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Abstract 

Policy makers will most likely need to make decisions about climate policy before 
climate scientists have resolved all relevant uncertainties about the impacts of climate 
change. This study demonstrates a risk-assessment methodology for evaluating uncertain 
future climatic conditions. We estimate the impacts of climate change on U.S. state- and 
national-level economic activity from 2010 to 2050. To understand the implications of 
uncertainty on risk and to provide a near-term rationale for policy interventions to 
mitigate the course of climate change, we focus on precipitation, one of the most 
uncertain aspects of future climate change. We use results of the climate-model ensemble 
from the Intergovernmental Panel on Climate Change’s (IPCC) Fourth Assessment 
Report 4 (AR4) as a proxy for representing climate uncertainty over the next 40 years, 
map the simulated weather from the climate models hydrologically to the county level to 
determine the physical consequences on economic activity at the state level, and perform 
a detailed 70-industry analysis of economic impacts among the interacting lower-48 
states. We determine the industry-level contribution to the gross domestic product and 
employment impacts at the state level, as well as interstate population migration, effects 
on personal income, and consequences for the U.S. trade balance. We show that the mean 
or average risk of damage to the U.S. economy from climate change, at the national level, 
is on the order of $1 trillion over the next 40 years, with losses in employment equivalent 
to nearly 7 million full-time jobs.  
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“No reasonable person will wait for certainty before he 
decides on action or inaction.”   

Noam Chomsky, American philosopher 1968 
 
“All models are wrong but some are useful.”  

George Cox, Statistician, 1987 

“I don’t think the American public understands [there's] a 
reasonably high probability some very bad things will 
happen. They fundamentally don’t understand that, because 
if they really felt that, then they would do something about 
it.”  

Steven Chu, Secretary of Energy, December 20, 2008 

 

1 Overview 

Climate science in support of efforts by the Intergovernmental Panel on Climate 
Change (IPCC) further establishes and defends the reality of climate change (Hegerl et al. 
2007). Uncertainty analyses of climate change, such as those noted in Randall et al. 
(2007), seek to improve the estimates of future conditions and reinforce confidence in the 
predicted climate impacts. The IPCC Fourth Assessment Report (AR4) portrays the sense 
of confidence by describing uncertainty in terms of probability and likelihood (CCSP 
2009; IPCC 2005; Manning 2006). For example, the discussion may note that “for some 
regions, there are grounds for stating that the projected precipitation changes are likely or 
very likely. For other regions, confidence in the projected change remains weak” 
(Christensen et al. 2007). Other published uncertainty analyses focus on the impacts of 
the policies necessary to mitigate climate change (Barker et al. 2006) and the extent to 
which mitigation reduces the impacts of climate change (Washington et al. 2009).  

In the study described herein, we address the uncertainty in the impacts of climate 
change within the context of risk assessment. From a policy perspective, the incentive to 
act comes by comparing the risk (cost) of inaction with the cost of action to mitigate 
climate change. Risk is often characterized in terms of probability and consequence. 
There is a spectrum of conditions (or events) involved with climate change for assessing 
risk. At one end of the spectrum are those conditions that may occur frequently (high 
probability) and result in minimal damage (low consequence). At the other end of the 
spectrum are conditions that do not occur frequently (low probability) but may be life 
changing or catastrophic (high consequence) if they do occur.  

The clearest analogy for the risk approach is the value of an insurance policy or a 
safety precaution. Most likely you will not be involved in a traffic accident the next time 
you drive to work, but you should wear a seat belt nonetheless to manage the risk of those 
low-probability and potentially high-consequence events. Likewise, you are fairly 
confident your house will not burn down tonight, but you still carry homeowner’s 
insurance. On the other hand, you would feel very uncomfortable sending your family on 
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a plane that had a 10% chance or even a 1% chance of catastrophic failure. We use an 
insurance approach in this study to estimate the risk from climate change. The insurance 
approach for risk assessment has also been used in other studies to characterize the cost 
of climate change (Schock et al. 1999). 

For climate science, the discussion tends to revolve around justifying action through 
the high levels of certainty of when and where a climate impact will occur. Science 
strives to maximize the probability that its claims are true. For example, the IPCC 
“Summary for Policymakers” focuses on the likelihood of physical impacts from climate 
change compared to historical conditions. There are five measures of “likely,” going from 
greater than 99% to greater than 50% probability, whereas there are only three measures 
of “unlikely,” with the lowest measure for conditions having less than a 5% probability. 
(IPCC 2007d). In the realm of risk-assessment, conservative science’s best estimates are 
considered “optimistic” rather than “conservative.” Risk assessment is more concerned 
with the low-probability, higher-consequence conditions than with the high-probability, 
lower-consequence ones. Risk assessment in this study concentrates on the implications 
for decision making from climate-change uncertainty rather than from the expected 
values. A focus on an expected value may lead one to believe, for example, that the trend 
in precipitation over time is more constant than what the uncertainty indicates. An 
expected value could give the impression that precipitation should drop by a similar 
amount year after year. From an uncertainty perspective, however, there will be years 
where there is more precipitation followed by years where there is less precipitation.  

This study emphasizes the low-probability, high-consequence conditions that may 
dominate the spectrum of risk. As an example, over the long-term, climate change 
represents one of the few existential threats to humanity (Ban 2009). The most 
recognized other risk is a catastrophic asteroid collision with Earth. Yet the risk of 
catastrophic climate change is currently estimated to be 40,000 times more probable than 
a catastrophic asteroid collision (Boslough 2010). Should the extent of climate change 
cross a threshold where geophysical processes reinforce man-made climate change, the 
long-term consequences could be catastrophic (Keller et al. 2008). Nonetheless, because 
we only address the risk of climate change through the year 2050, we do not need to 
consider the possibility of catastrophic climate change in this study.  

Studies have shown that humans are extremely limited in their ability to estimate the 
future conditions of systems with feedback and delays (Sterman and Sweeney 2007; 
Sterman 2008). Coupled atmospheric and ocean global-circulation models (AOGCMs) 
and macroeconomic forecasting models containing feedback and delays are the only 
means available to assess the dynamics and impacts of future climate change (Murphy et 
al. 2004). Because decisions for climate policy need to be made before climate scientists 
have resolved all the relevant uncertainties, the goal of risk assessment is to inform 
decision makers of the risk in light of the current understanding of uncertainty. The cost 
associated with the risk represents the cost of inaction. Comparing the cost to avoid the 
risk (action) to the cost of accepting the risk (inaction) can then inform policy decisions. 
Presuming there is still time to mitigate climate change, the anticipated future time 
window needed to effectively combat climate change and the delays in implementing 
effective policies mean that policy makers have no choice but to use the best currently 
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available information with all its limitations. The alternative to using the AOGCMs and 
macroeconomic models is to use even less justifiable information.  

A “perfectly valid” analysis of future climate-change impacts is also outside the 
reach of science or numerical methods. There are entirely too many details to ever 
completely know. In any analysis, there must be simplifying assumptions to make the 
analysis feasible. The best assumptions are those that do not affect the conclusions—even 
though they do affect the details of the analysis results. Pragmatically, knowledge is 
routinely too limited to verify whether assumptions are benign. Despite its shortcomings, 
formal analysis furnishes one of the few comprehensible foundations that can support a 
rational basis for decisions. To make this study as transparent as possible, we have 
explicitly stated as many of the assumptions as possible, thereby allowing critical review 
and public scrutiny. We recognize that the analysis here is necessarily imperfect, but we 
believe its imperfections do not negate the message of the study. In addition, to make this 
study accessible to a broad audience, we have occasionally avoided presenting all the 
technical caveats that would be appropriate for a specialist in any one of the disciplines 
used to develop the study.  

Vast amounts of information and numerous studies describe in detail the countless 
aspects of climate change. Just like everyone else, policy makers have competing 
demands on their finite time to address innumerable priorities, from unemployment to 
nuclear proliferation. Ensuring that policy makers understand all the subtle features of 
climate change can only ensure that there is information overload and lack of action in 
terms of implementing policy. Unavoidably, the use of science to inform policy making 
is a trade-off between the best information science can offer and the limiting, but more-
critical, realities of the societal decision-making process.  

The selective use of salient science can inform policy, whereas detailed absorption of 
expert-level research cannot (NRC 2009). Policy makers do not have the time to argue 
which bit of today’s climate science is the best in attempting to reach a consensus on 
policy. A consensus about the reality of climate change among climate scientists does not 
lead to a “consensus” on policy, i.e., what to do about climate change, in an immediate or 
a direct manner. Science focuses on facts, whereas decisions about policy are always 
influenced by an array of human predilections. Given that it may be difficult to obtain a 
consensus on policy, it is still possible to construct a representation of the future as the 
basis for comparing alternative solutions to the problem at hand. For this agreement, an 
anchor is needed upon which policy makers can tackle the issues that challenge the 
interests of disparate stakeholders. We refer to such an anchor as a referent. While a 
referent is often based on extensive analysis, its use as a starting point for addressing 
policy alternatives is more important than its absolute accuracy. Importantly, several 
referents (or data sets) are used in this study to determine whether actions taken will 
make the future better or worse. There are referents for each component of the analysis, 
that is, future climate, hydrological, and macroeconomic conditions. A referent only acts 
as a point of comparison between the conditions that are specified in the referent and 
(uncertain) alternative conditions. 
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Using computer models to make any prediction about state-level economies in 2050 
will almost certainly be highly inaccurate, but this approach is the only coherent option 
available to inform current decision making. In the context of a referent, an imprecise 
prediction can be useful for comparing options if we assume that such a prediction 
(1) adequately depicts the future relative to the choices to be made, and more importantly, 
(2) represents a mutually agreed basis from which stakeholders can debate alternatives on 
common ground. While better science could reduce some of the uncertainty, this 
reduction will occur after the time frame for effective policy action. The IPCC climate 
projections (IPCC 2007c), along with any limitations and nuanced caveats associated 
with their usage, represent the best, if not the only, timely choice available. The IPCC 
analyses represent the most visible climate reference for framing the national and 
international assessment of climate change. 

Our motivation for conducting this study is to add a perspective to the climate debate 
that the larger the uncertainty in climate-change impacts, the larger the implied risk. The 
policy impetus to contain the risk of climate change is no different from that for an 
asteroid collision or for acts of terrorism. As such, climate uncertainty does not sanction 
policy inaction. In this study, we use a risk-assessment process that recognizes the 
uncertainty of climate science and the impacts of future climate change while further 
balancing exacting science with the imperfect yet effective application of that science. 
The formal use of uncertainty quantification, which is a key component of impact 
evaluation, is a well-established process (Matott et al. 2009; Helton 2009; Räisänen and 
Palmer 2001; Dessai and van der Sluijs 2007) and has been used in this study. 
Uncertainty quantification is the process that makes it possible to forge a functional 
statement about future outcomes despite uncertainty. 

A discussion of climate sensitivity can help illustrate how uncertainty relates to risk 
assessment. The term climate sensitivity combines the concepts of how sensitive the 
climate is to a doubling of greenhouse gas (GHG) concentrations and the uncertain range 
of temperature associated with a given concentration of these gases. While the best 
estimates of global warming (rise in the global mean [average] temperature) by the year 
2100 are on the order of 2º to 3º C, the uncertainty is relatively large, with the probability 
density function on climate sensitivity dominated by a ”long tail” where the probability 
of much more severe temperature impacts has significance. As shown via the color-coded 
legend in Figure 1-1, various studies have attempted to define this uncertainty (Hegerl et 
al. 2007). Other studies indicate that this uncertainty may be unavoidable no matter how 
much climate science evolves or how sophisticated the computer simulation of climate 
becomes (Roe and Baker 2007). 
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Figure 1-1. The “long tail” of climate sensitivity. Source: Hegerl et al. (2007).  

For those unfamiliar with the notion of the long tail, we look further at Figure 1-1. 
Each curve is associated with a color and identified by author and date in the legend. 
Each curve contains a tail skewed to the right-hand side that is the portion of the 
distribution where the values decline more gradually than near the peak or on the left of 
the peak. Thus, many tails, in fact, are visible in the figure. The notion of the “long tail” 
signifies that all these studies are making a statement that a long tail of uncertainty is 
present with regard to the global rise in temperature. We take one curve to point out 
common and unique aspects of the distributions. The yellow curve, estimated in the study 
by Frame et al. (2005), shows that the most likely rise in temperature will be roughly 
2C, as reflected by the peak of the distribution. However, the mean or average estimate 
of the distribution, as indicated by the dot on the horizontal yellow bar below the x-axis, 
is roughly 2.75C. The bars represent the 5% to 95% confidence intervals of the 
associated curves. The reason that the average estimate is larger than the most likely 
estimate is due to the influence of the tail of that distribution that includes higher 
temperatures, which are possible but less likely. 

The combination of the probability and the consequence of climate change all along 
any probability distribution of climate sensitivity determines the estimated risk of climate 
change from that distribution. The risk is then the value of insuring against all the 
consequences associated with the distribution of, in the above example, temperatures. 
(Weitzman 2007). Because the climate uncertainty is a stumbling block in addressing 
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climate change, our goal is to estimate the risk using the existing understanding of 
climate uncertainty and thereby provide decision makers with the pivotal piece of 
information needed to weigh options for intervention (Dessai and van der Sluijs 2007).      

The consequence of a negative event is often expressed in economic terms, such as 
the monetary value of a loss or the number of jobs lost. And because human behavior is 
so complex, there is even greater uncertainty in the prediction of future economic 
conditions than there is in the prediction of climate change alone. Yet, despite uncertainty 
about the future, cost-benefit analyses are conducted on a daily basis as aids for policy 
makers on issues of critical importance to the nation such as health care, social security, 
and defense. Similarly, individuals weigh the costs and benefits of taking certain actions, 
like purchasing insurance, to minimize risk for themselves and their families.  

In the economic and scientific literature, the physical impacts and their resulting cost 
impacts from climate change are often encapsulated by the single dimension of 
temperature (Nordhaus 1993; Hope and Alberth 2007). Costs are often estimated as linear 
or quadratic functions of temperature (Ackerman and Finlayson 2006; Tol 2002a). The 
impacts for temperature are generally indirect and through long chains of inferred 
relationships.  

In this study, we use precipitation to determine the hydrological impacts directly 
affecting economic activity. The precipitation levels with related uncertainly that we use 
in our analysis are based on the existing ensemble of the IPCC Program for Climate 
Model Diagnosis and Intercomparison (PCMDI) runs (Meehl et al. 2007a). We 
additionally incorporate the consequences of precipitation volatility and associated 
temperature conditions. We take this approach of viewing economic impacts through the 
lens of water availability and its hydrological implications because it allows us to conduct 
a direct tangible analysis of impacts on the U.S. economy (Ackerman and Stanton 2008). 
As explained in detail in subsequent sections, this risk assessment study is composed of 
three components: (1) determining climatic conditions at the state level across the range 
of uncertainty, (2) imposing these conditions on a hydrological model to map critical 
climate impacts to U.S. state-level physical conditions that may affect the economy, and 
(3) using a mature, dynamic state-level macroeconomic model to capture interacting 
demographic and economic responses.  

We estimate the macroeconomic impacts resulting from the probabilistic lessening in 
precipitation from climate change. That is, the analysis considers how the amounts of 
precipitation are not a single estimate but a rather a distribution of possibilities. Across 
simulations of varying amounts of precipitation, we calculate the hydrological conditions 
and adaptation efforts to limit future economic cost and maintain economic viability. 
Kundzewicz et al. (2007) provides an extensive IPCC overview of the climate-modeling, 
hydrological, and economic considerations related to climate-induced changes in water 
resources. In our analysis, we explicitly estimate the interacting impacts across the 48 
states in the continental United States (CONUS) including the District of Columbia with 
detail across 70 economic sectors. We have included dynamic (time-dependent) changes 
in costs, consumption, employment, and population migration.  
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We do not attempt to apply a cost to human suffering or to ecological damage 
beyond the effects that such consequences of climate change may have on economic 
activity by 2050. Thus, for example, there is no cost calculated for loss of human life and 
for plant and animal species becoming extinct. However, the study does calculate how 
the macroeconomic impacts of climate change have cascading affects on economic 
activity across many sectors, such as health care and social assistance.  

Our study evaluates how consumers and industry respond (adapt) to the shifting 
economic and physical conditions created by climate change, Adaptation moderates the 
economic impacts that would otherwise occur, and thus any integrated economic 
assessment needs to incorporate the actions that people take to compensate for negative 
events. When there is a perceived threat to the economy, people in their different societal 
roles make changes in their behaviors to adapt to the new circumstances. This analysis 
assumes that individuals and industry maintain the behavioral response characteristics as 
they have historically (see Sections 3.2 and 3.3). We feel that using real-world behaviors 
is a more realistic approach than simulating the choices people make based on the 
commonly used economic assumptions of clairvoyant optimality (Manne et al. 1995; 
Nordhaus and Yang 1996; Ackerman and Nadal 2004). Such optimal assumptions are 
grounded in the belief that we can know the future, and because we know that future, we 
can make perfect decisions. The projected climate reality is not consistent with such 
assumptions. Modern behavioral economics also supports this more pragmatic view of 
human decision making (Kahneman 2002). 

The relatively myopic economic behaviors simulated in this study are consistent with 
historical behaviors (REMI 2007). Although the activities may be less than optimal from 
a longer-term perspective, the activities do capture the impacts that have the greatest 
relevance to current policy makers. In the absence of quantifying the near-term cost, the 
need to address climate change seems more remote and has a diluted sense of urgency. 

Because this study focuses only on future impacts through the year 2050, the myopic 
nature of assumed human behaviors used in the analysis does create a horizon problem. 
Responses to climate change that are made between now and 2050, such as continuing to 
use ground water and developing coastal areas to gain access to (rising levels of) the sea 
could make the consequences of future climate change much worse—not because the 
climate is worse than expected but because prior actions have reduced the physical and 
societal resiliency to deal with the climate (Pielke et al. 2008). Beyond the year 2050, 
more-severe outcomes and cost to future generations remain obscured and absent from 
the cost calculations. Expected impacts beyond 2050 are likely to grow in severity and 
have large financial consequences. Hope and Alberth (2007) indicate the cost in the low 
probability (5%) part of the uncertainty tail discussed previously to be a 4% loss of U.S. 
gross domestic product (GDP) in the year 2100 and a nearly 15% loss of GDP in the year 
2200. Although the U.S. political process may eventually be able to tangibly address 
uncertainty in policy concerns to the year 2100, the justification for implementing policy 
in the present needs to hinge on the tangible near-future cost of inaction. 

All analyses in this study correspond to the IPCC Special Report on Emissions 
Scenarios (SRES) A1B scenario. The IPCC considers the A1B to be a “balanced” 
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scenario of economic growth with expanding renewable energy use. We have not 
addressed variation in carbon dioxide (CO2) emissions or mitigation efforts to reduce 
emissions. Thus, for example, actions taken by individuals to cut back on how much they 
drive their vehicles because of concern about the planet’s health are not captured in this 
study. We determine the impacts in the absence of mitigation policy and without the 
consideration of varying CO2 emissions. 

Figure 1-2 presents an overview of the three major steps in our analysis process. We 
start with the IPCC A1B ensemble. Specifically, as depicted in the left-hand box, we use 
the PCMDI data set containing the precipitation data (Leroy et al. 2008). We use results 
from these runs to assemble the statistical distribution of potential climatic futures for 
precipitation and temperature conditions with uncertainty between 2010 and 2050. Next, 
using the Sandia hydrological model, we map the temperature and precipitation data to 
the CONUS county and state levels to determine the availability of water for selected 
industries within each state, as represented in the middle box. The water demand in each 
state is derived from the macroeconomic base-case forecast. During the third step, noted 
in the right-hand box, we employ the Regional Economic Models Incorporated (REMI) 
macroeconomic model (REMI 2009) to determine the cost of adapting (reducing water 
usage) to match availability and calculate the resulting macroeconomic impacts due to 
revisions in the comparative economic advantage of each state.  

 
Figure 1-2. Overview of the analysis process. 

If the impacts on the economy are so large that they in turn produce sizable impacts 
on the estimated water availability, the REMI model and the hydrological model can 
iterate until these models adequately converge. The backward dashed arrow in Figure 1-2 
reflects the potential case of iteration. In this study, multiple iterations would only change 
the result of a single pass through the models on the order of a hundredth of a percent at 
the national GDP level. Therefore, reported values are taken from the results of a single 
pass of these models for a set of probabilities across the range of uncertainty. 

Our analysis is U.S.-centric in that it only considers climate impacts within the 
United States. We do not consider the impacts of climate change on the rest of the world, 
nor how the rest of the world deals with U.S. demands for goods and services in this 
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uncertain future. Had the rest of the world been considered in the analysis and been 
similarly affected as the United States, there would be secondary (added) impacts beyond 
those calculated for the United States in this study. The analysis has geographic 
resolution down to the state level to inform U.S. policy makers from government and 
corporate arenas about the risk of climate change in terms that are meaningful to them 
(GAO 2009). In addition, the study only covers the period from 2010 to 2050 to maintain 
a connection to the pragmatic time horizon on which the numerous priorities of corporate, 
state, and national policy will play out. 

1.1 Concepts and Terms 

Our study of climate change embraces work from numerous disciplines, including 
climate science, economics, statistics, hydrology, geology, risk assessment, uncertainty 
quantification, modeling and simulation, and public policy. Each of these disciplines has 
its own way of conveying information and uses terms that practitioners in the particular 
discipline understand but which may convey different meanings to people in other 
disciplines or walks of life. For this reason, we have identified several concepts and terms 
that are used in this study to have the meanings listed below. In addition, because we 
want this work to be accessible to a general audience, we have avoided distinguishing 
many technical caveats. 

Concept or Term  Meaning 

confidence interval  A term used in the description of second‐order uncertainty 
that refers to the interval around a best‐estimate value, 
which is typically the average. The interval designates a 90% 
probability that the actual value lies within the range defined 
by the boundaries of the interval. The actual top and bottom 
boundaries of the interval are designated as the 95% and 5% 
probabilities, respectively. 

discount rate  The annual rate at which the calculated future costs and 
benefits of climate change are reduced per year to define 
their value in the present.   

endogenous  Any quantity that is internally calculated within a 
computational model. 

exceedance probability  A term used to describe the uncertainty. An exceedance 
probability, which can range from 0% to 100%, indicates the 
likelihood (or chance) that a particular consequence of 
climate change will exceed (be greater than) the value 
reported for that probability. For example, a 25% 
exceedance probability means there is an estimated 25% 
chance an impact will exceed the indicated value (in dollars 
or other quantity) associated with that percentage of impact. 



 20

Concept or Term  Meaning 

exogenous  Any quantity that is externally provided to a computational 
model. 

frequency  A reflection of how often a condition occurs, for example, 
how often there is a rain storm that exceeds a specified 
amount of precipitation, or how often there is a heat wave 
that exceeds a specified temperature. 

“from 2010 to 2050”   The 40‐year period covered by the study. This term is 
inclusive in that both 2010 and 2050 are considered part of 
the period. Other forms also express this period such as 
“between 2010 and 2050” and “2010–2050.” 

intensity  A reflection of quantity over a short period of time, for 
example, the inches of rain in a single storm or in a single 
hour, or the maximum temperature during a heat wave. 

labor year   A unit of measure equivalent to having a full‐time job for a 
year. 

precipitation  Any form of water transferring from the atmosphere to the 
ground, including rain, snow, sleet, and hail. 

referent  A baseline data set with which comparisons of future 
conditions or impacts can be made. There are four referents 
used in this report: 

 climate referent: An assumed constant future of climatic 
conditions that is identical to the average historical values, 
that is, climate in the absence of climate change.  

 macroeconomic referent: The base‐case REMI forecast as 
based on the Department of Commerce forecast and 
assuming no future climate change. 

 hydrological referent: The water availability into the 
future based on the historical supply of surface water and 
forecast ground‐water use compared to implied water 
demand based on the macroeconomic referent.   

 motif: A fixed pattern used in all the exceedance‐
probability simulations portraying a representative 
relationship between precipitation and temperature and 
their associated frequency and intensity across all the 
years from 2010 to 2050.  

risk  In its specific use for this study, consists of the product of the 
probability that a certain set of climatic conditions will occur 
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Concept or Term  Meaning 
times the consequence (or impact) that these conditions will 
have. Risk reported on a national level as the “summary risk” 
or "total risk” is the sum of the risk over all possible 
conditions. 

run  In its specific use for this study, denotes any one of the 53 
sets of results contained in the PCMDI database that were 
produced by running any one of 24 climate‐change models 
for the A1B scenario. 

scenario  In its specific use for this study, denotes the IPCC A1B 
Scenario as defined in the Special Report on Emissions 
Scenarios (Nakicenovic et al. 2000). 

second‐order uncertainty  The uncertainty in the estimate of uncertainty for a specified 
variable, such as cost or precipitation. 

simulation  In its specific use for this study, denotes the analysis process 
that proceeds from ascertaining climatic conditions for a 
given exceedance probability onto a hydrological analysis, 
followed by the determination of macroeconomic impacts. 

uncertainty  A probabilistic measure for the  lack of knowledge about the 
value of a variable, such as cost or precipitation. 

water availability  The ratio of the supply of water compared to the indicated 
demand for water. The indicated demand is that demand 
associated with the macroeconomic referent. 

 

1.2 Relationship to Previous Work 

Many research efforts have addressed the uncertainty in climate-change projections 
(Roe and Baker 2007; Ramanathan and Feng 2008; Murphy et al. 2004). Because of the 
extensive resource requirements for running simulations of detailed AOCGMs, most of 
these analyses were performed on individual, often simplified, models. It is not 
uncommon for a full-blown model to take months of computer time to produce results 
over a long time frame. The PCMDI data set used in our study consists of the results from 
the 24 most accepted climate models. To assess the risk of climate change, we use these 
results as an ensemble (Palmer 2002). For the most part, the uncertainty within a 
particular model is less than the uncertainty across all the models (Giorgi and Francisco 
2000). For risk assessment, the inferred uncertainty across the ensemble of models is then 
deemed appropriate (Tebaldi and Knutti 2007), even for precipitation and hydrological 
assessments (Backlund et al. 2008), and therefore is used in the study reported here.  
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Several studies have combined macroeconomic analyses with climate models to 
conduct sensitivity analyses on the data, but the focus of these studies was largely to 
determine the sensitivity associated with forecasting uncertain GHG emissions (Webster 
et al. 2003; Stott and Forest 2007; Prinn et al. 1999; Sokolov et al. 2009). Webster et al. 
(2003) note the need to include uncertainty quantification for decision making in regard 
to climate change. 

The cost associated with climate change is routinely cast in the context of the cost to 
mitigate climate change (Barker et al. 2006; Schaeffer et al. 2008). This perspective is the 
context of the IPCC integrated assessments (IPCC 2007b) and that of many other 
researchers (IPCC 2007a). In this study, we do not consider the responses or cost of 
mitigation. Other studies consider risk assessment for adaptation (see Alkhaled et al. 
[2007] for a review) but not as part of a macroeconomic response. A recent study (Parry 
et al. 2009) argues that the cost of adaptation is significantly underestimated. The 
consulting firm of McKinsey (2009) produced a detailed set of case studies to determine 
the adaptation cost from a bottom-up perspective that goes well beyond the technology 
detail of our study. Their study, like ours, strives to inform the decision-making process 
for responses to climate change. The McKinsey work is limited to the direct cost under an 
aggressive implementation of technologies. Although our study only considers a few 
representative technological responses to reduced water availability, it follows the 
dynamics of both the direct and indirect flows of impacts through the economy. 

Additionally, many studies have addressed the impacts of climate change, often at a 
global resolution (Tol 2002a, 2009). A few studies include regional analyses that contain 
the United States. The IPCC does consider the U.S. ecological and physical impacts of 
climate change but does not quantify risk (Field et al. 2007). The most visibly noted 
regional analyses are those of Nordhaus via his RICE model (Nordhaus and Yang 1996; 
Nordhaus 2006) and of Stern (2008) via the PAGE2002 model (Hope 2006). The 
Nordhaus model is a clairvoyant optimization model that uses a much higher discount 
rate than the discount rated used in The Economics of Climate Change: The Stern Review 
(discussed below). While less detailed in its analysis, the Stern Review (Stern 2007) is 
the most comparable to our study.     

There are also studies that consider the cost or physical impacts for particular states 
and regions within the United States and, in particular, use hydrology as the conveyer of 
the impacts (Vicuna et al. 2009; Christensen et al. 2004; Frei et al. 2002; Chang 2003; 
Jha et al. 2004; Hayhoe et al. 2004; Dettinger et al. 2004; Frederick and Schwarz 1999; 
Chen et al. 2001; NAST 2001; Stone et al. 2001; Mauer and Duffy 2005; Leung et al. 
2004; Mastrandrea et al. 2009; State of New Mexico 2005; Ruth et al. 2007). 
Mastrandrea et al. (2009) also consider impacts across economic sectors down to the 
county level for California. Our study examines all of the individual lower-48 states 
including the District of Columbia with their economic sectors interacting in response to 
the impacts of climate change. A recent study by Karl et al. (2009) considers the regional 
impacts of climate change over the entire United States, but their discussion is largely 
qualitative and not conducted from the perspective of quantitative risk analysis. Parry et 
al. (2009) note that the overall impacts of climate change (at a global level) may be 
significantly larger than previously estimated. Both the IPCC (2007b) and Tol (2002a) 
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provide an overview of the many efforts of forecasting the impact of climate change on 
natural and social systems. 

1.2.1 Impact Studies 

Our study generates U.S. GDP impacts in 2050 that are comparable to the impacts 
determined in the Stern Review (Stern 2007): an average expected loss of approximately 
0.1% of the GDP, with a 5% chance the loss will exceed approximately 0.2% of the GDP 
(Hope and Alberth 2007). The Stern Review, however, includes noneconomic losses that 
are not contained in our study. Mendelsohn et al. (2000) considered global impacts that 
include the United States as a studied region, but these researchers derived a positive 
0.1% impact on the GDP within the 2050 time frame. Previous analyses, including the 
Stern Review, have relatively simple damage functions (defined in Section 1.1.2) that 
primarily capture only the direct impacts. The use of combined industry-level 
econometric and input-output methods, as applied in our study, highlights the effects of 
economic multipliers that capture added indirect impacts as damages flow through the 
economy to suppliers and employees. Importantly, the indirect impacts are typically two 
to five times larger than the direct impacts.   

The impacts of climate change have a large behavioral component. Consumers and 
industry will respond to impacts, as they occur, to control the consequences to individuals 
or companies, but with an associated cost. The adaptation cost is part and parcel of the 
realistic response to climate change. We contend that climate impacts, and the adaption to 
them, are inseparable within a realistic analysis. Nonetheless, studies that consider the 
impacts in the absence of adaptive responses to them show a GDP loss of 0.4% by 2050, 
growing to a GDP loss of 1.73% by 2100 (Ackerman et al. 2008). Ackerman et al. (2009) 
determined a GDP loss of 2.6% in 2100 that has a 17% likelihood of occurrence. Tol and 
Fankhauser (1998) present the issues associated with the self-consistency between cost 
(mostly in the domain of mitigation) and adaptation (often limited to improvements in 
energy usage). Yohe et al. (2007) provide an overview of damage and vulnerability 
analyses. 

Ackerman et al. (2008) base their analysis on the Hope and Alberth (2007) study. 
Both studies present the 95% uncertainty confidence intervals on their analysis and thus 
allow a comparison to the results in our analysis. 

Several researchers have considered the issues associated with the risk assessment of 
climate-change precipitation uncertainty at the regional level (New et al. 2007). Others 
have considered the historical impact of precipitation variability as it applies to future 
climate change (Seager et al. 2008). 

1.2.2 Damage Functions  

Analyses of the cost of climate change typically use equations collectively referred 
to as the damage function. These equations are often linear, quadratic, or allometric 
functions of temperature (Tol 1995, 2002b; Ackerman and Finlayson 2006; Lempert et al. 
1996; Roughgarden and Schneider 1999; Ortiz and Markandya 2009). Occasionally, 
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researchers use multiple equations to estimate the climate-change cost impacts for 
specific sectors (Mendelsohn et al. 2000). Determining the input values for parameters in 
model equations can be an enumerative process, where researchers use specific cost 
studies, such as the cost to build sea walls to mitigate rising sea level, to estimate the 
overall damage cost (Tol 2002a). Sometimes premodeling is required, where separate 
analyses are used to determine the values for the parameters in those equations. Another 
approach is the statistical process where researchers use estimates based on comparing 
variations in costs across countries and time as climatic conditions change (Nordhaus 
2006). 

We use a combined approach that employs engineering studies to estimate the cost of 
physically modifying facilities to accommodate new climatic conditions as well as to use 
the statistically based knowledge of macroeconomic interactions within and across 
economic sectors (Ackerman et al. 2008). A discussion of the engineering basis of this 
study is contained in Appendix B. The statistical basis is described in the REMI 
macroeconomic model documentation (REMI 2007). 

Whereas previous studies on the impacts of climate change generally focus on 
change in temperature (Tol and Fankhauser 1998; Hope and Alberth 2007; Nordhaus and 
Yang 1996) as the primary uncertainty to the cost of climate change, we only consider 
temperature as a condition that is associated with the pattern of precipitation over time.  

O’Brien et al. (2004) show that what happens within the parts of a country, referred 
to as “intracountry heterogeneity,” better delineates the economic impacts of climate 
change than analyzing a country as if it were a single homogenous unit. In our study, we 
examine the impacts at an interacting state level to explore this concern.  

1.3 Impact Valuation and the Discount Rate 

Economic studies often use discount rates to (1) capture the ability to better 
accommodate adverse situations in the future because of greater access to resources or 
(2) recognize that adversity in the present has a greater impact on human decision making 
than those threats that are still in a distant future. Because of the current controversy 
surrounding the use of different discount rates to assess the economic impacts of climate 
change (Nordhaus 2007a), this study estimates the impacts using three discount rates: 0% 
per year, 1.5% per year, and 3.0% per year. The 1.5% rate roughly corresponds to the rate 
used in the Stern Review (Stern 2007). Other authors make a strong case for a 0% rate 
(Dasgupta et al. 1999; Posner 2004), whereas the 3% rate more closely conforms to 
historical orthodoxy (or conventional practices) in economic analyses (EPA 2000; OMB 
2008). A more complete discussion of the various ways to consider discounting is 
presented in Guo et al. (2006). 

If the quantity is, for example, the change in the GDP, then an argument can be made 
to reduce the net present value of the future impact by the discount rate. The discount rate 
applies to monetary conditions. Generally, a discount rate is not applied to physical 
conditions such as human suffering. Analyses for determining the value of public 
investments often use the discount rate determined in OMB Circular 94 (OMB 2008). 
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These values apply solely to public works projects and are not used in long-term more-
general risk analyses. Nonetheless, the discount rate for long-term projects is consistent 
with a 3% real discount rate. 

