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Abstract

The analysis of spacecraft kinematics and dynamics requires an efficient scheme for spatial repre-
sentation. While the representation of displacement in three dimensional Euclidean space is straight-
forward, orientation in three dimensions poses particular challenges. The unit quaternion provides an
approach that mitigates many of the problems intrinsic in other representation approaches, including the
ill-conditioning that arises from computing many successive rotations. This report focusses on the com-
putational utility of unit quaternions and their application to the reconstruction of re-entry vehicle (RV)
motion history from sensor data. To this end they will be used in conjunction with other kinematic and
data processing techniques.

We will present a numerical implementation for the reconstruction of RV motion solely from gyro-
scope and accelerometer data. This will make use of unit quaternions due to their numerical efficacy
in dealing with the composition of many incremental rotations over a time series. In addition to signal
processing and data conditioning procedures, algorithms for numerical quaternion-based integration of
gyroscope data will be addressed, as well as accelerometer triangulation and integration to yield RV
trajectory. Actual processed flight data will be presented to demonstrate the implementation of these
methods.
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Notation

General Mathematical Objects

Sets

The following standard set notation will be employed.

{} designation of a set

| such that

∀ for all

∈ element of

R set of real numbers

Rn set of realn-dimensional vectors

Rm×n set of realm×n matrices

C set of complex numbers

H set of quaternions

Scalars

Scalars (rank 0 tensors) will always be represented with non-bold italic characters (e.g.a). These include
scalars as well as scalar components of vectors and matrices. Scalar components of vectors and matrices will
be denoted with a subscripted index to the right of the scalar symbol (e.g.vi, Mi j). The following standard
operators will be employed.

δ variation
d�

d�
derivative

�̇ time derivative

Complex Numbers and Quaternions

Complex numbers and quaternions will always be represented with non-bold lower case (typically) italic
characters. The components can be shown as a sum of the real and imaginary parts. For example,

z = a+ ib (1)

h = h0 + h1i + h2j + h3k (2)
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Vectors, Points, and Line Segments

Vectors (rank 1 tensors) will always be represented with bold lower case (typically) characters. Unit vectors
will be denoted with a�̂, as in k̂. The components of a vector can be shown as an array or as a linear
combination of basis vectors. Basis vectors will be denoted asê. For example,

v =





v1

v2

v3



 = v1ê1 + v2ê2 + v3ê3 (3)

Points will be represented using non-bold italic characters. Line segments between two points will be
denoted with an

−→
� , as in

−→
AB.

Matrices and Tensors

Matrices (rank 2 tensors) will always be represented with bold upper case (typically) characters. The com-
ponents can be shown as an array or as a linear combination of dyads. Dyads consist of a pair of base vectors
separated by an outer product symbol,⊗. For example,

M =

(

M11 M12

M21 M22

)

= M11ê1⊗ ê1 + M12ê1⊗ ê2 + M21ê2⊗ ê1 + M22ê2⊗ ê2 (4)

The identity matrix will be denoted as1 and thezero matrix will be denoted as0.

Vector and Matrix Operators

The following standard vector and matrix operators will be employed.

· dot product

‖�‖ norm

× cross product

⊗ outer product

δ variation
d�

ds derivative with respect to a scalar,s

�̇ time derivative

Kinematic Objects

Objects having a kinematic meaning inherit all of the aforementioned rules with respect to their mathemati-
cal type. Additionally they adhere to the following with regard to their physical type.

A position vector,r , will use a right subscript to denote the material point it refers to and a left superscript
to denote the basis it is expressed in. Velocity,v and acceleration,a, vectors will additionally denote the
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frame which motion is relative to using a “:” separator in the right subscript. Angular velocity,ω , and angular
acceleration vectors,α , will use a right subscript to denote the body they refer to and a left superscript to
denote the basis they are expressed in. As with velocity they will additionally denote the frame which motion
is relative to using a “:”. Any annotation can be omitted if the information conveyed by it is already clear
from the context.

Coordinate transformation matrices, including both orthogonal rotation matrices,Q, and homogenous
transformation matrices,T, will denote the frame of interest using a left subscript and the embedding frame
using a left superscript. Unit quaternions,h, will use similar annotation. Again, any annotation can be
omitted if the information conveyed by it is already clear from the context.

Br GA
position vector of center of mass,G, of bodyA expressed inB

Bd−→AB displacement vector between pointsA andB, expressed inB
A

B
Q rotation matrix ofB with respect toA

Qk(θ) rotation matrix representing a spin ofθ aboutk̂
A

B
h quaternion ofB with respect toA

hk(θ) quaternion representing a spin ofθ aboutk̂

{α ,β ,γ} Euler angle set angles
A

B
T homogenous transformation matrix ofB with respect toA

BvGA :O velocity vector of center of mass,G, of bodyA, relative toO, expressed inB
BωA:O angular velocity vector of bodyA, relative toO, expressed inB
BΩA:O angular velocity tensor of bodyA, relative toO, expressed inB
BωA:O angular velocity quaternion of bodyA, relative toO, expressed inB
BEA Jacobian (with respect to angle set rates) of angular velocity of bodyA expressed inB
BaGA :O acceleration vector of center of mass,G, of bodyA, relative toO, expressed inB
BαA:O angular acceleration vector of bodyA, relative toO, expressed inB
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1 Introduction

A number of spatial representations have been useful in the analysis of spacecraft kinematics and dynamics
[1] [8] [11]. While the representation of displacement in three dimensional Euclidean space is straight-
forward, orientation in three dimensions, the special orthogonal groupSO(3), poses particular challenges.
Traditional representations of orientation include orthogonal matrices, angle-sets, and axis-angle parame-
ters. Each of these are suitable for some purposes but problematic for others. For example, angle sets which
represent orientation using a concise sequence of three rotations about successive coordinate axes (either
fixed or relative) suffer from singularities [2]. The orthogonal matrix [5],R3×3, which offers a straightfor-
ward algebra for generating composite rotations involves an excess of parameters (9 matrix components) to
represent orientation. Additionally, it is ill-suited to certain computational applications that involve comput-
ing many successive rotations. This is due to the fact that successive multiplications of orthogonal matrices
at finite precision results in matrices that lose their orthogonality properties.

