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ABSTRACT 
  
 
 
In this work we report on the development of the Signature Molecular Descriptor (or 
Signature) for use in the solution of inverse design problems as well as in high-
throughput screening applications.  The ultimate goal of using Signature is to identify 
novel and non-intuitive chemical structures with optimal predicted properties for a given 
application. We demonstrate this in three studies:  green solvent design, glucocorticoid 
receptor ligand design and the design of inhibitors for Factor XIa. 
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1 Introduction 
 
In many areas of engineering, compounds are designed and/or modified in incremental 
ways which rely upon heuristics or institutional knowledge.  Often multiple experiments 
are performed and the optimal compound is identified in this brute-force fashion.  
Perhaps a traditional chemical scaffold is identified and movement of a substituent group 
around a ring constitutes the whole of the design process.  Also notably, a chemical being 
evaluated in one area might demonstrate properties very attractive in another area and 
serendipity was the mechanism for solution. 
 
In contrast to such approaches, computer-aided molecular design (CAMD) looks to 
encompass both experimental and heuristic-based knowledge into a strategy that will 
design a molecule on a computer to meet a given target.  Depending on the algorithm 
employed, the molecule which is designed might be quite novel (re:  no CAS registration 
number) and/or non-intuitive relative to what is known about the problem at hand. 
 
While CAMD is a fairly recent strategy (dating to the early 1980s)1, it contains a variety 
of bottlenecks and limitations which have prevented the technique from garnering more 
attention in the academic, governmental and industrial institutions.  A main reason for 
this is how the molecules are described in the computer.  This step can control how 
models are developed for the properties of interest on a given problem as well as how to 
go from an output of the algorithm to an actual chemical structure. 
 
This report provides details on a technique to describe molecules on a computer, called 
Signature, as well as the computer-aided molecule design algorithm built around 
Signature.  Two applications are provided of the CAMD algorithm with Signature.  The 
first describes the design of green solvents based on data in the GlaxoSmithKline (GSK) 
Solvent Selection Guide.  The second provides novel non-steroidal glucocorticoid 
receptor ligands with some optimally predicted properties. 
 
In addition to using the CAMD algorithm with Signature, it is demonstrated how to 
employ Signature in a high-throughput screening study.  Here, after classifying both 
active and inactive inhibitors for the protein Factor XIa using Signature, the model 
developed is used to screen a large, publicly-available database called PubChem for the 
most active compounds.   
 
 

2 The Signature Molecular Descriptor 
 

2.1 What is Signature? 
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Signature, which has its origins in structural elucidation studies of Faulon, 2, 3 is based on 
the molecular graph of a molecule, G = (VG, EG), where the elements in VG denote the 
atoms in the molecule, and the edges of EG correspond to the bonds between those atoms.  
In this context, a molecule is characterized by a set of canonical sub-graphs, each rooted 
on a different vertex with a predefined level of branching, which we refer to as the height 
h.  The branching of a vertex is an extended degree sequence that describes the local 
neighborhood, up to the distance h away from the root.   

 
We define an atomic Signature, hσG(x), as the canonical sub-graph of G consisting of all 
atoms a distance h from the root x.  A molecular Signature, hΣG, is then the set (re:  sum) 
of all unique atomic Signatures and the occurrence with which they appear in the 
molecular graph.  Even though the atomic Signatures are unique, they are, by 
construction, interrelated allowing information about the overall structure of the molecule 
to be conveyed at the end.  4 

 
The atomic Signatures make up the set of molecular descriptors for a molecule.  These 
are expressed in terms of a string of characters that correspond to the canonized sub-
graph in a breadth-first order. Branch levels are indicated by a set of parentheses 
following the parent vertex. An example of the molecular Signature for ethylene glycol at 
height-1 is given in Figure 1.   

 
 
 

                              
 

Figure 1:  Ethylene glycol and its corresponding height-1 molecular Signature. 
The molecular Signature of height 1 is the sum of the 10 height-1 atomic 
Signatures.  Note that only four height-1 atomic Signatures are unique for ethylene 
glycol, with the occurrence numbers given to the left of each atomic Signature in 
the figure.  Bonding type is accounted for in the atomic Signature.  For this 
molecule, only single bonds occur, though double, triple and aromatic bonds can 
be accommodated. 
 
Note that the height of the atomic Signature selected for use is a design parameter.  At 
height-0, atomic Signatures are just the atoms in a molecule (and, hence, the molecular 
formula).  On the other hand, large heights are very detailed, specific information on the 
bonding about a particular atom several bond-lengths away.  However, once a height is 
selected (usually height-1 or height-2, which balances computational issues with that of 
specificity of information), 5 this single height is used for the remainder of the problem. 
 
 

1Σ (Ethylene Glycol) 
2  c(c o h h) 
2  o(c h) 
4  h(c) 
2  h(o) 
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3 Computer-Aided Molecular Design (CAMD) 

3.1 General Features  
 
In CAMD, there are basically three main steps to the overall algorithm:  (1) selection of 
groups or fragments, (2) making of the new molecules from the groups or fragments and 
(3) evaluating the newly-developed molecules. In order to assess the fitness of the 
solutions output from a CAMD algorithm (step 3 above), a scoring function is required 
which is germane to the problem of interest.  Normally, this is a quantitative structure-
property relationship, or QSPR.   Basically, a QSPR is a mathematical expression which 
purports to describe a property of a molecule based on the molecule’s structure.  It was 
introduced in the 1960’s with the work of Hansch 6 and is still an active area of research 7 
with a rich history. 8 While molecular properties themselves or whole-molecule 
descriptors can be used as independent variables in a QSPR, a popular approach is to use 
independent variables based on sub-parts of the molecule.  For example, group-
contribution techniques decompose a molecule into smaller groups, or fragments, where 
each group provides some contribution to a predicted molecular property. 9 Such 
approaches are well highlighted in The Properties of Gases and Liquids. 10 Other 
techniques examine a 2-D graphical representation of a molecule where atoms are nodes 
and bonds are edges.  Here, an operator on some portion of the molecular graph plays the 
role of independent variable and many of these descriptors exist in the literature today. 11  
The Signature molecular descriptor belongs to this fragment-class of descriptors.   
 

3.2 CAMD Algorithm with the Signature Molecular Descriptor 
 
In the previous section, three general steps were listed in a CAMD algorithm.  For clarity, 
a workflow diagram for the use of the CAMD technique with the Signature molecular 
descriptor containing nine steps is provided in Figure 2.  Additionally, the importance of 
each step will be discussed and how the step is ultimately implemented. 
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Figure 2:  The computer-aided molecular design algorithm using the Signature 
molecular descriptor. 
 
 
Step 1:  Choose a database of N compounds 
 
For any CAMD problem solved with Signature, the first step is to identify a dataset of 
interest.  While the algorithm has proven successful for a small set (~ 15 compounds) 12, 
a larger set normally provides a more reliable QSPR to be used when scoring the 
compounds from the algorithm.  However, if a set is too large ( > 100), the diversity of 
atomic Signatures might cause the problem to become intractable with both time and 
storage constraints becoming active.  When that is the case, a reasonable strategy is to 
focus the original training set on those compounds with the most desired traits (re:  
desired property range).   
 
 
Step 2:  Generate 2-D structures 
 
The code to calculate the atomic Signatures (step 3) of a molecule requires the proper 
input format into the code.   The desired input format is that of an MDL MOL file.  Such 
a file format can be created on a variety of platforms from an initial drawing of the 
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molecule.  Alternatively, various sites, such as the NIST Webbook offer mol file format 
downloads for various substances.  Note that in all cases the stereochemistry of a 
molecule is lost in the 2-D representation. 
 
Step 3:  Calculate m height-h atomic Signatures for N compounds 
 
Once a Signature height is specified, the molecular Signature of each of the N 
compounds identified in Step 1 is calculated using an in-house translator program.  Most 
CAMD problems using Signature have been solved at either height-1 or height-2, which 
balances the limit on the number of unique atomic Signatures (overcoming time/storage 
issues) with specificity issues (if the height used is too large).  The unique atomic 
Signatures for the set are grouped and identified as the ‘atomic Signature database’.  It is 
at this step where the algorithm bifurcates.  The atomic Signature database is used as the 
independent variables in developing the QSPR (Step 3a) as well as in formulating the 
inverse design problem (Step 4). 
 
