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Abstract

This report considers the calculation of the quasi-static nonlinear response of rectangular flat
plates and tubes of rectangular cross-section subjected to compressive loads using quadrilateral-
shell finite element models. The principal objective is to assess the effect that the shell drilling
stiffness parameter has on the calculated results. The calculated collapse load of elastic-plastic
tubes of rectangular cross-section is of particular interest here. The drilling stiffness factor
specifies the amount of artificial stiffness that is given to the shell element drilling degree of
freedom (rotation normal to the plane of the element). The element formulation has no stiff-
ness for this degree of freedom, and this can lead to numerical difficulties. The results indicate
that in the problems considered it is necessary to add a small amount of drilling stiffness to
obtain converged results when using both implicit quasi-statics or explicit dynamics methods.
The report concludes with a parametric study of the imperfection sensitivity of the calculated
responses of the elastic-plastic tubes with rectangular cross-section.
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Introduction

Shell elements allow analysts to develop relatively simple and efficient finite element models
to calculate the mechanical response of thin-walled structures. The simplicity arises from the fact
that the through-thickness discretization of the structure is included in the element, therefore only
surface meshes need to be generated. The efficiency is a result of the reduction of the number
of degrees of freedom usually required if continuum elements are used. Although the number of
degrees of freedom per node is larger for the shell elements, generally the reduction in the number
of nodes in a model leads to a net reduction.

The formulation of shell elements, however, is not simple. In fact, several formulations have
been developed since the 1960’s [1], with different levels of success. Sandia’s Sierra Mechanics
codes Adagio and Presto use the Key-Hoff shell element [2], which is based on the Belytschko-
Lin-Tsay element [3].

The quadrilateral shell elements in Adagio and Presto have six degrees of freedom at each node
(3 translational and 3 rotational). The rotations in the direction orthogonal to the plane of the shell
at each node are the drilling degrees of freedom. The formulation used for these elements has no
rotational stiffness in this direction. This can lead to spurious zero-energy modes of deformation
similar in nature to hourglass deformation and make obtaining solutions in quasi-static problems
difficult. In addition, it can lead to solution instabilities in transient explicit analysis.

These problems are addressed in Adagio and Presto by introducing artificial stiffness in the
drilling degrees of freedom of the shell elements through the “drilling stiffness factor.” The actual
drilling stiffness used is a function of this factor, the Young’s modulus of the material and the ge-
ometry of the shell element. The result can be viewed as an artificial spring that provides a reaction
proportional to the amount of drilling rotation. The stiffness factor should be chosen to be small
enough to add enough stiffness to allow the solver in Adagio to converge and to prevent instabil-
ities in Presto without unduly affecting the solution. The default value for the drilling stiffness
factor is zero. If difficulties are encountered with the solution, as will be demonstrated later for the
problems of interest here, it is recommended to try adding a small amount of drilling stiffness. A
suggested trial value for the drilling stiffness factor is 1×10−4 [4]. For further discussion on the
drilling degree of freedom and several ways to address the issue in shell element formulations see
[5] and [6].

The objective of this report is to demonstrate the effect of the shell drilling stiffness factor,
and its interaction with mesh refinement, on the calculation of the post-buckling response and
collapse of plate-like structures. In particular, the cases of rectangular plates under compressive
edge loads and of tubes of rectangular cross-section under axial compression are considered. As a
prelude, however, the case of an extensional rectangular plate under uniform transverse pressure is
considered first. In all problems loading is assumed to be applied slowly so that dynamic effects
are negligible. The loading period was determined accordingly when using explicit dynamics by
trying various values and comparing the calculated responses until suitable loading rates were
identified. At the time of this writing, the implementation of the shell drilling stiffness considered
is available in the version-of-the-day (VOTD) only, but it will be included in the 4.16 release of
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both Presto and Adagio.
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Rectangular Plates

The effect of the shell drilling stiffness factor on the response of two rectangular plate problems
is considered first. The first problem, shown in Fig. 1(a) is a linearly elastic square plate lying on
thex-y plane with dimensionsa = b = 6 in. and thicknesst = 0.120 in. It is subjected to a uniform
transverse pressure of magnitudeP and is pinned at all four edges, where the in-plane deflections
are also restricted. Therefore, the plate stretches as it bends. The Young’s modulus and Poisson’s
ratio of the material areE = 28.3×106 psi andν = 0.3 respectively.

The same plate geometry and material are used for the second problem, but in this case the
loading is a distributed compressive edge force of total magnitudeF , as shown in Fig. 1(b). The
plate is still pinned at all four edges. Thex-deflection atx = ±a/2 is restricted while they-
deflections aty =±b/2 are prescribed to be equal and opposite. Because of the support conditions,
the plate undergoes biaxial compression.

Since both problems are doubly symmetric, the models include only one quarter of the plate
in the first quadrant, shown shaded in the figures. Symmetry boundary conditions are applied at
x = 0 andy = 0.