The discount rate assumed in climate studies is often based on the discount rate 
defined by Ramsey or some minor variant thereof (Tol 2009; Nordhaus and Boyer 2000; 
Stern 2007). The social discount rate, r (Ramsey 1928), as used in such climate analyses 
(Ackerman et al. 2008; Stern 2007), is represented by Equation (1-1):  

 .gpr   (1-1)

Here, r is the social discount rate, p is the pure rate of time preference (PRTP), θ  is the 
income elasticity of the marginal utility of consumption (usually assumed to be unity—
Cowell and Gardiner 1999; OXERA 2002; Ha-Duong and Treich 2004), and g is the 
growth rate in per capita consumption. The social discount rate is routinely noted as the 
time preference or, simply, the discount rate. Note that if the expected economic growth 
rate was negative, the discount rate could become negative (Dasgupta et al. 1999). 
Several authors argue that the PRTP should be 0.0 in those instances where an investment 
is not made today to accommodate future conditions (Broome 1992; Cline 1992, 2004). 
The Stern Review uses a near-zero PRTP, arguing for intergenerational equity and the 
risk of climate catastrophes (Stern 2007; Sterner and Persson 2008; Nordhaus 2007a).   

Several studies indicate the value of θ  is in the range of unity or more; however, no 
value has a solid basis from the data (Buchholtz and Schumacher 2008). Saelen et al. 
(2008) provide a broad discussion of the debate on the value of the consumption term, θ . 
Cline (1992) provides a relatively complete derivation of Equation (1-1), but Cline’s 
derivation is based on an absolute (or additive) measure of cost. With precipitation as the 
primary uncertainty, the damage cost is proportional to the size of the economy, and the 
justification for θ  in Equation (1-1) may be absent. The case for disregarding θ  is 
presented in Appendix G. 

There is a difference between a cost analysis that is used to determine the value of 
mitigation (e.g., Nordhaus 2007b) and the study here. We are solely concerned with the 
impact of inaction today on deprivation in the future, and we focus on the monetary and 
employment losses to individuals experiencing them at the future time. Our cost analysis 
is not associated with the value of an investment today to compensate for the damage 
cost. How the current society may want to respond to the cost, by preventing it from 
occurring or by direct financial compensation, is then in the realm of conventional 
discounting. That analysis is not part of this study. In the sense of divorcing the impacts 
on future individuals from the impacts on the present, our exercise starts with the ethical 
basis of the cost to those who will experience it. Broome (1992) notes that the social 
discount rate within this perspective should be zero—though it can be a positive value 
when deciding how to accommodate the cost. Davidson (2006) notes that in weighting 
the investments from the damage maker for compensating the lost consumption of the 
damage bearer, the discount rate corresponds to the interest rate (typically less than 3%). 
However, from a regulatory and legal perspective, Davidson argues that the consumption 
rate of interest is zero (the second term in Equation [1-1]), and therefore the social 
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discount rate for establishing the value to future generations is a PRTP of less than 1% 
and close to zero. Weisbach and Sunstein (2008) detail the various legal arguments of 
this debate. 

In contrast to the rationale for a near-zero discount rate, climate-change analyses 
routinely use a discount rate of 3% or greater (Nordhaus and Boyer 2000), whereas Stern 
(2007) and Cline (2002) used a rate of approximately 1.5%. To be inclusive, Tol (2009) 
used a range from 0% to 3%, but noted that these rates are the PRTP (pure rate of time 
preference). We assume the range noted by Tol, but apply his rates for discounting 
impacts as if these rates represent actual social discount rates. To limit the amount of 
information presented in this report, and when space warrants only a single example of 
the analyzed impacts, the values noted in this report reflect a 0% discount rate. 

The costs developed in this study only reflect the near-term cost of climate change 
and do not reflect the accelerating risk from future climate change (Hope and Alberth 
2007). The reported damage estimate is the overall actuarial cost of climate change. The 
cost corresponds to the payout for an insurance policy and hence captures the value 
society places on avoiding a risk (Weitzman 2009). Conversely, the cost does not fall on 
the whole society but on a small subset of individuals who pay dearly in the proportional 
sense (IPCC 2007d). Alfred Marshall (1890) pointed out that an ordinary individual 
perceives a given cost much more heavily than does a rich individual. Therefore, casting 
a $1.2 trillion impact, as we have calculated in this study for the loss in the GDP at a 0% 
discount rate, in the context of a percentage of total economic activity over the time 
period distorts the actual implications for those who locally experience the loss. Further, 
when taken in isolation, the value can give a false comfort in disregarding post-2050 
impacts. The impacts increase rapidly in the end years of our analysis. If we had 
continued our analyses further into the future, the reported cost would be much larger 
than the cost reported herein. 

Lastly, because this study considers the cost to the economy from the perspective of 
those experiencing the impacts at the future time, and because there is no attempt to 
define mitigation or other policies in the present that would limit those impacts, the 0% 
discount rate is used as a point of neutrality. We are simply reporting the predicted future 
cost of climate change in the accounting sense. How the society of the present values the 
cost from a liability or preference perspective falls in the conventional realm of financial 
or social discounting—appropriately using a discount rate in excess of zero.    

1.4 Document Overview 

Section 1 has discussed the perspectives from which climate-change studies have 
been conducted in the past and pointed out how our study fits within the framework of 
the literature on climate change. In Section 2, we explain why we have chosen 
precipitation as the critical component for assessing the impacts of climate change, 
describe the relationship between uncertainty and risk, and define the means by which we 
assess and calculate the risk of climate change based on the different levels (and types) of 
uncertainty. Also included in Section 2 is a statement of inclusions and omissions in the 
analysis that may have resulted in producing estimates of impacts that are larger or 
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smaller than the impacts that may actually occur. Section 3 details the multistep analysis 
process we follow to (a) sample data from the indicated uncertainty distribution of an 
IPCC climate-model ensemble, (b) determine water availability and agricultural 
production for these future conditions via the hydrological model, and (c) calculate the 
national and state economic consequences of the hydrological conditions using the REMI 
model. Section 4 presents the results of our analysis. In Section 5, we summarize key 
aspects of the analysis process and results and also address issues involved in conducting 
uncertainty analyses for the risk assessment of climate change. Following Section 5 is a 
list of references cited in the body of the report.   

The appendices supplement information presented in the body of the report, with 
each appendix having its own succeeding list of references. Appendix A gives an 
overview of the components of the hydrological model and addresses how the demand 
for water and the supply of water are calculated. Appendix B provides a detailed 
explanation of the economic methodology by which hydrological changes are translated 
into direct economic impacts for input into the REMI model to estimate the economic 
impacts over the 40-year period. Water shortages are predicted to occur in the United 
States over the analysis time frame even in the absence of climate change. The impacts 
resulting from these shortages are not reflected in the reported impacts from climate 
change but are provided in Appendix C for completeness. Similarly, Appendix D presents 
estimated values for the salient data from the REMI base-case forecast, our 
macroeconomic referent, over the 40-year period in the absence of climate change. 
Appendix E provides detailed national and state information at the 1% exceedance 
probability for a more in-depth look at the impacts and their volatility by state and 
industry over time. Appendix F supports the discussion in Section 2.1.2 related to 
calculating risk at very high and very low exceedance probabilities. Appendix G contains 
a discussion of the discount rates when the damage cost varies proportionally with 
changes in climatic conditions.
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2 Uncertainty and Confidence 

Rather than applying temperature changes to determine the impacts of climate 
change, we apply the highly uncertain changes in precipitation along with its volatility to 
predict the effects on economic activity and interstate human and business migration 
between 2010 and 2050. We use the U.S. county-level hydrological model developed at 
Sandia National Laboratories (Sandia) and the PI+ version of the macroeconomic model 
from REMI (Regional Economic Models Incorporated) configured for 70 economic 
sectors and for all 50 interacting states. We map each of the 53 PCMDI SRES A1B runs 
that include precipitation predictions to the CONUS (continental United States) county 
and state levels so that these runs are compatible with the hydrological and 
macroeconomic models, respectively. Because Alaska and Hawaii experience different 
climatic and economic dynamics than CONUS, our analysis of climate-induced risk 
emphasizes CONUS state-level impacts. Note that both the Sandia hydrological model 
and the REMI model have been used in the policy arena. In addition, the REMI model is 
widely used by state governments and corporations. Its forecast is based on the 
Department of Commerce’s official macroeconomic forecast (REMI 2007).  

An analysis of the risk from climate change must directly address the uncertainty 
surrounding that risk. The usefulness of a risk assessment, however, depends on the 
confidence in the process of its construction. The topics covered in Section 2 describe the 
issues associated with handling uncertainty and how these issues are addressed. In 
Section 2.1, we discuss how precipitation uncertainty is used. Section 2.2 explains how 
uncertainty applies to the calculation of risk, with a description of the approach used in 
the risk assessment presented in Section 2.3. Section 2.4 addresses our consideration of 
second-order uncertainty in estimating the impacts of climate change. Recognizing that 
the extremes of any probabilistic distribution can impact the reported results, we describe 
in Section 2.5 the mathematical techniques employed to ensure that our approach to 
assessing risk across the entire distribution is justified. Section 2.6 identifies the salient 
features included in and omitted from the analysis and states how the omission and 
inclusion of particular topics may alter the reported results in this study. In Section 2.7, 
we point out how continuity is maintained in the transition from the realized present to 
the probabilistic future.   

2.1 Precipitation Characterization and Uncertainty 

Precipitation is one of the most uncertain aspects within existing climate models. In 
scenario analyses for policy and planning, the most uncertain characteristic of the future 
with potentially the greatest consequences is generally selected as the pivotal component 
of the assessment process (van der Heijden 2005; Ringland 2006; Wilkinson 1995). We 
use this logic as justification for considering the currently poorly quantified uncertainty in 
precipitation as the primary driver of the risk assessment in this study. Best estimates are 
routinely used as the basis for policy assessment, such as the estimates of line-item 
expenses in the federal budget. Policy assessment requires risk-assessment approaches 
when there are low-probability events with unacceptable consequences, such as for 
vaccination regimes to prevent epidemics and for preparedness against earthquakes. Risk 
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assessment requires an understanding of the probabilities that harmful conditions will 
occur. These probabilities are often not adequately known, and assessments must rely on 
uncertainty quantification using computerized simulations of future events as we do in 
this study. Several researchers have noted the need to confront policy assessment with the 
use of risk assessment based on the uncertainty embodied in simulation ensembles 
(Palmer 2002; Räisänen and Palmer 2001). The ensembles capture a range of possible 
outcomes and are a pragmatic proxy for representing the probability of future conditions. 
Researchers have explored methods to incorporate all the ensemble information in as 
constructive a manner as possible (Stainforth et al. 2007b; Box and Draper 1987).  

Our analysis highlights the climate risk associated with enduring, reduced 
precipitation within CONUS. Although increased flooding (Milly et al. 2005) and 
changes in winter versus summer precipitation (NAST 2001) will have impacts, it is 
unclear how to assign the cost of these conditions to climate change. Changing 
demographics (Trenberth 2008) and economic growth cause increased damage from 
extreme weather even in the absence of climate change. Moreover, water management by 
local councils and state governments to accommodate increased growth tends to further 
burden existing infrastructure, making the areas more sensitive to adverse weather 
conditions and producing consequences that mimic those of climate change. While we do 
associate the impact costs of reduced-precipitation simulations with the temperature-
related impacts, we do not include the impact costs of flooding in this analysis. Other 
studies have addressed the costs of flooding from climate change (McKinsey 2009), and 
the costs of flooding are typically less substantial than the costs we have estimated for 
reduced precipitation. Changes in climate-induced precipitation are recognized 
potentially to cause large impacts (NAST 2001). 

We use the range of the projected national precipitation from the PCMDI ensemble 
over the years 2010 to 2050 as the uncertainty metric. We sample the probability 
distribution of precipitation based on the ensemble of model runs and adjust the 
precipitation in each U.S. state in each year between 2010 and 2050 for the implied 
reduction (or increase). A detailed AOCGM forecast defines the relationship between 
precipitation and temperature and their respective frequency and intensity. Intensity is a 
statement about a quantity over a short period of time, for example, the inches of rain in a 
single storm or in a single hour, or the maximum temperature during a heat wave. 
Frequency, on the other hand, denotes how often a condition occurs, for example, how 
often there is a rainstorm that exceeds a specified amount of precipitation, or how often 
there is heat wave that exceeds a specified temperature.   

As used in this study, the word “sample” is not meant to imply a random process for 
statistical analysis. The sampling is a purposeful progression to cover the input 
uncertainty range in a manner that ensures the analysis produces enough results all along 
the output probability distribution to estimate the risk distribution adequately. The input 
uncertainty range covers the full set of exceedance probabilities from 0% to 100%. The 
term “input” defines the information the model needs to perform the analysis, while the 
term “output signifies the results of the analysis. Associated with these probabilities is the 
range of possible precipitation, from the minimum amount of precipitation (in inches per 
year) at a 0% exceedance probability to the maximum amount of precipitation at a 100% 
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exceedance probability. The amount of precipitation varies significantly from state to 
state. An exceedance probability is the probability that the actual value of a quantity, such 
as the extent of a drought or the loss of the GDP, will exceed the stated value. The 
concept of “exceed” can also express a diminishing value. The exceedance probability on 
precipitation designates the probability the precipitation will be lower than stated. 
Sections 2.3, 2.4, and 2.5 explain our use of exceedance probabilities in further detail. 

We have not attempted to characterize the full spectrum of the weather-frequency 
and weather-intensity uncertainty projected by the AOGCMs as a consequence of climate 
change. Instead, we use a specific pattern, called the motif, which relates precipitation, 
temperature, frequency, and intensity across all the simulations we run to estimate the 
probabilistic impacts of climate change on the U.S. economy. An in-depth examination of 
the motif appears in Section 3.  

2.2 Uncertainty Means Greater Risk 

The focus of a scientific endeavor is to improve confidence in the validity of 
conclusions drawn from data and analysis. Risk, on the other hand, is concerned with the 
opposite position. In this case, what is the chance that scientifically conservative 
estimates of climate change are actually optimistic? Consequently, our study emphasizes 
tails of the climatic (e.g., precipitation) distribution rather than the most likely part of the 
distribution that is generally of most concern to scientists and policy makers. We 
concentrate particularly on the tail of the distribution in which there are small 
probabilities but realizable risks that the effects and consequences of climate change 
could be much more severe than predicted from the best estimates. 

Uncertainly is most commonly represented via a probability density function, which 
is sometimes simply called a “probability distribution.” From a statistical perspective, the 
probability density function captures the idea of how often a given value can be expected 
to occur in comparison with other values. When the uncertainty increases, there is more 
of a chance that a variable, such as the local rise in temperature, will have a value 
different from the value that occurs most often, called the mode. The mode is the peak of 
the distribution.  

Figure 2-1 conceptually illustrates two probability distribution functions with the 
same mode (i.e., location of the peak value) where the blue-line distribution has greater 
uncertainty than the red-line distribution. The left (y) axis shows the measure of 
probability, and the lower (x) axis shows the increased delta (Δ) change in average 
temperature compared to a world without climate change. The blue line is above the red 
line in the right-side tail of the distribution. Extreme levels are defined as those 
conditions well removed from the mode of the distribution, for example, changes in 
temperature of over five degrees in Figures 2-1 and 2-2. Thus, there is a greater chance of 
the temperature occuring at extreme levels with the blue-line distribution. Figure 2-2 
provides the same logic as Figure 2-1 when there is a greater concern with the average 
value (or mean) of the distribution than with the mode. 
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      Figure 2-1. Probability with constant mode.         Figure 2-2. Probability with constant mean. 

In risk assessment, a useful perspective contains the cumulative distribution function 
(CDF). A CDF transforms the probability distribution, such as those above, to show the 
probabilities of exceeding the values of concern. For purposes of this study, we refer to 
these cumulative probabilities as “exceedance probabilities.” A CDF shows the 
probability starting at a 0% exceedance probability on the left side of a graph and 
increasing to the right toward 100%. A complementary cumulative distribution function 
(CCDF) is the reverse of a CDF. It starts with the 100% exceedance probability on the 
left side and drops toward the 0% exceedance probability. Both CDFs and CCDFs are 
commonly used for presenting the uncertainty in climate change (Knutti et al. 2008) and 
for assessing the risks from climate change (Schneider and Mastrandrea 2005; 
Mastrandrea and Schneider 2004).  

Figure 2-3 is the CCDF associated with Figure 2-2. The lines in Figure 2-3 cross at 
the median of the distribution. The median is the point where there is an equal probability 
that the value, in this case the change in temperature, will be greater than or less than the 
value at the 50% exceedance probability. With skewed probability distributions, such as 
those associated with climate change, the mode, mean, and median take on separate 
values. For a symmetric probability distribution like a bell curve, which has equal tails on 
each side of the mode, the mode, mean and median all have the same value. For the 
skewed probabilty distribution associated with the blue curve of Figure 2-2, the mode is 
to the far left at approximately 2 degrees, the median is slightly to the right of the mode at 
approximately 2.5 degrees, and the mean or average is at approximtely 3 degrees.   
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Figure 2-3. A CCDF (complementary cumulative probability 
function) with uncertainty. 

Figure 2-3 illustrates the probability that the high-temperature deltas associated with 
climate change are greater when there is a greater level of uncertainty. For instance, in 
the “red-line” lesser-uncertainty curve, the chance of exceeding a temperature of 6 
degrees is approximately 2%, whereas for the “blue-line” greater-uncertainty curve, the 
risk of exceeding 6 degrees is approximately 11%. Further, the more uncertain blue line 
appears not to produce a 2% exceedance probability to well beyond 8 degrees, possibly 
not until a daunting 12 degrees, in this purely illustrative example. If the consequence of 
climate change also increases with temperature, the risk (the consequence multiplied by 
the probability) remains significant even at extreme conditions. Thus, the greater the 
uncertainty, the greater the risk. 

2.3 Risk Assessment 

We use the approach proposed by Kaplan and Garrick (1981) to quantify risk. 
Basically, risk is defined in terms of answers to three questions: (1) What can happen? 
(2) How likely is it to happen? and (3) If it does happen, what is the consequence? The 
“what” response to question one refers to the climate-change conditions at a stated 
exceedance probability. Question two is the probability, p, as defined by the exceedance 
probability, that those climatic conditions will occur. Question three addresses the 
consequence of the climatic conditions at the stated exceedance probability, which is 
determined by first developing the hydrological consequence of the climatic conditions 
on water availability followed by the socioeconomic consequence on economic activity 
and demographics.  

In a simulated situation, Helton (1994) calculated the risk as the sum of the 
consequence, C, for a probability interval multiplied by the range of the probability 
interval, ΔP, associated with that consequence over all the simulations of exceedance 
probabilities, n, over time, t. 
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Equation 2-1 can be thought of in terms, for instance, of the consequence of events that 
occur with a 10% to 12% chance (the probability interval). The risk is the sum over all 
the intervals needed to cover 0% to 100% over the years 2010 through 2050. Equation   
2-1 is actually a calculation of total risk. In the situation of a financial cost, the 
discounted risk, using a discount rate, r, is then  
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The integrated-risk impact on demographics, for example, as measured for 

socioeconomic conditions such as unemployment or population migration, is not directly 
a financial quantity and therefore is not discounted over time. The integral is the 
summation of Equation (2-2) when the probability intervals (the ΔPs) become 
infinitesimally small and, as a result, explicitly include all possible consequences and 
associated probabilities. In simpler terms, risk in this study is the sum of the 
consequences calculated for the range of the exceedance probabilities simulated. 

To assess the socioeconomic consequences of the impact of climate change, we use 
an econometrically estimated macroeconomic model. To that model, we explicitly add 
the costs of adaptation options for maintaining economic production and population 
needs. Based on the historical response characteristics of the populations, the model 
internally decides when and how much adaptation to undertake. In this study, adaptation 
is the act of physically modifying the way installations produce economic output such 
that they can continue to operate despite changes in climatic conditions. For the purposes 
of this study, the adaptations specifically act to mitigate the impacts of reduced 
precipitation. Other studies omit adaptation (Ackerman and Finlayson 2006) or narrowly 
assume that the only goal of adaptation is to maintain the current socioeconomic 
conditions. In our work, adaptation covers the activities in which entities (i.e., consumers 
and industries) engage in the economy to maintain economic viability and hopefully 
continue to prosper in a changing environment characterized by climate-induced costs 
that cause further changes in socioeconomic conditions. The outcome will generally be 
noticeably different from the status quo.  

With a fixed amount of water associated with each simulation of possible 
precipitation, an increase in economic activity would require more than proportional 
increases in the costs of adaptation. As an example, suppose the water availability from a 
given simulation was 100 million gallons of water for an economy of $1 billion. A 
simulation that reduced that amount of water by 50% would result in a shortage of 50 
million gallons of water. If the same economy grew to $2 billion, 50 million gallons of 
water would have to serve that enhanced economy with one-fourth of the amount of 
water that is needed. Effectively, the enlarged economy would need to cut its water usage 
back by 75% and would be faced with the costs of reducing water usage to that low level. 
The additional costs of reducing water consumption by such a large degree could result in 
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the growth rate of economic activity reversing sign and becoming negative as local 
industries became noncompetitive or as water constraints simply prevented positive 
economic or demographic growth.   

Technological advances might be able, within limits, to reduce water consumption 
per unit of economic activity with costs to the economy that do not increase in direct 
proportion to the reduction of water usage. That is, the costs for a factory to reduce water 
by 50% in 2030 may be $1.2 million but only $1 million to reduce it by 75% in 2050. 
Nonetheless, for any given level of economic activity at a specified time, the costs to 
bring the consumption of water back in line with reduced water availability are 
proportional to the reduction in water availability. Consequently, economic growth would 
increase the total impact costs in proportion to its effect on the reduced water availability 
over time. It is the reduction in water availability that would accelerate rapidly with 
increased economic growth.  

Because this study includes simulating the adaptive response of consumers and 
industries to reduced precipitation, the costs to the economy are typically less than what 
they would be if the economy was simulated as being rigid and void of adaptation. 
Analyses that do not have consumers and producers dynamically adapting to climate 
change quantify what the impacts of climate change would be in the absence of adaptive 
behaviors. These types of analyses are useful for establishing the immediate direction and 
scale of impacts but not for quantifying the costs over time in a responsive economy. In 
both types of analyses (those that assume a rigid response to change and those that 
assume an adaptive response to change), increased economic growth would result in 
amplified water-availability problems. These considerations reiterate the point that the 
larger the economy becomes over time, the larger the impacts of climate change will be 
on that economy. 

2.4 Second-Order Uncertainty 

Second-order uncertainty is the uncertainty in the uncertainty. The dashed-line 
confidence boundaries in Figure 2-4 represent the second-order uncertainty on the values 
we are reporting in this study. The values we are reporting, as noted by the solid curve in 
the figure, are the “best estimate” values of the first-order uncertainty. Each of the 
percentages represents an exceedance probability.  
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Figure 2-4. Example of second-order uncertainty represented by 
two dashed lines around “best estimate” solid line. 

We derive our first-order and second-order uncertainty distributions by estimating a 
probability distribution for the precipitation data of the 53 SRES A1B ensemble runs (see 
Section 3.2). The second-order uncertainty to which we refer was formalized in the 
probability frequency characterization of Kaplan and Garrick (1981). It is the uncertainty 
on the estimate of the average response of the models in the ensemble. It does not 
necessarily reflect the uncertainty in actual future climatic conditions over what the 
simulation results imply as best estimates. Undoubtedly, the ensemble of model runs we 
use does not even reflect all the uncertainty associated with climate modeling. We use the 
variation in results across the ensemble as a proxy for climate uncertainty and point out 
three benefits to using the PCMDI ensemble. First, the ensemble exists and is publicly 
available. Second, the ensemble is based on the carefully constructed studies for the 
IPCC. And third, the ensemble reflects a significant degree of epistemic uncertainty 
(Knutti 2008; Tebaldi and Knutti 2007). The 53 PCMDI results from 24 climate models 
under the A1B scenario also capture some aleatory uncertainty because of variations in 
model parameterization, but these variations were not meant to reflect a probabilistic 
assessment of climatic uncertainty.  

Epistemic uncertainty is a type of uncertainty that is due to lack of knowledge or 
incomplete knowledge. Aleatory uncertainty is typically referred to as simply variability 
and is commonly used to describe the variability in the collected data used to construct a 
model and the uncertainty in parameter estimation. In the instance of the ensemble, the 
different models used reflect epistemic uncertainty in the model structure and in the 
simulation of physical processes. The ensemble contains some aleatory uncertainty via 
the use of differing model parameterizations for calibration to match historical 
observations within several of the models (Tebaldi and Knutti 2007; Knutti 2008; Diegert 
et al. 2007). Other studies may also be helpful in understanding the representation of 
uncertainty in model predictions, for example, see Helton and Davis (2002), Helton et al. 
(2004), Helton et al. (2008), Oberkampf et al. (2004), and Pilch and Trucano (2006). 
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From the data contained within the ensemble runs, we can estimate a distribution of, 
for example, global precipitation over time. That estimate is only an estimate and 
therefore contains uncertainty. We can use statistics to determine the uncertainty in our 
estimate of the precipitation distribution. This second estimate of the uncertainty is the 
second-order uncertainty we use in this study. The second-order uncertainty could 
become very important on the tail of the distribution where there is a high consequence 
and where the probability of a condition can be much different from that associated with 
the mean (average) estimate of the probability. Note in Figure 2-4 that the lower dashed 
(uncertainty on the uncertainty) curve produces a greater impact than the best estimate at 
lower exceedance probabilities. For instance, the best-estimate impact at a 5% 
exceedance probability is a loss of $1,700 billion, whereas the lower (dashed-line) 
uncertainty loss at a 5% exceedance probability is $2,000 billion. The summary GDP and 
the employment impacts reported in this study acknowledge this second-order 
uncertainty, but our emphasis is on the first-order uncertainty to preserve the clarity of 
the assessment. While we have the ability to address second-order uncertainty, we limit 
the presentation of this type of uncertainty and in its stead emphasize the use of the first-
order uncertainty for performing risk assessments that integrate climate phenomena, the 
physical implications for economic activity, and the detailed characterization of 
socioeconomic impacts. As the pragmatic purpose of this study is to inform decision 
makers about the near-term risk of climate change, we have purposely kept the 
complications of presenting second-order uncertainty to a minimum. A detailed 
incorporation of second-order uncertainty into our analysis would not markedly affect the 
results.   

2.5 Interpolated Versus Extrapolated Risk  

As discussed more fully in subsequent sections of the report, we make the highly 
uncertain variation in precipitation central to our analysis because this variation has the 
most direct impact on the also highly uncertain socioeconomic consequences of climate 
change. We use the gamma distribution to describe the probability density function for 
precipitation (Groisman et al. 1999). The gamma distribution does not generally look like 
a bell-shaped distribution but is normally skewed to the right with its left-hand minimum 
at the origin of the axis and its long tail on the right side extending far beyond the origin. 
The blue line in Figure 2-2 shown previously approximates the shape of a typical gamma 
distribution. The statistical analysis of the PCMDI ensemble results for precipitation very 
closely matches the assumed gamma-distributed precipitation (see Section 3.1). The tip 
of the distribution’s tail could represent unacceptable consequences and generate infinite 
risks that are impossible to calculate. For our study to be meaningful, we must establish 
that the risk is finite and therefore potentially manageable through policy intervention. 

Many climate studies, such as Nordhaus and Yang (1996) and Hope and Alberth 
(2007), estimate that the costs of the impacts of climate change are based solely on 
change in temperature. The probability density function for the temperature-change 
distribution is skewed to the right, with a long slowly declining tail for larger changes in 
temperature (Roe and Baker 2007; Ramanathan and Feng 2008), as is illustrated in Figure 
1-1. This tail of increasing temperature is typically the central concern for climate-
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induced damage. Cost assessments that include ever-increasing human suffering or loss 
of life are considered unbounded and can have infinite values, that is, they have no upper 
limit and consequently cannot be calculated (Weitzman 2009).  

The Dismal Theorem (Weitzman 2009) contends that in the right-hand tail of, for 
example, the temperature distribution (see Figure 2-2), the consequences of climate 
change may increase faster than the probability of these consequences declines. That is, 
consequences increase so rapidly compared to the declining probability that risk 
(probability multiplied by consequence) continues to rise toward infinite values with 
increasing temperature.   

The primary uncertainty in our study is precipitation, which is bounded on its lower 
extreme by 0.0 (see Section 3.1.1). This fact forces the precipitation to drop rapidly to 
zero as the probability goes to 0.0. Further, because this study is only concerned with 
economic impacts, as opposed to human suffering, the maximum value of the 
consequences is finite. The worst imaginable loss is the entire economy. We explicitly 
simulate the consequences between the 99% and 1% exceedance probabilities, assuming 
that interval captures the largest component of risk. Nonetheless, characterization of the 
damage function and how the probability goes to zero could still, in principle, dominate 
the estimate of expected risk. 

For the assessment in this study to be useful, the risks associated with the extreme of 
the tail (below a 1% exceedance probability) that are not simulated must not dominate the 
total risk. In other words, we must ensure that the uncertainty in estimating the 
probability distribution function has a limited impact on calculation of the total risk. 
While we stop the formal analysis at a 1% exceedance probability, we separately 
extrapolate the results to calculate the impacts between the 1% and 0% exceedance 
probabilities to determine the magnitude of its contribution to the total risk. For 
illustration purposes, Figure 2-5 points out the 99% to 1% exceedance-probability 
interval. The 100% to 99% interval and the 1% to 0% interval reside on either side of it. 
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Figure 2-5. Exceedance-probability intervals of interest in methods 
of risk calculation: 100% to 99%, 99% to 1%, and 1% to 0%. 

The estimated summary (or total) risk is the approximate sum of consequence 
multiplied by the probability, as specified in Equations (2-1) and (2-2). The interpolated 
values are based on simulated estimates between the 99% and 1% exceedance 
probabilities. The extrapolated value includes estimates of the contribution to risk 
between the 100% to 99% exceedance probabilities (the largest amount of precipitation) 
and between the 1% and 0% exceedance probabilities (very severe drought) encompassed 
by the distribution.  

The impacts from the 100% to 99% probability interval represent simulations with 
the maximum precipitation justified by the probability distribution. Even in situations 
where there is abundant water on average, climate change still trends toward reduced 
precipitation, which still includes both drought and flood conditions. The high-
exceedance-probability cases (> 50%) represent conditions where there is more 
precipitation than is estimated to occur on average with climate change. The predicted 
climate change is toward generally drier conditions in the United States on average, on an 
annual basis. Although flooding could increase in the high-exceedance-probability cases, 
the estimates we consider account for only those costs associated with the intermittent 
dry or drought periods that are part and parcel of the climate-change–predicted increases 
in the frequency and intensity of extreme weather. Because, flooding is easier to 
accommodate than drought with less costs, and these less costs are the subject of other 
studies (Frederick and Schwarz 2000), we do not include the impacts of flooding in the 
assessment. For example, low-cost approaches to dealing with flooding could be to stop 
development in flood plains or to modify land elevations for directing excess water flows 
safely. On the other hand, during long periods of severe drought, a state may find it 
impossible to maintain economic activity by building enough water storage and 
collecting all water for what little precipitation does occur. Because increased 
precipitation simply reduces the frequency and intensity of drought conditions, the 
estimated impact of drought gradually becomes smaller and smaller at the higher 
exceedance probabilities. The lessening probabilities of drought, from improving 
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probabilities of precipitation, cause costs to change gradually above the 50% exceedance-
probability simulations, and as such, the 100% exceedance-probability values are 
estimated by simple linear extrapolation. That is, the 100% exceedance-probability 
conditions are just part of the gradual decrease in impacts due to drought as the average 
precipitation increases. 

The 1% to 0% probability interval is more problematic than the 100% to 99% 
probability interval. A 0% exceedance probability essentially implies the absence of any 
natural precipitation. We estimate the consequences of this interval solely to establish 
that inexact tail contributions to impacts do not dramatically affect the total risk estimate 
beyond the risk estimated with the interpolation approach. Appendix F describes the 
calculation of consequences within the 1% to 0% probability interval.  

Our calculations indicate the contribution of the 1% to 0% interval to the increase in 
the summary risk is on the order of 10% greater than the impact estimated over the 99% 
to 1% interval that is the focus of this study. That is, the formally simulated risk between 
99% and 1% represents approximately 90% of the total (i.e., $1.2 trillion) risk. For 
particular states in this country, the impact could be as high as 25% because local growth 
rates significantly exceed the national average. The sum of all the interpolated impacts by 
individual states equals the national impacts. The sum of extrapolated values for 
individual states does not add up to the national total because the growth in the individual 
states can each be significantly different from those for the United States as a whole. 
Thus, there is little chance the extrapolated values for the individual states, with their 
varied growth rates, would add up to the same value calculated for the extrapolated 
United States with its single growth rate. The assessment of risk over the entire 
probability distribution (100% to 0%) of the GDP impacts generates a complete statement 
of the expected risk for informing policy debates. As described above, the contribution of 
the extreme 1% to 0% tail does not reverse the risk calculated between the 100% and 1% 
exceedance probabilities. This fact justifies the use of the detailed analyses between 99% 
and 1%, along with the extrapolated values, as a basis for portraying the risk from climate 
change. 

2.6 Inclusions and Omissions 

A simulation-based impact analysis, explicitly or implicitly, contains limiting 
assumptions that can bias the results of the analysis. No finite analysis can address all 
possible features of a real-world system. A simulation necessarily simplifies the actual 
system it addresses. The simulation and the impact analysis need to contain the salient 
features that affect the problem being addressed. In this section, we describe what is 
included in the analysis and what has been omitted from the analysis. These 
simplifications may result in producing estimates of impacts that are larger or smaller 
than the impacts that may actually occur. These effects are treated as biases, and they 
may be deemed optimistic or conservative, depending on the perspective for using the 
results. In this study, we attempt to balance the optimistic and conservative aspects of the 
analysis. The elements of damage associated with climate change described below 
attempt to address the classes of concerns noted by Tol (2002a). Richardson et al. (2009) 
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note other risks of climate change, many of which do not affect the United States, such as 
hunger.  

