasi-random sampling when the output is dominated by only few components of the input
parameters. The method ensures that each of these components is represented in a fully
stratified manner, no matter which component turns out to be important. Stein [31] proved
that, asymptotically, LHS is better than random sampling in that it provides an estimator
with lower variance. In particular, he showed that the closer the output function is to being
additive with respect to input variables, the greater is the reduction in the variance. Nev-
ertheless, there are still examples in which for non-additive and monotonic functions, the
performance of LHS is equivalent or worse than the performance of simple random sampling.

For this sensitivity and uncertainty propagation study we implemented Monte Carlo
analysis based on LHS.

4.2.2 Linear regression model

Sensitivity analysis performed as part of Monte Carlo studies is often based on linear regres-
sion model. This approach assumes linear relationship between inputs and outputs given
by

y = ao +
n∑

j=1

ajxj, (4.2.1)

where y is the response (output), xj are the input variables (parameters) under consideration,
and aj are coefficients that must be determined. The coefficients aj and other aspects of the
construction of the regression model shown in (4.2.1) can be used to assess the importance
of the individual input variables xj with respect to the observed uncertainty in the output
(response function) y.

The construction of the regression model in (4.2.1) is as follows. Suppose that we are given
a sequence yi, i = 1, . . . ,m of output values, each corresponding to a set xij, j = 1, . . . , n of
input parameters. Assuming that the linear model (4.2.1) is valid (holds) for each response
value we can write

yi = ao +
n∑

j=1

ajxij + εi. (4.2.2)

Typically, in a Monte Carlo study the number of responses m is much greater than the
number of input parameters n, thereby making (4.2.2) an overdetermined m × n algebraic
system for the unknown coefficients aj. The method of least squares is widely used to solve
such systems and will be employed here. To determine the aj, it is convenient to use the
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following matrix representation for the equations in (4.2.2)

y = Xa + ε, (4.2.3)

where y = (y1, . . . , ym)T , a = (a0, . . . , an)T , ε = (ε1, . . . , εn)T and X is m by n + 1 array of
the input variables augmented with column of all ones.

In the least squares approach, the coefficients aj are determined by minimizing the
quadratic functional formed by summing up the squares of the residuals of the equations in
the overdetermined system. Succinctly, this functional can be written as

R(a) =
m∑

i=1

(yi − a0 −
n∑

j=1

ajxij)
2 = (y−Xa)T (y−Xa) . (4.2.4)

A necessary condition for minimizers of (4.2.4) is obtained by setting the gradient of the
least-squares functional R(a) to zero. This yields the following (n + 1) × (n + 1) linear
system for the unknowns aj

XTXa = XTy . (4.2.5)

The linear system (4.2.5) is known as the normal equations. If X has full column rank, i.e.,
its columns are linearly independent, it is easy to see that XTX is invertible. The unique
solution a of the normal equations is then given by the formula

a =
(
XTX

)−1
XTy . (4.2.6)

As a rule, when the overdetermined system is obtained through a Monte Carlo study, X
does have full column rank and the normal equations have a unique solution.

The following identity holds [28, 8] for the least squares regression model and plays an
important role in assessing the adequacy of such models∑

i

(yi − ȳ)2 =
∑

i

(ŷi − ȳ)2 +
∑

i

(ŷi − yi)
2, (4.2.7)

where ŷi denotes the estimate of yi obtained from the regression model and ȳ is the mean of
yi. Since the quantity ∑

i

(ŷi − ȳ)

provides a measure of variability about the regression line, the ratio

R2 =

∑
i(ŷi − ȳ)2∑
i(yi − ȳ)2

provides a measure of the extent to which the regression model can match the observed
data. Specifically, when the variation about the regression line

∑
i(ŷi − yi)

2 is small relative
to

∑
i(ŷi − ȳ)2, then the corresponding R2 value is close to 1, which indicates that the

regression model is accounting for most of the variability in the yi. Conversely, an R2 value
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close to zero indicates that the regression model is not very successful in accounting for the
variability in the yi.

The regression model in (4.2.1) can be algebraically reformulated as

(y − ȳ)/ŝ =
∑

j

(aj ŝj/ŝ)(xj − x̄j)

ŝj

, (4.2.8)

where

ȳ =
∑

i

yi

m
, ŝ =

(∑
i

(yi − ȳ)2

(m− 1)

)1/2

, (4.2.9)

and

x̄j =
∑

i

xij

m
, ŝ =

(∑
i

(xij − x̄j)
2

(m− 1)

)1/2

. (4.2.10)

The coefficients aj ŝj/ŝ in (4.2.8) are called standardized regression coefficients. Their values
are scaled in the range of -1 to 1. When the xj are independent, the absolute value of the
standardized regression coefficients can be used to provide a measure of variable importance
with respect to observed uncertainty in the response function. Specifically, the coefficients
provide a measure of importance based on the effect of moving each variable away from its
expected value by a fixed fraction of its standard deviation while retaining all other variables
at their expected values [28, 8]. Calculating standardized regression coefficients is equivalent
to performing the regression analysis with the input and output variables normalized to
mean zero and standard deviation one. The sign of the standardized regression coefficients
indicates the direction of change of the response function with respect to the direction of
change in the input. The “-” sign indicates that increase in the value of the input parameter
leads to decrease in the observed response function and vice-versa. Conversely, the “+” sign
indicates that an increase in the value of the input leads to an increase in the value of the
observed response function and a decrease in the value of the input leads to a decrease in
the value of the observed response function.