The unit quaternion provides an approach that mitigates many of the problems intrinsic in other repre-
sentation approaches. In the years subsequent to their introduction in the 19th century by William Rowan
Hamilton [6] [7] [9], the use of quaternions was largely obviated by the vector techniques developed by
Gibbs and others. In recent years there have been a number of new applications for quaternions, especially
in computer graphics. In this area, they have demonstrated particular efficacy when used for interpolating
between orientation states, yielding smooth rotational transitions. Their numerical efficiency and stability,
make them especially amenable to general computational use. Due to their computational utility quaternions
will be applied here as a an effective tool in reconstructing re-entry vehicle (RV) motion history from sensor
data. They will be used in conjunction with other kinematic and data processing techniques to this end.
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2 Overview of the RV Data Analysis Process

The RV data analysis process presented here involves a number of input data sets and a number of analysis
processes. The input data consists of the following:

• Three (3) channels of gyroscope data

• Three (3) channels of accelerometer data

• Initial conditions for position and velocity

• Position and orientation of each of the accelerometers in the local RV reference frame

• CAD model of the RV

The major data analysis processes involve the following:

• Data conditioning of input data (smoothing, interpolation, fitting)

• Reformulating angular velocity as rate of change of a unit quaternion

• Numerical differentiation and integration

• Triangulating center of mass acceleration

• Data conditioning of numerically integrated data (high pass filtering)

• Exporting output data into a motion file

• Visualization

Data conditioning, including low pass filtering (smoothing), interpolation, and fitting is performed on the in-
put gyroscope data. Next, the angular velocity data is reformulated as the rate of change of unit quaternions.
Numerical differentiation of the smoothed angular velocity data and integration of the quaternion rate data
is performed to yield a time history of the RV orientation. Next, the accelerometer data is triangulated to
compute the acceleration of the center of mass of the RV. This is integrated and filtered (high pass) to yield
the velocity and position of the center of mass.Figure 1 depicts this process flow.
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Figure 1. Process flow for the RV data analysis. Data conditioning is
performed on the input gyroscope data. Angular velocity is reformulated
using unit quaternions. Numerical differentiation of the angular velocity
data and integration of the quaternion rate data is performed. The ac-
celerometer data is used to compute the acceleration of the RV center of
mass. This is integrated to yield velocity and position of the center of
mass.
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3 Data Conditioning

3.1 Low Pass Filtering (Smoothing)

Low pass filtering was primarily used for data smoothing. This is fundamentally important since data ac-
quisition inherently involves the inclusion of noise. Since numerical derivatives need to be taken, clean
data is especially crucial. The primary smoothing algorithm used was a Savitzky-Golay filter. A first or-
der Savitzky-Golay filter (moving window averaging) was employed.Figure 2 shows the results of this
smoothing algorithm applied to the rawy-axis gyroscope data.

Figure 2. Results of smoothing channel 45y-axis gyroscope data using
a first order Savitzky-Golay filter. Units have been intentionally omitted.
(Left) Raw signal. (Right) Smoothed signal.

3.2 Interpolation and Curve Fitting

Numerous linear interpolations were performed to synchronize the time series data reported from the various
instruments. This facilitated all the data channels referring to a common time series. Additionally, curve
fitting was performed to fill in a portion of data from a saturated accelerometer. A small portion of data from
another RV flight was inserted into the saturated region. A third order (cubic) polynomial fit was performed
to generate an expression for the data in the saturated region.Figure 3 displays the results of this.

3.3 High Pass Filtering

High pass filtering was used to remove low frequency DC drift from numerically integrated signals. To this
end digital Butterworth filters were designed to remove low frequency elements while preserving the higher
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Figure 3. Curve fitting in saturated region of the accelerometer. A
third order (cubic) polynomial fit was performed using data points from
another RV flight that were inserted into the saturated region. Units have
been intentionally omitted.

frequency elements of the signal. The digital transfer function [4] for performing this filtering is represented
as,

H(z) =
B(z)
A(z)

=
b1 + b2z−1+ · · ·+ bn+1z−n

a1 + a2z−1+ · · ·+ an+1z−n (5)

Theb anda coefficients were determined based on a desired design point. In this case that design point is
based on a desired cutoff frequency,ω3dB. Using a filter design algorithm, a fourth order filter with a.88 Hz
cutoff frequency (pass band of 1 Hz, stop band of.5 Hz) was designed. For this design,b anda have been
determined as,

b =
(

.9855 −3.9421 5.9132 −3.9421 .9855
)T

(6)

a =
(

1 −3.9708 5.9129 −3.9134 .9713
)T

(7)

So,

H(z) =
.9855−3.9421z−1 +5.9132z−2−3.9421z−3 + .9855z−4

1−3.9708z−1 +5.9129z−2−3.9134z−3 + .9713z−4 (8)

The frequency response of this filter is displayed inFigure 4.
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Figure 4. Frequency response of a high pass Butterworth filter designed
to remove low frequency integration drift while preserving the higher
frequency elements of the signal.

