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Abstract

Circuit simulation tools (e.g., SPICE [1]) have become invaluable in the develop-
ment and design of electronic circuits in radiation environments. These codes are often
employed to study the effect of many thousands of devices under transient current con-
ditions. Device-scale simulation tools (e.g., MEDICI [2]) are commonly used in the
design of individual semiconductor components, but require computing resources that
make their incorporation into a circuit code impossible for large-scale circuits. Analytic
solutions to the ambipolar diffusion equation, an approximation to the carrier trans-
port equations, may be used to characterize the transient currents at nodes within a
circuit simulator. We present new transient 1D excess carrier density and photocurrent
density solutions to the ambipolar diffusion equation for low-level radiation pulses that
take into account a finite device geometry, ohmic fields outside the depleted region, and
an arbitrary change in the carrier lifetime due to neutron irradiation or other effects.
The solutions are specifically evaluated for the case of an abrupt change in the carrier
lifetime during or after, a step, square, or piecewise linear radiation pulse. Noting slow
convergence of the raw Fourier series for certain parameter sets, we use closed-form
formulas for some of the infinite sums to produce ”partial closed-form” solutions for
the above three cases. These ”partial closed-form” solutions converge with only a few
tens of terms, which enables efficient large-scale circuit simulations.
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1 Introduction

Advanced numerical device simulators, capable of simulating non-linear and multi-dimensional
transient drift/diffusion carrier movement and the resulting photocurrents have been devel-
oped over the last two decades ([2], [3], [4]). These calculations, however, may require hours
of compute time on powerful machines and may not be easily incorporated into device simu-
lators used by chip designers, such as SPICE [1] or XYCE [5], which may require calculations
for thousands of devices in order to analyze the effect of photocurrents generated in a single
chip. One application of circuit codes is the investigation of the response of microelectronic
devices to ionizing radiation. Ionizing radiation produces a transient photocurrent in a semi-
conductor device. When the radiation source consists of neutrons or heavy ions, significant
damage may occur in the crystalline structure, affecting the material properties of the device.

The transport behavior of excess carriers in semiconductors is described by the current and
continuity equations for electrons and holes, as well as Poisson’s equation, which relates the
electric field and net charge density. For each carrier, the current equation may be substi-
tuted into the continuity equation, resulting in three equations describing carrier transport
(pp. 320-327, [6]). The three resulting equations are not amenable to exact analytic mathe-
matical analysis. The electrical neutrality or charge balance approximation suggested by Van
Roosbroeck [7] is used to combine the electron and hole current-continuity equations into
the single ambipolar diffusion equation (pp. 327-328 [6]). The electrical neutrality approx-
imation states that the excess electron and hole densities are equal everywhere within the
device. The parameters of the resulting approximate equation are the ambipolar diffusion
parameters, as described in Table 1. The electric field in the ambipolar diffusion equation
includes an external field imposed by a voltage bias applied at the device contacts and an
internal field set up by the charged particles within the device. In many applications the
internal electric field is small and may be ignored (see pp. 330-333, [6]). We make this
assumption in this report. We will investigate the range over which the ambipolar diffusion
equation accurately describes the three equation system in a future SAND report.

One of the most important components in an integrated circuit (IC) is the reverse biased
pn (or np) diode. Since, under normal operating conditions, the leakage current from this
component is minute, a large radiation-generated photocurrent has the potential to upset
the entire IC. Figure 1 shows a reverse biased pn diode under light or ionizing radiation.
We assume ohmic contacts at the device ends. In order to obtain an analytical solution
for the photocurrents generated in such a device, we will consider it to consist of three
segments; the undepleted n-doped region, the depleted region, and the undepleted p-doped
region. We assume that the boundaries for these regions do not change with respect to
time; a reasonable assumption if the carrier-generation rate is not too high (the radiation-
generated excess carrier density is small compared to the majority excess carrier density at
equilibrium). The lengths, L1 and L2 of the undepleted regions as well as the width of the
depleted zone W may be determined analytically (see pg. 401 [6], for example). The local
coordinates are taken for convenience in the mathematical analysis. The function g(x, t)
describes the excess carriers generated by irradiation in each of the three sections of the
device. The current for the entire device consists of the sum of the depletion zone current
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with the two minority carrier diffusion currents from the undepleted regions [8]. It may be
expressed,

Jtotal(t) = Jp(t) + Jdepl(t) + Jn(t) (1)

Using the above assumptions, analytic solutions to the ambipolar diffusion equation for the
photocurrent response to irradiated 1D pn junction diodes have been developed over the
past four decades ([8],[9],[10],[11],[12],[13]). These photocurrent solutions are applicable un-
der limited boundary conditions with restrictions on the carrier generation rate. An early
transient radiation effects model is that of Wirth-Rogers [8], which describes the current
density solution to the ambipolar diffusion equation for a semi-infinite 1D pn junction diode
with no ohmic field in the undepleted region. Stuetzer [11] examined the steady state be-
havior of a diode under radiation and found the excess carrier and current densities for a

L2L1 W

Light or 

Radiation

+V

Gnd

Depletion zone

L1
0

coordinate systems
0 W

0 L2

Figure 1: Reverse biased pn diode under light or ionizing irradiation. Device is irradiated
from the left. For the 1D analysis, the contacts are assumed to cover the entire left and
right hand surfaces. The shaded region represents the depletion zone and the unshaded
regions represent undepleted zones. The total current is the sum of the drift and diffusion
current from the depleted and undepleted zones. Local coordinate systems are shown. The
parameter L in the mathematical development corresponds to either L1 or L2 in the figure.
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diode of finite extent. A model by Enlow and Alexander [12] investigated the time-dependent
solution of a finite pn junction diode irradiated by a square radiation pulse. They considered
the effect of a constant ohmic field in the undepleted region, but the solution obtained was
inaccurate due a poor approximation made in the Laplace transform inversion. The work
of Wunsch and Axness [13] corrected that of Enlow and Alexander [12] by finding the exact
inverse transform and also generalized and examined the limiting behavior of this solution.
Work by Axness, Kerr, and Wunsch [9] extended the solution to monochromatic light pulses
and found an n-dimensional transformation from the ADE to the non-homogeneous heat
equation. This work suggested the use of finite Fourier sine transforms to solve problems
involving the ADE. This SAND report generalizes the solutions of [9] to the particular case
where there is a time-dependent change in the carrier lifetime during or after irradiation.
Such behavior might be expected for a neutron pulse that is not coincident with a gamma
irradiation of the device.

The effect of neutron damage to semiconductor devices has been studied by a number of
authors ([14],[15],[16], [17]). Neutrons and other high energy particles collide and displace
lattice atoms in semiconductors creating Frenkel defects. Primary displaced atoms typically
have enough energy to create secondary defects. These vacancies may combine with dopant
and impurity atoms to form stable defects, which, in turn, may serve as recombination
centers, decreasing carrier lifetime. The temporal response of the carrier lifetime to a neutron
burst has been characterized as an abrupt decrease followed by a rapid short-term anneal
(on the order of a few hours) and a long-term anneal (on the order of months), in which
the carrier lifetime increases ( [14], [15], [18], [19]). Because the time scales associated with
the annealing periods following a neutron pulse are very long in comparison to the length
of a typical high-energy radiation (gamma) pulse, only an abrupt change in carrier lifetime
is considered in this report. However, the general development of the next section allows an
arbitrary time-dependent form of carrier lifetime.

The dynamics of neutron irradiation imply that the lattice damage and carrier lifetime
degradation could be spatially-dependent. To our knowledge there is not a mathematical
model describing this dependence. The analysis of this report assumes a spatially uniform
carrier lifetime degradation, however, it may be possible to modify the analysis to a simple
form of a spatially dependent lifetime. We do consider the possible spatial dependence of
the excess carrier generation density in the following section. The resulting equations may
be used to analyze the effects of a neutron irradiation on an abrupt pn junction illuminated
by monochromatic light, for example.
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2 Mathematical Development

In this section of the paper we develop general solutions to the excess carrier and current
densities in the depleted and undepleted regions of a reverse biased pn diode.

2.1 Solution to the 1D Ambipolar Diffusion Equation

In Cartesian coordinates under the assumption of charge neutrality and a time-dependent
carrier lifetime, the one-dimensional ambipolar diffusion equation may be written as ([6],[7]),

ut = Dauxx − µaEux −
1

τa(t)
u+ g(x, t) , 0 ≤ x ≤ L , t > 0 (2)

where u(x, t) is the excess carrier density, and g(x, t) is the excess carrier generation rate (in
excess of the thermal carrier generation rate). The equations for the ambipolar coefficients,
Da and µa and τa(t) are given in Table 1. E is the electric field, composed of an internal
field due to internal charged carriers and an applied field due to an applied potential. The
ambipolar carrier lifetime τa(t) is assumed a function of time in the analysis of this report.
We assume that the degradation is spatially uniform throughout the device. We could in-
vestigate non-uniform lifetime degradation, but the spatial dependence in the PDE would
then complicate the solution considerably. Inherent in the derivation of the ambipolar diffu-
sion equation under the charge neutrality assumption, is the inference that both the minority
and majority carrier lifetimes are affected equally with respect to time. Specifically, equation
(10.2-29) of reference [6], becomes:

u

τa(t)
=
p0 + u

τp(t)
− p0
τp0

=
n0 + u

τn(t)
− n0

τn0

(3)

where τp0 and τn0 are the average hole and electron carrier lifetimes respectively, under pre-
irradiation thermal equilibrium conditions. For low-level carrier injection, u(x, t) is much
less than the majority carrier doping for the device and the ambipolar coefficients became
approximately those of the minority carrier.

Thus, for an n-type device under low-level irradiation, Da, µa, and τa(t) become Dp, µp, and
τp(t), respectively. We assume the boundary conditions,

u(0, t) = u(L, t) = 0. (4)

with the initial condition u(x, 0) = f(x). Under these conditions, the dominant current
component in the undepleted n-type or p-type region of an np diode is the minority carrier
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current. Its current density is given by [6],

J(t) =

[
qD

∂u

∂x
± quµE

]∣∣∣∣
x=0

(5)

where ± is positive for the computation of Jp in n-type material and negative for the com-
putation of Jn in p-type material. The leading sign on the right-hand side of the above
equation is chosen positive so that Jp(t) is positive in our analysis. From this point on, we
further simplify our analysis by dropping the p subscript from Dp, µp, and τp(t). We can
solve the above boundary value problem via the substitution u(x, t) = V (x, t)eax , which will
transform equation (2) to

Vt = DVxx − (Da2 +
1

τ(t)
)V + g(x, t)e−ax (6)

where a = µE
2D
. The transformed boundary conditions remain type I, homogeneous, while

the initial condition becomes V (x, 0) = f(x)e−ax. The resultant boundary value problem
may be solved by the finite Fourier sine transform [21]. That is, define

V̄n(t) =

∫ L

0

V (x, t) sin(αnx)dx (7)

with inversion formula

V (x, t) =
2

L

∞∑
n=1

V̄n(t) sin(αnx) (8)

in which αn = nπ
L

is the nth eigenvalue associated with the Fourier series for V (x, t).

