SANDIA REPORT

SAND2010-6119
Unlimited Release
Printed September 2010

The Application of Quaternions and Other
Spatial Representations to the
Reconstruction of Re-entry Vehicle Motion

Vincent De Sapio

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s

National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories



Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering: http:/www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov

Online ordering:  http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online




SAND2010-6119
Unlimited Release
Printed September 2010

The Application of Quaternions and Other Spatial
Representations to the Reconstruction of Re-entry Vehicle
Motion

Vincent De Sapio
Sandia National Laboratories
MS 9159
P.O. Box 969, Livermore, CA 94551 U.S.A.
vdesap@andi a. gov

Abstract

The analysis of spacecraft kinematics and dynamics requires an efficient scheme for spatial repre-
sentation. While the representation of displacement in three dimensional Euclidean space is straight-
forward, orientation in three dimensions poses particular challenges. The unit quaternion provides an
approach that mitigates many of the problems intrinsic in other representation approaches, including the
ill-conditioning that arises from computing many successive rotations. This report focusses on the com-
putational utility of unit quaternions and their application to the reconstruction of re-entry vehicle (RV)
motion history from sensor data. To this end they will be used in conjunction with other kinematic and
data processing techniques.

We will present a numerical implementation for the reconstruction of RV motion solely from gyro-
scope and accelerometer data. This will make use of unit quaternions due to their numerical efficacy
in dealing with the composition of many incremental rotations over a time series. In addition to signal
processing and data conditioning procedures, algorithms for numerical quaternion-based integration of
gyroscope data will be addressed, as well as accelerometer triangulation and integration to yield RV
trajectory. Actual processed flight data will be presented to demonstrate the implementation of these
methods.
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Notation

General Mathematical Objects
Sets

The following standard set notation will be employed.

{} designation of a set
| such that

N for all

€ element of

set of real numbers
R" set of realn-dimensional vectors

R™N  set of realm x n matrices

C set of complex numbers
H set of quaternions
Scalars

Scalars (rank 0 tensors) will always be represented with non-bold italic characterg)(elgnese include

scalars as well as scalar components of vectors and matrices. Scalar components of vectors and matrices will
be denoted with a subscripted index to the right of the scalar symboleld;;). The following standard
operators will be employed.

o variation
aa derivative

[0 time derivative

Complex Numbers and Quaternions
Complex numbers and quaternions will always be represented with non-bold lower case (typically) italic
characters. The components can be shown as a sum of the real and imaginary parts. For example,

z=a+ib 1)
h = ho -+ hyi + hyj + hgk )



Vectors, Points, and Line Segments

Vectors (rank 1 tensors) will always be represented with bold lower case (typically) characters. Unit vectors
will be denoted with &, as ink. The components of a vector can be shown as an array or as a linear
combination of basis vectors. Basis vectors will be denoteil Ber example,

V1
V=| V2 | =Vi& + Vo8 +Va& )
V3

Points will be represented using non-bold italic characters. Line segments between two points will be
— —
denoted with ar ], as inAB.

Matrices and Tensors

Matrices (rank 2 tensors) will always be represented with bold upper case (typically) characters. The com-
ponents can be shown as an array or as a linear combination of dyads. Dyads consist of a pair of base vectors
separated by an outer product symlol,For example,

My M A a 2 o6 88 ST
MZ( . 12):Mllel®91+M1291®92+M2162®31+M2292®ez (4)
M21 M2z

The identity matrix will be denoted dsand thezero matrix will be denoted a.

Vector and Matrix Operators

The following standard vector and matrix operators will be employed.

dot product
IC]]  norm
X cross product
outer product
variation
derivative with respect to a scala,

Halh > @

time derivative

Kinematic Objects

Objects having a kinematic meaning inherit all of the aforementioned rules with respect to their mathemati-
cal type. Additionally they adhere to the following with regard to their physical type.

A position vectory, will use a right subscript to denote the material point it refers to and a left superscript
to denote the basis it is expressed in. Velooitynd acceleration, vectors will additionally denote the
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frame which motion is relative to using a “:” separator in tight subscript. Angular velocityp, and angular
acceleration vectorsy, will use a right subscript to denote the body they refer to and a left superscript to
denote the basis they are expressed in. As with velocity they will additionally denote the frame which motion
is relative to using a “:”. Any annotation can be omitted if the information conveyed by it is already clear
from the context.

Coordinate transformation matrices, including both orthogonal rotation mat@gesyd homogenous
transformation matriceg,, will denote the frame of interest using a left subscript and the embedding frame
using a left superscript. Unit quaterniorts, will use similar annotation. Again, any annotation can be
omitted if the information conveyed by it is already clear from the context.

rg, position vector of center of mass, of body. A expressed i8
Bdg displacement vector between poidsindB, expressed i
2Q rotation matrix of3 with respect to4

Qk(0) rotation matrix representing a spin 8faboutk

#h quaternion of3 with respect tad

hk(0) gquaternion representing a spin@hboutl?

