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Abstract

A method is obtained for deriving peridynamic material models for a sequence of
increasingly coarsened descriptions of a body. The starting point is a known detailed,
small scale linearized state-based description. Each successively coarsened model ex-
cludes some of the material present in the previous model, and the length scale increases
accordingly. This excluded material, while not present explicitly in the coarsened model,
is nevertheless taken into account implicitly through its effect on the forces in the coars-
ened material. Numerical examples demonstrate that the method accurately reproduces
the effective elastic properties of a composite as well as the effect of a small defect in a
homogeneous medium.
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1 Introduction

The problem of how to represent a complex microstructure with a reduced number of
degrees of freedom is an important aspect of multiscale method development. For example,
in molecular biology, one would like to represent a macromolecule by tracking a relatively
small number of locations on the molecule, rather than simulating every atom in detail. In
the mechanics of materials, the bulk properties of a continuum are determined by several
length scales spanning many orders of magnitude. It would therfore be desirable have a
rigorous and mathematically consistent technique for deriving the properties at each length
scale from the one below it. For purposes of this paper, the process of deriving such a
simplified model from a fully detailed model will be called coarsening.

The peridynamic theory of solid mechanics [10, 2] has been proposed as means of treat-
ing discontinuous media through a mathematical model that does not require a smooth
distribution of mass or differentiability of the deformation. The starting point of the theory
is that the internal forces acting on a material point are determined through interactions
between the point and all others within a finite distance of it. The resulting mathematical
model relies on integral equations that apply regardless of the smoothness of the mass distri-
bution or of the deformation. The peridynamic model has a close resemblance to molecular
dynamics in that it sums up forces on a point, or particle, acting across nonzero distances.

The linearized version of the peridynamic theory has been investigated in [11, 13, 4, 15,
6, 5, 14] and elsewhere. The equation of motion in the linearized theory is given by

ρ(x)ü(x, t) =
∫
Nx

C(x,q)(u(q, t)− u(x, t)) dVq + b(x, t)

where ρ is the mass density, u is the displacement field, b is the body force density, x
is position in the reference configuration, and t is time. Nx is a neighborhood of x in
which direct interactions with x are modeled.1 C is a tensor-valued function called the
micromodulus function. If the interaction between x and q is through a pair potential, then
the form of C can be shown to be

C(x,q) = λ(x,q)(q− x)⊗ (q− x) + F0(x,q)1 (1)

where λ and F0 are symmetric, scalar valued functions. Under this assumption of pair
potentials, the bulk properties of a linear peridynamic material correspond to a Poisson
ratio of 1/4. A significant generalization of the linear peridynamic theory was presented in
[9], in which it is shown that any Poisson ratio, as well as various other material response, can
be represented by a more general choice of C than (1). Alali and Lipton [1] considered the
problem of homogenization within linear peridynamics. They obtained relations governing
the displacement field within a periodic microstructure in the limit of small length scales.

The present paper addresses the problem of how to solve an equilibrium, linear peridy-
namic problem with a reduced level of geometrical detail. The method considers a succes-
sion of increasingly coarsened bodies derived from an original, detailed description. Each
coarsening step involves the derivation of material properties from the previous step. The

1As discussed in [9], the radius of Nx is in general 2δ, where δ is the horizon. The horizon is the length
scale of the constitutive model from which C is derived through linearization.
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coarsened material properties are determined so that the effect of the excluded material is
implicitly included in the internal forces. In other words, deformation of the more detailed
material affects the forces between the points in the coarsened model, even though it no
longer appears explicitly. It is shown that by this procedure, the forces between points in
the coarsened model agree with those that would be computed in the fully detailed model,
but with much less computational effort. The process of coarsening can be repeated many
times, until the model has sufficiently few degrees of freedom that an economical simulation
can be performed.

The problem of coarsening a geometry is different from, but related to, mesh adaptivity,
which was discussed in [3]. In mesh adaptivity, a given numerical model is refined where
additional resolution is needed. In coarsening, the detailed geometry of a body is replaced
by a succession of different geometries, with different properties, in such a way as to give
essentially the same result as in the original detailed problem.

In the remainder of this paper, the theoretical development for the coarsening method
is given. A discretized form of the coarsening method is presented, with example prob-
lems. The examples illustrate that after multiple coarsening steps, the method continues
to reproduce the bulk properties of a one-dimensional composite material with a periodic
microstructure. It is also demonstrated that the coarsening method, when applied in the
vicinity of a material defect, continues to reproduce the essential features of the defect in a
boundary value problem.