Plates Under Transverse Load

When a uniform transverse pressure is applied to the plate as in Fig. 1(a), the plate will deflect
into a bowl shape. Such deformation can be quantified by the transverse deflection at(x,y) = (0,0),
which will be calledδ . Plots of pressure vs. deflection (P-δ ) generated using quasi-static analysis
with Adagio with different element sizes (SE) are shown in Fig. 2(a) and (b) for values of shell
drilling stiffness factorDs = 0 and 1× 10−4 respectively. All elements have unit aspect ratio.
The conjugate gradient method’s parameters used are shown in Table 1. Figure 2(a) shows results
when elements have sizes of 1 and 0.5 in. Attempts were made to obtain results with smaller
elements, but the solver failed to converge at the start of the runs. Differences between the two
calculated responses can be seen, but the convergence of the results with respect to element size
cannot be assessed in the absence of results with smaller elements. By contrast, whenDs = 1×
10−4 the model delivered results for smaller elements as shown in Fig. 2(b). In this case the
convergence of theP-δ responses can be verified since negligible difference is apparent between
results obtained with 0.25 and 0.125 in. elements. Since mesh convergence was achieved, elements
smaller than 0.125 in. were not considered. Clearly, settingDs = 1×10−4 made the success of
the mesh refinement study possible. A study of the effect ofDs on the performance of Adagio for
this problem using 0.125 in. elements showed that a minimum value of 1×10−6 was needed for
convergence in this case.

As expected, theP-δ responses display a hardening response due to the stretch of the plate and
buildup of membrane force. For very small transverse deflections, the membrane force is small
and its effect in theP-δ plot negligible. Linear analytical solutions can be easily derived (see [7])
from plate theory for the case of plates with no membrane force as summarized in Appendix A. It
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is shown there that for very small deflections the nonlinear finite element calculations yield results
that are virtually identical to the ones from linear plate theory.

In summary, including a shell drilling stiffness factor of 1×10−4 dramatically improved the
convergence of Adagio’s solver and allowed the mesh refinement study to complete, indicating that
elements of size 0.25 in. yield converged results in this problem.

Table 1. Adagio cg solver parameters. Plates under transverse
load.

Predictor scale factor 0.25
Target relative residual 1×10−5

Maximum iterations 200
Adaptive stepping target iterations 50
Adaptive stepping maximum multiplier 20

Plates Under Edge Compression

Plates subjected to compressive edge loads are susceptible to buckling. If a plate is perfectly
flat initially, it will remain flat under compressive edge loading until a critical value of load, the
buckling load, is reached. At this point the flat configuration becomes unstable. Above this load
even infinitesimally small disturbances will result in finite static displacements transverse to the
plane of the plate. In reality no plate is perfectly flat, and transverse deflections develop from
the beginning of loading, slowly at first, but accelerate significantly when the load approaches the
vicinity of the buckling load.

The formulation of the linearly elastic plate buckling problem is presented in structural stability
books such as [8]. For biaxially loaded rectangular plates the buckling loadFcr is given by

Fcr = kc
π2

a
Et3

12(1−ν2)
(1)

where

kc =
[(na/b)2 +m2]2

(na/b)2 +Rm2 , (2)

m and n are the (integer) number of buckling half-waves in thex and y directions respectively
(Fig. 1(b)) andR is the ratio of the normalx-stress component to the they-stress component (R =
σxx/σyy). The buckling load is found by varying the values ofm andn until a minimum value of
kc is determined. If the expansion of the plate in thex-direction (see Fig. 1) is prevented, then
R = ν , the material’s Poisson’s ratio, which is taken as 0.3. For a square plate, which is considered
here,a/b = 1 and the minimum value ofkc is found whenm = n = 11 and is equal to 3.077.

1This indicates that the buckling mode of the plate has a single half-wave in both directions, that is the mode has
the shape of a bowl.
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Substituting the plate dimensions and material properties given previously gives the buckling load
asFcr = 22,670 lb. The corresponding relative displacement of the edges aty = b/2 andy =−b/2,
which will be called∆, can be calculated in a straight-forward manner and is 0.00608 in.

The post-buckling response of linearly elastic rectangular plates is stable, in other words, the
load continues to increase with further compressive edge displacement in spite of the growing
transverse deflection. In order to study the post-buckling response of the plates numerically it is
generally necessary to excite buckling by introducing a small geometric imperfection in the form
of an initial lateral deflection of the unloaded plate. Without such a disturbance, the numerical
solution may continue to follow the unstable equilibrium path, without lateral deflection, at loads
higher than the buckling load instead of the buckled, stable path. In the results to be shown next,
an initial lateral deflection in the shape of the buckling mode of the plate is introduced. The lateral
deflection is in the shape of the buckling mode of the plate and is given by

wo = δo cos(πx/a)cos(πy/b) (3)

whereδo is the imperfection amplitude. In the results that followδo = 0.001 in.