Applying this transform to equation (6), yields the ODE:

d

dt
V̄n(t) +

[
D(α2

n + a2) +
1

τ(t)

]
V̄n(t) = Ḡn(t) , n = 1, 2, 3... (9)

in which

Ḡn(t) =

∫ L

0

g(x, t)e−ax sin(αnx)dx (10)

Applying the transform to the initial condition simply provides us with the initial condition
for our ODE:

V̄n(0) =

∫ L

0

f(x)e−ax sin(αnx)dx

Therefore, the solution of our ODE is given by

V̄n(t) = V̄n(0)e−D(α2
n+a

2)t−
∫ t
0

1
τ(s)

ds +

∫ t

0

Ḡn(w)e−D(α2
n+a

2)(t−w)−
∫ t
w

1
τ(s)

dsdw (11)
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Substituting equation (11) into equation (8) we obtain V (x, t). Therefore

u(x, t) =
2eax

L

∞∑
n=1

[
V̄n(0)e−D(α2

n+a
2)t−

∫ t
0

1
τ(s)

ds

+

∫ t

0

Ḡn(w)e−D(α2
n+a

2)(t−w)−
∫ t
w

1
τ(s)

dsdw

]
sin(αnx) (12)

Equation (12) represents the general solution for the excess carrier density within the un-
depleted n-type region of the device. The corresponding current density evaluated at x = 0
is,

Jp(t) =
2qD

L

∞∑
n=1

αn

[
V̄n(0)e−D(α2

n+a
2)t−

∫ t
0

1
τ(s)

ds +

∫ t

0

Ḡn(w)e−D(α2
n+a

2)(t−w)−
∫ t
w

1
τ(s)

dsdw

]
(13)

The expressions given by equations (12) and (13) may be used to describe the excess carrier
and current densities in the undepleted p-type region with appropriate subscript changes
in the parameters and a possible sign change on the ohmic field term, depending on the
axis orientation. The expressions given by equations (12) and (13) may be used to evaluate
the excess carrier and current density distributions for an arbitrary function τ(s). In the
case where the initial excess carrier density is zero at time t = 0, V̄n(0) = 0 and the first
term is eliminated in the expressions. However, we note that the first term gives us a
number of options in simulation. For example, we may stop a simulation and restart using
the excess carrier density at the stopping time as the initial excess carrier density upon
restart. Using this option, we may change parameters after stopping to approximate in a
piecewise linear fashion non-linear problems in which parameters change with respect to
time. With careful consideration of charge conservation and changes in the depletion region,
we may approximate moving boundary problems resulting from device bias changes during
irradiation, for example.

2.2 Special Cases

For the case of g(x, t) = g(x) and f(x) = 0 equation (12) reduces to

u(x, t) =
2eax

L

∞∑
n=1

Ḡn

[∫ t

0

e−D(α2
n+a

2)(t−w)−
∫ t
w

1
τ(s)

dsdw

]
sin(αnx) (14)
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and from equation (13),

Jp(t) =
2qD

L

∞∑
n=1

Ḡnαn

[∫ t

0

e−D(α2
n+a

2)(t−w)−
∫ t
w

1
τ(s)

dsdw

]
(15)

in which

Ḡn =

∫ L

0

g(x)e−ax sin(αnx)dx (16)

For the case where g(x, t) = g(t) and f(x) = 0 equation (12) reduces to

u(x, t) =
2eax

L

∞∑
n=1

w̄n

[∫ t

0

g(w)e−D(α2
n+a

2)(t−w)−
∫ t
w

1
τ(s)

dsdw

]
sin(αnx) (17)

in which

w̄n =

∫ L

0

e−ax sin(αnx)dx =
αn
(
1− (−1)ne−aL

)
a2 + α2

n

(18)

From equation (13), we find

Jp(t) =
2qD

L

∞∑
n=1

w̄nαn

[∫ t

0

g(w)e−D(α2
n+a

2)(t−w)−
∫ t
w

1
τ(s)

dsdw

]
. (19)

When E = 0, and therefore, a = 0, w̄n = 0 for n even and w̄n = 2/αn for n odd. Therefore,
equations (17) and (19) become,

u(x, t) =
4

L

∞∑
n=0

[∫ t

0

g(w)e−Dα
2
2n+1(t−w)−

∫ t
w

1
τ(s)

dsdw

]
sin(α2n+1x)

α2n+1

(20)

and

Jp(t) =
4qD

L

∞∑
n=0

∫ t

0

g(w)e−Dα
2
2n+1(t−w)−

∫ t
w

1
τ(s)

dsdw. (21)

From the above forms we note that when E = 0, any of the solutions that follow may be re-
indexed to sum over only the odd terms, replacing the w̄n term with 1/α2n+1 and multiplying
the leading coefficient of the series by a factor of 2.
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2.3 Simple approximation to the depletion current for an abrupt
change in carrier lifetime

In this section we derive an approximate expression for the depletion current density, Jdepl(t),
due to a radiation source, taking into account an abrupt change in the carrier lifetime.
The expression is a generalization to that derived in reference [9]. We make the following
assumptions in the depleted region:

• The effective electric field is the sum of the applied and built-in field. This field is
approximately constant and is unaffected by excess carriers (low-level radiation as-
sumption).

• Except for electron-hole recombination, the effect of carrier-carrier interactions is neg-
ligible.

• Electron-hole pairs are instantaneously created by irradiation and instantaneously ac-
celerated to a common drift velocity.

• Diffusion is negligible.

• Carriers arriving at the edge of the depletion region instantaneously contribute to the
device current.

• The carrier lifetime is piecewise constant; τ(t) = τ1 until time t′ at which it becomes
τ(t) = τ2

Under these conditions, the drift velocity is v = dx/dt = µE. For E negative, electrons move
toward the origin and a carrier arriving at the depletion edge (x = 0 in Figure (1)) at time
t was originally generated from the position x∗ ≥ 0 at time t − t∗ = t − x∗/ (µ |E|) . For
an irradiation that begins at time t = 0, carriers generated with flux g (x∗, t− x∗/ (µ |E|))
located a distance x∗ ≤ min (µ |E| t,W ) contribute to the photocurrent.

We consider the effect of carrier recombination in the depleted region. When t∗ ≤ t < t′, on
average, the fraction exp (−t∗/τ1) = exp [−x∗/ (µ |E| τ1)] of the originally injected carriers
at position x = x∗ reach the depletion edge.

When t ≥ t∗ ≥ t′, particles in the spatial interval, [0,min (µ |E| (t− t′),W )] travel to
the depletion edge in the time interval [t′, t], corresponding to the carrier lifetime, τ2.
In this interval, on average the fraction exp (−t∗/τ2) = exp [−x∗/ (µ |E| τ2)] of the origi-
nally injected carriers reach the depletion edge. Particles generated in the spatial interval,
[min (µ |E| (t− t′),W ) ,min (µ |E| t,W )], travel under carrier lifetime τ1 during the interval
[t− t∗, t′] and under carrier lifetime τ2 over the interval [t′, t].

Considering the average arrival time of carriers, that each carrier has a charge of q, and
the relative times that the carriers travel under each recombination rate, the photocurrent
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density may be written,

Jdepl (t) =



q

∫ min(µ|E|t,W )

0

g (x∗, t− x∗/ (µ |E|)) e−x∗/(µ|E|τ1)dx∗, t < t′

q

∫ min(µ|E|(t−t′),W )

0

g (x∗, t− x∗/ (µ |E|)) e−x∗/(µ|E|τ2)dx∗+

q

∫ min(µ|E|t,W )

min(µ|E|(t−t′),W )

g (x∗, t− x∗/ (µ |E|)) e−(x∗−x′)/(µ|E|τ1)e−x′/(µ|E|τ2)dx∗, t ≥ t′

(22)

where x′ = µ |E| t′. The first integral in the expression for t ≥ t′ represents the contribution
of carriers that have been generated after the neutron pulse and the second integral represents
the contribution of carriers that have been generated before the neutron pulse. The min
function in the integral limits the charge collection to be from the interval [0,W ]. Note
that for t large enough, the first integrals will span the entire range [0,W ] and the second
integral of the expression for t ≥ t′, becomes identically zero. For a radiation source, g (x, t)
is normally a function of t only. For g(t) = g0(t > 0) and a finite carrier lifetime, the above
expression may be evaluated as:

Jdepl (t) =



qg0µ |E| τ1
(
1− e−min(t/τ1,W/(µ|E|τ1))

)
, t < t′

qg0µ |E| τ2
(

1− e−min((t−t′)/τ2,W/(µ|E|τ2))
)

+

qg0µ |E| τ1e−t
′(1/τ2−1/τ1)·(

e−min((t−t′)/τ1,W/(µ|E|τ1)) − e−min(t/τ1,W/(µ|E|τ1))
)
, t ≥ t′

(23)
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Table 1: Definition and description of important physical constants and parameters.

Constant Description Units

G generation density per rad/s in Si (4.3× 1013) 1/cm3/rad(Si)
q Electronic charge (1.602× 10−19) C
k Boltzmann constant (1.381× 10−23) J/K

Parameter Description/Equation cgs units

a µpEn/2Dp 1/cm
E,Ep, En Ohmic electric field in undepleted zone V/cm

J(t), Jp or n(t) Undepleted zone current densities A/cm2

n (x, t) electrons per unit volume 1/cm3

p (x, t) holes per unit volume 1/cm3

u (x, t) n (x, t)− n (x, 0), Excess electrons/unit volume 1/cm3

u (x, t) p (x, t)− p (x, 0), Excess holes/unit volume 1/cm3

τp, τn Minority carrier lifetime s
τ1 minority carr. lifetime before neutron pulse s
τ2 minority carr. lifetime after neutron pulse s

µp, µn Minority carrier mobility cm2/Vs
D,Dp, Dn Minority carrier diffusion coefficient cm2/s

Da
(n+p)DnDp
nDn+pDp

Ambipolar diffusion cm2/s

µa
(n0−p0)µnµp
nµn+pµp

Ambipolar mobility cm2/Vs

τa
p0+u
τp(t)
− p0

τp0
= n0+u

τn(t)
− n0

τn0
Ambipolar lifetime s

Lp, Ln
√
Dpτp,

√
Dnτn, Diffusion length cm

L undepleted p or n width cm
W depletion width cm
γ̇ dose rate rad(Si)/s

g (x, t) , g0 G γ̇, generation density 1/cm3s
αn nπ/L, Fourier sine series eigenvalue 1/cm
ai,n D(α2

n + a2 + 1
Dτi

) sine series parameter 1/s

Dimensionless
parameters [9] Description Definition

ak solution parameter, n-type region
(
kπ
ζp

)2
+ 1 + β2

p

bk solution parameter, p-type region
(
kπ
ζn

)2
+ 1 + β2

n

ζp, ζn Normalized diode length x1
Lp

, x2
Ln

βp, βn Normalized field parameter µpEnLp
2Dp

, µnEpLn
2Dn

tp, tn Normalized time t
τp

, t
τn

δtp, δtn Normalized pulse length δt
τp

, δt
τn
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3 Abrupt (Heaviside function) decrease (or increase)

in minority carrier lifetime with g(x, t) = g(t)

In this section we investigate the effect of an abrupt change in minority carrier lifetime
during or after a time-dependent spatially-uniform gamma irradiation pulse, g(x, t) = g(t).
A typical application is that of a neutron burst which may result in a decrease of carrier
lifetime of an order of magnitude or more. The mathematical analysis is also applicable to
an abrupt increase in minority carrier lifetime since the value assigned to the lifetime after
the abrupt change may be greater or less than the initial carrier lifetime in the equations.
The solution to the problem for a constant minority carrier lifetime (i.e. no neutron pulse)
is known [9].