2 Coarsening a detailed model

Consider a linear elastic peridynamic body B0, and let A0 be the set of admissible displace-
ment fields on B0. Let C0 : B0 ×B0 → L be the micromodulus tensor field associated with
the material, where L is the set of all second order tensors. Suppose there is a positive
number r0 representing the maximum interaction distance for points in B0:

|q− x| > r0 =⇒ C0(x,q) = 0 ∀q,x ∈ B0.

Let B1 ⊂ B0, and let A1 be the set of admissible displacement fields on B1. B0 and B1 will
be called the level 0 body and the level 1 body respectively (Figure 1). Our objective is to
express the internal forces on B1 purely in terms of its own displacements, while taking into
account forces that points in B0−B1 exert on points in B1 due to their own displacements.

To do this, choose an arbitrary point x ∈ B1. Let r1 be a positive number, and let N 1
x

be the closed neighborhood of x in B0 with radius r1 (Figure 2):

N 1
x =

{
q ∈ B0

∣∣ |q− x| ≤ r1
}
.

Let R1
x = N 1

x ∩ B1. Suppose u1 ∈ A1 is given, and let u0 ∈ A0 satisfy the compatibility
condition

u0(p) = u1(p) ∀p ∈ R1
x. (2)

Outside of R1
x, assume that u0 satisfies the equilibrium equation, neglecting interactions

between N 1
x and its exterior:

L0(z) + b(z) = 0 ∀z ∈ N 1
x −R1

x (3)

8



where
L0(z) =

∫
N 1

x

C0(z,p)(u0(p)− u0(z)) dVp ∀z ∈ N 1
x . (4)

Also assume that there is no body force density applied outside of R1:

b(z) = 0 ∀z ∈ N 1
x −R1

x. (5)

Further assume that for a given u1 field, (2) and (3) have a unique solution u0 on N 1
x , and

let S0,1
x be the resolvent kernel that generates this solution:

u0(p) =
∫
R1

x

S0,1
x (p,q)u1(q) dVq ∀p ∈ N 1

x . (6)

From (2) and (6), we infer that

S0,1
x (p,q) = 1∆(p− q) ∀p ∈ R1

x, ∀q ∈ N 1
x (7)

where 1 is the identity tensor and ∆ is the three dimensional Dirac delta function. For the
special case of u1 representing a rigid translation of R1 through an arbitrary displacement
vector, say ū, then all the points in N 1

x − R1
x must also translate by the same vector.

Therefore, from (6),

ū =

[∫
R1

x

S0,1
x (p,q) dVq

]
ū ∀ vectors ū, ∀p ∈ N 1

x ,

hence the following identity is obtained:∫
R1

x

S0,1
x (p,q) dVq = 1 ∀p ∈ N 1

x . (8)

Subtracting u0(z) from both sides of (6), and using (8),

u0(p)− u0(z) =
∫
R1

x

S0,1
x (p,q)(u1(q)− u1(z)) dVq ∀p, z ∈ N 1

x .

Using this result in (4),

L0(z) =
∫
N 1

x

C0(z,p)

[∫
R1

x

S0,1
x (p,q)(u1(q)− u1(z)) dVq

]
dVp ∀z ∈ N 1

x .

Reversing the order of integration and rearranging,

L0(z) =
∫
R1

x

[∫
N 1

x

C0(z,p)S0,1
x (p,q) dVp

]
(u1(q)− u1(z)) dVq ∀z ∈ N 1

x .

Recalling that x is an arbitrary point in B1, denote the force density at any such choice of
x by

L1(x) = L0(x) ∀x ∈ B1. (9)

From this and the previous equation,

L1(x) =
∫
R1

x

C1(x,q)(u1(q)− u1(x)) dVq ∀x ∈ B1 (10)
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where C1 : B1 × B1 is defined by

C1(x,q) =
∫
N 1

x

C0(x,p)S0,1
x (p,q) dVp ∀x,q ∈ B1. (11)

Equation (10) involves quantities that are defined only in the level 1 body B1. Therefore,
it provides a coarsened description of the internal forces in the level 0 body. The coarsened
micromodulus function defined in (11) takes into account the equilibrium of points in B0−B1

and their effect on the forces in B1.