Figure 3 shows the load-deflection responses calculated with Adagio for the different element
sizes shown in the figure. In the cases presented, the shell drilling stiffness factor was kept fixed
at 1×10−4 and the target relative residual at 1×10−9. The solver parameters used are listed in
Table 2. Figure 3(a) shows the total applied edge loadF vs. the relative edge displacement∆. The
buckling load and displacement calculated from (1) and (2) are indicated by dashed lines, and their
intersection defines the buckling point. The results show that for displacements under the value
at buckling, the response of the plate is linear. As expected, near the buckling point the response
shows a relatively fast change in slope. At higher loads the response has again a nearly constant
slope. Figure 3(b) shows the total applied force vs. the lateral deflection at the center of the plate.
The lateral deflection remains very small up until a load just below the buckling load, and then
accelerates considerably as the load rises further. The results of the parametric study indicate that
the calculated load-deflection responses become nearly identical for element sizes of 0.5 in. and
below, and that the results with an element size of 0.25 in. are reasonably converged.

Setting the shell drilling stiffness factor to zero, however, can lead to severe difficulties and
makes the results sensitive to the value of the target relative residualRt , as illustrated in Figs.
4(a) and (b), which show the load as function of edge and transverse displacement calculated with
0.125 in. elements. Results obtained withRt = 1×10−5 overshoot the buckling point and display
significant roughness in the post-buckling regime. The noticeable periodic drift in the plot is often
observed when convergence tolerances are too loose. A solution that is converged in one step may,
in combination with the Adagio’s load step predictor, be converged with few iterations in the next
even though there is a noticeable drift in the solution. ChangingRt to 1×10−7 smooths the results
considerably but not totally, and the lateral deflection of the plate now gets excited somewhat
prematurely when compared to the results in Fig. 3 and to the buckling load and displacement
calculations. ReducingRt to 1×10−9 results in the numerical procedure not converging very early
in the loading process. The last converged solution is indicated by the “×” symbol in the figures.

The next step in the study was to investigate the effect of the shell drilling stiffness factor on
calculations conducted using the explicit dynamics code Presto. Loading was conducted at a slow
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Table 2. Adagio cg solver parameters. Plates under edge load.

Predictor scale factor 0.25
Target relative residual (Rt) See figures
Maximum iterations 200
Full tangent preconditioner:
Balance probe 2
Tangent diagonal scale 0.25
Adaptive time stepping:
Target iterations 50
Maximum multiplier 20

enough rate so the results are comparable to the quasi-staticpredictions. As in the Adagio runs,
loading was conducted by prescribing the relative displacement∆ between the edges aty = ±b/2,
with a maximum value of 0.02 in. The variation of∆ as a function of time is shown in Fig. 5 and
is given by

∆(t)
∆(T )

=
( t

T

)3
[

10−15
( t

T

)

+6
( t

T

)2
]

, (4)

whereT is the elapsed time during the run, as suggested in [9] for “smooth loading.” Choosing
T = 1 s and using a density of 0.000735 slug-ft/in4 for the material essentially yielded the quasi-
static response. The time step calculated internally by the program was used.

Graphs of the calculated load-displacement responses are shown in Fig. 6 for the cases with
shell drilling stiffness factor values of 1×10−4 and 0, using 0.125 in. elements. The results are
nearly identical up to an edge displacement of approximately 0.012 in. where the case withDs = 0
deviates from the curve withDs = 1× 10−4, and subsequently predicts somewhat rough load-
deflection curves that fall below the expected trends. Comparing the present results to the results
obtained with Adagio in Fig. 3 shows that they fall on top of those results ifDs = 1× 10−4.
Therefore, it was very important to setDs = 1× 10−4 to obtain reasonable results when using
Presto as well.

In summary, the results obtained for elastic rectangular plates show that it is essential to include
the shell drilling stiffness factor in the analysis to be able to generate results that are reasonable, and
that this holds true for both Adagio and Presto. A value ofDs = 1×10−4 gave good results in all
cases. The next sections address the effect of this parameter on the more demanding calculations
of the response of elastic-plastic tubes of rectangular section under axial compression.
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Tubes of Rectangular Cross-Section Under Axial Compression

Several Sandia structural systems are designed to absorb kinetic energy in impact events.
Beams in the structure of the safeguards transporter (SGT), for example, should be able to dis-
sipate energy in the event of an accident. To support work related to the calculation of the response
of the SGT under accident conditions, a C6 project considered the crushing and associated energy
absorption of A500 steel tubes of rectangular cross-section under axial load. The experiments were
conducted under quasi-static loading conditions, and the results were documented in [10].