The Butterworth filter, described above, was employed in both the forward and reverse directions to
generatezero-phase distortion.Section 5.2 contains the results of this digital filtering which was used in
conjunction with numerical integration to obtain the RV trajectory.

14



4 Reconstruction of Body Orientation

4.1 Algorithm

The task of determining the orientation history of an RV requires a knowledge of the gyroscope data.Figure
5 depicts an incremental change in a body’s orientation inR3. The incremental spin,∆θ , about an axis,̂k,
can be related to the instantaneous angular velocity,ω , of the body. We can use quaternions as an efficient
means of representing orientation resulting from incremental motion.Appendix A provides an overview of
the relevant spherical kinematics with coverage of quaternions (A.4) and the calculus of rotations (A.5).

Figure 5. Instantaneous spin of a body about an axis. The incremental
spin, ∆θ , about an axis,̂k, can be related to the instantaneous angular
velocity,ω , of the body.

Since the gyroscopes provide angular velocity in the body’s local reference frame we can approximate
the orientation quaternion,O

C
h(t + ∆t), of the body based on the previous orientation,O

C
h(t), and the incre-

mental quaternion,hk, associated with a finite but small incremental rotation,∆θ , about an axis,̂k, that is
fixed during the rotation. This can be expressed as,

O

C
h(t + ∆t) ≅

O

C
h(t)hk(∆θ) (9)

Note that the spin axis of the incremental rotation is represented in the local body frame in (9) as opposed
to the base frame (as inAppendix A.5.2) since the gyroscopes measure angular velocity in the local body
frame. Due to small angle properties (seeAppendix A.5.2),

hk(∆θ) ≅ 1+ kx
∆θ
2

i + ky
∆θ
2

j + kz
∆θ
2

k = 1+
1
2

ω∆t (10)

whereω is the angular velocity quaternion,

ω = 0+ ωxi + ωyj + ωzk (11)
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Thus, for numerical integration we can use the following relationship,

O

C
h(t + ∆t) ≅

O

C
h(t)

(

1+
ωx∆t

2
i +

ωy∆t
2

j +
ωz∆t

2
k
)

(12)

If we had implemented this integration using orthogonal rotation matrices we would have,

O

C
Q(t + ∆t) ≅

O

C
Q(t)





1 −ωz ωy

ωz 1 −ωx

−ωy ωx 1



∆t (13)

However, the orthogonality properties ofO

C
Q(t) would degrade with successive multiplications at finite

precision, causing significant problems. In the case of the unit quaternion relationship of (12) the only
concern would be that the length of the quaternion would deviate from unity with successive multiplications.
This could be easily corrected by renormalizing the quaternion as,

O

C
h(t + ∆t) ≅

O

C
h(t)

(

1+ 1
2ω∆t

)

∥

∥O
C

h(t)
(

1+ 1
2ω∆t

)∥

∥

(14)

It is also useful to represent the orientation in terms of Euler angles. We can convert from quaternions
to rotation matrices using the following relationship,

Q(h) =





2(h0h0 + h1h1)−1 2(h1h2−h0h3) 2(h1h3 + h0h2)
2(h1h2 + h0h3) 2(h0h0 + h2h2)−1 2(h2h3−h0h1)
2(h1h3−h0h2) 2(h2h3 + h0h1) 2(h0h0 + h3h3)−1



 (15)

We can then convert fromQ(h) to anxyz Euler set,{α ,β ,γ}, using the solution forxzx Euler angles in terms
of the components ofQ, (seeAppendix A.3). First we note,

Qxzx(α ,β ,γ) =





cosβ −sinβ cosγ sinβ sinγ
cosα sinβ cosα cosβ cosγ−sinα sinγ −cosα cosβ sinγ−sinα cosγ
sinα sinβ sinα cosβ cosγ +cosα sinγ −sinα cosβ sinγ +cosα cosγ



 (16)

The inverse solution is then,

If sinβ 6= 0, (β 6= 0,π),

β = Atan2(
√

Q2
21 + Q2

31,Q11) (17)

α = Atan2(Q31/sβ ,Q21/sβ ) (18)

γ = Atan2(Q13/sβ ,−Q12/sβ ) (19)

If β = 0,

α = 0 (20)

γ = Atan2(Q32,Q22) (21)

If β = π,

α = 0 (22)

γ = Atan2(Q32,−Q22) (23)
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4.2 Results

Figure 6 displays plots of quaternion data calculated from gyroscope data. The data was calculated using
the algorithm described inSection 4.1. The quaternion elementsh2 andh3 are of special interest since they
encode theky andkz components of the spin axis,k̂. These components correspond to the lateral axes of
the RV. While unit quaternions possess computational efficacy, Euler angles can provide an easier means of
mentally decomposing the orientation of a body from 2-D plots.Figure 7 displays a plot of thexzx Euler
angles associated with the RV orientation. Of these angles,β is of particular interest since it indicates the
angular displacement between the RV main axis and the base coordinate framex-axis. Theβ angle can also
be related to the coning angle of the RV (to be discussed inSection 5.1).

Figure 6. Quaternion time history derived from integration of the gyro-
scope data. The four quaternion components are displayed. Units have
been intentionally omitted.
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Figure 7. Euler angle time history derived from integration of the gy-
roscope data. The three Euler angles are displayed. Units have been
intentionally omitted.
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5 Reconstruction of Center of Mass Trajectory

5.1 Algorithm

The task of determining the motion history of the center of mass of an RV requires a knowledge of the
body’s initial conditions, and the gyroscope and accelerometer data.Figure 8 depicts a configuration where
an accelerometer is mounted in each of three locations (frames 1, 2, and 3).

