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Abstract

This report summarizes the current statistical analysis capability of OVIS and how it works in
conjunction with the OVIS data readers and interpolators. It also documents how to extend
these capabilities.
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1 Overview

OVIS [5] is a tool for parallel statistical analysis of sensor data to improve system reliability. Paral-
lelism is achieved using a distributed data model: many sensors on similar components (metaphor-
ically sheep) insert measurements into a series of databases on computers reserved for analyzing
the measurements (metaphorically shepherds). Each shepherd node then processes the sheep data
stored locally and the results are aggregated across all shepherds. OVIS uses the Visualization
Tool Kit (VTK [1]) statistics algorithm class hierarchy to perform analysis of each process’s data
but avoids VTK’s model aggregation stage which uses the Message Passing Interface (MPI); this
is because if a single process in an MPI job fails, the entire job will fail. Instead, OVIS uses
asynchronous database replication to aggregate statistical models.

OVIS has several additional features beyond those present in VTK that, first, accommodate its
particular data format and, second, improve the memory and speed of the statistical analyses.

First, because many statistical algorithms are multivariate in nature and sensor data is typically
univariate, interpolation of data is required to provide simultaneous observations of metrics. Note
that in this report, we will refer to a single value obtained from a sensor as a measurement while a
collection of multiple sensor values simultaneously present in the system is an observation. A base
class for interpolation is provided that abstracts the operation of converting multiple sensor mea-
surements into simultaneous observations. A concrete implementation is provided that performs
piecewise constant temporal interpolation of multiple metrics across a single component.

Secondly, because calculations may summarize data too large to fit in memory OVIS analyses
batches of observations at a time and aggregates these intermediate intra-process models as it
goes before storing the final model for inter-process aggregation via database replication. This
reduces the memory footprint of the analysis, interpolation, and the database client and server
query processing. This also interleaves processing with the disk I/O required to fetch data from the
database – also improving speed.

This report documents how OVIS performs analyses and how to create additional analysis compo-
nents that fetch measurements from the database, perform interpolation, or perform operations on
streamed observations (such as model updates or assessments). The rest of this section outlines
the OVIS analysis algorithm and is followed by sections specific to each subtask. Note that we
are limiting our discussion for now to the creation of a model from a set of measurements, and
not including the assessment of observations using a model. The same framework can be used for
assessment but that use case is not detailed in this report.

1.1 Parallel Analysis Process

An OVIS analysis begins when a request is inserted into the database of any shepherd node
as shown in Figure 1α. A request consists of entries in several parameter tables and a single
row in the HaruspexRequests table. A database trigger is used to signal the shepherd process
on the same shepherd node as the database holding the new row whenever it is inserted into
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Figure 1. The tasks involved in parallel data analysis using OVIS.
Many tasks may run concurrently and execution times will vary,
leading to different completion orders; however, any distribution
task (β, δi) may fail and any shepherd participating the calculation
will still have an approximate global model.
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HaruspexRequests. Upon receiving this signal, each shepherd checks to see if the request ori-
gin is the local database or if it has been copied from another shepherd. If it is an original, the
shepherd attempts to copy the request from its database to other shepherds’ databases (Figure 1β).
Regardless of whether the copy was attempted or was successful, the shepherd then performs the
requested analysis (Figure 1γi) on its local sensor data. The result of this analysis is a model which
is inserted into the local database. It is a local model since it only includes sensor data stored on
one shepherd. In this way, all shepherds end up with several local models.

A second database trigger is used to signal the shepherd process when its local database has a new
model inserted. If the new model is a local model and is specific to the data on the shepherd recev-
ing the trigger, the shepherd copies the model into the databases of all other available shepherds
(Figure 1δi). As long as the model which generated the signal is a local model (i.e., not global
and regardless of whether the model is copied or whether the copy operation was successful), the
shepherd then reads all of the local models from its database (whether they are local to the current
shepherd’s data or some other shepherd’s data) and aggregates them into a single global model
(Figure 1εi). The global model is inserted into the database.