{a,B,y} Eulerangle set angles
2T homogenous transformation matrix Bfwith respect tad
Byg 0 velocity vector of center of mas&, of body A, relative toO, expressed s

Bwso angular velocity vector of body, relative toO, expressed ii8

"Quo angular velocity tensor of body, relative toO, expressed i

PWao angular velocity quaternion of body, relative toQ, expressed is

5E, Jacobian (with respect to angle set rates) of angular velocity of Boeypressed ir8
Bag 40 acceleration vector of center of ma&s,of body A, relative to©, expressed s

50 4.0 angular acceleration vector of body; relative toO, expressed 8



1 Introduction

A number of spatial representations have been useful in the analysis of spacecraft kinematics and dynamics
[1] [8] [11]. While the representation of displacement in three dimensional Euclidean space is straight-
forward, orientation in three dimensions, the special orthogonal gBQf), poses particular challenges.
Traditional representations of orientation include orthogonal matrices, angle-sets, and axis-angle parame-
ters. Each of these are suitable for some purposes but problematic for others. For example, angle sets which
represent orientation using a concise sequence of three rotations about successive coordinate axes (either
fixed or relative) suffer from singularities [2]. The orthogonal matrix 8§, which offers a straightfor-

ward algebra for generating composite rotations involves an excess of parameters (9 matrix components) to
represent orientation. Additionally, it is ill-suited to certain computational applications that involve comput-

ing many successive rotations. This is due to the fact that successive multiplications of orthogonal matrices
at finite precision results in matrices that lose their orthogonality properties.

The unit quaternion provides an approach that mitigates many of the problems intrinsic in other repre-
sentation approaches. In the years subsequent to their introduction in the 19th century by William Rowan
Hamilton [6] [7] [9], the use of quaternions was largely obviated by the vector techniques developed by
Gibbs and others. In recent years there have been a number of new applications for quaternions, especially
in computer graphics. In this area, they have demonstrated particular efficacy when used for interpolating
between orientation states, yielding smooth rotational transitions. Their numerical efficiency and stability,
make them especially amenable to general computational use. Due to their computational utility quaternions
will be applied here as a an effective tool in reconstructing re-entry vehicle (RV) motion history from sensor
data. They will be used in conjunction with other kinematic and data processing techniques to this end.



2 Overview of the RV Data Analysis Process

The RV data analysis process presented here involves a number of input data sets and a number of analysis
processes. The input data consists of the following:

Three (3) channels of gyroscope data

Three (3) channels of accelerometer data

Initial conditions for position and velocity

Position and orientation of each of the accelerometers in the local RV reference frame

CAD model of the RV

The major data analysis processes involve the following:

e Data conditioning of input data (smoothing, interpolation, fitting)

Reformulating angular velocity as rate of change of a unit quaternion

Numerical differentiation and integration

Triangulating center of mass acceleration

Data conditioning of numerically integrated data (high pass filtering)

Exporting output data into a motion file

e Visualization

Data conditioning, including low pass filtering (smoothing), interpolation, and fitting is performed on the in-
put gyroscope data. Next, the angular velocity data is reformulated as the rate of change of unit quaternions.
Numerical differentiation of the smoothed angular velocity data and integration of the quaternion rate data
is performed to yield a time history of the RV orientation. Next, the accelerometer data is triangulated to
compute the acceleration of the center of mass of the RV. This is integrated and filtered (high pass) to yield
the velocity and position of the center of maBiure 1 depicts this process flow.
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Figure 1. Process flow for the RV data analysis. Data conditioning is
performed on the input gyroscope data. Angular velocity is reformulated
using unit quaternions. Numerical differentiation of the angular velocity
data and integration of the quaternion rate data is performed. The ac-
celerometer data is used to compute the acceleration of the RV center of
mass. This is integrated to yield velocity and position of the center of

mass.
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3 Data Conditioning

3.1 Low Pass Filtering (Smoothing)

Low pass filtering was primarily used for data smoothing. This is fundamentally important since data ac-
quisition inherently involves the inclusion of noise. Since numerical derivatives need to be taken, clean
data is especially crucial. The primary smoothing algorithm used was a Savitzky-Golay filter. A first or-
der Savitzky-Golay filter (moving window averaging) was employ&igure 2 shows the results of this
smoothing algorithm applied to the rgmaxis gyroscope data.

channel 45 - raw signal channel 45 - smoothed signal
‘ |
| |
' Ik |
[}
=
2 |
= -
g -------- e’ \ L
<
tirne time

Figure 2. Results of smoothing channel #5axis gyroscope data using
a first order Savitzky-Golay filter. Units have been intentionally omitted.
(Left) Raw signal. (Right) Smoothed signal.

3.2 Interpolation and Curve Fitting

Numerous linear interpolations were performed to synchronize the time series data reported from the various
instruments. This facilitated all the data channels referring to a common time series. Additionally, curve
fitting was performed to fill in a portion of data from a saturated accelerometer. A small portion of data from
another RV flight was inserted into the saturated region. A third order (cubic) polynomial fit was performed
to generate an expression for the data in the saturated rdgmme 3 displays the results of this.