 
Step 3a: Construct QSPR model 
 
The solutions that are obtained from the inverse design algorithm need to be scored for 
fitness.  This is accomplished with a QSPR model.  The QSPR takes experimental data 
for a property of interest and regresses it against the occurrences of the atomic Signatures 
in the atomic Signature dabatase.   Here, the atomic Signatures act as independent 
variables while the experimental data are the dependent variables.  Note that models can 
be linear or non-linear, depending on application. 
 
 
Step 4:  Generate constraint equations for database 
 
The atomic Signatures in the atomic Signature database created in Step 3 are used to 
generate two types of constraint equations.  The first type, of which there is only one, is 
called a “graphicality” equation.  This equation is a necessary condition to create a 
connected graph from any set of atomic Signatures. 

 
  

 

where z is the maximum number of vertices of atoms in the dataset while ni is the degree 
of the root of atomic Signature i.  12. 
 
The second type of equations are known as the consistency equations.  These equations 
are hand-shaking requirements that are written for each bond type in the system.  
Basically, the atomic Signatures (rooted at C) which have, say, C single bonded to H 
must be matched with the atomic Signatures (rooted at H) which have H single bonded to 
C. 

(1) 
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The set of consistency and graphical equations together form the system constraint 
equations.  This system is underspecified in that it will have more variables (atomic 
Signatures) than equations.  Since all of the coefficients in the equations as well as the 
solutions are integers, these are Diophantine equations. 
 
Step 5:  Solve constraint equations with a brute-force solver 
 
The solution to the underspecified system of equations generated in Step 4 would yield an 
infinite solution space.  Accordingly, we limit the range that the independent variables 
can take based on their range in the original training set.  Thus, this minimum and 
maximum value (per atomic Signature) provides the additional constraints necessary to 
solve the system.  Previously this system was solved using a Diophantine equation solver 
13, but we have developed a smart brute-force technique which is both efficient and 
allows an estimate for time to completion. 
 
Basically, this smart brute-force technique looks to satisfy the constraint equations in a 
step-wise manner such that the iterations involving those variables which occur in the 
equations go from least to most iterations.  Note that if our technique was truly brute-
force, we would iterate over the min/max values for each of the atomic Signatures in our 
problem in a nested loop.  This smart technique, however, can cut the iterations required 
by more than half.  14 
 
 
Step 6:  Check solutions for original N compounds 
 
Since the N compounds form the constraint equations, those N compounds must be 
solutions to those constraints equations.  This is a “dummy” check to verify the output of 
step 5 and is important for debugging purposes. 
 
 
Step 7:  Keep solutions within desired range; apply heuristics 
 
The solutions which emerge from Step 5 (which could number in the billions) must be 
scored for fitness relative to a desired property value (or range of values).  Accordingly, 
the solutions are filtered through the QSPR output from Step 3a and those which have the 
desired fitness are kept.  It is also at this stage where various heuristics can be applied to 
focus the solution space based on expert knowledge or other means.  For example, a 
regular approach is to determine the number of rings in a molecule and remove from the 
solution space those molecules which have more or less rings than the original training 
set.  Additionally, molecular weight is often a factor in evaluating compounds for fitness 
and this can limit the solution space.  Finally, for drug-like molecules, a rule-of-thumb 
such as Lipinksi’s Rule of Fives can be used to remove all solutions which do not adhere 
to this heuristic. 15 
 
Step 8:  Construct compounds; filter 
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The molecular Signatures which emerge from Step 7 have been scored successful using 
the QSPR and have passed various other heuristics.  These are the molecular Signatures 
from which structure generation will occur.  There is a degeneracy associated with going 
from a molecular Signature to a 2-D structure.  At height-0 (just the molecular formula), 
the degeneracy is large, but monotonically decreases with Signature height until there is a 
unique 2-D structure associated with a particular molecular Signature (normally by 
height-3 or height-4). 16, 17 
 
Structure generation is performed using an algorithm developed by Faulon and co-
workers 17, which is based on an earlier isomer enumeration algorithm developed Faulon. 
2, 3 The algorithm is iterative, which requires starting with a molecular Signature of all 
atoms and no bonds, and then attempts to add bonds in all possible ways to match the 
target molecular Signature.    
 
Once the structures are generated, various filters can be employed to remove those 
candidate structures which have energetic issues and are not feasible.  For example, we 
remove those structures which have multiple bridges and aromatic rings that do not 
follow Huckel’s rule.  Also, we can perform an energy minimization using a force field to 
remove those high-energy structures.  Finally, synthetic accessibility can be assessed here 
as well. 
 
 
Step 9:  Focused Database 
 
The structures which have survived until this point become part of the focused database.  
These are the high-quality structures which are worthy of further investigation.  It is here 
where experiments run on a select number of compounds to verify the predictions of the 
algorithm would be employed.  Often, the results of the experimentation can be used to 
refine the QSPRs and the focused database itself. 
 
Though outside the scope of this report, it is noted that other CAMD algorithms exist. 
The first CAMD algorithm is a group-based generate and test approach developed by 
Gani and co-workers during the early 1980’s 1, 18, though it has been modified since that 
time and is still popular to this day 19  Here, predefined molecular fragments are 
identified, merged together and ultimately evaluated through a group-contribution 
approach.  A different CAMD approach treats molecular design as an optimization 
problem solved using a mixed-integer non-linear approach, popularized by the work of 
Maranas.  20, 21 The key feature of CAMD using the Signature molecular descriptor 22 is 
that, unlike the other methods, it does not require templating to arrive at molecular 
structures. Templating is when certain parts of the compounds being designed are 
specified a priori to reduce search complexity.  While templating increases the likelihood 
of finding solutions to the problem, its main drawback is that non-intuitive candidates are 
likely to be removed from consideration.   
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4 CAMD Applications 

4.1 Solvent Design 
 
In this section we apply the inverse-design methodology using the Signature molecular 
descriptor to the design of solvents. 14 

4.1.1 Motivation 
 
Researchers at GlaxoSmithKline (GSK) have developed a solvent selection guide 23, 24 
which provided information on 47 commonly used solvents.  The guide provides the 
individual the opportunity to aid in solvent selection during the early stages of process 
development by considering aspects different than cost.  Those included: incineration, 
recycle, biotreatment, volatile organic carbon, environmental impact in water, 
environmental impact in air, health hazard, exposure potential, and safety hazard. 23  
Important properties were evaluated for each of those categories and, overall, a solvent 
was given a score of 1 to 10 for each category, with the higher the score, the more 
favorably it should viewed for that category.  A simplification was made to group the 
nine categories into four:  environmental waste (incineration, recycle, biotreatment, 
volatile organic carbon), environmental impact (environmental impact in water, 
environmental impact in air), health (health hazard and exposure potential) and safety 
hazard.  Later, a fifth area was added 24 called life cycle assessment (LCA) that 
incorporates impacts of manufacturing, recycling, and disposal during the duration of a 
solvent.  The scores for the 47 solvents are provided in Table 1 with a numerical 
component (1 to 10) and color code (green, yellow, or red) as reported by Jiménez-
González et al. 24 Those solvents with a green rating had scores ranging from 8 to 10, a 
yellow rating was given for scores from 4 to 7, and a red rating was reserved for solvents 
with scores of 3 or less.   
 
In this application of the CAMD algorithm with the Signature molecular descriptor we 
identify potentially new environmentally friendly solvents as a supplement to GSK’s 
solvent selection guide.   We generate QSPRs using Signature to rank the inverse 
solutions against the known compounds for environmental waste, environmental impact, 
health, safety, and LCA.  We then solve the inverse design problem, score them with the 
QSPRs, apply various filters and, ultimately, generate the structures.  In short, we apply 
the algorithm given in Figure 2 to this problem. 
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Table 1:  Data from GSK’s solvent selection guide. 24  Reprinted from “Computer-aided 
molecular design using the Signature molecular descriptor:  Application to solvent selection. Weis and Visco. in 
press, with permission from Elsevier”    
 

SSG Class Solvent CAS # 
Env.  

Waste 
Env.  

