
SANDIA REPORT
SAND2010-2400
Unlimited Release
Printed August 2010

A Framework for Graph-Based Synthesis,
Analysis, and Visualization of HPC
Cluster Job Data

James Brandt, Vincent De Sapio, Ann Gentile, Philip Kegelmeyer, Jackson Mayo, Philippe
Pébay, Diana Roe, David Thompson, and Matthew Wong

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy

by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United

States Government. Neither the United States Government, nor any agency thereof, nor any

of their employees, nor any of their contractors, subcontractors, or their employees, make any

warranty, express or implied, or assume any legal liability or responsibility for the accuracy,

completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-

resent that its use would not infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,

does not necessarily constitute or imply its endorsement, recommendation, or favoring by the

United States Government, any agency thereof, or any of their contractors or subcontractors.

The views and opinions expressed herein do not necessarily state or reflect those of the United

States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best

available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401

Facsimile: (865) 576-5728

E-Mail: reports@adonis.osti.gov

Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce

National Technical Information Service

5285 Port Royal Rd

Springfield, VA 22161

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders@ntis.fedworld.gov

Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
EP

ARTMENT OF ENERG
Y

•
 •
U
N

IT
ED

STATES OF AM

ER
I C

A

2

SAND2010-2400
Unlimited Release

Printed August 2010

A Framework for Graph-Based Synthesis, Analysis, and
Visualization of HPC Cluster Job Data

James Brandt∗, Vincent De Sapio∗, Ann Gentile◦, Philip Kegelmeyer∗, Jackson Mayo∗,
Philippe Pébay∗, Diana Roe⋄, David Thompson∗, and Matthew Wong◦

Sandia National Laboratories
MS ∗9159 /◦9152 /⋄9292

P.O. Box 969, Livermore, CA 94551 U.S.A.
ovis@sandia.gov

Abstract

The monitoring and system analysis of high performance computing (HPC) clusters is of increasing
importance to the HPC community. Analysis of HPC job data can be used to characterize system usage
and diagnose and examine failure modes and their effects. This analysis is not straightforward, however,
due to the complex relationships that exist between jobs. These relationships are based on a number
of factors, including shared compute nodes between jobs, proximity of jobs in time, etc. Graph-based
techniques represent an approach that is particularly well suited to this problem, and provide an effective
technique for discovering important relationships in job queuing and execution data. The efficacy of
these techniques is rooted in the use of a semantic graph as a knowledge representation tool. In a
semantic graph job data, represented in a combination of numerical and textual forms, can be flexibly
processed into edges, with corresponding weights, expressing relationships between jobs, nodes, users,
and other relevant entities. This graph-based representation permits formal manipulation by a number of
analysis algorithms.

This report presents a methodology and software implementation that leverages semantic graph-
based techniques for the system-level monitoring and analysis of HPC clusters based on job queuing
and execution data. Ontology development and graph synthesis is discussed with respect to the domain
of HPC job data. The framework developed automates the synthesis of graphs from a database of job
information. It also provides a front end, enabling visualization of the synthesized graphs. Additionally,
an analysis engine is incorporated that provides performance analysis, graph-based clustering, and failure
prediction capabilities for HPC systems.

3

4

Contents

1 Introduction . 7
2 Related Work . 9
3 Graph Synthesis . 10

3.1 Multi-Partite Semantic Graph . 10
3.2 Uni-Partite Semantic Graph . 11
3.3 TheOVgraphSynthesis Utility . 13

4 Visualization and Manipulation . 15
4.1 TheCARGIOsql Utility . 15

5 Analysis and Clustering . 17
5.1 Community Detection . 17
5.2 Aggregating Multiple Edge Types . 17
5.3 Cluster Ensembling . 18
5.4 Variation of Information Metric . 19
5.5 TheOVcluster Utility . 21

6 Example Use Case and Results . 23
6.1 Graph Synthesis . 23
6.2 Graph Visualization and Exploration . 24
6.3 Graph Analysis and Clustering . 24

7 Additional Job Semantics to Extend the Graph Ontology . 30
8 Conclusion. 33
References . 34

Appendix

A Output Description forOVgraphSynthesis . 35
B Output Description forCARGIOsql . 39
C Output Description forOVcluster . 44

Figures

1 Process flow showing graph synthesis, visualization, and analysis operations 8
2 Multi-partite graph comprised of three classes of vertices and two types of edges 11
3 A collapse of the multi-partite graph ofFigure 2 into a uni-partite graph 13
4 TheCargioSQL application . 16
5 Aggregation of multiple edge types into a graph with a single edge type 18
6 Ensembling of multiple clusterings . 19
7 Progressive collapsing of a graph . 22
8 A view of the multi-partite graph showingjobs, users, andcompute nodes 25
9 An enlarged view of a sub-network of the multi-partite graph . 27
10 The uni-partite graph withnode match andtime match edge types superimposed 28
11 Results of clustering the uni-partite job multigraph . 29
12 Multi-partite graph with anidle time vertex class and associated edge types 31
13 Views of the multi-partite graph showingjobs, idle times, users, andcompute nodes 32

5

Tables

1 Fields in theslurm job log table . 10
2 Sample data in theslurm job log table . 10
3 Additional attributes for the multi-partite job graph . 12
4 Additional attributes for the uni-partite job graph . 13
5 Fields in theidlejob table . 30
6 Sample data in theidlejob table . 30

6

1 Introduction

The high performance computing (HPC) community is constantly targeting systems with ever-increasing
computational power. However, the growing complexities of the architectures of such systems, and the
applications running on them, introduces greater challenges to understanding the system interactions which
can adversely impact performance. While a precise characterization of system performance may be difficult,
if not impossible, to achieve it may be sufficient to know what variables (e.g., those associated with job queu-
ing and execution, memory utilization, etc.) affect system performance and in what manner performance is
affected based on the interactions of these variables.