3.3 High Pass Filtering

High pass filtering was used to remove low frequency DC drift from numerically integrated signals. To this
end digital Butterworth filters were designed to remove low frequency elements while preserving the higher
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accelerometer A2-X

amplitude

f
S 7 \ !
. curve fit— o

time

Figure 3. Curve fitting in saturated region of the accelerometer. A
third order (cubic) polynomial fit was performed using data points from
another RV flight that were inserted into the saturated region. Units have
been intentionally omitted.

frequency elements of the signal. The digital transfer function [4] for performing this filtering is represented
as,
B(z2) bi+bzl+- +byaz "

H(z) = =
@ A(2) a1 tapz 14+ +ap 1z "

(5)

Theb anda coefficients were determined based on a desired design point. In this case that design point is
based on a desired cutoff frequenaygs. Using a filter design algorithm, a fourth order filter withS88 Hz

cutoff frequency (pass band of 1 Hz, stop band50fz) was designed. For this desidnanda have been
determined as,

b:( 9855 —-3.9421 59132 —-3.9421 .9855)T (6)
a:( 1 —-3.9708 59129 —-39134 .9713)T @)
So,

H(z) — 9855~ 3942171 + 591327 2 - 394217 3+ 9855 *
~ 139708 115912% 239134 3+ .971%

The frequency response of this filter is displayedFigure 4.

(8)
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Figure 4. Frequency response of a high pass Butterworth filter designed
to remove low frequency integration drift while preserving the higher
frequency elements of the signal.

The Butterworth filter, described above, was employed in both the forward and reverse directions to
generatezero-phase distortion.Section 5.2 contains the results of this digital filtering which was used in
conjunction with numerical integration to obtain the RV trajectory.

14



4 Reconstruction of Body Orientation

4.1 Algorithm

The task of determining the orientation history of an RV requires a knowledge of the gyroscopei gizta.

5 depicts an incremental change in a body’s orientatioR3n The incremental spir\@, about an axisl,?,

can be related to the instantaneous angular velowityf the body. We can use quaternions as an efficient
means of representing orientation resulting from incremental mo#fippendix A provides an overview of
the relevant spherical kinematics with coverage of quaternidig &nd the calculus of rotation&\6).

Figure 5. Instantaneous spin of a body about an axis. The incremental
spin, AB, about an axisk, can be related to the instantaneous angular
velocity, w, of the body.

Since the gyroscopes provide angular velocity in the body’s local reference frame we can approximate
the orientation quaterniofh(t + At), of the body based on the previous orientatigh(t), and the incre-
mental quaterniorty, associated with a finite but small incremental rotatieél, about an axisR, that is
fixed during the rotation. This can be expressed as,

ON(t+ At) = Zh(t)h (A0) 9)

Note that the spin axis of the incremental rotation is represented in the local body frame in (9) as opposed
to the base frame (as #yppendix A.5.2) since the gyroscopes measure angular velocity in the local body
frame. Due to small angle properties (Fggendix A.5.2),

wherew is the angular velocity quaternion,

W =0+ wi + wyj + wk (11)
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Thus, for numerical integration we can use the followingtrefeship,

Sh(t+At) = Jh(t) <1+ a&ZAti + m/ZAtj + wzzAtk> (12)
If we had implemented this integration using orthogonal rotation matrices we would have,
1 —w, W
CQUE+A)=ZQM) | w1 —owy |At (13)
_% [N 1

However, the orthogonality properties 80Q(t) would degrade with successive multiplications at finite
precision, causing significant problems. In the case of the unit quaternion relationship of (12) the only
concern would be that the length of the quaternion would deviate from unity with successive multiplications.
This could be easily corrected by renormalizing the quaternion as,

(14)

It is also useful to represent the orientation in terms of Euler angles. We can convert from quaternions
to rotation matrices using the following relationship,

Z(hoho + hlhl) -1 Z(hlhz — hohg) 2(h1h3 + hohg)
Q(h) = 2(h1h2 + hohg) Z(hoho + h2h2) -1 2(h2h3 — hohl)

2(h1h3 — hohz) 2(h2h3 + hohl) Z(hoho + h3h3) -1

(15)

We can then convert froif (h) to anxyz Euler set{a, 3, y}, using the solution foxzx Euler angles in terms
of the components dD, (seeAppendix A.3). First we note,

cosf —sinB cosy sinBsiny
Qux(a,B,y) = | cosasinf3 cosacosBcosy—sinasiny —cosa cosPsiny — sina cosy (16)
sinasinf sina cosp cosy+ cosa siny —sina cos siny+ cosa cosy

The inverse solution is then,

If sinB #0, (B #0,mn),

B = Atan2( Q%l + Q%;L» Qll) (17)
a = Atan2(Qz1/sf3,Q21/B) (18)
y = Atan2(Q13/sB, —Q12/9B) (19)
If B =0,
a=0 (20)
y = Atan2(Qzz, Q22) (21)
If B=m,
a=0 22)
y = Atan2(Qs2, —Q22) (23)
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4.2 Results

