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Abstract

The monitoring and system analysis of high performance computing (HPC) clusters is of increasing
importance to the HPC community. Analysis of HPC job data can be used to characterize system usage
and diagnose and examine failure modes and their effects. This analysis is not straightforward, however,
due to the complex relationships that exist between jobs. These relationships are based on a number
of factors, including shared compute nodes between jobs, proximity of jobs in time, etc. Graph-based
techniques represent an approach that is particularly well suited to this problem, and provide an effective
technique for discovering important relationships in job queuing and execution data. The efficacy of
these techniques is rooted in the use of a semantic graph as a knowledge representation tool. In a
semantic graph job data, represented in a combination of numerical and textual forms, can be flexibly
processed into edges, with corresponding weights, expressing relationships between jobs, nodes, users,
and other relevant entities. This graph-based representation permits formal manipulation by a number of
analysis algorithms.

This report presents a methodology and software implementation that leverages semantic graph-
based techniques for the system-level monitoring and analysis of HPC clusters based on job queuing
and execution data. Ontology development and graph synthesis is discussed with respect to the domain
of HPC job data. The framework developed automates the synthesis of graphs from a database of job
information. It also provides a front end, enabling visualization of the synthesized graphs. Additionally,
an analysis engine is incorporated that provides performance analysis, graph-based clustering, and failure
prediction capabilities for HPC systems.
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1 Introduction

The high performance computing (HPC) community is constantly targeting systems with ever-increasing
computational power. However, the growing complexities of the architectures of such systems, and the
applications running on them, introduces greater challenges to understanding the system interactions which
can adversely impact performance. While a precise characterization of system performance may be difficult,
if not impossible, to achieve it may be sufficient to know what variables (e.qg., those associated with job queu-
ing and execution, memory utilization, etc.) affect system performance and in what manner performance is
affected based on the interactions of these variables.

Determination of such relationships can be difficult, particularly for HPC systems where the number
of variables per component (e.g., computational nodes) may be in the hundreds, the relative importance of
the variables is unknown, and they may not be expressed in a quantitative form. Consequently, we seek
a methodology to determine the significant system variables and the interactions between them that affect
performance. Of particular interest are relationships among quantities that involve failure conditions, such
as failed jobs that share a common resource. Determination of significant failure conditions can be used to
enable prediction and/or early detection of failure scenarios that can be used to trigger mitigating actions.

Graph-theoretic approaches would seem to possess particular efficacy in addressing some of these chal-
lenges due to their strengths in modeling and analyzing complex networks [1]. Graph-based techniques have
become pervasive in the knowledge engineering and machine learning communities. Given an ontological
description of a domain, a semantic graph is a powerful knowledge representation tool that permits formal
manipulation by a number of graph-based clustering and analysis algorithms. In a semantic graph vertices
represent different objects in a domain and edges represent relationships between those objects. The ver-
tices can fall into a single class (uni-partite) or multiple classes (multi-partite) and edges can fall into one or
multiple types (multigraph).

Different semantic graphs can be synthesized for a given application depending on the particular on-
tology employed. Consequently, the choice of an ontology and subsequent graph synthesis should be con-
sidered in terms of the intended downstream use, as the particular structure of the semantic graph needs to
be amenable to its downstream use.Skation 3 we will discuss ontology definition and semantic graph
synthesis for application to the modeling of HPC cluster job data. This will involve using graphs to represent
HPC clusters as complex networks of jobs, users, computational nodes, and additional elements.

Graph visualization provides the user with a customizable display of the synthesized graphs. This is
important because the raw structure of a graph provides some basic insight into patterns and relationships
in the underlying data, even in the absence of any quantitative analysis. It also provides a visual front-
end to facilitate ground-truthing. This involves the assignment of different cluster or community labels to
vertices in the graph, based on the user’'s knowledge of the context, and the visual insight gleaned from the
graph. This ground-truthing provides a way of validating automated clustering routiné&esctilon 4 we
will discuss the visual exploration of graph networks for HPC cluster applications.

Analysis of the synthesized graph consists of the application of automated clustering routines, combined
with validation and performance metrics. Clustering, or community detection, involves the determination
of sub-networks or communities within the data based on the relative strengths of edges between vertices.
This can be augmented with an ensembling approach that repeats the clustering process many times, varying
some parameter in the clustering process each time. This parameter can be the relative importance given to
each of the edge types (edge type weighting), or it can be a sub-sampling parameter associated with choosing
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a different subset of the nodes in the overall graph each #w@nsensus clustering is then obtained based
on combining each of the ensemble clusteringsSdttion 5 we will discuss the application of graph-based
clustering and community detection to HPC cluster job data, with the objective of providing analysis and
prediction capabilities.

database

i

Graph
Synthesis

|
+ graph +
Graph Graph

Visualization|  ground- Analysis
truthed graph

clustered graph

Figure 1. Process flow showing graph synthesis, visualization, and
analysis operations. The graph synthesis process generates a graph from
a database source. The graph can be visualized or directly passed to the
analysis process. During visualization, ground truthing can be performed
by the user. Analysis on either the ground truthed or raw graph results in

a clustered graph which can be viewed again.

Figure 1 depicts the process flow associated with graph synthesis, visualization, and analysis. The
following sections will detail the graph synthesis, visualization, and analysis phases with respect to the
domain of HPC cluster job queuing and execution.



