

SANDIA REPORT
SAND2010-5903
Unlimited Release
Printed May 2013

Trilinos Developers SQE Guide: ASC
Software Quality Engineering Practices
Version 3.0

James M. Willenbring
Michael A. Heroux

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

2

Issued by Sandia National Laboratories, operated for the United States Department of Energy

by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the

United States Government. Neither the United States Government, nor any agency thereof,

nor any of their employees, nor any of their contractors, subcontractors, or their employees,

make any warranty, express or implied, or assume any legal liability or responsibility for the

accuracy, completeness, or usefulness of any information, apparatus, product, or process

disclosed, or represent that its use would not infringe privately owned rights. Reference herein

to any specific commercial product, process, or service by trade name, trademark,

manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,

recommendation, or favoring by the United States Government, any agency thereof, or any of

their contractors or subcontractors. The views and opinions expressed herein do not

necessarily state or reflect those of the United States Government, any agency thereof, or any

of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best

available copy.

Available to DOE and DOE contractors from

 U.S. Department of Energy

 Office of Scientific and Technical Information

 P.O. Box 62

 Oak Ridge, TN 37831

 Telephone: (865) 576-8401

 Facsimile: (865) 576-5728

 E-Mail: reports@adonis.osti.gov

 Online ordering: http://www.osti.gov/bridge

Available to the public from

 U.S. Department of Commerce

 National Technical Information Service

 5285 Port Royal Rd.

 Springfield, VA 22161

 Telephone: (800) 553-6847

 Facsimile: (703) 605-6900

 E-Mail: orders@ntis.fedworld.gov

 Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

mailto:reports@adonis.osti.gov
http://www.osti.gov/bridge
mailto:orders@ntis.fedworld.gov
http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

3

SAND2010-5903

Unlimited Release

Printed May 2013

Trilinos Developers SQE Guide: ASC Software Quality
Engineering Practices

Version 3.0

JAMES M. WILLENBRING, MICHAEL A. HEROUX
Sandia National Laboratories

P.O. Box 5800

Albuquerque, New Mexico 87185

ABSTRACT

The Trilinos Project is an effort to develop algorithms and enabling technologies within an

object-oriented software framework for the solution of large-scale, complex multi-physics

engineering and scientific problems. A new software capability is introduced into Trilinos as a

package. A Trilinos package is an integral unit and, although there are exceptions such as utility

packages, each package is typically developed by a small team of experts in a particular

algorithms area such as algebraic preconditioners, nonlinear solvers, etc.

The Trilinos Developers SQE Guide is a resource for Trilinos package developers who are

working under Advanced Simulation and Computing (ASC) and are therefore subject to the ASC

Software Quality Engineering Practices as described in the Sandia National Laboratories

Advanced Simulation and Computing (ASC) Software Quality Plan: ASC Software Quality

Engineering Practices Version 3.0 document [1]. The Trilinos Developer Policies webpage [2]

contains a lot of detailed information that is essential for all Trilinos developers. The Trilinos

Software Lifecycle Model [3] defines the default lifecycle model for Trilinos packages and

provides a context for many of the practices listed in this document.

4

ACKNOWLEDGEMENTS
The authors of Version 3.0 would like to recognize Robert Heaphy who was an author of the previous

versions of this document. Previous versions of this document were called the Trilinos Developers Guide

Part II: ASC Software Quality Engineering Practices. The title was changed for this version to recognize

that the Trilinos Developers Guide has been retired and replaced with content on the Trilinos Developer

Webpage.