Assuming the minority carrier lifetime is characterized as; τ(t) = τ1, t ≤ t′ and τ(t) = τ2,
t > t′, the integral in the exponential terms of the equations of the previous section (i.e.
(14),(15),(17), or (19)) becomes,

∫ t

w

1

τ(s)
ds =



t−w
τ1

, t ∈ [0, t′)

t′−w
τ1

+ t−t′
τ2

, t ∈ [t′,∞), w ∈ [0, t′)

t−w
τ2

, t ∈ [t′,∞), w ∈ [t′,∞)

(24)

so that,

u(x, t) =
2eax

L

∞∑
n=1

w̄nIn(t) sin(αnx) (25)

and from equation (19),

Jp(t) =
2qD

L

∞∑
n=1

w̄nαnIn(t) (26)

where

In(t) =


I1,n(0, t); 0 ≤ t ≤ t′

e−a2,n(t−t
′)I1,n(0, t′) + I2,n(t′, t); t > t′

(27)

19



and,

Ik,n(a, b) =

∫ b

a

g(w)e−ak,n(b−w)dw, (28)

in which ak,n = D(α2
n+a2 + 1

Dτk
). In the following sections we evaluate In(t) using equations

(27) and (28) for specific cases of g(t). We then evaluate u(x, t) and Jp(t) using equations
(25) and (26).

3.1 Case where g(x, t) is a step function, i.e. g(x, t) = g0, t > 0

In this case, evaluation of equation (27) gives,

In(t) =


g0(1−e−a1,nt)

a1,n
, 0 < t ≤ t′

g0(1−e−a1,nt
′
)

a1,n
e−a2,n(t−t

′) + g0(1−e−a2,n(t−t′))
a2,n

, t′ < t

(29)

where a1,n and a2,n are defined in section 3. Substitution of the above formula into either
equation (25) or equation (26) provide us with the relevant solutions. The convergence rates
of the two respective raw series may, however, be significantly improved by decomposing
them into steady-state and transient components, and then replacing the steady-state series
with the appropriate closed-form formulas given in Appendix A. The solution for u(x, t) may
then be written,

u(x, t) =


us,1(x)− 2g0eax

L

∞∑
n=1

w̄n
e−a1,nt

a1,n
sin(αnx) , 0 < t ≤ t′

us,2(x) + 2g0eax

L

∞∑
n=1

w̄n

[
1−e−a1,nt

′

a1,n
e−a2,n(t−t

′) − e−a2,n(t−t′)

a2,n

]
sin(αnx) , t′ < t

(30)

where

us,k(x) = g0τk

[
1− eax

(
sinh(γk(L− x)) + e−aL sinh(γkx)

)
sinh(γkL)

]
. (31)
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Applying the same technique to equation (26) using equation (29), we have,

Jp(t) =


Js,1 − 2qDg0

L

∞∑
n=1

w̄nαn
e−a1,nt

a1,n
, 0 < t ≤ t′

Js,2 + 2qDg0
L

∞∑
n=1

w̄nαn

[
1−e−a1,nt

′

a1,n
e−a2,n(t−t

′) − e−a2,n(t−t′)

a2,n

]
, t′ < t

(32)

in which

Js,k = qDg0τk

[
−a+ γk

(
cosh(γkL)− e−aL

)
sinh(γkL)

]
(33)

The terms us,k(x) and Js,k represent the steady state minority excess carrier and current
densities with respect to the initial (k = 1) and final (k = 2) minority carrier densities. We
note that the equations (30) and (32) agree with equations (18) and (19) of Axness et. al.
[9], for the case where there is no change in carrier lifetime (τ1 = τ2). We may write the
above in the notation of equations (20) and (21) of Axness et. al. [9] as (see Appendix A),

Jp(t) =



Jp,1(∞)− Ap,1
∞∑
n=1

(nπ)2(1−(−1)ne−ζp,1βp,1)
(nπ)2+(ζp,1βp,1)2

[
e−an,1tp,1

an,1

]
, t ∈ [0, t1)

Jp,2(∞)− Ap,1
∞∑
n=1

(nπ)2(1−(−1)ne−ζp,1βp,1)
(nπ)2+(ζp,1βp,1)2

·[
e(tp,2−t1,2)(e−an,1tp,1−e−dp,1(tp,1−t1,1))

an,1
+ τp,2e

−an,2(t−t1)

τp,1an,2

]
, t ∈ [t1,∞)

with dp,1 = nπ
ζp,1

+ βp,1 and

Jp,k(∞) = qg0Lp,k

√(1 + β2
p,k)
[
cosh(ζp,k

√
(1 + β2

p,k))− e−ζp,kβp,k
]

sinh(ζp,k
√

1 + β2)
− βp,k

 (34)

where the parameters are given in Table 1. The k in the above coefficients and in Jp,k(∞)
refers to the notation of Axness et. al. [9] with τ1 applied when k = 1 and τ2 applied for
k = 2. The subscript p refers to the minority carrier current in an n-doped device. The
photocurrent for a p-doped device has the same formula with a sign change for the ohmic
field term E.
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3.2 Case where g(x, t) is a square pulse

In this case, the carrier lifetime is that of the previous section. The excess carrier generation
density is defined by g(x, t) = g0(1−H(t− t1)), where H(t) denotes the Heaviside function.
For the case where the neutron pulse occurs during the gamma irradiation (t′ < t1), we may
evaluate In(t) using equation (27) as,

In(t) =



g0(1−e−a1,nt)
a1,n

, 0 < t ≤ t′

In(t′)e−a2,n(t−t
′) +

g0
(
1−e−a2,n(t−t′)

)
a2,n

, t′ < t ≤ t1

In(t1)e
−a2,n(t−t1) , t > t1

(35)

And for the case where the neutron pulse occurs after the gamma irradiation (t′ > t1), we
may evaluate In(t) using equation (27) as,

In(t) =



g0(1−e−a1,nt)
a1,n

, 0 < t ≤ t1

In(t1)e
−a1,n(t−t1) , t1 < t ≤ t′

In(t′)e−a2,n(t−t
′) , t > t′

(36)

where a1,n and a2,n are as defined in section 3. As expected, equation (35) is the same as
equation (29) for the step function except over the interval t > t1. We note that equation (36)
over the range t > t1 takes the form of In(t) evaluated at the previous endpoint multiplied
by an exponential term dependent upon the time elapsed since that endpoint. The terms,
ak,n, in the exponential argument represent the effective rate of carrier degradation for each
eigenvalue taking into account losses through drift, diffusion, and recombination. This rate is
dependent upon the minority carrier lifetime during which the elapsed time occurs (k = 1 for
τ1 and k = 2 for τ2). Similar terms occur in equation (35). Here, over the range of t′ < t ≤ t1,
where the gamma pulse continues, the second term on the right hand side represents the
contribution of excess carriers produced during this period. The final equation for t > t1,
has the same form as equation (36). Finally, we note that partial closed form solutions for
u(x, t) and Jp(t) may be obtained as in section 3.1. The development is given in Appendix
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A and the results for t′ < t1 are,

u(x, t) =



us,1(x)− 2g0eax

L

∞∑
n=1

w̄n
e−a1,nt

a1,n
sin(αnx) 0 < t ≤ t′

us,2(x) + 2g0eax

L

∞∑
n=1

w̄n

[
1−e−a1,nt

′

a1,n
e−a2,n(t−t

′) − e−a2,n(t−t′)

a2,n

]
sin(αnx) t′ < t ≤ t1

2g0eax

L

∞∑
n=1

w̄n

[
1−e−a1,nt

′

a1,n
e−a2,n(t−t

′) + 1−e−a2,n(t1−t
′)

a2,n
e−a2,n(t−t1)

]
sin(αnx) t > t1

(37)

and

Jp(t) =



Js,1 − 2qDg0
L

∞∑
n=1

w̄nαn
e−a1,nt

a1,n
0 < t ≤ t′

Js,2 + 2qDg0
L

∞∑
n=1

w̄nαn

[
1−e−a1,nt

′

a1,n
e−a2,n(t−t

′) − e−a2,n(t−t′)

a2,n

]
t′ < t ≤ t1

2qDg0
L

∞∑
n=1

w̄nαn

[
1−e−a1,nt

′

a1,n
e−a2,n(t−t

′) + 1−e−a2,n(t1−t
′)

a2,n
e−a2,n(t−t1)

]
t > t1

(38)

where us,k(x) and Js,k are given by equations (31) and (33). These terms again represent
the steady state current densities. The equations for the case where t′ > t1 are given in
Appendix A.

3.3 Case where g(x, t) is a piecewise linear pulse

Experiments conducted at high-energy facilities generally measure the radiation generation
density. Typically, the function describing this pulse is not a square wave, but may easily be
described by a piecewise linear function with respect to time, as shown in Figure 2. For the
case where the neutron pulse occurs during the gamma irradiation, we may evaluate In(t)
using equation (27) as,
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t=0 t1 t2 …  tm

…

g1

g2

g3

gm

t’ tm+1

gm+1 …

… ts …

…

tM

gs

τ=τ1 τ=τ2

Figure 2: Piecewise linear gamma irradiation generation density with a neutron pulse at
t = t′. pn diode minority carrier lifetime is τ = τ1 for t < t′ and τ = τ2 for t ≥ t′.
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In(t) =

m−1∑
i=0

∫ ti+1

ti
[gi + hi (w − ti)] e−a1,n(t−w)dw+∫ t

tm
[gm + hm (w − tm)] e−a1,n(t−w)dw , 0 ≤ tm < t ≤ t′ < tm+1

In(t′)e−a2,n(t−t
′)+∫ t

t′
[gm + hm (w − tm)] e−a2,n(t−w)dw , tm ≤ t′ < t ≤ tm+1

In(tm+1)e
−a2,n(t−tm+1)+

s−1∑
i=m+1

∫ ti+1

ti
[gi + hi (w − ti)] e−a2,n(t−w)dw+∫ t

ts
[gs + hs (w − ts)] e−a2,n(t−w)dw , tm+1 < ts < t ≤ ts+1 ≤ tM

In(tM)e−a2,n(t−tM ) , t > tM

(39)

where hi = gi+1−gi
ti+1−ti is the slope of the ith line. Evaluating the integrals, and rearranging terms

we find,

In(t) =

1
a1,n

{
m−1∑
i=0

[(
gi+1 − hi

a1,n

)
e−a1,n(t−ti+1) −

(
gi − hi

a1,n

)
e−a1,n(t−ti)

]
+hm (t− tm) +

(
gm − hm

a1,n

) (
1− e−a1,n(t−tm)

)}
, 0 ≤ tm < t ≤ t′ < tm+1

In(t′)e−a2,n(t−t
′) + 1

a2,n

{
hm (t− t′) +(

hm (t′ − tm) + gm − hm
a2,n

) (
1− e−a2,n(t−t′)

)}
, tm ≤ t′ < t ≤ tm+1

In(tm+1)e
−a2,n(t−tm+1)+

1
a2,n

{
s−1∑

i=m+1

[(
gi+1 − hi

a2,n

)
e−a2,n(t−ti+1) −

(
gi − hi

a2,n

)
e−a2,n(t−ti)

]
+hs (t− ts) +

(
gs − hs

a2,n

) (
1− e−a2,n(t−ts)

)}
, tm+1 < ts < t ≤ ts+1 ≤ tM

In(tM)e−a2,n(t−tM ), t > tM

(40)
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Alternatively, In(t) may be written,

In(t) =

1
a1,n

{
h0t+

(
g0 − h0

a1,n

)
(1− e−a1,nt)

}
, 0 < t ≤ t1

In(ts)e
−a1,n(t−ts) + 1

a1,n

{
hs (t− ts) +(

gs − hs
a1,n

) (
1− e−a1,n(t−ts)