2 Related Work

There are some existing tools that facilitate data mining and informatic analysis of complex interconnected
systems. 8LUNK [7] is a commercial IT search and analysis engine, that provides capabilities to in-
dex, search, alert and report on live and historical IT data. It does not, however, possess any significant
graph-based representation and analysis capabilities. Additionally, there are a number of general purpose
graph theoretic tools, some of which we are leveraging for this work. These includetire Thformatics

Toolkit [8] and the Multi-threaded Graph Library (MTGL) [4].



3 Graph Synthesis

The SLURM [6] database is the principle data archive used for storing job datal Thej ob_| og table

consists of the columns of data describedTable 1. Sample data is shown ifeble 2. A unique id is
associated with each job, as well as a number of attributes, including user name, job name, job state, start
and end time, and compute nodes used.

Table 1. Fields in thes| ur mj ob_l og table.

| name | description | type |
id unique database identifier int
jobid unique job identifier int
username name of user running job char
userid unique user identifier int
jobname name of job char
jobstate | state of the job (completed, failed, et¢.) char
partition partition job ran on char
timelimit time limit for the job int
starttime date/time job started datetime
endtime date/time job ended datetime
nodelist list of compute nodes running job | varchar
nodecount| number of compute nodes running jgb int

Table 2. Sample data in thel ur mj ob_| og table.

| id | ... | usernam¢ jobname| jobstate | starttime | ... | nodelist | nodecount
1] .. root hostname| canceltep | 200s-11-1909:20:21 ... glory0 1
2 mrepper | orterun FAILED 2008-11-1909:35:54| ... | glory[256-287] 32
3 sierra test COMPLETED | 2008-11-1909:36:11| ... | glory[234, 255] 32

3.1 Multi-Partite Semantic Graph

An intuitive way of synthesizing the job data into a graph is to congioles; users, andcompute nodes as

three elemental classes of vertices. Semantic relationships exist between these vertex classes. For example,
we can say that a givegiob “is run by” a givenuser. Additionally, we can say that a givgob “runs on” a

given set ofcompute nodes. This abstraction constitutes a multi-partite ontology graph. This is illustrated

in Figure 2 along with an instantiation.

In addition to the vertex classes and edge types defined for the multi-partite graph any number of at-
tributes can be associated with the vertices and edges based on data storatlunrthieob_| og. This data
can be useful for visualization of the synthesized graph as well as analysis. These attributes are summarized
in Table 3.
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user

Figure 2. (Left) Multi-partite ontology graph comprised of three classes
of vertices and two types of edges. The vertex classes repretsnt
users, andcompute nodes. The edge types represeanin by andruns on
relationships among the vertex classes. (Right) A simple instantiation
of the ontology graph for thrgebs, two users, and fivecompute nodes.

The edge types represenin by andruns on relationships among the
vertices.

3.2 Uni-Partite Semantic Graph

A multi-partite graph is useful for visualizing the relationships betwjgis, users, and compute nodes.
However, with regard to downstream job clustering processes it may be advantageous to orggobze all
into a uni-partite graph. In this wajpbs form the only vertex class in the graph, and they can be directly
clustered based on a set of edge types.

In order to generate a uni-partite graph of the fornfrigiure 3, the multi-partite graph dfigure 2 needs
to be collapsed so that vertices of classrs andcompute nodes are removedJobs that previously shared
edges withusers andcompute nodes will now share edges with each other.

The edge typesser match andnode match will characterize the affinity between any tyabs based on
theusers andcompute nodes that they share. Farser match, we let the terntJy denote the user name flmb
k (e.g.,Ux = “root”). The adjacency matrixq, which stores the strength (or weight) of the edge between
any two jobs can then be defined as,

a0 iU £U;
A”_{ 1 ifUi:U} @
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Table 3. Additional attributes for the multi-partite job graph.

\ name | description | type |
vid unique vertex identifier int
vhame unique vertex name varchar
nodename name of the compute node (if vertex is a compute node)| varchar
vdisplayname| name used for labeling the vertex (in downstream visuatintj varchar
vtype identifier for vertex type (O job, 1 - user, 2 - compute node) int
vtypename name of vertex type varchar

Fornode match, we let the selk denote the compute node list fiab k (e.g.,Nx = glory[1-11,15]). The

adjacency matrix can then be defined as,
Al A |Ni ﬂNj|
I ATNERTNA

N INi UN;| 2)

Additional Edge Types

We can define additional edge types based on other job attributes. If we let thé tdemote the job name
for job k (e.g.,Jk = “sierra”), the adjacency matrix for the edge tyjjpb name match can be defined as,

0 it g £
A”_{l ifJi:J; @)

If we let the termS, denote the job state fpob k (e.g.,S = “COMPLETED?”), the adjacency matrix for
the edge typgob state match can be defined as,

[0 ifS45
A”_{l fS_S “)

If we let the the intervally denote the time interval fgob k (e.g., Tk = [to,tt]), Wheret, is the start time
andt; is the end time), the adjacency matrix for the edge tye match can be defined as,

_TinT

Ai = TUT|

(5)

Finally, if we let the ternmP denote the partition fgob k (e.g.,Px = “pbatch”), the adjacency matrix for
the edge typ@artition match can be defined as,

[0 ifR#£P
A”_{l itP =P, ©)

In addition to the edge types defined for the unii-partite graph two additional vertex attributes will be
defined apart from the natiw ur mj ob_| og table fields. These are summarizediable 4.
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user match

node match

Figure 3. A collapse of the multi-partite graph &fgure 2 into a uni-

partite graph. The solitary vertex class represgolbs. The run by

andruns on relationships betwegjobs andusers, andjobs andcompute

nodes, have been replaced lger match andnode match relationships
betweerjobs. Additional edge types can be defined to repregsditiame

match, job state match, time match, andpartition match relationships.