Determination of such relationships can be difficult, particularly for HPC systems where the number
of variables per component (e.g., computational nodes) may be in the hundreds, the relative importance of
the variables is unknown, and they may not be expressed in a quantitative form. Consequently, we seek
a methodology to determine the significant system variables and the interactions between them that affect
performance. Of particular interest are relationships among quantities that involve failure conditions, such
as failed jobs that share a common resource. Determination of significant failure conditions can be used to
enable prediction and/or early detection of failure scenarios that can be used to trigger mitigating actions.

Graph-theoretic approaches would seem to possess particular efficacy in addressing some of these chal-
lenges due to their strengths in modeling and analyzing complex networks [1]. Graph-based techniques have
become pervasive in the knowledge engineering and machine learning communities. Given an ontological
description of a domain, a semantic graph is a powerful knowledge representation tool that permits formal
manipulation by a number of graph-based clustering and analysis algorithms. In a semantic graph vertices
represent different objects in a domain and edges represent relationships between those objects. The ver-
tices can fall into a single class (uni-partite) or multiple classes (multi-partite) and edges can fall into one or
multiple types (multigraph).

Different semantic graphs can be synthesized for a given application depending on the particular on-
tology employed. Consequently, the choice of an ontology and subsequent graph synthesis should be con-
sidered in terms of the intended downstream use, as the particular structure of the semantic graph needs to
be amenable to its downstream use. InSection 3 we will discuss ontology definition and semantic graph
synthesis for application to the modeling of HPC cluster job data. This will involve using graphs to represent
HPC clusters as complex networks of jobs, users, computational nodes, and additional elements.

Graph visualization provides the user with a customizable display of the synthesized graphs. This is
important because the raw structure of a graph provides some basic insight into patterns and relationships
in the underlying data, even in the absence of any quantitative analysis. It also provides a visual front-
end to facilitate ground-truthing. This involves the assignment of different cluster or community labels to
vertices in the graph, based on the user’s knowledge of the context, and the visual insight gleaned from the
graph. This ground-truthing provides a way of validating automated clustering routines. InSection 4 we
will discuss the visual exploration of graph networks for HPC cluster applications.

Analysis of the synthesized graph consists of the application of automated clustering routines, combined
with validation and performance metrics. Clustering, or community detection, involves the determination
of sub-networks or communities within the data based on the relative strengths of edges between vertices.
This can be augmented with an ensembling approach that repeats the clustering process many times, varying
some parameter in the clustering process each time. This parameter can be the relative importance given to
each of the edge types (edge type weighting), or it can be a sub-sampling parameter associated with choosing

7

a different subset of the nodes in the overall graph each time.A consensus clustering is then obtained based
on combining each of the ensemble clusterings. InSection 5 we will discuss the application of graph-based
clustering and community detection to HPC cluster job data, with the objective of providing analysis and
prediction capabilities.

Figure 1. Process flow showing graph synthesis, visualization, and
analysis operations. The graph synthesis process generates a graph from
a database source. The graph can be visualized or directly passed to the
analysis process. During visualization, ground truthing can be performed
by the user. Analysis on either the ground truthed or raw graph results in
a clustered graph which can be viewed again.

Figure 1 depicts the process flow associated with graph synthesis, visualization, and analysis. The
following sections will detail the graph synthesis, visualization, and analysis phases with respect to the
domain of HPC cluster job queuing and execution.

8

2 Related Work

There are some existing tools that facilitate data mining and informatic analysis of complex interconnected
systems. SPLUNK [7] is a commercial IT search and analysis engine, that provides capabilities to in-
dex, search, alert and report on live and historical IT data. It does not, however, possess any significant
graph-based representation and analysis capabilities. Additionally, there are a number of general purpose
graph theoretic tools, some of which we are leveraging for this work. These include the TITAN Informatics
Toolkit [8] and the Multi-threaded Graph Library (MTGL) [4].

9

3 Graph Synthesis

The SLURM [6] database is the principle data archive used for storing job data. Theslurm job log table
consists of the columns of data described inTable 1. Sample data is shown inTable 2. A unique id is
associated with each job, as well as a number of attributes, including user name, job name, job state, start
and end time, and compute nodes used.

Table 1. Fields in theslurm job log table.
name description type

id unique database identifier int
jobid unique job identifier int

username name of user running job char
userid unique user identifier int

jobname name of job char
jobstate state of the job (completed, failed, etc.) char
partition partition job ran on char
timelimit time limit for the job int
starttime date/time job started datetime
endtime date/time job ended datetime
nodelist list of compute nodes running job varchar

nodecount number of compute nodes running job int

Table 2. Sample data in theslurm job log table.
id ... username jobname jobstate starttime ... nodelist nodecount

1 ... root hostname CANCELLED 2008-11-19 09:20:21 ... glory0 1
2 ... mrepper orterun FAILED 2008-11-19 09:35:54 ... glory[256-287] 32
3 ... sierra test COMPLETED 2008-11-19 09:36:11 ... glory[234, 255] 32
.

3.1 Multi-Partite Semantic Graph

An intuitive way of synthesizing the job data into a graph is to considerjobs, users, andcompute nodes as
three elemental classes of vertices. Semantic relationships exist between these vertex classes. For example,
we can say that a givenjob “is run by” a givenuser. Additionally, we can say that a givenjob “runs on” a
given set ofcompute nodes. This abstraction constitutes a multi-partite ontology graph. This is illustrated
in Figure 2 along with an instantiation.

In addition to the vertex classes and edge types defined for the multi-partite graph any number of at-
tributes can be associated with the vertices and edges based on data stored in theslurm job log. This data
can be useful for visualization of the synthesized graph as well as analysis. These attributes are summarized
in Table 3.

10

Figure 2. (Left) Multi-partite ontology graph comprised of three classes
of vertices and two types of edges. The vertex classes representjobs,
users, andcompute nodes. The edge types representrun by andruns on
relationships among the vertex classes. (Right) A simple instantiation
of the ontology graph for threejobs, two users, and fivecompute nodes.
The edge types representrun by and runs on relationships among the
vertices.

3.2 Uni-Partite Semantic Graph

A multi-partite graph is useful for visualizing the relationships betweenjobs, users, andcompute nodes.
However, with regard to downstream job clustering processes it may be advantageous to organize alljobs
into a uni-partite graph. In this way,jobs form the only vertex class in the graph, and they can be directly
clustered based on a set of edge types.