4.2.3 Application to sea-ice models

We consider two kinds of sensitivity analysis studies for the CICE and MPM models. In
the first one, we hold all but one of the ten input parameters in Table 4.1.1 fixed at their
nominal values given in that table. This type of study is also known as one-at-a-time (OAT)
screening designs and is intended to examine sensitivity of the six response functions in Table
4.1.2 viewed as functions of a single input parameter. One limitation of OAT design is that
it does not enable estimation of interactions among inputs [28, 8].

In the second study we allow all input parameters to vary simultaneously in the ranges
specified in Table 4.1.1. The purpose of this study is to consider the sensitivity of the six
monitored outputs simultaneously with respect to all ten inputs. In other words, we assume
that each response is a function of ten input parameters.
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For both kinds of sensitivity analysis we assume the linear model (4.2.1) for each one of
the six response functions (outputs) given in Table 4.1.2. Let ρk denote the kth response
function in Table 4.1.2. Application of (4.2.1) for the first sensitivity analysis scenario yields
the linear model

ρk = a0 + ak
1x , k = 1, . . . , 6 , (4.2.11)

where x is the selected input parameter from Table 4.1.1. In the second case, application of
(4.2.1) yields

ρk = a0 + ak
1αice,v + ak

2αice,v + ak
3αsnow,v + ak

4ε

+ak
5i0 + ak

6k0 + ak
7Smax + ak

8cw + ak
9a

∗ + ak
10µ

, k = 1, . . . , 6 , (4.2.12)

The regression methodology described in the previous section is applied to each one of the
response functions. For the OAT study we sample the response ρk at 6 uniformly spaced
points in the range of the respective parameter x specified in Table 4.1.1. For the second
type of study we use the LHS functionality of the DAKOTA toolkit [1] to generate sample
sets

{(αice,v)i, (αice,v)i, (αsnow,v)i, (ε)i, (i0)i, (k0)i, (Smax)i, (cw)i, (a
∗)i, (µ)i} i = 1, . . . , 50

where each parameter varies in the range specified in Table 4.1.1. Therefore, in the first
study (4.2.2) corresponds to a 6 × 1 overdetermined linear system, whereas in the second
study it is a 50× 10 linear system.

We record the values of the response functions from CICE and MPM over a period of
one year. The linear regression models (4.2.11) and (4.2.12) are then applied to the output
values at or near the end of each month to compute the standardized regression coefficients
as defined in (4.2.8). In doing so, we obtain a time series giving the standardized regression
coefficients for CICE and MPM as functions of the calendar day. These series are compared
to provide a measure of the equivalence of the responses by the two codes.

4.3 Single Parameter Sensitivity Results

For the single parameter sensitivity study (OAT) where each parameter was varied individ-
ually, a comparison can be made of the behavior of the response function with respect to a
given parameter between the two sea ice codes. These results indicate whether a parameter
is important to a given response function. However, these results do not provide information
on how strong the response is compared with other parameters.

In Figure 4.3.1 the standardized regression coefficients for total ice area with respect
to the ten parameters of interest are shown. The blue curve is the result from CICE and
the red curve is the MPM result. CICE tends to exhibit simple, in many cases constant
over the year, responses to the parameter variation. For example, the total ice area change
with respect to all three albedo parameters (αice,v, αice,i, αsnow,v), the emissivity (ε), and the
fresh ice conductivity (k0) shows strong positive response and the total ice area change with
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respect to maximum salinity (Smax) shows strong negative response. In each of these cases
the MPM results are significantly noisier although MPM does show positive response for
the middle part of the year for the albedos, the emissivity, and the fresh ice conductivity.
Interestingly, the total ice area displays a similar response in both CICE and MPM for the
ice-ocean drag coefficient (cw), which is positive in April through October and negative for
the rest of the year. The standardized regression coefficients for total ice extent (Figure
4.3.1) show similar behavior to the coefficients for total ice area, except for the case of the
ridging parameter a∗, which indicates a positive response for the first seven months of the
year. Although the responses are somewhat noisier we still see positive response for albedo
(αice,v, αice,i, αsnow,v), emissivity (ε), and conductivity (k0).

Figure 4.3.3 displays the standardized regression coefficients for total ice volume with
respect to each of the ten parameters. For this response, the MPM and CICE coefficients
show similar sensitivity and input-to-output correlations for most of the thermodynamic
variables. The albedos (αice,v, αice,i, αsnow,v), the emissivity (ε), the fraction of shortwave
radiation absorbed (i0) and the fresh ice conductivity (k0) all show a positive response for
at least half of the year. Strangely, the maximum salinity (Smax), ridging parameter a∗,
and ridging parameter µ exhibit strongly negative responses for CICE and mostly positive
responses for MPM. This may result from an overall weak dependence of ice volume to these
parameters, such that responses in either direction may be observed.