In MPI parlance, computing the global model from local models is an all-reduce process. However,
it should be clear that because tasks may complete at various times and individual shepherds may
fail, several intermediate global models may be stored in the database before the final result is
obtained. These intermediate models are approximations of the final global model. The law of
large numbers informs us that as the number of local models contributing to the approximation
increases, variations in the global model should diminish. OVIS relies on this behavior to provide
information about the system in the face of failures, even in shepherds.

1.2 Local Analysis Process

Now that we have outlined a framework for performing statistical analysis in the face of possible
failures, we present more detail on the local analysis process (Figure 1γi) in order to illustrate how
it can be adapted to a wide range of calculations.

See Figure 2 for an illustration of all of the steps in the local analysis process. Only the “Learn”
in Figure 2 operation is performed by a vtkStatisticsAlgorithm [2, 4]; the rest of the tasks
shown in the figure are there to accommodate converting sensor measurements into observations
and streaming data to and from the database.

The first task in any analysis is to convert raw measurements into observations. To support this, raw
measurements must be read from the database (“Fetch subset” in Figure 2). Only a small number
of measurements for each metric of interest are read at a time in order to reduce memory re-
quirements. Interpolation (“Interpolate” in Figure 2) consumes measurements as observations are
produced, so memory used to hold a subset of measurements may be refilled with more values from
the database once all its entries are consumed. The abstract ovHaruspexDataReader is responsi-
ble for fetching and refilling vtkTables that hold measurements. These tables are then exposed
to an ovHaruspexInterpolator subclass which produces observations from the measurements.

7



Figure 2. The tasks involved in local data analysis using OVIS.
Each grey shape identifies tasks (arrows with mid-edge dots) that
are repeated in a loop. Each rounded rectangle shows state that is
used and modified by these tasks.

Whenever an ovHaruspexInterpolator subclass produces an observation, it is queued for analy-
sis by calling an ovHaruspexObservationProcessor method. The cache of queued observations
is periodically analysed using a vtkStatisticsAlgorithm.

The VTK statistics algorithms take in as input data vtkTable objects whose rows are observations
and performs processing as shown in Figure 3. When the learn option is enabled, these observa-

Figure 3. The computations that a vtkStatisticsAlgorithm
subclass can perform. The OVIS shepherd only employs the Learn
phase.

tions are turned into a table of summary statistics – a model of the observations. If a pre-existing
model is supplied, it is aggregated with the newly-learned model. When the derive option is en-
abled, additional statistics are calculated from the primary model; this new information can be
more convenient or more familiar. When the assess option is enabled, each observation is marked
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with one or more values corresponding to different assessments based on the model at hand. The
shepherd only executes the learn phase of a statistics algorithm (“Learn” in Figure 2); derived
quantities are computed on demand and only a minimal model is stored in the database.

As a set of queued observations reaches its maximum size, the vtkStatisticsAlgorithm is
invoked and the resulting intermediate model is aggregated with the current approximation of the
local model to obtain the next approximation of the local model. Finally, once all measurements
have been converted into observations, the local approximation to the model is written to the local
database by an instance of ovHaruspexModelWriter.

9



10



2 Data Readers

A data reader is responsible for presenting one or more tables of values to the interpolator in chunks
that are small enough to fit into memory. Generally each table of values will be a subset of a metric
table read from the database of the local shepherd but this is not a requirement; the tables may
come from anywhere and have any format as long as the interpolator that is paired with the reader
can accommodate it.

The default reader is intended for interpolating multiple attributes of a single component over time.
That is, a single component may have measurements of multiple metrics such as temperature, fan
speed, and so forth and the interpolator will approximate which values might be simultaneously
observed on that component if the corresponding sensors all made measurements at one instant in
time instead of staggered over time. In this case it is best to have measurements of each metric
chronologically ordered so that interpolation may be performed by determining which table has the
least recent measurement. It is important to note that any choice of a particular interpolation strat-
egy implies that assumptions, at least implicit, be made regarding the nature of the data and how it
evolves over time; also, different interpolation schemes can result in different sets of observations
(e.g., piecewise constant as opposed to piecewise linear).