Figure 7 shows two of the tested specimens. The specimen in Fig. 7(a) had nominal outer
cross-sectional dimensions 6×3 in., nominal thickness of 0.120 in. and length of 48 in. The tubes
had a longitudinal weld seam and were held at both ends using custom-made fixtures consisting of
a rectangular cavity with a depth of 2 in. where the specimens fit snugly. No internal support was
provided to the tubes at these fixtures. Loading was achieved by holding one end of the specimens
fixed while prescribing the displacement of the other in the direction of the specimen axis at a
rate of 1 in/min. This tube collapsed by localized crushing at the lower end. The photograph
shows two well-defined folds. Figure 8(a) plots the axial load-deflection (F-∆) response of the
specimen in Fig. 7(a). It is characterized by significant load fluctuations as each fold formed and
came into contact with the preceding fold, or perhaps the gripping fixture in the case of the first
fold. The part of interest in this study, however, encompasses only the first load peak, which
represents the maximum load that the tube can take and therefore is the collapse load of the tube.
A close-up of the measured response in this regime is shown in Fig. 8(b). Although one would
expect an initially linearF-∆ response, flexibility and backlash in the experimental apparatus is the
most likely source of the initial nonlinearity. Eventually a limit load developed in the response as
the tube started collapsing. Further compression occurred under decreasing load as the first fold
developed. All specimens of similar geometry and length had very similar responses. Specimens
of shorter length, 20 in., displayed the same type of collapse mode. A total of ten 48 in. specimens
and eight 20 in. specimens were tested.

Figure 7(b) shows a specimen that collapsed in a global mode and developed a kink near the
mid-span of the beam. The gripping and loading conditions were similar as in the case discussed
previously. This specimen had nominal cross-sectional dimensions 2×2 in., thickness of 0.083 in
and length of 44 in. The measuredF-∆ response is shown in Fig. 9(a) and shows a load maximum
followed by a significant load decrease up until a displacement of approximately 3 in. followed
by a very small load increase probably due to self-contact in the kink region. Again, the regime
of interest is the beginning of the response, up until a little after the load maximum, as shown
in Fig. 9(b). For the current cross-sectional geometry, most of the specimens of length 44 in.
collapsed in the mode shown in Fig. 7(b), but shorter specimens of length 20 in. tended to collapse
by progressive crushing. A total of seven 44 in. specimens and seven 20 in. specimens were tested.

Material characterization of A500 steel through uniaxial tension tests was carried out in [11].
The test coupons did not come from tube material, but rather from structural hat sections of the
same material. Tests were conducted for longitudinal and transverse cuts at different temperatures
and strain rates. The stress-strain curve used in the calculations that follow is shown in Fig. 10 up
to a strain of 5%. A multilinear fit was conducted. The circles in the figure represent the enpoints
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of the linear segments. This tension test was conducted quasi-statically at an approximate strain
rate of 0.16% per second. The measured Young’s modulus,E, and the 0.2% strain offset yield
stress,σo, are given in the figure.

The next section of this report will address the predictions of initial collapse including the
effect of element size and of the value of the shell drilling stiffness factor for the 6× 3× 0.120
in. columns. The effect of the value of the shell drilling stiffness factor on the response assuming
linearly elastic material is shown first as a small prelude to the consideration of the elastic-plastic
response. A parametric study of the imperfection sensitivity of the elastic-plastic response of both
column geometries concludes the report.

Local Buckling

Local buckling or collapse refers to instances where large deformations occur over a relatively
small region of a structural member while the rest of the member has significantly smaller de-
formations. In elastic-plastic buckling problems, these large local deformations start growing at
approximately the same time as the load borne reaches a maximum value and develop as the load
decreases. Since all 6×3×0.120 in. columns tested collapsed locally, this geometry will be used
to study the performance of both Adagio and Presto when modeling local collapse.

As was done in the section on buckling of plates, a small geometric imperfection will be in-
troduced in the model of the tubes to seed the post-buckling deformations and later study their
imperfection sensitivity. The geometric imperfection has two components: one in the plane of the
cross-section and one along the axis of the tube. The shape of the imperfection in the cross-section
is shown in Fig. 11. It is characterized by a bowing of each side of the tube in the shape of a half
sine wave. The amplitude of the imperfection is given bywo on two of the sides. To keep the
sides at 90◦ to each other at the corners, the imperfection amplitude at the other sides isαwo where
α = a/b, the ratio of the length of the sides. The variation of the imperfection along the tubes
is also sinusoidal with half-wavelengthλ , which is prescribed. In the cases considered here, the
value ofλ is a small fraction of the length of the tube.

Obviously, the imperfection shape being considered is very simple compared to what could
be expected in reality. In a testing environment, imperfections can arise due to deviations from
flatness of the tube’s wall arising from tolerances in the manufacturing process or from impact
during handling and transportation. Additionally, the axis of the tube may not be perfectly straight,
the testing machine can have slight misalignments and some differences in boundary conditions
between test and those idealized in the analysis exist. None of these factors are known. Therefore,
the initial geometric imperfection considered in the analysis is useful only to investigate the sen-
sitivity of the collapse loads of the tubes to the magnitude of imperfections, but it is not meant to
represent an imperfection that was actually present in the tests. The effect of the two imperfection
parameters, amplitude and wavelength, will be addressed later in this report.

Figure 12 shows an example of the mesh used to model the tubes. It includes only one-half of
the tube. A single plane of symmetry with normal along they direction that cuts the 6 in. sides in
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Table 3. Adagio cg solver parameters. Tube collapse cases.