Impact Health Safety 
LCA 

Ranking 
Alcohols Ethylene Glycol 107-21-1 4 9 8 9 9 

  1-Butanol 71-36-3 5 8 8 8 5 
  Diethylene Glycol Butyl Ether 112-34-5 5 7 10 9 7 
  Isoamyl Alcohol 123-51-3  7 7 7 8 6 
  2-Ethylhexanol 104-76-7 9 6 8 7 6 
  2-Butanol 78-92-2 4 7 7 7 6 
  1-Propanol 71-23-8 3 7 5 8 7 
  Ethanol 64-17-5 3 8 10 7 9 
  2-Propanol 67-63-0 3 9 9 7 5 
  t-Butanol 75-65-0 3 10 7 7 8 
  Methanol 67-56-1 3 10 5 8 9 

Esters t-Butyl Acetate 540-88-5  7 10 7 7 7 
  Butyl Acetate 123-86-4 7 8 9 8 5 
  n-Propyl Acetate 109-60-4 6 7 8 7 5 
  Isopropyl Acetate 108-21-4 5 8 8 7 6 
  Ethyl Acetate 141-78-6 4 8 8 4 6 
  Methyl Acetate 79-20-9 2 10 7 5 7 
  Dimethyl Carbonate 616-38-6 3 7 8 7 8 

Aromatics p-Xylene 106-42-3 8 2 7 5 7 
  Toluene 108-88-3 7 3 6 4 7 
  Fluorobenzene 462-06-6 4 2 4 5 1 

Ketones Methyl Isobutyl Ketone 108-10-1 7 6 6 7 2 
  Acetone 67-64-1 2 9 8 5 3 
  Methyl Ethyl Ketone 78-93-3 3 6 8 5 3 

Polar  N-Methyl-2-Pyrrolidone 872-50-4 4 6 8 9 3 
 Aprotics Dimethyl Acetamide 127-19-5 4 7 2 10 3 

  Dimethyl Formamide 68-12-2 4 6 2 8 6 
  Dimethylpropylene Urea 7226-23-5 4 7 5 9 4 
  Dimethylsulphoxide 67-68-5 4 4 8 3 6 
  Formamide 75-12-7 3 7 2 10 8 
  Acetonitrile 75-05-8 2 6 6 8 4 

Acids Propionic Acid 79-09-4 5 8 4 9 7 
  Acetic Acid 64-19-7 3 8 4 8 8 

Alkanes Cyclohexane 110-82-7 5 6 8 2 7 
  Methyl Cyclohexane 108-87-2 7 5 8 2 7 
  Heptane 142-82-5 6 3 9 1 7 
  2-Methylpentane 107-83-5 5 3 5 1 7 
  Hexane 110-54-3 5 2 4 1 7 

Chlorinated Dichloromethane 75-09-2 2 5 3 10 7 
Ethers Methyl Tert-Butyl Ether 1634-04-4 4 4 6 2 8 

  1-2-Dimethoxyethane 110-71-4 3 5 3 2 7 
  Tetrahydrofuran 109-99-9 2 6 7 2 5 
  Bis(2-methoxyethyl) Ether 111-96-6 6 5 1 3 6 
  Diisopropyl Ether 108-20-3 5 2 9 1 9 

Basics Triethylamine 121-44-8 4 5 2 4 7 
  Pyridine 110-86-1 3 4 3 6 2 
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4.1.2 Results 
 
Referencing Step 1 from Figure 2, we have identified 46 compounds from Table 1 (note:  
a mixture of petroleum ether was one of the compounds in the GSK solvent selection 
guide, but this was removed because working with mixtures using Signature is a future 
challenge). For Step 2, the 2D structures have been drawn in MOL file format and 
translated (Step 3) from a MOL file format to Signature. This resulted in the 36 unique 
height 1 atomic Signatures which form the atomic Signature database, shown in Table 2. 
 

Table 2:  Unique height 1 atomic Signatures collected from GSK’s solvent 
selection guide.  Reprinted from “Computer-aided molecular design using the Signature 
molecular descriptor:  Application to solvent selection. Weis and Visco. in press, with permission from 
Elsevier”    

 
x1 [C]([C][C]=[O])  x19 [C]([O][O]=[O]) 
x2 [C]([C][C][C][H])  x20 [C](p[C][H]p[N]) 
x3 [C]([C][C][C][O])  x21 [C](p[C]p[C][F]) 
x4 [C]([C][C][H][H])  x22 [C](p[C]p[C][H]) 
x5 [C]([C][C][H][O])  x23 [Cl]([C]) 
x6 [C]([C][H][H][H])  x24 [F]([C]) 
x7 [C]([C][H][H][N])  x25 [H]([C]) 
x8 [C]([C][H][H][O])  x26 [H]([N]) 
x9 [C]([C][N]=[O])  x27 [H]([O]) 
x10 [C]([C][O]=[O])  x28 [N]([C][C][C]) 
x11 [C]([C]p[C]p[C])  x29 [N]([C][H][H]) 
x12 [C]([C]t[N])  x30 [N](p[C]p[C]) 
x13 [C]([Cl][Cl][H][H])  x31 [N](t[C]) 
x14 [C]([H][H][H][N])  x32 [O](=[C]) 
x15 [C]([H][H][H][O])  x33 [O](=[S]) 
x16 [C]([H][H][H][S])  x34 [O]([C][C]) 
x17 [C]([H][N]=[O])  x35 [O]([C][H]) 
x18 [C]([N][N]=[O])  x36 [S]([C][C]=[O]) 

 

Step 3a requires the creation of the QSPRs to ultimately score the inverse design 
solutions.  Preliminary calculations indicated that a simple multiple linear regression 
would not be adequate to produce useful QSPRs for all of the five areas desired so a non-
linear approach was used.  Accordingly, the independent variables available for use in the 
QSPRs included both the height-1 atomic Signatures (36 of them) and the products with 
themselves (another 36).   Pair-pair correlation coefficients were found for each of the 72 
pairs and those perfectly correlated were removed from consideration during regression. 
Accordingly, only 33 of the 72 independent variables remained.   
 
Model selection was based on evaluating both the R2 and q2 as a function of the number 
of independent variables included at each step during the regression.  Note that q2 is a 
leave-one-out cross-validation metric used to evaluate a model for overfitting. 25 



20

Figure 3 provides the QSPR for environmental impact.  A balance is made between 
keeping the most number of independent variables in the model with creating the most 
predictive model.  Accordingly, we choose a model with nine independent variables as 
this is before the q2 value starts to decrease rapidly.  We used this strategy for the other 
QSPRs and the statistics for these QSPRs, including the regression coefficients, are 
provided in Table 3 and 4. 
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Figure 3:  The environmental impact QSPR statistics are plotted as a function of 
the number of independent variables. Reprinted from “Computer-aided molecular design using the 
Signature molecular descriptor:  Application to solvent selection. Weis and Visco. in press, with permission from 
Elsevier”    



 21 

Table 3:  Statistics for the height 1 Signature QSPRs. Reprinted from “Computer-aided 
molecular design using the Signature molecular descriptor:  Application to solvent selection. Weis and Visco. in 

press, with permission from Elsevier”    

QSPR 
Number of 
Descriptors R2 q2 

Env. Waste 7 0.80 0.71 
Env. Impact 9 0.77 0.63 

Health 13 0.69 0.42 
Safety 7 0.71 0.57 
LCA 11 0.71 0.23 
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Table 4:  Coefficients for the non-linear height 1 QSPRs.  Reprinted from 
“Computer-aided molecular design using the Signature molecular descriptor:  Application to solvent 

selection. Weis and Visco. in press, with permission from Elsevier” 
 QSPR Coefficients 

H1 Signature 
Env. 

Waste 
Env. 