Figure 8. Body with acceleration components known at three different
locations. Accelerometer data taken at three different locations and gy-
roscope data for the body can be used to determine the acceleration of
the center of mass.

The following relationships exist between the acceleration of the center of mass and the accelerations of
the accelerometer frames,

CaO1
= C

1 Q 1aO1
= CaGC

+ CωC× (CωC× Cd1)+ CαC× Cd1 (24)
CaO2

= C

2 Q 2aO2
= CaGC

+ CωC× (CωC× Cd2)+ CαC× Cd2 (25)
CaO3

= C

3 Q 3aO3
= CaGC

+ CωC× (CωC× Cd3)+ CαC× Cd3 (26)

These three vector equations yield nine scalar equations and nine unknowns. The nine unknowns include
the center of mass acceleration components,C ẍGC

, C ÿGC
, andC z̈GC

, as well as the six acceleration components
of frames 1, 2, and 3 which lie in directions orthogonal to the accelerometers. The other three acceleration
components of frames 1, 2, and 3 are known explicitly from the accelerometer values,a1, a2, anda3. For a
general formulation where the accelerometers are mounted arbitrarily we have a linear system,Ax = b, at a
given instant of time whereA is defined as,

A ,









1 −C

1 Q 0 0
1 0 −C

2 Q 0
1 0 0 −C

3 Q
0 diag(ê1)N diag(ê2)N diag(ê3)N









(27)

andN is a logical matrix defined as,

Ni j ,

{

1 if accelerometeri measures in thej direction
0 if accelerometeri does not measures in thej direction

(28)
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The vectorsx and b are defined as,

x ,









CaGC

1aO1
2aO2
3aO3









and, b ,









−CωC× (CωC× Cd1)− CαC× Cd1

−CωC× (CωC× Cd2)− CαC× Cd2

−CωC× (CωC× Cd3)− CαC× Cd3

a









(29)

wherea ,
(

a1 a2 a3
)T

is the vector of accelerometer values. Because the accelerometers are typically
aligned with the center of mass coordinate frame, the above system can be reduced to three scalar equations
and three unknowns. For example, we will be dealing with a case where the accelerometer for frame 1
measures in the+x-axis of the center of mass frame, the accelerometer for frame 2 measures in the+y-axis,
and the accelerometer for frame 3 measures in the−z-axis. So we have,

C ẍGC
= a1− [CωC× (CωC× Cd1)+ CαC× Cd1] · ê1 (30)

C ÿGC
= a2− [CωC× (CωC× Cd2)+ CαC× Cd2] · ê2 (31)

C z̈GC
=−a3− [CωC× (CωC× Cd3)+ CαC× Cd3] · ê3 (32)

Transforming into the initial world coordinate frameO, using quaternions, we have,

OaGC
= O

C
h CaGC

C

O
h (33)

It is noted that in the case above which involves quaternion operations,a is taken to be an acceleration
quaternion of the forma = 0+ axi + ayj + azk. For numerical integration we can use the following trape-
zoidal relationships,

OvGC
(t + ∆t) ≅

OvGC
(t)+

1
2

[

OaGC
(t)+OaGC

(t + ∆t)
]

∆t (34)

Or GC
(t + ∆t) ≅

Or GC
(t)+

1
2

[

OvGC
(t)+OvGC

(t + ∆t)
]

∆t (35)

Having computed the center of mass trajectory and body orientation history, we can calculate the coning
angle of the RV over the time series.Figure 9 depicts the combined orientation and position information
describing the body’s motion inR3. The coning angle,ϕ , is defined as the angle between the RVx-axis and
the tangent to the trajectory at a given instant of time.

Using the results ofSection 4.1 we know theα andβ Euler angles of the RV orientation. The RVx-axis
unit vector in the base coordinate frame is thus,

ux =





cosβ
cosα sinβ
sinα sinβ



 (36)

Alternately, this vector can be expressed as the first column ofQ,

ux = Qê1 =





2(h0h0 + h1h1)−1
2(h1h2 + h0h3)
2(h1h3−h0h2)



 (37)

The tangent to the trajectory is,

utraj =
∆r GC

∥

∥∆r GC

∥

∥

(38)

so,
cosϕ = ux · utraj (39)
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Figure 9. Center of mass position time history and orientation time
history relative to a world frame. The coning angle,ϕ , is shown as the
angle between body axis,ux, and the path trajectory,utraj.

5.2 Results

Figure 10 displays plots of the center of mass acceleration components derived from telemetry data, using
the algorithm described inSection 5.1. Figure 11 displays plots of the center of mass velocity and position
in thex direction.