Table 4. Additional attributes for the uni-partite job graph.
| name | description | type |
vid unique vertex identifier int
vhname| unique vertex name | varchar

3.3 TheOvgr aphSynt hesi s Utility

Graph synthesis can be performed based on the ontologies descriietons 3.1 and3.2. To this end we
have developed thevgr aphSynt hesi s command line utility to automate this process. It is executed in the
following form,

$ ./ov_graph_synthesis --db <dat abase> --sql <sql > --verbose <true|fal se>

where<dat abase> is the name of a database file (SQLite is currently supported). The sqgl statement
is enclosed in quotes. For example, the command,

$ ./ov_graph_synthesis --db slurmdb --sql "select * from slurmjob_log
where id > 14400 and id < 14501" --verbose true

will select rows from thes| ur mj ob_l og table of database] ur m db, corresponding tod 14401 through

14500. The graphs will be generated from this data and stored in separate tatllesnndb. Another
example is,

13



$ ./ov_graph_synthesis --db slurmdb --sqgl "select * fromslurmjob_log
where username = 'nrepper’" --verbose true

This will select rows corresponding to user nam&epper’ and generate the graphs from this data. In
verbose modé&Vgr aphSynt hesi s outputs vertex and edge data to the terminal, first for the multi-partite
graph, and then for the uni-partite grapAppendix A provides a description of the output generated by
Ovgr aphSynt hesi s and Section 6 demonstrates the use 0figr aphSynt hesi s for a use case involving
actual HPC job data.
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4 Visualization and Manipulation

Semantic graphs have a natural visual context. As with all graphs, objects within the domain are depicted
as vertices and relationships among the objects are depicted as edges (or arcs) connecting the vertices.
Semantic graphs offer additional richness to the visual depiction, since there are multiple edge types that
need to be visually distinguished. In the multi-partite case there are also multiples classes of vertices which
need to be visually distinguished.

In addition to a visual display of the generated graphs there is a need for user manipulation of the graphs,
particularly with regard to ground-truthing. As described earlier, ground-truthing involves the assignment
of cluster labels to graph vertices. This leverages the user’s knowledge of the data, as well as insight into
patterns and relationships drawn from the visual depiction of the graph.

4.1 TheCARd Gsql Utility

Using the VTK [9] based TWAN Informatics Toolkit [8] theCar gi 0Sql application has been developed as

a general tool for the visualization of attributed relational graphs. More recently, it has been specifically
catered to HPC cluster job data. The user selects a database file (SQLite is currently supported) to load. For
our purposes we will load any file processed by @gr aphSynt hesi s tool. The interface fo€ar gi 0Sgl

is shown inFigure 4. Appendix B provides a description of the graphical output generateGARAE Osql
andSection 6 demonstrates the use @RA OCsgl for a use case involving actual HPC job data.
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Figure 4. The Cargi oSQL application. A database containing the
raw SLURM job log table, and the graph tables generated by the
Ovgr aphSynt hesi s utility, is opened.
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5 Analysis and Clustering

The previous section addressed the use of visualization techniques as a means of gaining insight into the
underlying data relationships encoded in a semantic graph. This provides only a qualitative perspective on
relevant relationships in the data. For a more rigorous quantitative assessment of the patterns present in the
data, analysis and clustering algorithms must be used. The basic goal of a clustering algorithm is to generate
separate clusters, or communities, containing individual data objects sharing an affinity.

For our purposes we will be concerned with the clusteringbivertices. Before proceeding It will be
useful to formally define a clustering of vertices. First we consider th&/sef, n vertices.

V= {V17V27'“ ,Vn} (7)

We now consider two clustering8,andC’, each of which is a collection of subsets\af More formally,C
andC’ each constitute a family of sets owér Letk be the array op cluster labels associated with and
let k’ be the array of cluster labels associated wil. Further, letLy be the set of vertices with cluster
assignmenk; in clusteringC, and letL;, be the set of vertices with cluster assignmkinin clusteringC'.
Then,

CE{li, L} (8)
/é{l‘/’l""’ ((;} (9)

whereLy,L;, CV. These definitions will be referred to Section 5.4.

5.1 Community Detection

The method of Girvan and Newman [2][5] has recently achieved prominence in the area of graph-based
community detection. In this method a quantity termed betweenness is computed for all edges in the graph.
Betweenness for a particular edge reflects how many shortest paths between pairs of nodes run along that
edge. The edge with the largest betweenness is removed and the betweeneess values are recalculated on
all edges affected by the removal. This process is repeated based on some criterion. When finished, each
connected subgraph corresponds to a community.

For our purposes we will apply community detection to the uni-partite senjabtgraph. Although this
is comprised of a single vertex class it possesses multiple edge types. The community detection algorithm
addresses graphs with a single edge type. The next section discusses the aggregation of multiple edge types.