Figure 6 displays plots of quaternion data calculated from gyroscope data. The data was calculated using
the algorithm described ifection 4.1. The quaternion elemenks andhs are of special interest since they
encode the, andk, components of the spin axik, These components correspond to the lateral axes of

the RV. While unit quaternions possess computational efficacy, Euler angles can provide an easier means of
mentally decomposing the orientation of a body from 2-D pl&tigure 7 displays a plot of thezx Euler

angles associated with the RV orientation. Of these anfjlésof particular interest since it indicates the
angular displacement between the RV main axis and the base coordinatexfeaine The3 angle can also

be related to the coning angle of the RV (to be discusse&®dtion 5.1).

quaternion element, 4 quaternion element h
T il ”H it _llill.y,H(!llH“H ._ |
| 1 l. 'l tHH I , _ L il'.. (A I 'I! I .! N
| N
Q 1 | |
= T T HHTH T - F Nl i T | o
I ' i L i
, W . - LT )
I.'i i1 4 AN 1 - L !,..I.'I" | N
IUllan\illanH _ H||I|IIUI|HI/IH||’ _
quatermon element, h2 quaternion element, /3
!( Hl“ :
‘_q'é I||q| I|||I ||“I|"|”||“I||'|||||||'I||III ||| 1 |||||||||‘|||‘||“ m |||||||||| ||| |||||| | ||||||||| H”r ‘ :
'% ||||||| | |I|.||||”| || |rI||||ll Il|u|||“||,||||| ||| lI|||||||| ||| ‘|| 'J ‘ .
< | ‘ | i ‘ ‘ Il _
i :
time | | time

Figure 6. Quaternion time history derived from integration of the gyro-
scope data. The four quaternion components are displayed. Units have
been intentionally omitted.
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Figure 7. Euler angle time history derived from integration of the gy-
roscope data. The three Euler angles are displayed. Units have been
intentionally omitted.
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5 Reconstruction of Center of Mass Trajectory

5.1 Algorithm

The task of determining the motion history of the center of mass of an RV requires a knowledge of the
body’s initial conditions, and the gyroscope and accelerometer Hagiare 8 depicts a configuration where
an accelerometer is mounted in each of three locations (frames 1, 2, and 3).

Figure 8. Body with acceleration components known at three different
locations. Accelerometer data taken at three different locations and gy-
roscope data for the body can be used to determine the acceleration of
the center of mass.

The following relationships exist between the acceleration of the center of mass and the accelerations of
the accelerometer frames,

‘@, = {Q'ay, = “ag, + ‘e x (‘w: x °d;) +“ac x °d, (24)
‘@, = 5Q%0, = “ag, + ‘e x (‘e x °d,) +“ac x °d, (25)
‘g, = 5Q%a0, = “ac, + ‘e x (‘@ x °dy) +“ac x °d, (26)

These three vector equations yield nine scalar equations and nine unknowns. The nine unknowns include
the center of mass acceleration componéiks,, “Ys,, and°Zs,, as well as the six acceleration components

of frames 1, 2, and 3 which lie in directions orthogonal to the accelerometers. The other three acceleration
components of frames 1, 2, and 3 are known explicitly from the accelerometer \aluas,andas. For a

general formulation where the accelerometers are mounted arbitrarily we have a linear systein,at a

given instant of time wherA is defined as,

1 —Q 0 0
a1 0 —Q 0
A= 1 0 0 —<Q (27)
0 diag(é)N diag(é)N diag&;)N
andN is a logical matrix defined as,
N2 1 if accelerometer measures in the¢ direction (28)
' 0 if accelerometer does not measures in thalirection

19



The vectorx and b are defined as,

“ag, —wp x (e x °dy) — e x “d,
1 C C C C C
2 ao, a | —Cwex(Cwxdy) —ae x°d,
X= ‘2, and, b= o x (e x °ds) — ae x °d, (29)
*ao, a

wherea = ( a; a as )T is the vector of accelerometer values. Because the accelerometers are typically
aligned with the center of mass coordinate frame, the above system can be reduced to three scalar equations
and three unknowns. For example, we will be dealing with a case where the accelerometer for frame 1
measures in the-x-axis of the center of mass frame, the accelerometer for frame 2 measures-idbes,

and the accelerometer for frame 3 measures in-thaxis. So we have,

Nop = a1~ [“ar x (“we x °dy) +ac x °dy] - & (30)
Cyec =ay— [ x (“we x °dy) +ae x °d,] - & (31)
“Ze, = —a3— [ x (“ar x °ds) +ac X °dy] - & (32)

Transforming into the initial world coordinate frand® using quaternions, we have,
“as, = ¢hg. 5h (33)

It is noted that in the case above which involves quaternion operatioisstaken to be an acceleration
quaternion of the forma = 0+ a4 + ayj + a;k. For numerical integration we can use the following trape-
zoidal relationships,

Vg, (t+At) &= “ve, (t) + % [Cag, (t) + a, (t+At)] At (34)
rep (t+At) = re, (t) + % (Ve (t) + Ve, (t+At)] At (35)

Having computed the center of mass trajectory and body orientation history, we can calculate the coning
angle of the RV over the time serieBigure 9 depicts the combined orientation and position information
describing the body’s motion iR3. The coning anglep, is defined as the angle between the R¥kxis and

the tangent to the trajectory at a given instant of time.