Figure 12 displays plots of the center of mass velocity and position in they direction. The signals were
conditioned with a high pass filter as described inSection 3.3. The power spectral density (PSD) of the
signals is also shown inFigure 12. This indicates the dominant frequency range of the signals after filtering.
It can be seen that the signals have been attenuated at the lowest frequencies due to the filtering employed.
Figure 13 displays plots of the center of mass velocity and position in thez direction. Again, the power
spectral densities of the signals are shown. After final conditioning of the integrated signals a trajectory
was generated.Figure 14 displays the center of mass trajectory of the RV. The scale in thex direction is
greatly compressed. The coning angle was calculated using the algorithm described inSection 5.1. Figure
15 displays a plot of the coning angle.
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Figure 10. Center of mass acceleration components derived from gyro-
scope and accelerometer data. Units have been intentionally omitted.
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Figure 11. Center of mass velocity and positionx components. Numer-
ical integration was performed on the acceleration data. Units have been
intentionally omitted.
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Figure 12. Center of mass velocity and positiony components. (Top)
The integrated signals were conditioned with a high pass filter. (Bottom)
The power spectral density of the signals after filtering. Units have been
intentionally omitted.
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Figure 13. Center of mass velocity and positionz components. (Top)
The integrated signals were conditioned with a high pass filter. (Bottom)
The power spectral density of the signals after filtering. Units have been
intentionally omitted.
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Figure 14. RV trajectory generated after final conditioning of the inte-
grated signals. The scale in thex direction is greatly compressed. Units
have been intentionally omitted.
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Figure 15. Coning angle of the RV determined from the quaternion
orientation history and the path trajectory. Units have been intentionally
omitted.
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6 Conclusion

We have presented an approach and numerical implementation for the reconstruction of re-entry vehicle
motion solely from gyroscope and accelerometer data. This makes use of quaternions as a computationally
efficient tool for encoding body orientation, and changes in orientation, in three dimensions. In addition to
signal processing and data conditioning procedures the numerical approaches included algorithms for nu-
merical quaternion-based integration of gyroscope data to yield orientation history, as well as accelerometer
triangulation to determine the acceleration of the RV center of mass frame and numerical integration to yield
the RV trajectory. The algorithms have been implemented in MATLAB [10] and C++ [3]. Actual flight data
was processed and presented to demonstrate the implementation of these methods.
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A Spherical Kinematics

Spherical kinematics is concerned with the special orthogonal groupSO(3). This group is defined as the set
of all proper orthogonal matrices,Q.

SO(3) = {Q |Q ∈ R
3×3,QT Q = QQT = 1} (40)

The orthogonal rotation matrix,Q, will be described in the following sections, as well as some other ways
to parameterize rotation. These include angle-sets, axis-angle parameters, and unit quaternions.

A.1 Orthogonal Rotation Matrices

Orthogonal rotation matrices encode spatial rotation by describing the orientation of one coordinate frame
relative to another. The column vectors of a rotation matrix are the base vectors of the coordinate frame of
interest, expressed within an embedding frame. For example,Figure A.1 depicts frameB rotated relative to
frameA.

Figure A.1. Rotation of frameB relative to frameA. The base vectors
êB1

, êB2
, and êB3

are expressed within the embedding frameA to yield
the orthogonal rotation matrix,A

B
Q.

The rotation matrix describing the orientation of frameB in frameA is,

A

B
Q =





↑ ↑ ↑
AêB1

AêB2
AêB3

↓ ↓ ↓



 =





êB1
· êA1

êB2
· êA1

êB3
· êA1

êB1
· êA2

êB2
· êA2

êB3
· êA2

êB1
· êA3

êB2
· êA3

êB3
· êA3



 (41)
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For rotations about the principal axes,

Qx(θ) =





1 0 0
0 cosθ −sinθ
0 sinθ cosθ



 , Qy(θ) =





cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ





Qz(θ) =





cosθ −sinθ 0
sinθ cosθ 0

0 0 1





(42)

The inverse of a rotation matrix,Q−1, satisfies

QQ−1 = Q−1Q = 1 =





1 0 0
0 1 0
0 0 1



 (43)

SinceQ is an orthogonal matrix,

A

B
QT A

B
Q =







← AêT
B1
→

← AêT
B2
→

← AêT
B3
→











↑ ↑ ↑
AêB1

AêB2
AêB3

↓ ↓ ↓



 = 1 (44)

Therefore,
B

A
QA

B
Q = A

B
QT A

B
Q = A

B
Q−1 A

B
Q = 1 (45)

and,
QT = Q−1 (46)

Rotational transformation can be accommodated with rotation matrices using the product,

Av = A

B
QBv (47)

Additionally, multiple rotations can be concatenated using multiplication.

A

C
Q = A

B
QB

C
Q (48)

A.2 Axis-Angle Scheme

We begin by noting the following Euler’s theorem on rotation.

Theorem 1. There exists a spin axis and angle for any arbitrary orientation in R3.

The axis-angle representation specifies a spin axis, about which a coordinate frame is rotated by a spec-
ified angle.Figure A.2 depicts an arbitrary rotation. The axis-angle parameters are the spin axis,k̂, and the
spin angle,θ .

We wish to determine the rotation matrix,A

B
Q, associated with the rotation depicted inFigure A.2, in

terms of the axis-angle parameters. Let us start by defining orthonormal vectorsî and ĵ to be orthogonal to
unit vectork̂. Let coordinate frameK be defined by the base vectorsî, ĵ , k̂. LetK′ be the coordinate frame
thatK is rotated into. Then,

A

B
Q = Qk(θ) = A

K
QK

K′Q
K′
B

Q (49)
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Figure A.2. The axis-angle scheme. A coordinate frame is rotated
about a spin axis,̂k, by a specified angle,θ .

where,

A

K
Q =





↑ ↑ ↑
A î A ĵ Ak̂
↓ ↓ ↓



 =





ix jx kx

iy jy ky

iz jz kz



 (50)

and,

K

K′Q = Qz(θ) (51)

and,

K′
B

Q = K

A
Q = A

K
QT (52)

So,

A

B
Q = Qk(θ) = A

K
QQz(θ)K

A
Q (53)

and,

Qk(θ) =





↑ ↑ ↑
A î A ĵ Ak̂
↓ ↓ ↓









cosθ −sinθ 0
sinθ cosθ 0

0 0 1











← A îT →
← A ĵT →
← Ak̂T →






(54)