Impact Health Safety LCA 
[C]([C][C]=[O])         -3.5339 
[C]([C][C][C][O])         0.8738 
[C]([C][C][H][H])     0.5101     
[C]([C][C][H][O])           
[C]([C][H][H][H])           
[C]([C][H][H][N])     4.5036   0.8395 
[C]([C][H][H][O])   0.4889 -1.0038   -0.2617 
[C]([C][N]=[O])         -1.7152 
[C]([C]p[C]p[C]) 1.6140   1.2525   2.8553 
[C]([H][H][H][N])           
[C]([H][H][H][O])         0.7632 
[C]([H][N]=[O])         1.7519 
[C](p[C]p[C][H])   -0.5028     -0.9137 
[H]([C]) 0.2770     -0.8248   
[N]([C][C][C])       1.4887 -1.9051 
[O]([C][C])     6.3387     
[O]([C][H])   2.0972 2.6083 2.8217 1.0136 
[C]([C][C]=[O])2     2.4142     
[C]([C][C][C][H])2 2.0404         
[C]([C][C][C][O])2   2.3892       
[C]([C][C][H][H])2   0.0509   -0.0634   
[C]([C][C][H][O])2           
[C]([C][H][H][H])2           
[C]([C][H][H][N])2   0.2575 -1.7928     
[C]([C][H][H][O])2           
[C]([C][N]=[O])2       2.3572   
[C]([C][O]=[O])2 1.4681 0.8254 -1.7420     
[C]([C]p[C]p[C])2           
[C]([H][H][H][N])2     -0.4470     
[C]([H][H][H][O])2     -1.3540     
[C]([H][N]=[O])2 1.3884   -1.6851     
[C](p[C]p[C][H])2 0.0730         
[H]([C])2   -0.0127   0.0359   
[N]([C][C][C])2           
[O](=[C])2   1.9401   2.2262   
[O]([C][C])2     -1.4367     
[O]([C][H])2 0.4729         
Constant 1.0038 5.5531 4.5791 8.0693 6.2006 
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In Step 4 of the CAMD algorithm with Signature (Figure 2), 15 constraint equations were 
generated from the 36 height 1 atomic Signatures in Table 2.  In Step 5, these equations 
were solved using the brute-force solver (including the min/max values for the 
occurrence numbers of the original 46 compounds) resulting in a total of 4,031,916 
solutions.  This took 62.572 s of CPU time on a Pentium 4 Xeon, 2.8 GHz processor.  
Step 6 verified that the original 46 compounds were found among the 4 million solutions. 
 
Step 7 of the algorithm scores the solutions using the QSPRs developed in Step 3a and 
applies various heuristics.  Before scoring, we reduced the solution space by 98 % by 
only including those solutions which resulted in a molecular weight smaller than the 
largest molecular weight in the original set of 46, which was 162.  This left nearly 
100,000 solutions.  An additional cycle filter was used where only solutions having the 
same range of cycles as in the original set of 46 (zero and 1 cycle) were kept.  Of the 
nearly 100,000 solutions, 64,955 solutions satisfied this criterion.  Finally, these 65,000 
solutions were scored using the five QSPRs developed in Step 3a.  Those solutions which 
did not any have “red” value predictions (greater than or equal to 4) were kept and there 
were 40,816 solutions which passed this stage. 
 
Step 8 employs the structure generation step with additional filters.  From the 40,816 
solutions, 69,033 structures were obtained.  Next, the Marvin Beans 26 software package 
was used to perform 3D coordinate calculation by optimization with the Dreiding force 
field.  Those with energies less than 50 kcal/mol (which was the maximum value in the 
original set of 46 compounds) were kept resulting in 40,660 structures.  Note that all of 
the steps in the algorithm are provided pictorially in Figure 4. 
 
 
 



24

 

Figure 4:  A flow chart for the overall inverse design process using the Signature 
molecular descriptor.  Reprinted from “Computer-aided molecular design using the Signature molecular 
descriptor:  Application to solvent selection. Weis and Visco. in press, with permission from Elsevier”    

To best display the results of Step 9 (the focused database), compounds were resorted (if 
possible) into the original classes identified in the GSK solvent selection guide.   Some 
samples from the different classes in the focused database are provided in Table 5, 
including the QSPR predictions and corresponding CAS numbers where available. A 
distribution of the structures obtained is given in the lower right-hand corner of Figure 4, 
however there were no alkanes or ketones obtained.  It was only possible to place 1,743 
of the 40,660 structures into the classes defined in GSK’s solvent selection guide with the 
left over solutions termed a “hybrid” class. 
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Table 5:  Focused database samples from classes defined in GSK’s solvent 
selection guide.  Reprinted from “Computer-aided molecular design using the Signature molecular 
descriptor:  Application to solvent selection. Weis and Visco. in press, with permission from Elsevier”    
 

  QSPR Predictions  
Class Structure Env. 

Waste 
Env. 

Impact Health Safety LCA 
 

CAS # 

 

8.26 10.80 8.79 8.99 8.84  
24893-35-4 

Alcohol 

 

8.26 8.38 11.33 8.41 8.23  
860379-09-5 

 

8.39 8.42 8.76 5.53 7.07  
1636-45-9 

Ester 

 

8.39 7.10 8.94 4.20 6.96 4630-82-4 

 
8.03 9.08 6.47 8.14 7.21 88-09-5 

Acid 

 
8.59 10.10 8.51 6.18 7.21  

5292-21-7 

 

9.14 4.90 5.24 8.08 7.73 NA 

Polar 
Aprotic 

 

5.54 6.51 5.09 8.07 4.49  
541-46-8 

 
4.57 4.35 8.54 4.41 8.07 3731-53-1 

Base 

 
6.64 4.49 6.48 4.84 5.97 45470-22-2 

 

5.44 5.23 8.99 4.00 6.81  
919-94-8 

Ether 

 

5.44 4.69 6.09 4.06 8.60 74421-00-4 
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Since the hybrids represented structures outside of any of the classes, we kept those with 
at least three green QSPR predictions and this reduced the 38,895 hybrid structures down 
to 3,213, which is a more manageable number. Some hybrid structure examples are 
provided in Table 6.  Note that the first compound in Table 6, identified as a hybrid 
solvent, is ethyl acetate, a known solvent.  27   Also, isoamyl lactate, the fourth compound 
given in Table 6, was patented by the Archer-Daniel-Midland Company 28 as a green 
solvent. Such findings give added confidence in the other design results presented for this 
study. 
 
Table 6:  Samples of hybrid structures from the focused database.  Reprinted from 
“Computer-aided molecular design using the Signature molecular descriptor:  Application to solvent selection. 
Weis and Visco. in press, with permission from Elsevier”    

  QSPR Predictions  
Class Structure Env. 

Waste 
Env. 

Impact Health Safety LCA 
 

CAS # 

 

5.44 9.88 9.34 8.60 6.95      97-64-3 

 

7.15 11.57 12.23 11.38 4.43  
NA 

 

5.44 9.59 11.37 8.35 7.21  
NA 

 

9.14 8.10 9.85 8.76 6.95  
19329-89-6 

 

5.47 12.31 8.05 13.21 8.23 50-21-5 

 

9.51 7.90 10.29 9.41 9.76  
589-29-7 

 

8.62 12.16 9.58 11.07 8.23  
81887-89-0 

 

8.26 9.43 10.84 8.92 8.21 160319-70-0 

Hybrid 

 

9.17 14.66 11.46 11.22 8.58 NA 
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4.2 Design of Glucocorticoid Receptor Ligands 
 
In this section we apply the inverse-design methodology using the Signature molecular 
descriptor in order to design glucocorticoid receptor ligands.  5 

4.2.1 Motivation 
 
We seek here to design corticosteroids as treatment for asthma and other diseases 
associated with pulmonary inflammation.  To provide potential therapeutic options owing 
to the many side effects of other treatments, 29 we aim to identify a potential set of novel 
glucocorticoid receptor ligands that possess high receptor binding affinity, high systemic 
clearance, high plasma protein binding, and low oral bioavailability.  A drug having these 
properties would indicate an ability to remain in the lungs and, if exposed to the main 
circulation, be quickly removed to limit side effects.  
 
Traditional drug design approaches in this arena have been performed in the traditional 
manner where substitutent groups are modified off a template structure.  These have 
yielded novel glucocorticoids such as loteprednol etabonate (developed under a retro-
metabolic approach) 30 and fluticasone propionate (developed with structure-activity 
analysis) 31.  Both glucocorticoids possess an enhanced therapeutic index compared to 
previous steroids.   
 
Here we use CAMD with the Signature molecular descriptor to generate and evaluate 
many potential structures and identify a focused group of high priority candidates.  This 
focused database will be scored such that each candidate is predicted to possess 
pharmacological properties that indicate the likeliness of the drug to remain in the lungs 
and be quickly removed or inactivated in the main circulation.  Note that some desired 
pharmacokinetic and pharmacodynamic properties have already been identified to guide 
future GR ligand development. 32-36  These properties are important in identifying 
pulmonary selectivity, such as binding affinity, oral bioavailability, systemic clearance 
and plasma protein binding. 
 