Other readers may provide data in formats that make other types of interpolation possible. For
example, it may be useful to simultaneously observe one metric on some component and a different
metric on a related component. As an example, consider observing power supply voltage for one
node and the current drawn by the rack containing that node simultaneously. A reader for this type
of analysis has not been implemented yet.

The following section will present the abstract base class. It is then followed by a section describing
the current implementation and finally a discussion of features that may be desirable for future
readers.

2.1 The Base Class

Any data reader must inherit ovHaruspexDataReader. This class owns a protected instance of the
ovHaruspexDataReaderPrivate class that stores a vector of table names, vtkTable instances,
and offsets used to track which chunk of the database each vtkTable currently holds. Subclasses
may access this instance directly for their own use.

The base class also defines several virtual methods to be overridden by subclasses. The most
significant are these pure virtual methods:

protected:
virtual bool SetTable( vtkStdString, vtkTable* );

public:
virtual vtkTable* ReadNextMetricValues( vtkIdType metricIndex );
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When the reader is initialized with a list of tables to read from the database, it calls SetTable() and
the subclass implementation is responsible for fetching the first chunk of data to fill the specified
vtkTable. When the interpolator has finished processing one chunk of a particular table, it will
call ReadNextMetricValues() to request the next chunk be read.

Note that reading chunks from metric tables is not straighforward because of conflicting require-
ments for (1) a unique index of the table, (2) chronologically ordered observations, and (3) fast
constrained queries on metric tables. This is discussed more in the next section, which covers the
details of the data reader subclass for fetching multiple metrics on components of the same type.

2.2 Multiple Metrics On Components Of a Single Type

A common use case for modeling and on-line assessment of cluster health is comparing the si-
multaneous values of multiple metrics on a single component to the same observations on other
components of the same type. The ovHaruspexComponentDataReader class performs queries of
this type.

In order to understand why this subclass functions the way it does, it is necessary to review the
structure and usage of the metric data tables. Metrics are defined over component types; all com-
ponents of a given type must be able to provide a single value for the metric at any point in time.
We will also make the distinction that components of different types may have metrics with sim-
ilar or identical names but they are not considered to be the same metric by OVIS. Each metric
table has a column to store a unique integer (TableKey) serving as the primary key of the table,
the component (CompId) over which a measurement is made, the time (Time) the measurement
is made1, and zero or more columns to store the metric value. The final column(s) are generally
named Value but if the metric is a vector quantity other column names may be used. Sheep insert
values into these tables, generally at regular intervals but use database-provided default values for
the TableKey and Time columns. In this way, measurements over many components are serialized
by their ordering with respect to TableKey.

This ordering is not required by the sheep but necessary for streaming chunks of tables through
analyses efficently. If the TableKey column were not present, the only way to obtain consecutive
subsets of a metric table would be to execute multiple queries of the form

SELECT CompId,Value,Time FROM Metric...Values
WHERE ... (constraints to subset data) ...
ORDER BY Time,CompId LIMIT m OFFSET n

since without a unique index on each metric table there would be no other way to guarantee that
multiple chunks are an exact partitioning of the desired subset of the table. Furthermore, because
this query would need to be evaluated once for each chunk with different offsets and because
each evaluation results in m+n rows being fetched, the overall process of fetching chunks becomes
quadratic in the size of the returned number of rows. This is unacceptable.

1This is actually the time a metric value is recorded in the database in order to minimize clock skew.
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The only solution is to provide an arbitrary but unique serialization of rows through a primary key.
Because TableKey is arbitrary we do not wish to fetch it for all metric values – doing so would
significantly increase the amount of memory and socket communication between the database and
analysis processes without providing any benefit; instead we would prefer simply to use it in a
constraint on each query that fetches chunks of a metric table.