The standardized regression coefficients for RMS ice speed with respect to most of the
parameters are noisy for MPM and exhibit quite a bit of variation for CICE (Figure 4.3.4).
However, both codes display a strong negative response with respect to the ice-ocean drag
coefficient (cw). This is consistent with the physical mechanism of a larger drag reducing the
velocity of the ice.

Results for the single parameter study evaluation of central Arctic ice thickness, shown
in Figure 4.3.6, are quite similar to results for total ice volume. In this case both the
MPM and CICE results display a strong positive sensitivity to the albedo parameters
(αice,v, αice,i, αsnow,v), the emissivity (ε), the fraction of shortwave penetrating the ice (i0),
and fresh ice conductivity (k0), in the second half of the year. Again the standardized re-
gression coefficient responses for maximum salinity (Smax) and the ridging parameter a∗ are
nearly opposite for MPM and CICE.

As with the RMS ice speed results, the standardized regression coefficients for the central
Arctic ice speed are quite noisy for all parameters except the ice-ocean drag coefficient (cw),
which exhibits strong negative response (Figure 4.3.6).

4.4 Multi-Parameter Sensitivity Results

More interesting and perhaps more significant results can be derived from the multi-parameter
studies where a ranking of variable importance may be obtained. For the multi-parameter
studies the standardized regression coefficients for the MPM and CICE runs show many
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Figure 4.3.1: Normalized sensitivity of total ice area with respect to (a) visual ice albedo,
(b) near-infrared ice albedo, (c) visual snow albedo, (d) emissivity, (e) fraction of shortwave
absorbed by ice, (f) fresh ice conductivity, (g) maximum salinity, (h) ice-ocean drag coeffi-
cient, (i) ridging parameter a∗, and (j) ridging parameter µ. (MPM curve in red and CICE
curve in blue.)
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Figure 4.3.2: Standardized regresion coefficients for total ice extent with respect to (a)
visual ice albedo, (b) near-infrared ice albedo, (c) visual snow albedo, (d) emissivity, (e)
fraction of shortwave absorbed by ice, (f) fresh ice conductivity, (g) maximum salinity, (h)
ice-ocean drag coefficient, (i) ridging parameter a∗, and (j) ridging parameter µ. (MPM
curve in red and CICE curve in blue.)
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Figure 4.3.3: Standardized regression coefficients for total ice volume with respect to (a)
visual ice albedo, (b) near-infrared ice albedo, (c) visual snow albedo, (d) emissivity, (e)
fraction of shortwave absorbed by ice, (f) fresh ice conductivity, (g) maximum salinity, (h)
ice-ocean drag coefficient, (i) ridging parameter a∗, and (j) ridging parameter µ. (MPM
curve in red and CICE curve in blue.)
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Figure 4.3.4: Standardized regression coefficients for RMS ice speed with respect to (a)
visual ice albedo, (b) near-infrared ice albedo, (c) visual snow albedo, (d) emissivity, (e)
fraction of shortwave absorbed by ice, (f) fresh ice conductivity, (g) maximum salinity, (h)
ice-ocean drag coefficient, (i) ridging parameter a∗, and (j) ridging parameter µ. (MPM
curve in red and CICE curve in blue.)
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Figure 4.3.5: Standardized regression coefficients for central Arctic ice thickness with
respect to (a) visual ice albedo, (b) near-infrared ice albedo, (c) visual snow albedo, (d)
emissivity, (e) fraction of shortwave absorbed by ice, (f) fresh ice conductivity, (g) maximum
salinity, (h) ice-ocean drag coefficient, (i) ridging parameter a∗, and (j) ridging parameter µ.
(MPM curve in red and CICE curve in blue.)
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Figure 4.3.6: Standardized regression coefficients for central Arctic ice speed with respect
to (a) visual ice albedo, (b) near-infrared ice albedo, (c) visual snow albedo, (d) emissivity,
(e) fraction of shortwave absorbed by ice, (f) fresh ice conductivity, (g) maximum salinity,
(h) ice-ocean drag coefficient, (i) ridging parameter a∗, and (j) ridging parameter µ. (MPM
curve in red and CICE curve in blue.)

44



similarities as seen in Figures 4.4.1 - 4.4.6.

As with the single-parameter results, the total ice area and total ice extent show similar
sensitivity responses (Figure 4.4.1, Figure 4.4.2). For both CICE and MPM, the total ice
area and extent display strong negative sensitivity responses to the ocean drag coefficient
(cw) at the beginning and end of the year corresponding to times where there is a consider-
able amount of new thin ice. This is a plausible response since a higher drag coefficient will
reduce the velocity of the ice and thereby reduce the amount of thin ice area that is lost due
to ridging under converging conditions. In the middle of the year when melting dominates,
the dependence on the ocean drag coefficient is significantly reduced. As expected, thermo-
dynamic parameters become more important during this time as seen in the CICE results,
which show a strong positive sensitivity response to visual ice albedo for May through Oc-
tober. The MPM results appear somewhat noisier; however, a positive sensitivity response
is seen for the emissivity (ε), visual snow albedo (αsnow,v), and visual ice albedo (αice,v) in
the middle of the year.