In order to generate a uni-partite graph of the form ofFigure 3, the multi-partite graph ofFigure 2 needs
to be collapsed so that vertices of classusers andcompute nodes are removed.Jobs that previously shared
edges withusers andcompute nodes will now share edges with each other.

The edge typesuser match andnode match will characterize the affinity between any twojobs based on
theusers andcompute nodes that they share. Foruser match, we let the termUk denote the user name forjob
k (e.g.,Uk = “root”). The adjacency matrix,A, which stores the strength (or weight) of the edge between
any two jobs can then be defined as,

Ai j ,

{

0 if Ui 6= U j

1 if Ui = U j
(1)

11

Table 3. Additional attributes for the multi-partite job graph.
name description type

vid unique vertex identifier int
vname unique vertex name varchar

nodename name of the compute node (if vertex is a compute node) varchar
vdisplayname name used for labeling the vertex (in downstream visualization) varchar

vtype identifier for vertex type (0 -job, 1 - user, 2 - compute node) int
vtypename name of vertex type varchar

Fornode match, we let the setNk denote the compute node list forjob k (e.g.,Nk = glory[1-11,15]). The
adjacency matrix can then be defined as,

Ai j ,
|Ni ∩N j|

|Ni ∪N j|
(2)

Additional Edge Types

We can define additional edge types based on other job attributes. If we let the termJk denote the job name
for job k (e.g.,Jk = “sierra”), the adjacency matrix for the edge typejob name match can be defined as,

Ai j =

{

0 if Ji 6= J j

1 if Ji = J j
(3)

If we let the termSk denote the job state forjob k (e.g.,Sk = “COMPLETED”), the adjacency matrix for
the edge typejob state match can be defined as,

Ai j =

{

0 if Si 6= S j

1 if Si = S j
(4)

If we let the the intervalTk denote the time interval forjob k (e.g.,Tk = [to, t f]), whereto is the start time
andt f is the end time), the adjacency matrix for the edge typetime match can be defined as,

Ai j =
|Ti ∩Tj|

|Ti ∪Tj|
(5)

Finally, if we let the termPk denote the partition forjob k (e.g.,Pk = “pbatch”), the adjacency matrix for
the edge typepartition match can be defined as,

Ai j =

{

0 if Pi 6= Pj

1 if Pi = Pj
(6)

In addition to the edge types defined for the unii-partite graph two additional vertex attributes will be
defined apart from the nativeslurm job log table fields. These are summarized inTable 4.

12

Figure 3. A collapse of the multi-partite graph ofFigure 2 into a uni-
partite graph. The solitary vertex class representsjobs. The run by
andruns on relationships betweenjobs andusers, andjobs andcompute
nodes, have been replaced byuser match andnode match relationships
betweenjobs. Additional edge types can be defined to representjob name
match, job state match, time match, andpartition match relationships.

Table 4. Additional attributes for the uni-partite job graph.
name description type

vid unique vertex identifier int
vname unique vertex name varchar

3.3 TheOVgraphSynthesisUtility

Graph synthesis can be performed based on the ontologies described inSections 3.1 and3.2. To this end we
have developed theOVgraphSynthesis command line utility to automate this process. It is executed in the
following form,

$./ov graph synthesis --db <database> --sql <sql> --verbose <true|false>

where<database> is the name of a database file (SQLite is currently supported). The sql statement
is enclosed in quotes. For example, the command,

$./ov graph synthesis --db slurm.db --sql "select * from slurm job log
where id > 14400 and id < 14501" --verbose true

will select rows from theslurm job log table of database,slurm.db, corresponding toid 14401 through
14500. The graphs will be generated from this data and stored in separate tables inslurm.db. Another
example is,

13

$./ov graph synthesis --db slurm.db --sql "select * from slurm job log
where username = ’mrepper’" --verbose true

This will select rows corresponding to user name’mrepper’ and generate the graphs from this data. In
verbose modeOVgraphSynthesis outputs vertex and edge data to the terminal, first for the multi-partite
graph, and then for the uni-partite graph.Appendix A provides a description of the output generated by
OVgraphSynthesis and Section 6 demonstrates the use ofOVgraphSynthesis for a use case involving
actual HPC job data.

14

4 Visualization and Manipulation

Semantic graphs have a natural visual context. As with all graphs, objects within the domain are depicted
as vertices and relationships among the objects are depicted as edges (or arcs) connecting the vertices.
Semantic graphs offer additional richness to the visual depiction, since there are multiple edge types that
need to be visually distinguished. In the multi-partite case there are also multiples classes of vertices which
need to be visually distinguished.

In addition to a visual display of the generated graphs there is a need for user manipulation of the graphs,
particularly with regard to ground-truthing. As described earlier, ground-truthing involves the assignment
of cluster labels to graph vertices. This leverages the user’s knowledge of the data, as well as insight into
patterns and relationships drawn from the visual depiction of the graph.

4.1 TheCARGIOsql Utility

Using the VTK [9] based TITAN Informatics Toolkit [8] theCargioSql application has been developed as
a general tool for the visualization of attributed relational graphs. More recently, it has been specifically
catered to HPC cluster job data. The user selects a database file (SQLite is currently supported) to load. For
our purposes we will load any file processed by theOVgraphSynthesis tool. The interface forCargioSql
is shown inFigure 4. Appendix B provides a description of the graphical output generated byCARGIOsql
andSection 6 demonstrates the use ofCARGIOsql for a use case involving actual HPC job data.

15

Figure 4. The CargioSQL application. A database containing the
raw SLURM job log table, and the graph tables generated by the
OVgraphSynthesis utility, is opened.

16

5 Analysis and Clustering

The previous section addressed the use of visualization techniques as a means of gaining insight into the
underlying data relationships encoded in a semantic graph. This provides only a qualitative perspective on
relevant relationships in the data. For a more rigorous quantitative assessment of the patterns present in the
data, analysis and clustering algorithms must be used. The basic goal of a clustering algorithm is to generate
separate clusters, or communities, containing individual data objects sharing an affinity.