Restricting the volume of integration in the above steps to a sphere of radius r1 in
effect assumes that the internal forces on any x ∈ B1 can be obtained accurately while
neglecting all interactions between the interior and exterior of the sphere centered at x.
The value of r1 must be chosen large enough so that this is true. To find a suitable value,
the procedure described above can be repeated with increasing choices of r1. At some point
in this process, the values of C1(x,q) computed from (11) will become negligible for all q
such that |q− x| > r1. This implies that further increases to r1 will have no effect on C1;
therefore this value of r1 is sufficiently large to satisfy the assumptions in the analysis.

Equations (2) and (9) assert that the displacements and the force densities agree between
the level 0 and level 1 models on B1. This implies that the solution in B1 to any equilibrium
boundary value problem, in which boundary data b or u are specified on part of B1, is
independent of whether we use the level 0 or level 1 model. In this sense, the level 1 model
exactly duplicates the level 0 model, but with fewer degrees of freedom.

3 Successive coarsening levels

Recall that the micromodulus function in the level 1 model given by (11) involve only points
x and q in B1. So, the level 1 equilibrium problem has exactly the same mathematical
structure as the original level 0 problem, but with quantities defined on B1 instead of B0.
Therefore, the entire coarsening process can be repeated over and over in the same way,
each time increasing the length scale.

Define BM ⊂ BM−1 ⊂ · · · ⊂ B0 (Figure 1). Each Bm is called the level m body. For any
x ∈ Bm, letNm

x be the closed neighborhood in Bm−1 with radius rm, and letRm
x = Nm

x ∩Bm.
Then, following the steps (2) through (11), for any M ≥ m ≥ 1,

um−1(p) = um(p) ∀p ∈ Rm
x ,

Lm−1(z) + b(z) = 0 ∀z ∈ Nm
x −Rm

x ,

b(z) = 0 ∀z ∈ Nm
x −Rm

x .

For this choice of x ∈ Bm, evaluate the resolvent kernel Sm−1,m
x :

um−1(p) =
∫
Rm

x

Sm−1,m
x (p,q)um(q) dVq ∀p ∈ Nm

x . (12)

The level m force density is then

Lm(x) =
∫
Rm

x

Cm(x,q)(um(q)− um(x)) dVq ∀x ∈ Bm

10



Figure 1. Levels 0, 1, and 2 in a peridynamic body.

where Cm : Bm × Bm is defined by

Cm(x,q) =
∫
Nm

x

Cm−1(x,p)Sm−1,m
x (p,q) dVp ∀x,q ∈ Bm.

With each successive coarsening, more material is excluded, and the length scale is increased.

4 Discretized method

To carry out the coarsening numerically, the level 0 body B0 is discretized into nodes which,
for simplicity, all have equal volume v. Each node i has position xi and level mi. For any
nodes i and j, let

C0
i,j = vC0(xi,xj).

To find the coarsened micromodulus for node i, it is first necessary to find the resolvent
kernel defined by (6). A convenient way to do this numerically is to use a vector of unknowns
{u0} in which the nodes withinR1

i are grouped at the top. The corresponding displacements
are forced to coincide with the values of u1 according to the compatibility condition (2).
This condition is enforced by placing 0’s on the rows of the matrix for these degrees of
freedom, with 1 on the diagonal. The remaining degrees of freedom, which correspond to
nodes in N 1

i − R1
i , are determined by the equilibrium conditions (3), (4), and (5). The

11



Figure 2. Neighborhood N 1
x with coarsened subset R1

x.

resulting matrix equation has the following form:

1 0 0 0 . . .
...

. . . 0 1 0 0 . . .
...

. . . C0
i,i−1 −Pi C0

i,i+1 . . .
...

. . . C0
N,N−1 −P0

N





u0
1
...

u0
R
...

u0
i
...

u0
N


=



u1
1
...

u1
R
...
0
...
0


where R is the number of nodes in R1

i and N is the number of nodes in N 1
i . The diagonal

matrix elements Pi are defined by

Pi =
∑
j 6=i

C0
i,j .

The above matrix equation will be abbreviated as

[A]{u0} = {b}. (13)

where [A] is an N ×N matrix. Let [A]−1 be the inverse of this matrix, therefore

[A]−1{b} = {u0}.