Oral bioavailability is a measure of the percentage of a drug that is available to the target 
via an oral route. 37  This is significant since a portion of inhaled treatments become 
deposited in the mouth and could be active if ingested.  As some corticosteroids such as 
fluticasone propionate already possess virtually negligible oral bioavailabilities 32 future 
treatments should match this achievement.   
 
Systemic clearance is a measure of how quickly the drug is transported to the liver for 
deactivation. Currently, the corticosteroid with the highest systemic clearance is 
beclomethasone dipropionate at 150 L/h 34 and this provides a basis during drug design. 
 
Plasma protein binding (or fraction unbound) is a measure of the relative amount of 
bound corticosteroid in the blood.  36 When a drug is bound to the protein, it is then 
unavailable to affect other pathways during its transport to the liver.  As many steroids, 



 28 

including corticosteroids, already bind well to plasma proteins (some over 98 %) 37 it is 
important to ensure this characteristic is conserved in any novel structures. 
 
In the next section, we describe the use of CAMD with the Signature molecular 
descriptor in the generation of glucocorticoid receptor ligands with optimally predicted 
properties.  As in the previous example, we follow Figure 2. 

4.2.2 Results 
 
To begin Step 1 of the algorithm, a literature search was conducted to collect a sizable 
and diverse set of experimentally studied corticosteroids.  We identified 65 
corticosteroids for which relative receptor binding affinity was available,  33-39 though 
data for system clearance, plasma protein binding and oral bioavailability were not found 
for all 65 compounds. Note that the literature reported slightly different experimental 
values for several compounds so averaged values were used.  These 65 compounds and 
the experimental values for the four properties of interest are provided in Table 7. 
 
 Table 7:  Training Set Compounds and Activity Data. Reprinted from “Potential 
Glucocorticoid Receptor Ligands with Pulmonary Selectivity using I-QSAR with the Signature Molecular 
Descriptor, Jackson, Weis and Visco. 72:  540 – 550, 2008, with permission from John Wiley and Sons”    

 

Corticosteroid 

Relative 
Receptor 

Binding Affinity 

Oral 
Bioavailability 

(%) 

Systemic 
Clearance 

(L/hr) 

Fraction 
Unbound 

(%) Reference 

beclomethasone 
dipropionate 

53 22 150 13 33-37 

beclomethasone 
monopropionate 

1345 26 120 36 33-36 

budesonide 935 11 84 12 33-37, 39 

dexamethasone 100 78 17 32 37-39 

flunisolide 185 20 58 20 33, 34, 36, 37, 39 

fluocortolone 65 84 32 13 39 

fluticasone propionate 1800 1 69 10 33-37, 39 

loteprednol etabonate 150 1 63 10 33, 36-38 

methylprednisolone 42 9 21 23 39 

mometasone furoate 2500 1 54 1 33, 36, 37 

prednisolone 16 82 6 25 39 

triamcinolone acetonide 234 23 37 29 33, 34, 36, 37, 39 

beclomethasone 100    36, 38 

etiprednol dicloacetate 200    33, 38 

LE5601 150    38 

LE5602 110    38 

LE5603 70    38 

LE5606 3    38 

LE5608 1    38 

LE5610 200    38 

LE5614 1    38 
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LE5618 16    38 

LE5621 1    38 

LE5623 10    38 

LE5638 500    38 

LE5639 780    38 

LE5643 80    38 

LE5644 210    38 

LE5648 1165    38 

LE5649 3    38 

LE5651 1    38 

LE5654 10    38 

LE5657 11    38 

LE5658 840    38 

LE5660 16    38 

LE5671 820    38 

LE5673 2100    38 

LE5679 1    38 

LE5683 19    38 

LE5685 1    38 

LE5687 7    38 

LE5689 1100    38 

LE5690 1000    38 

LE5693 990    38 

LE5698 1000    38 

LE5699 820    38 

LE5704 1200    38 

LE5707 990    38 

LE5711 200    38 

LE5712 70    38 

LE5715 3    38 

LE5718 1    38 

LE5720 10    38 

LE5721 25    38 

LE5725 10    38 

LE5726 315    38 

LEGH01 3    38 

LEGH02 29    38 

LEGH03 132    38 

LEGH04 124    38 

LEGH05 54    38 

LEGH06 6    38 

LEGH07 10    38 

LEGH08 9    38 

LEGH09 2    38 
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Next, the structures were drawn (Step 2) and the molecular Signatures of each of the 65 
compounds were obtained (Step 3).  Note that we selected to solve this system using 
height-2 Signatures in order to limit the solution space owing to the diversity of the 
original set of 65 compounds.  A total of 161 unique height-2 atomic Signatures were 
obtained for the 65 compounds.  
 
Step 3a requires the regression of the experimental data to determine the four QSPRs for 
use as scoring functions in the CAMD algorithm.  This was performed using a multiple 
linear regression technique and the results of the QSPRs are provided in Table 8 along 
with the coefficients for the QSPRs. 
 

Table 8:  Regression coefficients and statistics for the QSPRs.  Reprinted from “Potential 
Glucocorticoid Receptor Ligands with Pulmonary Selectivity using I-QSAR with the Signature Molecular 
Descriptor, Jackson, Weis and Visco. 72:  540 – 550, 2008, with permission from John Wiley and Sons”    
 

 
Relative Receptor 
Binding Affinity 

QSPR 

Oral 
Bioavailability 

QSPR 

Plasma 
Protein 
Binding 
QSPR 

Systemic 
Clearance 

QSPR 

r2 0.806 0.959 0.958 0.983 

Regression constant 2.2648 0.0000 0.8891 0.4474 

Atomic Signature (xn)  QSPR Coefficients 

[C](=[C]([C][H])[C]([C][C][H])[C]([C][C][C]))  -0.8320    

[C]([C](=[C][H])[C]([C]=[C])[C]([H][H][H])[C]([C][C][Cl]))     0.5545 

[C]([C](=[C][H])[C]([C]=[C])[C]([H][H][H])[C]([C][C][H]))   -0.1551  

[C]([C]([C]=[O])[C]([C][H][O])[C]([C][C][C])[O]([C]))  -0.5516    

[C]([C]([C]=[O])[Cl][H][H])   -1.1515  

[C]([C]([C]=[O])[H][H][O]([C]))  1.3424    

[C]([C]([C]=[O])[H][H][O]([H]))  1.7863    

[C]([C]([C][H][H])=[O][O]([C]))     -0.2896 

[C]([C]([C][H][H])[C]([C][C][H])[C]([C][C][H])[H]) -0.5482     

[C]([C]([C][H][H])[C]([C][C][H])[H][H]) -0.4162     

[C]([C]([C][H][H])[H][H][H]) 0.6539     

[C]([C]([C][H][H])[H][O]([C])[O]([C]))     0.6662 

[C]([C]([Cl][Cl][H])=[O][O]([C])) 2.5648     

[C]([C]([Cl][H][O])[H][H][H]) -1.2650     

[C]([C]([O]=[O])[C]([C][C][H])[C]([C][C][C])[O]([H])) -1.4060     

[H]([C]([C][C][C]))     0.1236 

[H]([C]([C][C][O])) 0.4927     

[H]([C]([C][H][H]))     0.1543 

[H]([O]([C]))   0.2192 -0.0302 

[O](=[C]([C][C]))     -0.4442 

[O]([C]([C]=[O])[C]([C][H][H])) -1.6406     

[O]([C]([C]=[O])[C]([H][H][H])) -1.5134     

[O]([C]([C]=[O])[C]([H][H][O])) -1.8695     

[O]([C]([O]=[O])[C]([O]=[O])) -1.3768     
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Once the atomic Signature database has been obtained, Step 4 is to generate the 
constraint equations associated with these atomic Signatures.  Using in-house PERL 
scripts, a total of 104 equations were generated from the 161 unique height-2 atomic 
Signatures.  Step 5, the solving of these 104 underspecified equations, was accomplished 
using the brute-force solver with the min/max constraints on the occurrence values for 
each of the 161 atomic Signatures in the database. 
 