Using the results ofection 4.1 we know thea and Euler angles of the RV orientation. The Rvaxis
unit vector in the base coordinate frame is thus,

cosp
u,= | cosasinf (36)
sina sinf

Alternately, this vector can be expressed as the first colun@, of

2(hoho + hihy) —1
u,=Qg = 2(h1hz + hohs) (37)
2(h1hs — hghy)

The tangent to the trajectory is,

Arg,
Uiy 38
= Jlare] 9
SO,
COSP = Uy - Uyy (39)



Figure 9. Center of mass position time history and orientation time
history relative to a world frame. The coning angfe,is shown as the
angle between body axig,, and the path trajectory.;.

5.2 Results

Figure 10 displays plots of the center of mass acceleration components derived from telemetry data, using
the algorithm described ifection 5.1. Figure 11 displays plots of the center of mass velocity and position
in the x direction.

Figure 12 displays plots of the center of mass velocity and position iryttigection. The signals were
conditioned with a high pass filter as describedsaation 3.3. The power spectral density (PSD) of the
signals is also shown iRigure 12. This indicates the dominant frequency range of the signals after filtering.

It can be seen that the signals have been attenuated at the lowest frequencies due to the filtering employed.
Figure 13 displays plots of the center of mass velocity and position inztdeection. Again, the power
spectral densities of the signals are shown. After final conditioning of the integrated signals a trajectory
was generatedFigure 14 displays the center of mass trajectory of the RV. The scale ix tiieection is

greatly compressed. The coning angle was calculated using the algorithm desci$eetiom5.1. Figure

15 displays a plot of the coning angle.
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Figure 10. Center of mass acceleration components derived from gyro-
scope and accelerometer data. Units have been intentionally omitted.
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Figure 11. Center of mass velocity and positimromponents. Numer-
ical integration was performed on the acceleration data. Units have been
intentionally omitted.
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Figure 12. Center of mass velocity and positignrcomponents. (Top)
The integrated signals were conditioned with a high pass filter. (Bottom)

The power spectral density of the signals after filtering. Units have been
intentionally omitted.
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Figure 13. Center of mass velocity and positiarcomponents. (Top)
The integrated signals were conditioned with a high pass filter. (Bottom)
The power spectral density of the signals after filtering. Units have been
intentionally omitted.
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Figure 14. RV trajectory generated after final conditioning of the inte-
grated signals. The scale in tRelirection is greatly compressed. Units
have been intentionally omitted.
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6 Conclusion

We have presented an approach and numerical implementation for the reconstruction of re-entry vehicle
motion solely from gyroscope and accelerometer data. This makes use of quaternions as a computationally
efficient tool for encoding body orientation, and changes in orientation, in three dimensions. In addition to
signal processing and data conditioning procedures the numerical approaches included algorithms for nu-
merical quaternion-based integration of gyroscope data to yield orientation history, as well as accelerometer
triangulation to determine the acceleration of the RV center of mass frame and numerical integration to yield
the RV trajectory. The algorithms have been implemented aTMB [10] and C++ [3]. Actual flight data

was processed and presented to demonstrate the implementation of these methods.
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A Spherical Kinematics

Spherical kinematics is concerned with the special orthogonal gB@{B). This group is defined as the set
of all proper orthogonal matrice®.

0(3) ={Q[QeR¥3,QTQ=QQ" =1} (40)

The orthogonal rotation matrixXQ, will be described in the following sections, as well as some other ways
to parameterize rotation. These include angle-sets, axis-angle parameters, and unit quaternions.

A.1 Orthogonal Rotation Matrices

Orthogonal rotation matrices encode spatial rotation by describing the orientation of one coordinate frame
relative to another. The column vectors of a rotation matrix are the base vectors of the coordinate frame of
interest, expressed within an embedding frame. For exarfijgere A.1 depicts frame3 rotated relative to
frame A.

Figure A.1. Rotation of frame3 relative to frameA. The base vectors
€s,, €s,, andes, are expressed within the embedding frasi¢o yield
the orthogonal rotation matri%,Q.

The rotation matrix describing the orientation of fraffién frameA is,

T T T éBl : éAl éBZ . éAl éB3 . é.Al
Q= A8, MEs, 8s, | = | 85004, 85,084, 85,784, (41)
l ! ! €5, €45 ©5,°€4; €€y
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For rotations about the principal axes,

1 0 0 cosf 0O sinf
Qx(0)=| 0 cos8 —sinB |, QyO) = 0 1 0
0 sin@ cosBO —sin@ 0 cosf

cosf —sin6 O
Qz(0)=| sin6 cos6 O

0 0 1

(42)

The inverse of a rotation matriQ 1, satisfies

1 00
QQ'=Q'Q=1=(0 10 (43)
0 01
SinceQ is an orthogonal matrix,
o T
AQTQ=| — &, — (Aégl 8y, Aégs)l (44)
- A - |
Therefore,
5Q4Q=4Q"4Q=7Q Q=1 (45)
and,
Q'=Q! (46)

Rotational transformation can be accommodated with rotation matrices using the product,
Av =4Q°%v 47)
Additionally, multiple rotations can be concatenated using multiplication.

cQ=3QcQ (48)

A.2 Axis-Angle Scheme

We begin by noting the following Euler’'s theorem on rotation.