2.3 Future Directions

The current reader fetches all measurements of a specified set of metrics on a specified list of
components over a specified time interval. The measurements can thus be parameterized with 2
sets (metrics and components) and 2 times (the start and end of the interval). Another planned
reader is one which takes a set of jobs and a set of metrics (defined over a single component type);
this reader would report all metric measurements on components involved in the given jobs during
the times when the job was scheduled – to characterize particular application codes – or alternately,
metric measurements on the same components but only when they were not assigned any job – so
that behavior during idle times can be characterized.
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3 Interpolation

As discussed in §1.2, interpolation is the process of computing one or more individual measure-
ments (on different components, at different times, or of different metrics) into a simultaneous
(typically multivariate) observation. As an example, consider the measurements shown in Fig-
ure 4. Metric A will have 5 measurements reported in its chunk (3 values for component 1 and
2 for component 2). Metric B will have 6 measurements reported in its chunk (2 values for com-
ponent 1 and 4 for component 2). The interpolator is responsible for taking these 2 tables and
producing tuples simultaneously observed values of (A,B). Let us assume we are interested in the
case where values are considered to be simultaneous if they are evinced on the same component at
the same time. In this case, because neither component has both metrics reported during the first
second, no observation can be made until the next second. Note that interpolation must also cover
cases where multiple measurements are made for a single component within a given interval (e.g.,
component 2 during the first second).

Figure 4. An example of how multiple metric measurements on
multiple components might be reported to the interpolator; each
metric has values chronologically ordered in chunks with values
for multiple components interleaved.

Each interpolator is responsible for consuming measurements reported by its data reader and pro-
ducing observations for subsequent processing. To this end, the ovHaruspexInterpolator base
class has pointers to an ovHaruspexDataReader object and an ovObservationProcessor ob-
ject. When a chunk of values has been consumed, the interpolator should ask the data reader for
more values by calling the reader’s ReadNextMetricValues() method. The interpolator invokes
the AddObservation() method of the observation processor once for each observation it is able
to generate. After all values from all chunks have been processed, the interpolator is responsible
for calling Finalize() on the ovObservationProcessor in order that any cached observations
may be processed.

3.1 Per-component, piecewise-constant interpolation

The current interpolator, ovHarsupexInterpolatorSimple outputs metrics observed contempo-
raneously on a given component. No more than a single observation will be generated for each
second, so multiple reports of the same metric on the same component for the same second are
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ignored; only the last reported value is used. This results in a piecewise constant time interpolation
scheme, with the usual caveat attached to it: there is no attempt made to capture the dynamics of
the observed metric between successive measure points. This is accomplished by maintaining a
state table, which is now described.

Each row of the table corresponds to a component and there are columns for each metric value of
interest as well as the component ID and observation time. The metric value columns are stored as
vtkVariantArray objects so that values start out as invalid when no measurement of the metric
has been made for a particular component. When each measurement is processed (in chronological
order, across all metric chunks), its time is compared to the observation time of the corresponding
row in the state table. If the measurement time is different and the row of the state table is complete
(i.e., each metric column has a valid value), then an observation is generated using the state table
values; the measurement value and updated time are not stored in the state table until after any
observation is generated.

After all measurements have been processed, any rows in the state table that have been updated
with measurements but for which no observation has yet been generated are visited in order to
generate final observations before invoking Finalize() on the observation processor.

The ovHaruspexInterpolatorSimple class will process the measurements of our example data
in Figure 4 as follows. Denote the measurements of metric A as A0,A1, . . . ,A4 and metric B as
B0,B1, . . . ,B5. Say that measurement Ai is taken at time tAi and Bi at tBi with 0 ≤ tA0, tB1 < 1,
1≤ tA1, tA2, tB2, tB3 < 2, and 2≤ tA3, tA4, tB4, tB5 < 3. Then the observation processor will be passed
the following table, one row at a time:

Time Component A B
1 2 A1 B3

1 1 A2 B2

2 1 A3 B5

2 2 A4 B4

Note that no values are reported for time 0 since no component has both metrics reported during
that second. Also, values A0, B0, and B1 are unreported since they are superseded by more recent
measurements before a valid tuple has been constructed or before a second has elapsed.

3.2 Future directions

In addition to smoother time-interpolation (linear or higher-order), we have also planned a failure
interpolator that would report a time interval with each observation indicating the amount of time
an associated component functioned properly after the observation and whether a failure occurred
at the end of that interval.