12



Now define a N ×R matrix [S0,1] to be the leftmost R columns of [A]−1. Then

{u0} = [S0,1]{u1} (14)

where

{u1} =


u1

1
...

u1
R


Equation (14) provides the discretized representation of (6).

To evaluate the coarsened micromoduli C1
i,j , (11) is discretized as follows:

C1
i,j = v

N∑
k=1

C0
i,kS

0,1
k,j

where the S0,1
k,j are the elements of the matrix [S0,1] found above, each of which is a second

order tensor.

Successive coarsenings to higher levels are done in the same way, thus, for any m ≥ 1,

Cm
i,j = v

Nm∑
k=1

Cm−1
i,k Sm−1,m

k,j

where the [Sm−1,m] components are found by inverting the [A] matrix

[A] =



1 0 0 0 . . .
...

. . . 0 1 0 0 . . .
...

. . . Cm−1
i,i−1 −Pm−1

i Cm−1
i,i+1 . . .

...
. . . Cm−1

N,N−1 −Pm−1
N


.

Note that each new coarsening only uses quantities from the previous level.

5 Examples

These numerical example problems illustrate the general form of the coarsened micromod-
ulus function (Example 1), the effect of a periodic microstructure (Example 2), and the
properties of the method applied to a defect in an otherwise homogeneous body (Exam-
ple 3). In all cases, the coarsened micromulus functions are evaluated for every discretized
node i. Gaussian elimination is used to find the matrix inverse [A]−1 as discussed in the
previous section. The discretized boundary value problems are also solved using Gaussian
elimination.

13



5.1 Micromodulus in a homogeneous bar

This example illustrates the typical form of coarsened micromodulus functions. A homoge-
neous, one dimensional bar of length 1.0 has a tent-shaped micromodulus function C0 as
shown in Figure 3:

C0(x, q) =
{

1− |q − x|/r0 if 0 < |q − x| < r0,
0 otherwise.

The level 0 interaction distance is r0 = 0.05. The bar is discretized into nodes with spacing
v = 0.005, thus r0 = 10v.

Coarsening is carried out as shown schematically in Figure 4. Every fourth node in
level 0 is also in level 1. Every second node in level 1 is also in level 2. The coarsened
micromodulus functions C1 and C2 are shown as functions of bond distance q − x in the
figure. These curves have sharp peaks because they are defined only in their respective
coarsened regions, i.e., every fourth or eighth node in the grid.

5.2 Bar with periodic microstructure

This example illustrates the properties of the coarsening procedure when applied to a com-
posite material. A bar with length 1.0 is composed of alternating stripes Shard and Ssoft.
(These represent the physical properties of the level 0 model and should not be confused
with the coarsening levels.) Each stripe has width 0.05. The interaction distance r0 is also
0.05. The micromodulus is given by

C0(x, q) =


10 if 0 < |q − x| < r0 and (x ∈ Shard and q ∈ Shard),
1 if 0 < |q − x| < r0 and (x ∈ Ssoft or q ∈ Ssoft),
0 otherwise.

In other words, bonds that have both ends in a hard stripe have hard properties. Bonds
that have either end or both ends in a soft stripe have soft properties.

The level 0 interaction distance is r0 = 0.05. The discretized model has a spacing of
0.005. The coarsened levels are the same as in the previous example and shown in Figure 4.

The boundary conditions are as follows. The leftmost three level 2 nodes are constrained
to have zero displacement. The rightmost three level 2 nodes have an applied body force
density of b = 0.001. The computed displacements with the identical boudary conditions
for coarsening levels 0, 1, and 2 are shown in Figure 5. As expected, the level 0 solution
contains the greatest level of detail due to the microstructure. Levels 1 and 2 smooth out
these features. However, both coarsened levels have the same global stretch as the detailed
solution. This demonstrates that the effective properties produced by the coarsening method
accurately reflect the bulk properties of the composite.

5.3 Homogeneous bar with a defect

This example illustrates the response of a coarsened model when the level 0 body contains
a small defect. The material model is the same as in Example 1, but with a term µ that

14
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Figure 4. Coarsening levels 0, 1, and 2 for the one dimensional
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levels lower than m.
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degrades the stiffness of bonds that cross the location of a defect xd:

C0(x, q) = µ(x, q)
{

1− |q − x|/r0 if 0 < |q − x| < r0,
0 otherwise.

where

µ(x, q) =
{

0.1 if x ≤ xd ≤ q or q ≤ xd ≤ x
1 otherwise.