For our purposes we will be concerned with the clustering ofjob vertices. Before proceeding It will be
useful to formally define a clustering of vertices. First we consider the set,V , of n vertices.

V = {v1,v2, · · · ,vn} (7)

We now consider two clusterings,C andC′, each of which is a collection of subsets ofV . More formally,C
andC′ each constitute a family of sets overV . Let k be the array ofp cluster labels associated withC, and
let k ′ be the array ofr cluster labels associated withC′. Further, letLki be the set of vertices with cluster
assignmentki in clusteringC, and letL′

k′i
be the set of vertices with cluster assignmentk′i in clusteringC′.

Then,

C , {Lk1, · · · ,Lkp} (8)

C′ , {L′
k′1

, · · · ,L′
k′r
} (9)

whereLki ,L
′
k′i
⊆V . These definitions will be referred to inSection 5.4.

5.1 Community Detection

The method of Girvan and Newman [2][5] has recently achieved prominence in the area of graph-based
community detection. In this method a quantity termed betweenness is computed for all edges in the graph.
Betweenness for a particular edge reflects how many shortest paths between pairs of nodes run along that
edge. The edge with the largest betweenness is removed and the betweeneess values are recalculated on
all edges affected by the removal. This process is repeated based on some criterion. When finished, each
connected subgraph corresponds to a community.

For our purposes we will apply community detection to the uni-partite semanticjob graph. Although this
is comprised of a single vertex class it possesses multiple edge types. The community detection algorithm
addresses graphs with a single edge type. The next section discusses the aggregation of multiple edge types.

5.2 Aggregating Multiple Edge Types

Given a multigraph withnE edge types there arenE adjacency matrices,{A1,A2, · · · ,AnE}. We can perform
a weighted aggregation of these adjacency matrices. This yields the aggregate adjacency matrix,

A⋆ =
nE

∑
j=1

w jA j (10)

wherew j is a weight associated with the relative importance of thejth edge type.Figure 5 illustrates this
aggregation process. Often one may not have an a priori knowledge of the appropriate weighting for a

17

given edge type. Consequently, either an optimization approach must be employed to find an optimal set of
weights, or, an ensembling approach must be employed to yield a consensus clustering from many separate
clusterings, each using different weights. The ensembling approach will be discussed inSection 5.3.

Figure 5. Aggregation of multiple edge types into a graph with a single
edge type. An aggregate adjacency matrix,A⋆

i , associated with theith
clustering is generated from the individual edge type adjacency matrices,
{A1, · · · ,AnE } and weight vectorwi. The weightwi j is associated with
the relative importance of thejth edge type in theith clustering of the
ensemble.Figure 6 describes the subsequent ensembling process.

5.3 Cluster Ensembling

The process of ensembling together multiple clusterings first involves computing a similarity matrix for a
given clustering. Given a clusteringC, we letc be the array ofn cluster assignments, associating a cluster
label with each of then vertices. The similarity matrix,S, is then defined as,

Si j ,

{

0 if ci 6= c j

1 if ci = c j
(11)

Given a set of clusterings,{C1,C2, · · · ,CnC}, and associated similarity matrices,{S1,S2, · · · ,SnC}, we
can define a consensus function on the similarity matrices. A simple averaging consensus function would

18

be,

S⋆ =
nC

∑
i=1

Si/nC (12)

This ensembling method can be implemented with the community detection algorithm. An aggregate
adjacency matrix can be computed for a given set of edge weights. These weights can be randomly generated
and, for each set, an aggregate adjacency matrix can be computed. Community detection can be run on these
aggregate adjacency matrices, yielding a separate clustering for each. Similarity matrices can be associated
with each clustering and these can then be used to obtain a consensus similarity matrix,S⋆, as described
above. Finally, community detection can be run on this consensus similarity matrix, yielding a consensus
clustering,C⋆. This ensembling procedure is illustrated inFigure 6 and detailed inAlgorithm 1.

Figure 6. Ensembling of multiple clusterings. A consensus function,
S⋆, is defined on the similarity matrices,{S1, · · · ,SnC}. Community de-
tection is run on the graph associated with the consensus similarity ma-
trix, yielding a consensus clustering,C⋆.

5.4 Variation of Information Metric

The variation of information (VOI) metric [3] measures the amount of information lost and gained in tran-
sitioning between two clusterings. To compute the metric we first denotenki as the number of vertices with
cluster assignmentki in clusteringC, and denotenk′i

as the number of vertices with cluster assignmentk′i in
clusteringC′. Finally, letnkik′j

be the number of vertices with both cluster assignmentki in clusteringC and

19

Algorithm 1 Ensembling multiple clusterings generated from different edge type weightings

1: SΣ = 0 {initialization}

2: load multigraph {A1, · · · ,AnE}

cluster ensembling loop

3: for i = 1 to nC do

4: generate wi {randomization}

5: A⋆
i = 0 {initialization}

graph aggregation loop

6: for j = 1 to nE do

7: A⋆
i = A⋆

i + wi jA j

8: end for

9: generateCi {community detection onA⋆
i }

10: generate Si {Ci −→ Si}

11: SΣ = SΣ +Si

12: end for

13: S⋆ = SΣ/nC

14: generateC⋆ {community detection onS⋆}

cluster assignmentk′j in clusteringC′. That is,

nki = |Lki | (13)

nk′i
= |L′

k′i
| (14)

nkik′j
= |Lki ∩L′

k′j
| (15)

We then define the probability,P(ki), of a vertex being assigned toki in clusteringC and the probability,
P(k′i), of a vertex being assigned tok′i in clusteringC′. Finally, we define the probability,P(ki,k′j), of a
vertex being assigned toki in clusteringC and tok′j in clusteringC′. So,

P(ki) =
nki

n
(16)

P(k′i) =
nk′i

n
(17)

P(ki,k
′
j) =

nkik′j

n
(18)

The entropy of information associated withC andC′ is then,

H(C) = −
p

∑
i=1

P(ki)logP(ki) (19)

H(C′) = −
r

∑
i=1

P(k′i)logP(k′i) (20)