Economic Coverage: The analysis captures the interactions and interdependencies 
among the lower 48 states plus the District of Columbia. The analysis can then reconcile 
population migration and changes in industry-specific activities across states. We include 
the economic components noted in Table 2-1. However, we only explicitly simulate the 
impact of water availability on the following industries:  

 Agriculture/farming  Primary metal 
 Food  Mining 
 Beverage  Thermoelectric power generation 
 Paper  Hydropower 
 Petroleum and coal  Municipal water utilities 
 Chemical  



 42

Table 2-1. Economic Sector Detail 

Forestry and logging; Fishing, hunting, and trapping Truck transportation; Couriers and messengers

Agriculture and forestry support activities; Other Transit and ground passenger transportation

Oil and gas extraction  Pipeline transportation

Mining (except oil and gas)  Scenic and sightseeing transportation; support 
activities 

Support activities for mining  Warehousing and storage

Utilities  Publishing industries, except Internet 

Construction  Motion picture and sound recording industries

Wood product manufacturing  Internet publishing and broadcasting; ISPs, search 
portals, and data processing; Other information 
services 

Nonmetallic mineral product manufacturing Broadcasting, except Internet; 
Telecommunications 

Primary metal manufacturing  Monetary authorities ‐ central bank; Credit 
intermediation and related activities; Funds, 
trusts, & other financial vehicles 

Fabricated metal product manufacturing Securities, commodity contracts, investments

Machinery manufacturing  Insurance carriers and related activities 

Computer and electronic product manufacturing Real estate

Electrical equipment and appliance manufacturing Rental and leasing services; Lessors of 
nonfinancial intangible assets 

Motor vehicles, bodies & trailers, and parts 
manufacturing 

Professional and technical services 

Other transportation equipment manufacturing Management of companies and enterprises

Furniture and related product manufacturing Administrative and support services 

Miscellaneous manufacturing  Waste management and remediation services

Food manufacturing  Educational services

Beverage and tobacco product manufacturing Ambulatory health care services 

Textile mills  Hospitals

Textile product mills  Nursing and residential care facilities 

Apparel manufacturing Social assistance

Leather and allied product manufacturing Performing arts and spectator sports 

Paper manufacturing  Museums, historical sites, zoos, and parks 

Printing and related support activities  Amusement, gambling, and recreation 

Petroleum and coal product manufacturing Accommodation

Chemical manufacturing  Food services and drinking places 

Plastics and rubber product manufacturing Repair and maintenance

Wholesale trade  Personal and laundry services 

Retail trade  Membership associations and organizations

Air transportation  Private households

Rail transportation  Separate national and state and local government 
components 

Water transportation  Rest of the world Imports and exports 

 

The impacts on all other economic sectors are due to interdependencies with the affected 
sectors. The noted sectors are those with significant water use and sensitivity to water 
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availability. Ignoring the direct impact of water availability on industries with limited 
dependence on water may slightly underestimate the economic impacts.  

Dynamics: Our analysis is dynamic (follows the cause-and-effect responses, year by 
year) rather than static (an equilibrium result within a set time horizon). The simulated 
economic decisions are largely myopic rather than clairvoyant. The decisions are based 
on past behavior patterns rather than on optimal choices. Classical economics may 
indicate this approach overestimates the economic impacts. Modern behavioral 
economics may indicate this approach still underestimates the economic impacts. 

Extreme Events: We only focus on the variations in precipitation and do include the 
associated variations in temperature. We do not include additional destructive extreme 
events such as flooding or wind storms. The impacts of flooding are noted in other 
studies with expectations of new climate-related damages within the spectrum of 
historical values (Frederick and Schwarz 2000; Kunkel et al. 1999; Changnon 2003). The 
lack of consideration of wind damage could underestimate the impacts, but building-
design regulations limit the potential for such damage. Because the primary uncertainty 
used for the risk assessment is based on national precipitation levels mapped to state-
specific precipitation with a motif based on a single model, the primary uncertainty may 
modestly overestimate the reduction in precipitation and the impact in, for example, the 
central U.S. states. Nonetheless, the damage from destructive extreme events may be very 
large for low-probability conditions, leading to the possibility that the risk calculated in 
this study is underestimated. 

Water Rights: We assume jurisdictional water rights ensure a distribution of 
shortages across affected regions rather than having local shortages disproportionally 
exacerbating downstream conditions. This assumption may underestimate the 
downstream impacts. On the other hand, we assume that industry and urban areas can 
purchase available water rights from agriculture and mining users. This assumption may 
overestimate the impacts on mining and agriculture while underestimating the impacts on 
urban and industrial areas.   

Local Effects: There may be unique local (county-level) effects with much larger 
intensity than would be indicated in the state-level averages. Local effects may cause 
aggregate state-level effects to be underestimated. However, over a state, positive and 
negative effects tend to average out, simply due to the process of aggregation. That is, 
historical events are equally captured in aggregate data representations, as well as in 
detailed local data. The climate data only have resolution in excess of 100-kilometer 
grids, which limits their ability to provide a representative description of the local 
climate. The hydrological model determines the state-level impact by aggregating 
county-level considerations. The parameterization of the REMI model builds its state-
level configuration by using locale-specific Standard Metropolitan Statistical Area 
(SMSA) data sets. This bottom-up approach recognizes the relative contributions of 
various geographic areas to the overall economic activity in each state. With recognition 
of the limitations from climate-model uncertainty and spatial resolution, the implicit 
incorporation of local considerations within the hydrological and macroeconomic models 
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would indicate that our aggregate state-level view should have a minimal effect on the 
overestimation or underestimation of impacts. 

Technology: Our analysis attempts to portray the impacts of climate change over the 
years 2010 to 2050 in the absence of climate-policy initiatives. Autonomous and price-
induced technology improvements that already reduce energy use may compensate for 
what would have been increased cooling loads resulting from climate change (Wilbanks 
et al. 2008). To keep this analysis focused on a manageable referent-based assessment, 
we do not include the uncertainty in energy (e.g., oil) prices. Implicitly, we assume that 
actual primary-energy prices have an upward trend. For energy use, the effects of 
temperature and technology are assumed to compensate mutually toward no net impact.    

Fuel Use: We do include the impacts on energy use by industry due to the loss of 
cooling or consumptive water if such usage leads to reduced industrial production. We 
implicitly are concerned about the temperature of the water used in the alternative 
cooling solutions and reflecting those impacts through changes in cost. As the 
temperature of the air gets warmer as part of climate change, so does the water, and the 
warmer cooling of the water results in less energy efficiency. However, we do not include 
the minor changes in additional fuel use that would occur due to higher-temperature 
cooling water—under the assumption that autonomous energy-efficient improvements 
over the next 40 years will limit the increased demand for fossil fuels. 

Temperature-Sensitive Energy Use: We do not include increased energy use 
resulting from increased temperature for the same reasons noted above. Assumed 
autonomous technology improvements in the macroeconomic referent (i.e., the base case 
of the REMI model without climate change) improve energy efficiency over time. Within 
the REMI model, future increases in energy prices cause price-induced changes in 
efficiency based on historical estimates of response characteristics, that is, how people 
have behaved in the past to similar increases. Future (unmodeled) increases in the price 
of energy—possibly caused by increased demand for energy due to climate change—
would feed back on the economy to again reduce demand. Commercial substitution of 
heating with cooling for climate change may balance out, and residential demands are 
more sensitive to price changes (Wilbanks et al. 2008). The inclusion of temperature-
sensitive correction could consequentially be counting twice for impacts already 
implicitly included elsewhere in the analysis, and they are therefore neglected. 

Additionally, we have defined identical values for the increased temperature across 
all the simulations, i.e., at the various exceedance probabilities, by specifying a motif (see 
Section 3.1.3). That is, the temperature itself, and therefore, the impact of temperature is 
the same across all simulations. We are not concerned with how mitigation could affect 
the uncertainty in temperature levels. We start with the A1B scenario across the multiple 
climate models and use the runs of these models as an ensemble, as is.     

Sea-Level Rise: Because the analysis does not go beyond 2050, the impacts of rising 
sea levels are neglected (Sokolov et al. 2009). A review of coastal-facility and 
topological data indicate that the existing precautions are adequate to accommodate sea-
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level rise and routine storm surge through 2050. In this context, we also do not consider 
increases in the frequency of hurricane events historically experienced, on average.  

Salt Water Intrusion: We do not include salt water intrusion, the movement of salt 
water into a non–salt-water environment, because the excess use of ground (and surface) 
water in the hydrological referent (see Section 3.2.4) contributes much more salt water 
intrusion than the minimal sea-level rise prior to the year 2050. Simply put, the 
hydrological referent indicates that the supply and demand is already out of balance, pre-
2010.  

Intra-Annum Dynamics: We focus our analysis on the lower-precipitation end of 
the precipitation probability distribution. As our focus is on the reduction in precipitation, 
we exclude the added costs from flooding. Even though our analysis incrementally 
simulates into the future only on an annual basis, we do recognize the change in intra-
annum precipitation, i.e., seasonal precipitation variation within a year. A likely response 
to any change in precipitation is to build more low-cost earthen dams for storing water to 
level the imbalances in supply and demand over the year. The costs associated with this 
type of solution are not significant compared with the other costs included in this 
analysis. Note that these same planning procedures based on dams could be used to limit 
the impacts of flooding to some extent. Other sections of this report provide expanded 
discussion of considerations for intra-annum impacts, e.g., the Pacific Northwest snow-
pack discussion in Section 4.4.  

Evapotranspiration: Hydrologists talk of evapotranspiration as the transfer of water 
from the earth into the atmosphere by evaporation from surface water and land and by 
transpiration from vegetation. While studies indicate that climate change affects the rate 
of evapotranspiration, the impact is minor compared with the precipitation changes 
among the simulations in this analysis. Increased evaporation would further reduce the 
supply of water and hence the availability of water. Therefore, we hold the ratio of runoff 
water to total precipitation at its historical (constant) values in the analysis. By definition, 
this means that we are also holding the ratio of evapotranspiration and ground-water 
recharging to total precipitation at its historical (constant) value for each state and county. 
If there actually is increased evaporation as a result of climate change, the impacts noted 
in this study have been underestimated. Lastly, because we are not separately running the 
actual AOGCMs as part of this analysis, the climatic calculations to correct for changing 
evapotranspiration are beyond the scope of our analysis.   

Cost of Water: If we compare the cost of obtaining water by purchasing water rights 
and note that the water should be priced at a comparable rate of cost to that of providing 
additional storage for the water, such as by building earthen dams, our calculations 
indicate that the cost of the purchase of such rights is small compared with the cost of 
physically accommodating reduced water availability. We show the cost of purchasing 
rights is relatively modest in Section 3.2.3. Applying the cost of both flood protection and 
additional water storage could constitute double counting, as the same dam could be used 
for both purposes. Our approach avoids this potential double counting. 
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Ecological Loss: We do not attempt to capture the value of ecological losses, nor 
have we considered pest and disease levels in agriculture or the ecosystem beyond those 
implied under historical (normal) temperature and precipitation conditions. The historical 
data include such ecological losses. 

Human Health: We also purposely do not address the cost of potentially increased 
levels of human diseases resulting from climate change. Our purpose is to compare our 
macroeconomic referent (the base-case REMI forecast) across impacts associated with 
climate-change uncertainty. On one hand, it appears that the analysis of disease impacts 
is not yet sophisticated enough to quantify even an initial level of confidence in the 
estimates of changing disease conditions. Patz (2002) attempted to quantify the impacts 
of diseases, but the dominant disease risk in the United States is associated with flooding. 
On the other hand, health policy is currently a part of the national agenda and makes the 
consideration of a no-climate-change basis for future U.S. health conditions 
unquantifiable.   

We do not consider the health impacts of increased pollution levels associated with 
climate change. These impacts appear to be associated with temperature levels (Tol 
2000a). Although temperature and its variation is a component of this analysis, the 
emphasis of our uncertainty analysis is on reduced precipitation. Further, it is unclear 
whether minimal adaptation efforts (i.e., minimal costs) could reduce these impacts.   

Moreover, for the United States, there appear to be both positive and negative 
estimates of health impacts due to climate change (Tol 2002b; Kunkel 1999). For 
example, warmer temperatures may significantly reduce cardiovascular-related deaths, 
and much drier conditions may reduce the spread of disease (Tol 2002a; Bosello et al. 
2006). However, wetter conditions in more northern latitudes may increase infectious 
diseases (Shuman 2010). The net risk-adjusted impact of climate change on health care 
may balance out the positive and negative risks and result in an expected net value that 
has close to no impact. 

Nonetheless, even in the absence of explicitly estimating health impacts, the analysis 
here shows significant impacts on the health care system. These impacts are primarily 
negative as a result of lost employment and lost income that restrict the use of 
discretionary health care. Because this analysis addresses the impacts of climate change 
in the absence of any policy interventions, we do not assume the U.S. government will 
intervene to fund this loss of health care. Whether the government transfers the loss to 
itself or leaves it as a responsibility of individuals in the population, the result is still a 
financial loss and is so recognized in this analysis.  

Tourism: We do not consider tourism in the analysis so that we can focus on the 
core interindustry and migration dynamics within the economy.    

Insurance Costs: We explicitly omit insurance costs, but these costs are implicitly 
treated in the analysis. In principle, the analysis determines the costs of such losses. An 
insurance company mainly acts as a funds-transfer agent. Presumably such an agent 
receives the funds from an industry that pays for the intra-industry damage. As a simple 
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example, each of us (as a modeled residential sector) pays homeowner’s insurance to 
cover losses to our own personal property, but these insurance costs do not cover the 
losses to a building downtown owned by someone else. When a homeowner pays 
insurance and then recovers losses from the insurance company, the net cost to the 
aggregate residential sector balances out except for the intermediate processing costs of 
the insurance company. Tracking such intermediate cash flows from some industry to its 
associated insurance company and then back again to the industry would not affect the 
net results and would have introduced unnecessary complications in the analysis.   

Rest of the World: Given the limitation that this is a CONUS-centric analysis, we 
assume that the rest of the world can and will accommodate U.S. import needs (especially 
food). We then do calculate international trade considerations along with additional 
considerations and details that other researchers have suggested are important (Tol 
2002b; Niemi 2009a, 2009b). Although climate change may improve the agricultural and 
principal industries of Canada, Russia, and elsewhere, the combined impact of the 
changing global trade and climate change on other countries is relatively unstudied. A 
recent study, however, notes that global agricultural prices will rise with climate change 
(Nelson et al. 2009). The adaptation in less-developed countries (who are predicted to 
experience the brunt of the physical impacts of climate change) would require funds that 
are largely affected by their export (U.S. import) revenues. Assuredly, global markets 
will change in the future with an assumption that costs will rise, but these uncertain 
conditions do not change the policy perspective engendered by our study.   

Internal Migration: Over the 40-year period, the cost of living in certain areas 
increases in comparison with other areas where the costs of adapting to climate change 
are less. Areas with less precipitation will likely experience increases in the costs of 
goods and services to a larger degree than those with more precipitation. Companies 
expand or contract, as the demand for their products and services changes. When 
business opportunities contract, a portion of labor (the population) migrates as its 
employment options change. Unlike most other studies of climate change of which we 
are aware, our analysis includes these dynamics of internal migration. We use the total 
population of the United States as forecasted in the macroeconomic referent (see 
Appendix D). We do not consider changing birth and death rates from changing climatic 
conditions, though the rates do change over time as forecasted in the macroeconomic 
referent. The changes observed in state populations across exceedance-probability 
simulations are entirely due to internal migration. 

International Migration: Because issues related to international immigration are in 
the realm of public policy, we do not assume there is any additional immigration or 
emigration beyond that forecasted in the macroeconomic referent.     

Dam Operations: Our study probably underestimates the impacts of water 
availability from increased precipitation that occurs out of phase with the snow-based 
storage design of the Pacific Northwest dam system. Other analyses seem to indicate that 
reduced water levels do not appear to reduce river-transport capabilities but do have an 
impact on hydroelectric power (Miles et al. 2000; Niemi 2009a, 2009b; Bull et al. 2007; 
NRC 2008) that is not captured in our analysis. Thus, the reported absence of negative 
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impacts from climate change within the Pacific Northwest in our study is more the result 
of simplification of the analysis than from the lack of these impacts. Such impacts are 
noted in University of Washington studies (Niemi 2009a, 2009b) and in the study by Karl 
et al. (2009). Some studies argue that changing how the dams are operated, albeit with 
other ecological impacts, could maintain either electric generation or other water needs 
(Payne et al. 2004). Estimates of the added costs of electricity for the Pacific Northwest, 
based on assumptions of operational inflexibility, are presented in the University of 
Washington study (Niemi 2009a, 2009b).  

Inventory and Investment Timing: We assume that the investment to adapt 
production with reduced water occurs within the year that reduced water availability is 
recognized. This time frame further implies that adequate inventories are available to 
sustain demand during presumed short-term reduced production and that the production 
is made up over the remaining part of the year. The alternative would be to presume 
temporary product shortages with ensuing indeterminate analyses of how much prices 
would vary as a result of hoarding and the existence of exaggerated construction and 
commodity cycles. We do not have the ability to validly address these latter 
considerations. 

Investments: Once an investment has been made to reduce water needs, only further 
reduction in availability would cause more investments. The production costs that are a 
consequence of the investments are additions to the future price and thus affect the future 
demand for the sector’s output in the particular state. Reduced output resulting from 
reduced demand would cause unemployment and population migration. Note that 
national accounting conventions (for example, the United Nations System of National 
Accounts or the U.S. National Income and Product Accounts) credit adaptation 
investments as an addition to the GDP. 

Alaska and Hawaii: Physical climatic impacts are only applied to the contiguous 
continental states. Alaska and Hawaii are not directly affected. These states, however, 
would receive benefits from added demand and immigration from the directly affected 
states. These positive impacts are minor, although possibly understated, and are contained 
in the reported numbers at the national level. 

Correlation Between National And State Precipitation Uncertainty: The data set 
we use is not complete enough for us simultaneously to consider national precipitation 
uncertainty and state-level precipitation uncertainty. Even though each state has its 
unique motif and its normal precipitation levels, we apply the same proportional change 
in national precipitation for any exceedance probability to all the states. An analysis that 
fully characterized the uncertainty in both the national and state-level precipitation would 
increase the overall uncertainty, and thereby increase the potential for low-probability, 
high-consequence conditions. Consequently, the most likely outcome of a more 
statistically sophisticated analysis (if data were available to do so) would be an increase 
in the summary risk. 

Analysis Balance: The use of the fixed pattern of water and temperature volatility 
(the motif) probably overestimates the damage cost at the high exceedance probabilities 
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where the volatility of precipitation may be more benign. Conversely, because the 
analysis excludes (1) flooding costs that could be larger than noted in the existing studies, 
(2) disregards potentially high levels of precipitation implied at the upper confidence 
extremes and (3) neglects costs from infrastructure-damaging extreme wind and hot 
weather, the analysis probably overestimates the damage costs at the high exceedance 
probabilities. However, the fixed motif does not capture worsening extreme weather at 
the lower exceedance probabilities that could physically damage facilities. The net effect 
appears to be a potential underestimation of the costs resulting from extreme (low-
exceedance-probability) climate-induced weather that destroys productive capacity.   

2.7 Historical and Future Continuity 

The year 2009 is history. Although the AOGCM climate-change analyses include 
impacts from 2000, those changes from 2000 to 2009 (inclusive of both years) are 
already implicitly incorporated in the modeled and real-world economy. The models that 
simulate the economy use the recent (weather-responsive) historical data in their 
construction and calibration. The consequences of GHG emissions through 2009 will 
have impacts that may last millennia (Solomon et al. 2009) and are an enduring 
component of present and future economic evolution. Therefore, from a modeling 
perspective, the 2000–2009 consequences of climate change have no additional impact on 
any hydrological and macroeconomic models. All future climate change must be 
compared with the average 2000–2009 values that have already been incorporated as the 
new “normal” climate conditions implicit within any macroeconomic referent.   

Macroeconomic models do not explicitly consider climate-change phenomena. Yet 
in their base-case forecasts, they implicitly assume unchanging weather for every future 
year. In this study, we then only determine the additional climate-induced risks that occur 
from 2010 to 2050. We use the average of the climate-ensemble from 2000 to 2009 to 
represent the “normal” weather that underlies the projection by the macroeconomic 
referent in the absence of added climate change. We ramp in the specified conditions of 
each sampled exceedance probability over a five-year transition period that starts from 
the (ensemble-average) 2009 historical values.  

In this study, we use the IPCC climate-model ensemble as the macroeconomic- 
referent statement of the climatic future. In many versions of system dynamics and 
econometric (statistically estimated) modeling, the models reproduce history and 
continue into the future as a part of the analysis and validation (Meadows et al. 1974; 
REMI 2007). The macroeconomic, hydrological, and climate referents must all be self-
consistent. The average conditions in the climate-model ensemble between 2000 and 
2009 are normalized to ensure these climatic conditions do not generate any impacts on 
the macroeconomic model over history. The future variations in weather from the 
climate-model projections are what define the climate-impact simulations between 2010 
and 2050. Similarly, the output of the hydrological model is normalized to generate no 
(new) shortages over the 2000–2009 historical period. Implicitly, if there were historical 
shortages, these impacts are already implicitly “corrected for” in the macroeconomic 
model (i.e., the REMI model). The Sandia hydrological model determines the differences 
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in physical water-supply conditions, based on the results of the climate models, compared 
with the water-demand conditions implied by the macroeconomic referent. This 
maintenance of self-consistency across the chain of models for the purpose of 
determining comparative impacts acts as the primary foundation of the analysis.   
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3 Climate Uncertainty and Impact Quantification 

If we are to quantify the risk associated with climate change on the well-being of the 
U.S. economy, we need to understand the uncertainty associated with climate change and 
how to propagate the physical impacts of this uncertainty through the economy. Because 
the emphasis in our study is solely on the policy relevance of climatic uncertainty, we 
define the macroeconomic model, as we do the hydrological model that connects the 
climatic information to the macroeconomic simulation, as deterministic for our purposes. 
In other words, all the uncertainty in this study comes from the climate-change forecasts 
that we use as input to this analysis. We neglect all the uncertainty in the hydrological 
and macroeconomic models. This approach of isolating the impact of climate uncertainty 
from the calculations in the hydrological model and the macroeconomic model avoids the 
complications of compounding the uncertainty over the multiple component models used 
in the assessment (Dessai and Hulme 2004). 

Section 3.1 communicates the basic features of climate-change uncertainty and how 
we characterize them for use in the risk assessment. Section 3.2 explains how we 
determine the hydrological impacts. Section 3.3 discusses how we use the REMI model 
to determine the macroeconomic impacts of climate change. 

3.1 Characterizing Climate Change 

For the globe, Figure 3-1 shows the mean percentage change in precipitation due to 
climate change in the 2080 to 2099 time frame compared with recent historical values for 
15 AOGCMs (atmospheric and ocean global-circulation models) in the climate ensemble 
under the SRES A1B scenario (IPCC). The stipple marks show where 80% of the models 
agree on the sign (positive or negative) of the change. Precipitation in North America 
varies by geographical region and by the specific AOGCM, with the annual mean 
precipitation of this ensemble projected to decrease in the Southwest but increase in 
much of the remaining areas (Bates et al. 2008). Individual studies project both increases 
in extreme precipitation and droughts (Meehl 2000; Trenberth 2008). The AOGCMs in 
general, project larger changes in precipitation extremes, such as intense downpours, than 
in mean precipitation, which is the annual average rainfall (Field et al. 2007; Kundzewicz 
et al. 2007).  
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Figure 3-1. Precipitation change. Source: Bates et al. (2008). 

 

Figure 3-2 shows the corresponding temperature changes from the 2080 to 2099 time 
frame compared with the historical values for the 15-model ensemble. Temperatures 
increase across the entire CONUS (continental United States), with growing magnitude 
from the Southwest to the Northeast. 

 
Figure 3-2. Temperature change. Source: Bates et al. (2008). 

 By and large, the mean of the 15-model ensemble shows increased drying over 
CONUS, as indicated by the colors associated with the negative percentage values 
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(yellow to shades of orange and red) in Figure 3-3. Individual models may indicate that 
there are increases in precipitation in some states, while other models indicate that there 
are decreases in those same states.  

 
Figure 3-3. Soil Moisture change. Source: (Bates et al. (2008). 

In the risk assessment, we analyze the consequence of changes in precipitation 
implied by the ensemble results at the national level over the entire range of exceedance 
probabilities, from strongly increased precipitation (100%) to strongly decreased 
precipitation (0%). However, because of limited data in the climate ensemble, we cannot 
independently calculate how the individual states would vary in precipitation as the 
nation is varying. Similarly, there is inadequate information to self-consistently vary the 
pattern of frequency and intensity for temperature and precipitation over the simulations 
(Tebaldi and Sanso 2009). To address this issue, we use a motif that relates national 
precipitation to the volatility present in state-level modeled temperature and precipitation. 
The motif is a representative pattern that corresponds to the 10% exceedance probability 
and is also consistent with the overall trends shown in Figure 3-1 through Figure 3-3. We 
selected the 10% exceedance probability because our concern is centered on the risk 
associated with the tail of the precipitation distribution. The results we use as the motif 
were produced by the medium-resolution MIROC3.2 climate model from the PCMDI 
data set. The MIROC3.2 results fit within the mainstream envelope of climate 
(precipitation) forecasts from other models (Jun et al. 2008, Milly et al. 2005), and the 
precipitation pattern within this MIROC3.2 model matches the 10% criterion. Note that 
there is both a high-resolution and a medium-resolution version of the MIROC3.2 model. 
All subsequent mention of MIROC3.2 denotes the “medium res” version of the model. 
Effectively, the MIROC3.2 model simulation serves as the basis for all the motifs 
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(generically called the motif) used in this study. The motif acts as a pragmatic, 
nonetheless necessarily imperfect, referent that forms the foundation for climate-policy 
discussions. Section 3.1.3 explains how the motif is quantified.  

Other studies have also had to revert to selecting a motif to make the uncertainty 
analysis manageable (Hallegatte et al. 2007). Any AOGCM run produces a specific 
coupling of precipitation and temperature conditions. It would violate the self-
consistency of the run to treat precipitation and temperature as independent entities 
separately affected by model uncertainty. Through the use of the motif, each simulation 
maintains a self-consistent, fixed relationship between precipitation and temperature and 
their associated frequency and intensity. By using the motif, we attempt to minimize the 
statistical concerns (or at least make them transparent) when sampling a single variable 
(precipitation) to reflect variability across multiple dimensions (Hall et al. 2007). 
Thereby, the fixed motif also simplifies the conceptual approach for propagating the 
uncertainty within simulation models. 

Although the motif is not dramatically different from other patterns produced by 
other models, the motif does capture the impact of climate-change volatility that is 
consistent with, and representative of, the temperature levels correlated with the 
precipitation. The chosen motif contains a realizable sequence of how precipitation levels 
may vary over time in a given U.S. state compared with other states. Over the 100% to 
0% exceedance-probability range of precipitation probability, the simulations of any U.S. 
state include both increased and decreased precipitation. As stated above, the IPCC data 
set is not extensive enough to allow the joint determination of a primary uncertainty (such 
as precipitation or temperature) and their associated frequency and intensity variation 
among state-level regions. The variability reflected in the motif produces only secondary 
impacts (see Section 4.3). The use of more-sophisticated statistical methods would not 
appear to significantly affect the results of this study. The impacts from the volatility 
contained in the motif are additive to those impacts caused by the variation in long-term 
precipitation that is used in this study as the primary uncertainty. The motif includes the 
downward trend in average precipitation correlated with an increase in average 
temperature that is the fingerprint of climate change within the midlatitudes (Portmann et 
al. 2009).  

While it is true that the use of another motif may have changed our simulated relative 
precipitation increase or decrease at the state level, an analysis that fully characterized the 
uncertainty in these features would increase the overall uncertainty, and thereby increase 
the potential for low-probability, high-consequence conditions, even while it improved 
the detailed precision of the hydrological referent. The purpose of this study is to 
illustrate a process for generating the risk profile among the states through the use of a 
macroeconomic referent impacted by the climatic uncertainty. This study does not 
attempt to comprehensively discriminate among the different components of climate-
change uncertainty. When and if climate analyses and methods allow it, the process used 
in this study can accommodate fully quantified uncertainty in the motif. Given the 
urgency in developing a U.S. response to human-induced climate change, we believe it is 
preferable to use the currently incomplete state of knowledge rather than wait for future 
climate research to supply a more precise picture. 
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3.1.1 Characterizing Climate Change Uncertainty 

Current data indicate that the present trajectory for CO2 emissions exceeds even the 
SRES A1F scenario (Steffen 2009). Despite this fact, we use the A1B scenario because 
we assume that technology and future economic growth will maintain a trajectory that is 
more consistent with the less-severe A1B scenario.   

 We use the ensemble of the 53 PCMDI A1B runs as an appropriate (useful and 
relevant) basis for quantifying the climate uncertainty used in our study. The actual (or 
real-world) uncertainty is probably much larger than the uncertainty characterized by the 
ensemble (Jun et al. 2008; Knutti et al. 2008), and therefore the estimated summary risk 
(integral of probability-weighted consequences) underestimates the true risk value. The 
ensemble results are publicly available for review and use from Lawrence Livermore 
Laboratory via the Internet (http://www-pcmdi.llnl.gov/ ). These results come from the 
IPCC-authorized work on climate change. These IPCC analyses are the most visible and 
widely used source of information on the potential outcomes of climate change.   

The PCMDI data sets contain information that goes from every three-hour averages 
to every-month averages, with coverage over the 2010–2050 years of concern in this 
study. For other than agricultural impacts, we aggregate these data into annual values. We 
choose to use only the annual uncertainty in precipitation for several reasons. First, the 
precipitation estimates among the climate models for June-July-August and December-
January-February can vary even in sign (positive or negative), but the annual values are 
much more consistent (Allen and Ingram 2002; Seager et al. 2008; Zhang et al. 2009). 
Second, the volatility of precipitation is more important to agricultural production than is 
the actual level of precipitation. The measures of volatility across the models do appear to 
be consistent (see Section 3.2.1). Third, economic activities can generally accommodate 
or are relatively immune to differences between seasons. Fourth, the uncertainty in the 
sign of impact among the climate models and the large amount of volatility and biases 
(compared with historical values) at the short time-constants (hours and months) largely 
disappears at the annual level (Sheffield and Wood 2008). Because this intraseasonal 
aspect of uncertainty and volatility has minimal bearing on the analysis herein, the 
validity of the risk assessment actually improves because the specification of uncertainty 
improves. 

 The PCMDI data do not contain an exhaustive uncertainty analysis for any of the 
individual AOGCM models. If the data set contained a more complete sensitivity analysis 
of all the individual models, the uncertainty within the ensemble would likely be even 
larger, and the results of the risk analysis would therefore show larger costs. Studies note 
that the variation among different AOGCMs is much greater than the variation found 
solely within these models (Giorgi and Francisco 2000; Knutti 2008; Murphy et al. 
2004). We adopt this observation regarding variation as a general assumption. Thus, the 
existing PCMDI data not only have the obvious value of actually existing, but the data 
also contain a recognized level of uncertainty.   

In other words, we use the PCMDI ensemble results from the 53 runs of the SRES 
A1B scenario as our representation of climate uncertainty not because these results are 
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“right,” but because they can act as an acceptable basis for making risk-informed 
decisions and are used to support that goal (Vicuna et al. 2009). Our emphasis is neither 
on risk-informed policy nor on a risk assessment of alternative initiatives. Using the 
terms “risk-informed” and “risk assessment” in that context often implies a sense of 
knowledge that has clearly not yet been achieved for climate science. In future decades, 
climate science may have the level of valid knowledge and sufficient accuracy that is 
required for risk-minimized policy making (Knutti 2008), but climate policies need to be 
made long before the climate community comes to common agreement on quantifying 
the uncertainty in future climate conditions.  

We accept the PCMDI model results as-is. That is, we do not question or analyze the 
validity of these results in this study, nor do we even recognize error biases in their 
forecasts. Others have noted that the random selection and use of the models do not result 
in significantly different conclusions (Pierce et al. 2009). In other words, had we selected, 
say, runs from fewer than the 24 models, the conclusions would likely have been similar 
for the smaller collection. The differences among the model results tend to balance out 
when they are examined as a group. We are interested in the ensemble results as a 
rational and useful representation of climate uncertainty. By using 53 runs from 24 
models, we take advantage of the information within the ensemble and recognize that 
there is no consistent manner to correct for perceived error biases (Tebaldi and Knutti 
2007; Jun et al. 2008). Other researchers note that the relative uncertainty provides the 
policy-relevant information and is well supported across different studies (Knutti et al. 
2008). We primarily focus on the variability in precipitation among the runs in the 
ensemble, but do, as discussed below, also use the runs for selecting a referent, the motif, 
of future weather intensity and frequency. Some researchers note that an ensemble still 
underestimates the full uncertainty of future climate but that the information has value for 
guiding decision makers (Stainforth et al. 2007a; Räisänen and Palmer 2001; Allen and 
Ingram 2002). That larger uncertainty would imply a greater risk (Stainforth et al. 2007b) 
than the estimates in our study. Other researchers, however, indicate that the accuracy of 
climate modeling is improving to the point where the uncertainty is converging (Reichler 
and Kim 2008). That is, the uncertainty is becoming adequately defined for use in 
analyses that quantify the impact of that uncertainty on the risk from climate change. 

Some modelers use statistical downscaling methods to gain more insight about 
climatic conditions in specific locales within a geographic area, like a county, when the 
information they have is at a lower, less-detailed level of resolution, such as that of a state 
or region. Downscaling is an approach that attempts to extend the resolution for the IPCC 
runs to a local scale that is consistent with historical statistical characterization, i.e., the 
relationship between the state averages and county-level specifics on precipitation-related 
variables. We do not apply downscaling methods on the PCMDI runs to generate county-
level values for three reasons. First, the use of downscaling could turn a broad policy 
discussion about the impacts of climate change into an abstruse science debate that 
focuses on the particular downscaling method employed. Second, the added skill, that is, 
accuracy, that downscaling provides for improved forecasting remains an open question 
(Dibike and Coulibably 2005; Santoso et al. 2008). Downscaling is highly dependent on 
the particular AOGCM used, and it is not clear whether it produces additional 
information (Alkhaled et al. 2007; Collins 2007). And third, a national policy discussion 
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that depends on detailed local phenomena contradicts the purpose of using models for 
informing national policy discussions. To meet the needs of policy makers, we believe 
that the state level is the appropriate level of aggregation for this analysis. To inform 
policy discussion, out analysis exclusively addresses state-level impacts. Even if higher 
resolution data supported consideration of detailed, heterogeneous local features, it would 
be necessary to again aggregate the information to the state level for our purposes. 

Figure 3-4 shows the annual variation in nation-level precipitation across the 53 runs 
of the A1B scenario over the years 2010 to 2050. The points are calculated by summing 
the precipitation reported in each ensemble-model run over the complete and partial grids 
that contain the area representing the United States. Each colored line represents the 
results of a different computer run.  

 
Figure 3-4. National precipitation from each of the ensemble models. 