While solving such a large set of equations, storage of the solutions became an issue.  To 
this end, a cycle filter was written into the brute-force solver for this application.  Despite 
the fact that one (of the 65) compounds had six cycles, we kept only those solutions with 
had five cycles or less.  Upon solution, 308,930,136 molecular Signatures were found 
which satisfied the cycle constraint as well as the 104 constraint equations.   Note that, as 
required from Step 6, sixty-four of the molecular Signatures found were from the original 
set of 65 (the one that was not found was the one with the seven cycles). 
 
Step 7 involves scoring the 300+ million solutions using the four QSPRs.  The first 
scoring function used was for the relative receptor binding affinity (RRBA).  This was 
used first since this QSPR contained the most dependent variables (65) in the creation of 
the model.  Do note that the model was generated on logarithmic values of the dependent 
variable as it spans several orders of magnitude). As the original set of 65 ranged (on a 
log scale) from 0 to 3.4 in this property, we selected to keep predicted solutions (from the 
300+ million) that ranged from 3 – 5 for log (RRBA).  The lower limit, while arbitrary, 
accommodates some error in the predicted values.  For the upper limit, it was deemed 
that any values greater than 5 were too great of an extrapolation from where the 
regression parameters of the model were trained.  Once this QSPR was used to identify 
those solutions which ranged between 3 – 5 for log (RRBA), 105,637,556 solutions were 
kept. 
 
The QSPR for oral bioavailability was used next.  This QSPR was trained on the first 12 
compounds in Table 8 as these were the only ones where experimental data were 
available.  As there exists several corticosteroids that provide oral bioavailabilities of less 
than 1%, we used this as the cut off value.  Thus, of the 105+ million compounds 
screened, 61,556,852 solutions were left which have a predicted oral bioavailability of 
less than 1%. 
 
As in the previous QSPR, the model developed for systemic clearance was based on the 
first 12 compounds in Table 8.  Since the largest systemic clearance in the training set 
was 150 l/h, we kept all solutions which had a predicted systemic clearance greater than 
this value, but less than 224 l/h.  Note that, owing to the range of data available, we used 
the logarithm of the systemic clearance as the dependent variable.  Of the 61+ million 
compounds screened using this QSPR, 43,357,092 solutions had predicted systemic 
clearances between 150 l/h and 224 l/h. 
 
The final QSPR used was for plasma protein binding.  Once again, the first 12 
compounds in Table 8 were used to create the model. Solutions were removed if the 
predicted fraction unbound was greater than 1% as this was the maximum value among 
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the 12 compounds.  Of the 43+ million compounds evaluated, only 9,899,008 solutions 
were predicted to meet or exceed this requirement.  
 
In addition to the QSPRs to score the solutions, we employed a heuristic known as 
Lipinski’s Rule of Five 15 for inhaled pharmaceuticals.  40 This expert knowledge 
evaluates molecular weight, lipophilicity, hydrogen bond donors and acceptors relative to 
known inhaled pharmaceuticals.  Table 9 provides the ranges for these parameters.  Note 
that the upper and lower bounds for molecular weight and Log P in Table 9 were 
modified to include the upper and lower bounds of the compounds from the original 65.  
Of the nearly 10 million compounds evaluated with this rule, only 422 satisfied all four 
properties, and those were the solutions which moved to Step 8 (structure generation). 
 
 

Table 9:  Modified Rule of Five Parameters.  Reprinted from 
“Potential Glucocorticoid Receptor Ligands with Pulmonary Selectivity using I-

QSAR with the Signature Molecular Descriptor, Jackson, Weis and Visco. 72:  540 
– 550, 2008, with permission from John Wiley and Sons”    

 
Physicochemical Property   
 Lower Bound Upper Bound 

Log Po/w -1.0 4.44 

Molecular Weight (Da) 346 540 

Hydrogen Bond Donor 2 6 

Hydrogen Bond Acceptor 4 11 

 
All 422 molecular Signatures were subject to structure generation as well as the Dreiding 
energy filter.  As the maximum intramolecular energy in the set of the original 65 was 
176.3 kcal/mol, this value was used as the filter.  From the structures created from the 
422 molecular Signatures, only 84 had an intramolecular energy less than 176.3 kcal/mol.  
These 84 structures represent the focused database (Step 9) and a sampling of these are 
provided in Table 10.  Note that all of the structures in Table 10 have the same predicted 
values for oral bioavailability (1 %), plasma protein binding (99.1 %) and systemic 
clearance (475 l/h) as the QSPRs have removed those which did not meet the previously 
described rubrics.  However, the RRBA is not the same and that value is provided in 
Table 10 as well. 
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Table 10:  Selected candidates in the focused database and their predicted RRBA.  
Reprinted from “Potential Glucocorticoid Receptor Ligands with Pulmonary Selectivity using I-QSAR with the 
Signature Molecular Descriptor, Jackson, Weis and Visco. 72:  540 – 550, 2008, with permission from John Wiley 
and Sons”    

 

Compound  
Predicted 

RRBA 

34-3 

 

1179.45 

35-11 

 

1179.45 

35-54 

 

1179.45 

38-1 

 

8017.92 

165-4 

 

3075.18 
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165-6 

 

3075.18 

167-4 

 

3075.18 

285-4 

 

1179.45 

290-1 

 

8017.92 

303-4 

 

1179.45 
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Note that the compounds in Table 10 (and the focused database, in general) are not 
steroidal in nature.   As in previous studies, this is the benefit of the CAMD technique 
with Signature:  the identification of novel/non-intuitive structures.  Providing some 
support to the identification of non-intuitive structures is the fact that other research has 
been conducted confirming the results of non-steroidal corticosteroids in binding to the 
glucocorticoid receptor.  For example, a series of C-10 substituted 5-allyl-2,5-dihydro-
2,2,4-trimethyl-1H-(1)benzopyrano[3,4-f]quinolines  41, 42 as well as a set of arylpyrazole 
compounds with varying substitutions 43 has been reported.   As an additional, 
quantitative measure of the diversity of the focused database of the 84 candidates relative 
to the original 65 compounds, we have calculated the Tanimoto coefficient between these 
two sets.  The Tanimoto coefficient measures structural similarity with a value of “1” 
being perfectly similar while “0” means perfectly dissimilar.    None of the 84 candidates 
had a maximum Tanimoto coefficient above 70% with any training set compound and, in 
fact, the average Tanimoto coefficient for each of the 84 compounds with the training set 
compounds was never above 50 %. 
  

5 High-Throughput Screening using Signature 
 
In this next work, we demonstrate the use of Signature to classify a bio-assay between 
active and non-active compounds as well as use the classifier to screen a large database 
for predictive activity.  44 
 

5.1 Introduction 
 

High-throughput screening (HTS) is common technique in drug discovery where large 
libraries of compounds are screened against a particular target.  While primarily a 
commercial venture, the Molecular Libraries Initiative (MLI) 45, part of the NIH 
Roadmap for Medical Research 46, looked to increase the use of small molecules in basic 
research.  A network of academic research centers around the country belong to the 
Molecular Libraries Screening Center Network (MLSCN) 47 which submit the results of 
their HTS assays into a publicly available archive called PubChem, which is comprised 
of three databases: PCSubstance, PCCompound and PCBioAssay 48.   
 
In this work, we look to use a supervised machine-learning technique called support-
vector machine (SVM) to classifiy a bio-assay available in PubChem and then screen the 
rest of the PubChem compounds for activity.  In our work the input vectors used in the 
SVM are atomic Signatures.  Note that Signature has previously been used with a SVM 
to predict both protein-protein 49 and drug-target 50 interactions.  Note that the number of 
descriptors (referred to as features when used in statistical learning methods) compared to 
the number of observations is an important consideration to avoid overfitting.   
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As a proof-of-concept, we have selected AID 846 51which is a confirmatory screen of 
compounds against Factor X1a, a protein involved in the blood coagulation pathway.  It 
is a potentially useful therapeutic target because it has the potential for development of 
novel antithrombotic drugs to replace conventional ones like heparin and warfarin. 52  We 
classify these compounds as either active or inactive using our SVM using Signature and 
then screen approximately 12 million compounds from PubChem for predicted activity.  
We also develop metrics and perform docking studies to provide confidence in a 
“focused database” of compounds predicted to be active against Factor X1a, but have not 
yet been verified experimentally. 
 