5.2 Aggregating Multiple Edge Types

Given a multigraph witmg edge types there arg adjacency matrice§A1,Az,---,An: }. We can perform
a weighted aggregation of these adjacency matrices. This yields the aggregate adjacency matrix,

Ne
A" =S WjAj (10)
&

wherew; is a weight associated with the relative importance ofjtiheedge type Figure 5 illustrates this
aggregation process. Often one may not have an a priori knowledge of the appropriate weighting for a
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given edge type. Consequently, either an optimization amgbranust be employed to find an optimal set of
weights, or, an ensembling approach must be employed to yield a consensus clustering from many separate
clusterings, each using different weights. The ensembling approach will be discuSesetian 5.3.

Al ® o O,
.o 2N
. ® © \ QW‘G O, o ‘0 ©) o ®
w
10 Rl S
o 5 o / O—0O O—® ® 06
A} C
0 @ @ Wi, . clustering _1
A, O—® .
. . . .
aggregation Al = Z wi A . G
Jj=1 o
A Q@ 5 @ : — :
clustering
0 ° o W,
® ©
W,
Aj
O Q.
O,
3. Q © e,
AnE 9 9

Figure 5. Aggregation of multiple edge types into a graph with a single
edge type. An aggregate adjacency mathig, associated with thih
clustering is generated from the individual edge type adjacency matrices,
{A1,---,Anz } and weight vectow;. The weightw;; is associated with

the relative importance of thgh edge type in théh clustering of the
ensembleFigure 6 describes the subsequent ensembling process.

5.3 Cluster Ensembling

The process of ensembling together multiple clusterings first involves computing a similarity matrix for a
given clustering. Given a clusteririg, we letc be the array of cluster assignments, associating a cluster
label with each of the vertices. The similarity matrix$, is then defined as,

& | 0 ifg#gj
S‘_{ 1 ifci:c; (11)

Given a set of clusteringgCi,Cy,---,Cn. }, and associated similarity matricess;, Sy, -+, Sy}, we
can define a consensus function on the similarity matrices. A simple averaging consensus function would
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be,
S-S/ 12)

This ensembling method can be implemented with the community detection algorithm. An aggregate
adjacency matrix can be computed for a given set of edge weights. These weights can be randomly generated
and, for each set, an aggregate adjacency matrix can be computed. Community detection can be run on these
aggregate adjacency matrices, yielding a separate clustering for each. Similarity matrices can be associated
with each clustering and these can then be used to obtain a consensus similarity $haascdescribed
above. Finally, community detection can be run on this consensus similarity matrix, yielding a consensus
clustering,C*. This ensembling procedure is illustratedrigure 6 and detailed irAlgorithm 1.

clustering

nc
ensembling S = Z S;/nc
i=1

Figure 6. Ensembling of multiple clusterings. A consensus function,
S, is defined on the similarity matrice§sy,--- , Sy }. Community de-
tection is run on the graph associated with the consensus similarity ma-
trix, yielding a consensus clusterirgy;.

5.4 Variation of Information Metric

The variation of information (VOI) metric [3] measures the amount of information lost and gained in tran-
sitioning between two clusterings. To compute the metric we first depoés the number of vertices with
cluster assignmerk in clusteringC, and denotey as the number of vertices with cluster assignmeim
clusteringC’. Finally, let Mgk be the number of vertices with both cluster assignnkeirt clusteringC and
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Algorithm 1 Ensembling multiple clusterings generated from different edge type weightings
1: Sy = 0/{initialization}
2: load multigraph {A1,--- ,Anc}

cluster ensembling loop

3: fori=1tonc do

4:  generate w {randomizatiof
5. Af =0 {initialization}

graph aggregation loop

6. for j=1tong do

7 A=A +W A

8. end for

9:  generateC; {community detection oA} }
10: generate ${C — S}
11: S =5+S

12: end for

13: $* =S5 /nc

14: generateC* {community detection o8*}

cluster assignmer{ in clusteringC’. That is,

N = |Li| (13)
M = [Li| (14)
nWj =|Lx N L{(G| (15)

We then define the probabilit®(k;), of a vertex being assigned kpin clusteringC and the probability,
P(kj), of a vertex being assigned ko in clusteringC’. Finally, we define the probability?(k;, kj), of a
vertex being assigned toin clusteringC and tok in clusteringC'. So,

P(k) = & (16)
P(K) = 17
(ki) = nF 17)
P(k.Kj) = — (18)

The entropy of information associated witrandC' is then,
p
H(C)=— ZlP(ka)logP(ka) (19)
i=

H(E) =~ 5 PUR)logP (k) (20)
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and the mutual information shared 6yandC' is,

I(C,C') = ii P(h,k})log% (22)
=121 i
Finally, the variation of information betweg&handC' is,
d(C,C') =H(C) +H(C)-2I(C,C) (22)

5.5 TheOvcl ust er Utility

The Multi-threaded Graph Library (MTGL) [4] incorporates algorithms for a weighted version of the New-
man method. We have developed &l ust er command line utility using MTGL in conjunction with
the TiTAN toolkit. OVcl ust er is executed in the following form,

$ ./ovcluster --db <dat abase> --edge <edge type 1> <wei ght 1> ...

<edge type n> <wei ght n> --cluster <cluster> --truth <truth cluster>
--simmtrix <simlarity matri x> --nmode <init|incr>--verbose <true|fal se>
--coll apse <col | apse limt>

The - - edge flag specifies the name of an edge type (edge table in the database) to be included in the
graph and the corresponding edge type weight to be applied. Any number of edges can be specified. The
--cl uster flag specifies the database cluster table column name in which to store the cluster assignments.
The--truth flag specifies the database cluster table column name in which the ground truth clustering is
stored. This is used in computing the variation of information between the generated clustering and ground
truth. The--si mmatrix flag specifies the database table name in which to store the similarity matrix.
Finally, the- - node flag specifies whether to run in initialization or incremental mode.