Theorem 1. There exists a spin axis and angle for any arbitrary orientation in R,

The axis-angle representation specifies a spin axis, about which a coordinate frame is rotated by a spec-
ified angle.Figure A.2 depicts an arbitrary rotation. The axis-angle parameters are the spik aaxig] the
spin angle 8.

We wish to determine the rotation matri%Q, associated with the rotation depictedFigure A.2, in
terms of the axis-angle parameters. Let us start by defining orthonormal v%atmfsto be orthogonal to
unit vectork. Let coordinate framé be defined by the base vectarg k. Let K’ be the coordinate frame
thatC is rotated into. Then,

4Q=Qu(6) =2QrQ5Q (49)
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Figure A.2. The axis-angle scheme. A coordinate frame is rotated
about a spin axigk, by a specified anglé.

where,
T 1 1 ix Jx K«
Q = A 4 “k =1 iy Jjy ky (50)
U iz Jz ke
and,
©Q =Q(0) (51)
and,
¥Q=%Q=7Q" (52)
So,
5Q=0Q«(0) =:QQ(0)5Q (53)
and,
T cosf —sin® 0 — AT
Q@)= 4 4 “k sin6 cosB O — AT (54)
Lol 0 0 1 — AT

The components dfand] drop out, so,

keky(1—c0) + k86 kyky(1—cO)+cO  kyk,(1—cO)—kysO
kekz(1—cO) —kysB  kyk;(1—cB0) +kesO  kik,(1—cB)+cO

kekx(1—CO) +CO ke (1—CO) — kSO kyky(1—CB) + kysB
Q«(8) = (55)
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Conversely, the axis-angle parameters, expressed in téyiQs are

0 — cos ! <Q11+ Q222+ Q33— 1) (56)
- Q32— Q23

= osne 7
~ Q13— Qa1

Y= "2sine (58)
Q21— Qr2

=56 (59)

A.3 Euler Sets

The Euler angle scheme specifies a sequence of relative frame rotations about the principal axes. For exam-
ple, anxyz sequence specifies a rotationafabout thex axis of the base frame4. Next a rotation of3 is

specified about thg axis of the intermediate frame associated with the completion of the first rotation,

Finally a rotation ofy is specified about theaxis of the intermediate frame associated with the completion

of the second rotationd”. Figure A.3 depicts this sequence.

“2"4/ ZB 2‘/4//

Figure A.3. AnxyzEuler angle sequence specifies a rotatioa about
the x axis of 4. Next a rotation of3 is specified about thg axis of A'.
Finally, a rotation ofy is specified about theaxis of A”.

The rotation matrix; Q, associated with this rotation sequence is given by,

2Q(a,B,y) =4Q(a)4Q(B) A Q(Y) (60)

Since all of these intermittent rotations are about principal axes we have,

2Q(a,B,y) = Quz(a,B,y) = Qu(a)Qy(B)Q:(y) =

1 0 0 cosB 0 sinB coyy —siny 0
0 comm -—sina 0 1 0 siny coyy O (61)
0 sina coxx —sinB 0 cof3 0 0 1
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So,

cBey —CBsy sB
2Q(a,B,y) = ( saspcy+casy —sasBsy+cacy —socf ) (62)
—casfey+sasy casBsy+soacy  cacP

In general, for an arbitrary sequenalac, where,
a=xy, orz (63)
b=xyy, orz (64)
C=X)Y, orz (65)
a#b, b#c (66)

we have,

Qanc(a,B,y) = Qa(a)Qb(B)Qc(Y) (67)

The inverse problem of determining the Euler angles in terms of the rotation matrix can also be solved. For
thexyz sequence addressed above we have the following solution:

If cosB #0, (B # +m/2),

B = Atan2(Qu3,1/Qf, + Q%,) (68)

o = Atan2(—Qy3/cB,Qs3/ch) (69)
y = Atan2(—Q12/cf3,Qu1/cB) (70)
If B=+4m/2,
a=0 (71)
y = Atan2(Qz1, Q22) (72)
For axzx Euler sequence we have,
( cB —sBey Bsy )
Qux(a,B,y)=| casB cacpBcy—sasy —cacfsy—sacy (73)
sasB sacfcy+casy —sacBsy-+cacy
and the solution to the inverse problem is,
If sinB #0, (B #0,mn),
B = Atan2(,/Q5; + Q51 Qu) (74)
a = Atan2(Qs1/sB,Q21/3B) (75)
y = Atan2(Q13/sB, —Qi12/sB) (76)
If B=0,
a=0 (77)
y = Atan2(Qs2, Q22) (78)
If B=m,
a=0 (79)
y = Atan2(Qs2, —Q22) (80)
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A.4 Quaternions