Predictor scale factor 1.0
Maximum iterations 1000
Minimum iterations 0
Line search Tangent
Full tangent preconditioner:
Balance probe 2
Linear solver feti
Tangent diagonal scale 0.01
Adaptive time stepping:
Target iterations 100
Maximum multiplier 20
Minimum multiplier 0.001

half is used. Although the imperfection and expected deformation will also be symmetric about
a plane through the center of the tube and with normal along thex direction, that was neglected
because a latter section will address the possibility of column buckling type deflections that are not
symmetric about this plane. The periodic nature of the initial imperfection can be appreciated in
this figure.

When using Adagio, the solver parameters used that are common to all cases run are given
in Table 3. The parameters varied in this study include the relative target residual, the value of
the shell drilling stiffness factor and the size of the shell elements. In all cases the elements have
nominally unit aspect ratio and uniform size throughout the model. Small deviations from these
rules occur because the dimensions of the mid-surface of the tube are not round numbers.

The reminder of this section will address the response of the tubes starting with a brief discus-
sion of the linearly elastic case and followed by consideration of the elastic-plastic response. In all
cases presented, the length of the tubes was kept at 24 in. Although tubes of this length were not
tested, using this length was convenient for the study of the effect of element size in the response.
The amplitude and half-wavelength of the imperfection were constant with valueswo = 0.0125
in. andλ = 1 in. respectively. Results obtained with Adagio will be presented first, followed by
results obtained with Presto. In all cases, both ends of the tube were pinned, that is the deflection
components perpendicular to the tube axis were zero, but the rotations were left free. Loading
was accomplished by restricting the axial deflection at one end of the tube and prescribing it at the
other end. The axial forceF was calculated by summing the nodal reactions at one end and then
doubling the sum on account of symmetry.

Results with Implicit Quasi-Statics. Adagio

Figure 13 shows the calculated axial load-deflection (F-∆) response of the tubes when the shell
drilling stiffness factor has values ofDs = 0 and 1×10−4, and the material was linearly elastic.
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The element size wasSE = 0.125 in. and the target relative residualRt = 1×10−7. The effect of
element size will be addressed later, in conjunction with the elastic-plastic case. The results show
that the case withDs = 0 failed to converge very early in the process, at the place indicated by
“×” in the figure. SettingDs = 1×10−4 yielded results that ran to completion. The shape of the
load-deflection response is qualitatively very similar to that of flat plates. The deformed mesh at
an axial displacement∆ = 0.12 in. is shown in Fig. 14 and shows a periodic deformation with 5
half-wavelengths along the tube.

Figure 15 shows, for different element sizes, the calculated load-deflection response if the
material is elastic-plastic with the uniaxial stress-strain curve in Fig. 10. The plasticity model is
based on flow theory, is rate independent and hardens isotropically. The shell drilling stiffness
factor was kept atDs = 1×10−4; setting it to zero caused the nonlinear solver to diverge prior to
achieving the limit load, except when the largest element considered, 1 in., was used.

Clearly, including the elastic-plastic behavior of the material changes the axial load-deflection
response significantly. Now the response is characterized by a load maximum, so the structure will
collapse if loads higher than the maximum are attempted. Therefore, the load maximum represents
the collapse load of the tube. In the calculations, the axial displacement at one end of the tube was
prescribed, so the post-collapse response could be calculated.

The figure shows that the load-deflection responses converged rapidly as the element size de-
creased, and that for elements smaller than 0.25 in. the results are almost indistinguishable. Figure
16 shows a plot of the calculated dependence of the collapse load as a function of the number of
elements along the 24 in. length of the tube and compares them to similar calculations obtained
using the commercial program Abaqus/Standard using an equivalent shell element (S4R) [9]. The
results from both codes are convergent, very similar, and the difference reduces as the element
size decreases. Using elements of size 0.25 in. (96 elements along the length) or smaller yields
reasonable results.

The effect of varying the value ofDs in steps of two orders of magnitude on the calculated
axial load-deflection response is shown in Fig. 17. The results show that a minimum value of
1×10−10 is needed to calculate the maximum load in the response. Interestingly, the maximum
load increases as the value ofDs increases. Each of the calculated curves look reasonable by itself,
with the exception of the case withDs = 1, which predicts a post-limit-load response that includes
a rising load not seen in practice. Based on the information presented, it is difficult to determine
what a converged value ofDs is. Perhaps a hint of a reasonable value is pointed out by the fact
that the minimum difference in the calculated maximum load occurred betweenDs = 1× 10−4

and 1× 10−2. The difference between these two cases was 0.1%. These two curves are almost
indistinguishable in Fig. 17 and suggest setting the value ofDs in this range.

As one may perhaps expect, the S4R element in Abaqus also includes an artificial stiffness
associated with the shell drilling degree of freedom. Although the Abaqus Theory Manual [12]
is not explicit with respect to the drilling stiffness implementation for the S4R element, in other
shell elements their algorithm constrains the rotation about the shell normal to match the in-plane
rotation measured from the displacement field. This may be similar to the method presented in [5].
According to the user’s manual [9] the default value of this stiffness has been calibrated to deliver
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good results in most cases, but the user is allowed to modify itvia a scaling factor. The default value
was used in all Abaqus calculations. The agreement on the calculated maximum loads between
Abaqus/Standard and Adagio was best whenDs = 1×10−4. In view of the observations mentioned
in this and the previous paragraph and the recommendation in [4], a value ofDs = 1× 10−4 is
adopted for the rest of the report unless otherwise stated.