The--col | apse flag specifies the collapse limit of the graph. The user can specify that the graph be
coarsened down to a simpler graph. This involves randomly choosing vertices to which neighboring vertices
are collapsed (sdegure 7). This process repeats until the number of vertices remaining in the graph is less
than or equal to the specified collapse limit. Community detection is performed on this coarsened graph.
The clustering is subsequently expanded so that the collapsed vertices receive the cluster assignment of their
respective parent vertex (vertex into which they collapsed).

Ovcl ust er can be run repeatedly on the same input database file to generate multiple clusterings associ-
ated with a cluster ensemble. After each run a consensus similarity matrix and consensus clustering is stored
in the database. This reflects the consensus of all the clusterings generated up to that peittodéélag
would be set tanit on the first ensemble run amdcr on subsequent runs. After the final run a consensus
clustering associated with the ensemble of all previous clusterings would be sdppeddix C provides a
description of the output generated @ycl ust er and Section 6 demonstrates the use @cl ust er for a
use case involving actual HPC job data.
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collapse to 7

Figure 7. Progressive collapsing of a graph. When vertex 1 is chosen,
vertices 2, 3, and 4 collapse to it. Next, when vertex 7 is chosen, vertex 5
collapses to it. After clustering is performed on the collapsed graph the
collapsed vertices receive the cluster assignment of their parent vertex.
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6 Example Use Case and Results

The following example is based on SLURM data associated with Sandia’s Glory cluster, a 288-node, 4068-

core Opteron cluster with an Infiniband interconnect.

6.1 Graph Synthesis

We would like to extract a specific set of jobs from ®iair mj ob_| og table of the database. This can be

done with the followingOvgr aphSynt hesi s command,

$ ./ov_graph_synthesis --db slurmdb --sqgl "select * from slurmjob_log
where jobid > 12700 and jobid < 12800" --verbose true

Given the jobs specified at the command line the vertifass,(users, andnodes) of the multi-partite graph

are generated. Example output consists of,

vid 110 -> nodename gl oryl0’
vid 111 -> nodename ' gl oryl03’

vid 212 -> nodenare ' gl ory96’

eid 99 -> job 16143 is run on node 'gloryl53
eid 100 -> job 16143 is run on node 'gloryl54

eid 516 -> job 17818 is run on node 'glory234’

Nurmber of ’'runs_on’ edges = 418

Following completion of the multi-partite graph the uni-partite graph is generated.

single vertex clasgpbs. The edges are then generated. Example output consists of,
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e4408 -> job 16143, 16771 has tinme_match = 0. 00550334
e4409 -> job 16143, 17012 has tine_match = 0. 00536969

e5029 -> job 17817, 17818 has time_match = 0.999737

6.2 Graph Visualization and Exploration

We can now load the database file resulting from the executi@eation 6.1 into theCar gi 0Sgl applica-

tion. If we specify the multi-partite node table as our vertex set andumby andruns on edge types as our

edge setCar gi 0Sgl will generate the visualization depicted kingure 8. Using the pull-down menus on

the bottom right we are free to label the vertices and edges by any attribute stored in the SLURM database
or defined by the user. The vertices have been coloraaivgx type to distinguish betweejobs, users, and

compute nodes. We can navigate and zoom into any region of the graph to explore sub-networlkidisee

9).

If we specify the uni-partite node table as our vertex set andadematch andtime match edge types as
our edge set, CargioSQL will generate the visualization depictétgure 10. In this case all of our vertices
represenjobs. Again we are free to label the vertices and edges by any defined attribute.Frgora 10
we can qualitatively glean a correlation between the community structure associated with this edge set and
the ultimate fate of the job. This will be quantitatively explored.

6.3 Graph Analysis and Clustering

We can now cluster the uni-partite graph generated during the graph synthesis phase. Ground truth will be
defined by the job state(“FAILED” = 0, “CANCELLED” = 1, “TIMEOUT” = 2, "COMPLETED” = 3, other

=-1). This will allow us to evaluate the quality of the clustering relative to known truth values. Given the
output (tosl ur m db) produced by followingVgr aphSynt hesi s command,

$ ./ov_graph_synthesis --db slurmdb --sqgl "select * from slurmjob_log
where jobid > 12700 and jobid < 12800" --verbose true

We can execute the following@vcl ust er command,
$ ./ovcluster --db slurmdb --edge node_match .75 --edge time_match .25
--cluster cluster_comm--truth cluster_gold --simmatrix sinmmat --node init

--verbose true --collapse 50

where we are choosing to aggregate tioele match and time match edge types of the multigraph with
edge type weights of.@5 and 025 respectively. The aggregate graph is generated,
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Figure 8. A view of the multi-partite graph showirjgbs (blue vertices),

users (green vertices), andompute nodes (red vertices). \ertices are
labeled by corresponding name (job name, user name, or compute node
name). Theun by edge type, connectifjgbs to users, and theruns on

edge type, connectirjghs to compute nodes, are shown.
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The graph is then collapsed,

Nurmber of collapses to get to target = 2
Nurber of vertices in original graph = 100
Nurmber of vertices in collapsed graph = 50
Nurber of col | apsed vertices = 50

Nurmber of edges in collapsed graph = 393

5 gold clusters, and 3 conmunity detection clusters.
Cold cluster distribution, 1 ->0.16, 3 -> 0.55, 0 ->
Random cl ustering (using gold dist.), 3 ->0.52, 0 ->
-1 -> 0.05.