Figure 3-4 gives a clear picture of the uncertainty, hence volatility, in the 53-run 
ensemble. The range across most of the runs appears to be between 27 inches and 37 
inches per year, with a few runs several inches below and above that range and a small 
number spiking dramatically in both directions. One of the most visible runs is the dark 
blue line. Similar to the others, the blue line has a lot of volatility, with high and low 
swings within relatively short time spans. Notice that in the very same years that some 
runs show high averages, other runs report low averages. But on the whole, the runs in 
some sense appear to balance out in a range that likely goes from about 30 to 35 inches 
over the time period. 

The climate models produce data that have both spatial attributes (different values at 
different geographical places) and temporal attributes (different values at different times). 
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All the models represent the globe as a sphere covered by a grid pattern of areas with 
climatic conditions in each area changing over time. To aggregate the detailed data from 
the ensemble runs to state-level values over a specified year, we use a weighting process. 
If f  is the fraction of the model gridding that is contained in an area (such as a state or the 
nation) and V is the value of any quantity estimated for that grid (such as precipitation or 
temperature at a specified time), then the average value V-bar (such as the national 
precipitation in Figure 3-4) is the sum over the gridding, g, and the modeled time 
instantiations, t, to the area, A, and the time resolution, T, of interest: 

gt
t g

AgtTA VfV ,,,,   .   (3-1)

 

Because of our interest in economic impacts, using economic-value or population 
weighting may seem more appropriate than area weighting for aggregating the data to the 
national level when developing the probability distribution. However, any approach that 
uses anything other than the area-centric logic inherent in the actual AOGCM runs 
generates distortions and inconsistencies in the statistical meaning of variables as the data 
flow from the hydrological component of the simulation through the socioeconomic, i.e., 
REMI model, component of the simulation. 

As discussed in Section 2, a gamma distribution is commonly used to represent the 
probability distribution function for precipitation (Groisman et al. 1999; Watterson and 
Dix 2003). Figure 3-5 shows the projected cumulative probability of precipitation in 
inches per month for New Mexico and New York over the years 2010 through 2050, as 
generated by the MIROC3.2 and CCSM3 models, respectively.1 (See Randall et al. 
(2007) and Meehl et al. (2007b) for a discussion of the IPCC climate models.) We choose 
these states to illustrate contrasts, with New Mexico being a dry southwestern lowly 
populated area and New York representing a wet northeastern highly populated area. The 
selection of New Mexico also serves as a representative example to understand the results 
of our work, given that members of the study team are knowledgeable about the economy 
and the water issues in this state.   

The two graphs in Figure 3-5 show the calculated monthly precipitation of the two 
models for the areas representing the states of New Mexico and New York as a function 
of exceedance probability. The models are mapped using whole and partial grids to cover 
the area of the states according to Equation (3-1). The value, in this example, 
precipitation, in each modeled grid is taken as homogenous across the grid. The shown 
state-values are the area-weighted sum for each month, ordered by the magnitude of the 
values, and then portrayed as a cumulative probability distribution. Visually, the models’ 
results conform to expectation of a gamma distribution and have inconsequential 
estimated second-order uncertainty, as represented by the dashed lines around the best-
estimate solid line. The actual data and best estimate closely approximate each other. 

 
  

                                                 
1 The statistical fitting of the PCMDI data to the gamma distribution was completed using MATLAB. 
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Figure 3-5. New Mexico and New York projected precipitation distribution (inches per month). 

The values noted in Figure 3-5 and subsequent graphs and tables quantifying 
precipitation are consistent with but different from the values indicated historically by the 
National Oceanic and Atmospheric Administration (NOAA).2 This discrepancy is an 
artifact of the weighting process used in Equation (3-1) versus that used by NOAA. The 
areas within the grids of the climate model each contain a set of results, such as 
precipitation and temperature. These results represent the average value for those 
conditions over the entire area denoted by the grid. This sameness of conditions over the 
whole area is called homogeneity. We map a fractional piece of these areas to produce 
areas representing states. Grid-based areas that represent mostly a “drier” Texas could 
partially map to a “wetter” Louisiana. Part of an ocean-dominated area could partially 
map to a piece of coastal land. Thus, the “mix and match” process of mapping one area to 
the other can produce distortions. We could use mathematical methods to maintain the 
exact correspondence to the historical values, but it would be at the expense of no longer 
exactly reflecting the uncertainty information available with the ensemble of modeled 
estimates. The modeled results reflect a measure of the uncertainty in future climatic 
conditions. The purpose of this study is to show how the uncertainty in predicted climate 
change increases the expected risk from climate change and thereby to show the 
justification for policy to counteract that risk. 

Within the analysis, we do not use the actual number calculated for precipitation. 
Instead, we only compare the model-based calculation of “historical” precipitation to the 
calculated values at the various exceedance probabilities to determine proportional 
changes. The historical supply of water used in the hydrological model corresponds to 
accepted estimates of the actual historical supply (see Appendix A). The historical 
demand for water  derived from the macroeconomic model corresponds to the accepted 
                                                 
2 See http://www.ncdc.noaa.gov/sotc/index.php?report=national&year=2006&month=ann#precip for 
historical U.S. precipitation or http://www.ncdc.noaa.gov/oa/land.html for  all historical data.  
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estimates of actual historical demand (see Appendix A). The estimated historical 
precipitation is scaled to correspond to that supply, and the modeled precipitation is only 
used to define proportional changes in the calculated historical supply. Consequently, the 
absolute value of the estimated precipitation does not affect the analysis results. 

Figure 3-6 highlights the same two states in the previous figure; however, the units 
have been changed to inches per year, and only results for the MIROC3.2 model are 
given. To obtain these values, we sum the data of Figure 3-5 over the 12 months of each 
year. Note that the gamma function is still a reasonable representation, as would be 
expected. The distribution of precipitation as a function of time should be functionally 
invariant. That is, the distribution should be adequately approximated by a gamma 
distribution independent of whether the data series is based on daily, monthly, or yearly 
values. We have observed that the shape of the precipitation distribution does not change, 
whether we look at different parts of the country, different extremes in the amount of 
precipitation, or different time intervals, i.e., month and year. 

 
Figure 3-6. New Mexico and New York projected precipitation 
distribution (inches per year). 

Figure 3-7 shows the cumulative distribution of national-level precipitation from all 
53 model runs over the 2000 to 2050 time frame.3 To generate this figure, we calculate 
the average number of inches per year for each and every ensemble model rather than just 
for the MIROC3.2 and CCSM3 models used to generate Figure 3-6. We perform this 
calculation for CONUS rather than just for an individual state, sum over all years to and 

                                                 
3 Some model data begin in 2001. 
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including 2050, and calculate the annual average. Figure 3-7 is essentially just Figure 3-6 
for the entire United States instead of a particular state, and it uses all the model results 
rather than just one model’s results. 

 
Figure 3-7. National average precipitation cumulative probability. 

As an example from Figure 3-7, at the 0.5 (50%) exceedance probability, the median 
precipitation is close to 32 inches per year for the nation. A much lower probability, say 
0.075, shows an average of 28 inches per year. The 95% to 5% confidence interval, 
which represents the range of the second-order uncertainty, is indicated by the dashed 
lines. Note the second-order uncertainty is much larger for the ensemble than for the 
individual models of Figures 3-2 and 3-4. The curve (solid red line) in Figure 3-7 is the 
primary (first-order) uncertainty in national precipitation that we use to generate the 
exceedance-probability simulations for the risk assessment. The national level of 
precipitation at a given exceedance-probability level is available directly from the mean 
values—solid red line—of the exceedance curve estimated for Figure 3-7. The national 
level of precipitation at a given exceedance-probability level is mapped to the state level 
using the state-to-state differences contained within the MIROC3.2 model simulation.  

Explained another way, a particular level of forecasted precipitation is associated 
with a particular AOGCM run. An AOGCM divides the globe into gridded areas. The 
AOGCM run contains temperature and precipitation detail for each of the gridded areas 
simulated. We use a model’s gridded areas covering the United States and map the areas 
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to the individual states, partitioning and aggregating area-specific data as appropriate. 
Thus, the national values translate to unique state-level conditions for both precipitation 
and temperature for use in the subsequent hydrological component of the analysis.   

3.1.2 Using Uncertainty for Risk Assessment 

As noted above, we use the cumulative distribution of national area-weighted 
average annual precipitation through the year 2050 as defined in Equation (3-1) to 
determine the precipitation to use in the exceedance-probability simulations for our risk 
assessment. For the hydrological analysis, we first map the monthly conditions (for 
temperature and precipitation) associated with the climate-model grids to the county level 
to correspond to the detail of the hydrological model in the same manner as it was done 
for the states. The hydrological model also includes basin-level specificity. The basin 
considerations account for water flows, which are necessary to know when 
determinations are made by the hydrological model about where water, which knows no 
country or state boundaries, goes. We then aggregate the county hydrological results to 
the state level for input to the state-level macroeconomic analysis.  

Note that the state-level aggregation means that the measure of economic activity is 
now characterized as being homogenous over the state, as is state-level water availability. 
However, the state-level macroeconomic model also implies homogeneity within the 
state, and therefore any hydrological data fed to the model must be at the state level for 
consistency. Nonetheless, the macroeconomic model has also been constructed using 
county-level resolution. The county-level resolution implicitly captures the historical-
average nonhomogeneity of economic activity and therefore the associated local water-
availability considerations of where economic activity occurs within the state. For 
example, economic data for individual cities in New Mexico, including their water supply 
characteristics, are included in the lower-aggregation process to produce the state-level 
values. The climate, hydrological, and macroeconomic spatial-data resolution is therefore 
self-consistent for historical differences within a state. With the state-level motif, the 
future differences across states change with time as a function of climate change, but the 
relative intrastate differences remain at their historical relationship. As noted previously 
in Section 2.6, intrastate considerations are outside the boundary of this study. 

 We analyze a series of simulations at nine different exceedance probabilities to 
estimate the distribution of socioeconomic impacts as a function of the changing state-
level precipitation. Table 3-1 lists the national exceedance probabilities selected from 
Figure 3-7 that are mapped to the state level using the state-level motifs discussed above. 
Associated with each probability are the corresponding national-average precipitation and 
the ratio (multiplier) between the precipitation value and the 50% exceedance probability. 
Note that our emphasis is on the lower end of the precipitation distribution tail centered at 
approximately a 10% exceedance probability, where damage costs begin to rise 
precipitously.  
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Table 3-1. Exceedance-Probability Sampling Scheme 

Sample 
% 

Precipitation 
(inches) 

Multiplier 
(50% = 1.0) 

1 % 25.777 0.8021 
5 % 27.542 0.8571 
10 % 28.516 0.8874 
20 % 29.726 0.9250 
25 % 30.194 0.9396 
35 % 31.017 0.9652 
50 % 32.135 1.0000 
75 % 34.158 1.0629 
99 % 39.463 1.2280 

The percentage values in Table 3-1 correspond to the 50% probability (solid line) of 
the cumulative distribution in Figure 3-7. So, for example, the median national 
precipitation, defined at the 50% exceedance probability in the above table, is 32.135 
inches. On average the national precipitation drops by roughly 6 inches (a roughly 25% 
reduction) when going from a 50% to 1% exceedance probability, but the loss would be 
different for each state as a result of reduced (or increased) national precipitation because 
the states each have different levels of average precipitation. At the 99% exceedance 
probability, the average national precipitation is 39.463 inches, which is 22% above the 
50% value. To determine the corresponding state precipitation values at each of the nine 
exceedance probabilities, we multiply each state’s median precipitation value by the 
multiplier value given in the third column of the table. Each state’s median precipitation 
value, in inches, is the median value of the average precipitation over the 53 PCMDI runs 
over the 40 years. The use of both the terms “median” and “average” in close proximity 
is a bit confusing, but it means that at the 50% exceedance probability, there is a 50% 
chance the precipitation (on average) will be less than (or more than) the precipitation 
noted, e.g., 32.135 inches, for the nation. The term “average” appears because the data 
values do represent the average over the 40 years and the 50% exceedance probability is 
the median of those average values. The annual variation is then captured through the 
yearly percentage increase or decrease contained in the state-level motifs discussed in 
Section 3.1.2. The resulting value, at each of the probabilities, is the available water 
supply that we subsequently compare to the demand to determine the water availability 
that the REMI model uses to determine the economic impacts.   

The impacts of the simulations are the difference between what the hydrological and 
macroeconomic models would predict with the historical precipitation sustained into the 
future and what the models would predict with the precipitation of each exceedance 
probability used in the future. In the absence of climate change, climatic conditions 
would still vary in the future. Our climate referent does not contain this variation. The 
Atlantic Ocean exhibits a cycle of change in sea-surface temperatures called Atlantic 
Multidecadal Oscillation (AMO). This oscillation changes the precipitation in North 
America. The El Niño Southern Oscillation (ENSO) is another such phenomena in the 
Pacific Ocean that changes the precipitation conditions in much of the Western 



 64

Hemisphere. El Niño has a relatively short period of oscillation, on the order of five years 
but highly variable, that would not noticeably change the modeled impacts between 2010 
and 2050 compared to assuming a constant “average” value for precipitation.  

The highly variable period of oscillation for the AMO is approximately 70 years 
(Trenberth and Shea 2006). Its variability would not average out over the 2010 to 2050 
time frame. Currently, the AMO is in a warming phase that generates additional 
precipitation. This phase may last until 2035 (Enfield et al. 2001). Further, current 
climate models do not yet incorporate the AMO with much fidelity (Hurrell et al. 2010; 
Murphy et al. 2010). The ensemble’s historical average, which we use as our historical 
referent, only minimally reflects the AMO phenomena because each individual model 
differently captures the AMO and its timing. Combining the results of all the individual 
climate models tends to cancel the AMO contribution of each model to the ensemble’s 
average. Consequently, it is not possible to develop a statistically meaningful AMO 
representation for the climate referent that is consistent with use of the simulations for 
each exceedance probability. Therefore, the referent used to compare the impact across 
simulations uses a future equal to the calculated historical average. Given the fact that the 
actual AMO is estimated to produce additional precipitation, as contained in each of the 
individual model simulations, including MIROC3.2, our process to estimate climate-
change impacts could potentially lead to an underestimate of these impacts. 

We can estimate the impact of the second-order uncertainty without performing 
additional simulation analyses by noting that every best estimate for a simulation 
corresponds to a second-order uncertainty at the 95% and 5% boundaries of the 
confidence interval according to the values in Table 3-2. The 90% confidence interval 
(between the 95% and 5% confidence boundaries) capturing the second-order uncertainty 
is simply the range of possible values that the first-order-uncertainty solid line in Figure 
3-7 could have. The solid line is the best estimate of the first-order probability.  
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Table 3-2. First-Order to Second-Order Probability Map 

  
First-Order Probability Level 

Second-Order 
Probability Level 

Simulation 
% 

Precipitation 
(inches) 

 
Lower 5% 

 
Upper 95% 

1 % 25.777 0.250% 3.918% 
5 % 27.542 2.102% 11.429% 
10 % 28.516 5.187% 18.412% 
20 % 29.726 12.626% 30.193% 
25 % 30.194 16.741% 35.591% 
35 % 31.017 25.478% 45.889% 
50 % 32.135 39.424% 60.576% 
75 % 34.158 64.408% 83.259% 
99 % 39.463 96.081% 99.750% 

 

Figure 3-8 gives an example of the upper and lower second-order uncertainties for 
the 50% exceedance probability (first-order uncertainty) listed (and shaded) in Table 3-2. 
Starting at the 0.5 circle on the red line of Figure 3.8 (which is roughly 32 inches), we 
follow the vertical line upward to where it crosses the upper (95%) probability curve, 
which defines the upper second-order probability of 60.576%. This value can be 
interpreted as there being a 95% chance that the 60.576% exceedance probability for 
national precipitation will produce less than 32.135 inches of water per year, on average, 
over the 40-year period. Starting again at the 0.5 circle on the red line, we follow the 
vertical line downward to where it crosses the lower (5%) probability, which defines the 
lower second-order uncertainty of 39.424%. This value can be interpreted as there being 
only a 5% chance that the 39.434% exceedance probability for national precipitation will 
produce less than 32.135 inches of water per year, on average, over the 40-year period.  
By drawing curves through the related values, these first- and second-order uncertainties 
used in the risk assessment are reflected in the summary-risk figure of the executive 
summary and in Figure 4-2 and Figure 4-3 of Section 4.    
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Figure 3-8. Example of determination of second-order uncertainty 
from 0.5 first-order uncertainty value. 

In all cases, each simulation we perform starts with taking the national precipitation 
at a specific exceedance probability and converting to precipitation at the state level over 
the 40-year time frame of the simulation. Via the state-specific motif, each of the nine 
exceedance probabilities we simulate includes the frequency and intensity characteristics 
associated with drought, flood, and temperature variability.  

3.1.3 Motif Specification 

The motif acts as the vehicle for comparison across the range of precipitation 
uncertainty. Using the motif is a pragmatic approach that does not significantly affect the 
estimation of climate-change impacts (see Section 4.3) and that has a history within 
climate impact analysis (Hallegatte et al. 2007). Associated with the frequency and 
intensity of precipitation, the motif also then expresses the relationship of temperature 
(with volatility) to precipitation. Although more-sophisticated studies could exercise the 
suite of models to extend this work by including frequency, intensity, and secondary 
uncertainty, such an effort would be prohibitively time consuming even on the next 
generation of supercomputers. As pointed out by Tebaldi and Knutti (2007), studies using 
a single model would not capture the range of both epistemic and aleatory uncertainty 
captured in the full suite of models.     

Figure 3-9 depicts the precipitation component of the national-level motif, though we 
do not use this motif at the national level in the analysis. We present it here to illustrate 
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what a motif looks like. The national-level motif for precipitation is normalized to have 
an average value of 1.0 over the 2000–2009 period, with the volatility then measured as a 
percentage difference from the norm. The motif constitutes a large collection of local 
information on precipitation and temperature volatility across the nation. Each state has 
its individual, normalized motif for temperature and precipitation based on the mapping 
of the MIROC3.2 gridded, time-dependent data to the state area. These submotifs contain 
the state-level dimension of the entire national motif. State volatilities are larger than the 
national volatility. The relatively modest 40% swings in national-average precipitation 
implied in Figure 3-9 are typically larger within the motif view at the state level, 
reflecting larger swings in drought (and flooding) conditions. To capture agricultural 
impacts, there are state-level submotifs that contain the monthly variation. The state-level 
submotifs with annual variations are the primary determinants of water availability for 
other economic activities within the states. 

 
Figure 3-9. National-level motif for precipitation. 

Temperature and precipitation are causally related in the climate-science sense 
(Trenberth et al. 2008). Historical trends appear to support increased North American 
precipitation, except in the Southwest (Trenberth et al. 2008), as do individual AOGCM 
models (Christensen et al. 2004). We have observed a similar relationship at the national-
level between precipitation and temperature correlations within the model ensemble, but 
with greater variation than indicated in the historical data. The data points in the scatter 
plot of Figure 3-10 show the national-level average temperature over the 40-year period 
of interest compared with the national average level of precipitation of the same period 
for the same AOGCM model ensemble.  
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Figure 3-10. Ensemble temperature and precipitation relationship. 

As an example of a simple temperature and precipitation relationship, the topmost 
data point in Figure 3-10 represents one of 53 model runs. The climate model that 
produced this data point forecasts over the 40-year analysis period an average 
precipitation of almost 40 inches per year and an average temperature of about 15C. In 
terms of our probabilistic distribution of climatic futures for precipitation, the uppermost 
dot might most closely correspond to the precipitation at the 99% exceedance probability, 
whereas the bottommost point of around 27 inches (produced by a different climate 
model) would be close to our 1% exceedance probability.  

Figure 3-10 demonstrates that the relationship of temperature and precipitation 
across all the AOGCM models in the climate ensemble we have used is complex, despite 
the numerical ability to generate a poorly fitting line through the data. Nonetheless, the 
figure has a negative slope consistent with the rising temperatures noted by Portmann et 
al. (2009) in the historical data. Thus, rising temperatures are, in general, associated with 
reductions in precipitation. 

We do not adjust the temperature aspects of the motif with the sampled precipitation 
levels. The quantitative relation between precipitation and temperature in a U.S. state is 
maintained by an unchanging motif even though the precipitation is a proportional 
increase across all years. Any attempt to adjust the temperature in the absence of actually 
running the AOGCMs would have added more inconsistency in the analysis. Moreover, 
as discussed in the next section, temperature has a minimal effect on the total economic 
impacts reported. 
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3.2 Hydrological Impacts 

We use the precipitation values in Figure 3-7 presented previously as a suitable 
approximation for defining reduced water conditions over a range of probabilities. The 
fitted gamma distribution, which is statistically estimated from the model data, includes 
the secondary uncertainty (as depicted in Figure 3-5); however, most of our analysis 
focuses on addressing the impacts along the best-estimate fit of the curve (the solid red 
line), which is the first-order-uncertainty. 

The hydrological analysis determines the availability of water in the context of 
changing water supply and demand over time at the U.S. state level. The climate data 
from the climate-model runs describe the primary source of water via their estimated 
precipitation conditions. Note that these are forecasted data, not historical values. For 
consistency, we use as our referent the base-case forecast of the REMI macroeconomic 
model discussed in Section 3.3 as the basis for future economic activity that drives future 
water demand (usage). The hydrological model uses the time-dependent precipitation 
estimates to determine the adequacy of available water for the industrial activities. We 
then convert these availabilities of water to measures of the physical impact on industry 
operations and investments (as discussed in Section 3.3). Although we consider both 
usage and consumption, the focus here is primarily on consumption as the limiting factor. 
Usage and consumption are distinct concerns that are very important to hydrological 
analyses and the exact definition of water availability. Irrigation primarily consumes 
water. The cooling of thermoelectric power plants and heavy-industry facilities, as well 
as hydropower, is primarily a usage of water that allows further downstream 
consumption. Mining activities, although they extensively reuse water, are largely 
consumptive. Food and beverage industries are also consumptive. In determining water 
availability for thermoelectric generation plants, we do not count coastal facilities that 
operate on saline water. For agriculture, we consider irrigated and nonirrigated crop 
production and take into account the extremes and volatility of temperature in addition to 
the water conditions.  

 The hydrological model used in this analysis (see Appendix A) overlays a water-
basin-level approach with a state-level mapping. The model determines water availability 
as a function of supply and demand. In broad terms, water availability becomes an issue 
when demand exceeds 40% to 50% of the total water supply (Taylor 2009). Demand is a 
composite of agricultural (irrigation and nonirrigation farming, and livestock) uses, with 
separate municipal, industry (as an aggregate), mining, thermoelectric generation, and 
hydropower needs. Chen et al. (2001) took this same modeling approach of comparing 
economic needs to water supply but limited the study to a specific region rather than 
across the whole nation.  

For this analysis, we use a constant proportional relationship between precipitation 
and the fraction of precipitation that becomes surface water. That is, we assume that 
evaporation remains essentially a constant fraction of precipitation. In this study and as 
noted in previous studies (Arnell 1999; Seager et al. 2008), predicted precipitation has a 
large degree of variability compared with evaporation. Data do indicate that evaporation 
may increase with climate change (Golubev et al. 2001), but that would simply imply that 
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our study underestimates the impacts of reduced precipitation due to climate change. The 
specification of ground-water usage is based on existing planning and policy trends 
(Solley et al. 1993,1998; Hutson et al. 2005; Maupin and Barber 2005) through 2050 
without assuming a complete loss of ground-water resource by 2050.   

Our concern is the impact of climate change relative to the macroeconomic referent. 
Because existing water rights are based on extensive historical precedence and are 
unlikely to change dramatically over the analysis time frame, a focus on that concern 
would detract from the primary message of the analysis. The modeling also assumes, to 
the extent possible, the enforcement of interstate water rights. Thus a shortage in one 
state, because of defined water allocations, does not necessarily result in a shortage in the 
downstream state. 

As is common for hydrological impact analyses, this study does not take into account 
day-to-day fluctuations (Bates et al. 2008) although, as discussed below, intra-annual 
fluctuations are intrinsic to the analysis. The PCMDI ensemble does not show dramatic 
changes in overall CONUS precipitation over the 2010 to 2050 time horizon, and the 
ensemble includes simulation runs that contain both decreases and increases in 
precipitation at the state level. The hydrological model is assumed to be deterministic and 
valid for this analysis to isolate the impact of climate uncertainty. Other studies indicate 
the hydrological models contain less uncertainty than the climate models (Giorgi and 
Francisco 2000; Murphy et al. 2004).   

We primarily only capture changes on a year-to-year basis in our analysis despite the 
resulting introduction of error. We do this to highlight major concepts, improve the 
understandability of results, and avoid any distraction from the primary results that would 
be introduced by using time scales shorter than a year. Further, the uncertainty associated 
with climate models has better specificity at the annual level for the latitudes of interest 
here (Bader et al. 2008; Dai 2006). In Section 4.3, we explore how much the annual 
resolution affects the simulated economic responses and damage-cost estimates.  

3.2.1 Water Availability 

For the agricultural impact analysis, we first develop a probability density function 
for the standard precipitation index (SPI) to give an indication of the drought content of 
the ensemble runs. The SPI is the ratio of the peak precipitation for any month in a 
specified area over the precipitation from a longer time period, for example, a year. We 
then vary the range of the SPI calculation from months to years, and we find that the SPI 
ranking, as relevant to the purposes here, is relatively unaffected by the choice of time 
interval. Subsequently, we compare the model rankings using an SPI based on one-year 
running averages over the 40 years of the analysis to model rankings that simply used 
annual precipitation. Around the 10% exceedance-probability region of the probability 
distribution that is our primary interest, we find that the AOGCM-simulated reductions in 
precipitation and increased drought (SPI) are positively correlated to a high degree. There 
is little or no change in the ranking of PCMDI runs using the SPI as the criterion versus 
using precipitation. On the one hand, this means that the use of precipitation level 
(average water supply) is comparable to the use of the SPI (a measure of drought 
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conditions) for quantifying the uncertainty. On the other hand, it means we can 
legitimately use the SPI of the selected motif for estimating crop productivity. 

The allocation of water under enduring climatic water shortages remains largely 
undefined. Water rights are fraught with complex legal, political, and social implications, 
and the legal specifics of water rights vary widely from state to state. Agriculture often 
has grandfathered rights to water resources, yet under the currently increasing routine 
instances of limited water availability, compromises, purchases, and the transfer of water 
rights commonly occur. In this study, we use a simple line of reasoning that assumes 
high-value (monetarily and politically) users can purchase water rights but only to the 
extent where the proportional shortage to other users, such as agriculture or mining, is 
twice that of the high-value users. For example, if there is an overall shortage on the 
order of 10%, where municipal and industry sectors experience a 7% shortfall, agriculture 
and mining sectors accept no more than a 14% shortfall. The difference in the allocation 
is associated with payments from the high-value activities to the lower-value activities to 
pay for the water transfer (see Section 3.2.3). 

It is well beyond the scope of this study to consider the various possible scenarios 
that could be envisioned for water reallocation, e.g., pure market-based allocation, pro-
rata sharing, or restructuring of the legal basis for water-rights allocation based on 
priority of use rather than on priority of right or riparian links to land. Further, we 
recognize that there are significant differences in water-allocation regimes between the 
eastern and western United States as well as among the various states. For example, we 
use a uniform value of $1,000 per acre-foot as the representative cost for delivered water, 
but this assumption of compensation reflects a market structure that does not yet exist in 
many U.S. locations. The consideration of marginal and average values of water costs 
across geographical and jurisdictional entities, many of which do not contain market 
mechanisms, is again well beyond the scope of this analysis. Additionally, it is 
impossible to determine what the unique regulatory response in each state would be to the 
conditions tested in this analysis (Young 2005; Changnon 2005; Schlenker et al. 2005). 
For these reasons, we select a middle-ground that is transparent and pragmatic enough to 
allow an analysis, while producing acceptably realistic allocations. Frederick and 
Schwarz (2000) analyzed future induced water shortages and the ability to remove low-
value uses. Their reported costs for water are in the range of $400 to $1,000 per acre-foot. 

Some states currently have abundant water, such as Minnesota. Other states, such as 
New Mexico, barely have adequate water. Figure 3-11 illustrates the hydrological-model-
estimated reduction in water availability in 2050 across the states for the different 
exceedance-probability simulations. Water availability is the estimated ratio of water 
demand to water supply. Figure 3-11 shows an index indicating water adequacy (or water 
availability) compared to the hydrological referent. A value of 1.0 means the water 
availability is comparable to its historical value. 



 72

 
Figure 3-11. Normalized water availability (2050). 

Each colored line in Figure 3-11 represents the results for a specific exceedance-
probability simulation (or case), as denoted in the legend. Each colored line is actually a 
series of data points, with each point representing a particular state (on the y-axis) and its 
associated normalized water-availability value expressed as an exceedance probability 
(on the x-axis). The points are connected by lines to help readers visualize how water 
availability changes from one probability to another. Note that in all cases the water 
availability changes as we proceed upwards in the exceedance-probability simulations. 
Several examples may be helpful in interpreting the results displayed in this figure:  

 The dark purple line at the bottom displays the results of the 1% exceedance-
probability simulation. For Alabama, in this simulation for 2050, there is a 1% 
chance that Alabama will get less than 72% of its normal water. The associated 
data point on the top yellow line shows that there is a 99% chance that Alabama 
will get less than 112% of its normal water.  

 The results for Kansas, with the points very close together, show little variation 
among the different probabilities; all results indicate less water availability. New 
Mexico, like Kansas, has increased water shortages in all cases. On the other 
hand, the state of Washington has more variation and fares much better. Even in 
the worst case, there is only a 1% chance that Washington will get less than 85% 
of its normal water in 2050.  

Figure 3-12 shows the year 2050 water-availability conditions for the high-value 
sectors of municipalities, industry, and thermoelectric generation across the states. In this 
figure, the highest value on the x-axis is 1.0, indicating that all or more of the water 
needed is available. Because additional water does not improve economic production, the 
value does not exceed unity (1.0) even in flooding conditions. States that have high levels 
of irrigated agriculture and limited water resources, such as New Mexico, have 
experience adjusting to years with reduced water availability. They typically have a 
hierarchal process where water users with junior rights have their allocation of water 
restricted first. States that do not have significant infrastructure in place to store water or 
irrigated agriculture that represent water use comparable to that needed for the high-value 
industrial and municipal water users of the economy, such as South Carolina, fare worse. 
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In states without a history of water constraints, there are few governing mechanisms to 
mitigate the impact of limited water availability on economic activity.   

 
Figure 3-12. High-value-user water availability (2050). 

Several examples may help in interpreting the results in Figure 3-12:  

 In the best case in 2050, there is a 99% chance that Indiana will have less than 
98% of the water it needs for municipal, industrial, and thermoelectric uses. In the 
worst case, there is a 1% chance that Indiana will have less than 70% of the water 
it needs for these uses, a situation that could result in shutting down power plants, 
for example.   

 In all cases, Montana, where all the points converge at the 1.0 level, has no 
potential threat of a water shortage that would affect municipal, industrial, and 
thermoelectric uses. 

Mining is very susceptible to water availability (Morrison et al. 2009). As a producer 
of raw material, mining has a lower value-added component than other industries 
(Goldsmith and Burkitt 2009) and could potentially improve its economic situation by 
selling its water rights. The consequences to its production levels in 2050 are shown in 
Figure 3-11. In the simulations, agricultural irrigation experiences the same level of 
shortage as mining (in return for water payments). As an example from the figure, there 
is a 50% chance that mining in Florida in 2050 will receive less than 68% of the water it 
needs for operations. In all instances, lower probabilities indicate a progressively worse 
predicament. 
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Figure 3-13. Mining water availability (2050). 

Figure 3-14 conforms largely to Figure 3-11 and shows the impact of water 
availability (for usage) on hydroelectric generation in 2050 as a function of exceedance 
probability. In states with a strong interconnection between water used for hydroelectric 
power and consumption (primarily agriculture) such as New Mexico and Kansas, 
hydroelectric generation is affected more drastically than in other states.  

 
Figure 3-14. Hydroelectric water availability (2050).  

The next series of figures (3-15 through 3-20) show the interannual volitility in water 
availability at the 50% , 10%, and 1% exceedance probabilities. The shading goes from 
green (adequate water availability) to yellow (diminished availability) to red (significant 
shortages) to demonstrate how the volatility changes from year to year and causes more 
acute conditions at the lower exceedance probabilities, i.e., less than 50%.  

Figure 3-15 and Figure 3-16 show the 50% exceedance-probability water availability 
for the high-value economic components and mining, respectively. The core economy 
encounters only modest concerns about water availability at this exceedance probability. 
The analysis, however, shows that mining has some years where its production would be 
affected. For example, Figure 3-15 shows West Virgina industry having only scattered 
water-availability concerns beyond 2040. Figure 3-16, indicates much greater water 
availability challenges for West Virgina mining with water availability occassionally 
dipping below 50%.  

Figure 3-17 and Figure 3-18 show the 10% exceedance-probability conditions, and 
Figure 3-19 and Figure 3-20 show the 1% exceedance-probability conditions. For 
Massachusetts, at the 10% exceedance probability, there are many more instances of 
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reduced water availablity than at the 50% exceedance probability. At the 1% exceedance 
probability, the Massachusetts economy experiences reduced water availability over most 
years. Figure 3-20 shows that by 2030 and increasing through 2050, mining would 
experience significant shortages in many states.  

 

 
Figure 3-15. Water availability (municipal, industrial, themoelectric – 50% exceedance probability). 
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Figure 3-16. Water availability (mining – 50% exceedance probability). 
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Figure 3-17. Water availability (municipal, industrial, themoelectric – 10% exceedance probability). 