5

1. Introduction

One objective of Advanced Simulation and Computing (ASC) is to develop professional

software quality engineering (SQE) practices that will ensure the quality of software developed

with ASC funding. To this end, the Sandia National Laboratories Advanced Simulation and

Computing (ASC) Software Quality Plan: ASC Software Quality Engineering Practices Version

3.0 document [1], lists 30 practices that should be addressed by ASC software developers. The

Trilinos Developers SQE Guide addresses each of the 30 practices, often referring to other

Trilinos documentation except for issues that are unique to ASCI SQE practices. Although all

Trilinos developers are encouraged to adopt these ASC practices, developers are only required to

do so when working on ASC funded capabilities. Each of the 30 practices is discussed in terms

of the responsibilities of the Trilinos Framework and each individual Trilinos Package. As can

be seen from the table in Section 3, the Trilinos Framework provides a valuable service to the

Trilinos Packages, providing package developers with ready-made support for many of the 30

practices, leaving to package developers only those practices that should be under the direction

of each package team. In fact, eleven of the practices are the sole responsibility of the

framework and the framework provides significant support for the remaining nineteen practices.

2. Roles, Documents, Tools and Events

The primary content of this document is a large table in Section 3, listing and discussing each of

the 30 ASC SQE practices. Throughout the discussion, a number of roles (people), documents,

tools and events are cited frequently. We list each of them here and assign acronyms where

appropriate:

Roles:

 ASC Program Management: The ASC program (which includes ASC Algorithms) has

an evolving set of processes for SQE. Many of the SQE processes in the Project

Planning, Tracking, and Oversight, Risk Management, and Determination of Applicable

Practices and level of Formality phases are driven by decisions made by ASC Program

Management.

 ASC Algorithms Program Element Lead and PI: The Trilinos Project receives a

significant portion of its funding from the Algorithms portion of the ASC Program. As a

result, the ASC Algorithms Program Element Lead and PI play an important role in the

Project Planning, Tracking, and Oversight, Risk Management, and Determination of

Applicable Practices and level of Formality, following the guidelines and requirements

established by ASC Program Management.

 Trilinos Project Leader: A fundamental management principal of the Trilinos Project is

that packages should be as autonomous as possible, recognizing that local control with

careful attention to interfaces is often the most effective approach to producing high

quality software. At the same time there is a need for a single focal point in some

situations. The Trilinos Project leader is the primary focal point for major project

decisions. The duties of this person include:

6

1. Arbitrating in cases where a consensus decision cannot be reached as part of inter-

package decisions.

2. Organizing Trilinos project events (see below).

3. Managing and tracking progress on the Trilinos Framework Responsibilities as

described in Section 3.

 Trilinos Release Manager: The Trilinos Release Manager is responsible for tagging

and branching the repository and generally coordinating the release process.

 Trilinos Capability Leaders: Because of the broad scope of Trilinos, we have leaders

assigned to the following capability areas:

1. Framework, Tools & Interfaces.

2. Software Engineering Technologies and Integration

3. I/O Support

4. Discretizations.

5. Meshes, Geometry, & Load Balancing.

6. Scalable Linear Algebra.

7. Linear & Eigen Solvers.

8. Embedded Nonlinear Analysis Tools.

These leaders have responsibilities across packages and are responsible for strategic

planning for Trilinos in their areas.

 Package Leader: Each Trilinos package has one or more leaders. These leaders are

responsible for managing and tracking package responsibilities as described in Section 3.

These leaders are also responsible for attending the Monthly Trilinos Leaders Meetings,

representing the package development team and disseminating information to the team.

Only leaders of packages funded by ASC are responsible for all of the practices listed in

Section 3.

 Package Developer: Each package has an identifiable group of developers. Any given

individual may be a member of multiple package development teams.

 Framework Developer: The Trilinos Framework also has an identifiable group of

developers. These individuals may also be members of package development teams.

Documentation:

 Trilinos Developer Website (TDW): Primary development documentation for Trilinos

developers. Discusses policies that apply to all Trilinos developers and describes the

services available to packages that are part of Trilinos [2].

 Trilinos Software Lifecycle Model: Defines a 3-phase promotional lifecycle model that

recognizes the changing requirements for Trilinos capabilities as work goes from proof-

of-concept to production quality. The three phases are research, production growth, and

production maintenance. To transition from one phase to the next, a promotional event

occurs. Most often, packages transition from phase to phase as a whole, but the model

also allows for different capabilities within packages to be in different phases, provided

certain conditions are met [3].