VO netric relative to truth = 1.65389.

VO metric for randomcluster (with known distribution) relative to truth = 2.37941.

0.14, 2 ->0.1 -1 -> 0.05.
0.15, 1 ->0.2, 2 ->0.08

The results of the job clustering are shownHigure 11, with the jobs labeled by their actual job state.

The statistics indicate that the variation of information of the generated clustering relative to the truth data
(Gold cluster using job state as cluster labels).&5389. This is substantially better than that of a random
clustering relative to truth whose VOI is37941. Moreover, the random clustering has the benefit of know-

ing the ground truth cluster distribution, whereas, the generated clustering only has access to edge weights
associated witimode match andtime match.

In this example thé&vcl ust er utility was run a single time with an arbitrary set of edge type weights
(0.75 and 025), however, we could also rivcl ust er multiple times with randomized edge type weights
and ensemble the clusterings together in an attempt to improve our clustering accuracy.

26



glory107

Bun by~

Eun by

Figure 9. An enlarged view of a sub-network of the multi-partite graph.
(Top) Vertices are labeled by corresponding name (job name, user name,
or compute node name). (Bottom) Vertices are labeled by job state.
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FAILED

Figure 10. A view of the uni-partite graph (all vertices ajabs and

color indicates vertex degree). Thede match andtime match edge
types are superimposed. (Top) Vertices are labeled by job name. (Bot-
tom) Vertices are labeled by job state. We can see a qualitative correlation
between the community structure in this graph and the job state.

28



FAILED

CANCELLED

COMPLETED

Figure 11. Results of clustering the uni-partite job multigraph. (Top)
The original graph defined byode match andtime match edge types.
Structures in the graph are qualitatively highlighted. (Bottom) Three sep-
arate communities are identified by the community detection algorithm.
Vertices are labeled by job state to convey the correlation between the
communities and the job state.
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7 Additional Job Semantics to Extend the Graph Ontology

In addition to the job graph semantics describe@dction 3 we can specify additional semantics in order

to extend the job graph ontology. As an example we will present a use case involving job idle times. We
consider an additional table of data to augmentsthe mj ob_l og table. This is the dl ej ob table. Table

5 describes some of the relevant columns of data associated witldlthgob table. Sample data is shown

in Table 6.

Table 5. Fields in thei dl ej ob table.

\ name \ description | type |
id unique database identifier for the an individual idle time int
node id of node associated with the idle time int
ScaledFirstUsage scaled active memory used on the node at that idle tindeuble
jobid id of job associated with the idle time int
Functionalldle id of functional idle associated with the job and node int
ResponsibleNode id of the responsible node int

Table 6. Sample data in thel ur mj ob_| og table.

| id | node] ... [ ScaledFirstUsag¢ ... | jobid | ... | Functionalldle| ResponsibleNod¢
7263 | 234 | ... 0.0159 .. | 12755] ... 7263 -1
7264 | 234 | ... -1 ... | 12756 ... 7263 -1
7265| 234 | ... -1 .. | 12757 ... 7263 228

The data in this table is constructed as follows. For everygnkevery node the nearest idle time
preceeding that job on that node is found and assigned a unique id. If there is a value of memory usage
associated with that idle time it is reported and the idle time is recorded as the functional idle associated
with that job and node. It may be that due to the data collection frequency, there is no data point for the
idle time just preceeding a given job. In this case a -1 is reported for active memory usage, and the nearest
preceding idle time with an active memory value is used as the functional idle associated with that job and
node. For jobs that have functional idles on all nodes, the node associated with the functional idle with the
highest scaled memory usage is assigned as the responsible node.

We can consider these relationships in a multi-partite graph by introducing an additional vertex class.
In addition tojobs, users, and compute nodes we introduceidle time. Additional semantic relationships
(edges) exist between these vertex classes. For example, we can say thajebdivas a” givenidle time
as its idle time, or as its functional idle. We can also say that a ginlerthas a” givencompute node as
its responsible node. Additionally, we can say that a gindatime “is on” a givencompute node. This
abstraction is illustrated iRigure 12 along with an instantiation.

The uni-partite graph derived from the multi-partite graphFajure 12 will include additional edge
types betweejobs. It is noted thajobs share nadle times but they do share functional idles and responsible
nodes. If we let the sé¥ denote the functional idle list fgpb k (e.g.,F« =1, 2, 3, 5). The adjacency matrix
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user

Figure 12. (Left) Multi-partite ontology graph comprised of an addi-
tional idle time vertex class and associated edge types. The additional
edge types represehas idle andis on relationships betweejobs and
idletimes, and betweeidle timesandcompute noderespectively. (Right)

A simple instantiation of the ontology graph for thrjgbs, two users,

five compute nodes, and sevemdle times.

for the edge typéunctional idle match can be defined as,

A “:iﬂFj’
AR OR

(23)

If we let the termNg denote the responsible node fob k (e.g.,Nx = “gloryl”), the adjacency matrix
for the edge typeesponsible node match can be defined as,

| 0 ifNi #N;
A”_{ 1 if Nj=N; (24)

Additional edges can be defined to encode information such as scaled memory usage and other quanti-
ties. Figure 13 displays the mutli-partite graph associated with this extended semantics.
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Sd-code_scrip{ :

Figure 13. Views of the multi-partite graph showirjgbs (blue ver-
tices),idletimes (red vertices)users (green vertices), antbmpute nodes
(yellow vertices). Thénas idle andhas functional idle edge types, con-
nectingjobsto idletimes, are shown. Also shown are thasresponsible
node edge type connectirjgbsto compute nodes, and théson edge type
connectingdle times to compute nodes.
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8 Conclusion

We have presented a methodology and implementation for graph-based representation, visualization, and
analysis of HPC job queuing and execution data. Our work exploits the efficacy of semantic graphs as a
knowledge representation tool. Using graph-based clustering and community detection algorithms we have
demonstrated the utility of this approach in finding sub-networks, or communities, within HPC job data.
This can be leveraged for system-level analysis and failure prediction.