Year AL AZ AR CA CO CT DE DC FL GA ID IL IN IA KS KY LA ME MD MA MI MN MS MO MT
2010 1.000 0.969 1.000 1.000 1.000 0.987 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2011 1.000 0.977 1.000 0.989 1.000 1.000 1.000 1.000 1.000 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2012 1.000 0.944 1.000 0.994 0.993 0.992 0.983 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.994 1.000 1.000 1.000 1.000 0.993 1.000 1.000 1.000 1.000 1.000

2013 1.000 1.000 1.000 0.919 1.000 0.964 0.955 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.987 1.000 1.000 1.000 1.000 1.000

2014 1.000 1.000 1.000 0.948 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.959 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2015 1.000 0.810 1.000 0.849 0.876 1.000 0.988 1.000 1.000 0.951 1.000 1.000 1.000 1.000 0.895 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2016 1.000 0.760 1.000 0.792 1.000 0.943 0.979 1.000 0.944 0.871 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000

2017 1.000 0.927 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.979 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2018 1.000 0.799 1.000 0.881 0.964 0.964 0.966 1.000 0.910 0.920 1.000 1.000 1.000 1.000 0.901 1.000 1.000 1.000 1.000 0.950 1.000 1.000 1.000 1.000 1.000

2019 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2020 1.000 1.000 1.000 0.998 1.000 0.936 0.977 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.949 1.000 1.000 1.000 1.000 1.000

2021 1.000 0.765 1.000 0.815 0.985 0.927 0.913 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.942 1.000 1.000 1.000 1.000 1.000

2022 1.000 0.921 1.000 0.962 0.996 1.000 1.000 1.000 0.931 0.913 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.972 1.000 1.000 1.000 1.000 1.000

2023 1.000 0.762 1.000 1.000 1.000 0.864 0.954 1.000 1.000 0.983 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.821 1.000 1.000 1.000 1.000 1.000

2024 1.000 0.963 1.000 0.898 1.000 0.962 1.000 1.000 0.897 0.958 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.887 1.000 1.000 1.000 1.000 1.000

2025 1.000 0.855 1.000 0.873 1.000 0.962 0.974 1.000 1.000 0.972 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.991 1.000 1.000 1.000 1.000 1.000

2026 1.000 0.783 1.000 0.775 1.000 0.904 0.966 1.000 1.000 0.953 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.917 1.000 1.000 1.000 1.000 1.000

2027 0.828 0.854 1.000 0.697 1.000 0.918 0.855 1.000 0.835 0.768 0.967 1.000 1.000 1.000 1.000 1.000 0.949 1.000 1.000 0.976 1.000 1.000 1.000 1.000 1.000

2028 0.887 0.900 1.000 0.894 1.000 0.890 0.893 1.000 1.000 0.873 1.000 1.000 1.000 1.000 0.997 1.000 0.948 1.000 1.000 0.902 1.000 1.000 1.000 1.000 1.000

2029 0.961 0.797 1.000 0.777 0.877 0.871 0.858 1.000 0.900 0.850 1.000 1.000 1.000 1.000 0.912 0.990 1.000 1.000 1.000 0.905 1.000 1.000 1.000 1.000 1.000

2030 1.000 0.838 1.000 0.945 0.931 0.865 0.894 1.000 1.000 0.988 1.000 1.000 0.969 0.997 1.000 1.000 1.000 1.000 1.000 0.900 1.000 1.000 1.000 1.000 1.000

2031 0.880 0.916 1.000 0.875 0.989 0.971 0.935 1.000 0.918 0.819 1.000 1.000 1.000 0.982 0.945 1.000 1.000 1.000 1.000 0.979 1.000 0.978 1.000 1.000 1.000

2032 0.987 0.930 1.000 0.938 1.000 0.895 0.950 1.000 1.000 0.939 1.000 0.992 0.905 0.957 1.000 1.000 1.000 1.000 1.000 0.907 1.000 0.988 1.000 1.000 1.000

2033 0.831 0.917 1.000 1.000 0.981 0.957 0.955 1.000 0.925 0.803 1.000 1.000 0.911 1.000 0.948 1.000 1.000 1.000 1.000 0.992 1.000 1.000 1.000 1.000 1.000

2034 0.928 0.896 1.000 0.860 1.000 1.000 1.000 1.000 0.899 0.887 1.000 1.000 1.000 0.982 1.000 1.000 1.000 1.000 1.000 0.995 0.923 1.000 1.000 1.000 1.000

2035 0.865 0.825 0.960 0.806 0.951 0.770 0.878 1.000 1.000 0.870 1.000 0.908 0.824 0.897 0.842 0.948 0.959 0.989 1.000 0.807 0.947 1.000 1.000 0.898 1.000

2036 0.866 0.792 1.000 0.779 0.881 0.964 0.909 1.000 0.896 0.838 1.000 0.943 0.815 0.814 0.860 0.925 1.000 1.000 1.000 1.000 1.000 0.981 1.000 1.000 1.000

2037 1.000 0.738 1.000 0.772 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.933 1.000 1.000 1.000 1.000 1.000 1.000 0.898 0.908 1.000 1.000 1.000

2038 0.851 0.789 1.000 0.835 1.000 1.000 1.000 1.000 0.952 0.932 1.000 1.000 0.970 0.900 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.876 1.000 1.000 1.000

2039 0.980 0.999 1.000 0.848 1.000 0.933 0.959 1.000 1.000 1.000 1.000 1.000 0.845 0.966 0.974 0.944 1.000 0.995 1.000 0.962 1.000 0.962 1.000 1.000 1.000

2040 0.793 0.705 1.000 0.717 0.893 0.870 0.897 1.000 0.991 0.858 1.000 1.000 0.845 0.988 0.984 0.921 1.000 0.975 1.000 0.905 0.964 1.000 1.000 1.000 1.000

2041 0.841 0.840 1.000 0.761 0.932 0.904 0.869 0.960 0.925 0.885 1.000 0.947 0.821 0.839 0.917 0.796 0.926 1.000 0.955 0.961 0.941 0.853 1.000 1.000 1.000

2042 0.847 0.767 1.000 0.988 0.962 0.930 0.865 0.933 0.891 0.915 1.000 1.000 0.874 0.873 1.000 0.954 0.947 1.000 0.949 0.995 0.878 0.962 1.000 1.000 1.000

2043 0.958 0.795 1.000 0.857 0.886 0.972 0.929 1.000 0.847 0.894 1.000 1.000 0.916 0.977 1.000 0.910 1.000 1.000 1.000 0.978 0.991 1.000 1.000 1.000 1.000

2044 0.855 0.686 1.000 0.748 0.913 0.930 0.954 1.000 0.982 0.909 1.000 0.836 0.767 0.804 0.951 0.867 0.911 0.894 1.000 0.920 0.819 0.929 1.000 0.946 1.000

2045 0.699 0.925 1.000 0.757 0.998 0.860 0.820 0.842 0.732 0.719 1.000 0.938 0.820 0.830 0.863 0.817 0.901 0.937 0.871 0.920 0.957 0.933 1.000 1.000 1.000

2046 0.818 0.882 1.000 0.824 0.932 0.904 0.901 1.000 0.739 0.861 1.000 0.776 0.742 0.672 0.863 0.856 0.844 1.000 0.965 0.916 0.690 0.751 1.000 0.928 1.000

2047 0.750 0.905 0.975 0.903 0.944 0.894 0.881 0.998 0.865 0.813 1.000 0.745 0.686 0.708 0.833 0.627 0.802 1.000 0.930 1.000 0.783 0.775 0.942 0.858 1.000

2048 0.799 0.984 1.000 1.000 0.981 0.928 0.905 1.000 0.800 0.790 1.000 0.765 0.731 0.750 0.917 0.754 0.884 0.925 0.949 0.962 0.766 0.948 1.000 0.925 1.000

2049 0.811 0.868 1.000 0.977 1.000 0.923 0.934 1.000 0.995 0.859 1.000 0.983 0.888 0.963 1.000 0.920 0.832 0.928 0.978 0.916 0.861 1.000 1.000 1.000 1.000

2050 0.849 0.833 1.000 0.908 0.871 0.887 0.891 0.963 0.780 0.834 1.000 0.833 0.764 0.819 0.824 0.811 0.836 0.901 0.935 0.897 0.925 0.914 1.000 0.923 1.000

Year NE NV NH NJ NM NY NC ND OH OK OR PA RI SC SD TN TX UT VT VA WA WV WI WY
2010 1.000 0.988 1.000 1.000 0.978 1.000 0.994 1.000 1.000 1.000 1.000 1.000 0.993 0.992 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2011 1.000 1.000 1.000 1.000 0.981 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.991 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2012 1.000 0.966 1.000 1.000 0.955 1.000 0.963 1.000 1.000 0.965 1.000 1.000 0.993 1.000 1.000 1.000 1.000 1.000 1.000 0.945 1.000 1.000 1.000 0.982

2013 1.000 0.931 1.000 1.000 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.975 1.000 1.000 1.000 1.000 1.000 1.000 0.913 1.000 1.000 1.000 1.000

2014 0.955 0.964 1.000 1.000 0.984 1.000 1.000 0.972 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2015 0.926 0.823 1.000 1.000 0.799 1.000 0.940 1.000 1.000 0.880 1.000 1.000 1.000 0.886 1.000 1.000 0.904 0.924 1.000 0.904 1.000 1.000 1.000 0.945

2016 1.000 0.765 1.000 1.000 0.859 1.000 0.852 1.000 1.000 1.000 1.000 1.000 0.955 0.767 1.000 1.000 1.000 0.885 1.000 0.915 1.000 1.000 1.000 1.000

2017 1.000 0.971 1.000 1.000 1.000 1.000 0.922 1.000 1.000 1.000 1.000 1.000 1.000 0.861 1.000 1.000 1.000 1.000 1.000 0.972 1.000 1.000 1.000 1.000

2018 0.925 0.904 1.000 1.000 0.821 1.000 0.940 1.000 1.000 0.861 1.000 1.000 0.976 0.864 1.000 1.000 0.917 0.999 1.000 0.838 1.000 1.000 1.000 0.961

2019 1.000 0.960 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.979 1.000 1.000 0.972 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2020 1.000 1.000 1.000 1.000 1.000 1.000 0.989 1.000 1.000 1.000 1.000 1.000 0.912 0.950 1.000 1.000 1.000 1.000 1.000 0.892 1.000 1.000 1.000 1.000

2021 1.000 0.830 1.000 1.000 0.842 1.000 0.940 1.000 1.000 1.000 1.000 1.000 0.962 0.934 1.000 1.000 1.000 0.882 1.000 0.869 1.000 1.000 1.000 0.978

2022 1.000 0.965 1.000 1.000 0.847 1.000 0.873 1.000 1.000 0.969 1.000 1.000 1.000 0.805 1.000 1.000 0.956 1.000 1.000 0.913 1.000 1.000 1.000 1.000

2023 1.000 1.000 0.906 1.000 0.800 0.961 0.944 1.000 0.963 1.000 1.000 0.949 0.892 0.935 1.000 1.000 0.995 1.000 1.000 0.909 1.000 1.000 1.000 1.000

2024 1.000 0.872 0.997 1.000 0.945 0.991 0.989 1.000 1.000 1.000 1.000 1.000 0.998 0.955 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2025 1.000 0.841 1.000 1.000 0.917 1.000 0.968 1.000 1.000 1.000 1.000 1.000 0.948 0.947 1.000 0.931 1.000 0.983 1.000 0.929 1.000 1.000 1.000 0.999

2026 0.993 0.778 1.000 1.000 0.862 1.000 0.969 1.000 1.000 1.000 1.000 1.000 0.953 0.920 1.000 0.990 0.989 0.914 1.000 0.989 1.000 1.000 1.000 1.000

2027 0.990 0.714 1.000 1.000 0.882 1.000 0.787 1.000 1.000 1.000 0.905 0.971 0.976 0.706 1.000 0.846 0.956 0.918 1.000 0.796 1.000 0.973 1.000 1.000

2028 1.000 0.890 0.973 1.000 0.808 0.968 0.862 1.000 1.000 0.876 1.000 0.942 0.941 0.849 1.000 0.825 0.770 1.000 1.000 0.826 1.000 0.940 1.000 1.000

2029 0.984 0.755 0.969 1.000 0.750 0.949 0.862 1.000 1.000 0.898 1.000 0.913 0.884 0.790 1.000 0.783 0.993 0.829 1.000 0.772 1.000 0.852 1.000 0.920

2030 1.000 0.953 0.914 1.000 0.757 0.932 0.876 1.000 0.990 0.867 1.000 0.907 0.963 0.889 1.000 0.990 0.836 0.999 1.000 0.846 1.000 0.909 1.000 1.000

2031 1.000 0.912 1.000 1.000 0.854 1.000 0.835 1.000 1.000 0.908 1.000 1.000 1.000 0.763 1.000 0.837 0.810 1.000 1.000 0.911 1.000 1.000 0.950 1.000

2032 0.957 0.908 0.918 1.000 0.893 0.918 0.929 0.996 0.961 1.000 1.000 0.904 0.893 0.904 1.000 0.831 1.000 1.000 1.000 0.899 1.000 0.906 1.000 1.000

2033 1.000 0.994 0.988 1.000 0.852 0.938 0.905 1.000 0.978 0.852 1.000 0.915 0.988 0.817 1.000 0.769 0.905 1.000 1.000 0.935 1.000 0.957 1.000 1.000

2034 1.000 0.819 0.983 1.000 0.939 0.977 0.973 1.000 1.000 1.000 1.000 1.000 1.000 0.894 1.000 0.970 1.000 0.912 1.000 1.000 1.000 1.000 0.965 0.928

2035 0.978 0.825 0.779 0.867 0.799 0.759 0.918 1.000 0.880 0.731 1.000 0.778 0.777 0.884 1.000 0.795 0.735 0.943 0.863 0.869 1.000 0.823 1.000 1.000

2036 0.903 0.813 1.000 1.000 0.824 1.000 0.881 1.000 0.863 0.858 1.000 0.870 0.942 0.833 1.000 0.802 0.906 0.897 1.000 0.878 1.000 0.833 1.000 0.989

2037 1.000 0.824 1.000 1.000 0.858 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.968 1.000 1.000 1.000 1.000 0.899 1.000 1.000 1.000 1.000 0.934 1.000

2038 1.000 0.874 1.000 1.000 0.890 1.000 1.000 0.972 1.000 0.966 1.000 0.961 1.000 1.000 1.000 0.896 1.000 0.953 1.000 0.957 1.000 0.900 0.921 1.000

2039 0.991 0.916 0.950 0.968 0.902 0.999 1.000 1.000 0.876 0.868 1.000 0.871 0.910 1.000 1.000 0.891 0.903 1.000 0.999 0.952 1.000 0.886 0.999 1.000

2040 0.971 0.737 0.893 0.921 0.765 0.879 0.836 1.000 0.844 0.944 1.000 0.852 0.869 0.809 1.000 0.761 0.966 0.839 0.901 0.854 1.000 0.807 1.000 1.000

2041 0.906 0.780 0.943 0.898 0.871 0.961 0.847 0.919 0.809 0.902 1.000 0.817 0.970 0.817 0.949 0.783 0.886 0.916 0.954 0.776 1.000 0.707 0.921 0.977

2042 0.969 0.905 1.000 0.908 0.860 0.943 0.878 1.000 0.846 1.000 1.000 0.844 0.911 0.878 1.000 0.837 0.934 0.866 0.994 0.795 1.000 0.766 0.913 0.968

2043 1.000 0.864 0.975 0.922 0.810 0.936 0.889 1.000 0.826 1.000 1.000 0.840 0.956 0.826 1.000 0.911 0.979 0.870 0.994 0.867 1.000 0.800 1.000 0.980

2044 0.971 0.752 0.884 1.000 0.804 0.936 0.846 0.997 0.851 0.813 1.000 1.000 0.923 0.815 1.000 0.813 0.806 0.796 0.913 0.887 1.000 0.883 0.839 0.956

2045 0.900 0.787 0.912 0.835 0.929 0.898 0.721 0.964 0.786 0.908 1.000 0.800 0.868 0.621 0.992 0.759 0.961 0.931 0.938 0.718 1.000 0.711 0.958 0.997

2046 0.886 0.801 0.899 0.867 0.843 0.860 0.861 0.937 0.802 0.789 1.000 0.830 0.961 0.811 0.938 0.851 0.819 0.889 0.908 0.863 1.000 0.852 0.714 0.951

2047 0.897 0.920 1.000 0.818 0.914 0.907 0.860 0.996 0.727 0.748 1.000 0.779 0.936 0.748 1.000 0.677 0.814 0.925 0.963 0.816 1.000 0.733 0.730 1.000

2048 0.957 1.000 0.942 0.868 0.860 0.927 0.828 1.000 0.758 0.823 1.000 0.805 0.953 0.713 1.000 0.810 0.932 0.992 0.961 0.850 1.000 0.772 0.797 1.000

2049 1.000 0.969 0.903 0.898 0.875 0.845 0.929 1.000 0.832 0.893 1.000 0.833 0.903 0.882 1.000 0.806 0.874 0.982 0.899 0.917 1.000 0.857 0.881 1.000

2050 0.942 0.908 0.873 0.870 0.779 0.897 0.841 1.000 0.803 0.747 1.000 0.865 0.889 0.740 1.000 0.806 0.797 0.922 0.892 0.858 1.000 0.847 0.880 0.974
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Figure 3-18. Water availability (mining – 10% exceedance probability). 

  

Year AL AZ AR CA CO CT DE DC FL GA ID IL IN IA KS KY LA ME MD MA MI MN MS MO MT

2010 1.000 0.939 1.000 1.000 1.000 0.975 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2011 1.000 0.953 1.000 0.979 1.000 1.000 1.000 1.000 1.000 0.991 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2012 1.000 0.886 1.000 0.987 0.986 0.984 0.965 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.987 1.000 1.000 1.000 1.000 0.987 1.000 1.000 1.000 1.000 1.000

2013 1.000 1.000 1.000 0.837 1.000 0.929 0.910 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.973 1.000 1.000 1.000 1.000 1.000

2014 1.000 1.000 1.000 0.896 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.919 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2015 1.000 0.614 1.000 0.696 0.752 1.000 0.976 1.000 1.000 0.902 1.000 1.000 1.000 1.000 0.791 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2016 1.000 0.511 1.000 0.583 1.000 0.887 0.957 1.000 0.888 0.742 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 1.000 1.000 1.000 1.000 1.000

2017 1.000 0.851 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.959 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2018 1.000 0.588 1.000 0.761 0.928 0.929 0.933 1.000 0.819 0.841 1.000 1.000 1.000 1.000 0.801 1.000 1.000 1.000 1.000 0.901 1.000 1.000 1.000 1.000 1.000

2019 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2020 1.000 1.000 1.000 0.995 1.000 0.873 0.954 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.899 1.000 1.000 1.000 1.000 1.000

2021 1.000 0.514 1.000 0.627 0.969 0.854 0.827 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.884 1.000 1.000 1.000 1.000 1.000

2022 1.000 0.836 1.000 0.923 0.993 1.000 1.000 1.000 0.862 0.826 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.943 1.000 1.000 1.000 1.000 1.000

2023 1.000 0.507 1.000 1.000 1.000 0.729 0.908 1.000 1.000 0.967 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.643 1.000 1.000 1.000 1.000 1.000

2024 1.000 0.924 1.000 0.794 1.000 0.925 1.000 1.000 0.795 0.915 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.774 1.000 1.000 1.000 1.000 1.000

2025 1.000 0.698 1.000 0.743 1.000 0.925 0.949 1.000 1.000 0.944 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.982 1.000 1.000 1.000 1.000 1.000

2026 1.000 0.546 1.000 0.544 1.000 0.807 0.932 1.000 1.000 0.906 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.830 1.000 1.000 1.000 1.000 1.000

2027 0.656 0.693 1.000 0.387 1.000 0.835 0.709 1.000 0.671 0.537 0.935 1.000 1.000 1.000 1.000 1.000 0.897 1.000 1.000 0.950 1.000 1.000 1.000 1.000 1.000

2028 0.774 0.790 1.000 0.786 1.000 0.776 0.782 1.000 1.000 0.745 1.000 1.000 1.000 1.000 0.995 1.000 0.895 1.000 1.000 0.794 1.000 1.000 1.000 1.000 1.000

2029 0.921 0.571 1.000 0.547 0.753 0.735 0.710 1.000 0.801 0.701 1.000 1.000 1.000 1.000 0.824 0.981 1.000 1.000 1.000 0.798 1.000 1.000 1.000 1.000 1.000

2030 1.000 0.656 1.000 0.889 0.862 0.722 0.781 1.000 1.000 0.977 1.000 1.000 0.938 0.993 1.000 1.000 1.000 1.000 1.000 0.784 1.000 1.000 1.000 1.000 1.000

2031 0.761 0.821 1.000 0.747 0.978 0.941 0.865 1.000 0.837 0.638 1.000 1.000 1.000 0.964 0.891 1.000 1.000 1.000 1.000 0.954 1.000 0.955 1.000 1.000 1.000

2032 0.974 0.851 1.000 0.875 1.000 0.779 0.895 1.000 1.000 0.879 1.000 0.983 0.811 0.915 1.000 1.000 1.000 1.000 1.000 0.795 1.000 0.976 1.000 1.000 1.000

2033 0.662 0.823 1.000 1.000 0.962 0.909 0.904 1.000 0.849 0.604 1.000 1.000 0.822 1.000 0.897 1.000 1.000 1.000 1.000 0.983 1.000 1.000 1.000 1.000 1.000

2034 0.857 0.775 1.000 0.715 1.000 1.000 1.000 1.000 0.798 0.772 1.000 1.000 1.000 0.964 1.000 1.000 1.000 1.000 1.000 0.989 0.846 1.000 1.000 1.000 1.000

2035 0.730 0.621 0.920 0.604 0.903 0.503 0.732 1.000 1.000 0.735 1.000 0.815 0.648 0.794 0.684 0.896 0.918 0.979 1.000 0.553 0.894 1.000 1.000 0.796 1.000

2036 0.731 0.549 1.000 0.548 0.762 0.921 0.797 1.000 0.793 0.668 1.000 0.886 0.630 0.627 0.720 0.849 1.000 1.000 1.000 1.000 1.000 0.961 1.000 1.000 1.000

2037 1.000 0.428 1.000 0.533 0.991 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.866 1.000 1.000 1.000 1.000 1.000 1.000 0.797 0.817 1.000 1.000 1.000

2038 0.702 0.538 1.000 0.662 1.000 1.000 1.000 1.000 0.903 0.859 1.000 1.000 0.939 0.801 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.751 1.000 1.000 1.000

2039 0.960 0.997 1.000 0.687 1.000 0.850 0.905 1.000 1.000 1.000 1.000 1.000 0.686 0.932 0.949 0.887 1.000 0.990 1.000 0.906 1.000 0.924 1.000 1.000 1.000

2040 0.573 0.346 1.000 0.418 0.785 0.704 0.759 1.000 0.982 0.700 1.000 1.000 0.679 0.975 0.968 0.843 1.000 0.950 1.000 0.761 0.928 1.000 1.000 1.000 1.000

2041 0.666 0.643 1.000 0.509 0.865 0.781 0.688 0.920 0.850 0.753 1.000 0.895 0.622 0.678 0.835 0.592 0.853 1.000 0.910 0.900 0.883 0.707 1.000 1.000 1.000

2042 0.672 0.478 1.000 0.976 0.924 0.839 0.672 0.865 0.782 0.816 1.000 1.000 0.727 0.745 1.000 0.908 0.894 1.000 0.898 0.987 0.756 0.923 1.000 1.000 1.000

2043 0.909 0.537 1.000 0.705 0.771 0.935 0.826 1.000 0.695 0.770 1.000 1.000 0.815 0.954 1.000 0.819 1.000 1.000 1.000 0.941 0.981 1.000 1.000 1.000 1.000

2044 0.679 0.286 1.000 0.478 0.826 0.837 0.885 1.000 0.964 0.799 1.000 0.672 0.474 0.607 0.903 0.733 0.822 0.787 1.000 0.782 0.632 0.857 1.000 0.893 1.000

2045 0.316 0.829 1.000 0.497 0.996 0.669 0.541 0.684 0.464 0.376 1.000 0.875 0.582 0.658 0.727 0.633 0.803 0.874 0.741 0.779 0.912 0.866 1.000 1.000 1.000

2046 0.577 0.728 1.000 0.635 0.864 0.771 0.741 1.000 0.477 0.690 1.000 0.552 0.387 0.328 0.726 0.712 0.687 1.000 0.930 0.760 0.347 0.502 1.000 0.856 1.000

2047 0.406 0.779 0.949 0.799 0.888 0.748 0.685 0.997 0.730 0.579 1.000 0.490 0.234 0.394 0.665 0.254 0.604 1.000 0.860 1.000 0.535 0.549 0.885 0.716 1.000

2048 0.512 0.962 1.000 1.000 0.961 0.828 0.742 1.000 0.599 0.521 1.000 0.530 0.326 0.473 0.833 0.509 0.768 0.848 0.897 0.887 0.487 0.896 1.000 0.850 1.000

2049 0.528 0.691 1.000 0.953 1.000 0.812 0.817 1.000 0.990 0.675 1.000 0.965 0.711 0.921 1.000 0.839 0.663 0.853 0.956 0.744 0.690 1.000 1.000 1.000 1.000

2050 0.613 0.605 1.000 0.808 0.742 0.724 0.691 0.926 0.557 0.614 1.000 0.665 0.370 0.606 0.648 0.614 0.672 0.797 0.869 0.676 0.828 0.828 1.000 0.846 1.000

Year NE NV NH NJ NM NY NC ND OH OK OR PA RI SC SD TN TX UT VT VA WA WV WI WY

2010 1.000 0.976 1.000 1.000 0.955 1.000 0.988 1.000 1.000 1.000 1.000 1.000 0.985 0.985 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2011 1.000 1.000 1.000 1.000 0.962 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.982 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2012 1.000 0.931 1.000 1.000 0.909 1.000 0.925 1.000 1.000 0.929 1.000 1.000 0.985 1.000 1.000 1.000 1.000 1.000 1.000 0.889 1.000 1.000 1.000 0.964

2013 1.000 0.858 1.000 1.000 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.949 1.000 1.000 1.000 1.000 1.000 1.000 0.826 1.000 1.000 1.000 1.000

2014 0.909 0.926 1.000 1.000 0.969 1.000 1.000 0.944 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2015 0.853 0.636 1.000 1.000 0.597 1.000 0.879 1.000 1.000 0.760 1.000 1.000 1.000 0.772 1.000 1.000 0.808 0.848 1.000 0.808 1.000 1.000 1.000 0.890

2016 1.000 0.516 1.000 1.000 0.717 1.000 0.704 1.000 1.000 1.000 1.000 1.000 0.909 0.534 1.000 1.000 1.000 0.770 1.000 0.829 1.000 1.000 1.000 1.000

2017 1.000 0.940 1.000 1.000 1.000 1.000 0.845 1.000 1.000 1.000 1.000 1.000 1.000 0.721 1.000 1.000 1.000 1.000 1.000 0.945 1.000 1.000 1.000 1.000

2018 0.851 0.800 1.000 1.000 0.641 1.000 0.880 1.000 1.000 0.723 1.000 1.000 0.952 0.729 1.000 1.000 0.834 0.997 1.000 0.677 1.000 1.000 1.000 0.922

2019 1.000 0.917 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.957 1.000 1.000 0.943 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2020 1.000 1.000 1.000 1.000 1.000 1.000 0.978 1.000 1.000 1.000 1.000 1.000 0.825 0.898 1.000 1.000 1.000 1.000 1.000 0.780 1.000 1.000 1.000 1.000

2021 1.000 0.644 1.000 1.000 0.682 1.000 0.881 1.000 1.000 1.000 1.000 1.000 0.925 0.863 1.000 1.000 1.000 0.765 1.000 0.728 1.000 1.000 1.000 0.956

2022 1.000 0.927 1.000 1.000 0.690 1.000 0.747 1.000 1.000 0.937 1.000 1.000 1.000 0.588 1.000 1.000 0.912 1.000 1.000 0.817 1.000 1.000 1.000 1.000

2023 1.000 1.000 0.811 1.000 0.596 0.921 0.887 1.000 0.926 1.000 1.000 0.898 0.784 0.859 1.000 1.000 0.989 1.000 1.000 0.804 1.000 1.000 1.000 1.000

2024 1.000 0.730 0.994 1.000 0.889 0.982 0.977 1.000 1.000 1.000 1.000 1.000 0.996 0.900 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2025 1.000 0.662 1.000 1.000 0.831 1.000 0.935 1.000 1.000 1.000 1.000 1.000 0.897 0.880 1.000 0.863 1.000 0.966 1.000 0.839 1.000 1.000 1.000 0.998

2026 0.986 0.526 1.000 1.000 0.721 1.000 0.935 1.000 1.000 1.000 1.000 1.000 0.905 0.815 1.000 0.980 0.978 0.828 1.000 0.975 1.000 1.000 1.000 1.000

2027 0.980 0.388 1.000 1.000 0.760 1.000 0.552 1.000 1.000 1.000 0.811 0.941 0.953 0.299 1.000 0.691 0.912 0.836 1.000 0.518 1.000 0.946 1.000 1.000

2028 1.000 0.764 0.945 1.000 0.610 0.937 0.706 1.000 1.000 0.751 1.000 0.885 0.882 0.629 1.000 0.650 0.540 1.000 1.000 0.579 1.000 0.880 1.000 1.000

2029 0.967 0.472 0.938 1.000 0.493 0.898 0.701 1.000 1.000 0.796 1.000 0.827 0.768 0.469 1.000 0.557 0.987 0.657 1.000 0.433 1.000 0.704 1.000 0.841

2030 1.000 0.898 0.829 1.000 0.506 0.865 0.728 1.000 0.980 0.734 1.000 0.815 0.926 0.709 1.000 0.978 0.672 0.999 1.000 0.608 1.000 0.818 1.000 1.000

2031 1.000 0.809 1.000 1.000 0.702 1.000 0.632 1.000 1.000 0.815 1.000 1.000 1.000 0.356 1.000 0.649 0.620 1.000 1.000 0.768 1.000 1.000 0.901 1.000

2032 0.914 0.800 0.836 1.000 0.781 0.836 0.838 0.992 0.921 1.000 1.000 0.807 0.786 0.729 1.000 0.625 1.000 1.000 1.000 0.725 1.000 0.812 1.000 1.000

2033 1.000 0.988 0.976 1.000 0.697 0.877 0.780 1.000 0.956 0.705 1.000 0.829 0.976 0.461 1.000 0.470 0.810 1.000 1.000 0.818 1.000 0.915 1.000 1.000

2034 1.000 0.602 0.966 1.000 0.875 0.954 0.937 1.000 1.000 1.000 1.000 1.000 1.000 0.673 1.000 0.930 1.000 0.823 1.000 1.000 1.000 1.000 0.929 0.857

2035 0.957 0.614 0.544 0.735 0.589 0.508 0.803 1.000 0.759 0.462 1.000 0.538 0.544 0.622 1.000 0.494 0.471 0.886 0.726 0.608 1.000 0.647 1.000 1.000

2036 0.806 0.584 1.000 1.000 0.640 1.000 0.708 1.000 0.726 0.715 1.000 0.722 0.880 0.427 1.000 0.492 0.811 0.795 1.000 0.621 1.000 0.660 1.000 0.978

2037 1.000 0.608 1.000 1.000 0.709 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.933 1.000 1.000 1.000 1.000 0.799 1.000 1.000 1.000 1.000 0.868 1.000

2038 1.000 0.718 1.000 1.000 0.774 1.000 1.000 0.944 1.000 0.932 1.000 0.913 1.000 1.000 1.000 0.708 1.000 0.906 1.000 0.854 1.000 0.785 0.843 1.000

2039 0.982 0.811 0.888 0.935 0.798 0.998 1.000 1.000 0.752 0.736 1.000 0.704 0.809 1.000 1.000 0.677 0.806 1.000 0.999 0.830 1.000 0.747 0.998 1.000

2040 0.941 0.405 0.754 0.842 0.517 0.726 0.558 1.000 0.688 0.887 1.000 0.651 0.721 0.140 1.000 0.254 0.932 0.679 0.801 0.461 1.000 0.559 1.000 1.000

2041 0.812 0.499 0.865 0.797 0.735 0.910 0.575 0.837 0.619 0.804 1.000 0.557 0.934 0.105 0.897 0.282 0.771 0.832 0.906 0.136 1.000 0.307 0.843 0.955

2042 0.938 0.782 1.000 0.816 0.712 0.867 0.651 1.000 0.691 1.000 1.000 0.611 0.805 0.342 1.000 0.425 0.868 0.732 0.987 0.172 1.000 0.427 0.825 0.937

2043 1.000 0.688 0.938 0.844 0.607 0.846 0.675 1.000 0.645 1.000 1.000 0.589 0.903 0.000 1.000 0.665 0.958 0.741 0.987 0.432 1.000 0.493 1.000 0.960

2044 0.941 0.428 0.703 1.000 0.595 0.842 0.534 0.994 0.689 0.625 1.000 1.000 0.828 0.000 1.000 0.236 0.613 0.593 0.815 0.492 1.000 0.691 0.677 0.912

2045 0.800 0.505 0.769 0.669 0.854 0.742 0.128 0.929 0.546 0.816 1.000 0.454 0.703 0.000 0.984 0.000 0.921 0.863 0.867 0.000 1.000 0.204 0.916 0.994

2046 0.772 0.535 0.726 0.733 0.675 0.637 0.551 0.873 0.572 0.578 1.000 0.522 0.912 0.000 0.877 0.273 0.639 0.779 0.799 0.313 1.000 0.574 0.428 0.902

2047 0.794 0.811 1.000 0.630 0.822 0.753 0.532 0.991 0.398 0.496 1.000 0.355 0.854 0.000 1.000 0.000 0.627 0.849 0.917 0.015 1.000 0.196 0.461 1.000

2048 0.914 1.000 0.830 0.731 0.710 0.802 0.400 1.000 0.454 0.647 1.000 0.412 0.891 0.000 1.000 0.000 0.864 0.984 0.912 0.142 1.000 0.277 0.594 1.000

2049 1.000 0.927 0.704 0.789 0.739 0.564 0.743 1.000 0.612 0.785 1.000 0.476 0.773 0.000 1.000 0.000 0.747 0.965 0.767 0.491 1.000 0.522 0.761 1.000

2050 0.883 0.780 0.598 0.728 0.539 0.702 0.398 1.000 0.536 0.495 1.000 0.560 0.736 0.000 1.000 0.000 0.594 0.844 0.746 0.065 1.000 0.455 0.754 0.948
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Figure 3-19. Water availability (municipal, industrial, themoelectric – 1% exceedance probability). 
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Figure 3-20. Water availability (mining – 1% exceedance probability). 
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3.2.2 Agricultural Impacts 

The Sandia hydrological model contains an agriculture-productivity component that 
estimates the impacts on agriculture from climate change. The algorithms in the 
hydrological model are based on the work of McCarl et al. (2008) and consider 
temperature and its standard deviation, precipitation and its standard deviation, and 
precipitation intensity. The algorithms also recognize soil types for six geographical 
regions covering CONUS. Implicitly, the model captures minor changes in farming 
practices (such as fertilizer use or crop rotation) that have been used in response to 
varying weather/climatic conditions as embodied in the historical data. Because the 
McCarl work includes time-series analyses as well as panel analyses of crop production 
within states, it implicitly captures technological and resource usage (such as the use of 
more or less fertilizer or modified planting regime) associated with variations in 
climatically induced weather conditions. The model does not include the impacts from 
increased CO2 concentrations; only a single CO2 concentration is used. Because our 
analysis is solely based on the single A1B IPCC scenario, we do not address changes in 
CO2. Therefore, even if we included CO2 concentration impacts on agriculture, the CO2 
impact would be the same across all the simulations. It would have no effect on the 
differential impacts of concern to us. Other studies primarily consider one or only a 
couple of the terms included here (Schlenker et al. 2005; Schlenker and Roberts, 2006; 
Parry et al. 1999; Iglesias et al. 2000). More-detailed dynamic simulations of agricultural 
impacts also exist (Williams et al. 1984).   