 Trilinos Strategic Plan (TSP): Lists the strategic goals of the project and provides

pointers to other important information, such as a list of ASC stakeholders and project

capabilities [4].

7

 Trilinos Project Plan (TPP): Each fiscal year the ASC Algorithms team gathers user

and software requirements from ASC application teams and its own members. The exact

form and number of documents generated has changed from year to year, as the ASC

program itself defines its processes for software quality. Currently the TPP is called the

ASC Algorithms Inner Core (AIC) Project Plan [5]. In past years we have provided all

analysis and documentation request by ASC program managers, and have developed

additional documents that provide greater detail than what ASC requires. As ASC

program practices evolve, we will continue to adapt our documents and processes to

match, especially in the Requirements, Project Planning, Tracking and Oversight and

Risk Management phases. Although the type and number of documents required by the

ASC program has and will continue to change, for simplicity we refer to entire collection

of these documents and related documents that provide greater detail as the Trilinos

Project Plan. In the recent past, the primary documents have been the Objectives and

Resource plan for ASC Algorithms R&D, the ASC Algorithms Implementation Plan and

the ASC Algorithms Objectives and Resource Plan.

 ASC Algorithms Quarterly Report (AAQR): At the end of each quarter, when

requested by ASC program management, the ASC Algorithms team will generate a

progress report and list adjusted milestones as needed.

 Package Specific Documentation (PSD): In the

Package Responsibilities column we discuss in

detail how a package should satisfy a particular

practice. However, it is always the case that a

package may satisfy any given practice via its own

process as long as the alternate process is

documented in the appropriate Package Specific

Document. For example, if Package X adopts a

lifecycle that is different than The Trilinos

Software Lifecycle Model, the alternative

lifecycle model should be documented.

Tools:

 Git (Fast Version Control System): The Trilinos source code repository is maintained

using git [6]. The git repository resides on the Trilinos Development platform

“software.sandia.gov” on the Sandia Open Network (SON). Sensitive documents are

retained under a separate repository on the Sandia Restricted Network (SRN), as

necessary. Use of git is documented on the TDW.

 Concurrent Versions Systems (CVS): Source code for the Trilinos website, Trilinos

SQE documents, and other Trilinos-related repositories and documents are maintained

using CVS [7]. The CVS repository resides on the Trilinos Development platform

“software.sandia.gov” on the Sandia Open Network (SON). Use of CVS is documented

on the TDW.

 Bugzilla: All major features and software faults are reported using Bugzilla [8], a web-

based issue-tracking package. Each Trilinos package, the Trilinos framework and

Bugzilla itself are set up as Bugzilla products. Bugzilla is available at

Key point: It is

always the case that a

package may satisfy

any given practice via

its own process as long

as the alternate process

is documented in the

appropriate Package

Specific Document.

8

http://software.sandia.gov/bugzilla. Use of Bugzilla is documented on the TDW. Note

that the processes for reporting bugs, tracking issues, and requesting enhancements are

built directly into Bugzilla.

 Mailman: Each Trilinos package has a set of Mailman [9] mail lists to support

communication and archiving of important information and artifacts. List descriptions

are documented on the TDW.

 Doxygen: Many Trilinos packages use the documentation-generating package called

Doxygen [10]. Doxygen processes source code comments producing detailed online and

printed documentation of the processed source. Although it can be used with many

languages and is highly configurable, the most common use of it within Trilinos is to

process header files containing description of C++ classes and detailed documentation of

the major user-callable methods in each class. Doxygen also extracts information about

class interactions and dependencies. Most Trilinos packages presently use Doxygen to

provide user reference documentation.

 CMake/CTest: Trilinos configuration and building is facilitated by using CMake [11].

CTest is a tool used to invoke and organize the Trilinos test suite. CMake facilitates

dynamic configuration and building of Trilinos across a broad set of computer platforms.

Via configure-time compilation and linking tests, queries to the operating system and

user-specified parameters, Trilinos can be configured and built on almost any platform

with minimal user knowledge of details such as location of system libraries and

compilers. The CMake build system also supports installation of Trilinos for multiple

users and automatic creation of distribution tar files and installers.