The components of̂i and ĵ drop out, so,

Qk(θ) =





kxkx(1− cθ)+ cθ kxky(1− cθ)− kzsθ kxkz(1− cθ)+ kysθ
kxky(1− cθ)+ kzsθ kyky(1− cθ)+ cθ kykz(1− cθ)− kxsθ
kxkz(1− cθ)− kysθ kykz(1− cθ)+ kxsθ kzkz(1− cθ)+ cθ



 (55)
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Conversely, the axis-angle parameters, expressed in terms of, Q, are

θ = cos−1
(

Q11+ Q22+ Q33−1
2

)

(56)

kx =
Q32−Q23

2sinθ
(57)

ky =
Q13−Q31

2sinθ
(58)

kz =
Q21−Q12

2sinθ
(59)

A.3 Euler Sets

The Euler angle scheme specifies a sequence of relative frame rotations about the principal axes. For exam-
ple, anxyz sequence specifies a rotation ofα about thex axis of the base frame,A. Next a rotation ofβ is
specified about they axis of the intermediate frame associated with the completion of the first rotation,A′.
Finally a rotation ofγ is specified about thez axis of the intermediate frame associated with the completion
of the second rotation,A′′. Figure A.3 depicts this sequence.

Figure A.3. An xyz Euler angle sequence specifies a rotation ofα about
thex axis ofA. Next a rotation ofβ is specified about they axis ofA′.
Finally, a rotation ofγ is specified about thez axis ofA′′.

The rotation matrix,A
B

Q, associated with this rotation sequence is given by,

A

B
Q(α ,β ,γ) = A

A′Q(α)A′
A′′Q(β )A′′

B
Q(γ) (60)

Since all of these intermittent rotations are about principal axes we have,

A

B
Q(α ,β ,γ) = Qxyz(α ,β ,γ) = Qx(α)Qy(β )Qz(γ) =





1 0 0
0 cosα −sinα
0 sinα cosα









cosβ 0 sinβ
0 1 0

−sinβ 0 cosβ









cosγ −sinγ 0
sinγ cosγ 0

0 0 1



 (61)
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So,

A

B
Q(α ,β ,γ) =





cβcγ −cβ sγ sβ
sαsβcγ + cαsγ −sαsβ sγ + cαcγ −sαcβ
−cαsβcγ + sαsγ cαsβ sγ + sαcγ cαcβ



 (62)

In general, for an arbitrary sequenceabc, where,

a = x,y, or z (63)

b = x,y, or z (64)

c = x,y, or z (65)

a 6= b, b 6= c (66)

we have,
Qabc(α ,β ,γ) = Qa(α)Qb(β )Qc(γ) (67)

The inverse problem of determining the Euler angles in terms of the rotation matrix can also be solved. For
thexyz sequence addressed above we have the following solution:

If cosβ 6= 0, (β 6=±π/2),

β = Atan2(Q13,
√

Q2
11 + Q2

12) (68)

α = Atan2(−Q23/cβ ,Q33/cβ ) (69)

γ = Atan2(−Q12/cβ ,Q11/cβ ) (70)

If β =±π/2,

α = 0 (71)

γ = Atan2(Q21,Q22) (72)

For axzx Euler sequence we have,

Qxzx(α ,β ,γ) =





cβ −sβcγ sβ sγ
cαsβ cαcβcγ− sαsγ −cαcβ sγ− sαcγ
sαsβ sαcβcγ + cαsγ −sαcβ sγ + cαcγ



 (73)

and the solution to the inverse problem is,

If sinβ 6= 0, (β 6= 0,π),

β = Atan2(
√

Q2
21 + Q2

31,Q11) (74)

α = Atan2(Q31/sβ ,Q21/sβ ) (75)

γ = Atan2(Q13/sβ ,−Q12/sβ ) (76)

If β = 0,

α = 0 (77)

γ = Atan2(Q32,Q22) (78)

If β = π,

α = 0 (79)

γ = Atan2(Q32,−Q22) (80)
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A.4 Quaternions

A quaternion is a hyper-complex number which is the 4-dimensional analog to the 2-dimensional complex
numberz = a + ib. The 4-dimensional space of quaternions, denoted byH, is spanned by four orthogonal
axes. These include the real axis and three principal imaginaries,i, j , andk.

h = h0 + h1i + h2j + h3k (81)

This can also be thought of as a scalar part,h0, and a vector part,h.

h = h0 +h (82)

Quaternion algebra is non-commutative with respect to multiplication. As such, the following laws apply:

i2 = j2 = k2 = ijk =−1

ij = k =−ji

jk = i =−kj

ki = j =−ik

(83)

Multiplication of two quaternions can most easily be represented using the operations of vector cross product
and dot product. Given a quaternion,s, as the product of quaternions,g andh, we have,

s = gh = s0 +s (84)

s = g0h0−g·h+ g0h+ h0g+g×h (85)

Grouping the scalar and vector parts separately, we have,

s0 = g0h0−g·h (86)

s= g0h+ h0g+g×h (87)

It is stressed that quaternions are not vectors, but rather hyper complex numbers. Nevertheless the compo-
nents of the imaginary part of a quaternion can be used in traditional vector operations to compute quater-
nion products per the formula above. An equivalent algorithm exists for representing multiplication of two
quaternions using matrix operations.