The standardized regression coefficients for total ice volume display interesting behavior
and are similar for both codes (Figure 4.4.3). In the early part of the year from January to
May, a strong positive response is seen for the fresh ice conductivity (k0), which influences
the growth of ice through the conductive flux. Until June, most other parameters show
little if any influence on the total ice volume, but once the solar shortwave radiation input
is significant the albedo parameters (αice,v, αice,i, αsnow,v) and emissivity (ε) begin to have an
effect. Interestingly, in the case of both codes, the visual snow albedo has a greater influence
in June and then decreases over the rest of the year. This is likely due to the fact that much
of the ice is snow covered initially, but by later in the summer snow has melted thus exposing
ice and increasing the importance of the visual ice albedo.

In the case of RMS ice speed the standardized regression coefficients display a fairly sim-
ple behavior for both codes (Figure 4.4.4). The RMS ice speed exhibits a strong negative
sensitivity to the ice-ocean drag coefficient (cw) throughout the year. This is entirely consis-
tent with the formulation where a larger drag coefficient increases the drag on the ice and
reduces the overall ice velocity. The other parameters, except perhaps for the ridging pa-
rameter µ in December for the CICE calculation, do not demonstrate any significant effects
on the RMS ice speed.

The standardized regression coefficients for central Arctic ice thickness appear quite sim-
ilar to the coefficients for total ice volume (Figure 4.4.5), which is not surprising since total
ice volume is directly related to the thickness of the ice. As before, in the early part of the
year a strong positive response to fresh ice conductivity (k0) is seen and after June positive
responses to albedo parameters (αice,v, αice,i, αsnow,v) and emissivity (ε) are seen. Also, the
coefficients for the visual snow albedo again display an initial peak in June and a decrease
over the summer, most likely due to the melting away of snow cover.

For the central Arctic ice speed the standardized regression coefficients display similar
behavior to the coefficients for RMS ice speed (Figure 4.4.6). There is a strong negative
response throughout the year to the ice-ocean drag coefficient (cw) and minimal responses
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Figure 4.4.1: Standardized regression coefficients for total ice area with respect to the ten
parameters for (a) MPM and (b) CICE.
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Figure 4.4.2: Standardized regression coefficients for total ice extent with respect to the
ten parameters for (a) MPM and (b) CICE.
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Figure 4.4.3: Standardized regression coefficients for total ice volume with respect to the
ten parameters for (a) MPM and (b) CICE.
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Figure 4.4.4: Standardized regression coefficients for RMS ice speed with respect to the
ten parameters for (a) MPM and (b) CICE.

49



1 2 3 4 5 6 7 8 9 10 11 12
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Month

S
ta

nd
ar

di
ze

d 
R

eg
re

ss
io

n 
C

oe
ffi

ci
en

ts

 

 

α
ice,v

α
ice,i

α
snow,v

ε
i
0

S
max

c
w

a*

µ
k

0

(a)

1 2 3 4 5 6 7 8 9 10 11 12
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Month

S
ta

nd
ar

di
ze

d 
R

eg
re

ss
io

n 
C

oe
ffi

ci
en

ts

 

 

α
ice,v

α
ice,i

α
snow,v

ε
i
0

S
max

c
w

a*

µ
k

0

(b)

Figure 4.4.5: Standardized regression coefficients for central Arctic ice thickness with
respect to the ten parameters for (a) MPM and (b) CICE.
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for the other parameters. In the CICE case, the ridging parameter µ shows a negative
response for March through May of the year.

Table 4.4.1: Three most significant parameters in CICE and MPM for Atot ranked according
to the magnitude of the standardized regression coefficient (in parentheses) for each month.

Month Atot CICE
01 k0 (0.582) cw (-0.51) µ (0.450)
02 k0 (0.576) µ (0.566) cw (-0.408)
03 k0 (0.665) αice,v (0.425) µ (0.330)
04 k0 (0.515) αice,v (0.492) ε (0.450)
05 αice,v (0.591) ε (0.446) k0 (0.415)
06 αice,v (0.694) ε (0.377) αice,i (0.334)
07 αice,v (0.722) αice,v (0.360) ε (0.351)
08 αice,v (0.773) αice,v (0.371) ε (0.333)
09 αice,v (0.758) ε (0.377) αice,v (0.360)
10 αice,v (0.663) αsnow,i (0.465) ε (0.422)
11 µ (0.550) k0 (0.445) cw (-0.390)
12 cw (-0.648) µ (0.550) k0 (0.411)

Month Atot MPM
01 cw (-0.793) Smax (-0.244) ε (0.168)
02 cw (-0.534) αice,i (0.297) αice,v (0.213)
03 cw (-0.469) ε (-0.173) αice,i (-0.146)
04 cw (-0.50) i0 (-0.252) αice,i (-0.218)
05 ε (0.640) i0 (0.564) k0 (0.277)
06 a∗ (-0.532) k0 (0.403) αsnow,i (0.381)
07 αsnow,i (0.545) αice,v (0.500) a∗ (-0.423)
08 αice,v (0.634) ε (0.433) αsnow,i (0.399)
09 αice,v (0.471) αsnow,i (0.405) i0 (-0.289)
10 cw (-0.465) i0 (-0.256) αice,v (0.147)
11 cw (-0.420) αice,i (-0.190) i0 (-0.144)
12 cw (-0.607) αice,v (-0.193) a∗ (0.174)