 CDash: Trilinos testing results (including nightly, continuous integration, experimental,

etc.), reported by CTest, are stored and displayed using CDash [12]. Information about

the test results webpage is available on the TDW.

 software.sandia.gov: The primary Trilinos development platform is a Linux server

called software.sandia.gov. This platform supports many of the tools listed above,

contains the Trilinos git and CVS repositories and all of the Mailman and Bugzilla

archives. This platform is on the Sandia Open Network (SON), and is accessible from

any internet-connected machine. The Sandia CSUSP Unclassified backup “Legato”

system is used for backing up software.sandia.gov.

 trilinos.sandia.gov: The primary user-oriented website, containing most user

documentation and download instructions. The machine that hosts trilinos.sandia.gov

also hosts the CDash Dashboard and the database used to track downloads.

 Trilinos Process Checklists: The Trilinos project team has a number of processes

defined via process checklists. A list of current and past process checklists is available

on the TDW [13]. Completed checklists related to releases and CVS commits are stored

in Bugzilla, either in the body of the bug, or as an attachment. Once a process is started,

it can be completed using the version of the process checklist that was current at the time

the process was initiated, unless otherwise requested by the Trilinos Project Leader.

Events:

 Monthly Trilinos Leaders Meeting: Package leaders for Trilinos packages, Trilinos

management and other stakeholders are invited to participate in a monthly leadership

meeting. Meeting minutes are sent to the Trilinos-Leaders@software.sandia.gov mail list

http://software.sandia.gov/bugzilla
mailto:Trilinos-Leaders@software.sandia.gov

9

for communication and archiving. Meeting topics include discussion of Trilinos policies,

requirements, design, implementation, testing and documentation. We also conduct

developer training as needed during these meetings. A request for agenda items and a

meeting agenda is sent to the Trilinos-Leaders mail list prior to each meeting.

 Annual Trilinos User Group (TUG) Meeting: Approximately once a year we hold a

meeting for Trilinos users. During this meeting we present an overview of Trilinos, and

detailed presentations of Trilinos packages. The last day of the meeting is typically

reserved for Trilinos Developer-oriented presentations and discussions. The seventh

annual meeting was held in November, 2009.

 Annual Trilinos Spring Developer Meeting: Approximately once a year we hold a

meeting for Trilinos Developers. Typical topics include training and other presentations

as well as strategic planning. The second annual meeting was held in May, 2010.

 Quarterly Trilinos Advisors Meeting: A small group of Trilinos stakeholders

participate in a quarterly Trilinos Advisory Group meeting. These meetings give Trilinos

developers the chance to discuss important issues with key users, and give users the

opportunity to directly share concerns and suggestions with developers. Users are asked

to commit to the group for a period of just over one year, spanning from before TUG, to

just after TUG the following year. (The number of non-developer participants in the

group is doubled for TUG so the outgoing group can interface with the incoming group.)

Meeting minutes are sent to the Trilinos-Advisors@software.sandia.gov mail list for

communication and archiving. A request for agenda items and a meeting agenda is sent

to the Trilinos-Advisors mail list prior to each meeting.

 Quarterly Trilinos Capability Leaders Meeting: The Trilinos Capability Leaders meet

quarterly to discuss high level Trilinos issues including the general direction of the

project. Meeting minutes are sent to the Trilinos-Board@software.sandia.gov mail list

for communication and archiving. A request for agenda items and a meeting agenda is

sent to the Trilinos-Board mail list prior to each meeting.

mailto:Trilinos-Advisors@software.sandia.gov
mailto:Trilinos-Board@software.sandia.gov

10

3. Trilinos Practices Table

The remainder of this document is a table that follows, item

by item, the 30 practices listed in the ASC Software Quality

Engineering Practices document. For each practice, the

responsibilities of the Trilinos Framework and each Trilinos

Package are described using present-tense phrasing. Please

note that some of these responsibilities are not fully

addressed at this time, in which case this document serves as

a plan rather than a statement of practice.