(

s0 s1 s2 s3
)

=
(

g0 g1 g2 g3
)

H (88)

whereH is a anti-symmetric matrix defined in terms ofh as,

H =









h0 h1 h2 h3

−h1 h0 −h3 h2

−h2 h3 h0 −h1

−h3 −h2 h1 h0









(89)

It is also convenient to represent a quaternion using complex matrices. First we define the following matrices
in C2×2,

1 =

(

1 0
0 1

)

, I =

(

i 0
0 −i

)

, J =

(

0 1
−1 0

)

, K =

(

0 i
i 0

)

(90)
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The principal imaginaries,I ,J, and K adhere to the same laws stated earlier, namely,

I2 = J2 = K2 = IJK =−1

IJ = K =−JI

JK = I =−KJ

KI = J =−IK

(91)

The quaternion is then,

H = h0 + h1I + h2J+ h3K =

(

h0 + ih1 h2 + ih3

−h2 + ih3 h0− ih1

)

(92)

While this is a useful representation of quaternions we will use the conventional representation throughout
the remainder of this document, namely,h = h0+h1i +h2j +h3k. We can define the inverse of a quaternion,
h−1, as satisfying,

hh−1 = h−1h = 1+0i +0j +0k0= 1 (93)

Noting that the product of a quaternion and its conjugate,h̄, is given by,

hh̄ = (h0 + h1i + h2j + h3k)(h0−h1i−h2j −h3k)

= h0h0−h ·h+ h0h+ h0h+h×h

= h0h0 + h1h1 + h2h2 + h3h3

= ‖h‖2

(94)

we have,

h−1 =
h̄

‖h‖2 (95)

A unit quaternion{h |‖h‖ = 1} is a point on a unit hypersphere,S3 ⊂ H, whereh2
0 + h2

1 + h2
2 + h2

3 = 1.
Unit quaternions are efficient at encapsulating spatial rotation. There is a direct relationship between the
elements of a unit quaternion and the axis-angle parameters. For any unit quaternion,h ∈ S3, we have,

h = cos
θ
2

+ kx sin
θ
2

i + ky sin
θ
2

j + kz sin
θ
2

k = cos
θ
2

+usin
θ
2

(96)

where,
u = kxi + kyj + kzk (97)

In shorthand we have,

h = e
θ
2 u and h−1 = h̄ = e−

θ
2 u (98)

The individual elements of a unit quaternion are also referred to as Euler parameters,ε1,ε2,ε3, where,

ε1 , h1,ε2 , h2,ε3 , h3,ε4 , h0

ε1 = kx sin
θ
2

,ε2 = ky sin
θ
2

,ε3 = kz sin
θ
2

,ε1 = cos
θ
2

(99)

Rotational transformation can be accommodated with unit quaternions using a double product. To rotate a
vectorv ∈ R3 about theu axis by an angle ofθ we perform the following,

hvh−1 = hvh̄ = e
θ
2 uve−

θ
2 u (100)
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In this case the vector,v, is represented as a pure quaternion (real part equal to 0).

v = v1i + v2j + v3k (101)

In terms of frame transformations we have,

Av = A

B
hBv B

A
h = A

B
hBv A

B
h̄ (102)

where,
A

B
h̄ = A

B
h = B

A
h (103)

Additionally, multiple rotations can be concatenated using multiplication, for example,

A

C
h = A

B
hB

C
h (104)

It is useful to relate the unit quaternion to the other representations of orientation. For axis-angle param-
eters we have:

h0 = cosθ
2

h1 = kx sin θ
2

h2 = ky sin θ
2

h3 = kz sin θ
2

and

θ = 2cos−1h0

kx = h1√
1−h0h0

ky = h2√
1−h0h0

kz = h3√
1−h0h0

(105)

Relating a rotation matrix and unit quaternion we have,

Q(h) =





2(h0h0 + h1h1)−1 2(h1h2−h0h3) 2(h1h3 + h0h2)
2(h1h2 + h0h3) 2(h0h0 + h2h2)−1 2(h2h3−h0h1)
2(h1h3−h0h2) 2(h2h3 + h0h1) 2(h0h0 + h3h3)−1



 (106)

and,

h0 =
1
2

√

1+ Q11+ Q22+ Q33 (107)

h1 =
Q32−Q23

4h0
(108)

h2 =
Q13−Q31

4h0
(109)

h3 =
Q21−Q12

4h0
(110)

A.5 Calculus of Rotations

It will be useful to examine the rate of change for some of the orientation schemes that we have described. In
particular, we can express the differential change of rotation matrices and unit quaternions as a differential
spin about a fixed instantaneous axis. In doing this we arrive at the concept of angular velocity, thereby relat-
ing the derivative of an orientation operator to angular velocity. A relationship between angle-set derivatives
and angular velocity can also be derived.
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A.5.1 Derivative of the Rotation Matrix

We will now define the derivative of a rotation operator. Let us begin with the rotation matrix.

Q̇ =
dQ
dt

= lim
∆t→0

Q(t + ∆t)−Q(t)
∆t

(111)

It will be convenient to express the time rate of change of a rotation operator in terms of an instantaneous
spin rate and axis. This will entail applying a differential spin,∆θ , about a fixed instantaneous axis.Figure
A.4 depicts this infinitesimal rotation.

Figure A.4. Instantaneous spin about an axis. The incremental spin,
∆θ , about an axis,̂k, can be related to the angular velocity,ω .