An example was presented using actual HPC job data. The example detailed a specific set of jobs shar-
ing a set of compute nodes. Two edgeagle match andtime match, were shown to possess a community
structure that was related to the ultimate fate of the jobs. This serves as a simple example of the potential
utility of our graph theoretic framework within the domain of HPC failure prediction. We intend to per-
form more rigorous investigations of the community structure of HPC systems based on additional edge
types, data attributes and clustering approaches, including cluster ensembling. Based on the flexibility of
our framework in specifying the HPC graph semantics, as well as synthesizing, visualizing, and analyz-
ing the graphs we consider it to be a potentially powerful platform for failure prediction, mitigation, and
performance improvement in HPC clusters.
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A Output Description for OvVgr aphSynt hesi s

The output to the command,

$ ./ov_graph_synthesis --db slurmdb --sgl "select * from slurmjob_log
where id > 14400 and id < 14501" --verbose true

begins by echoing the input parameters,
dat abase = slurmdb
verbose node = true

sql statenment = 'select * from slurmjob_log where id > 14400 and id < 14501

Next, the multi-partite graph is generated. First the vertices are defined,

vid 0 -> id 14401
vid 1 ->id 14402

vid 99 -> id 14500

vid 100 -> usernane 'dlvilla’
vid 101 -> usernane ' kanouff

vid 113 -> usernane 'sierra’
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vid 114 -> nodename gl oryl10’
vid 115 -> nodename 'gloryll’

vid 181 -> nodename ' gl ory68’

eid 0 -> job 14401 is run by user 'sierra’
eid 1 ->job 14402 is run by user 'sierrd

eid 99 -> job 14500 is run by user ’sgrange’

eid 100 -> job 14401 is run on node 'gloryl198’
eid 101 -> job 14402 is run on node 'gloryl77

eid 479 -> job 14500 is run on node 'gloryl89

Nurmber of ’'runs_on’ edges = 380

Following completion of the multi-partite graph the uni-partite graph is generated. This consists of one
vertex class.
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vid 0 -> id 14401
vid 1 ->id 14402

vid 99 -> id 14500

eid 1717 -> job 14401, job 14402 has
eid 1718 -> job 14401, job 14403 has

eid 3438 -> job 14499, job 14500 has

Nurmber of 'user_match’ edges = 1722

eid 3439 -> job 14401, job 14413 has
eid 3440 -> job 14401, job 14418 has

eid 4637 -> job 14499, job 14500 has

user _mat ch
user _mat ch

user _mat ch

node_nat ch
node_mat ch

node_mat ch
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eid 8329 -> job 14401, job 14402 has time_match
eid 8330 -> job 14401, job 14403 has time_match

0.6
0.3125

eid 8555 -> job 14498, job 14499 has time_match

0. 00179856
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B Output Description for CARA Osq|l

In demonstrating the execution 6ARG Csgl we first runOVgr aphSynt hesi s on the original SLURM
database. As an example we execute the following command,

$ ./ov_graph_synthesis --db slurmdb --verbose true --sgl "select
slurmjob_log where id > 14400 and id < 14501"

CargioSQL will display the database table information depictdeigare B.1.

Database Table Info

Database Table Info

Database Table Info

Database Table Info

* from

Database Table Info

+islurm_job_log (24375)
= nodeTableMultiPartite (182)
vid [int]
vname [string]
id [int]
Jobid [int]
username [string]

ID

userid [int]
Jjobname [string]
Jobstate [string]
partition [string]
timelimit [int]
starttime [string]
endtime [string]
absstart [int]
absend [int]
nodelist [string]
nodecount [int]
nodename [string]
vdisplayname [string]
vtype [int]
vtypename [string]

+ run_by (100)

+ runs_on (380}

+ nodeTableUniPartite (100)

+ clusterTable (100}

(&l

L fmmman mamesl (17170

Figure B.1.

+-slurm_job_log (24375)

* nodeTableMultiPartite (182)

= run_by (100)
source [int]
target [int]
weight [double]
eid [int]
= runs_on (380)
source [int]
target [int]
weight [double]
eid [int]
+ nodeTableUniPartite (100)
# clusterTable (100)
+- jname_match (1717)
+ user_match (1722)
+ node_match (1199)
+ jstate_match (3691)
+- time_match (227)
+ partition_match (2774)

“ slurm_job_log (24375)

+- nodeTableMultiPartite (182)

+ run_by (100)

+ runs_on (380)

-/ nodeTableUniPartite (100)
vid [int]
vname [string]
id [int]
Jobid [int]
username [string]
userid [int]
Jjobname [string]
Jjobstate [string]
partition [string]
timelimit [int]
starttime [string]
endtime [string]
absstart [int]
absend [int]
nodelist [string]
nodecount [int]