Practice

Trilinos Framework

Responsibilities

Trilinos Package

Responsibilities

Project

Management

1. Strategic Planning

PR1. Document and

maintain a strategic

plan.

The Trilinos Strategic Plan [4] is

maintained at the Trilinos project level

with input from packages.

Provide input for the Trilinos Strategic Plan

as appropriate.

2. Determination of

Applicable

Practices and

Level of Formality

PR2. Perform a risk-based

assessment,

determine level of

formality and

applicable practices,

and obtain approvals.

Trilinos project level risk identification

and mitigation is included in the TPP and

AAQR, when and as requested by ASC

program management. An ASC risk-

based assessment has been completed and

approved.

For packages in the Research phase the

associated technical risk cannot be

mitigated by a high level of formality, so by

default these packages follow a low level of

formality (LOF). During the promotional

events defined by The Trilinos Software

Lifecycle Model, risk identification is

required. By default, the LOF at the

Production Growth phase is medium. At the

Production Maintenance phase, the default

LOF is high. The LOF may be modified

from the default level based on risk

assessments at the package level (see

lifecycle model promotional events).

3. Process

Implementation

and Improvement

PR3. Document lifecycle

processes and their

interdependencies,

and obtain approvals.

The Trilinos Software Lifecycle Model

defines the lifecycle for a Trilinos

package.

None.

Key point: … some of

these responsibilities are

not fully addressed at this

time, in which case this

document serves as a plan

rather than a statement of

practice.

11

Practice

Trilinos Framework

Responsibilities

Trilinos Package

Responsibilities

PR4. Define, collect, and

monitor appropriate

process metrics.

Trilinos process checklists [13] require

and recommend the collection of a

number of project metrics. Other metrics,

such as build and test failures and

coverage rates are collected as part of

standard Trilinos testing using CTest and

CDash. Certain metrics, such as build

failures, are monitored frequently. There

is an ongoing effort to define new metrics

for the project.

Package teams monitor metrics collected at

the Trilinos level, such as coverage statistics

and build failures and collect and monitor

metrics of specific package interest.

PR5. Periodically

evaluate quality

problems and

implement process

improvements.

Many process checklists use Plan, Do,

Check, Act, which provides built in

process improvement. Other checklists

are reviewed periodically and improved

upon. Process improvements are

discussed at TUG and at the Trilinos

Spring Developer Meeting.

Package level process checklists utilize

process improvement in the same way as

Framework level process checklists.

Metrics are made available to package

development teams to allow them to make

package level process improvements.

4. Requirements

Engineering

PR6. Identify

stakeholders and

other requirements

sources.

The TSP and TPP identify Trilinos

stakeholders.

None.

PR7. Gather and manage

stakeholders’

expectations and

requirements.

Primary user requirements are gathered

and documented in the TPP after

negotiation by level 1 management. In

addition, topics discussed during the

monthly Trilinos Leader’s meeting

include Trilinos user requirements.

Meeting minutes are archived on the

trilinos-leaders@software.sandia.gov

mail list. Select platter deliverables are

defined from higher-level requirements

and receive special tracking by

management.

None.

PR8. Derive, negotiate,

manage, and trace

requirements.

The TPP covers the derivation,

negotiation, management, and tracing of

requirements. The AAQR documents the

managing and tracing of and the success

in meeting requirements.

None.

5. Risk Management

PR9. Identify and analyze

risk events.

Risk identification and analysis is

included in the TPP and AAQR, when

and as requested by ASC program

management.

During the promotional events defined by

The Trilinos Software Lifecycle Model, risk

identification is required. Include identified

risks in quarterly update to ASC Algorithms

PI.

PR10. Define, monitor,

and implement the

risk response.

Risk mitigation and response is included

in the TPP and AAQR, when and as

requested by ASC program management.

Identified risks are considered when

implementing new policies and tools.

Provide quarterly updates to the ASC

Algorithms PI.

mailto:trilinos-leaders@software.sandia.gov

12

Practice

Trilinos Framework

Responsibilities

Trilinos Package

Responsibilities

6. Project Planning,

Tracking and

Oversight

PR11. Create and manage

the project plan.