Results with Explicit Dynamics. Presto

The collapse calculations were repeated using explicit dynamics. As in the case of the plate,
the axial displacement is prescribed according to the function shown in Fig. 5 with∆(T ) = 0.12 in.
andT = 0.1 s. The results for the elastic cases corresponding to those shown in Fig. 13 are shown
in Fig. 18. When the shell drilling stiffness factor isDs = 1× 10−4, the results are essentially
identical to those obtained with Adagio. WhenDs = 0, however, the explicit calculations yield
results that run to completion, but similarly to the plates, the calculated load is significantly lower
once∆ > 0.04 in.

The effect of element size on the elastic-plastic calculations withDs = 1× 10−4 are shown
in Fig. 19. The trend is very similar to the one obtained with Adagio although the shapes of the
axial load-deflection curves are somewhat different after passing the load maxima. In fact, the
calculated limit loads by Adagio and Presto are compared in Fig. 20 as functions of the number of
elements along the tube and are almost identical. The difference in the shape of the post-buckling
load-deflection responses can be eliminated by increasingT to 1 s as shown in Fig. 21. Note that
for all three values ofT , the curves are identical up to the maximum load.

Whereas settingDs = 0 in Adagio caused the numerical procedure to diverge for element sizes
0.5 in. or smaller, calculations using Presto can run to completion whenDs = 0, as was the case
when the material was linearly elastic. The results obtained here also display erratic behavior that
accentuates as the element size decreases. Figure 22 shows a comparison of the collapse loads
calculated withDs = 0 and 1×10−4. Clearly, the results obtained withDs = 0 are non-convergent
since the calculated collapse loads continue to decrease significantly as the element size decreases
(or the number of elements along the length increases).

The values of the predicted maximum loads calculated with Presto follow a similar trend as
the results obtained with Adagio when varying the value ofDs. Interestingly, the maximum loads
calculated with Presto whenDs = 0 and with Adagio whenDs = 1×10−10 (the smallestDs that
allowed calculation of the load maximum) are virtually identical. This suggests that results calcu-
lated with Adagio with values ofDs just large enough to allow calculation of the limit load may
also show a lack of mesh size convergence similar to that displayed by Presto whenDs = 0.

Imperfection Sensitivity and Lateral Buckling

It is well known that the response of thin-walled structures can be imperfection sensitive.
Studying the imperfection sensitivity is especially important when a load maximum is present,
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as was the case for the elastic-plastic tubes considered so far. The geometric imperfection that has
been considered to this point consists of a periodic wrinkle along the tube. It has two parameters:
the wavelength (λ ) and the amplitude (δo). Only numerical results for 6× 3× 0.120 in. tubes
using λ = 1 in. andδo = 0.0125 in have been presented so far. In the following, we consider
first a brief study of the sensitivity of the collapse load of such tubes to these two parameters and
then conclude with consideration of a global, column-type lateral buckling mode such as that ob-
served in 2×2×0.083 in. columns (see Fig. 7(b)). All calculations in this section are conducted
quasi-statically with Adagio.

The effect of changing the wavelength of the imperfection for 6× 3× 0.12 in. columns on
their collapse load is shown in Fig. 23 using element sizesSE = 0.25 and 0.125 in. whenλ = 0.5,
1 and 2 in. The results show sensitivity toλ with a minimum collapse load predicted for the case
with λ = 1 in. for both element sizes. This value was used for all other calculations for tubes
with similar cross-sectional dimensions since it was conservative. The effect of varyingδo on the
axial load-deflection response is shown in Fig. 24. The results indicate that the collapse load of
the columns is indeed imperfection sensitive since an imperfection of amplitudeδo = 1/16 in. can
reduce the collapse load by approximately 40%. Usingδo = 0.0125 in. approximately matches the
collapse loads measured experimentally, which ranged between 85 and 100 kips. Another point
of interest is that even the column with no imperfection displayed collapse, indicating that there
is sufficient numerical “noise” in the solution to trigger buckling and collapse. This is not always
guaranteed.

Although progressive crushing, which starts as local collapse, was the only mode observed in
the 6× 3×0.12 in. columns tested, it is natural to consider the possibility of a global column-type
buckling mode that leads to global collapse, as in Fig. 7(b) for 2×2×0.083 in. columns. The rest
of this section will concentrate on the interaction between these two possible modes of collapse.
As with local collapse, the global mode can be excited by a suitable geometric imperfection. Since
the supports at the ends of the columns in the experiments approach a clamped boundary condition
for global deflections, the initial imperfection used consists of a lateral deflection in the global
x-direction without cross-sectional distortion given by

ux =
δc

2

[

1−cos

(

2πz
L

)]

. (5)

The two imperfections are then added to produce the initial geometry of the mesh.