5.2 Methods 

5.2.1 Support Vector Machines 
 

Support vector machines are classifiers that use an optimal separating hyperplane.  If one 
assumes data are presented as pairs , then this means that data belongs 
to only two classes with labels +1 or -1.  For this work, +1 refers to active compounds 
against Factor X1a, and -1 represents inactive compounds.  Using the pair notation, 
SVMs are given in the form 
 

      (2) 
 
where f: is a decision function for classification.  If f(x) is greater than some 
threshold t, then x belongs to the class +1, if not x belongs to the class -1.  The constants 

 and are acquired by solving the quadratic programming problem.  The constant  
is zero for all observations except the important borderline cases, which are known as the 
support vectors.  A kernel function is a dot product in some vector space 
that can efficiently transform input data.  Here, we use the Signature kernel provided in 
equation 3 which was first introduced by Martin and co-workers.  49 
 

                   (3) 
 
The vector space will be made of all unique atomic signatures from heights 0, 1 and 2.  
The SVMs in this work were generated by the SVMlight algorithm 53.   
 
Ideally, the well-trained SVM would perfectly classify the data.  The user defined cost 
parameter C controls the tradeoff between allowing for some misclassification and the 
margin of the optimal separating hyperplane.  For this problem, we evaluated cost 
parameters that ranged several orders of magnitude using a search strategy following an 
approach used elsewhere 54 and set a value of the cost parameter equal to 1.0 
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 5.2.2 Feature Selection 
 

Though SVM is not as susceptible to overfitting compared to other machine learning 
methods, 55 selecting the subset of the most relevant atomic Signatures is necessary to 
increase predictive capability.  This approach, called feature selection, is broadly divided 
into two categories:  filter methods and wrapper methods.  Filter methods rank individual 
features by a defined metric completely independent from SVM, while wrapper methods 
select features to add to the model by working with the SVM during training/testing steps 
in order to optimize some objective function. 
 

Filter methods are more computationally efficient than wrapper methods, but these 
methods treat each feature separately.  The goal of a filter method is to select the features 
that discriminate the most between two classes.  The coefficient  is an a filtering 
metric defined by Golub as 
 

     (4) 
 
where µi and σi are the mean and standard deviation for features in the (+) or (-) class, 
respectively. 56  When  has a large, positive magnitude, it signifies a relationship to the 
(+) class, while large negative values correspond to the (-) class.   
 
Alternatively, wrapper methods use an iterative approach to enhance SVM performance.  
In our work, we first group the atomic Signatures into K mutually exclusive clusters 
based on the Pearson correlation coefficient using Clusteran. 57  Features are randomly 
assigned to one of the K clusters and then iteratively compared to other clusters and 
moved, if necessary, to group the best correlated features.  This iteration continues until a 
stable division of the specified number of K clusters is achieved.  Initially all K clusters 
are included for SVM training and then each cluster is sequentially dropped. The 
remaining clusters are then used for SVM training where accuracy is assessed by 10-fold 
cross-validation.  The cluster that provided the highest accuracy when dropped was 
permanently removed from consideration.  The process is then repeated on the surviving 
K-1 clusters to ultimately find an optimal subset of clusters that maximize SVM 
accuracy.  When multiple clusters provided the same accuracy, the absolute value from 
the decision function in Equation 4 was summed for all misclassified compounds, and 
applied as a tiebreaker.   
 
To evaluate the performed of the SVM, 10-fold cross-validation was used.  Here, the 
training set is divided into 10 subsets containing an equal number of compounds.  One of 
the 10 subsets is withheld while the remaining nine subsets are used to train the SVM.  
This process is repeated for the other nine subsets.  The predictions from the model for 
the withheld set were identified in one of four ways:  true positive (TP), true negative 
(TN), false positive (FP) and false negative (FN).  Those classifications define the 
classification metrics of accuracy, sensitivity, specificity and precision. 
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Normally the threshold, t, is set to zero for SVM which causes any prediction greater than 
zero to be classified as active while those predicted less than zero to be inactive.  
Changing the threshold t alters the values of TP, FP, TN and FN which influences SVM 
performance.  Integrating the area under the receiver-operator-characteristic (ROC) curve 
for each 10-fold subset provides an additional averaged statistic for performance 
evaluation.  Varying the threshold t over the predicted SVM decision function values 
from a given 10-fold subset and plotting the TP rate (sensitivity) verses the FP rate (1-
specificity) creates the ROC curve.  

5.2.3 Overlap Metric 
 
Not all of the atomic Signatures used to train the SVM from AID 846 are contained in the 
compounds to be screened from the rest of PubChem. It seems reasonable that when there 
is a substantial overlap in the atomic Signatures describing a given compound with those 
atomic Signatures in the SVM model, a more confident prediction will result.  To 
quantitatively evaluate this confidence, we define an overlap metric, Ω, as 
 

       (5) 

 
where  is the total number of atomic Signatures in a compound, and is the total 
number of Signatures common with the training set (here AID 846) within the 
minimum/maximum occurrence range.  We include this latter stipulation on occurrence 
range to remove extrapolation effects for individual Signatures.   The values of Ω will 
range from 0 to 1 with predictions on the compounds with higher Ω values considered to 
be more reliable. 
 

5.2.4 Training and Test Sets 
 
We choose AID 846 because it is relatively balanced set and any false positives are not as 
likely because the IC50 determination was performed in triplicate.  The assay depositor 
reported a compound as active if IC50 < 50 µM was obtained in all three IC50 
determinations, inconclusive if IC50 < 50 µM in only one or two determinations, and 
inactive for IC50 > 50 µM. 51 In this work, we reduced the active classification to 5 µM 
resulting in 47 active and 68 inactive compounds.  Changing the activity classification 
provided inactive compounds from the primary screen (AID 798) to be used as a large 
test set for false positive predictions because these compounds had less than 40% 
inhibition from a single measurement at 5 µM. 
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5.3 Results 

From the 115 compounds used in AID 846, there were 865 unique height 0, 1 and 2 
atomic Signatures.   Owing to time considerations, we reduced the Signature database by 
more than half (to 411 Signatures) when only including atomic Signatures that have 
occurred in at least two compounds.  Next, we perform the feature selection using both 
filter methods and wrapper methods. 

5.3.1  Filter Methods and Wrapper Methods 

For the filter method, we use all 411 height 0, 1 and 2 atomic signatures in a reverse 
removal manner where the lowest ranked atomic Signatures using the ωi metric are 
removed and performance is evaluated sequentially.  Using this approach, a maximum 
accuracy of 80 % is obtained (as seen in Figure 5) in under 10 minutes of CPU time.  By 
comparison using all of the 411 Signatures, without any regard to feature selection, 
results in an SVM with an accuracy of only 56%. 

 

 

Figure 5:  Feature selection using a filtering approach with performance evaluated 
by 10-fold cross-validation. Reprinted from “Data mining PubChem using a support vector machine 
with the Signature molecular descriptor:  Classification of factor XIa inhibitors. Weis, Visco and Faulon, 27, 466 – 
475, 2008, with permission from Elsevier”    

For the wrapper method, we used k-means clustering on the set of 411 atomic Signatures.  
This approach increased performance to 89 % accuracy, but took much longer 
(approximately four days of CPU time) relative to the filter method owing to the nested 
loop calculations required.  Note that though the wrapper method takes longer, once the 
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model is created, that time expense becomes less of an issue.  The nearly 10 % increase 
in accuracy trumps the added time required.  
 
As shown in Figure 6, the highest cross-validation accuracy for the wrapper method 
occurs with 22 clusters (involving a total of 105 Signatures).  Accordingly, we choose 
this subset for the final SVM training and do not continue with the filter method model in 
this work.  Notice also that with small number of clusters (re:  atomic Signatures), there is 
not sufficient information available to construct a predictive model, while when too many 
clusters are used, overfitting results.  Statistics for the optimal wrapper method SVM 
model (22 clusters) is provided in Table 11. 
 