)}
, ts < t ≤ ts+1

(s such that 1 ≤ s < m)

In(tm)e−a1,n(t−tm) + 1
a1,n

{
hm (t− tm) +(

gm − hm
a1,n

) (
1− e−a1,n(t−tm)

)}
, tm < t ≤ t′ < tm+1

In(t′)e−a2,n(t−t
′) + 1

a2,n

{
hm (t− t′) +(

hm (t′ − tm) + gm − hm
a2,n

) (
1− e−a2,n(t−t′)

)}
, t′ < t ≤ tm+1

In(ts)e
−a2,n(t−ts) + 1

a2,n

{
hs (t− ts) +(

gs − hs
a2,n

) (
1− e−a2,n(t−ts)

)}
, ts < t ≤ ts+1

(s such that m+ 1 ≤ s < M)
In(tM)e−a2,n(t−tM ), t > tM

(41)

The corresponding raw series for u(x, t) and Jp(t) may be written using closed form formulas
for some of the terms (see Appendix A). This enables us to obtain a much faster convergence
rate (see section 5). The partial closed form solutions may then be written,
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u(x, t) =
2eax

L
·

[hm (t− tm) + gm]S(x)1,1

−hmS(x)1,2 +
∞∑
n=1

w̄nRn(t) sin(αnx), 0 ≤ tm < t ≤ t′ < tm+1

[hm (t− tm) + gm]S(x)2,1

−hmS(x)2,2 +
∞∑
n=1

w̄nRn(t) sin(αnx), tm ≤ t′ < t ≤ tm+1

[hs (t− ts) + gs]S(x)2,1

−hsS(x)2,2 +
∞∑
n=1

w̄nRn(t) sin(αnx), tm+1 < ts < t ≤ ts+1 ≤ tM

∞∑
n=1

w̄nRn(t) sin(αnx), t > tM

(42)

and

Jp(t) =

2qD

L



[hm (t− tm) + gm]S1,1

−hmS1,2 +
∞∑
n=1

w̄nαnRn(t), 0 ≤ tm < t ≤ t′ < tm+1

[hm (t− tm) + gm]S2,1

−hmS2,2 +
∞∑
n=1

w̄nαnRn(t), tm ≤ t′ < t ≤ tm+1

[hs (t− ts) + gs]S2,1

−hsS2,2 +
∞∑
n=1

w̄nαnRn(t), tm+1 < ts < t ≤ ts+1 ≤ tM

∞∑
n=1

w̄nRn(t) sin(αnx), t > tM

(43)

with S(x)i,j, Si,j, and Rn(t) given by equations (A-3)-(A-6) and (A-25) in Appendix A. Since
the expression for g(t) is general in the above derivation, we may also compute u(x, t) and
Jp(t) for the case where t′ > tM by employing equations (42) and (43) and by introducing
an additional segment to Figure 2 upon which we define g(t) = 0 in the interval tM < t ≤
t′ = tM+1.
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4 Example Problems

In this section we present some example problems that illustrate the behavior of a pn diode
that undergoes a neutron pulse both during and following a gamma irradiation. A neutron
pulse produces an instantaneous reduction of the minority carrier lifetime in the pn diode, as
illustrated in Figure 1 of [15]. These examples will illustrate the current and excess carrier
density response to a gamma irradiation followed by a neutron pulse in the undepleted n-type
region of the diode. Abrupt junction pn diodes both with and without constant ohmic fields
in the undepleted n-type region will be examined. For our examples we use the parameters
of Figures 2 and 3 in [9].

4.1 The heavily doped pn diode, no ohmic field

Note that we will use the subscript p in this section to denote the minority carrier in the
n-type substrate. For our first example, we use the parameters of Figure 2 in [9] to examine
the photocurrent response due to irradiation and a neutron pulse. Specifically, setting the
minority carrier diffusion coefficient and the initial minority carrier lifetime to 11.31 cm2/s
and 2x10−5 s, respectively, the minority carrier diffusion length becomes Lp =

√
Dpτp =

0.015 cm. Setting L = 0.0049 cm, the parameter ζp = L/Lp = 0.32 as in [9]. It is assumed
that there is no ohmic field in the undepleted n-type region. A 1x109 rad(Si)/s square wave
gamma pulse is assumed to begin at t = 0 and end at t = 2.4 µs. The gamma irradiation is
assumed longer in this example than that of Figure 2 of reference [9] to illustrate the dual
steady state photocurrent behavior imposed by the neutron pulse. The neutron pulse is
assumed to cause an abrupt minority carrier lifetime degradation of from one to four orders
of magnitude.

Figure 3 gives the analytic photocurrent density in the undepleted n-doped region, computed
from equation (38) after the aforementioned gamma irradiation, where a neutron pulse occurs
at t = 1.5 µs. The computation gives the analytic photocurrent density with respect to time.
The top (solid) curve assumes the default minority carrier lifetime over the entire pulse length
(no lifetime degradation). This curve is labeled τ1 = τ2 = 2x10−5s, where τ1 is the minority
carrier lifetime before the neutron pulse and τ2 is the lifetime after the neutron pulse. The
convergence to a steady current is evident. The photocurrent density curve directly below
the top curve corresponds to the case where τ2 = 2x10−6s. It is clear that this photocurrent
shows a noticeable decrease when compared with the non-degraded photocurrent over the
time spanned after the neutron pulse through the end of the gamma irradiation. The curve
corresponding to a degradation of two orders of magnitude, given as τ2 = 2x10−7s, shows
a more apparent decrease in current (about 40%) to a second steady state associated with
this degraded carrier lifetime for the remainder of the gamma pulse. It exhibits a rapid
drop to zero during the recovery phase of the gamma pulse. The curves corresponding to
τ2 = 2x10−8s, and τ2 = 2x10−9s show similar behavior. This example shows a dual steady
state behavior resulting from the degraded carrier lifetime.
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Figure 4 shows the computation of the analytic photocurrent density in the undepleted n-
doped region as a function of time when a neutron pulse follows a gamma irradiation. The
solid line indicates the case where there is no pulse or the minority carrier lifetime does not
degrade. The dash-dot line indicates the case where the minority carrier lifetime abruptly
decreases an order of magnitude due to a neutron pulse at time t = 0.3 µs. In this case,
we see that over the time period shown that the decrease in photocurrent density compared
to the case where there is no lifetime degradation is insignificant. The long dashed line
corresponds to a minority carrier lifetime of τ2 = 2x10−7s after the neutron pulse. In this
case a very significant decrease in photocurrent occurs and the pulse shape is noticeably
affected. The medium dashed line corresponding to the case where τ2 = 2x10−8s shows an
even greater drop in photocurrent and the case where τ2 = 2x10−9s drops the photocurrent
density to zero within a few nanoseconds.

Figure 5 gives the time history of the excess carrier density associated with Figure 3, for the
case where the minority carrier lifetime after the neutron pulse is τ2 = 2x10−7s. The z-axis
gives the excess carrier density at any point (x, t). The excess carrier density is zero at x = 0
and x = L = 49µm due to the imposed boundary conditions. From the graph we see that
the charge builds up to a steady profile after a few tenths of µs. At t = 1.5µs, when the
minority carrier lifetime abruptly drops due to the neutron pulse, the excess carrier density
drops as well. Finally, at the end of the gamma pulse at t = 2.4µs, the excess carrier density
rapidly drops to approach zero.

Figure 6 gives the time history of the excess carrier density associated with Figure 3, for
the case where the minority carrier lifetime after the neutron pulse is τ2 = 2x10−8s. From
the graph we see the same behavior as in Figure 5, but with a significant decrease in excess
carrier density after the neutron pulse when compared to the case where τ2 = 2x10−7s
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Figure 3: Photocurrent from the undepleted n-doped region of a pn diode due to a 2.4µs
long, 1x109 rad(Si)/s square-wave gamma irradiation with a concurrent neutron pulse at 1.5
µs. τ1 is the pre-pulse minority carrier lifetime and τ2 is the post-neutron pulse minority
carrier lifetime.
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Figure 4: Photocurrent from the undepleted n-doped region of a pn diode due to a 0.2
µs long, 1x109 rad(Si)/s square-wave gamma irradiation. A neutron pulse occurs after the
gamma irradiation at t = 1.5µs. τ1 is the pre-neutron pulse minority carrier lifetime and τ2
is the post-neutron pulse minority carrier lifetime.
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Figure 5: Excess minority carrier density as a function of x and t in the irradiated undepleted
n-type region of a pn diode. The diode is gamma-irradiated from t = 0 until t = 2.4µs and
a neutron pulse occurs at t = 1.5µs. τ1 = 2x10−5 is the pre-neutron pulse minority carrier
lifetime and τ2 = 2x10−7 is the post-neutron pulse minority carrier lifetime. No ohmic field
is assumed.
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Figure 6: Excess minority carrier density as a function of x and t in the irradiated undepleted
n-type region of a pn diode. The diode is gamma-irradiated from t = 0 until t = 2.4µs and
a neutron pulse occurs at t = 1.5µs. τ1 = 2x10−5 is the pre-neutron pulse minority carrier
lifetime and τ2 = 2x10−8 is the post-neutron pulse minority carrier lifetime. No ohmic field
is assumed.
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4.2 The lightly doped pn diode with an ohmic field

For lightly doped diodes, some of the applied potential invokes a field in the non-depleted
regions. The solutions developed in this report allow consideration of a constant ohmic field
in the undepleted regions. Figure 7 shows the photocurrent following a gamma irradiation
and neutron pulse from the n-type undepleted region of a pn diode where an ohmic field of
−20 V/cm is assumed. The pn diode material parameters used are given in Table 2. The
generation function is a 1.0µs square pulse with g0 = 4.3x1022 pairs/cm3-s, corresponding
to a radiation pulse of 1x109 rad(Si)/s.

Figure 7: Photocurrent from the undepleted n-doped region of a pn diode due to a square-
wave gamma irradiation with a concurrent neutron pulse. τ1 is the pre-pulse minority carrier
lifetime and τ2 is the post-neutron pulse minority carrier lifetime. The effect of an ohmic
electric field in the undepleted n-doped region, En = −20 V/cm is included.

4.3 A lightly doped pn diode, Jp with g(x, t) = g(t) piecewise-linear

Our final example shows the minority current from the n-doped region of a pn diode, using
the equations given in section 3.3. The parameters for this simulation are given in Table 2.
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Table 2: Description of parameters used in the lightly doped piecewise-linear pn diode
simulation.