Whereas progressive crushing dominated the behavior of all 6×3×0.12 in. tubes in the exper-
iments, the behavior of the 2×2×0.083 in. tubes was strongly dependent on the specimen length.
Most tubes withL = 20 in. crushed progressively whereas most of the longer tubes withL = 44
in. displayed large global displacements, as in Fig. 7(b). Hence, these cases present a good oppor-
tunity to study the interaction between the two collapse modes and therefore between the effect of
the two imperfection shapes.

Figure 25 shows the axial load-deflection response of columns withL = 20 in. In this figure, the
periodic imperfection parameters were kept constant atλ = 0.5 in. (determined through parametric
studies similar to those shown in Fig. 23) andδo = 0.0083 in. while the amplitude of the global
imperfection was varied between 0 and 1 in. The results show that when the column imperfection is
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very small (δc < 0.1 in.), the presence of the lateral imperfection has a negligible effect on the load-
deflection curves and the deformation localizes at one end of the column in a manner similar to
that shown in Fig. 26(a). For larger values ofδc the shapes of the response curves begin to change,
as the column-type imperfection influences the response more significantly and the deformations
show increasing lateral deflections as shown in Fig. 26(b) whenδc = 0.25 in. Note that although the
lateral deflection is significant, regions where localized deformation at the ends and center of the
column are present. Whether progressive crushing or global deflections will eventually dominate
the response at very large axial displacement requires extending the calculations to that regime,
but that is beyond the scope of the present report.

Results when the columns haveL = 44 in. are shown in Fig. 27. Here the character of all the
curves, except the one withδc = 0 are similar and are mostly influenced by the lateral deflection of
the columns, as seen by inspecting the deflected shapes at the conclusion of the runs. The exception
is the curve corresponding toδc = 0, which displays a sudden load drop. Interestingly, no lateral
deformations developed in this case. Instead, a local buckle developed at one end. The results
indicate that the global collapse mode is strongly preferred by the 2×2×0.083 in. columns with
L = 44 in., but also that it is important to include an appropriate initial geometric imperfection to
obtain the correct response.

The collapse load measured in the experiments for 2×2×0.083 in. columns were in the range
of 25 to 30 kips for both lengths. The lateral imperfections required to yield calculated collapse
loads in this range are in the vicinity of 0.25 in. Results not presented in this report indicate that
the amplitude of a periodic wrinkle type imperfection on its own would have to be in the range
of 0.05 in. to bring the calculated maximum loads to the range seen in the experiments. These
values seem large. Recall, however, that the yield stress of the material is uncertain since it was
not measured on coupons extracted from the same material batch as the tubes tested. Hence it is
difficult to assess a reasonable value of amplitude for the imperfections.
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Summary and Conclusions

This report concentrated on the effect of shell drilling stiffness on the calculation of the pre-
and post-buckling responses of flat rectangular plates and tubes of rectangular cross-section under
slowly applied compression. These problems were very sensitive to the inclusion of the artificial
stiffness associated with the drilling degree of freedom in the shell elements used. Keeping the
drilling stiffness factor at zero (which is the current default value in Adagio and Presto) made
convergence of the conjugate gradient method in Adagio difficult to achieve, especially if the
element sizes were relatively small. On occasion, the method produced solutions, but the results
obtained were strongly dependent on the solver parameters and, in general, unreliable. Calculations
conducted with the explicit dynamics program Presto generally produced results, but the lack of
drilling stiffness resulted in numerical errors that were not always obvious but led to erroneous
results. In the case of elastic-plastic tubes of rectangular cross-section the erroneous results only
became apparent when conducting a mesh convergence study. In that case, refining the mesh did
not lead to convergence of the calculated collapse load of the tubes.

Including the recommended value for the shell drilling stiffness factor (Ds = 1×10−4) greatly
improved the performance of the element and eliminated all the numerical errors previously men-
tioned. The comparison of results between the two Sierra programs and the commercial code
Abaqus/Standard (with its default value for the drilling stiffness) was excellent. Whether the prob-
lems considered in this report were particularly sensitive to the value of the shell drilling stiffness
factor, perhaps because of their piecewise nearly flat geometries, or if any shell model will display
this sensitivity has not been addressed here. At this point the sensitivity of shell model predictions
to the value of drilling stiffness factor should be tested in a case-by-case basis.

Finally, Adagio was used to conduct a parametric study of the imperfection sensitivity of the
collapse behavior of elastic-plastic tubes of different cross-sections. The calculated collapse loads
(load maxima in the response) fell in the range of the experimentally measured ones when rea-
sonable values of initial imperfections were used for the 6×3×0.120 in. columns. The imper-
fection amplitudes required to predict collapse loads that were close to experimental values for
the 2× 2× 0.083 in. columns seemed larger than expected. The collapse loads, however, are
also dependent on the material properties, which are uncertain since they were not measured from
coupons extracted from actual test specimen material. By combining two types of initial geometric
imperfections, one that would favor local collapse and another that would favor global collapse, it
was possible to estimate the dependence of the collapse modes of 2×2×0.083 in. tubes on their
lengths as observed experimentally.