The statistical regression underlying McCarl’s algorithms uses annual values to 
optimize predictive capability. This feature of using annual data ensures that the McCarl 
work embodied in the hydrological model is compatible with our study. The McCarl 
work is designed to estimate the impact of climate change on agriculture. In our study, 
we focus on comparing climatic conditions that could realistically occur with historical 
climate values, which are represented by the climate referent that assumes no climate 
change. We use the agricultural algorithms to compare crop output across exceedance-
probability simulations with changing precipitation conditions from 2010 to 2050. We 
additionally include agricultural production impacts due to the reallocation (or rights-
purchase) of irrigation water away from agricultural activities toward higher-value 
economic activities such as power generation, industrial needs, and municipal use. 
Because of their economic dominance, we use corn and soy as the representative crops 
upon which all agriculture is proportionally reduced in the macroeconomic portion of our 
analysis. The impact by state is based on its agricultural crop mix and the local impacts of 
climate.  

Reduced agricultural activity results in lost employment as well as lost demand for 
the intermediate products and goods used by agriculture. These impacts across sectors are 
readily simulated within the REMI PI+ model, as discussed in Section 3.3. Any reduction 
in agricultural production is assumed to be made up with imports. The hydrological 
assessment of agriculture includes improvements in agricultural technology but does not 
assume that additional agricultural acreage will be available to augment the reduced 
productivity resulting from climate change. Conversely, we assume historical urban 
growth trends will cease and reduce the historical rate of farmland conversion in the 
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future. That is, we are assuming there is no significant increase or decrease in farmland 
acreage in the future. 

Figure 3-21 shows an example of the impacts of climate change from 2010 to 2050 
on corn production at the 1% exceedance probability. The change in colors helps 
visualize the variation in impacts of climate change across the years on a state-by-state 
basis. In this worst-case simulation, the impact on Missouri becomes noticeable in the 
2030 time frame (yellow) and continues to become more stressed (orange) through 2050 
as typically less and less water is available for growing crops. The 50% exceedance-
probability impacts, which are not shown, are not significantly different from the 1% 
exceedance-probability impacts because the fixed volatility of precipitation and 
temperature contained in the motif dominates the crop response. States with no 
significant agriculture show no change in Figure 3-21 (maintain an index of 1.0) despite 
reduced water availability. The direct economic value of the crop impacts are small 
compared with the direct economic value of industry impacts from reduced precipitation. 
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Figure 3-21. Water impacts (corn – 1% exceedance probability). 
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3.2.3 Costs of Water Transfer 

Our analysis recognizes the practice of transferring water rights through contractual 
or policy means, typically from agricultural entities. While we do estimate these costs, 
they are not explicitly added to the macroeconomic analysis for three reasons. One reason 
is that the actual costs may not be less substantial than those costs estimated here, 
especially if policy interventions limit the prices of water transfer. A second reason is that 
climate change may reduce the economic viability of agricultural activities and result in 
water normally used for farming being available for other uses. Such conditions are 
apparent today when upstream or urban water usage exceeds the amount that would be 
formally associated with existing rights held by the urban areas. In effect, cities are often 
using more water than they have the right to use, while farmers are often using less water 
than they have the right to use. A third and very important reason for not explicitly 
adding the costs of water transfer to the macroeconomic analysis is that a macroeconomic 
model categorizes economic activity by economic sectors.  

The selling of water rights by the agricultural or mining sector is not related to added 
agricultural or mining activity. We consider such sales as an added “water-utility” 
activity that is already accounted for in our analysis. Thus, in an economic sense, the 
“water sector” is merely buying and selling from itself. The cost of increased water 
delivery is accounted for in the macroeconomic simulation (albeit, in the version of the 
REMI model we use, all distribution utilities are lumped together as a single economic 
entity for each state). The cost of procuring water, whether by new wells or new water 
rights, is implicitly contained in the model’s logic. Therefore we have not attempted to 
explicitly make any exogenous (external), and potentially redundant, correction to the 
macroeconomic model simulation.  

To verify the adequacy of these assumptions, we estimate the cost of water transfer 
based on a cost of $1,000 per acre-foot of deliverable water (as opposed to just water 
rights). This cost is consistent with existing transactions and with expectations over this 
time frame (SeekingAlpha 2007; Frederick and Schwarz 2000). The aggregated national-
level water transfer costs over the 2010 to 2050 period for varying exceedance 
probabilities are shown in Figure 3-22.  



 85

 
Figure 3-22. Water transfer costs. 

Thus, at a 50% exceedance probability, the cost to purchase water from the mining 
and agriculture sectors over the 40-year period would be approximately $3 billion. The 
highest cost, at the 1% exceedance probability, would be approximately $4.3 billion. 
These costs are negligible compared with the primary economic impacts across the 
simulations. 

3.2.4 Water Availability in the Hydrological Referent 

When we apply the macroeconomic referent to the hydrological model in the 
absence of additional climate change, simulation results show that the “normal” water 
supply will be inadequate to meet projected demand for water in several regions of the 
United States. Other researchers also realize the potential for shortages even in an 
assumed business-as-usual environment (Frederick and Schwarz 2000; EPA 2002; GAO 
2003; Karl et al. 2009; NRC 2004; USBR 2005). This concern is widely appreciated 
(USBR 2005) but is not included in macroeconomic models because such models are 
necessarily parameterized to assume that physical conditions remain unchanged from 
historical values. As such, the analysis presented here only considers water availability 
conditions in excess of those beyond what would occur under the hydrological referent. 
For reference, in Appendix C, we present and summarize the implied impacts of water 
scarcity even in the absence of climate change. 

3.3 Macroeconomic Simulation 

For the economic component of our risk assessment, we use the Regional Economic 
Models Incorporated (REMI 2009) PI+ model, usually simply noted as the REMI model. 
The pragmatic state-focused perspective of our work limits the study to the risk 
assessment between the years 2010 and 2050. The macroeconomic forecast contained in 
REMI model is the U.S. Department of Commerce’s Bureau of Economic Analysis 
(BEA) forecast extended to 2050. This forecast and the REMI model are used within 
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many states for policy and impact analysis (REMI 2007; Treyz and Treyz 2004). 
Although the REMI model has an admirable track record for predictive accuracy, our use 
of the forecast is not based on its potential accuracy. Instead, we use this macroeconomic 
referent as a common basis for policy discussions, simply as a point of comparison with 
the results simulated in our analysis. The REMI model is robust from a policy-outcome 
perspective in that the differences it produces between a base case and simulations that 
assume alternative values of input parameters maintain a coherent relationship among 
parameters and their impact on results. In other words, the REMI model effectively 
characterizes how one set of inputs is preferable to another set of inputs. Additionally, in 
a historical sense, simulated results from the REMI model have been consistent with 
impacts observed from actual policy initiatives or historical economic shocks. 

3.3.1 Economic Impact Analysis in Context 

The economic impact analysis is the last step in the three-step overall analysis 
process presented previously in Figure 1-2. To recap, the first step in the overall analysis 
process involves a climatic analysis where we determine a set of hydrological and 
macroeconomic simulations of potential climatic futures for precipitation and 
temperature conditions to execute based on the uncertainty indicated in the PCMDI data. 
Each of these simulations represents a different exceedance probability taken from the 
national precipitation distribution (Figure 3-7). We then adjust the MIROC3.2 model 
precipitation forecast for each state from 2010 to 2050, inclusively, by the ratio of (the 
PCMDI ensemble’s) median historical precipitation to the precipitation value indicated in 
Table 3-1. These precipitation levels are the output of the climatic analysis and the input 
to the hydrological model.   

In the second step of our overall analysis process, we conduct a hydrological 
analysis, where we employ the hydrological model to produce the availability of water 
for industrial, mining, power generation, and municipal uses. The hydrological analysis 
further determines the change in agricultural output due to the changing climatic 
conditions. The water availability and agricultural production are the output of the 
hydrological analysis and the input to the economic impact analysis.   

The third step in our overall analysis process is the economic impact analysis. This 
step consists of two parts. The first part involves premodeling activities to transform the 
estimated hydrological impacts from the hydrological model into the relevant economic 
description that the REMI model can use to determine the implications across the entire 
U.S. economy. Specifically, we convert the physical water availability and change in 
agricultural production to dollar-based quantity changes in the agricultural demand for 
goods and services, as well as the increased costs of importing agricultural products to 
serve the demand not satisfied by domestic production. We convert the water availability 
to the investments needed to allow continued operation under reduced water-supply 
conditions. These costs become the actual input values to the second part of the economic 
impact analysis, which consists of the actual REMI simulations. The REMI model 
determines the time-dependent interacting industry and interacting state responses at nine 
different exceedance probabilities. Figure 3-23 depicts the general data flow between the 
second and third steps of our overall analysis process.  
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Figure 3-23. Data flow in last two steps of the overall analysis process. 

3.3.2 Characteristics and Structure of the REMI Model 

The REMI model is a time-dependent macroeconomic forecasting and policy 
analysis model.4 It is a mature and well-known model with documentation that includes 
exhaustive references, especially with regard to model evaluation (REMI 2007).5 The 
model is widely used by states and U.S. corporations as noted on its website.6 The REMI 
model integrates input-output, computable general equilibrium (CGE), econometric, and 
economic-geography methodologies. For our study, we use the U.S. version of the REMI 
model with state-level detail for 70 economic sectors. The input-output aspect of the 
model captures interindustry changes in demand and production. The CGE aspect of the 
REMI model instantaneously balances supply and demand through price, but the REMI 
model also addresses delayed responses due to investments, population/business 
migration, and wage adjustments that provide a more realistic simulation of the 
interactions and interdependencies across states and across time than what a strictly 
optimization-based approach to CGE would indicate. The econometric aspects ensure the 
model reflects the statistically estimated response characteristics of the individual states.   

Figure 3-24 and Figure 3-25 show the overall structure of the PI+ model. The model 
contains five major blocks: (1) Output; (2) Labor and Capital Demand; (3) Population 
and Labor Supply; (4) Wages, Prices, and Costs; and (5) Market Shares. The access to 
factors of production such as labor and specialty commodities can affect how business 
can respond to local changes in conditions (e.g., due to climate change) by expanding 
operation in other states. The use of intermediate inputs from other industries ties the 
national and international economies together with cascading, interacting, multiplicative 
impacts as individual industries respond to the impacts of climate change. 

                                                 
4 The description of the PI+ model in this section is based on material provided by REMI and used with 
permission. 
5  The evaluations are comparisons to other methods or of prediction versus observations. The reported 
evaluations do not include the formal verification and validation methods often associated with engineering 
models attempting to match experimental data.   
6 See http://www.remi.com/index.php?page=by-sector&hl=en_US and www.remi.com  
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Figure 3-24. REMI PI+ model components and linkages. 

 
Figure 3-25. REMI PI+ model detail on intermediate demand and factor access. 
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Several industries are particularly susceptible to changes in water availability, and 
we explicitly simulate their adjustments to a changing climate and the consequences 
throughout the economy (Morrison et al. 2009). The industries most directly affected by 
reduced water availability are as follows: 

 Agriculture/farming 
 Food 
 Beverage 
 Paper 
 Petroleum and coal 
 Chemical 
 Primary metal 
 Mining 
 Thermoelectric power generation 
 Hydropower 
 Municipal water utilities 

 
See Appendix B for further details about the above industries. 

The specific premodeling effort of mapping the hydrological impacts of climate 
change to the initiating impact on each industry is presented in Appendix B, and a more 
detailed discussion is presented by Warren et al. (2009). The following briefly summarize 
how we use the REMI model to calculate impacts: 

 The changes in crop productivity from the hydrological model translate to 
changes in farm demand for secondary products (such as fertilizer) and reduced 
supply (leading primarily to imports) for sectors that use agricultural products.   

 With water shortages, thermoelectric and industrial sectors using cooling-water 
convert to closed-cycle cooling or even to dry cooling as conditions demand 
(Kelic et al. 2009; Warren et al. 2009). These changes increase the cost of 
producing output. Changes in the demand for their products due to increased costs 
then affect employment and the demand these sectors previously had for products 
from other industrial sectors, generating a spiral of impacts across industries—a 
story familiar in the United States during the recent financial crisis. 

 For coastal industries, conversion to saline-water use is considered.  

 If reduced precipitation affects hydropower production, new generation is built 
endogenously (i.e., within the REMI model), often in surrounding states to serve 
the otherwise unsatisfied demand for electricity.   

 For industrial consumptive uses of water, if efficiency improvements cannot 
adequately reduce water needs to match availability, production becomes 
constrained and declines.  
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 Given the options for reducing the uses of municipal water (e.g., not watering 
lawns and adding low-flow appliances) in addition to the general ability of 
municipal authorities to purchase water rights, the direct economic impact on 
municipal water consumers is estimated to be minimal.   

 If an industry already efficiently uses water, it has less capability to accommodate 
reduced water availability. The industry has already exercised the majority of 
options available, and its sensitivity to water shortages is greater than those 
industries that use water less efficiently. This consideration is particularly 
apparent in the mining industry.  

 Those regions that marginally have adequate water in the present have not yet 
developed storage and sophisticated water-allocation (water rights) strategies. 
These areas immediately experience the impact of reduced water availability, 
even more than those regions that currently deal with (accommodate) water 
limitations on a routine basis. 
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4 Analysis Results 

The estimated cost of climate change comes ultimately from the macroeconomic 
analysis. Figure 4-1 presents a conceptual illustration of how the Sandia hydrological 
model associates levels of precipitation (rainfall) with probabilities. The probabilities are 
ultimately associated with the water availability that affects the economy. The economic 
effects are the impacts that the macroeconomic model generates through its simulation of 
the interacting state-level economies. The probabilities, as illustrated below, and impacts 
(consequences) are combined to determine the total risk to the economy. 

 

Figure 4-1. An illustration of precipitation conditions sampled from the climate-model 
ensemble distribution and analyzed in this study. 

The dark black line in Figure 4-1 is a stylized representation of the cumulative 
probability distribution estimated from the climate-change ensemble shown in Figure 3-7. 
The vertical axis represents the cumulative probability, which can be interpreted as the 
probability that the precipitation levels will be less than the corresponding point on the 
horizontal axis, the amount of rainfall. The colored lines denote the lower (50% or less) 
exceedance probabilities used in the simulations. The basic information that is being 
conveyed here is that as the probabilities decrease, for example, from 50% to 35%, so 
does the amount of rainfall (i.e., the location on the horizontal axis for the corresponding 
precipitation moves to the left, from dark blue to pinkish purple.). For each exceedance 
probability, the climate models forecast rainfall, and hydrological modeling translates 
these rainfalls into changes in agricultural productivity and water availability for the 

Probability Distribution 
Estimated by the Sandia 
Hydrological Model 
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economy. The climate referent, which assumes no global climate change, is not pictured 
in this figure.  

Climate change implies declining precipitation in the future at the national level. The 
precipitation conditions in our climate referent assume no change in average precipitation 
in the future. Because Figure 4-1 depicts exceedance probabilities for temporal 
precipitation patterns only relevant to conditions associated with climate change, the 
constant precipitation conditions assumed in the climate referent cannot be meaningfully 
portrayed in Figure 4-1. Even though the 99% exceedance-probability simulation may 
yield more precipitation in some states than does the climate referent, the simulation 
shows impacts relative to the economic conditions of precipitation in the climate referent. 
These impacts occur because climate change dominantly affects how the precipitation in 
one state compared to that of another state diverges from the historical relationship of 
differences in precipitation among the individual states. At large exceedance 
probabilities, some states experience increased precipitation compared to historical 
amounts, while other states experience reduced precipitation—even if the national 
average precipitation in a simulation is above the climate referent of national 
precipitation. The states with inadequate precipitation experience economic impacts. 
Figure 4-1 conceptually depicts national precipitation levels. Our analysis explicitly 
estimates impacts at the state level. We only use the national-level precipitation as the 
metric for differentiating the simulations from one another.  

Climate change contains volatility in its projection of future conditions, as evident in 
the motif, whereas the climate referent has constant conditions. On one hand, the 
difference between a simulation with variable precipitation and one with constant 
precipitation could seem to spuriously create impacts. As described in Section 3.1.2, the 
use of an unchanging climate referent is possibly the only defensible choice given the 
statistical character of the climate model results. More importantly, as implied in Section 
4.3, even if volatility (“normal” climate variations) could be included in the climate 
referent in a manner statistically compatible with the volatility in the climate-model 
results, the volatility would have a minimal impact on the conclusions in the analysis. 

We use the climatic conditions associated with selected exceedance probabilities to 
calculate the hydrological impacts at the county and state levels, and we use the results of 
the hydrological model to calculate the direct physical water-availability impacts at the 
state and industry levels. The water-availability impacts then feed into the REMI 
macroeconomic model according to the economic methodology described in Appendix B 
of this report. The results of the macroeconomic modeling at the aggregate national level 
as well as at the state- and industry-level are discussed below. Regional distinctions about 
the climate-change impacts will also be evident.   

We run the REMI model on an annual basis for the years 2007 to 2050.7 As a result 
of the recent global financial crisis, the revised historical estimates of economic activity 
                                                 
7 Runs of the REMI model assume that Keynesian closure rules are followed, which “[does] not use an 
interest rate mechanism to correct changes in U.S. employment that have been caused by an exogenous 
policy shock” (REMI 2009)  The other options, which assume “coordination between fiscal and monetary 
policy makers resulting in interest rate adjustments that would immediately adapt to new policies, so that 
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may not exactly correspond to the macroeconomic forecast of the base-case referent from 
the REMI model presented in Appendix D. Nonetheless, the estimates we apply are a 
usable referent for comparing macroeconomic impacts across different climate regimes. 
All costs are presented in constant 2008 U.S. dollars. 

Following are the results of using the analysis framework developed in the previous 
sections of this report. Section 4.1 presents the national economic and labor impacts of 
climate change through the year 2050 in the absence of policy. Section 4.2 describes the 
impacts across the different economic sectors of the national economy. Section 4.3 
addresses the significance of representing climate change with its actual volatility versus 
treating it as a smooth, long-term trend. Section 4.4 communicates the state-level 
impacts. Section 4.5 briefly places the results in context. 

4.1 National Impacts 

This section summarizes the national-level risk assessment of climate-change 
impacts through the year 2050. Figure 4-2 shows the value of GDP impacts associated 
with the “best estimate” (solid) line of the distribution for precipitation uncertainty shown 
in Figure 3-7.   

 
Figure 4-2. U.S. GDP impacts (2010–2050) with confidence intervals for a 0% discount rate. 

                                                                                                                                                 
employment would be maintained at a constant rate” are deemed inappropriate, especially when the 
changes to the model will be caused by unpredictable changes in weather and climate. 
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The dashed lines in Figure 4-2 indicate the second-order uncertainty for 
macroeconomic impacts associated with the climatic conditions. The dashed lines 
characterize our knowledge of the uncertainty of the best-estimate values to within 90% 
confidence, reflecting a lower and an upper limit on the uncertainty, from 5% (lower 
dashed line) to 95% (upper dashed line). Note that a GDP loss associated with any data 
point that could be placed outside of the dashed lines (e.g., for a point at 20% probability 
reflecting a GDP loss in excess of $1.5 trillion) would have a very remote possibility of 
occurring, given our current understanding. 

Table 4-1 presents the value of the GDP loss over different discount rates. The 
estimated GDP summary risk is $1.2 trillion through 2050 at a 0% discount rate. The 
summary risk is calculated as the sum of consequence multiplied by the probability over 
the entire range of exceedance probabilities (100% to 0%). %). We are discussing these 
probabilities from highest to lowest because impacts are smallest at a 100% exceedance 
probability and largest at a 0 exceedance probability. Our text, figures, and tables follow 
the progression from the largest exceedance probabilities (smallest impacts) to the 
smallest exceedance probabilities (largest impacts). Though not included in the table, the 
annual loss to the GDP at the 50% exceedance probability is nearly $60 billion in 2050 
and would exceed $130 billion at the 1% exceedance probability. The annual data for the 
1% exceedance-probability case is presented in Appendix E. 

Table 4-1. GDP Impacts and Summary Risk (2010–2050)  

 

The summary risk in Table 4-1 includes both interpolated and extrapolated risks as 
explained in Section 2.5. The interpolated risk values are based on the simulated values 
between the 99% and 1% exceedance probabilities in Figure 4-2. The extrapolated risk 
values, which are outside the range of the 99% and 1% probabilities, are derived 
estimates of the contribution between the 1% and 0% exceedance probabilities (very 
severe) and the 100% to 99% exceedance probabilities (the largest amount of 
precipitation) of Figure 4-2. Given the rapid increase in losses at the lower exceedance 
probabilities (e.g., 10% to 1%), and the existence of climate-induced loss even at the 
100% exceedance probability, the loss at the 50% exceedance probability only modestly 
underestimates the total risk. 

Figure 4-3 shows the impacts on employment measured in lost labor years over the 
years 2010 to 2050 at various levels of uncertainty. The mean-estimate line is included, 

99% 75% 50% 35% 25% 20% 10% 5% 1%

0.0% -$638.5 -$899.4 -$1,076.8 -$1,214.5 -$1,324.6 -$1,390.8 -$1,573.9 -$1,735.4 -$2,058.5

1.5% -$432.0 -$595.9 -$707.4 -$795.0 -$865.1 -$907.2 -$1,024.6 -$1,129.3 -$1,340.2

3.0% -$301.9 -$407.4 -$479.4 -$536.6 -$582.4 -$610.0 -$687.2 -$756.8 -$898.2

Change in National GDP (Billions of 2008$)

Discount 
rate

Exceedance Probability
Summary 

Risk

-$1,204.8

-$790.3

-$534.5
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bounded by the confidence interval. A labor year is equivalent to having one full-time job 
for a year. 

 
Figure 4-3. U.S. employment impacts (2010–2050). 

Table 4-2 shows the employment-loss values associated with the mean-estimate 
(solid blue) line in Figure 4-3. For the summary risk, the table only includes the 
interpolated values (99% to 1%). The analysis does not attempt to consider a widespread 
migration of the unemployed population beyond U.S. borders that is possible at the 1% to 
0% extreme. The summary risk is nearly 7 million lost labor years between 2010 and 
2050 due to climate change.8 The annual job loss by 2050 at the 50% exceedance 
probability is nearly 320,000 full-time jobs. At the 1% exceedance probability for the 
same year, the annual job loss rises to nearly 700,000 full-time jobs. The uncertainty in 
the employment impacts due to second-order climatic uncertainty changes the results by 
no more than approximately 10%. 

Table 4-2. Employment Impacts and Summary Risk (2010–2050) 

 
                                                 
8 Again, the monetary and labor values noted as risks are the sum (approximate integral) of consequence at 
different exceedance probabilities over the entire (100% to 0%) range of probabilities. 

99% 75% 50% 35% 25% 20% 10% 5% 1%

-3,815 -5,463 -6,601 -7,468 -8,166 -8,587 -9,764 -10,819 -12,961

Exceedance Probability
Summary 

Risk

-6,863

Change in Employment (Thousands)
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When water availability limits economic production within the United States, one 
alternative is to import the lost commodities, especially food. Figure 4-4 shows the 
impact of climate change on the U.S. trade balance, without the second-order uncertainty 
region. This study is U.S. centric and assumes that the rest of the world can accommodate 
added U.S. demands for imports. Our analysis implicitly assumes the ability of the rest of 
the world to import and export products at the costs assumed in the macroeconomic 
referent. This assumption is assuredly unrealistic and influences the uncertainty in our 
forecasted impacts. Because we have not analyzed this uncertainty factor as part of this 
study, the forecast uncertainty is not presented in Figure 4-4. Nonetheless, the change in 
net exports (gross exports minus gross imports) is still a useful way to illustrate the 
potential impacts of reduced U.S. production and competitiveness. 

 
Figure 4-4. Trade balance impacts (2010–2050) (0% discount, interpolated). 

Assuming that the financial markets in the rest of the world can accommodate 
increased U.S. demands, the U.S. trade imbalance only expands (gets worse) by an 
additional $0.5 billion per year in 2050 at the 50% exceedance probability and by an 
additional $8 billion per year at the 1% exceedance probability. While it seems likely that 
this forecast is underestimated, the trade balance risk from 2010 to 2050 is over $25 
billion at a 0% discount rate. The trade balance impacts for the three discount rates are 
presented in Table 4-3. 
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Table 4-3. Balance of Trade Impacts (Assuming an Unchanged Rest of the 
World) 

 

Because climate change is predicted to increase the volatility of temperature and 
precipitation, the estimated impacts over time also show volatility. Figure 4-5 illustrates 
the annual impacts on the national GDP as a function of the exceedance probabilities of 
reduced precipitation noted in the legend of the graph. Years are highlighted here, unlike 
in the previous figures.  

 
Figure 4-5. Annual U.S. GDP impacts from climate change. 

As shown in Figure 4-5, greater losses are evident in succeeding years, and the lower 
exceedance probabilities are associated with greater impacts on the GDP. Examining the 
estimated impacts for 2015, the loss at the 99% exceedance probability is on the order of 
$10 billion per year, whereas at the 1% exceedance probability the loss is almost $30 
billion per year. Note, however, that the same motif or pattern of volatility to represent 
the climate is used in all the simulations for these analyses. There is uncertainty in the 

99% 75% 50% 35% 25% 20% 10% 5% 1%

0.0% $21.5 -$1.6 -$20.6 -$33.7 -$44.7 -$51.5 -$71.0 -$88.9 -$126.6

1.5% $16.9 $2.2 -$9.9 -$18.1 -$24.9 -$29.3 -$41.7 -$53.3 -$78.1

3.0% $13.5 $3.8 -$4.1 -$9.3 -$13.7 -$16.5 -$24.6 -$32.4 -$49.3 -$6.0

Discount 
rate

Exceedance Probability
Summary 

Risk

Change in Net Exports (Billions of  2008$)

-$25.2

-$12.8
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variability just as there is in the long-term precipitation levels. Currently, available data 
do not allow a rigorous statistical inclusion of uncertainty in volatility within our 
analysis. Nonetheless, we can note that had a more changing and presumably increasingly 
volatile motif of year-by-year climatic conditions been used, the macroeconomic impacts 
would be larger and more problematic than the summary monetary impacts of this study 
indicate.  

Table 4-4 presents our estimates of interpolated risks (that is, the probability-
weighted consequence excluding those outside the range of 99% to 1% exceedance 
probabilities) by industry at the national level; the excluded estimates are between 1% 
and 0% and between 100% and 99%. Because of globalization, extreme probabilistic 
conditions cannot be properly represented in a U.S.-centric analysis, as we explicitly 
pursued in this study. Nonetheless, the difference between the summary risk calculated 
using only interpolated values and one also including extrapolated values would be 
fractionally dissimilar. Due to construction, especially of power plants to augment lost 
hydroelectric capacity, utilities, electric equipment, and other manufacturing experience 
positive effects in terms of economic value. Transportation sees a net zero economic 
impact, despite an overall reduction in economic activity, because of the added need for 
interstate trade, especially for food. Although the reason is highly uncertain, the textile 
industry appears to see a net neutral impact due to the nonnegligible migration of 
population to the relatively colder northern states. Many professional services, including 
medical, see a drop because unemployment constrains additional spending. Agriculture-
dependent industries encounter substantial declines. 
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Table 4-4. Sector-Specific Risk at the National Level (0% Discount Rate, 
Interpolated) 

Table 4-5 presents an indication of the average percentage loss to the economy over 
our 40-year-analysis time frame. Costs rise significantly in the later years, with rapidly 
escalating costs in outlying years (Hope 2006). The year-2050 percentage impacts are 
typically 50% higher than the average over the 40-year period. The table also 
distinguishes the agricultural impacts from the nonagricultural impacts on the economy, 
and it adds an estimate of the impacts of personal disposable income. Although these 
economic impacts are a small fraction of the overall economic activity of the period, by 
2050 they exceed $100 billion per year.  

National-Level Industry Impacts   2010–2050  (0% Discount, Billions 2008$)  

Forestry and logging; Fishing, hunting -$0.6  Water transportation $0.0 

Agriculture, forestry support activities; Other -$0.3  Truck transportation, couriers -$19.9 

Oil and gas extraction -$9.4  Transit and ground passenger transportation -$0.6 

Mining (except oil and gas) -$86.3  Pipeline transportation -$0.2 

Support activities for mining -$7.3  Tourist transportation; support activities -$0.8 

Utilities $13.6  Warehousing and storage -$2.1 

Construction -$30.8  Publishing industries, except Internet -$12.4 

Wood product manufacturing -$1.1  Motion picture and sound recording industries -$4.5 

Nonmetallic mineral product manufacturing -$3.3  Internet publishing, Information services -$10.8 

Primary metal manufacturing -$2.4  Broadcasting, Telecommunications -$28.1 

Fabricated metal product manufacturing -$3.7  Monetary authorities, funds, trusts, financials -$34.1 

Machinery manufacturing -$4.2  Securities, commodity contracts, investments -$39.9 

Computer and electronic product mfg. -$10.3  Insurance carriers and related activities -$6.4 

Electrical equipment and appliance mfg. $1.4  Real estate -$38.2 

Motor vehicles, bodies & trailers, parts mfg. -$8.8  Rental and leasing services -$8.4 

Other transportation equipment manufacturing -$1.6  Professional and technical services -$41.4 

Furniture and related product manufacturing -$3.6  Management of companies and enterprises -$13.9 

Miscellaneous manufacturing $1.4  Administrative and support services -$21.2 

Food manufacturing -$82.3  Waste management and remediation services -$0.5 

Beverage and tobacco product manufacturing -$29.4  Educational services -$2.2 

Textile mills $0.0  Ambulatory health care services -$66.8 

Textile product mills -$1.0  Hospitals -$5.5 

Apparel manufacturing $0.8  Nursing and residential care facilities -$2.0 

Leather and allied product manufacturing -$2.3  Social assistance -$2.0 

Paper manufacturing -$2.5  Performing arts and spectator sports -$2.0 

Printing and related support activities -$0.6  Museums, historical sites, zoos, and parks -$0.2 

Petroleum and coal product manufacturing -$3.6  Amusement, gambling, and recreation -$5.9 

Chemical manufacturing -$18.2  Accommodation -$3.8 

Plastics and rubber product manufacturing -$4.5  Food services and drinking places -$19.9 

Wholesale trade -$45.3  Repair and maintenance -$4.9 

Retail trade -$127.2  Personal and laundry services -$11.2 

Air transportation -$4.1  Membership associations and organizations -$2.0 

Rail transportation -$3.2  Private households -$1.0 



 100

Table 4-5. Change in Labor Years, GDP, and Disposable Personal Income in 
$ and % Difference over the Referent Case: 2010–2050 (0% discount rate) 

 

As presented in Table 4-5, decreases in labor years range from a loss of 13 million in 
the least probable simulation (1% exceedance probability) to about 6.6 million in the 
most probable, median simulation (50% exceedance probability). GDP losses range from 
about $1.9 trillion to about $0.9 trillion. GDP losses due to crops are relatively small, 
ranging from $0.16 trillion to $0.13 trillion. As we describe below in the sectorial 
analysis in Section 4.2, GDP losses for the downstream industries that use crops are much 
greater than direct agricultural losses. Losses in real disposable personal income range 
from about $1.7 trillion to $1.0 trillion. Losses in the most-probable climate-change 
simulation remain substantial, with economic impacts about half as large as the lowest-
probability simulation. 

Figures 4-6 through 4-9 examine the dynamics of employment, personal disposable 
income, crop production, and industrial GDP contributions, respectively. The paths of 
these four items are highly erratic, reflecting the high volatility of the year-to-year 
forecasts of the climate conditions. During all years except 2010—where impacts are 
nearly zero—impacts as a function of reduced exceedance probability are monotonic, 
becoming worse in simulations predicting greater drought severity. The 2010 values 
show one particularly interesting insight of our analysis. The initial response of 
investment and construction for adapting to climate change has a positive impact on the 
economy. But this benefit is eventually overwhelmed by the impacts of climate change 
that the investments are attempting to counter. The magnitude of impacts for all items 
increases as time passes. As a result, if a discount rate greater than zero was applied to 
the net economic effects in Table 4-5, the magnitude of these impacts would be 
substantially reduced. A larger discount rate would dramatically reduce the present value 
of the most severe economic impacts—which occur 40 years into the future. 

The legend in Figures 4-6 through 4-9, like the legend in Figure 4-5, refers to the 
estimated exceedance probability of reduced precipitation and subsequent reduced water 
availability. Because climate-change predictions show increased volatility of temperature 

                                                 
9 This calculation assumes that changes in soy and corn production can be used as proxies for total crop 
production and uses a ratio of 0.801 of change in the GDP directly due to changes in crop production to 
corn and soy production. See Appendix B for the derivation of this ratio. 

Run Labor U.S. GDP          
(no crops)

U.S. GDP          
(from crops)9

Real Disposable 
Years (k) Personal Income

1% -12,961 -0.15% -$1,899 -0.16% -$159 -0.01% -$1,727 -0.19%
5% -10,819 -0.12% -$1,583 -0.13% -$152 -0.01% -$1,494 -0.16%

10% -9,764 -0.11% -$1,426 -0.12% -$148 -0.01% -$1,376 -0.15%
20% -8,587 -0.10% -$1,247 -0.10% -$144 -0.01% -$1,241 -0.14%
25% -8,166 -0.09% -$1,183 -0.10% -$142 -0.01% -$1,193 -0.13%
35% -7,468 -0.08% -$1,076 -0.09% -$138 -0.01% -$1,113 -0.12%
50% -6,601 -0.07% -$943 -0.08% -$134 -0.01% -$1,011 -0.11%
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and precipitation, the impacts over time are far from smooth. Even though the lower-
exceedance-probability simulations do reflect worsening conditions over time, note again 
that the motif for the climate remains a constant across the simulations. 

 
Figure 4-6. National employment impacts: 2010–2050. 

The employment volatility depicted in Figure 4-6 shows a pattern similar to that for 
the GDP in Figure 4-5 shown previously, although the figures are somewhat different 
because of diversity in employment per level of output across different industries. That is, 
even if all industries were affected in the same way, labor-intensive industries would 
have a greater impact on unemployment than highly automated industries with few 
employees. 
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Figure 4-7. Change in national disposable personal Income (2008 USD): 2010–2050. 

 

 
Figure 4-8. Change in crop production (corn and soy) (2008 USD): 2010–2050. 