Parameter Description/Units Value for Simulation

gi ith endpoint of g(t) (pairs/cm3-s) (Fig. 8 only) (0, 5, 8, 2, 0)x1022

ti time endpoint of gi (µs) (Fig. 8 only) (0, 1, 2, 4, 5)
t′ time of neutron irradiation (µs) 0.5, 3.5 (Fig. 8)
E ohmic field (V/cm) -20
τ1 Minority carrier lifetime before neutron pulse (s) 2x10−5

τ2 Minority carrier lifetime after neutron pulse (s) 2x10−7

µp Minority carrier mobility (cm2/(V s)) 461

Dp Minority carrier diffusion coefficient=kTµp
q

(cm2/s) 11.91

L undepleted n-doped region width (cm) 0.00764
Jp minority carrier current densities A/cm2 see figure

Figure 8 gives the photocurrent as a function of time. The solid line with symbols gives
the generation density g(t), which is mapped to the right hand axis. The solid line without
symbols gives the minority carrier photocurrent density as a function of time for the case
where there is no carrier lifetime degradation, while the dashed line gives the minority
carrier photocurrent density where there is a two order of magnitude drop in carrier lifetime
at t=3.5 µs. The plot shows a significant drop in current due to the loss of carrier lifetime.
The generalization of the solution to an arbitrary piecewise linear generation function is
useful in finding the photocurrents at experimental facilities where it is difficult to produce
a square wave pulse. An example of a more complex generation density and its solution are
given in the next section.
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Figure 8: Photocurrent from the undepleted n-doped region of a pn diode due to a piecewise-
linear gamma irradiation with a neutron pulse at t=3.5 µs. τ1 is the pre-pulse minority
carrier lifetime and τ2 is the post-neutron pulse minority carrier lifetime. The piecewise
linear gamma irradiation generation density is shown by the line with symbols. Other diode
parameters are given in Table 2.
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5 Convergence and computing time considerations

An important consideration in employing the analytic solutions described in this report is
the number of terms necessary to obtain a solution and the accuracy of that solution. This
is especially true for equations implemented in circuit codes, because the photocurrents
may be computed for hundreds of thousands or millions of devices simultaneously. We will
address the accuracy of using the ambipolar diffusion equation approximation to simulate
the full set of carrier transport equations in a separate SAND report, where we will compare
ADE computed excess carrier and current densities with those obtained through numerical
simulation of the full set of equations. Given that the accuracy in using the ADE to simulate
radiation or light generated photocurrents is sufficient, it is important to address issues
concerning the mathematical convergence of the series presented in this report. We first
note that convergence of the raw Fourier sine series, produced by substituting equations (29),
(35), or (41) into equations (25) and (26) may be slow for some sets of parameters, requiring
a few thousand terms to produce an accurate solution. The slow convergence may be traced
to the exp(−aL) term of equation (18), which becomes very large when aL = µEL/2D is
large and negative, leading to extreme oscillations in the series. Additionally, the αn term
in the numerator of equation (26) does not help convergence. We will show in this section
that the slow convergence of the raw series may be helped significantly by expressing the
solution in terms of a closed-form part and a transient part in which exponentially decaying
time-dependent terms help convergence. The closed-form part corresponds to steady-state
solutions for the step and square-pulse generation densities and to a set of time-dependent
line segments for the piecewise linear generation density. The comments of this section are
also applicable to the sums given in [9], which have a similar form to those of this report.

Figure 9 gives the minority carrier photocurrent density from the n-type undepleted region
of an abrupt pn diode with no ohmic field. The photocurrent density is computed from
equations (26) and (41) where the equation has been re-indexed as described in section 2.2.
For this figure and the rest of the figures in this section, g(t) is defined by the points (tix10−6

s,gix1022 pairs/cm2/s) as (0, 0), (0.5, 5), (1, 0), (1.5, 8), (2, 0), (3, 5), (5, 5), and (tM = 7, 0)
(see Figure 2). Other parameters are: t′ = 6µs, τ1 = 2x10−5s, τ2 = 2x10−7s, µp = 461
cm2/Vs, Dp = 11.91 cm2/s, and L = 0.00764 cm. The computations show the effect of the
number of terms, n, on the convergence of the raw series when the re-indexed form of equation
(41) is used to compute the solution. In this case, we observe that convergence is very rapid,
with only a few tens of terms necessary for sufficient accuracy for most calculations.

Figure 10 gives the photocurrent density computed from equations (26) and (41) for a non-
zero ohmic electric field with Ep = −100 V/cm. In this case, the parameter aL = −14.7
and exp(−aL) = 2639399 in equation (18). Figure 10 shows the generation function and the
diode current density as a function of time. In this case we see that at least a few thousand
terms are necessary for convergence, and that the solution for n = 100, where convergence
has not been achieved, has a very significant error.

The most effective way to illustrate why the raw series formulas for Jp(t) do not converge
particularly well, when e−aL is large, is to point out that each of the respective formulas
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from Sections 3.1 - 3.3 involve a series which includes a (steady-state) portion of the form:

Sk,1 =
∞∑
n=1

w̄nαn
ak,n

(44)

for which, using results from Oberhettinger [20], we were able to show (see Appendix A)

Sk,1 =
∞∑
n=1

w̄nαn
ak,n

=
Lτk
2

[
−a+ γk

(
cosh(γkL)− e−aL

)
sinh(γkL)

]
(45)

In practice, however, when we create a computer program to compute Jp(t) (which includes
Sk,1) we must settle for the approximation,

Sk,1(N) '
N∑
n=1

w̄nαn
ak,n

(46)

for some finite N.

When E = 0 the above equation simplifies (see section 2.2), to become,

Sk,1(N) '
N∑
n=0

2

ak,2n+1

(47)

Using the aforementioned parameters, with k = 1 and E = −100.0 V/cm, we find that the
N in formula (46) must equal 220000 before it agrees (to five significant digits) with the
value obtained from the right hand side of equation (45): S1,1 ' 2.3582x10−6. It was also
observed that for the partial sums, S1,1(999) ' 3.0136x10−6 and S1,1(1000) ' 1.7030x10−6,
and the partial sums exhibit this oscillatory type behavior throughout. For the same set
of parameters , but with E = 0, the re-indexed S1,1(4835) agrees (to five significant digits)
with the value obtained from the right hand side of equation (45). We see that when aL
is large and negative that the term w̄n is dominated by the exponential term and oscillates
between large positive and negative values. As the index n grows in the series the terms in
the denominator will eventually become large and force convergence. The time-dependent
exponential terms in In(t) do not, however, cause similar convergence concerns because when
a is large, so are the parameters a1,n and a2,n, producing fairly rapid exponential decay.

As it turns out, the terms not involving time-dependent exponential decay may be be eval-
uated using the closed form formulas given in Appendix A. Using this methodology, the
solutions for the current density are given in sections 3.1 to 3.3. Comparing to the specific
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problem shown in Figure 10, Figure 11 shows both the partial closed form minority carrier
current density along with the raw series computed with equation (26) using equation (41)
with 10,000 terms. We see that convergence using the partial closed form solution, labeled
as ”partial closed form” in the figure, improves markedly from requiring thousands of terms
to only a few tens of terms for accuracy. In particular, using only 20 terms, the current
density cannot be differentiated from the plot using 10,000 terms in the raw solution. The
14 term solution is also very close to the 10,000 term raw solution, except near the endpoints
of the lines defining g(t) and at the point t = t′, where a large error may be seen in the
near vertical lines at these points. A larger error occurs at these points because there is less
exponential decay from the time dependent part of the series terms near these points.

In the case of the piecewise linear generation function, the closed-form portion of the current
density consists of a set of line segments that bound the total current density when the
number of terms in the computation is sufficiently large. In the case where a negative
ohmic field exists in the undepleted region, the current density approaches the line segments
away from the generation function endpoints since the transient time-dependent exponential
terms become small in these regions. In the case where there is no ohmic field the current
density does not necessarily approach the line segments, but the line segments bound the
area in which the current density meanders. The behavior for both of these cases is shown
in Figure 12.

Finally, we discuss the improvement in CPU time through implementation of the partial
closed form solutions. We note that for the partial closed form solution that only about 20
terms are needed to produce a curve of sufficient accuracy to be indistinguishable from the
raw solution computed with 10,000 terms in Figure 11. Figure 10 shows that about 5000
terms are necessary for close agreement with the 10,000 term raw solution. Table 3 gives a
comparison of the CPU time required in the FORTRAN programs used to compute these
curves on a PC. Each figure consists of 1000 points in time. We note that the FORTRAN
programs were not optimized and that these results only serve as an indicator of the relative
differences in compute time. It is apparent from Table 3 that at least a couple orders of
magnitude improvement in the computational time may be gained by the use of the partial
closed form solution. Finally, we note that great improvements in CPU time can likely be
made through computation on parallel processors, since the Fourier terms are independent
of each other. A copy of the FORTRAN program used in the solution of the partial closed
form solution is given in Appendix B.
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Figure 9: Minority carrier current density convergence from the n-type region of a pn diode
as a function of the number or terms, n, used in the raw Fourier sine series, in equations (26)
and (41). A zero ohmic field was assumed with a neutron pulse occurring at t′ = 6µs. The
solid line with symbols give the generation function, g(t), plotted on the right axis. Other
parameters were set as in Table 2.
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Figure 10: Minority carrier current density convergence from the n-type region of a pn
diode as a function of the number or terms, n, used in the raw Fourier sine series for the
raw solution. A high ohmic field of Ep = −100 V/cm was assumed with a neutron pulse
occurring at t′ = 6µs. The generation density is shown in the figure. Other parameters were
set as in Table 2.

Table 3: Comparison of CPU times for the raw and partial closed form solutions as a
function of number of Fourier terms for piecewise-linear pn diode simulations. Current
density simulations are shown in Figure 11.

Computer code number of terms PC CPU times (s)

raw 2000 0.9680
raw 5000 2.375
raw 10000 4.705

partial closed form 20 0.0156
partial closed form 50 0.0469
partial closed form 2000 0.9375
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Figure 11: Minority carrier current density convergence from the n-type region of a pn diode
as a function of the number or terms, n, used in the raw Fourier sine series. This figure
shows both the highly convergent solution using closed-form terms (denoted ”partial closed
form” and given by eq. (43)) and the original solution (denoted ”raw”, given by eqs. (26)
and (41)), before evaluation using the closed form formulas. About 5000 terms are required
for convergence of the raw solution while only about 20 are required for the partial closed
form solution. A high ohmic field of Ep = −100 V/cm was assumed with a neutron pulse
occurring at t′ = 6µs. Other parameters were set as in Table 2.
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Figure 12: Figure exhibiting minority current density behavior versus time from the unde-
pleted n-doped region of an np diode for a negative ohmic field (top) and no ohmic field
(bottom). The ”closed-form” portions of the solutions are shown by the line segments while
the total current densities are given by continuous curves. Note the approach to the closed-
form solution as time from the previous generation function endpoint increases. Ohmic
fields of Ep = −40 V/cm and Ep = 0 V/cm were assumed to show the ”steady” behavior
effectively. Other parameters were set as in Figure 10.
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6 Conclusions

In this SAND report we develop new solutions to the 1D ambipolar diffusion equation (ADE),
used to approximate the photocurrent produced by a radiation pulse in the undepleted parts
of an np diode, for the special case in which the minority carrier lifetime is a function of
time. Using Fourier sine series techniques developed in [21], we develop a general analytical
solution to the 1D ADE for the case where the excess carrier generation (a radiation or
light pulse) is a function of time and space, which further simplifies when the excess carrier
generation is either a function of time only or of space only. Solutions are developed for
the occurrence of a neutron strike, which results in an instantaneous reduction of the carrier
lifetimes within the device, either during or after the light or radiation pulse. The carrier
lifetime is assumed to be spatially uniform within the device. For the particular case where
the gamma pulse is time-dependent only, the solution may be written as an infinite sum with
each term consisting of the product of a time-dependent integral and a spatially-dependent
sine function. Calculation of the integral may be simplified by using its value at the previous
endpoint. A number of cases are explored and illustrated with examples.

For the first case studied, the gamma irradiation is of the form of a step function, g(x, t) =
g0, t > 0. In this case, the neutron pulse occurs during the gamma step function irradiation.
The carrier lifetimes in each region of the pn diode instantaneously decrease at a time t = t′

and a reduction of current results that approaches a steady-state current dependent upon
the decreased carrier lifetime. Equations are given in subsection 3.1.