Noting that,

Q(t + ∆t) = Qk(∆θ)Q(t) (112)

the derivative can then be expressed as,

Q̇ = lim
∆t→0

Qk(∆θ)Q(t)−Q(t)
∆t

=

(

lim
∆t→0

Qk(∆θ)−1
∆t

)

Q(t) (113)

where,

Qk(∆θ) =





kxkx(1− c∆θ)+ c∆θ kxky(1− c∆θ)− kzs∆θ kxkz(1− c∆θ)+ kys∆θ
kxky(1− c∆θ)+ kzs∆θ kyky(1− c∆θ)+ c∆θ kykz(1− c∆θ)− kxs∆θ
kxkz(1− c∆θ)− kys∆θ kykz(1− c∆θ)+ kxs∆θ kzkz(1− c∆θ)+ c∆θ



 (114)

Noting small angle (infinitesimal in this case) properties,

Qk(∆θ) =





1 −kz ∆θ ky ∆θ
kz ∆θ 1 −kx ∆θ
−ky ∆θ kx ∆θ 1



 (115)
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We then have,

Q̇ =





0 −kzθ̇ kyθ̇
kzθ̇ 0 −kxθ̇
−kyθ̇ kxθ̇ 0



Q(t) =





0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0



Q(t) (116)

Defining the anti-symmetric angular velocity matrix,Ω , as,

Ω =





0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0



 (117)

We have,

Q̇ = ΩQ =





0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0



Q (118)

The matrixΩ is actually a rank two tensor and can thus be represented as the following dyadic,

Ω = Ωi jêi⊗ êj = ωz(ê2⊗ ê1− ê1⊗ ê2)+ ωy(ê1⊗ ê3− ê3⊗ ê1)+ ωx(ê3⊗ ê2− ê2⊗ ê3) (119)

The above has been formulated with the spin axis represented in the base frame. Any frame representation
can be used.

A

B
Q̇ = AΩ A

B
Q = A

B
QBΩ (120)

Frame transformations for the angular velocity matrix can be accommodated with the double product.

AΩ = A

B
QBΩ B

A
Q (121)

A.5.2 Derivative of the Unit Quaternion

Defining the derivative of a unit quaternion, we have,

ḣ =
dh
dt

= lim
∆t→0

h(t + ∆t)−h(t)
∆t

(122)

Applying a differential spin,∆θ , about a fixed instantaneous axis (seeFigure A.4) gives us,

h(t + ∆t) = hk(∆θ)h(t) (123)

The derivative can then be expressed as,

ḣ = lim
∆t→0

hk(∆θ)h(t)−h(t)
∆t

=

(

lim
∆t→0

hk(∆θ)−1
∆t

)

h(t) (124)

where,

hk(∆θ) = cos
∆θ
2

+ kx sin
∆θ
2

i + ky sin
∆θ
2

j + kz sin
∆θ
2

k (125)

Noting small angle (infinitesimal in this case) properties,

hk(∆θ) = 1+ kx
∆θ
2

i + ky
∆θ
2

j + kz
∆θ
2

k (126)
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We then have,

ḣ =

(

0+ kx
θ̇
2

i + ky
θ̇
2

j + kz
θ̇
2

k
)

h(t) =
(

0+
ωx

2
i +

ωy

2
j +

ωz

2
k
)

h(t) (127)

whereω is the angular velocity represented as a quaternion.

ω = 0+ ωxi + ωyj + ωzk (128)

So, we have,

ḣ =
1
2

ωh (129)

As in the case of the derivative of the rotation matrix, the above has been formulated with the spin axis
represented in the base frame. Any frame representation can be used.

A

B
ḣ =

1
2

Aω A

B
h =

1
2

A

B
hBω (130)

Frame transformations for the angular velocity quaternion can be accommodated with the familiar double
product.

Aω = A

B
hBω B

A
h (131)

Table A.1 lists various dualities between the rotation matrix and the unit quaternion.

Property Rotation Matrix Quaternion

Identity 1 =





1 0 0
0 1 0
0 0 1



 1 = 1+0i +0j +0k

Inverse Q−1 = QT h−1 = h̄

Derivative Q̇ = ΩQ ḣ = 1
2ωh

Angular Velocity Ω =





0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0



 ω = 0+ ωxi + ωyj + ωzk

Transformation AΩ = A

B
QBΩ B

A
Q Aω = A

B
hBω B

A
h

Table A.1. Duality between Rotation Matrix and Unit Quaternion

A.5.3 Derivative of the Angle Sets

We have thus far related rotation matrices and quaternions to angular velocity. We can also relate rates of
change of Euler and fixed angles (angle sets) to angular velocity. The rate vector of a given angle set is,

φ̇ =





α̇
β̇
γ̇



 (132)
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Noting the relationship between a rotation matrix and angular velocity,

Ω =





0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0



Q̇QT (133)

we can determine the following,

ω =





ωx

ωy

ωz



 =





Q̇31Q21+ Q̇32Q22+ Q̇33Q23

Q̇11Q31+ Q̇12Q32+ Q̇13Q33

Q̇21Q11+ Q̇22Q12+ Q̇23Q13



 (134)

We note that,

Q̇i j =
∂Qi j

∂φ
φ̇ (135)

So angular velocity is related to the angle set rate vector by the following relationship,

ω =





ωx

ωy

ωz



 =









∂Q31
∂φ Q21+ ∂Q32

∂φ Q22+ ∂Q33
∂φ Q23

∂Q11
∂φ Q31+ ∂Q12

∂φ Q32+ ∂Q13
∂φ Q33

∂Q21
∂φ Q11+ ∂Q22

∂φ Q12+ ∂Q23
∂φ Q13









φ̇ = E(φ)φ̇ (136)

whereE(φ) is the Jacobian between angular velocity and angle set rates.
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