Another way of looking at the data is provided in Tables 4.4.1–4.4.6, where the three
most significant parameters, i.e., the parameters that have the highest impact on the given
response function, are listed for each month with their associated standardized regression
coefficients. Table 4.4.1 shows that the most significant parameter for total ice area (Atot)
often differs between MPM and CICE. This can also be seen in Figure 4.4.1 where even
though the qualitative responses are similar for both codes parameter rankings may differ.
From January to April the most significant parameter for the total ice area (Atot) is k0 in
the case of CICE and is cw in the case of MPM. During this time both codes show a negative
response the ice-ocean drag coefficient (cw), but for CICE the thermodynamic parameters,
including k0 produce a stronger response. During May, the total ice area is most sensitive to
αice,v according to CICE; however, the SA results for MPM indicate that the total ice area
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Figure 4.4.6: Standardized regression coefficients for central Arctic ice speed with respect
to the ten parameters for (a) MPM and (b) CICE.
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Table 4.4.2: Three most significant parameters in CICE and MPM for Etot ranked according
to the magnitude of the standardized regression coefficient (in parentheses) for each month.

Month Etot CICE
01 cw (-0.776) k0 (0.446) ε (0.256)
02 cw (-0.788) k0 (0.372) µ (0.326)
03 k0 (0.700) ε (0.310) cw (-0.297)
04 k0 (0.533) ε (0.466) αsnow,i (-0.297)
05 αice,v (0.555) ε (0.469) αsnow,i (0.449)
06 αice,v (0.681) ε (0.410) αsnow,i (0.401)
07 αice,v (0.692) αsnow,i (0.369) ε (0.348)
08 αice,v (0.707) αsnow,i (0.385) ε (0.370)
09 αice,v (0.724) αsnow,i (0.400) ε (0.389)
10 αice,v (0.630) αsnow,i (0.458) ε (0.406)
11 cw (-0.633) µ (0.413) k0 (0.411)
12 cw (-0.827) µ (0.386) k0 (0.251)

Month Etot MPM
01 cw (-0.801) Smax (-0.238) ε (-0.161)
02 cw (-0.543) αice,i (0.302) αice,v (-0.187)
03 cw (-0.463) ε (-0.183) Smax (0.155)
04 cw (-0.486) µ (-0.252) i0 (-0.244)
05 αsnow,i (0.416) cw (-0.343) ε (-0.235)
06 ε (-0.400) αsnow,i (0.397) αice,v (0.369)
07 αsnow,i (0.571) αice,v (-0.451) ε (-0.367)
08 αsnow,i (0.518) αice,v (-0.451) ε (-0.440)
09 i0 (-0.314) αsnow,i (0.300) αice,v (-0.278)
10 cw (-0.474) i0 (-0.256) αice,v (-0.143)
11 cw (-0.420) αice,i (-0.171) i0 (-0.157)
12 cw (-0.613) αice,v (-0.178) i0 (-0.167)

is most sensitive to ε. For June the total ice area continues to be most sensitive to αice,v

according to CICE but it changes sensitivity to a∗ for MPM. This is the only point where
the ridging parameter a∗ is the most significant and, in general, it does not have a significant
effect on the response functions. For August, September and December both CICE and
MPM show sensitivity of the total ice area to the same parameters: αice,v for August and
September and cw during December. For MPM cw is the most significant parameter for the
total ice area in October and November, as well. The SA for CICE shows different results,
however. In October, the total ice area is most sensitive to αice,v and in November the
sensitivity changes to µ. Some of the differences between the responses for the two codes
may be due to the use of an ocean mixed-layer model in CICE. This algorithm allows for
changes in SST due to thermodynamic fluxes through the ice, which may have a strong
influence on where ice grows and melts thereby changing the ice area and extent.
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Table 4.4.3: Three most significant parameters in CICE and MPM for Vtot ranked according
to the magnitude of the standardized regression coefficient (in parentheses) for each month.

Month Vtot CICE
01 k0 (0.97) µ (-0.143) Smax (-0.115)
02 k0 (0.96) Smax (-0.174) µ (-0.153)
03 k0 (0.94) Smax (-0.204) µ (-0.163)
04 k0 (0.926) Smax (-0.220) µ (0.167)
05 k0 (0.83) αice,v (0.332) Smax (-0.125)
06 αsnow,i (0.55) αice,v (0.527) ε (0.401)
07 αice,v (0.68) αice,i (0.424) αsnow,i (0.409)
08 αice,v (0.73) αice,i (0.422) ε (0.378)
09 αice,v (0.74) αice,i (0.418) ε (0.375)
10 αice,v (0.74) αice,i (0.413) ε (0.368)
11 αice,v (0.728) αice,i (0.399) ε (0.353)
12 αice,v (0.705) αice,i (0.380) k0 (0.352)