For the second case, we assume that the gamma irradiation is of the form of a square pulse,
with g(x, t) = g0, 0 < t ≤ t1 and zero for t > t1. The neutron pulse may occur during the
gamma irradiation or while the device is recovering from the gamma pulse. The carrier and
current densities are given for a sample undepleted n-type region with realistic parameters
and a lifetime degradation spanning up to four orders of magnitude for both a highly-doped
and a lightly doped diode in section 4. In each case, the current densities are compared
to those of a device with no carrier lifetime degradation for neutron strikes occurring both
during, and after gamma irradiation. For an order of magnitude degradation of the lifetime
only a small reduction in the photocurrent density is observed. For larger reductions in
lifetime very significant changes in the photocurrent occur. For long enough pulses, two
steady states are observed, one associated with the original carrier lifetime and a second
associated with the degraded carrier lifetime. Additionally, we show the time history of the
one-dimensional excess carrier density, which shows an abrupt decrease at the time associated
with the lifetime degeneration. We also show an example problem where an ohmic field is
present, which exhibits an extended current ”tail” as compared to the case of no ohmic field.
For the case where there is no lifetime degradation the equations are checked and found
consistent with those of [9].

Finally, we solve the excess carrier and current densities for the case where g(x, t) = g(t) is
piecewise linear with respect to time and the abrupt change in lifetime occurs during or after
the pulse. This form of solution is generally incorporated into Xyce or SPICE simulations at
SNL and is typically used to characterize the radiation sources at experimental facilities. We
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develop a raw solution in which the time-dependent integral for any linear segment of g(t)
may be computed in terms of its value at the final point of the previous segment. Although
this solution converges, it may require many terms for convergence in the case where an
ohmic field is assumed to exist (i.e. lightly doped diodes). The poor convergence may be
traced to large non-transient alternating terms in the series. We circumvent this problem
by replacing the slower converging components in the raw Fourier series with closed form
formulas. Consequently, the only time-dependent terms which remain in the infinite series
are of the form cne

−ak,nT in which T > 0, ensuring fast and effective convergence. The
newly developed series requires only a few tens of terms for convergence with the accuracy
increasing as we move away from the points t′ and where the function g(t) changes slope, as
T is small close to these points. Examples are given in sections 4 and 5, for the solutions to
some fairly complex carrier generation functions for both a zero and large ohmic field.

We attempted to compare our solutions to those produced by numerical device codes such
as Medici and Charon. Medici does not currently have a restart ability with the option of
changing parameters, so we were unable to make the numerical comparison with this code.
The Charon code did not have the capability to do this problem either at the time that we
wrote this SAND report. However the source code is maintained in house and personnel
offered to modify the code for the comparison. In the end, in the interest of finishing this
report in a timely manner, it was decided to forego the numerical comparison to a later
SAND report that will look at the validity of the ambipolar transport equation in modeling
the advection/transport in semiconductors over a wider range of parameters (dose, doping,
etc.).

In recent years the second author of this report has, on occasions, been asked to justify the
use of analytic solutions to photocurrent problems, especially when device codes capable
of considering complex geometries and non-linear effects are available. In addition to the
reasons offered at the beginning of this report, we note that in some cases it may be much
faster to develop an analytic solution and a small FORTRAN program than to modify a
large code, even if the code source is available, which is not generally the case for commercial
codes. Analytic solutions also give an independent verification of a numerical solution. They
may also be used to quantify the importance of an effect, and may indicate combinations
of parameters that have a physical meaning, such as the parameters a1,n and a2,n in this
analysis. Finally, we note that the photocurrent solutions of this paper as well as all of the
past papers in the reference section use mathematical tools that were developed in the late
1960s and early 1970s or earlier. Thus, all of this work could have been completed in that
time period with the proper mathematical focus by a research organization.
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Appendix A: Closed-form and steady state analysis

In this appendix we develop the analytic solutions for the excess carrier and current densities
as partial closed form solutions. That is, we replace, where possible, any infinite sums
contained within the solutions given in section 3 by closed-form formulas. In the case where
g(t) is a step or square function, the closed-form evaluations become steady-state solutions in
the sense that they are approached as time increases. In the case where g(t) is represented as
a piecewise-linear function, the closed-form part of the solution is a piecewise-linear function
of time. The four required sums may be derived as follows. Consider,

S(x)k,1 =
∞∑
n=1

w̄n sin(αnx)

ak,n
=
∞∑
n=1

αn(1− (−1)ne−aL)

(α2
n + a2)

(
D (α2

n + a2) + 1
τk

) sin(αnx) (A-1)

Applying the relevant partial fraction decomposition to the right hand side produces a pair
of like series. Both series may then be replaced by the Fourier expansion formula (see pg.
13, Oberhettinger [20]),

∞∑
n=1

(1− (−1)nC)
n

(α2
n + b2)

sin(αnx) =
L2

2π

[
sinh(b(L− x))

sinh(Lb)
+ C

sinh(bx)

sinh(Lb)

]
, 0 < x < L

(A-2)

Hence

S(x)k,1 =
Lτk
2

[
e−ax − sinh(γk(L− x)) + e−aL sinh(γkx)

sinh(γkL)

]
, 0 ≤ x ≤ L (A-3)

in which γ2k = a2 + 1
Dτk

.

Differentiating equation A-3 with respect to x , then replacing each x with zero, reveals that

Sk,1 =
∞∑
n=1

w̄nαn
ak,n

=
Lτk
2

[
−a+ γk

(
cosh(γkL)− e−aL

)
sinh(γkL)

]
(A-4)

Then, respectively differentiating both sides of equations (A-3) and (A-4), with respect to
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τk , we find that

S(x)k,2 =
∞∑
n=1

w̄n sin(αnx)

(ak,n)2

=
Lτ 2k

2

[
e−ax −

(
sinh(γk(L− x)) + e−aL sinh(γkx)

)
sinh(γkL)

]
+

Lτk

4Dγk sinh2(γkL)
·
[
L sinh(γkx)− x sinh(γkL) cosh(γk(L− x))

+e−aL(x sinh(γkL) cosh(γkx)− L sinh(γkx) cosh(γkL))

]
, 0 ≤ x ≤ L (A-5)

and

Sk,2 =
∞∑
n=1

w̄nαn

(ak,n)2
=
Lτ 2k

2

[
−a+ γk

(
cosh(γkL)− e−aL

)
sinh(γkL)

]

−
Lτk

(
sinh(γkL) cosh(γkL)− e−aL sinh(γkL)− γkL+ γkL cosh(γkL)e−aL

)
4Dγk sinh2(γkL)

(A-6)

Formulas (A-4) and (A-6) are required for computing Jp(t) while (A-3) and (A-5) are required
for computing u(x, t). Formulas (A-5) and (A-6) are only required for the case of a piecewise
continuous linear g(t).

Closed-form and steady state analysis for g(t) a step function

We proceed with the derivation of the partial closed form solutions for the step function of
section 3.1. From equations (25), (26), and (29), for 0 < t ≤ t′,

u(x, t) =
2g0e

ax

L

∞∑
n=1

w̄n
1− e−a1,nt

a1,n
sin(αnx)

=
2g0e

ax

L

∞∑
n=1

w̄n
a1,n

sin(αnx)− 2g0e
ax

L

∞∑
n=1

w̄n
e−a1,nt

a1,n
sin(αnx) (A-7)

Thus from equation (A-3),
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u(x, t) = g0τ1

[
1− eax

(
sinh(γ1(L− x)) + e−aL sinh(γ1x)

)
sinh(γ1L)

]

−2g0e
ax

L

∞∑
n=1

w̄n
e−a1,nt

a1,n
sin(αnx) (A-8)

and for t′ < t

u(x, t) =
2g0e

ax

L

∞∑
n=1

w̄n

[
1− e−a1,nt′

a1,n
e−a2,n(t−t

′) +
1− e−a2,n(t−t′)

a2,n

]
sin(αnx)

=
2g0e

ax

L

∞∑
n=1

w̄n
a2,n

sin(αnx) +
2g0e

ax

L

∞∑
n=1

w̄n ·[
1− e−a1,nt′

a1,n
e−a2,n(t−t

′) − e−a2,n(t−t
′)

a2,n

]
sin(αnx) (A-9)

or

u(x, t) = g0τ2

[
1− eax

(
sinh(γ2(L− x)) + e−aL sinh(γ2x)

)
sinh(γ2L)

]
+

2g0e
ax

L

∞∑
n=1

w̄n

[
1− e−a1,nt′

a1,n
e−a2,n(t−t

′) − e−a2,n(t−t
′)

a2,n

]
sin(αnx) (A-10)

Thus,

u(x, t) =


us,1(x)− 2g0eax

L

∞∑
n=1

w̄n
e−a1,nt

a1,n
sin(αnx) , 0 < t ≤ t′

us,2(x) + 2g0eax

L

∞∑
n=1

w̄n

[
1−e−a1,nt

′

a1,n
e−a2,n(t−t

′) − e−a2,n(t−t′)

a2,n

]
sin(αnx) , t′ < t

(A-11)
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where,

us,k(x) = g0τk

[
1− eax

(
sinh(γk(L− x)) + e−aL sinh(γkx)

)
sinh(γkL)

]

We proceed next with the derivation of the partial closed form solutions of equation (26).
From equation (26) using equation (29), for 0 < t ≤ t′,

Jp(t) =
2qDg0
L

∞∑
n=1

w̄nαn
1− e−a1,nt

a1,n
=

2qDg0
L

∞∑
n=1

w̄nαn
a1,n

− 2qDg0
L

∞∑
n=1

w̄nαn
e−a1,nt

a1,n
(A-12)

Therefore,

Jp(t) = qDg0τ1

[
−a+ γ1

(
cosh(γ1L)− e−aL

)
sinh(γ1L)

]
− 2qDg0

L

∞∑
n=1

w̄nαn
e−a1,nt

a1,n
(A-13)

and similarly , for t′ < t

Jp(t) = qDg0τ2

[
−a+ γ2

(
cosh(γ2L)− e−aL

)
sinh(γ2L)

]
+

2qDg0
L

∞∑
n=1

w̄nαn

[
1− e−a1,nt′

a1,n
e−a2,n(t−t

′) − e−a2,n(t−t
′)

a2,n

]
(A-14)

so, in summary,

Jp(t) =


Js,1 − 2qDg0

L

∞∑
n=1

w̄nαn
e−a1,nt

a1,n
, 0 < t ≤ t′

Js,2 + 2qDg0
L

∞∑
n=1

w̄nαn

[
1−e−a1,nt

′

a1,n
e−a2,n(t−t

′) − e−a2,n(t−t′)

a2,n

]
, t′ < t

(A-15)

in which

Js,k = qDg0τk

[
−a+ γk

(
cosh(γkL)− e−aL

)
sinh(γkL)

]
(A-16)
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Closed-form and steady state analysis for g(t) a square pulse

We proceed next with the derivation of the partial closed form solutions for the square pulse
function of section 3.2. Noting that the first two components of formula (35) are identical
to the two components of In(t) in equation (29), it follows for t′ ≤ t1 that,

u(x, t) =


us,1(x)− 2g0eax

L

∞∑
n=1

w̄n
e−a1,nt

a1,n
sin(αnx) , 0 < t ≤ t′

us,2(x) + 2g0eax

L

∞∑
n=1

w̄n

[
1−e−a1,nt

′

a1,n
e−a2,n(t−t

′) − e−a2,n(t−t′)

a2,n

]
sin(αnx) , t′ < t ≤ t1

(A-17)

and for t > t1

u(x, t) =
2g0e

ax

L

∞∑
n=1

w̄n

[
1− e−a1,nt′

a1,n
e−a2,n(t−t

′) +
1− e−a2,n(t1−t′)

a2,n
e−a2,n(t−t1)

]
sin(αnx)

(A-18)

Therefore,

u(x, t) =



us,1(x)− 2g0eax

L

∞∑
n=1

w̄n
e−a1,nt

a1,n
sin(αnx) 0 < t ≤ t′

us,2(x) + 2g0eax

L

∞∑
n=1

w̄n

[
1−e−a1,nt

′

a1,n
e−a2,n(t−t

′) − e−a2,n(t−t′)

a2,n

]
sin(αnx) t′ < t ≤ t1

2g0eax

L

∞∑
n=1

w̄n

[
1−e−a1,nt

′

a1,n
e−a2,n(t−t

′) + 1−e−a2,n(t1−t
′)

a2,n
e−a2,n(t−t1)

]
sin(αnx) t > t1

(A-19)
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Utilizing the above equation directly in equation (5), we may evaluate Jp(t) as

Jp(t) =



Js,1 − 2qDg0
L

∞∑
n=1

w̄nαn
e−a1,nt

a1,n
0 < t ≤ t′

Js,2 + 2qDg0
L

∞∑
n=1

w̄nαn

[
1−e−a1,nt

′

a1,n
e−a2,n(t−t

′) − e−a2,n(t−t′)

a2,n

]
t′ < t ≤ t1

2qDg0
L

∞∑
n=1

w̄nαn

[
1−e−a1,nt

′

a1,n
e−a2,n(t−t

′) + 1−e−a2,n(t1−t
′)

a2,n
e−a2,n(t−t1)

]
t > t1

(A-20)

where Js,k are given by equation (33).