A quaternion is a hyper-complex number which is the 4-dimensional analog to the 2-dimensional complex
numberz = a+ib. The 4-dimensional space of quaternions, denotefll g spanned by four orthogonal
axes. These include the real axis and three principal imaginagiesndk.

h = ho -+ h1i + hyj + hzk (81)
This can also be thought of as a scalar gaytand a vector part.
h=ho+h (82)
Quaternion algebra is non-commutative with respect to multiplication. As such, the following laws apply:

i2=j?=K?’=ijk =—1
ij =k =—ji
jk =i=—Kkj
ki =j=—ik

(83)

Multiplication of two quaternions can most easily be represented using the operations of vector cross product
and dot product. Given a quaterniaas the product of quaterniorgandh, we have,

s=gh=s+s (84)
s=gohp—g-h+goh+hpg+gxh (85)

Grouping the scalar and vector parts separately, we have,

S=0oho—g-h (86)
s=goh+hog+gxh (87)

It is stressed that quaternions are not vectors, but rather hyper complex numbers. Nevertheless the compo-
nents of the imaginary part of a quaternion can be used in traditional vector operations to compute quater-
nion products per the formula above. An equivalent algorithm exists for representing multiplication of two
guaternions using matrix operations.

(0 st & s8)=(9 01 % o9 )H (88)
whereH is a anti-symmetric matrix defined in termstoés,

ho ht hy bhg
—hy hy —h3 hy
—hy hg  hp -
—h3 —h, h  hg

H— (89)

Itis also convenient to represent a quaternion using complex matrices. First we define the following matrices

in(CZXZ’
(39 (60 e (%8) ke (0s) W
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The principal imaginaried, J, and K adhere to the same laws stated earlier, namely,

12=32=K?=1JK = -1

IJ =K =-Jl
(91)
JK=1=-KJ
KI =J=-IK
The quaternion is then,
B B ho+1h;  ho+ihs
H—ho+h1|—|—h2J—|—h3K—< —hptihs ho—ihy > (92)

While this is a useful representation of quaternions we will use the conventional representation throughout
the remainder of this document, naméiy: ho + hii + hyj + hsk. We can define the inverse of a quaternion,
h—1, as satisfying,

hht=h"th=1+0i+0j +0k0O=1 (93)

Noting that the product of a quaternion and its conjugﬁtds given by,

hh = (ho + hai -+ haj + hak) (ho — hai — hyj — hgk)
=hohg—h-h+hgh+hgh-+h xh

94
= hghg 4+ h1h1 + hohy + hshs (94)
= ||h|?
we have, _
h
ht=_— (95)
Ihy?

A unit quaternion{h||/h|| = 1} is a point on a unit hyperspher&® C H, whereh? + h? 4+ h3 +h3 = 1.
Unit quaternions are efficient at encapsulating spatial rotation. There is a direct relationship between the
elements of a unit quaternion and the axis-angle parameters. For any unit quatem®h,we have,

0 . 0. . 0. . 0 0 . 0
h=COSEJrkalnEIJrkysmEJJrkzsmEk_cosEJrusmE (96)

where,
U = ki + kyj + koK 97)
In shorthand we have,
h—es% andht—h—e 2" (98)
The individual elements of a unit quaternion are also referred to as Euler pararegterss, where,

A A A A
&1=h,& =hy,e3=h3,&4=hg

g =k sin6 & =k sin6 & —ksin6 £ —cose %9)
1 — Kx 272_)/ 273_2 271_ 2

Rotational transformation can be accommodated with unit quaternions using a double product. To rotate a
vectorv € R3 about theu axis by an angle o we perform the following,

— 6 6
hvh™! = hvh = e2've 2" (100)

37



In this case the vectov, is represented as a pure quaternion (real part equal to 0).
V = Vil + Vo] + V3K (101)
In terms of frame transformations we have,
Av=7h®vEh=7h%vzh (102)
where,
zh=72h="%h (103)
Additionally, multiple rotations can be concatenated using multiplication, for example,

ch=3hch (104)

It is useful to relate the unit quaternion to the other representations of orientation. For axis-angle param-
eters we have:

_ 1
ho = cosg 6 =2cos “hg
hy

hy = kesin § T—hoho

_ in O
hy = kysin 3
hs = k.sin §

;

and (105)

1—hgh

FANRCII

37
=
o

1—hghg
Relating a rotation matrix and unit quaternion we have,
Z(hoho + hlhl) -1 Z(hlhz — hohg) 2(h1h3 + hohz)

Q(h) = 2(hthy +hohg)  2(hoho+hohp) — 1 2(hohg — hohy) (106)
2(h1hg — hohy) 2(h2h3 + hohy) 2(hoho 4 hghz) — 1

and,
ho = % V14 Qa1+ Qa2+ Qa3 (107)
ny = 22 (108)
hy = Ql%oQﬂ (109)
ny = L2 (110)

A.5 Calculus of Rotations

It will be useful to examine the rate of change for some of the orientation schemes that we have described. In
particular, we can express the differential change of rotation matrices and unit quaternions as a differential
spin about a fixed instantaneous axis. In doing this we arrive at the concept of angular velocity, thereby relat-
ing the derivative of an orientation operator to angular velocity. A relationship between angle-set derivatives

and angular velocity can also be derived.
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A.5.1 Derivative of the Rotation Matrix

We will now define the derivative of a rotation operator. Let us begin with the rotation matrix.