Month Vtot MPM
01 k0 (0.996) cw (-0.086) ε (0.045)
02 k0 (0.980) cw (-0.087) a∗ (0.058)
03 k0 (0.979) cw (-0.099) µ (0.070)
04 k0 (0.979) αsnow,i (0.140) a∗ (0.098)
05 k0 (0.954) αsnow,i (0.277) ε (0.147)
06 αsnow,i (0.714) k0 (0.469) ε (0.439)
07 αsnow,i (0.622) αice,v (0.502) ε (0.444)
08 αsnow,i (0.561) αice,v (0.560) ε (0.456)
09 αice,v (0.572) αsnow,i (0.560) ε (0.449)
10 αice,v (0.577) αsnow,i (0.559) ε (0.437)
11 αice,v (0.569) αsnow,i (0.557) ε (0.415)
12 αice,v (0.536) αsnow,i (0.560) k0 (0.456)

The SA results presented in Table 4.4.2 compare the ranking in sensitivity of the the
response Etot for CICE and MPM with respect to the top three most significant models
parameters. For January, February, November and December, both codes show highest
sensitivity of Etot to the ice-ocean drag coefficient (cw). MPM’s Etot continues to show
highest sensititvity to cw during March and April and October; however, CICE’s Etot shows
highest sensitivity to k0 for March and April and to αice,v for October. For the rest of the
year, the most significant parameter for Etot calculated by CICE is αice,v; for MPM’s Etot

significant parameters are αsnow,i, ε and i0. It is interesting to note that the second and third
most significant parameters show relatively high sensitivity values of the Etot for both CICE
and MPM for some months. For example, for June, the MPM’s Etot response demonstrates
almost uniform sensitivity to ε, αsnow,i, αice,v. Similar observation holds during May for
CICE: the Etot is almost equally sensitive to αice,v, ε and αsnow,i.
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Table 4.4.4: Three most significant parameters in CICE and MPM for vrms ranked ac-
cording to the magnitude of the standardized regression coefficient (in parentheses) for each
month.

Month vrms CICE
01 cw (-0.989) µ (-0.179) a∗ (-0.64)
02 cw (-0.991) µ (-0.167) k0 (-0.072)
03 cw (-0.960) µ (-0.303) a∗ (-0.122)
04 cw (-0.977) µ (-0.184) a∗ (-0.133)
05 cw (-0.957) µ (-0.218) a∗ (-0.193)
06 cw (-0.932) αice,v (-0.214) a∗ (-0.198)
07 cw (-0.989) αice,v (-0.099) αsnow,i (-0.081)
08 cw (-0.985) αsnow,i (-0.129) αice,v (-0.039)
09 cw (-0.969) αsnow,i (-0.159) αice,v (-0.09)
10 cw (-0.996) µ (-0.073) αice,v (-0.06)
11 cw (-0.941) µ (-0.271) k0 (-0.200)
12 cw (-0.876) µ (-0.441) k0 (-0.216)

Month vrms MPM
01 cw (-0.964) Smax (-0.076) αice,i (-0.067)
02 cw (-0.926) a∗ (0.092) µ (0.066)
03 cw (-0.904) αice,v (-0.189) µ (0.121)
04 cw (-0.939) k0 (-0.079) µ (0.066)
05 cw (-0.915) k0 (-0.177) µ (0.082)
06 cw (-0.846) µ (0.206) Smax (-0.133)
07 cw (-0.883) Smax (-0.133) a∗ (0.108)
08 cw (-0.929) αice,i (-0.099) Smax (-0.074)
09 cw (-0.898) Smax (-0.102) αsnow,i (-0.073)
10 cw (-0.966) αsnow,i (-0.094) Smax (-0.045)
11 cw (-0.939) µ (-0.095) αsnow,i (-0.086)
12 cw (-0.932) αice,i (-0.059) ε (-0.054)

The SA results in Table 4.4.3 show more consistent results for the two codes. From
the SA results in Table 4.4.3, the most significant parameter from January to May is the
fresh ice conductivity (k0) for both CICE and MPM. For June, the SA results for CICE
and MPM indicate that the total ice volume is most sensitive to near-infrared snow albedo
αsnow,i. For July and August the results for CICE shows that the total ice volume is most
sensitive to visual ice albedo αice,v. However, MPM results show that the total ice volume is
most sensitive to near-infrared ice albedo αice,i. From September to December the results for
both codes show consistently that the total ice volume is most sensitive to visual ice albedo
αsnow,v. Overall, the first five months are dominated by fresh ice conductivity (k0) and the
final seven months by one of the three albedo parameters. This result implies that the total
ice volume is primarily influenced by the thermodynamic flux balance at the ice-atmosphere
boundary.
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Table 4.4.5: Three most significant parameters in CICE and MPM for hCA ranked according
to the magnitude of the standardized regression coefficient (in parentheses) for each month.