In the case where t′ > t1, from equation (36),

u(x, t) =



us,1(x)− 2g0eax

L

∞∑
n=1

w̄n
e−a1,nt

a1,n
sin(αnx) 0 < t ≤ t1

2g0eax

L

∞∑
n=1

w̄ne
−a1,n(t−t1) (1−e

−a1,nt1)
a1,n

sin(αnx) t1 < t ≤ t′

2g0eax

L

∞∑
n=1

w̄ne
−a2,n(t−t′)e−a1,n(t

′−t1) (1−e
−a1,nt1)
a1,n

sin(αnx) t > t′

(A-21)

and

Jp(t) =



Js,1 − 2qDg0
L

∞∑
n=1

w̄nαn
e−a1,nt

a1,n
0 < t ≤ t1

2qDg0
L

∞∑
n=1

w̄nαne
−a1,n(t−t1) (1−e

−a1,nt1)
a1,n

t1 < t ≤ t′

2qDg0
L

∞∑
n=1

w̄nαne
−a2,n(t−t′)e−a1,n(t

′−t1) (1−e
−a1,nt1)
a1,n

t > t′

(A-22)

Closed-form and steady state analysis for g(t) piecewise-linear

Now in Section 3.3 our formula for In(t) is comprised of four separate portions. Within
these respective portions are the following terms, which cause equation (41) to converge less
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efficiently.

In,cf (t) =



hm(t−tm)+gm− hm
a1,n

a1,n
, 0 < t ≤ t′

hm(t−tm)+gm− hm
a2,n

a2,n
, tm ≤ t′ < t

hs(t−ts)+gs− hs
a2,n

a2,n
, ts < t

(A-23)

Utilizing equations (A-3) and (A-5), the partial closed form of the series for u(x, t) may be
written,

u(x, t) =
2eax

L
·

[hm (t− tm) + gm]S(x)1,1

−hmS(x)1,2 +
∞∑
n=1

w̄nRn(t) sin(αnx), 0 ≤ tm < t ≤ t′ < tm+1

[hm (t− tm) + gm]S(x)2,1

−hmS(x)2,2 +
∞∑
n=1

w̄nRn(t) sin(αnx), tm ≤ t′ < t ≤ tm+1

[hs (t− ts) + gs]S(x)2,1

−hsS(x)2,2 +
∞∑
n=1

w̄nRn(t) sin(αnx), tm+1 < ts < t ≤ ts+1 ≤ tM

∞∑
n=1

w̄nRn(t) sin(αnx), t > tM

(A-24)

where on the four respective intervals
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Rn(t) =

1
a1,n

{
m−1∑
i=0

[(
gi+1 − hi

a1,n

)
e−a1,n(t−ti+1) −

(
gi − hi

a1,n

)
e−a1,n(t−ti)

]
−
(
gm − hm

a1,n

)
e−a1,n(t−tm)

}
, 0 ≤ tm < t ≤ t′ < tm+1

In(t′)e−a2,n(t−t
′) − 1

a2,n

{(
hm (t′ − tm) + gm − hm

a2,n

)
e−a2,n(t−t

′)
}

tm ≤ t′ < t ≤ tm+1

In(tm+1)e
−a2,n(t−tm+1)+

1
a2,n

{
s−1∑

i=m+1

[(
gi+1 − hi

a2,n

)
e−a2,n(t−ti+1) −

(
gi − hi

a2,n

)
e−a2,n(t−ti)

]
−
(
gs − hs

a2,n

)
e−a2,n(t−ts)

}
, tm+1 < ts < t ≤ ts+1 ≤ tM

In(tM)e−a2,n(t−tM ), t > tM

Similarly

Jp(t) =

2qD

L



[hm (t− tm) + gm]S1,1

−hmS1,2 +
∞∑
n=1

w̄nαnRn(t), 0 ≤ tm ≤ t ≤ t′ < tm+1

[hm (t− tm) + gm]S2,1

−hmS2,2 +
∞∑
n=1

w̄nαnRn(t), tm ≤ t′ ≤ t ≤ tm+1

[hs (t− ts) + gs]S2,1

−hsS2,2 +
∞∑
n=1

w̄nαnRn(t), tm+1 < ts ≤ t ≤ ts+1 < tM

∞∑
n=1

w̄nRn(t) sin(αnx), t ≥ tM

(A-25)

with Rn(t) as above.
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Appendix B: Semi-closed form current density

FORTRAN computer code

!∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

!
! PROGRAM: J p p i e c e w i s e l i n e a r s s . f 90
!
! PURPOSE: Compute J p f o r p i e c e w i s e l i n e a r g ( t ) us ing c losed−

form terms
!
!∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

program J p p i e c e w i s e l i n e a r s s

! This program w i l l generate a data f i l e o f J p ( t ) f o r a
gene ra l p i e c ew i s e l i n e a r

! g (x , t )
! This i s the ve r s i on which should be used whenever t 0 <= t ˆ

prime <= t M i . e .
! a neutron pu l s e occurs during a gamma i r r a d i a t i o n .
! J p p i e c e w i s e l i n e a r s s . f 90 i s a modi f i ed ve r s i on o f

J p p i e c e w i s e l i n e a r . f90
! that uses c l o s e d form ” steady s t a t e ” s o l u t i o n s ( s ee s e c t i o n s

3 and 5 o f the SAND repor t
! ” Analyt ic 1D pn junc t i on diode photocurrent s o l u t i o n s

f o l l o w i n g i o n i z i n g r a d i a t i o n and
! i n c l u d i n g time−dependent changes in the c a r r i e r l i f e t i m e

from a non−concurrent neutron pu l s e ”
! by Bert Kerr , Carl Axness , and Er ic Ke i te r .

i m p l i c i t DOUBLE PRECISION (a−h , o−z )
DOUBLE PRECISION L , mu, h , I n , J p , I nt pr ime , In endpt ,

J pss , J pt
parameter ( nts =50, npts =1000 ,m=8)
double p r e c i s i o n dt (m)
r e a l t ime begin , t ime end
common/ data / tg (8 ) , g (8 ) , npt s s eg (8 ) , In endpt (10000 ,8) , i f i r s t

(10000) , I n t p r ime (10000) ,
+ s11 , s12 , s21 , s22

! nts = no . o f terms in the Four i e r S e r i e s
! npts = the number o f data po in t s f o r each segment o f the

56



graph ,
! m = number o f data po in t s d e s c r i b i n g g ( t )
! tg ( i ) , g ( i ) g ive the time and g the coo rd ina t e s f o r the i t h

l i n e segment d e s c r i b i n g g ( t )
! tg (0 )=g (0) =0.
! t pr ime i s the time o f the neutron s t r i k e
! t end i s the time that the s imu la t i on ends
! Al l other parameters have names as in the SAND repor t
!
! Usage : change parameters , f i l e names , and recomple the program

f o r each s imu la t i on . . .

open ( un i t =10, f i l e =’ Jp p i ecewi se E100conv ss50 . dat ’ , s t a t u s
=’ rep lace ’ )

open ( un i t =11, f i l e =’ Jp p i ecewi se E100conv ss50 . p l t ’ , s t a t u s
=’ rep lace ’ )

open ( un i t =12, f i l e =’ Jp p iecewi se E100 n50 . p l t ’ , s t a t u s =’
rep lace ’ )

! Parameters d e s c r i b i n g the r a d i a t i o n source , i n d i c e s l a b e l e d
1 , 2 , . . .

tg (1 ) =0.d0
g (1 ) =0.d0
tg (2 ) =0.5d−6
g (2 ) =5.d22 ! 4 . 3 d22 corre sponds to 1e9 Rad( S i ) / s
tg (3 ) =1.d−6
g (3 ) =0.d22
tg (4 ) =1.5d−6
g (4 ) =8.d22
tg (5 ) =2.d−6
g (5 ) =0.d22
tg (6 ) =3.d−6
g (6 ) =5.d22
tg (7 ) =5.d−6
g (7 ) =5.d22
tg (8 ) =7.d−6
g (8 ) =0.d22 ! m=8 s e t as a parameter

wr i t e (10 ,∗ ) ’ J p p i e c ew i s e data ’
wr i t e (10 ,∗ )
wr i t e (10 ,∗ ) ( tg ( i ) , i =1,m) , ( g ( i ) , i =1,m)

! INPUT THE PHYSICAL PARAMETERS/CONSTANTS these correspond to
Fig 3 , z e ta p =0.5
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q = 1.602d−19
D = 11.91 d0
tau1 =2.0d−5
tau2 =2.0d−7
mu = 461 .0 d0
E1 = −100.d0
L = 0.00764 d0
t pr ime = 6 .0 d−6
t end = 8 . d−6
p i = 2 . d0∗das in ( 1 . 0 d0 )
a = mu∗E1 /(2 . 0 d0∗D)
terma=2.d0∗q∗D/L

!
! I n i t i a l array conta in ing I n computed at endpoints o f segments
!

c a l l date and t ime
c a l l cpu time ( t ime beg in )

!
! compute components o f steady−s t a t e s o l u t i o n f o r s1 in terms o f

a1 , n
!

Dtau1=D∗ tau1
aL=a∗L
gamma1=dsqrt ( a∗∗2+1.d0/Dtau1 )
gamma1L=gamma1∗L
f a c t r=L∗ tau1 / ( 4 . d0∗D∗gamma1)
dnum=dsinh (gamma1L)∗dcosh (gamma1L)−dexp(−aL)∗dsinh (gamma1L)−

+ gamma1L∗ ( 1 . d0−cosh (gamma1L)∗dexp(−aL) )
arg=−a+gamma1∗( dcosh (gamma1L)−dexp(−aL) ) / ds inh (gamma1L)
s11=L∗ tau1∗arg /2 . d0
s12=L∗ tau1 ∗∗2∗ arg /2 . d0−f a c t r ∗dnum/ dsinh (gamma1L) ∗∗2

!
! compute components o f steady−s t a t e s o l u t i o n f o r s2 in terms o f

a2 , n
!