 103

The change in crop production shown above in Figure 4-8 is influenced more by 
variation in the frequency and intensity of both temperature rise and precipitation 
fluctuations than by the average level of precipitation. The motif is constant among all 
the simulations, and therefore only precipitation levels cause the differences between 
simulations. The frequency and intensity of the temperature fluctuations, not 
precipitation, are predominantly responsible for the up-and-down nature and closeness of 
the impact lines observed in Figure 4-8.   

Figure 4-9 shows the industries that lose the most GDP due to drought in the most 
severe simulation (the 1% exceedance-probability simulation).  

 
Figure 4-9. Changes in national GDP contributions by private, nonfarm sectors 
(2008 USD, 1% simulation): 2010–2050. 

As seen in Figure 4-9, mining and manufacturing both have the largest losses of any 
economic sector, although the losses are relatively more severe in mining because mining 
is forecast to be a much smaller fraction of the economy.10 Mining has the greatest losses 
due to the shutdowns in its operations as a result of a lack of consumptive water 
availability. Mining is particularly vulnerable to water shortages (Morrison et al. 2009). 
Other large losses occur in retail trade, health care and social assistance, and finance and 
insurance, which are consumer-oriented sectors that suffer from overall losses of jobs and 
income. The only sector predicted to undergo positive economic effects is the utilities 
sector. These gains are mainly the result of increases in economic activity (e.g., 
construction of new power plants and labor for those facilities) in this sector to 

                                                 
10 In 2050, REMI’s forecast GDP in its standard regional control is $6.8 trillion for manufacturing and $111 
billion for mining, which reflects REMI’s forecast that manufacturing will grow about 340% between 2007 
and 2050, while mining will remain nearly constant. 
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compensate for net losses in hydroelectric production. New power plants (and labor for 
those facilities) in this sector compensate for net losses in hydroelectric production. 

4.2  Sectorial Impacts 

This section explores the relative contributions of subcategories of impacts, based on 
five categories of input variables into the REMI model: (1) impacts to farms, (2). impacts 
to industries that use farm output, (3) thermoelectric production, (4) hydroelectric power, 
and (5) industry and mining in separate REMI simulations. Additionally, the industry and 
mining impact category is assessed for a subcategory of variables without shutdowns for 
mining. A factor analysis explores how the consideration of different characterizations 
(factors) of the input to the economic model affects results. All factor analysis 
simulations use the most-extreme global-climate-change simulation that forecasts 
droughts that have a 1% chance of being exceeded in magnitude. 

The goal of the factor analysis presented here is to understand the relative 
contributions of different sets of input assumptions to aggregate-impact results. The 
factor analysis was conducted using results from the hydrological assessment and its 
determination of water availability. The hydrological simulation allocates water shortages 
so that each sector absorbs a percentage of the water deficit that is equal to that sector’s 
water demand in relation to the total demand. 

The REMI model produces hundreds of output variables. Our analysis concentrates 
on three of those variables: employment, GDP (a measure of the total economic value 
added to the economy from economic activity), and real disposable personal income 
(income adjusted for taxes and changes in price levels). For each variable, two graphs are 
presented. The first graph includes the first four categories of input variables (farms, farm 
industry, thermoelectric, and hydroelectric) to the model; the second graph includes two 
variants of the fourth category (industry and mining). These variants are (1) a full 
simulation and (2) a simulation without shutdowns in the mining industry. This split was 
chosen because the input variables affecting industry produce much larger economic 
consequences than the other categories and because the mining shutdown variables (i.e., 
reductions in “Industry Sales / Production”) have especially large effects. 

 Graphs of these output variables are presented in Figure 4-10 through Figure 4-13. 
In addition, the total changes from 2010 through 2050 are presented in Table 4-6, and the 
biggest percentage changes to U.S. states are shown in Table 4-7, which is discussed 
further in this section. These figures and tables show that the economic impacts on the 
variables describing farming are generally positive but have the smallest magnitude. This 
minor economic impact is largely due to the changes toward more labor-intensive 
components of farming as crop production declines and farm prices rise. The farming 
industries support farming (with such items as fertilizer and tractors), and they experience 
magnified reductions in demand with reduced agricultural production.  
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Figure 4-10. National employment impacts of farming, thermoelectric, 
and hydropower changes. 

 
Figure 4-11. National employment impacts of farm-support industry, 
mining and industry. 
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Figure 4-12. Change in national GDP (2008 USD), using farm, thermoelectric, 
and hydroelectric changes: 2010–2050.  

 
Figure 4-13. Change in national GDP (2008 USD), farm industry, mining and 
industry inputs: 2010–2050. 
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Table 4-6. Change in Labor Years, GDP, and Disposable Personal Income: 
2010–2050. 

 

The thermoelectric input variables produce economic consequences of greater 
magnitude than the farm input variables and of slightly smaller magnitude than the 
hydroelectric variables. The thermoelectric input variables contain information on retrofit 
activity to compensate for reduced water availability. Positive spikes in the GDP and 
employment occasionally appear in Figures 4-12 and 4-13, presented previously, 
especially earlier in time when investments in retrofit technologies first begin. However, 
these increases are often more than compensated for by the negative effects of increasing 
electricity generation costs in later years. The increases in electricity costs affect the 
production costs of other industries, causing an increase in the price index (inflation) 
throughout time, resulting in a steadily decreasing trend of real disposable personal 
income and reaching an annual loss of over $8 billion by 2050. Despite the net decrease 
of real disposable personal income of $155 billion during this period, there is a slight net 
increase in the GDP of $2 billion. However, that difference is due to investments in 
cooling retrofits that mitigate water shortages. If those retrofits were unnecessary, 
additional economic resources would be available for more productive use. 

The only economic impacts that are positive overall are due to reductions in 
hydroelectric power production. Reductions in hydroelectric power increase the demand 
for alternate sources of power from the utilities sector (as described further in Appendix 
B). This increased demand causes increases in economic activity in electric utilities as 
power plants are built, workers are hired to work in those plants, and fuel is purchased to 
power the plants, while the hydroelectric plants continue to operate with essentially the 
same labor and costs but with reduced output. The increases in economic activity 
highlight a problem—most familiar to economists who analyze disasters—with using 
aggregate measures of economic flows for consequence analysis: the lost service of 
hydroelectric power production is not measured in these economic flows, but the 
increased economic activity necessary to compensate for these losses is measured. If 
hydroelectric power production did not decrease, the economic resources utilized to 
create power from alternate sources could be used for other means (such as building 
luxury items) that would improve the demand for other goods and services.  

The input variables for the farm industry have the second highest change in 
employment and GDP, and the greatest impact on real disposable personal income. The 
annual loss in the GDP due to the sector hovers around $30 billion in the later years of 

Category Employment U.S. GDP Disposable Income 

1. Farm 216 0.0024% $21B 0.0017% $11B 0.0012%

2. Farm-Demanding Ind. -5,286 -0.0594% -$719B -0.0598% -$887B -0.0976%

3. Thermoelectric -91 -0.0010% $2B 0.0002% -$155B -0.0170%

4. Hydroelectric 622 0.0070% $120B 0.0100% $47B 0.0052%

5. Industry and Mining -8,428 -0.0946% -$1,324B -0.1101% -$746B -0.0820%

   -Not including shutdowns -1,641 -0.0184% -$285B -0.0237% -$197B -0.0217%
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the simulation, while the annual loss in real disposable personal income reaches $40 
billion. 

The mining and industry impact shows a much greater change than the other 
categories of impacts, with the exception that the magnitude of the losses to real 
disposable personal income are slightly less than they are for the farm industry. The 
maximum loss in the annual GDP is about $103 billion, whereas the maximum annual 
loss in any of the other three categories is about $35 billion (for the farm industry). 
Partial and total shutdowns of mining and industry have a substantial negative effect on 
the economic output and are largely responsible for the substantial volatility of the 
economic output—when no shutdowns are included in the REMI simulation, all of the 
economic output variables (see Figure 4-14) decrease relatively smoothly. Because of the 
water allocation scheme, water availability to high-value industry never falls enough to 
cause industry shutdowns, thus shutdowns only affect mining through 2050. From the 
perspective of an individual mining operation, the sale of water rights may represent a 
profitable option.   

Reductions in water availability to mining cause relatively severe economic 
consequences because mining typically uses water efficiently. As discussed in Appendix 
B, there are few opportunities for conservation without shutting down mining activity in 
states that are not adjacent to the ocean. All of the industries use a much greater share of 
their water for cooling, so they can conserve much greater portions of their consumption. 
Additionally, all of the industries simulated in the REMI model are represented as an 
aggregate, so no industry begins shutting down production until all industries have made 
all possible cooling retrofits, thus raising the fraction of water that can be conserved 
through cooling retrofits.11 Because large municipal water suppliers serve most of 
industry this aggregate view of a shutdown threshold is probably realistic. Figure 4-14 
shows that under extreme drought at the 1% exceedance probability, water demand from 
municipal and high-value-added industries (with consequent demands for electric power) 
reduces agriculture and mining water availability to a large extent (by a factor of 2 to 1 
for the water allocation logic used in this analysis). The difference between the mining 
curve with and without shutdowns indicates the extent to which the unavailability of 
water to sustain operations affects the magnitude of total economic loss. 

                                                 
11 The smallest value of 

i
tc% , which is the percentage of industrial consumption that can be conserved by 

retrofitting cooling in states not adjacent to an ocean (see Appendix B, Section B.5), is 32.4%. The median 
is 41.0%. For mining, on the other hand, the value of the term is always 6%. 
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Figure 4-14. Change in national real disposable personal income (2008 USD), using 
farm, farm industry, thermoelectric, hydroelectric, and mining and industry inputs. 

Table 4-7 lists the states with the largest percentages of gains and losses in 2050 in 
population and real disposable personal income (both variables were chosen because they 
change with a clear trend and are measures of socioeconomic dislocation). The relative 
magnitudes of the largest state-level changes in the different simulations are similar to the 
magnitudes of the national-level value.  
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Table 4-7. States with Largest Percentage Changes in Population and 
Income: 2050  

 

The largest economic losses are to West Virginia in the simulation that includes 
shutdowns of the mining industry. In this simulation, West Virginia loses 3.41% of its 
projected population and 4.11% of its projected real disposable personal income by 2050. 
This result is expected because a large fraction (8% of output12) of the West Virginia 
economy is mining; and according to the defined water allocation scheme, mining 
experiences twice the proportional reduction in water availability than the higher-value-
added industries. 

For many of the categories of variables, the largest gains and losses for population 
and real disposable personal income are in states with large populations. For example, for 
the industry and mining category, California gains more than 58,200 residents by 2050, 
which is over twice as large as the second greatest increase (Florida, with a gain of about 
27,500 residents). Based on the percentage gain compared with the baseline, however, 
California has the eighth largest gain (an increase of 0.10%). These gains in population 
occur despite large losses in the GDP ($3.9 billion) and real disposable personal income 
($1.2 billion). Some states fare relatively worse compared with other states, and their 
residents choose to relocate. California, as the most populous state in the nation, is a 
likely destination of those emigrants. It also maintains a comparative economic advantage 
relative to other states in dealing with the impacts of climate change in the long term 
despite significant negative impacts in the short term. The concept of comparative 
advantage affects many of the state-level results of this study and has a long history in the 
field of economics (Ricardo 1817).   

                                                 
12 In REMI’s standard regional-control simulation, West Virginia’s total output in 2050 is $203 billion, and 
its total output in mining is $16 billion. 

Category    Population    Disposable Income 
Largest Loss (Smallest Gain)     
1. Farm 0.00% WY 0.00% WY 
2. Farm-Demanding Industries -0.24% GA -0.38% GA 
3. Thermoelectric -0.10% WV -0.15% WV 
4. Hydroelectric -0.01% MD 0.00% IL 
5. Industry and Mining -3.41% WV -4.11% WV 
       -Not including mining shutdowns -0.05% IA -0.09% IA 
Largest Gain (Smallest Loss)     
1. Farm 0.02% NE 0.02% NE 
2. Farm-Demanding Industries 0.26% OR 0.16% OR 
3. Thermoelectric 0.02% DE 0.00% DE 
4. Hydroelectric 0.02% AZ 0.03% AZ 
5. Industry and Mining 0.13% OR 0.01% OR 
       -Not including mining shutdowns 0.02% OR -0.01% 
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4.3 The Impact of Interannum Volatility 

We now present an additional analysis that was conducted using inputs to the 
electricity production sector to explore how the volatility of the data (i.e., the motif as 
discussed in the introduction to Section 2 and in Section 3.1.2) affects the average 
estimated macroeconomic impacts. The results from the 1% exceedance-probability 
simulation using the year-to-year water-availability forecasts are compared with a 
simulation created by linearly changing water availability to electricity production 
between 100% and the minimum of the 2010 to 2050 values for each state. The water-
availability forecast uses the same 1% exceedance-probability data used in the previous 
section—the most extreme reduction in precipitation, with a 1% chance of its severity 
being exceeded. Many climate-impact studies assume a gradual change in climatic 
conditions or base their analysis on a snapshot of expected conditions in future years. 
These approaches neglect the volatility we explicitly address in this analysis. Volatility 
results show dramatic changes over time and provide policy makers a better roadmap for 
responding sooner to potential events than is available from linear, or smoothed, results. 

Figure 4-15 shows the difference in national employment between the simulations 
and the macroeconomic referent using the Sandia hydrological model’s simulated 
(volatile) water availability and using an, on average, equivalent downward linear trend 
over time. The thermoelectric designation in the figure just means that the water 
availability used is that for the thermoelectric, municipal, and industrial sectors. The 
forecasts of water availability show a high degree of variability. Employment varies with 
increases of more than 35,000 jobs in 2015, while decreases nearly reach a loss of 16,000 
jobs in later years. When the simulation is conducted using a downward linear trend, 
increases in employment initially spike above 9,000 in 2010 but then return to a roughly 
steady decrease of around 1,000 jobs per year. 
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Figure 4-15. Change in national employment, using simulated thermoelectric sector 
water-availability data: 2010–2050. 

Figure 4-16 shows the annual change in the GDP for the same simulations. The 
pattern is similar to the change in employment, except the magnitude of the GDP changes 
becomes slightly larger in the second half of the simulation for both the variable data and 
the linear data. 
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Figure 4-16. Change in national GDP (2008 USD), using simulated thermoelectric 
sector water-availability data: 2010–2050/ 

Figure 4-17 shows changes in real disposable personal income for the same 
simulations. Although the simulation using the forecasted water availability continues to 
exhibit greater volatility than the simulation using the linear trend, it is less variable than 
the time series of employment or the GDP in Figures 4-15 and 4-16 generated from the 
water-availability forecasts.   
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Figure 4-17. Change in national real disposable personal income (2008 USD), using 
simulated thermoelectric sector water-availability data: 2010–2050. 

Real disposable personal income is driven by changes in commodity prices, which 
are affected by increases in production costs. These changes in the price level accumulate 
gradually over time, leading to a steady decrease in real disposable personal income as 
seen above in Figure 4-17. The volatility of the water availability means that the GDP 
fluctuates from year to year, resulting in slight fluctuations of the variable forecast from 
the linear forecast. Furthermore, the variable forecast has slightly higher losses than the 
linear forecast because the GDP in the variable forecast remains higher (smaller losses) 
than it is in the linear forecast in the earlier years of the simulation.  

In summary, the results of these simulations suggest that the economic consequences 
of variable global climate change may cause more substantial year-to-year disruptions 
than climate change would cause if it followed a smooth linear trend. Hallegate et al. 
(2007) explore this issue more thoroughly. Additionally, the economic methodology 
(which assumes that firms make permanent retrofits to mitigate reductions in water 
availability) and the logic of the REMI model cause the simulations that include volatility 
to have permanently lower levels of real disposable personal income. 

4.4 State Impacts 

The national-level results show that economic impacts for the entire nation are 
negative. However, this aggregate look at the economic impacts of drought induced by 
climate change may ignore important regional differences that create disproportional 
positive and negative impacts across regions. Examining regional differences is 
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particularly pertinent for this analysis because drought caused by climate change will 
vary in severity across the United States and different regions of the country contain 
different mixes of industry that will suffer to different extents from drought. For example, 
heavy consumers of water tend to cluster together near sources of water, thus there is 
little water-intensive industry in most western, arid states. 

Table 4-8 shows the estimated national- and state-level risk to the GDP, 
employment, and interstate population migration. The values are the sum of the 
probability-weighted impacts over the exceedance probabilities and over the 2010 to 
2050 period. The migration across states is often based on comparative advantage. Even 
if a given state economy is having difficulties, it may be having less difficulty than other 
states. If we look at the state of New York, we see that the summary impact of climate 
change from 2010 to 2050 is a loss of $122 billion with a 0% discount rate. This loss is 
reduced to $81 billion with a 1.5% discount rate and to $54 billion with a 3% discount 
rate. The drop is dramatic because much of the impact occurs in the later years. Note that 
the reduced economic activity does reduce employment by 560,000 labor years by 2050 
even though the population has risen by 7,200 people due to in-migration from the even-
more-affected surrounding states. This means that the unemployment in New York is 
increasing even more than the drop in economic activity would indicate. 

Figure 4-18 through Figure 4-24 show maps of U.S. state-level impacts for the GDP, 
employment, population, and corn for the total risk and also for the 1% exceedance-
probability (worst-case) conditions. The coloring scheme (green is good, yellow is 
neutral, and red is bad) used in these maps is based on the percentage impact relative to 
the state’s size. The impact values providing the numerical population change are 
quantified in absolute units of measure. As an example, in Figure 4-23, which presents 
population changes for 2050 at a 1% exceedance probability, New Mexico is one of four 
states that lose more than a half-percent of their population and hence is colored red. For 
a state with a low population, a loss of 14,000 people is significant. Texas, on the other 
hand, loses around 11,600 people but is colored yellow because the percentage impact is 
small for a state with such a large population. 

These maps show that all states suffer negative economic impacts for all variables, 
except for three states in the Northwest (Washington, Oregon, Idaho)—with Montana, 
California, and Colorado showing benefits for the summary risk but losses at the 1% 
exceedance probability. Washington, Oregon, and Idaho have only slightly positive 
impacts, but their slight gains are at the expense of other states because these three states 
experience the largest increases in population (Figure 4-20). Population migration in 
effect transfers economic activity from other states. The gains in these Northwest states 
are also due to the increases in demand for utilities that result from reduced hydroelectric 
power production. California, while predicted to suffer from the reduced precipitation in 
early years, is predicted to benefit economically from the later-year population 
movements. Colorado is predicted to prosper in the early years while there is still 
adequate water but experiences mounting losses in the later years as a result of reduced 
water. Montana is predicted to be the only state that (slightly) benefits from both 
adequate water and population migration. Predicted economic impacts are particularly 
severe in interior states where it is not economically viable to substitute to desalinated 
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water and greatest in states like West Virginia with large concentrations of mining. For 
example, the GDP risk for West Virginia is estimated to be about 2.6% less than 
predicted without the consequences of reduced precipitation. That the U.S. Northeast and 
Southeast are susceptible to climate-induced water availability issues to the extent 
examined herein has been studied previously (Oxfam 2009; Mack, 2009). 

Table 4-9 shows the state-level impacts at the 1% exceedance probability for 
comparison with the summary risk in Table 4-8. If we again look at New York, as we did 
for Table 4.8, we see that for the 1% exceedance-probability simulation, New York’s 
summary risk is $157 billion. There is only a modest 30% increase in the 1% exceedance-
probability value compared to the summary value. Note that for states like Colorado, the 
GDP impact reverses sign between the 1% exceedance-probability case ($34 billion loss) 
to the summary risk value ($1 billion benefit). In the 1% exceedance-probability 
simulation, New York loses nearly another 100,000 labor years compared to the summary 
risk value. The increase in population, however, is more than three times larger, going 
from 7,200 people for the summary risk value to 23,000 in the 1% exceedance-
probability simulation. 

Figure 4-20 shows a map of state-level population changes in 2050. Like the 
economic impacts, population impacts create a similar number of disproportional positive 
and negative impacts across the U.S. states. National population changes (changes in 
birth rates and death rates) due to climate are not part of this analysis, so regional 
population changes above those captured in the macroeconomic referent are entirely the 
result of Americans moving from one state to another for economic reasons. There is a 
strong regional pattern with states in the Southeast and Southwest losing population and 
states on the West Coast, the western Midwest, and the Northeast gaining. Once again, 
interior states with the greatest concentrations of mining, such as West Virginia and 
Wyoming, are most affected. 

States that gain population may experience negative, nonmonetary impacts that are 
not modeled within this study. For example, all states adjacent to the Atlantic Coast in the 
Northeast are predicted to gain in population, but these states then become more 
susceptible to damage from presumed extreme weather associated with global climate 
change because of the increased population concentrations (Changnon 2003). 

Figure 4-21 through Figure 4-24 show the 1% exceedance-probability impacts. 
These impacts are larger than the total risk reported in Figure 4-18 through Figure 4-20 
but are comparable in most cases. For a few states, the analysis results are dramatically 
different because higher exceedance-probability (> 35%) impacts may actually show 
positive effects compared with the macroeconomic referent, such as in Colorado where 
analysis results indicate there would still be adequate water with a growing demand for 
goods from states that are negatively affected. 

Figure 4-24 shows the predicted change in the value of corn and soy production 
across states at the 1% exceedance-probability. A strong regional pattern emerges with 
the largest percentage losses across all Southern, Southwest, and Eastern states. The 
Midwest, which produces the most corn and soy, experiences only minor losses while the 
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Northwest experiences gains. States with little or no crop impact do not have recorded 
corn and soy production. The 1% exceedance-probability impacts can differ in sign from 
the summary risk because the impacts can have different signs at different exceedance 
probabilities, especially in the central latitude states where precipitation goes from 
sufficient to insufficient as the exceedance probability decreases. Further, the 
comparative economic advantage among the states can shift when states negatively 
affected at high exceedance-probabilities relatively improve in the lower exceedance-
probabilities as the neighboring states experience negative impacts. 

Despite suffering greater drought conditions on average relative to the rest of the 
nation, California in this study shows improvements because its economic impacts are 
relatively less than those of other states. This comparative advantage occurs because 
some states have little flexibility in dealing with water shortages, for example, because 
there is little agricultural irrigation from which water can be diverted. In general, those 
states that already suffer water constraints (often due to irrigation loads combined with 
urban growth in arid regions) have processes in place to adjust to changes in water 
availability. Irrigation-water use may buffer fluctuating water shortages, assuming the 
viability of food imports. The value added to the national economy from certain types of 
industry is large compared to that for food production. Thus, the impact of reduced 
agriculture is partially compensated by the continued operation of high-value-added 
industry.   

The estimated California case is particularly illuminating because these predictions 
are counterintuitive. In the early years of climate change the state suffers significantly 
from reduced precipitation and in the later years achieves comparative advantage. A 
review of California’s current problems and future opportunities indicate support for the 
analysis results (Grunwald 2009). There are time-dependent dynamics among several 
states where the geographical movement of the precipitation conditions and the change in 
comparative advantage cause a reversal of cost and benefit from climate change over the 
40 years. Similarly, high-exceedance-probability conditions may show benefits or losses 
that may be reversed with lower-exceedance-probability conditions. 

Conversely, the Pacific Northwest states show improvement under climate change 
due to expected increased precipitation. This study is limited to the annual temporal 
resolution of precipitation levels (other than capturing monthly variation for agricultural 
assessments) and thus does not capture the impact from lost seasonal snowpack water-
storage in the Pacific Northwest, which is an intra-annual process. Consequently, the 
estimated positive economic impacts could be an artifact of our assumptions in this study. 
On the other hand, people migrating to the Pacific Northwest from other states may 
provide positive economic impacts even if hydropower declines and there are added 
requirements for increasing local water storage.   

As larger populations use a larger fraction of the existing water supplies, the 
Northeast and the Southeast experience negative impacts, even if the reductions in long-
term precipitation are minimal. In general, a decreasing exceedance probability (from 
50% to 1%) implies that reduced precipitation (i.e., drought) is moving north and east at a 
continental level, causing more-severe reductions in precipitation in areas that experience 



 118

reduced precipitation at the larger exceedance probabilities (> 50%). Picture a horizontal 
line that begins across New Mexico and Texas and starts to sweep in a diagonal fashion 
as it moves north and east in the direction of Maine. Thus, areas such as Colorado go 
from having adequate water and benefits in high-exceedance-probability simulations to 
experiencing losses from reduced water availability in the low-exceedance-probability 
simulations. Other than in the Pacific Northwest, water availability decreases over time 
with climate change. The decrease in water availability may not be solely due to a change 
in the water supply as a consequence of reduced precipitation but due to a change in 
demand as a consequence of industry and population migrating into the state.    
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Table 4-8. National and State-Level Risk 2010–2050 

 

0.0% 1.5% 3.0% 0.0% 1.5% 3.0%

United States -$1,204.8 -$790.3 -$534.5 -6,862.7 0.0 Montana $0.9 $0.6 $0.4 12.8 2.9

Alabama -$29.2 -$18.9 -$12.6 -246.1 -10.8 Nebraska -$1.4 -$0.8 -$0.4 -4.4 2.5

Arizona -$69.0 -$45.8 -$31.2 -481.2 -14.8 Nevada -$38.7 -$26.2 -$18.1 -220.6 -2.8

Arkansas -$11.9 -$7.6 -$5.0 -96.8 -2.4 New Hampshire -$1.8 -$1.2 -$0.8 -12.1 2.6

California $25.1 $16.6 $11.5 152.0 115.7 New Jersey -$38.9 -$25.8 -$17.6 -205.9 3.6

Colorado $1.2 $0.4 $0.0 22.8 15.3 New Mexico -$26.1 -$17.9 -$12.7 -217.6 -8.3

Connecticut -$9.5 -$6.3 -$4.3 -36.4 4.7 New York -$122.9 -$80.5 -$54.4 -560.4 7.2

Delaware -$4.8 -$3.1 -$2.1 -30.3 0.0 North Carolina -$63.4 -$41.6 -$28.1 -492.4 -19.8

D.C. -$4.7 -$3.1 -$2.1 -15.5 0.5 North Dakota -$0.9 -$0.5 -$0.3 -5.4 0.8

Florida -$146.3 -$97.5 -$66.9 -1,242.4 -55.5 Ohio -$26.7 -$16.1 -$10.0 -167.7 1.7

Georgia -$102.9 -$67.7 -$45.9 -752.6 -40.0 Oklahoma -$38.0 -$25.2 -$17.2 -312.0 -15.3

Idaho $4.0 $2.5 $1.6 33.3 6.9 Oregon $19.4 $12.5 $8.3 152.7 20.5

Illinois -$10.1 -$5.1 -$2.5 -36.7 15.7 Pennsylvania -$64.6 -$42.4 -$28.7 -459.1 -7.7

Indiana -$21.8 -$12.9 -$7.8 -130.1 -4.0 Rhode Island -$0.7 -$0.5 -$0.3 -3.2 1.8

Iowa -$2.8 -$1.4 -$0.6 -10.3 3.1 South Carolina -$24.2 -$15.9 -$10.7 -235.4 -10.2

Kansas -$6.3 -$4.1 -$2.7 -43.5 2.3 South Dakota -$0.5 -$0.3 -$0.2 -2.1 1.3

Kentucky -$40.6 -$24.9 -$15.6 -289.6 -21.6 Tennessee -$58.5 -$37.3 -$24.4 -440.0 -23.0

Louisiana -$14.3 -$9.4 -$6.3 -119.4 -0.9 Texas -$137.8 -$91.0 -$61.9 -1,045.9 -28.5

Maine -$0.3 -$0.2 -$0.2 -4.4 2.5 Utah -$10.5 -$6.9 -$4.6 -72.2 2.2

Maryland -$23.7 -$15.6 -$10.5 -163.0 0.1 Vermont -$0.7 -$0.4 -$0.3 -5.5 1.0

Massachusetts -$9.0 -$5.9 -$4.1 -37.8 12.9 Virginia -$45.4 -$29.7 -$20.1 -314.2 -5.9

Michigan -$18.3 -$11.2 -$7.1 -107.7 7.1 Washington $26.6 $17.0 $11.2 190.7 29.5

Minnesota -$8.3 -$4.9 -$2.9 -36.8 7.6 West Virginia -$45.9 -$27.7 -$17.0 -306.4 -34.5

Mississippi -$7.3 -$4.7 -$3.1 -63.0 -0.8 Wisconsin -$6.2 -$3.7 -$2.2 -38.8 6.6

Missouri -$3.8 -$2.2 -$1.3 -22.7 8.3 Wyoming -$3.0 -$1.9 -$1.3 -19.2 -0.5

Change 
in Pop. 
(Thous.  
People)

Discount Rates Discount Rates

Summary of Climate Impacts (2010-2050)

Region

Change in GDP 
(Billions of  2008$)

Change 
in Empl. 
(Thous. 
Labor-
Years)

Change 
in Pop. 
(Thous.  
People)

Region

Change in GDP 
(Billions of  2008$)

Change 
in Empl. 
(Thous. 
Labor-
Years)
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Figure 4-18. GDP risk 0% discount. 
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Figure 4-19. Employment risk (employment-years, 0% discount). 
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Figure 4-20. Population 2050 risk. 
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Figure 4-21. Net change in state contribution to GDP 2010–2050, 1% simulation. 
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Figure 4-22. Net change in employment-years, 2010–2050, 1% simulation. 
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Figure 4-23. Change in 2050 population, 1% simulation. 
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Figure 4-24. Net change in value of corn and soy production, 2010–2050 (states with no recorded production 
are in white), 1% simulation. 
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Table 4-9. State-Level Impacts at the 1% Exceedance Probability 
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4.5 Placing the Results in Context 

This section contains the national, sectorial, and state-level results of our analysis. It 
provides an uncertainty-aware estimate of the risk from climate change through 2050 in 
the absence of policy. These estimates offer a foundation for comparing the benefits of 
acting to mitigate climate change to the cost of inaction.  

The interaction of state and industries means that an impact analysis that considers a 
state or industry in isolation will miss impacts that could reverse the results. Further, low-
probability, high-consequence conditions may dominate the total risk of climate change 
for states and industries. Some states and industries are affected much more than others.  
Because of evolving interactions among the responses of states and industries, the 
impacts of climate change for a particular state or industry can vary in direction (positive 
or negative) and extent (large or small) from year to year. Similarly, the climatic 
conditions associated with different exceedance probabilities can produce swings in the 
direction and extent of impacts over time. States with negative impacts in the “best 
estimate” (50% exceedance probability) simulation can show benefits in the extreme (1% 
exceedance probability) simulation. Certainly, the reverse is also true. With diminishing 
(more extreme) exceedance probabilities, the impact of climate change, in general, 
sweeps from the Southwest to the Northeast. The relative extent of impacts by state and 
by the geographical concentration of selected industries shifts with the exceedance 
probability as climate change moves more intensely across the nation.   

The aggregate economic cost in a given state may mask underlying tension. Some 
sectors, such as agriculture, may experience strong negative impacts while other 
industries, such as construction, may experience growth. The net report impact for the 
state may be strongly positive. In economic assessments, the adaptation to the negative 
effects of climate change produces new economic activity (i.e., investments) reportable as 
a benefit. The added costs of the adaptation will generally, however, result in reduced 
relative competitiveness with associated long-term reductions in economic activity and 
employment. 

 The reported summary risk (or total risk) for each state and industry represents the 
value of mitigating those impacts. The summary risk quantifies the net impact cost of 
climate change over the full range of possibilities (uncertainty) and consequences. That is 
why the summary risk also reflects the total risk. It is the value of insuring against those 
impacts, and it is the economic justification for policy to mitigate them. Risk comes from 
uncertainty, not certainty. The greater the uncertainty, the greater the risk. It is the 
uncertainty associated with climate change that validates the need to act protectively and 
proactively.  

In the near term, the summary risk at the aggregate national level is less dominated 
by low-probability events. With the current understanding of climate change through the 
year 2050, the diversity of resources and climatic conditions across the nation allows 
adjustments in response to climate change in one region of the nation to partially 
compensate for those in another region. For the impacts estimated through 2050, the 
nation as a whole has the resilience to accommodate the impacts “on average.” Thus the 
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“best estimate” (average) impacts at the national-level only modestly underestimate the 
total risk of climate change through 2050.       

The results of this study only extend to the year 2050. Impacts beyond 2050 are 
expected to be much greater, and the results here cannot be generalized to the more 
severe consequences and more complex impact relationships that may occur in a more 
distant future. We emphasize summary risk, but some sections of the report do provide 
added information for 50%, 10%, and 1% exceedance probability conditions. Appendix E 
shows a very detailed view of impacts at conditions associated with a 1% exceedance 
probability. 

 For the present, the impacts and risk noted in this section of the report should help 
governments and businesses weigh their options for responding to the risk of climate 
change in the near term. This report provides the cost of inaction. Decision makers can 
now compare it to the net benefits of any mitigating actions they may pursue. 
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5 Summary 

In this section, we review the primary outcomes, considerations, and limitations of 
this work. Our purpose is to develop a risk-assessment methodology for dealing with the 
uncertainty of climate change. To demonstrate this approach, we use the uncertainty in 
modeled future levels of precipitation associated with climate change as an input to a 
hydrological analysis that we then use as input to forecast derived macroeconomic 
impacts. We derive a proxy measure of climate uncertainty from an IPCC climate-model 
simulation ensemble to drive predictions of the economic cost from climate change for 
various exceedance probabilities of precipitation. Integration of the cost over the full 
range of uncertainty represented by this ensemble then characterizes our estimates of the 
risk from climate change to the GDP through the year 2050.  

Our risk assessment only considers the loss in the absence of mitigation or any other 
climate policy. The value of the loss, on the order of a trillion (2008) dollars for the 
United States, thus, can be interpreted as an upper limit on how much society could be 
willing to pay for a successful mitigation of climate change, even over the near term. 
Consideration of longer-term (post-2050) impacts from climate change would imply a 
larger cost because of the accelerating climate change, but these more temporally distant 
impacts are difficult for constituencies to completely grasp.  

The U.S. state-level and industry-level impacts are far from uniform. Some states 
experience significant swings and large disparities compared to other states. The same 
lack of uniform impacts is true for industry. Population and employment changes produce 
similar disparities among the states. Population migration has a significant effect on final 
outcomes. States that initially experience positive impacts may experience negative 
impacts in later years, and vice versa.     