22



A Analytical Solution for Plates under Transverse Pressure

The linear differential equation for bending of rectangular elastic plates with no in-plane loads
is relatively easily derived in textbooks such as [7]. Ifw is the transverse deflection of a plate of
thicknesst that lies in thex-y plane and is subjected to a pressureP as in Fig. 1(a), the governing
equation is

∂ 4w
∂x4 +

∂ 4w
∂x2∂y2 +

∂ 4w
∂y4 = P/D (6)

where

D =
Et3

12(1−ν2)
. (7)

E andν are the Young’s modulus and Poisson’s ratio of the material, respectively.

If the plate is pinned at all four edges, the boundary conditions are

w(±a/2,y) = w(x,±b/2) =
∂ 2w(±a/2,y)

∂x2 =
∂ 2w(x,±b/2)

∂y2 = 0, (8)

and the solution can be expressed in terms of a double trigonometric series that converges rapidly.
The maximum deflection for a square plate (a = b), which occurs at the center, is calculated as

δ =
0.0443Pa4

Et3 (9)

by taking the first four non-zero terms in the series.

Figure 28 shows a comparison of the deflection calculated with Adagio and with (9). As
expected, the analytical and the finite element solutions agree when the deflections are very small.
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Figure 1. Plate geometry and applied loads for the problems con-
sidered. Edge loads that develop due to the support conditions are
not shown. (a) Transverse loading and (b) edge compressive load.
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stiffness factor (cases withSE ≤ 0.25 in. failed to converge) and
(b) shell drilling stiffness factor set to 1×10−4.
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Figure 3. Calculated quasi-static response of a 6×6×0.12 in.
plate subjected to compressive edge loading with shell drilling
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Figure 7. Collapse modes. (a) Progressive crushing in a 6×3×
0.12 in. specimen with length of 48 in. and (b) global symmetric
in a 2×2×0.083 in. specimen with length of 44 in.
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Figure 11. Imperfection shape in the plane of the cross-section.
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Figure 12. Model mesh for 6×3×0.120 in tubes. The model
represents one-half of the tube on account of symmetry. Elements
of size 0.25 in. are shown.
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Figure 13. Calculated axial load-deflection response for a 24 in.
long, linearly elastic 6×3×0.12 in. tube using two values of shell
drilling stiffness factor.
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Figure 14. Shape of a 24 in. long, 6×3×0.12 in. linearly elastic
tube when the axial displacement is∆ = 0.12 in.
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Figure 15. Comparison of the quasi-static axial load-deflection
responses calculated for a 24 in. long, elastic-plastic 6×3×0.12
in. tube with different element sizes.
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Figure 16. Comparison of the limit loads predicted for 24 in.
long, 6× 3× 0.12 in. tubes by Adagio and Abaqus/Standard for
different element sizes.
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Figure 17. Effect of the value of shell drilling stiffness on the
axial load-deflection responses calculated for a 24 in. long, elastic-
plastic 6×3×0.12 in. tubes.
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Figure 18. Calculated axial load-deflection response for a 24 in.
long, elastic 6×3×0.12 in. tube calculated using Presto with two
values of shell drilling stiffness factor.
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Figure 19. Comparison of axial load-deflection responses calcu-
lated for a 24 in. long, elastic 6×3×0.12 in. tubes with different
element sizes using Presto.
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Figure 20. Comparison of the limit loads predicted for 24 in.
long, 6×3×0.12 in. tubes by Adagio and Presto for different ele-
ment sizes.
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Figure 21. Comparison of axial load-deflection responses calcu-
lated for a 24 in. long, elastic 6×3×0.12 in. tubes using Presto
and different time periods. The curve withT = 1 s is essentially
identical to that given by Adagio.
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Figure 22. Comparison of the limit loads predicted for 24 in.
long, 6×3×0.12 in. tubes by Presto with the shell drilling stiffness
factor set to 1×10−4 and zero.
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Figure 23. Sensitivity of the collapse load of 24 in. long, 6×3×
0.12 in. tubes to the wavelength of the initial imperfection.
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Figure 24. Sensitivity of the axial load-deflection response of
24 in. long, 6× 3× 0.12 in. tubes to the amplitude of the initial
geometric imperfection.
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Figure 25. Axial load-deflection responses for 20 in. long, 2×

2×0.083 in. tubes with constant wrinkle imperfection and various
column-buckling mode type imperfection amplitudes.
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Figure 26. Shapes of 20 in. long, 2×2×0.083 in. columns with
δo = 0.0083 in. but different column-buckling type lateral initial
imperfections at∆ = 0.12 in. (a)δc = 0.0125 in. and (b)δc = 0.25
in.
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Figure 27. Axial load-deflection responses for 44 in. long, 2×

2×0.083 in. tubes with constant wrinkle imperfection and various
column-buckling mode type imperfection amplitudes.
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Figure 28. Comparison of the pressure vs. lateral deflection cal-
culated using Adagio against the linear solution (9) for small de-
flections.
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