The TPP is maintained at the project

level.

None.

PR12. Track performance

versus project plan

and implement

needed (corrective)

actions.

The AAQR is written and submitted

quarterly, when requested by ASC

program management.

None.

 Software

Engineering

7. Software

Development

PR13. Communicate and

review design.

Doxygen [10], user mail lists and

developer mail lists are provided on the

Trilinos development platform

software.sandia.gov. Trilinos Framework

level design discussions occur at Trilinos

Framework Developer meetings and on

the trilinos-framework mail list. All mail

list traffic is subject to peer review.

External reviews occur naturally because

of the open source Trilinos release.

This practice is addressed by the lifecycle

model. Briefly, design at research phase is

typically captured in a notebook or on a

mail list. During the production growth

phase, the design is often communicated

and reviewed during face to face or phone

meetings (and minutes are sent to a mail

list), or on a developer mail list. During the

production maintenance phase, formal

documentation and review of design will

occur.

In all phases design is also captured in the

form of Doxygen documentation. In most

cases, the Doxygen documentation

represents a true design as it is produced

before the associated code is written.

PR14. Create required

software and product

documentation.

A CVS repository is provided for all code

and artifacts. Doxygen [10] is provided

on the Trilinos development platform

software.sandia.gov. Trilinos level

documentation is provided at the Trilinos

website.

Packages follow the adopted lifecycle for

software development.

8. Integration of

Third Party or

Other Software

13

Practice

Trilinos Framework

Responsibilities

Trilinos Package

Responsibilities

PR15. Identify and track

third party software

products and follow

applicable

agreements.

Supported versions of third-party

software can be kept in the Trilinos3PL

CVS repository. Third-party software

that is widely available and adheres to

established standards such as BLAS,

LAPACK, and MPI are not kept under

version control. Trilinos supports a wide

array of versions and vendors of these

common libraries that adhere to the

appropriate standard. A list of third-party

software used by Trilinos is kept in

Trilinos/cmake/TrilinosTPLs.cmake.

This list is processed by the CMake build

system when looking for TPLs and

associated options at configure time.

Check new supported versions of 3PL’s into

the Trilinos3PL repository and/or document

supported versions. Follow all applicable

license agreements.

PR16. Identify, accept

ownership, and

manage assimilation

of other software

products.

Trilinos packages do not generally accept

ownership of third-party software. If a

package team chooses to do so, they have

the option to use the Trilinos or

Trilinos3PL repository to store the code.

Follow all applicable license agreements.

Assimilated code should be maintained like

core package code.

9. Configuration

Management

PR17. Perform version

control of identified

software product

artifacts.

A git repository is maintained for all

Trilinos packages. Package-checkins

mail lists archive all product

modifications. Trilinos release versioning

is handled by release and release update

process checklists [13]. A CVS

repository is maintained for the website,

SQE documents, etc.

Package developers utilize the Trilinos git

and CVS repositories.

PR18. Record and track

issues associated with

the software product.

A Bugzilla product is provided for each

Trilinos package. All issues are tracked

via Bugzilla and the underlying MySQL

[14] database. Provide documentation for

using Bugzilla. For the Trilinos

Framework, a product backlog is

currently maintained within Bugzilla.

Package developers, or their customers, file

issue reports using the Trilinos Bugzilla

site. This includes major feature requests

and software problems. Issue reports are

kept up-to-date.

PR19. Ensure backup and

disaster recovery of

software product

artifacts.

The Trilinos development platform,

software.sandia.gov is backed up

regularly by the Sandia CSUSP

Unclassified backup “Legato” system.

All git, CVS, Mailman, and Bugzilla data

and artifacts are retained indefinitely.

Each clone of a git repository is a

complete repository. System

administrators perform a test recovery

from a Legato backup at least yearly.

None.

10. Release and

Distribution

Management

14

Practice

Trilinos Framework

Responsibilities

Trilinos Package

Responsibilities

PR20. Plan and generate

the release.