~dt a0 At

Q (111)
It will be convenient to express the time rate of change of a rotation operator in terms of an instantaneous
spin rate and axis. This will entail applying a differential sgié), about a fixed instantaneous axtsgure

A.4 depicts this infinitesimal rotation.

Figure A.4. Instantaneous spin about an axis. The incremental spin,
AB, about an axisk, can be related to the angular velociy,

Noting that,
Q(t+At) = Q(A8)Q(t) (112)
the derivative can then be expressed as,
S QAB)Q(t) —Q(t) . Qk(AB) -1
Q=" At =AM )W (113)
where,
kkx(1—cAB) +cAB  kyky(1—CcAB) —ksAB  keky(1—cAB) + kysSAO
kekz(1—cAB) —kySAB  kyky(1—cAB) +ksAO  kky(1—cAB)+cAB
Noting small angle (infinitesimal in this case) properties,
1 —k, A8 kyAO
Qk(AB) = k,AB 1 —kyAB (115)
—kyAB  k«AB 1
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We then have,

_ 0 —k6 kO 0 —w w
Q= ( k.6 0 —k ) Qt) = ( w, —ax ) Q) (116)

k6 k6 0O

Defining the anti-symmetric angular velocity matri®, as,

(o &%)
Q= w, 0 — 117
We have,

oeac(a &)

Q=0Q=| 0 —w |Q (118)

The matrixQ is actually a rank two tensor and can thus be represented as the following dyadic,
Q=008 =w(Boe 808 +w(BR8-8R8)+W(&B&E-&BE&) (119)

The above has been formulated with the spin axis represented in the base frame. Any frame representation
can be used. _
sQ="0;0=7Q°Q (120)

Frame transformations for the angular velocity matrix can be accommodated with the double product.

0 =3Q%Q75Q (121)

A.5.2 Derivative of the Unit Quaternion

Defining the derivative of a unit quaternion, we have,

- dh . h(t+At) —h(t)
=@ AT At (122)
Applying a differential spinA8, about a fixed instantaneous axis (&égure A.4) gives us,
h(t + At) = hg(AB)h(t) (123)
The derivative can then be expressed as,
- h(AO)h(t) —h(t) /. h(AB) -1
B L A (124
where, 0 0 0 0
h(AB) = cosA—+szin A—i +kysin A—j +kzsin A—k (125)
2 2 2 2
Noting small angle (infinitesimal in this case) properties,

2 2 2
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We then have,

- 6. 6. 6 B AV VA
h= <o+ o Ky + kz§k> h(t) = (o+ i+t 7k> h(t) (127)
wherew is the angular velocity represented as a quaternion.
W = 0+ wi + wj + wk (128)
So, we have, L
h= Swh (129)

As in the case of the derivative of the rotation matrix, the above has been formulated with the spin axis
represented in the base frame. Any frame representation can be used.
-1 1
Frame transformations for the angular velocity quaternion can be accommodated with the familiar double
product.
Aw=7h"w5h (131)

Table A.1 lists various dualities between the rotation matrix and the unit quaternion.

Property Rotation Matrix Quaternion
100
Identity 1= 010 1=1+0i+0 +0k
0 01
Inverse Q1=0Q7 h-t=h
Derivative Q=0QQ h=lwh
0 —w w
Angular Velocity | Q = Wy 0 — W =0+ wyi + w)j + wk
Transformation 1Q=7Q%Q5Q Aw=4h%w5h

Table A.1. Duality between Rotation Matrix and Unit Quaternion

A.5.3 Derivative of the Angle Sets

We have thus far related rotation matrices and quaternions to angular velocity. We can also relate rates of
change of Euler and fixed angles (angle sets) to angular velocity. The rate vector of a given angle set is,

. (¢
o=| B (132)
v
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Noting the relationship between a rotation matrix and amgeeéocity,
0 —w w
Q= w 0 - |QQ
_% Wy 0
we can determine the following,
o Q31Q21+ Qa2Q22+ Q33Q23
=1 & | =| QuQs1+Q12Q32+ Q13Qs33
w; Q21Q11+ Q22Q12+ Q23Q13

We note that,
aQu

QIJ d(p

So angular velocity is related to the angle set rate vector by the following relationship,

w | = f’QllQ +‘3Q12Q3 +0Q13Q33 9=E(@)¢

" 5Q31Q + 5Q32Q22+ 5Q33Q23
w, 5Q21Q 1+ 5Q22Q12+ 5Q23Q13

whereE (@) is the Jacobian between angular velocity and angle set rates.
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