20

and the mutual information shared byC andC′ is,

I(C,C′) =
p

∑
i=1

r

∑
j=1

P(ki,k
′
j)log

P(ki,k′j)

P(ki)P(k′j)
(21)

Finally, the variation of information betweenC andC′ is,

d(C,C′) = H(C)+ H(C′)−2I(C,C′) (22)

5.5 TheOVcluster Utility

The Multi-threaded Graph Library (MTGL) [4] incorporates algorithms for a weighted version of the New-
man method. We have developed theOVcluster command line utility using MTGL in conjunction with
the TITAN toolkit. OVcluster is executed in the following form,

$./ov cluster --db <database> --edge <edge type 1> <weight 1> ...
<edge type n> <weight n> --cluster <cluster> --truth <truth cluster>
--sim-matrix <similarity matrix> --mode <init|incr> --verbose <true|false>
--collapse <collapse limit>

The --edge flag specifies the name of an edge type (edge table in the database) to be included in the
graph and the corresponding edge type weight to be applied. Any number of edges can be specified. The
--cluster flag specifies the database cluster table column name in which to store the cluster assignments.
The--truth flag specifies the database cluster table column name in which the ground truth clustering is
stored. This is used in computing the variation of information between the generated clustering and ground
truth. The--sim-matrix flag specifies the database table name in which to store the similarity matrix.
Finally, the--mode flag specifies whether to run in initialization or incremental mode.

The--collapse flag specifies the collapse limit of the graph. The user can specify that the graph be
coarsened down to a simpler graph. This involves randomly choosing vertices to which neighboring vertices
are collapsed (seeFigure 7). This process repeats until the number of vertices remaining in the graph is less
than or equal to the specified collapse limit. Community detection is performed on this coarsened graph.
The clustering is subsequently expanded so that the collapsed vertices receive the cluster assignment of their
respective parent vertex (vertex into which they collapsed).

OVcluster can be run repeatedly on the same input database file to generate multiple clusterings associ-
ated with a cluster ensemble. After each run a consensus similarity matrix and consensus clustering is stored
in the database. This reflects the consensus of all the clusterings generated up to that point. The--mode flag
would be set toinit on the first ensemble run andincr on subsequent runs. After the final run a consensus
clustering associated with the ensemble of all previous clusterings would be stored.Appendix C provides a
description of the output generated byOVcluster andSection 6 demonstrates the use ofOVcluster for a
use case involving actual HPC job data.

21

Figure 7. Progressive collapsing of a graph. When vertex 1 is chosen,
vertices 2, 3, and 4 collapse to it. Next, when vertex 7 is chosen, vertex 5
collapses to it. After clustering is performed on the collapsed graph the
collapsed vertices receive the cluster assignment of their parent vertex.

22

6 Example Use Case and Results

The following example is based on SLURM data associated with Sandia’s Glory cluster, a 288-node, 4068-
core Opteron cluster with an Infiniband interconnect.

6.1 Graph Synthesis

We would like to extract a specific set of jobs from theslurm job log table of the database. This can be
done with the followingOVgraphSynthesis command,

$./ov graph synthesis --db slurm.db --sql "select * from slurm job log
where jobid > 12700 and jobid < 12800" --verbose true

Given the jobs specified at the command line the vertices (jobs, users, andnodes) of the multi-partite graph
are generated. Example output consists of,

--
Generating node vertices....
--
vid 110 -> nodename ’glory10’
vid 111 -> nodename ’glory103’
...
vid 212 -> nodename ’glory96’
--
Number of node vertices = 103
--

Next, the edges are generated. Example output consists of,

--
Generating ’runs on’ edges....
--
eid 99 -> job 16143 is run on node ’glory153’
eid 100 -> job 16143 is run on node ’glory154’
...
eid 516 -> job 17818 is run on node ’glory234’
--
Number of ’runs on’ edges = 418
--

Following completion of the multi-partite graph the uni-partite graph is generated. This consists of the
single vertex class,jobs. The edges are then generated. Example output consists of,

23

--
Generating ’time match’ edges....
--
e4408 -> job 16143, 16771 has time match = 0.00550334
e4409 -> job 16143, 17012 has time match = 0.00536969
...
e5029 -> job 17817, 17818 has time match = 0.999737
--
Number of ’time match’ edges = 622
--

6.2 Graph Visualization and Exploration

We can now load the database file resulting from the execution ofSection 6.1 into theCargioSql applica-
tion. If we specify the multi-partite node table as our vertex set and therun by andruns on edge types as our
edge set,CargioSql will generate the visualization depicted inFigure 8. Using the pull-down menus on
the bottom right we are free to label the vertices and edges by any attribute stored in the SLURM database
or defined by the user. The vertices have been colored byvertex type to distinguish betweenjobs, users, and
compute nodes. We can navigate and zoom into any region of the graph to explore sub-networks (seeFigure
9).

If we specify the uni-partite node table as our vertex set and thenode match andtime match edge types as
our edge set, CargioSQL will generate the visualization depicted inFigure 10. In this case all of our vertices
representjobs. Again we are free to label the vertices and edges by any defined attribute. FromFigure 10
we can qualitatively glean a correlation between the community structure associated with this edge set and
the ultimate fate of the job. This will be quantitatively explored.

6.3 Graph Analysis and Clustering

We can now cluster the uni-partite graph generated during the graph synthesis phase. Ground truth will be
defined by the job state(“FAILED” = 0, “CANCELLED” = 1, “TIMEOUT” = 2, ”COMPLETED” = 3, other
= -1). This will allow us to evaluate the quality of the clustering relative to known truth values. Given the
output (toslurm.db) produced by followingOVgraphSynthesis command,

$./ov graph synthesis --db slurm.db --sql "select * from slurm job log
where jobid > 12700 and jobid < 12800" --verbose true

We can execute the followingOVcluster command,

$./ov cluster --db slurm.db --edge node match .75 --edge time match .25
--cluster cluster comm --truth cluster gold --sim-matrix simmat --mode init
--verbose true --collapse 50

where we are choosing to aggregate thenode match and time match edge types of the multigraph with
edge type weights of 0.75 and 0.25 respectively. The aggregate graph is generated,

24

Figure 8. A view of the multi-partite graph showingjobs (blue vertices),
users (green vertices), andcompute nodes (red vertices). Vertices are
labeled by corresponding name (job name, user name, or compute node
name). Therun by edge type, connectingjobs to users, and theruns on
edge type, connectingjobs to compute nodes, are shown.