Month hCA CICE
01 µ (-0.607) cw (0.238) k0 (0.382)
02 k0 (0.752) µ (-0.365) Smax (-0.362)
03 k0 (0.633) µ (-0.459) cw (-0.44)
04 k0 (0.697) µ (-0.440 ) a∗ (-0.362)
05 k0 (0.679) µ (-0.479) Smax (-0.332)
06 αsnow,i (0.694) αice,v (0.474) αice,i (0.351)
07 αice,v (0.679) αice,i (0.483) αsnow,i (0.396)
08 αice,v (0.725) αice,i (0.430) ε (0.355)
09 αice,v (0.778) αice,i (0.429) ε (0.313)
10 αice,v (0.779) αice,i (0.425) ε (0.304)
11 αice,v (0.779) αice,i (0.418) ε (0.294)
12 αice,v (0.778) αice,i (0.403) ε (0.286)

Month hCA MPM
01 k0 (0.89) ε (0.148) αice,i (-0.089)
02 k0 (0.945) cw (-0.088) ε (0.079)
03 k0 (0.940) cw (-0.127) µ (-0.127)
04 k0 (0.962) cw (-0.121) αsnow,i (0.109)
05 k0 (0.949) αsnow,i (0.335) µ (0.113)
06 αsnow,i (0.726) ε (0.604) k0 (0.369)
07 αsnow,i (0.573) αice,v (0.57) αice,i (0.419)
08 αice,v (0.612) αsnow,i (0.518) αice,i (0.435)
09 αice,v (0.608) αsnow,i (0.520) αice,i (0.427)
10 αice,v (0.622) αsnow,i (0.512) ε (0.413)
11 αice,v (0.611) αsnow,i (0.526) ε (0.398)
12 αice,v (0.600) αsnow,i (0.485) ε (0.397)

The results in Table 4.4.4 consistently show that the most significant parameter for
the RMS ice speed during the entire year for both CICE and MPM is the ice-ocean drag
parameter (cw). In the case of CICE the second most important parameter is an albedo
parameter from June through September and the ridging coefficient µ during the rest of the
year, which suggests that thermodynamic parameters are more important during the melt
season and ridging parameters are more important during the remainder of the year. There
is more variability in the second and third most important parameter for MPM, but these
parameters all have standardized regression coefficients with absolute values generally less
than 0.2 and often less than 0.1, which makes them much less significant.

The results in Table 4.4.5 for central Arctic ice thickness display similar behavior to the
results for total ice volume. For the first five months of year, the central Arctic ice thickness
sensitivity is dominated by the fresh ice conductivity (k0) and the rest of the year by albedo

56



Table 4.4.6: Three most significant parameters in CICE and MPM for vCA ranked ac-
cording to the magnitude of the standardized regression coefficient (in parentheses) for each
month.

Month vCA CICE
01 cw (-0.872) µ (-0.126) k0 (-0.125)
02 cw (-0.986) µ (-0.178) a∗ (-0.091)
03 cw (-0.698) µ (-0.680) k0 (-0.289)
04 µ (-0.569) k0 (-0.466) cw (0.410)
05 cw (-0.670) µ (-0.542) a∗ (-0.434)
06 cw (-0.694) αice,v (-0.241) Smax (0.138)
07 cw (-0.793) αice,v (-0.303) αice,i (-0.237)
08 cw (-0.715) αice,v (-0.303) αice,i (-0.173)
09 cw (-0.976) αice,v (-0.149) αice,i (-0.176)
10 cw (-0.993) αice,v (-0.104) µ (-0.080)
11 cw (-0.987) k0 (-0.107) µ (-0.095)
12 cw (-0.956) µ (-0.307) k0 (-0.108)

Month vCA MPM
01 cw (-0.900) ε (-0.134) k0 (-0.093)
02 cw (-0.878) Smax (0.3101) αsnow,i (-0.094)
03 cw (-0.749) a∗ (-0.155) Smax (0.081)
04 cw (-0.833) Smax (-0.201) k0 (-0.182)
05 cw (-0.869) k0 (-0.235) αice,i (0.156)
06 cw (-0.964) k0 (0.140) αsnow,i (0.060)
07 cw (-0.846) αsnow,i (0.341) αice,i (0.210)
08 cw (-0.785) ε (0.258) αice,i (0.220)
09 cw (-0.846) Smax (0.189) αsnow,i (-0.193)
10 cw (-0.903) αsnow,i (0.217) αice,v (-0.161)
11 cw (-0.777) αsnow,i (0.284) αice,v (-0.128)
12 cw (-0.918) αice,v (-0.083) i0 (-0.077)

parameters. The second and third most important parameters for June through December
for both CICE and MPM with respect to central Arctic ice thickness are either emissivity (ε)
or one of the albedos indicating that thermodynamic parameters have the most significant
effect during this time of year.

The results in Table 4.4.6 for central Arctic ice speed are similar to the results for RMS
ice speed in that the most significant parameter during the entire year for both CICE and
MPM is the ice-ocean drag parameter (cw). Central Arctic ice speed demonstrates high
sensitivity (i .e., absolute value of standardized regression coefficient greater than 0.5) to µ
during March and May for CICE, but for MPM the top three most significant parameters
are all thermodynamic parameters and do not include µ.