The level 0 interaction distance is r0 = 0.05. The bar is discretized into nodes with spacing
v = 0.005, thus r0 = 10v. The defect is located at the center of the bar.

The level 1 grid contains every third node of the level 0 grid. The level 2 grid contains
every third node of the level 1 grid (Figure 6). Prescribed displacement boundary conditions
are applied to three leftmost level 2 nodes and to the three rightmost level 2 nodes. The
values of the prescribed displacements at these nodes are given by u0

i = u1
i = u2

i = xi where
xi is the position of the node.

The resulting fields u0, u1, and u2 near the defect are shown in Figure 7. The three
levels give nearly identical results except that the jump in displacement across the defect
reflects the wider spacing between nodes in the coarsened grids.

6 Computational cost

To determine the implications of coarsening for the computational effort in a numerical
model, consider the effect of increasing the total volume of the level 0 body. Assuming
the discretization spacing and level 0 material model are constant, let the total number of
level 0 nodes in the model be K0, which is proportional to the total volume of material.
Suppose the linear solver, which is applied to the fully coarsened level M grid, uses J = aKn

M

arithmetic operations, where a and n are constants, and KM is the total number of nodes in
level M . (For Gaussian elimination, n = 3, although more efficient methods are available.)
Suppose each the grid for each level has 1/L as many nodes as in the previous level, where
L is a constant. (In Example 3, L = 3. If this example were three dimensional, then we
would have L = 33.) So, KM = K0/LM .

The computational effort in determining the level m + 1 properties from the level m
properties is proportional to Km, since the inverse matrix [A]−1 must be computed for each
level m node. Therefore, we can write, for some positive constant b,

J = a

(
K0

LM

)n

+
M−1∑
m=0

bK0

Lm

= a

(
K0

LM

)n

+ bK0
1− 1/LM

1− 1/L

< a

(
K0

LM

)n

+ bK0
L

L− 1
.

The conclusion is that by coarsening up to level M , the computational effort in the linear
solve for a boundary value problem is reduced by a factor of LnM over what it would be

18



2

1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Level

Distance

1

0 0 0 0

1

0 0 0 0

2

1 1

Figure 6. Coarsening levels 0, 1, and 2 for the one dimensional
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if the whole problem were solved in level 0. In a three dimensional version of Example 3,
with Gaussian elimination, this factor would be 81M . The price paid in determining the
coarsened properties is a computational effort of less than bK0L/(L − 1), independent of
M .

7 Discussion

The coarsening method described above involves an increase in the length scale rm at each
step in the process. In this sense, it provides a tool for multiscale analysis. Although it
involves derivation of material properties at variable length scales, the method is different
from rescaling of material properties as discussed in [3, 8]. In these references, the technique
for changing length scales starts with a small-scale material model and maps each bond
explicitly into a rescaled bond strictly according to bond length. Such a rescaling approach
would not be expected to accurately reproduce the effective properties of a heterogeneous
material, such as a composite, because it does not account for the rearrangement of material
at the small scale in response to deformation at the large scale. The present approach to
coarsening does account for this rearrangement, as demonstrated in Example 2.

The development in this paper treats only the linearized, equilibrium case. However, the
coarsened material properties developed here are expected to be useful in dynamic problems
as well. Future work will investigate the implications for the time scale of the material when
the length scale is increased from r0 to rm. It is expected that there is a strong connection
between length and time scales in the peridynamic model because the length scale dictates
the highest vibrational frequencies that can be sustained by the continuum. Future work
will also attempt to treat nonlinearities in the coarsening method through an incremental
approach in which the linearized material properties C0 are re-evaluated as the problem
evolves.

The coarsening method proposed here is similar in some ways to a method investigated
by Eom [7] for coarse-graining an elastic network model of a protein molecule [12]. In Eom’s
coarse graining approach, atoms in a macromolecular structure are designated as master
and slave atoms, the latter of which are in equilibrium but coupled to the former.

Since a system of discrete particles can be represented exactly as a peridynamic body [8],
it is plausible that the method presented here could be applied to atomic systems, resulting
in a coarse-graining of atomistics. Such an application would require the thermal motion of
particles to be incorporated into the detailed material properties C0. Molecular dynamics
simulation may provide a means to accomplish this by providing time averages of forces
between atoms.
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