Dtau2=D∗ tau2
gamma2=dsqrt ( a∗∗2+1.d0/Dtau2 )
gamma2L=gamma2∗L
f a c t r=L∗ tau2 / ( 4 . d0∗D∗gamma2)
dnum=dsinh (gamma2L)∗dcosh (gamma2L)−dexp(−aL)∗dsinh (gamma2L)−

+ gamma2L∗ ( 1 . d0−cosh (gamma2L)∗dexp(−aL) )
arg=−a+gamma2∗( dcosh (gamma2L)−dexp(−aL) ) / ds inh (gamma2L)
s21=L∗ tau2∗arg /2 . d0
s22=L∗ tau2 ∗∗2∗ arg /2 . d0−f a c t r ∗dnum/ dsinh (gamma2L) ∗∗2
wr i t e (10 ,10) s11 , s12 , s21 , s22
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10 format (//20x , ’ s i j f a c t o r s f o r steady s t a t e computation ’ , / 5 x
, ’ s11 ’ , 9 x , ’ s12 ’ , 9 x , ’ s21 ’ , 9 x , ’ s22 ’ ,

+ /4( e12 . 4 ) )
do i =1, nts

i f i r s t ( i )=0
do j =1,m

In endpt ( i , j ) =0.d0
enddo

enddo

! d i v id e the t o t a l number o f po in t s to that I n ( t m ) i s c a l c u l a t e d
at the end o f each l i n e segment

i f ( t end . l t . tg (m) ) t end=tg (m)+tg (m) / npts ! at l e a s t 1
increment at end o f s imu la t i on

ntot=0
do i s e g =1,m−1

npt s s eg ( i s e g )=i n t ( ( tg ( i s e g +1)−tg ( i s e g ) )∗npts / t end )
i f ( npt s s eg ( i s e g ) . l t . 1) npt s s eg ( i s e g )=1
dt ( i s e g )=(tg ( i s e g +1)−tg ( i s e g ) ) / npt s s eg ( i s e g )
ntot=ntot+npt s s eg ( i s e g )

enddo
i f ( npts . gt . ntot ) then

npt s s eg (m)=npts−ntot
dt (m)=(t end−tg (m) ) / npt s s eg (m)

e l s e
npt s s eg (m)=1
dt (m)=t end−tg (m)

e n d i f
! wr i t e out number o f po in t s in each segment and dt
! wr i t e (10 ,∗ ) ’ g ( t ) segment in format ion ’
! wr i t e (10 ,∗ ) ’ segment no . o f pts . dt t1

t2 g1 g2 ’
! do i s e g =1,m−1
! wr i t e (10 ,21) i s eg , npt s s eg ( i s e g ) , dt ( i s e g ) , tg ( i s e g ) , tg (

i s e g +1) , g ( i s e g ) , g ( i s e g +1)
!21 format ( i5 , i14 , 5 ( e12 . 4 ) )
! enddo
! wr i t e (10 ,21) i s eg , npt s s eg ( i s e g ) , dt ( i s e g ) , tg ( i s e g ) , t end , g (

i s e g )

! SELECT a sequence o f t imes and compute J p
! f o r t = 0 to t end

! wr i t e i n i t i a l time and cur rent dens i ty to the output f i l e , time
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microseconds
wr i t e (11 ,41) 0 . d0 , 0 . d0 , 0 . d0

time =0.d0
do 50 j j =1,m

do 2 i i =1, npt s s eg ( j j )

! COMPUTE the s e r i e s

time=time+dt ( j j )
sum = 0 . d0
s i gn =1.d0
do n1 = 1 , nts

s i gn=−s i gn
alpha = n1∗ pi /L
a1n=D∗( alpha∗∗2+a∗∗2+1.d0 /(D∗ tau1 ) )
a2n=D∗( alpha∗∗2+a∗∗2+1.d0 /(D∗ tau2 ) )
w nbar=alpha ∗ ( 1 . d0−s i gn ∗dexp(−a∗L) ) /( a∗∗2+alpha ∗∗2)
c a l l dI n ( nts , n1 , j j ,M, time , a1n , a2n , t prime , t end , dint ,

+ ss , i i , j j )
term=w nbar∗alpha∗ dint
sum = sum + term

enddo
i f ( time . gt . tg (m) ) s s =0.d0 ! steady s o l u t i o n = 0

here
J ps s=terma∗ s s
J pt=terma∗sum
J p=J pss+J pt

! wr i t e the time and cur rent dens i ty to the output f i l e , time
microseconds

wr i t e (11 ,41) 1 . 0 d6∗ time , J pss , J p
2 cont inue

50 cont inue
! compute the cpu time

c a l l cpu time ( time end )
wr i t e (10 ,∗ ) ’ t o t a l cpu time f o r computation with ’ , nts , ’

terms = ’ , time end−t ime beg in

41 format (3(2 x , f16 . 1 2 ) )
60 format (6(2 x , f16 . 1 2 ) )

c l o s e ( un i t =10)
c l o s e ( un i t =11)
c l o s e ( un i t =12)
end program J p p i e c e w i s e l i n e a r s s
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! Routine to compute the i n t e g r a l I n ( t ) s ee SAND repor t

subrout ine dI n ( nts , n1 , nseg ,M, t , a1n , a2n , t prime , t end , dint ,
ss , i i , j j )

i m p l i c i t DOUBLE PRECISION (a−h , o−z )
double p r e c i s i o n h , I nt pr ime , In endpt
common/ data / tg (8 ) , g (8 ) , npt s s eg (8 ) , In endpt (10000 ,8) , i f i r s t

(10000) , I n t p r ime (10000) ,
+ s11 , s12 , s21 , s22

! i n i t i a l i z e
sum=0.d0

! I f t occurs during pu l s e then
i f ( t . ge . tg (1 ) ) then

! i f t . l e . t pr ime , compute I n
i f ( t . l t . t pr ime ) then

i f ( nseg . gt . 1) then
do j =1,nseg−1

h=(g ( j +1)−g ( j ) ) /( tg ( j +1)−tg ( j ) )
term=(g ( j +1)−h/a1n )∗dexp(−a1n ∗( t−tg ( j +1) ) )−(g ( j )−h/

a1n )∗dexp(−a1n ∗( t−tg ( j ) ) )
sum=sum+term

enddo
e n d i f
h=(g ( nseg+1)−g ( nseg ) ) /( tg ( nseg+1)−tg ( nseg ) )
f i n a l t e r m=−(g ( nseg )−h/a1n )∗dexp(−a1n ∗( t−tg ( nseg ) ) )
sum=sum+f i n a l t e r m
sum=sum/a1n
s s =(h∗( t−tg ( nseg ) )+g ( nseg ) )∗ s11−h∗ s12

e l s e i f ( t . l e . tg (m) ) then
! compute I n f o r t . ge . t pr ime . and . t . l e . tg (m)

i f ( i f i r s t ( n1 ) . eq . 0) then
! compute I n ( t pr ime ) us ing temporal s o l u t i o n s i n c e I n must

conta in steady s t a t e
i f i r s t ( n1 )=1
sumt prime =0.d0
i f ( nseg . gt . 1) then

do j =1,nseg−1
h=(g ( j +1)−g ( j ) ) /( tg ( j +1)−tg ( j ) )
term=(g ( j +1)−h/a1n )∗dexp(−a1n ∗( t prime−tg ( j +1) ) )−(

g ( j )−h/a1n )∗dexp(−a1n ∗( t prime−tg ( j ) ) )
sumt prime=sumt prime+term

enddo
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e n d i f
! t pr ime on f i r s t segment

h=(g ( nseg+1)−g ( nseg ) ) /( tg ( nseg+1)−tg ( nseg ) )
f i n a l t e r m=h∗( t prime−tg ( nseg ) )+(g ( nseg )−h/a1n ) ∗ ( 1 . d0−

dexp(−a1n ∗( t prime−tg ( nseg ) ) ) )
sumt prime=sumt prime+f i n a l t e r m
I nt pr ime ( n1 )=sumt prime/a1n
nsegt pr ime=nseg

e n d i f
! compute I n f o r t pr ime <= t <= t {m+1} in SAND repor t

i f ( nseg . eq . nsegt pr ime ) then
term1=I nt pr ime ( n1 )∗dexp(−a2n ∗( t−t pr ime ) )
h=(g ( nseg+1)−g ( nseg ) ) /( tg ( nseg+1)−tg ( nseg ) )
f i n a l t e r m=−(h∗( t prime−tg ( nseg ) )+g ( nseg )−h/a2n )∗dexp

(−a2n ∗( t−t pr ime ) )
sum=term1+f i n a l t e r m /a2n
s s =(h∗( t−tg ( nseg ) )+g ( nseg ) )∗ s21−h∗ s22

! I f l a s t po int on segment , then compute I n ( t m+1)
i f ( i i . eq . npt s s eg ( j j ) ) then

In endpt ( n1 , j j )=I nt p r ime ( n1 )∗dexp(−a2n ∗( tg ( nseg+1)
−t pr ime ) )+

+ (h∗( tg ( nseg )−t pr ime )+(h∗( t prime−tg ( nseg ) )−h/a2n )
∗ ( 1 . d0−dexp(−a2n ∗( tg ( nseg+1)−t pr ime ) ) ) ) /a2n

e n d i f
e l s e i f ( nseg . l t . m) then

! compute I n f o r t { s} <= t <= t {M} in SAND repor t
term1=In endpt ( n1 , 1 ) ∗dexp(−a2n ∗( t−tg ( nseg ) ) )
i f ( nsegt pr ime . l t . nseg−1) then

do j=nsegt pr ime +1,nseg−1
h=(g ( j +1)−g ( j ) ) /( tg ( j +1)−tg ( j ) )
term=(g ( j +1)−h/a2n )∗dexp(−a2n ∗( t−tg ( j +1) ) )−(g ( j )−h

/a2n )∗dexp(−a2n ∗( t−tg ( j ) ) )
sum=sum+term

enddo
e n d i f
h=(g ( nseg+1)−g ( nseg ) ) /( tg ( nseg+1)−tg ( nseg ) )
f i n a l t e r m=−(g ( nseg )−h/a2n )∗dexp(−a2n ∗( t−tg ( nseg ) ) )
sum=sum+f i n a l t e r m
sum=term1+sum/a2n
s s =(h∗( t−tg ( nseg ) )+g ( nseg ) )∗ s21−h∗ s22
i f ( i i . eq . npt s s eg ( j j ) ) then

In endpt ( n1 , j j ) = In endpt ( n1 , j j −1)∗dexp(−a2n ∗( tg ( j j
)−tg ( j j −1) ) )+(h∗( tg ( nseg+1)−tg ( nseg ) )+

+ ( g ( nseg )−h/a2n ) ∗ ( 1 . d0−dexp(−a2n ∗( tg ( nseg+1)−tg ( nseg )
) ) ) ) /a2n
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e n d i f
e n d i f

e l s e
! t occurs a f t e r pulse , compute sum us ing I n ( t M)

sum=In endpt ( n1 , nseg−1)∗dexp(−a2n ∗( t−tg (m) ) )
e n d i f

e l s e
! case where t<tg (1 ) , assumed that the re i s no pu l s e so d int=0

wr i t e (10 ,∗ ) ’ t < t (1 ) , no i r r a d i a t i o n assumed during t h i s
per iod ’

sum=0.d0
e n d i f
d int=sum
end
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