--
Generating aggregate graph....
+--------+--------+--------+---------+----------+
| source | target | weight | eid | etype |
+--------+--------+--------+---------+----------+
| v0 | v87 | 0.3 | e0 | -1 |
| v1 | v2 | 0.0779 | e1 | -1 |
...
| v98 | v99 | 0.2499 | e876 | -1 |
+--------+--------+--------+----------+---------+
Number of edges in aggregate graph = 877
--

25

The graph is then collapsed,

--
Collapsing aggregate graph...
--
Number of collapses to get to target = 2
Number of vertices in original graph = 100
Number of vertices in collapsed graph = 50
Number of collapsed vertices = 50
Number of edges in collapsed graph = 393
--

Clustering is then performed and statistics and metrics are reported,
--
5 gold clusters, and 3 community detection clusters.
Gold cluster distribution, 1 -> 0.16, 3 -> 0.55, 0 -> 0.14, 2 -> 0.1 -1 -> 0.05.
Random clustering (using gold dist.), 3 -> 0.52, 0 -> 0.15, 1 -> 0.2, 2 -> 0.08,
-1 -> 0.05.
VOI metric relative to truth = 1.65389.
VOI metric for random cluster (with known distribution) relative to truth = 2.37941.
--

The results of the job clustering are shown inFigure 11, with the jobs labeled by their actual job state.
The statistics indicate that the variation of information of the generated clustering relative to the truth data
(Gold cluster using job state as cluster labels) is 1.65389. This is substantially better than that of a random
clustering relative to truth whose VOI is 2.37941. Moreover, the random clustering has the benefit of know-
ing the ground truth cluster distribution, whereas, the generated clustering only has access to edge weights
associated withnode match andtime match.

In this example theOVcluster utility was run a single time with an arbitrary set of edge type weights
(0.75 and 0.25), however, we could also runOVcluster multiple times with randomized edge type weights
and ensemble the clusterings together in an attempt to improve our clustering accuracy.

26

Figure 9. An enlarged view of a sub-network of the multi-partite graph.
(Top) Vertices are labeled by corresponding name (job name, user name,
or compute node name). (Bottom) Vertices are labeled by job state.

27

Figure 10. A view of the uni-partite graph (all vertices arejobs and
color indicates vertex degree). Thenode match and time match edge
types are superimposed. (Top) Vertices are labeled by job name. (Bot-
tom) Vertices are labeled by job state. We can see a qualitative correlation
between the community structure in this graph and the job state.

28

Figure 11. Results of clustering the uni-partite job multigraph. (Top)
The original graph defined bynode match and time match edge types.
Structures in the graph are qualitatively highlighted. (Bottom) Three sep-
arate communities are identified by the community detection algorithm.
Vertices are labeled by job state to convey the correlation between the
communities and the job state.

29

7 Additional Job Semantics to Extend the Graph Ontology

In addition to the job graph semantics described inSection 3 we can specify additional semantics in order
to extend the job graph ontology. As an example we will present a use case involving job idle times. We
consider an additional table of data to augment theslurm job log table. This is theidlejob table. Table
5 describes some of the relevant columns of data associated with theidlejob table. Sample data is shown
in Table 6.

Table 5. Fields in theidlejob table.
name description type

id unique database identifier for the an individual idle time int
node id of node associated with the idle time int

ScaledFirstUsage scaled active memory used on the node at that idle timedouble
jobid id of job associated with the idle time int

FunctionalIdle id of functional idle associated with the job and node int
ResponsibleNode id of the responsible node int

Table 6. Sample data in theslurm job log table.
id node ... ScaledFirstUsage ... jobid ... FunctionalIdle ResponsibleNode

7263 234 ... 0.0159 ... 12755 ... 7263 -1
7264 234 ... -1 ... 12756 ... 7263 -1
7265 234 ... -1 ... 12757 ... 7263 228

.

The data in this table is constructed as follows. For every jobon every node the nearest idle time
preceeding that job on that node is found and assigned a unique id. If there is a value of memory usage
associated with that idle time it is reported and the idle time is recorded as the functional idle associated
with that job and node. It may be that due to the data collection frequency, there is no data point for the
idle time just preceeding a given job. In this case a -1 is reported for active memory usage, and the nearest
preceding idle time with an active memory value is used as the functional idle associated with that job and
node. For jobs that have functional idles on all nodes, the node associated with the functional idle with the
highest scaled memory usage is assigned as the responsible node.

We can consider these relationships in a multi-partite graph by introducing an additional vertex class.
In addition tojobs, users, andcompute nodes we introduceidle time. Additional semantic relationships
(edges) exist between these vertex classes. For example, we can say that a givenjob “has a” givenidle time
as its idle time, or as its functional idle. We can also say that a givenjob “has a” givencompute node as
its responsible node. Additionally, we can say that a givenidle time “is on” a givencompute node. This
abstraction is illustrated inFigure 12 along with an instantiation.

The uni-partite graph derived from the multi-partite graph ofFigure 12 will include additional edge
types betweenjobs. It is noted thatjobs share noidle times but they do share functional idles and responsible
nodes. If we let the setFk denote the functional idle list forjob k (e.g.,Fk = 1, 2, 3, 5). The adjacency matrix

30

Figure 12. (Left) Multi-partite ontology graph comprised of an addi-
tional idle time vertex class and associated edge types. The additional
edge types representhas idle and is on relationships betweenjobs and
idle times, and betweenidle times andcompute node respectively. (Right)
A simple instantiation of the ontology graph for threejobs, two users,
five compute nodes, and sevenidle times.

for the edge typefunctional idle match can be defined as,

Ai j ,
|Fi ∩Fj|

|Fi ∪Fj|
(23)

If we let the termNk denote the responsible node forjob k (e.g.,Nk = “glory1”), the adjacency matrix
for the edge typeresponsible node match can be defined as,

Ai j =

{

0 if Ni 6= N j

1 if Ni = N j
(24)

Additional edges can be defined to encode information such as scaled memory usage and other quanti-
ties.Figure 13 displays the mutli-partite graph associated with this extended semantics.