+ clusterTable (100)

+ jname_match (1717)

+- user_match (1722)

+ node_match (1199)

timmn mameob /27

e

+islurm_job_log (24375)

# nodeTableMultiPartite (182) |

+- run_by (100}

+ runs_on (380)

+ nodeTableUniPartite (100)
- clusterTable (100)

cid [int]
cluster_gold [string]
cluster_user [string]

+ jname_match (1717)
+- user_match (1722)

+ node_match (1199)
+ jstate_match (3691)

*

time_match (227)

+ partition_match (2774)

+slurm_job_log (24375)

# nodeTableMultiPartite (182)
+ run_by (100)

+ runs_on (380)

+ nodeTableUniPartite (100)

®

clusterTable (100)

+ jname_match (1717)
+ user_match (1722)
= node_match (1199)

source [int]
target [int]
weight [double]
eid [int]

etype [int]

+ jstate_match (3691)
+ time_match (227)
+ partition_match (2774}

Expanded view of the graph tables generated by

Ovgr aphSynt hesi s showing the fields for the multi-partite and uni-
partite vertex tables, as well as the associated edge and cluster tables.

If we specify the multi-partite node table as our vertex set and eitheruthey or runs on edge type

as our edge set, CargioSQL will generate the visualization depictedjune B.2. We are free to label the
vertices and edges by any vertex or edge attribute respectivafygline B.2 the vertices have been colored
by vertex type to distinguish betweejobs, users, andcompute nodes. We can zoom into a sub-network as
shown inFigure B.3.

If we specify the uni-partite node table as our vertex set anahdde match edge type as our edge set,
CargioSQL will generate the visualization depictedrigure B.4. In this case all of our vertices represent
jobs. Again we are free to label the vertices and edges by any vertex or edge attribute respecthigly.eln
B.5 thetime match edge type is shown.
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Figure B.2. A view of a multi-partite graph showinjgpbs (blue ver-
tices),users (green vertices), ancbompute nodes (red vertices). Vertices
are labeled by job name. (Top) Then by edge type is shown, connect-
ing jobsto users. (Bottom) Theruns on edge type is shown, connecting
jobs to compute nodes.
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Figure B.3. An enlarged view of a sub-network of thens on multi-
partite graph. (Top) Vertices are labeled by job name. (Bottom) Vertices

are labeled by job state.
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Figure B.4. A view of a uni-partite graph (all vertices ajabs). The
node match edge type is shown. (Top) Vertices are labeled by job name.
(Bottom) An enlarged view of a sub-network. Vertices are labeled by job

state.
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Figure B.5. A view of the uni-partite graph with thiééme match edge
type shown. (Top) Vertices are labeled by node list. (Bottom) Vertices
are labeled by user name.
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C Output Description for Ovcl ust er

In demonstrating the execution 6Kcl uster we first runOvgr aphSynt hesi s on the original SLURM
database. As an example we execute the following command,

$ ./ov_graph_synthesis --db slurmdb --verbose true --sql "select * from slurmjob_l og

where id > 9400 and id < 9701"

We then define a cluster namedust er _gol d. We assign cluster labels t ust er _gol d based on the
job state. Now we can execu@®cl ust er. The output to the command,

$ ./ovcluster --db slurmdb --edge node_natch .75 --edge time_match .25
--cluster cluster_comm--truth cluster_gold --simmatrix simmat --mode init

--verbose true --collapse 50
begins by echoing the input parameters,

dat abase = test.db

edge type = node_match (.75)

edge type = time_match (. 25)

node col lapse limt = 50

cluster |abel = cluster_comm
truth cluster label = cluster_gold
simlarity matrix = sinmmat
operational nmode = initialize
verbose node = true

Next, the aggregate graph is generated,

Hemmmaeaaaaan R Hemmmaeenaaaaan S R
| source | target | weight | eid
e S e o
| 0 | 1 | 0.25 | 0

| 0 | 2 | 0.25 | 1

| 298 | 299 | 0.744 | 20991
Hemmmaeaaaaan R R S R
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The graph is then collapsed,

v5 <- {v0, v1, v2, v3, v4, v6, v7, v8, v9, v10, v1l, vi12, v13, v14}
v15 <- NULL

v193 <- {v34, v31, v17, v27, v28, v29, v30, v26, v32, v47, v48, v33, ...}

v205 <- NULL

Nurmber of collapses to get to target 10
Nurber of vertices in original graph = 300
Nurmber of vertices in collapsed graph = 38
Nurmber of col | apsed vertices = 262

Nurmber of edges in collapsed graph = 2617

The ground truth clustering is then reported. This is the cluster assignment performed based on the job
state (“FAILED” = 0, “CANCELLED” = 1, “TIMEOUT” = 2, "COMPLETED” = 3, other = -1).
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A random clustering is generated,

5 gold clusters, and 5 conmmunity detection clusters.

CGold cluster distribution, 1 ->0.173, 3 ->0.713, 0 -> 0.05, 2
Random cl ustering (using gold dist.), 3 ->0.767, 1 ->0.133, 0 -
VO metric relative to truth = 0.91701.

VO netric for randomcluster relative to truth = 1.60103.

> 0.06, -1 -> 0.003.
> 0.06, 2 -> 0.04.
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Metrics are reported for the ensemble clustering,

5 gold clusters, and 4 comunity detection ensenble clusters.
VO netric relative to truth = 0.913795.
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