 

 

Figure 6:  Feature selection using a wrapping approach with performance 
evaluated by 10-fold cross-validation. Reprinted from “Data mining PubChem using a support 
vector machine with the Signature molecular descriptor:  Classification of factor XIa inhibitors. Weis, Visco and 
Faulon, 27, 466 – 475, 2008, with permission from Elsevier”    

Table 11:  Prediction statistics for the SVM on Factor XIa inhibitor 
data with 22 clusters (105 Signatures). Reprinted from “Data mining PubChem 
using a support vector machine with the Signature molecular descriptor:  Classification of 
factor XIa inhibitors. Weis, Visco and Faulon, 27, 466 – 475, 2008, with permission from 
Elsevier”    

X-Fold Accuracy AUC(ROC) Precision Sensitivity Specificity 
10 0.8900 0.8856 0.8500 0.9000 0.8833 
4 0.8125 0.8676 0.7568 0.7727 0.8382 
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5.3.2  False Positive Testing 
 
AID 798 contains 218,416 inactive compounds and this set provided one way to evaluate 
the SVM model created in the previous section for false positive predictions.  All of the 
218,416 compounds were evaluated by the SVM model and each compound was 
additionally characterized by both the overlap metric (Ω) and the SVM threshold (here 0, 
1 and 2). What was discovered was that when the threshold value and overlap metric for 
a compound was high, improved classification resulted. In Table 12 we provide the 
results of this test with the specificity metric, defined as the ratio of true negatives to the 
sum of true negatives and false positives, provided in the square brackets. Ultimately, 
when the threshold is high (t = 2) and the overlap is maximum (Ω = 1) for a particular 
compound in this test set, the SVM perfectly classifies those 1442 compounds as 
inactive.   
 

Table 12:  Test set prediction statistics from inactive factor XIa inhibitors in AID 
798.  The numbers in parenthesis indicate the number of compounds from AID 798 
which were above the various Ω  values while the table entries indicate those 
compounds identified. Reprinted from “Data mining PubChem using a support vector machine with the 
Signature molecular descriptor:  Classification of factor XIa inhibitors. Weis, Visco and Faulon, 27, 466 – 475, 
2008, with permission from Elsevier”    
 
 

t 

Ω > 0 

(n=218,416) 

Ω > 0.6 

(n=213,104) 

Ω > 0.7 

(n=196,352) 

Ω > 0.8 

(n=135,021) 

Ω > 0.9 

(n=37,655) 

Ω = 1.0 

(n=1,442) 

0 < 
193,762 [0.8871] 189,648 [0.8899] 176,062 [0.8967] 123,415 [0.9140] 35,226 [0.9355] 1,359 [0.9424] 

1 < 
211,282 [0.9673] 206,533 [0.9692] 190,957 [0.9725] 132,352 [0.9802] 37,103 [0.9853] 1,424 [0.9875] 

2 < 
216,210 [0.9899] 211,157 [0.9909] 194,896 [0.9926] 134,414 [0.9955] 37,590 [0.9983] 1,442 [1.0000] 

 

 

5.3.3 Screening PubChem 
 
We used the SVM developed in the previous section to screen all of the compounds in 
PubChem, minus those from AID 798.  At the time of this study, the entire database 
consisted of 11,946,913 unique chemical structures.  To obtain the atomic Signatures at 
heights 0, 1 and 2 for all of these compounds required about 6 days on a single CPU 
machine. 
 
Table 13 provides the results for this screening in a manner similar to Table 12 (without 
the specificity rating, since the activity against Factor X1a is unknown for these 
compounds).  In the square brackets of Table 13 we provide the percent active in that 
grouping, per total number of compounds evaluated. 
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Table 13:  Screening PubChem compounds for new factor XIa inhibitors with SVM.  
Predicted percent active, per the listed overlap metric, is provided in square 
brackets. Reprinted from “Data mining PubChem using a support vector machine with the Signature 
molecular descriptor:  Classification of factor XIa inhibitors. Weis, Visco and Faulon, 27, 466 – 475, 2008, with 
permission from Elsevier”    
 

 

t 

Ω > 0 

(n=11,946,913) 

Ω > 0.6 

(n=10,620,294) 

Ω > 0.7 

(n=9,020,826) 

Ω > 0.8 

(n=5,594,590) 

Ω > 0.9 

(n=1,378,787) 

Ω = 1.0 

(n=31,267) 

> 0 
1,828,891 [15.3] 1,345,179 [12.7] 1,028,078 [11.4] 514,022 [9.2] 91,426 [6.6] 1,300 [4.1] 

> 1 
715,208 [6.0] 424,227 [4.0] 300,495 [3.3] 136,455 [2.4] 23,810 [1.7] 296 [0.9] 

> 2 
343,052 [2.9] 149,199 [1.4] 96,063 [1.1] 37,470 [0.6] 4,899 [0.4] 4 [0.01] 

 

There are 1300 compounds with a perfect overlap metric score and a t value greater than 
0.  This is the region in the chart, according to Table 12, where we would have the most 
confidence in the predictions.  To explore this set relative to the original compounds in 
AID 846, we calculated the set-theoretic Tanimoto Coefficient (TC) between these 1300 
compounds and all 115 compounds from AID 846 using all height 0 to 2 atomic 
Signatures. Recall that a value close to 1 indicated high similarity, while a value close to 
0 indicates compounds which are structurally dissimilar.  In Table 14 we report a sample 
of 12 compounds from the 1300 which have t > 1.  For each compound, we also provide 
the value for the maximum Tanimoto coefficient that this compound has with the 115 
compounds from AID 846.  While some compounds, like CID 2658123, are just a small 
perturbation from one of the training set compounds (in this case, an additional –O-CH3 
group on the benzene ring), others (like CID 6104501) are only marginally similar to 
anything in the training set.  Accordingly, those compounds which are most structurally 
dissimilar would tend to be the most non-intuitive to investigators in the field. 
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Table 14:  A sample of one dozen compounds from the Ω  =1 set.  Reported are the 
compound ID number from PubChem, 2D-structure, maximum Tanimoto 
Coefficient (with AID 846), magnitude of the decision function (SVM), and binding 
energy (kcal/mol) from AutoDock. Reprinted from “Data mining PubChem using a support vector 
machine with the Signature molecular descriptor:  Classification of factor XIa inhibitors. Weis, Visco and Faulon, 
27, 466 – 475, 2008, with permission from Elsevier”    

CID Structure  TC SVM  EBinding 

(kcal/mol) 

3658123 

 

0.94 1.29 -7.64 

4426757 

 

0.88 1.81 -7.13 

977731 

 

0.80 1.76 -7.45 

2133598 

 

0.75 1.61 -8.07 

1098141 

 

0.69 1.45 -7.28 

1048578 

 

0.62 2.17 -5.81 
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16418311 

 

0.50 1.90 -8.23 

6499012 

 

0.48 1.60 -8.26 

1184659 

 

0.42 1.55 -9.20 

7643488 

 

0.42 1.06 -9.20 

1556303 

 

0.38 1.63 -7.62 

6104501 

 

0.37 1.85 -6.98 
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5.3.4 Docking of PubChem Compounds 
 

To evaluate some of the compounds predicted by our model to be inhibitors of Factor 
X1a, we attempted to dock these compounds within the binding pocket of the protein.  
Specifically, we used AutoDock version 4.0.1 58 to prepare the Factor XIa crystal 
structure (PDB 1zpc) 59 in complex with a ligand.  Crystallographic waters were 
removed, polar hydrogens were added, and a 50 x 50 x 50 grid box with 0.375 A spacing 
was specified which was then centered on the active site.  The Lamarckian genetic 
algorithm option for ligand conformational searching was applied with the following 
docking parameters:  100 runs, population size of 150, random starting point, 27,000 
generations, and 25,000,000 energy evaluations. 
 
We docked 47 compounds from AID 846 classified as most active which resulted in a 
minimum binding energy ranging from -5.59 to -9.15 kcal/mol.  In contrast, 25 
compounds deemed least active from AID 798 were randomly selected and found to have 
a minimum binding energy varying from -0.12 to 0.96 kcal/mol.  While a large, negative 
binding energy does not guarantee success as an inhibitor, it can serve as an additional 
tool for evaluation purposes.   Accordingly, we docked the 296 compounds that had a 
value of Ω=1 with threshold t > 1.  Note we chose this range (and not t > 0) since each 
run averaged about one day to run.  Results were in agreement with the known inhibitors 
from AID 846 in that the minimum binding energies for this subset ranged from -5.48 to -
9.84 kcal/mol.  This additional evidence supports the notion that those 296 compounds 
are potential inhibitors of Factor X1a. Note that the binding energy for 12 of the 296 
compounds is provided in Table 14.  Future work in this area involves the experimental 
verification of the activity of some of the compounds identified in Table 14. 
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