31

Figure 13. Views of the multi-partite graph showingjobs (blue ver-
tices),idle times (red vertices),users (green vertices), andcompute nodes
(yellow vertices). Thehas idle andhas functional idle edge types, con-
nectingjobs to idle times, are shown. Also shown are thehas responsible
node edge type connectingjobs to compute nodes, and theis on edge type
connectingidle times to compute nodes.

32

8 Conclusion

We have presented a methodology and implementation for graph-based representation, visualization, and
analysis of HPC job queuing and execution data. Our work exploits the efficacy of semantic graphs as a
knowledge representation tool. Using graph-based clustering and community detection algorithms we have
demonstrated the utility of this approach in finding sub-networks, or communities, within HPC job data.
This can be leveraged for system-level analysis and failure prediction.

An example was presented using actual HPC job data. The example detailed a specific set of jobs shar-
ing a set of compute nodes. Two edges,node match andtime match, were shown to possess a community
structure that was related to the ultimate fate of the jobs. This serves as a simple example of the potential
utility of our graph theoretic framework within the domain of HPC failure prediction. We intend to per-
form more rigorous investigations of the community structure of HPC systems based on additional edge
types, data attributes and clustering approaches, including cluster ensembling. Based on the flexibility of
our framework in specifying the HPC graph semantics, as well as synthesizing, visualizing, and analyz-
ing the graphs we consider it to be a potentially powerful platform for failure prediction, mitigation, and
performance improvement in HPC clusters.

33

References

[1] S. Fortunato. Community detection in graphs.Physics Reports, 486:75–174, 2010.

[2] M. Girvan and M. E. Newman. Community structure in social and biological networks.Proceedings of
the National Academy of Sciences, 99(12):7821–7826, 2002.

[3] M. Meilă. Comparing clusterings by the variation of information.Lecture Notes in Computer Science,
pages 173–187, 2004.

[4] MTGL multi-threaded graph library. https://software.sandia.gov/trac/mtgl.

[5] M. E. Newman and M. Girvan. Finding and evaluating community structure in networks.Physical
Review E, 69(2):026113 1–15, 2004.

[6] SLURM. https://computing.llnl.gov/linux/slurm.

[7] SPLUNK. http://www.splunk.com.

[8] T ITAN toolkit. http://titan.sandia.gov/.

[9] VTK visualization toolkit. http://www.vtk.org/.

34

A Output Description for OVgraphSynthesis

The output to the command,

$./ov graph synthesis --db slurm.db --sql "select * from slurm job log
where id > 14400 and id < 14501" --verbose true

begins by echoing the input parameters,

database = slurm.db
verbose mode = true
sql statement = ’select * from slurm job log where id > 14400 and id < 14501’

Next, the multi-partite graph is generated. First the vertices are defined,

--
--
Generating multi-partite graph....
--
--

--
Generating job vertices....
--
vid 0 -> id 14401
vid 1 -> id 14402
...
vid 99 -> id 14500
--
Number of job vertices = 100
--

--
Generating user vertices....
--
vid 100 -> username ’dlvilla’
vid 101 -> username ’kanouff
...
vid 113 -> username ’sierra’
--
Number of user vertices = 14
--

35

--
Generating node vertices....
--
vid 114 -> nodename ’glory10’
vid 115 -> nodename ’glory11’
...
vid 181 -> nodename ’glory68’
--
Number of node vertices = 68
--

The edges are then generated,

--
Generating ’run by’ edges....
--
eid 0 -> job 14401 is run by user ’sierra’
eid 1 -> job 14402 is run by user ’sierra’
...
eid 99 -> job 14500 is run by user ’sgrange’
--
Number of ’run by’ edges = 100
--

--
Generating ’runs on’ edges....
--
eid 100 -> job 14401 is run on node ’glory198’
eid 101 -> job 14402 is run on node ’glory177’
...
eid 479 -> job 14500 is run on node ’glory189’
--
Number of ’runs on’ edges = 380
--

Following completion of the multi-partite graph the uni-partite graph is generated. This consists of one
vertex class.

36

--
--
Generating uni-partite graph....
--
--

--
Generating vertices....
--
vid 0 -> id 14401
vid 1 -> id 14402
...
vid 99 -> id 14500
--
Number of vertices = 100
--

The edges are then generated,

--
Generating ’user match’ edges....
--
eid 1717 -> job 14401, job 14402 has user match = 1
eid 1718 -> job 14401, job 14403 has user match = 1
...
eid 3438 -> job 14499, job 14500 has user match = 1
--
Number of ’user match’ edges = 1722
--

--
Generating ’node match’ edges....
--
eid 3439 -> job 14401, job 14413 has node match = 1
eid 3440 -> job 14401, job 14418 has node match = 1
...
eid 4637 -> job 14499, job 14500 has node match = 1
--
Number of node match’ edges = 1199
--

...

37

--
Generating ’time match’ edges....
--
eid 8329 -> job 14401, job 14402 has time match = 0.6
eid 8330 -> job 14401, job 14403 has time match = 0.3125
...
eid 8555 -> job 14498, job 14499 has time match = 0.00179856
--
Number of ’time match’ edges = 227
--

...

38

B Output Description for CARGIOsql

In demonstrating the execution ofCARGIOsql we first runOVgraphSynthesis on the original SLURM
database. As an example we execute the following command,

$./ov graph synthesis --db slurm.db --verbose true --sql "select * from
slurm job log where id > 14400 and id < 14501"

CargioSQL will display the database table information depicted inFigure B.1.

Figure B.1. Expanded view of the graph tables generated by
OVgraphSynthesis showing the fields for the multi-partite and uni-
partite vertex tables, as well as the associated edge and cluster tables.