In order to visualize the amount of variation over the fifty samples in selected responses,
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the mean of total ice volume, total ice area, and RMS ice speed over the year for fifty
samples are shown in Figure 4.4.7 by the black line with two standard deviations from the
mean indicated by the blue lines. Qualitatively, the seasonal cycle of ice volume and area
are similar for the CICE and MPM codes. In the case of the volume, CICE exhibits more
variation over the season with a maximum of 3.72×1013 m3 and a minimum of 1.13×1013

m3 compared to the MPM maximum of 3.63×1013 m3 and minimum of 1.44×1013 m3.

In the case of total ice area, the MPM code exhibits more spread in the samples through-
out the majority of the year, although near the time of minimum ice extent it displays less
variation than CICE. The lack of variation at the minimum may be due to the ocean mixed
layer model in CICE that allows SST to vary based on radiative and other fluxes passing to
the upper layer of the ocean. The SST is used to calculate the ocean flux, which is important
for determining whether ice is melting or growing at a particular location. Note, however,
that although the CICE set of calculations displays a large spread in total sea ice area in
the summer, at the end of the year this spread has reduced significantly. This suggests that
variations in sea ice area due to physical parameter perturbations when using a more realistic
mixed-layer formulation are not cumulative over multiple years.

The velocity in both cases is somewhat noisy, which is likely due to the fact that the
ice was started from rest at the beginning of the year. Using a multi-year initialization
that starts from a point of near equilibrium may reduce the noise. However, the standard
deviations of the sample velocities are not large. This is consistent with the observation that
most of the parameters chosen for the sensitivity study do not have a significant effect on
velocity. In future research it would be interesting to compare the relative importance of
rheological parameters with the ice-ocean drag coefficient on the velocity to determine which
has a stronger effect.
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Figure 4.4.7: The seasonal cycle showing the mean (black) and two-sigma bounds (blue)
of (a) MPM ice volume, (b) CICE ice volume, (c) MPM ice area, (d) CICE ice area, (e)
MPM RMS ice speed, (f) CICE RMS ice speed, for 50 Latin hypercube samples.
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Chapter 5

Conclusions

A new sea ice model has been developed for basin-scale calculations of the Arctic ocean
that combines a new anisotropic constitutive model with a particle-in-cell type numerical
solution of the ice dynamics governing equations. We compare this model to the state-of-
the-art LANL CICE code in a single year simulation of the Arctic basin. Although, the ice
thickness distribution and velocity at the end of the one year simulation differ substantially
between the codes, the response of each code to perturbations in a set of ten dynamic and
thermodynamic parameters is quite similar.

Of the ten parameters of interest, the maximum salinity (Smax) does not have significant
influence on any of the response functions evaluated in this study and could probably be
neglected in future studies. The ridging parameters (a∗, µ) also do not seem to have a
significant influence on most of the response functions and could likely also be neglected in
future studies. Interestingly, the thickness and volume show a strong positive response to
fresh ice conductivity (k0) in the first part of the year, but, as expected, the albedo parameters
(αice,v, αice,i, αsnow,v) become more significant than the conductivity between May and June.
It is likely that the conductivity would not show such a significantly higher response in the
early part of the year over a multi-year simulation since the changes in thickness and volume
due to albedo perturbations would be cumulative over multiple years. Unsurprisingly, the
velocity-related functions show strong negative responses to the ice-ocean drag coefficient
(cw). It is likely that only rheological parameters and ice-atmosphere drag parameters would
have produced as significant of an effect. Overall, the data show that volume and thickness
are strongly dependent on albedo and other thermodynamic parameters, ice area and extent
are strongly dependent on dynamic parameters in the winter months and on thermodynamic
parameters in the summer months, and the ice velocity is strongly dependent on only one of
the dynamic parameters (cw).

This study focused on the variability of output response functions of each code to changes
in physical parameters within the models. In should be noted that the ocean and atmospheric
data for these simulations were prescribed and it is likely that running the same calculations
with a fully coupled atmosphere and ocean model would produce different results due to
feedback effects between the ice and atmosphere and ice and ocean. An additional limitation
was introduced by initializing the ice in both codes from rest. In future work, a similar multi-
parameter study could be done from a more realistic intialized state. However, the simple
initialization was very useful for providing an identical initial state for both codes that

61



allowed a direct comparison over time.

As part of our future work, we will continue to investigate sensitivity of both codes with
respect to the model parameters. Our first step will be to rerun the SA considering other
methods, such as response surface approximations to the original models considering higher
than the first order terms, variance based methods and Bayesian SA and will compare the
results across these different SA techniques. Once the most significant parameters are con-
firmed, we will propagate uncertainty through the models by varying only those parameters
determined to be significant. We will then compare the variability ranges in the response
function for the reduced and full order analysis. The goal will be to determine how well
the smaller number of significant parameters can approximate the overall variability in the
responses produced when all ten parameters are varied simultaneously. This analysis will
give useful information on what the actual dimension of the problem space is and will be
very useful for development of reliable, computationally efficient and scalable uncertainty
quantification methodology for future high-fidelity arctic sea ice models predictions in terms
of best estimates and uncertainty ranges.
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