Finally, interpolation across associated components is desirable. In this case, one (or more) of the
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specified associations between components would be used to pair measurements of different on
different components into a single observation. For example, the CPU load of a compute node
might be paired with the amount of network traffic through an associated switch port.
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4 Observation Processing

When the interpolator creates an observation, it passes it to an observation processor. This pro-
cessor, some concrete subclass of ovHaruspexObservationProcessor, is free to use the observa-
tions in any way it chooses. For example, one subclass named ovHaruspexObservationAssessor
takes each observation and assessed it with respect to some previously computed statistical model
to see how likely it is given the model. However, the subclass named ovHaruspexModelUpdater
is what we are interested in; it aggregates the observations into a statistical model.

In theory, each new observation could be used to immediately update the statistical model. In
practice, the model updater caches observations until the number of observations is large enough
to efficiently perform a vtkStatisticsAlgorithm learn operation. This prevents memory exhaustion
while limiting the overhead associated with aggregation.

Because the interpolator does nothing but convert measurements into observations, it is also pos-
sible to use the model updater to divide observations into groups that may be used to update mul-
tiple independent models. An example of this is the ovHaruspexModelUpdaterMultiComp class,
which creates not a single cache of observations, but a cache per component. In this way, time-
series analysis algorithms can be passed slices of component time histories that are large enough
to recover trends in time.
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5 Conclusion

The previous sections have documented each stage of processing measurements into a local statis-
tical model, and how these stages are embodied in abstract classes with concrete implementations
in subclasses. To conclude, we will discuss how concrete subclasses are instantiated by the shep-
herd in order to execute a particular analysis so that developers who wish to contribute extensions
to OVIS can understand how to integrate new subclasses.

The shepherd runs each analysis in a separate thread. The thread function is the ProcessRequest()
member of the ovHaruspex class. This function uses several other classes to help it perform work.

The ovHaruspexReader class is responsible for configuring the analysis by reading a request from
a shepherd’s local database. This includes reading

• the name of a ovHaruspexDataReader class to instantiate,

• the name of a ovHaruspexInterpolator class to instantiate,

• the name of a ovHaruspexObservationProcessor clas to instantiate,

• the name of a vtkStatisticsAlgorithm class to instantiate,

• names and values of all string parameters stored in HaruspexRequestsStringParameters,

• names and values of all real parameters stored in HaruspexRequestsDoubleParameters,

• names and values of all integer parameters stored in HaruspexRequestsIntParameters,

• names and values of all component ids stored in HaruspexRequestsComponents, and

• names and values of all job ids stored in HaruspexRequestsJobs.

All of the parameters are passed to the SetParameter() method of each instantiated class, so any
class must be able to accept unneeded parameters without complaint.

There is currently no mechanism to insure that the classes named in the request will work to-
gether; it is up to the baron or haruspex command-line tool to insert a semantically correct re-
quest into the database. So, if a new interpolator requires tables from a specific subclass of
ovHaruspexDataReader this should be documented well and care taken in the GUI and CLI [3]
to insert proper requests.

Once the classes have been instantiated and parameter values set, the PrepareStorage() method
of the data reader is invoked to read an initial set of measurements. Then the interpolator’s
Execute() method is invoked. When it completes, Finalize() will have been called on the
observation processor – which in our case must be a subclass of ovHaruspexModelUpdater so
that it will have a local model ready for storage. The local model must always be a multiblock

21



dataset consisting of one or more tables. Currently, no other dataset types (such as vtkGraph) are
supported.

At this point, ovHaruspex creates an ovHaruspexModelWriter instance which inserts the model
tables into the database. This insertion causes a trigger to fire which eventually results in (1) the
model being replicated to other shepherds as well as (2) the aggregation of all local models into a
current estimate of the global model.
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[2] J. Bennett, P. Pébay, D. Roe, and D. Thompson. Numerically stable, single-pass, parallel
statistics algorithms. In Proc. 2009 IEEE International Conference on Cluster Computing,
New Orleans, LA, August 2009.

[3] J. M. Brandt, A. C. Gentile, J. Mayo, P. Pébay, D. Thompson, and M. H. Wong. The Python
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