Release requests are negotiated between

the Trilinos Project Leader and

customers. A release cycle commences

when an announcement of a release target

date is sent to the Trilinos-developers

mail list. This email describes the release

plans, or the plan is discussed as part of

the monthly Trilinos Leaders Meeting.

Part of the Trilinos Level Release Process

Checklist and Trilinos Web Release

Process Checklist address release

generation.

Part of the Trilinos Package Level Release

Process Checklist addresses release

generation. All packages that are included

in an external release for the first time are

required to complete this checklist.

Package teams indicate permission to

release their packages for releases after the

initial external release.

PR21. Certify that the

software product

(code and its related

artifacts) is ready for

release and

distribution.

Part of the Trilinos Level Release Process

Checklist and Trilinos Web Release

Process Checklist address release

certification. Part of the required

certification is provided by major

customers.

Part of the Trilinos Package Level Release

Process Checklist addresses release

certification. Package leaders certify that

their package is ready for release by

providing permission to release.

PR22. Distribute release

to customers.

Part of the Trilinos Level Release Process

Checklist, Release Update Checklist, and

Trilinos Web Release Process Checklist

address release distribution.

None.

11. Customer Support

PR23. Define and

implement a customer

support plan.

Customer support is addressed in the

TPP, and the TSP. Frequent

communication, the Trilinos User Group

meeting, tutorials at conferences, the

Trilinos website, Trilinos Tutorial, any

existing package user guides, Bugzilla,

the lifecycle level of formality, the

trilinos-help and trilinos-user mail lists,

and the list of developer contacts

available online are all important

components of Trilinos customer support.

Responsible for providing customer support

at the package level. To propose a new

Trilinos package, an email is sent to the

trilinos-developer list. Topics covered in

the email include who will maintain the

package and long-term package support.

PR24. Implement the

training identified in

the customer support

plan.

Organize the annual Trilinos User Group

meeting. Support developers offering

tutorials at conferences. Maintain the

Trilinos website and Trilinos Tutorial

(document and online version).

Create and maintain package

documentation. Provide tutorials at the

Trilinos User Group meeting as appropriate.

PR25. Evaluate customer

feedback to determine

customer satisfaction.

Users provide feedback at Trilinos

Advisory Group meetings and via email,

issue reports, and conversations

throughout the year. They are also

invited to TUG where users are given the

chance to provide feedback. In addition,

at least one user is invited to give a

presentation at TUG that often includes

comments on their level of satisfaction

and opportunities for improvement.

Occasionally, customer surveys are

conducted.

Respond promptly to user issues. Package

specific surveys can be conducted, when

appropriate.

15

Practice

Trilinos Framework

Responsibilities

Trilinos Package

Responsibilities

Software Verification

12. Software

Verification

PR26. Develop and

maintain a software

verification plan.

The Trilinos software verification plan is

included in the TPP. The Trilinos

website includes documentation for and a

discussion of the Trilinos Test Harness to

assist developers in setting up package

testing, including a Test harness page

(https://software.sandia.gov/trilinos/devel

oper/test_harness/index.html) and testing

policies accessible from

https://software.sandia.gov/trilinos/develo

per/policies/index.html.

None.

PR27. Conduct tests to

demonstrate that

acceptance criteria

are met and to ensure

that previously tested

capabilities continue

to perform as

expected.

The results from nightly test cases are

automatically mailed to the appropriate

package-regression@software.sandia.gov

mail list. The results are archived. The

completion of acceptance tests that are

run by users before a release are also

archived via the trilinos-

framework@software.sandia.gov and/or

the trilinos-

developers@software.sandia.gov mail

list. Release testing is addressed by part

of the Trilinos Level Release Process

Checklist. Multiple customers run

nightly tests against the Trilinos

development branch and promptly report

any failures or regressions. A script is

maintained by the framework that

provides pre-checkin testing for

developers. After repository changes, a

continuous integration build is run to

report any failures or regressions before

the next round of nightly testing.

Package developers are responsible for

deciding what tests need to be written for

their packages. Part of the Trilinos Package

Level Release Process Checklist addresses

testing that must be completed prior to the

initial external release. Developers resolve

issues that are found with high priority.