If we specify the multi-partite node table as our vertex set and either therun by or runs on edge type
as our edge set, CargioSQL will generate the visualization depicted inFigure B.2. We are free to label the
vertices and edges by any vertex or edge attribute respectively. InFigure B.2 the vertices have been colored
by vertex type to distinguish betweenjobs, users, andcompute nodes. We can zoom into a sub-network as
shown inFigure B.3.

If we specify the uni-partite node table as our vertex set and thenode match edge type as our edge set,
CargioSQL will generate the visualization depicted inFigure B.4. In this case all of our vertices represent
jobs. Again we are free to label the vertices and edges by any vertex or edge attribute respectively. InFigure
B.5 the time match edge type is shown.

39

Figure B.2. A view of a multi-partite graph showingjobs (blue ver-
tices),users (green vertices), andcompute nodes (red vertices). Vertices
are labeled by job name. (Top) Therun by edge type is shown, connect-
ing jobs to users. (Bottom) Theruns on edge type is shown, connecting
jobs to compute nodes.

40

Figure B.3. An enlarged view of a sub-network of theruns on multi-
partite graph. (Top) Vertices are labeled by job name. (Bottom) Vertices
are labeled by job state.

41

Figure B.4. A view of a uni-partite graph (all vertices arejobs). The
node match edge type is shown. (Top) Vertices are labeled by job name.
(Bottom) An enlarged view of a sub-network. Vertices are labeled by job
state.

42

Figure B.5. A view of the uni-partite graph with thetime match edge
type shown. (Top) Vertices are labeled by node list. (Bottom) Vertices
are labeled by user name.

43

C Output Description for OVcluster

In demonstrating the execution ofOVcluster we first runOVgraphSynthesis on the original SLURM
database. As an example we execute the following command,

$./ov graph synthesis --db slurm.db --verbose true --sql "select * from slurm job log
where id > 9400 and id < 9701"

We then define a cluster namedcluster gold. We assign cluster labels tocluster gold based on the
job state. Now we can executeOVcluster. The output to the command,

$./ov cluster --db slurm.db --edge node match .75 --edge time match .25
--cluster cluster comm --truth cluster gold --sim-matrix simmat --mode init
--verbose true --collapse 50

begins by echoing the input parameters,

database = test.db
edge type = node match (.75)
edge type = time match (.25)
node collapse limit = 50
cluster label = cluster comm
truth cluster label = cluster gold
similarity matrix = simmat
operational mode = initialize
verbose mode = true

Next, the aggregate graph is generated,

--
Generating aggregate graph....
+--------------+--------------+--------------+--------------+---------------+
| source | target | weight | eid | etype |
+--------------+--------------+--------------+--------------+---------------+
| 0 | 1 | 0.25 | 0 | -1 |
| 0 | 2 | 0.25 | 1 | -1 |
...
| 298 | 299 | 0.744 | 20991 | -1 |
+--------------+--------------+--------------+--------------+---------------+
Number of edges in aggregate graph = 20992
--

44

The graph is then collapsed,

--
Collapsing aggregate graph...
--
v5 <- {v0, v1, v2, v3, v4, v6, v7, v8, v9, v10, v11, v12, v13, v14}
v15 <- NULL
...
v193 <- {v34, v31, v17, v27, v28, v29, v30, v26, v32, v47, v48, v33, ...}
...
v205 <- NULL
--
Number of collapses to get to target = 10
Number of vertices in original graph = 300
Number of vertices in collapsed graph = 38
Number of collapsed vertices = 262
Number of edges in collapsed graph = 2617
--

Clustering is then performed,

--
Clustering of expanded graph...
--
v0 -> 5 | 0
v1 -> 5 | 0
...
v299 -> 193 | 0
--

The ground truth clustering is then reported. This is the cluster assignment performed based on the job
state (“FAILED” = 0, “CANCELLED” = 1, “TIMEOUT” = 2, ”COMPLETED” = 3, other = -1).

--
Gold clustering...
--
v0 -> 1
v1 -> 1
...
v299 -> 3
--

45

A random clustering is generated,

--
Random clustering (using gold distribution)...
--
v0 -> 3
v1 -> 1
...
v299 -> 1
--

Statistics and metrics are reported,

--
5 gold clusters, and 5 community detection clusters.
Gold cluster distribution, 1 -> 0.173, 3 -> 0.713, 0 -> 0.05, 2 -> 0.06, -1 -> 0.003.
Random clustering (using gold dist.), 3 -> 0.767, 1 -> 0.133, 0 -> 0.06, 2 -> 0.04.
VOI metric relative to truth = 0.91701.
VOI metric for random cluster relative to truth = 1.60103.
--

The cluster data and similarity table are written to the database,

--
Writing cluster data to the database...
--

--
Writing similarity table to the database...
--
Number of edges in similarity graph = 39726
--

The ensemble graph associated with the consensus similarity matrix is then clustered,

--
Clustering of ensemble graph...
--
v0 -> 14 | 0
v1 -> 14 | 0
...
v299 -> 14 | 0
--

46

Metrics are reported for the ensemble clustering,

--
5 gold clusters, and 4 community detection ensemble clusters.
VOI metric relative to truth = 0.913795.
--

The cluster data for the ensemble clustering are written to the database,

--
Writing ensemble cluster data to the database...
--

47

DISTRIBUTION:

1 MS 1322 Sudip Dosanjh, 1420
1 MS 0807 Robert Ballance, 9328
1 MS 9155 Robert Clay, 8953

2 MS 9159 James Brandt, 8953
2 MS 9159 Vincent De Sapio, 8953
2 MS 9152 Ann Gentile, 8953
2 MS 9159 Philip Kegelmeyer, 8900

2 MS 9159 Jackson Mayo, 8953
2 MS 9159 Philippe Pébay, 8953
2 MS 9292 Diana Roe, 8623
2 MS 9159 David Thompson, 8953

2 MS 9152 Matthew Wong, 8953
2 MS 9018 Central Technical Files, 8945-1
2 MS 0899 Technical Library, 4536

48

v1.33