PR28. Conduct

independent technical

reviews to evaluate

adequacy with respect

to requirements.

Framework list discussions and peer

reviews occur as appropriate. Feedback

on the adequacy of existing and new

framework components is gathered at

TUG and Trilinos Monthly Leaders

meetings.

The formality of technical reviews depends

on which phase of the lifecycle model

package is in. During the research phase,

this often means publishing results. During

the production maintenance phase, formal

inspections occur as appropriate. During

the production growth phase publications

are produced and/or inspections occur as

appropriate.

Training

13. Training

https://software.sandia.gov/trilinos/developer/test_harness/index.html
https://software.sandia.gov/trilinos/developer/test_harness/index.html
https://software.sandia.gov/trilinos/developer/policies/index.html
https://software.sandia.gov/trilinos/developer/policies/index.html
mailto:package-regression@software.sandia.gov
mailto:trilinos-framework@software.sandia.gov
mailto:trilinos-framework@software.sandia.gov
mailto:trilinos-developers@software.sandia.gov
mailto:trilinos-developers@software.sandia.gov

16

Practice

Trilinos Framework

Responsibilities

Trilinos Package

Responsibilities

PR29. Determine project

team training needed

to fulfill assigned

roles and

responsibilities.

Training, based on the needs determined

by the Trilinos Project Leader or

developer interest, is provided during

developer day at the Trilinos User Group

meeting and at the Trilinos Spring

Developer meeting. Training is also

performed as needed during the monthly

Trilinos Leaders Meeting and during

special events, such as the Software

Engineering Seminar Series. Training

events are announced on the trilinos-

leaders or trilinos-developers mail list

prior to the training session.

A checklist is provided for new

developers and is to be completed with

input from an existing Trilinos developer.

None.

PR30. Track training

undertaken by project

team.

Training is tracked by checking

attendance lists into the TrilinosSQE CVS

repository, or via meeting minutes sent to

the appropriate mail list.

None.

17

References

[1] Molly Minana, Jennifer Turgeon, Martin Pilch, and Patricia Hackney, Sandia National

Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan: ASC Software

Quality Engineering Practices, Version 3.0, Sandia National Laboratories, SAND2008-5517,

January 2009.

[2] Trilinos Developer Website: https://software.sandia.gov/trilinos/developer.

[3] J. Willenbring, R. Heaphy, M. Heroux and M. Phenow, The Trilinos Software Lifecycle

Model, Sandia National Laboratories, SAND2006-6929, November 2006.

[4] M. Heroux, J. Willenbring and R. Heaphy, Trilinos Project Strategic Plan, Sandia National

Laboratories, SAND2008-0479, Updated June 2010.

[5] K. Alvin, ASC Algorithms Inner Core (AIC) Project Plan, Revision 2, Sandia National

Laboratories, September 2009.

[6] Git Home Page: http://git-scm.com/.

[7] Gnu CVS Home Page: http://www.gnu.org/software/cvs.

[8] Mozilla Bugzilla Home Page: http://www.mozilla.org/projects/bugzilla.

[9] Mailman Home Page: http://www.gnu.org/software/mailman.

[10] Doxygen Home Page: http://www.doxygen.org.

[11] CMake Home Page: http://www.cmake.org.

[12] CDash Home Page: http://www.cdash.org.

[13] Trilinos Process Checklists:

http://software.sandia.gov/trilinos/developer/sqp/checklists/index.html.

[14] MySQL Home Page: http://www.mysql.com.

https://software.sandia.gov/trilinos/developer
http://git-scm.com/
http://www.gnu.org/software/cvs
http://www.mozilla.org/projects/bugzilla
http://www.gnu.org/software/mailman
http://www.doxygen.org/
http://www.cmake.org/
http://www.cdash.org/
http://software.sandia.gov/trilinos/developer/sqp/checklists/index.html
http://www.mysql.com/

18

DISTRIBUTION

1 MS0899 Technical Library 9536 (electronic copy)

19