Conducting an integrated analysis of detailed climatic, hydrological, and economic 
impacts at the resolution of counties, states, and industries across the range of exceedance 
probabilities required for a meaningful risk assessment is a relatively complex process. 
The hydrological and macroeconomic consequences from varying levels of climate 
change can often defy preconceived notions. This study, however, indicates that the 
losses associated with the 50% exceedance probability only modestly underestimate the 
value of the total risk over the full range of exceedance probabilities. This relationship of 
the 50% exceedance-probability to the total risk is most probably not robust. As advances 
in climate modeling modify the understanding of best-estimate impacts and the 
uncertainty characteristics of the climate models, the total risk could be much larger than 
that associated with the 50% exceedance probability. In the present, this outcome means 
that current “climate impacts” studies focusing on only the “best estimate” of impacts 
through 2050 produce national results that can support the policy debate and do 
corroborate the work here. Nonetheless, states and industries can have impacts dominated 
by the low-probability, high-consequence tail and by interactions with other states and 
industries. Consequently, existing “best estimate” studies of individual states and 
industries can provide useful insights, but an integrated risk assessment appears to be 
required for a meaningful evaluation of state- and industrial-level risk. 
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We feel the risk-based approach used in this work relates physical climate science to 
the societal consequences and thus directly helps inform policy debate. The integrated 
process of (1) explicitly recognizing uncertainty in climate-change forecasts, 
(2) transforming climate-change phenomena into physical impacts that affect economic 
and societal processes, and (3) converting those physical impacts to time-dependent 
changes in economic and societal conditions provides the end-to-end assessment 
capability recommended by the Obama Administration (Holdren 2009). By knowing 
what aspects of climate change have the most severe human consequences, this type of 
analysis can also guide and prioritize the scientific research to better quantify the most 
critical phenomena. 

No amount of research can ever eliminate the uncertainty in assessing future 
conditions and the risks those conditions impose. Because the future may occur before all 
stakeholders judge that the uncertainty has been adequately reduced, decisions must be 
made, as they always have been, in the presence of uncertainty. Risk is a function of 
uncertainty, and the more uncertainty, the more risk. Thus, analyses such as these are 
required for informing decision making. They support the justification for making 
decisions because of uncertainty rather than despite uncertainty.  

Our detailed, time-dependent approach to the analysis shows the additional early 
consequences of the volatility in climate change. The impacts across 70 industries and 48 
states demonstrate the interrelationships that produce consequences different from those 
consequences that would be indicated by the analysis of individual states or economic 
sectors in isolation. To date, this is the first study to address the interactive effects of 
climate change across the U.S. states and to deal explicitly with the problems of interstate 
population migration as a consequence of climate change. 

Our economic analysis follows the year-by-year impacts associated with year-by-
year variability in climatic conditions rather than the more conventional approach of 
considering gradual change through the years of the analyses. The results of our 
simulations suggest that the economic consequences of variable global climate change 
may cause more substantial year-to-year disruptions than climate change would cause if it 
followed a smooth monotonic trend. A state then lives with those adaptations (and costs) 
into the future even if climate conditions (temporarily) improve. The added costs often 
lead to enduring lower levels of industrial output and real disposable personal income 
beyond what would occur if climate change were a smoothly unfolding process.  

We note four primary limiting assumptions in our work. We do not believe they 
could significantly alter our results:  

1. A more expansive effort would systematically vary the climate models to establish 
the key uncertainties relevant to the economic impact analyses. We could include 
uncertainties associated with the hydrological and macroeconomic models, although 
that approach would complicate the understanding of how the climate component of 
the uncertainty affects future risks. Further, a definitive uncertainty analysis of 
climate models is currently beyond the near-term capability of supercomputing 
resources and climate science. 
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2. In this study, we have judgmentally selected water consumption, as opposed to water 
usage, as the limiting basis for water availability. We also have assumed that legal 
constraints would dominate supply constraints for the downstream availability of 
water. Further, we employ a constant proportional relationship between precipitation 
and water supply. As such, we also have argued that the variation in 
evapotranspiration due to climate change produces inconsequential second-order 
effects. A more thorough study could better explore these possible limitations. We 
believe that the incorporation of such improvements would show the current analysis 
underestimates the impacts and risks.  

3. The technical costs of reducing the water demands of industry and consumers to 
match the water supply underpin a large part of the macroeconomic analysis. We 
have based these costs and determined the options available to industry by applying a 
limited number of studies—studies that were developed for purposes unrelated to the 
reduced precipitation from climate change. Further, we have used the same unit costs 
for each state. While we would not expect improved costs to dramatically change the 
interstate relationships contained in the analysis results, improved costs could alter 
the total estimated risk from reduced precipitation. Because we have not considered 
the locational constraints on reducing water usage, such as limitations on the physical 
space to place equipment, we would expect a more thorough evaluation of technology 
options to show increased costs. 

4. The modeling of the climate risk associated with reduced precipitation must 
recognize the existence of water rights. Existing water rights, which are based on 
extensive historical precedence, are fraught with complex legal, political, and social 
implications. The legal specifics of water rights vary widely from state to state and 
are unlikely to change dramatically over the analysis time frame. In addition, the 
allocation of water under enduring climatic water shortages remains largely 
undefined. Agriculture often has grandfathered rights to water resources, yet under 
the currently increasing routine instances of limited water availability, compromises, 
purchases, and the transfer of rights commonly occur. The modeling assumes, to the 
extent possible, the enforcement of interstate water rights. Thus a shortage in one 
state, because of defined water allocations, does not necessarily result in a shortage in 
the downstream state. In this study, we use a simple heuristic when climate change 
causes reduced water availability. The heuristic assumes that high-value (monetarily 
and politically) users can purchase rights, but only to the extent where the 
proportional shortage to other users, such as agriculture or mining, is twice that of the 
high-value users. The difference in the allocation is associated with payments from 
the high-value activities to the low-value activities to pay for the water transfer.   

Despite the limitations of the current work, we feel it does establish a process for 
improved and more-meaningful risk assessments of climate change than is currently 
present in the literature. For the future, we believe that what is more important than 
refining state-level hydrological conditions and adaptation costs is determining the risks 
from climate change on international strategic supply chains and the stability of linchpin 
nation-states. The consequences of climate change for these issues may affect U.S. 
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interests more than the internal U.S. response to climate-change phenomena. We are 
pursuing these concerns in our follow-on work rather than directly extending this study. 
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Appendix A.  Hydrological Modeling 

The hydrological model used in the study was adapted from modules embedded in 
the broader decision-support framework for integrated energy-water planning and 
management depicted in Figure A-1 (Tidwell et al. 2009). The formal name of this 
Sandia product is the Energy Water Model. The model was originally developed to study 
future water usage in the Rio Grande Valley of New Mexico. It has subsequently been  
enhanced to more completely address climate-change issues, and its geographical data set 
has been expanded to accommodate the entire United States. In this study, we use 
elements of the model that pertain to the simulation of future water demand as well as to 
the identification of regions of potential future water stress. These simulations are 
possible at each of four reference scales: national, state, county, and watershed. 

 
Figure A-1. The Sandia hydrological model (subset of modules used 
for this study). 

We calculate water demand individually for six different use sectors: municipal 
(including domestic, public supply, and commercial), industrial, electrical power 
production, agriculture, mining, and livestock. Water use and water consumption are 
tracked separately for each of these sectors, as are the resulting return flows. Water use 
denotes the temporary withdrawal for some purpose, such as cooling, and then returning 
the water to its source, such as a river, for future use by downstream entities. 
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Consumption denotes a withdrawal of water, such as for crop irrigation and soft drink 
production, where it becomes unavailable for other purposes. Statistics of water use 
published by the U.S. Geological Survey (USGS) serve as the primary data source for the 
analysis. Specifically, data from the 1985, 1990, and 1995 campaigns provide the most 
comprehensive picture of water use in the United States and hence form the calibration 
and initialization basis of this analysis (USGS 2009).  

We model municipal water use and consumption at the county level and 
subsequently aggregate these data to the state level. The values for water use in 1995 
serve as the initial conditions for the model. The analysis for this study begins in 2000. 
Future rates for water use and consumption are calculated as the product of the per capita 
water use and consumption and the population. Projections of population change for 
individual states are based on output from our macroeconomic referent (the REMI 
model), whereas the per capita rates for water use and consumption are extrapolated 
according to regression equations that are fitted to the published USGS rates for water 
use and consumption. The maximum change in the per capita water use and consumption 
is capped at ±20% simply to reflect the fact that changes beyond this level generally 
require the physical structure of the water supply and demand system to change beyond 
what the existing system can accommodate.  

We derive water demand in the industrial, mining, and livestock sectors in a fashion 
similar to how water demand is handled in the municipal sector; however, we calculate 
use and consumption rates as the product of the gross state product (GSP) and the 
associated water intensity (e.g., gallon of water per dollar of the GSP). Projections for the 
GSP are based on output from the REMI model. Projections of water intensity are based 
on historical trends and forecasts (USGS 2009). 

We model increases in thermoelectric water demand as the product of new power-
plant capacity and the water-use rate per kilowatt-hour (kWh). For consistency, we take 
projections of new growth in power-plant capacity directly from the REMI model. We 
assume that thermoelectric water-use rates are equal to the 2004 average of the amount of 
water need to cool a thermoelectric power plant per kWh. For cooling, the model 
distinguishes the use of ocean water from fresh water. 

Water demand in the agricultural sector considers losses from direct use at farms and 
from conveying water to farms or fields, as well as from the direct consumptive use of 
the crop itself. Estimated losses are taken directly from published USGS data. We 
calculate the consumptive losses from crops as the product of historical average irrigation 
rates for specific crop types and the associated irrigated acreage (USDA 2008). Thus, for 
each crop considered, we multiply the amount of acre-feet of water used for irrigation of 
the crop times the average number of acres farmed of the crop.  

Key to this analysis is determining at what point a region will begin experiencing 
water stress. That is, at what point will the available water supply be insufficient to meet 
all projected water demands? This determination requires some measure of the available 
water supply. However, detailed current water-supply values for each region of the 
United States are unavailable, and calculating these values is well beyond the scope of 
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this study. As such, we use a proxy to water supply that is based on the long-term mean 
(average) gauged flow data, which are available at the USGS four-digit hydrologic unit 
classification level (Stewart et al. 2006). The long-term averages for the regions are 
further modified by sequentially subtracting increases in consumptive water use from 
upstream basins (to account for the effect of growing water use on the availability of 
water). The model includes projections on the use of ground water and implicitly 
considers jurisdiction rights on downstream water usage. For this analysis, the ratio of 
runoff to precipitation is assumed to be adequately constant for determining water 
availability. Although studies indicate that there will be a change in this ratio, the 
statistics remain inconclusive about the amount of change (Sheffield and Wood 2008; 
Seager et al. 2008). Further, any such change in the ratio of runoff to precipitation is 
inconsequential relative to the impacts considered in this study, as previously noted in 
Section 2.6 of the main text. 

To project potential water stress at the state level, the model calculates the ratio of 
water supply to projected demand. Three thresholds are used to determine the potential 
water stress of the individual states based upon the categorization scheme presented in 
Table A-1. If the ratio of water supply to projected demand is less than 2 (i.e., the water 
available is less than twice the amount of water needed), the state is assumed to be using 
essentially as much water as is available in a normal year. Thus, any new water use or 
drought would immediately result in a water shortage for the states (Taylor 2009) in the 
“Current < Normal” category, i.e., Arizona, California, Nevada, and New Mexico. If the 
ratio of water supply to projected demand is between 2 and 10, the state is assumed to 
experience a water shortage whenever the supply drops below 60% of the long-term 
average. States subject to this threshold are listed in the category named “Current < 60% 
of Normal.” Finally, all other states are assumed to experience shortages only when the 
water supply drops below 40% of average and are listed in the category named “Current 
< 40% of Normal.”  

Table A-1. Water-Shortage Thresholds by State 

Current < Normal  Current < 60% of Normal  Current < 40% of Normal 

AZ  CO  AL 

CA  CT  AK 

NV  DE  AR 

NM  FL  DC 

  GA  HI 

  KS  ID 

  MA  IN 

  NE  IA 

  NJ  KY 

  NC  LA 

  OK  ME 

  RI  MD 

  SC  MI 

  TX  MN 
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Current < Normal  Current < 60% of Normal  Current < 40% of Normal 

  UT  MS 

  VA  MO 

  WY  MT 

    NH 

    NY 

    ND 

    OH 

    OR 

    PA 

    SD 

    TN 

    VT 

    WA 

    WV 

    WI 

  

The three categories in Table A-1 relate to the states’ current capabilities for storing 
water. The states in the “Current < Normal” category generally have considerable water-
storage capacity, typically in the form of dam systems that can accommodate significant 
fluctuations in precipitation. States in the “Current < 60% of Normal” category typically 
have less storage capacity in place. Those states in the “Current < 40% of Normal” 
category seldom have storage capacity capable of accommodating drought conditions. 
For each year, climate data are passed to the hydrological model for it to determine where 
water stress will occur. Where precipitation ratios (current/normal) fall below the above 
thresholds, apparent water shortages are indicated. Shortages are not evenly distributed 
across the sectors, but rather are weighted more heavily toward agriculture, mining, and 
livestock. Specifically, two-thirds of the proportional water-shortage burden lies in 
agriculture, mining, and livestock, where each is administered according to its relative 
share of the demand. These shortages are calculated as a ratio of desired water use 
compared to available supply for the sector. This availability is passed to the REMI 
model for evaluation of the economic impacts. 

The impacts of water availability on crop yield are calculated within the hydrological 
model. These yield calculations are based on a model developed by McCarl et al. (2008). 
The hydrological model is empirically based on the historical impact of climate changes 
of the crop yield distribution, considering temperature, precipitation, variance of intra-
annual temperature, a constructed index of rainfall intensity, and the Palmer Drought 
Severity Index (PDSI). For our analyses, these data are available or derivable from the 
climate-model results within the PCMDI data set discussed in the main text. We assume 
that rainfed crops depend solely on precipitation, while irrigated crops depend on both 
irrigation and rainfall. Specified precipitation and temperature conditions come directly 
from the climate model, while the percentage of irrigation is based on the severity of 
water shortage in the individual states. 
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Visit https://waterportal.sandia.gov/modelingteam/energywater/Models for further 
information on the Energy Water Model.   
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Appendix B.  Economic Impact Methodology 

The material in this appendix is derived from Warren et al. (2009). The economic 
impact methodology was designed to answer two economic questions:  

1. What does a physical climate change mean economically?  

2. How can this change be incorporated in a macroeconomic model?  

To answer the first question, we use the forecasts of hydrological changes reported by the 
Sandia hydrological model noted previously. Table B-1 lists the types of hydrological 
changes forecast by this model; each of these annual variables is forecast by U.S. state 
over the 2010 to 2050 period. 

Table B-1. Variables Used to Report Hydrological Impact Forecasts 

Variable Description 

i
tx,  Relative production (compared with a base year) for crop x (both 

irrigated and nonirrigated crop production, combined) 

i
tH   Fraction of normal water availability for municipal consumption 

i
tE   Fraction of normal water availability for thermoelectric generation 

consumption 

i
tHP

 
Fraction of normal hydroelectric power production 

i
tI   Fraction of normal water availability for industrial consumption 

i
tM  Fraction of normal water availability for mining consumption 

 

As described in the sections below, we translate these hydrological impacts to direct 
economic impacts by developing a set of assumptions about the direct economic impacts 
of each, model these impacts, and then use publicly available data to quantify the actual 
direct economic effects. We then enter these direct effects into the REMI model to 
estimate the total (direct plus indirect) economic impacts over the 2010 to 2050 period. 

B.1 Climate-to-Economy Modeling Assumptions to Address 
Uncertainties 

This study does not exogenously adjust the technological assumptions inherent in the 
base-case forecast of the REMI model. Additionally, the study maintains the REMI price-
elasticity relationships that simulate consumer responses to rising prices. In general, this 
response implies substitution of less-efficient production technologies for the use of 
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more-efficient production technologies within the economy. For example, the elasticity 
relationships do implicitly capture the substitution of incandescent lighting for 
fluorescent lighting and the purchase of high-efficiency appliances, but these consumer 
behaviors are economically motivated. We do not adjust the elasticity relationships to 
include any additional altruistic behaviors to avoid climate change. 

To translate each hydrological change into a direct economic impact, we make a set 
of economic assumptions, models, and calculations based on the type of change and the 
sectors in which these hydrological changes occur. Each sector is described below, in 
turn, beginning with two assumptions that apply across all the nonfarming sectors. These 
assumptions simplify the economic methodology and reduce the uncertainties. 

1. For inland facilities, we assume that investments can be made quickly as 
conditions warrant, such as imposing close-cycle cooling systems or even dry 
cooling. We further assume that these modifications could happen without the 
significant shutdown of capacity. States that are adjacent to oceans will have 
access to desalinated water.  

2. Retrofits to conserve water are made instantly. In reality, there may be some 
delays in producing machinery for the retrofits, which could lead to short-term 
shutdowns of facilities in the various sectors. We assume that these shutdowns 
will likely be relatively minor and that postretrofit production can largely 
compensate for production reduction during the shutdown. Thus, we ignore the 
cost impacts form the shutdown itself. 

B.2 Modeling Agricultural Impacts 

To model the effects of changes in agricultural productivity on the U.S. economy, we 
develop separate strategies to estimate the impacts to (1) farm industries and their 
suppliers and (2) nonfarm industries that use farm outputs as inputs to their own 
production. 

B.2.1 Impacts to Farming Industry 

As with all of the climate-to-economy modeling, the estimates of direct economic 
impact need to be quantified information (i.e., variables) that can be input directly into 
the REMI model. The REMI model does not endogenously (i.e., internally) simulate 
farming activity,13 but it does include a translator module that allows users to model 
impacts to sectors that are not explicitly captured in the model, such as the farming 
sector. For each state and year in the simulation period, the translator module takes as an 
input the change in the total value of production for that industry and “translates” it into 
impacts to a broader set of industries. For farm industries, the translator module 

                                                 
13 This assumption is inherent in the REMI model. It may be justified economically because a principal 
factor in agricultural production is land, which—unlike capital or labor—is immobile. Furthermore, 
agricultural markets are international in scope. Thus much of the supply and demand and agricultural 
markets is largely exogenous (i.e., external) to the United States. 
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calculates estimates of the changes in government spending, farm employment, farm 
compensation, and intermediate demand to 65 other industries within the particular state. 
These translated variables are then used as the inputs to the REMI model. The reduction 
in output is based on the change in agricultural productivity coming from the 
hydrological model discussed in the previous appendix. 

B.2.1.1 Modeling Assumptions 

Given that the farming industry is complex and that behaviors of individual farmers 
depend on a wide range of factors that are hard to capture with the REMI translator 
module, we make a number of simplifying assumptions:  

 The climate-based changes in hydrology only impact agricultural production in 
the REMI model for the combined irrigated and nonirrigated crops as forecast 
separately by the Sandia hydrological model. We do not, for example, incorporate 
price-based decisions made by farmers to produce or not produce crops. The 
hydrological model implicitly contains the many physical factors and human 
factors (e.g., differences in fertilizer applications due to fertilizer prices, different 
water availability for irrigated versus nonirrigated land), and these models 
incorporate some factors like soil productivity and, to some extent, farmers’ 
decisions about when to apply fertilizer and how much fertilizer to apply based 
upon changes in rainfall. 

 The changes in corn and soybean production are considered representative of 
cereal corps. Corn and soybean farming have the greatest shares of production. 
According to the National Agricultural Statistics Service, in 2008 the production 
of corn for grain was $47.4 billion, and the production of soybeans was $27.4 
billion. By comparison, the production of all “field and miscellaneous crops” was 
$134 billion, the production of “34 major vegetables” was $10.4 billion, and fruit 
production was $16.5 billion (USDA 2009a). The third largest crop is hay ($18.8 
billion), whose productivity is not modeled within the Sandia hydrological model. 
Changes to crops other than cereal crops are neglected, but the combined change 
in the corn and soybean productivity is used as a proxy for productivity in all 
farming inputs. 

 Absolute and relative crop prices are held at constant world prices over the time 
frame of the analysis. Agricultural commodity prices actually fluctuate on a day-
to-day basis based on events in world commodity markets. By affecting 
agricultural productivity, global climate change will affect global commodity 
prices. It is uncertain how the international markets for agricultural commodities 
will respond to global climate change.14 Because our analysis is strictly U.S. 
centric, we assume that relative global prices do not change. Local U.S. 
agricultural prices can change as costs change. 

                                                 
14 A global model of how agriculture changes its productivity in response to climate change may provide a 
better idea of whether agricultural commodities will become more or less expensive. Even with such a 
model, many factors remain that will lead to substantial uncertainty about the overall effect of climate 
change on commodity prices. 
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 The only agricultural and water-use substitutions applied in the economic analysis 
are those substitutions predicted within the hydrological model. No additional 
substitutions are made on the economics portion of the modeling. In reality, there 
is a wide range of substitutions that are made by individual farmers, for example: 
farmers often rotate crops, farmers may change the mix of crops in response to 
price changes or expectations in productivity, farmers may install irrigation 
systems or choose not to use existing irrigation systems, and farmers may alter the 
timing of plantings and fertilizer applications. These considerations are implicitly 
recognized within the Sandia hydrological model based on historical responses. 
For this analysis, however, the land in cultivation does not change with climatic 
conditions. The estimates of the production loss in agriculture due to climate 
change come from within the Sandia hydrological model. The REMI analysis 
considers the reduction in production to be the dominant impact. Any additional 
changes that are outside the scope of this effort are assumed to be secondary.  

 We use the exogenous growth pattern for advances in agricultural production 
technologies that is used in the base case of the REMI model (our macroeconomic 
referent). In addition to improvements in general framing practices, these changes 
consider improvements in how intermediate goods and services are used in the 
production of crops. These improvements over time are applied by the translator 
module when it converts the agricultural results of the hydrological simulations 
into input changes to the REMI model. The ratio of the corn and soybean 
contribution to the GDP to the production of these crops is therefore assumed in 
the climate-change simulations to grow at the same rate as the REMI model’s 
base-case forecast. For example, if a farmer in the base case produces a bushel of 
corn in 2050 with half the amount of labor used in 2010 (based on REMI’s base-
case forecasted improvements), a farmer in the simulations will produce a bushel 
of corn in 2050 with half the amount of labor used in 2010 even if fewer bushels 
are produced in the simulations than in the base case. Effectively, our assumption 
implicitly considers the ratio of the farm GDP to farm production to remain 
unchanged from what it is in the REMI base case for all our simulations. 

 We assume that climate change does not directly affect livestock farming. In 
reality, livestock farming may be impacted by changes in the price of feed, 
changes in the productivity of forage eaten by grazing livestock, and water used in 
livestock farming and manufacturing.15 Industrial livestock production may be 
affected indirectly through impacts to the food manufacturing industry. The 
hydrological model does capture these phenomena, but we consider the impacts 
secondary to this analysis. 

 We do not make adjustments for the effect of climate change on forestry. While it 
is likely that climate change will affect forest productivity, given the long time 
constants in silvaculture and the 2050 time horizon of this study, the important 
impacts on the forestry industry (other than increases in fire destruction, also 
neglected) occur in time frames beyond this analysis.  

                                                 
15 Water use is less than 1% of all U.S. water use (Hutson et al. 2004). 
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B.2.1.2 Modeling Procedures 

Because the output of the translator module is proportional to the magnitude of the 
inputs, we used the translator to develop a standard set of impacts for a $1 million change 
in the corn or soybean crop production. We can then determine the impact from any 
change in farm production by simply multiplying the farm loss in millions of dollars by 
the “standard set.” This linear approximation, which essentially employs a set of 
multipliers, allows automated calculation of inputs to REMI agricultural-sector based on 
the output of the hydrological analysis.  

We use estimates of corn productivity from the Sandia hydrological model to 
estimate changes in the REMI model’s grain-farming industry and changes in soybean 
productivity in the REMI model’s oilseed-farming industry. Changes in production 
values (measured in dollars aggregated across each state) for each crop, x, (that we have 
entered into the REMI model via the translator module) are calculated as  

farm
b

farm
ti

bx
i

tx
i

bx
i

tx
i

tx GDP

GDP
YYYY ,,,,, )1(   , 

where   

i
txY ,    = the change in production for crop x in state i (an average of 2006 to 

2008 data [USDA 2009a],16  

i
txY ,     =  the value of production in year t,  

i
bxY ,   = the average production in the baseline period (an average of 2006 to  

   2008 data [USDA 2009a]),  

i
tx,    =  the relative production of crop x in year t in state i to the baseline   

   production (an output of the hydrological model), 

farm
tGDP  = the REMI model’s (exogenous) forecast of national farm GDP in 

year t, and 

farm
bGDP  = the REMI model’s (exogenous) forecast of national farm GDP in the 

baseline period (an average of 2006 to 2008). 

To quantify the input variables that can be used to simulate the impacts, we convert Yx,t
i  

to millions of dollars and multiply that value by the variables produced by the REMI 
translator module for each state, economic sector, and year in the forecast period.  

                                                 
16 Taken as the average of 2006 through 2008 data (USDA 2009a) . 
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B.2.2 Impacts to Industries That Use Farm Output 

In addition to directly impacting agriculture, changes in agricultural productivity will 
impact the downstream users of agricultural farm output. These users are modeled 
directly within the REMI model except for the intermediate inputs they purchase from the 
exogenous farm industry.  

B.2.2.1 Modeling Assumptions 

Modeling the effects on the downstream users of farm products in this study requires 
a number of assumptions in addition to those listed above:  

 The actual amount that the users of a commodity pay to obtain the commodity 
includes the cost of transportation. Although this “economic geography” process 
is modeled in most industries within the REMI model, once again it does not 
apply to the exogenous farm industry. In this case, the net price of these food 
commodities is assumed to include transportation costs. If production in a state 
decreases, net prices are assumed to increase due to the higher costs necessary to 
transport the commodities. 

 We assume that the degree to which an industry is affected by net price changes 
of farm production is proportional to the total requirements of the particular 
industry that originates from the farm industry. Table B-2 lists the Bureau of 
Economic Analysis (BEA) industries that have total requirements of $0.05 or 
more for each dollar of production, an amount that was chosen as the cutoff for 
industries modeled in this study. Changes in the net price will change the 
production costs for the industries shown in the right column of the table. The 
data in the table were extracted from U.S. Department of Commerce (2008b).  

Table B-2. Industries with Total Requirements from Farms of at Least 
$0.05 per $1 of Output 

 
IO Code 

BEA Industry 
Name 

Requirement for 

$1 Output ( xR ) 

REMI 
Industry/Industries 

111CA Farms $1.18 N/A 
311FT Food and beverage 

and tobacco 
products 

$0.31 #19: Food 
manufacturing, 
#20: Beverage and 
tobacco product mfg. 

113FF Forestry, fishing, 
and related 
activities 

$0.10 #2: Agriculture and 
forestry support 
activities; Other 

722 Food services and 
drinking places 

$0.07 #62: Food services and 
drinking places 
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 We assume that changes in corn and soy production, when averaged together 
using a weighted average based upon baseline production of the two crops by 
state, serve as proxies for changes in productivity for all farm inputs within a 
state. 

 To estimate the direct GDP contribution of crop production, we estimate the ratio 
of the GDP directly due to crop production to production of corn and soybeans. 
Between 2006 and 2008, national corn and soybean production averaged $58.1 
billion (2000$) and crop production averaged $126 billion (USDA 2009a). During 
the same time, the average estimated (exogenous) farm GDP in the REMI model 
was $87.9 billion. In 2006, the measured output in livestock was $112.1 billion) 
(Figueroa and Woods 2008). Therefore, the estimated ratio is [$126.0 
billion/($112.1 billion + $126.0 billion) * $87.9 billion]/$58.1 billion = 0.801. 

 The REMI model’s projected changes in technology in industries that use farm 
products as inputs account for the REMI model’s forecast changes in food-
production technologies. Therefore, only the changes in productivity measured by 
the hydrological model (i.e., not the REMI model’s forecast increases in farm 
productivity) are used to calculate changes in production costs. 

 Final demand from consumers for farm output is small (personal consumption 
expenditures are $52.9 billion compared with industry output of $294.8 billion). 
Most consumer demand for farm production comes by way of demand for the 
production of the industries listed in Table B-2 (e.g., personal consumption 
expenditures for food and for beverage and tobacco products are $482.5 billion 
compared with industry output of $722.2 billion and personal consumption from 
food services and drinking places is $497.8 billion compared with industry output 
of $614.1 billion (U.S. Department of Commerce 2008b). Therefore, we do not 
model changes in the net prices of farm production that directly affect consumers 
although we recognize that the REMI model endogenously (i.e., internally) 
calculates rising prices to consumers from cost increases in these other industries. 

B.2.2.2 Modeling Procedures 

Because farm production is a basic input for most of the production in the industries 
listed in Table B-2, it is difficult to substitute other inputs. An increase in the net costs of 
farm production will appear to be an exogenous increase in production costs in these 
industries (because the farm industry is not modeled endogenously in the REMI model). 
Therefore, we model the increased net costs to these industries by exogenously increasing 
the production costs in the REMI model. This approach is “used when a specific policy 
will affect the cost of doing business in a region without directly changing the relative 
costs of factor inputs” (REMI 2009). Farm input is not included as a factor input in the 
REMI model. 

We assume that if farm production within a state changes, the changes are 
compensated by imports or exports via rail transportation. Table B-3 gives some average 
costs of shipping grains by rail, as well as the price of each crop. The “% Rail” column 
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indicates the cost of the rail transportation relative to the price and can be thought of as 
the increase in net price if a firm had to obtain these grains via rail instead of locally. 
With these data as a guide, we assume that production costs will increase or decrease by a 
factor of 20% of the decrease or increase of agricultural production in the state.  

Table B-3. Average Cost to Ship Grain by Rail17 

Grain 
Avg. Rail Cost 

Per Bushel 
July 2010 Price 

Per Bushel % Rail 

Corn $0.99 $4.75 21% 
Soybeans $1.04 $9.87 11% 

 

We use the following equation to estimate the change in production costs caused by 
changes in agricultural production in state i:18, 19   
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where  

i
txPC ,%   = the percentage change in production costs for industry x,  

Rx  = the total requirements of industry x for farm products to produce a 
dollar of outputs, 

i
tx,  = the relative production of crop x in year t in state i to the baseline 

production (an output of the hydrological model), and 

i
bxY ,  =  the average production in the baseline period (an average of 2006 

to 2008 data [USDA 2009a]). 

The term i
txPC ,%   goes into the REMI model as the change in the shares of production 

costs for the appropriate industry. 

                                                 
17 The data in the table were compiled from USDA (2009b), the July 2010 futures price (closing price on 
5/19/2009 on the Chicago Mercantile Exchange, http://www.cmegroup.com, and calculation of the rail 
costs as a percentage of the futures price. 
18 In states without either corn or soybean production, this term is assumed to be zero. 
19 Throughout the report, the “*” symbol denotes element-by-element multiplication. 
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B.3 Modeling Impacts to Municipal Water Use 

Municipal water use is one output from the Sandia hydrological model that we do 
not model directly in the economics model (i.e., REMI) because our internal evaluation 
indicates that there are many opportunities for substantial municipal water conservation 
that will be inexpensive and have little effect on the livability of a region. While there is a 
utilities sector within the REMI model that subsumes the municipal water utilities, 
municipal water utilities are not modeled explicitly in the 70-sector version used in this 
analysis. As such, directly calculating the impact of a separate municipal water sector is 
not possible. Therefore, a number of assumptions need to be made to model the effects of 
water shortages to municipal water utilities. These assumptions follow. 

B.3.1 Modeling Assumptions 

 Our review indicates that drought-induced water conservation is relatively easy to 
conduct. For example, the EPA estimates that 30% of household water is used for 
outdoor watering (and this is higher in arid regions) (EPA 2008), suggesting that a 
significant fraction of water consumption would be eliminated in time of drought. 
Also, the American Water Works Association (2009) estimates that 30% of 
household water could be saved if all homes installed common water-saving 
features. Finally, 60% (or more) of household water use could be readily reduced 
with current, affordable technology.  

 Our review indicates that municipal water losses of greater than 60% would have 
to be made up with more-extreme conservation measures, such as developing new 
no- or low-water technologies, or increased conservation measures, such as taking 
shorter showers, washing clothes less frequently, using disposable dishware, 
eliminating car washes, closing golf courses, or having the population migrate to 
states with greater water availability.20 

 Our review indicates that many technologies exist that may help provide long-
term sources of municipal water. For example, rain-harvesting technology, water 
treatment, desalination, and water pipelines could be used to increase supply. We 
assume that the use of future technology remains the same as today except that 
desalination may be increased near the coasts. The assumed use of conventional 
water-conserving technologies is a pragmatic approach to estimating the impacts 
of reduced water availability.   

                                                 
20 As for minimum water requirements, the United States Agency for International Development (USAID) 
recommends 20 to 40 liters per person per day, while a separate study recommends a Basic Water 
Requirement right of 50 l/p/d (17% of average U.S. household use and 9% of average California household 
use) (Gleick 1996). The daily per-person minimum requirement of water usage could probably be reduced 
by more-efficient technologies like composting toilets.  
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B.4 Modeling Impacts to Power Production 

Although agricultural irrigation has the largest consumption of water, thermoelectric 
power production is the sector with the largest U.S. water usage (Hutson et al. 2004),21 
albeit with only 3% of the national consumption (Feeley et al. 2005). As a result, water 
shortages could be expected to have significant impacts on electricity supplies. In the 
total absence of water, facilities could maintain production by dry cooling, thereby 
eliminating water consumption in thermoelectric generation. New renewable-generation 
technologies such as wind and photovoltaic facilities would also not need water. In states 
adjacent to oceans, desalinated water used in evaporative cooling systems and ocean 
water used in once-through cooling systems provide an even cheaper alternative. To 
reflect the increased costs of the backstop technology, we model the effect of water 
shortages on electricity production by increasing the costs of generating electricity in the 
REMI model. 

Additional impacts to power production result from changes in water volumes in 
rivers and streams that change the available production of hydroelectric power. We 
model these changes by changing the demand for alternate sources of electricity 
production in the REMI model. 

B.4.1 Thermoelectric Power in States not Adjacent to an Ocean 

Because of prohibitive costs, in-land power plants do not attempt to use ocean water 
and therefore need to reduce their dependence on water availability (e.g., river flow) 
conditions. 

B.4.1.1 Modeling Assumptions 

 Thermoelectric power was responsible for 48% of water withdrawals in 2000 
(Feeley et al. 2005). However, much of that water (91%) is used in once-through 
cooling, where most water is returned to the source where it originated, at a higher 
temperature, and thus is not consumed. The remainder of the water is used in 
closed-loop cooling systems where most of the water is evaporated, hence 
consumed. We use this basis to distinguish water consumption from usage, as we 
incorporate investments to reduce the water needs of the power sector. 

 Due to climate change, it is possible that some freshwater sources for once-
through cooling will no longer have a sufficient flow of water. Hydroelectric 
power may be similarly affected by reductions in water flow. We assume the 
reduced hydroelectric production may necessitate additional supplies of power 
from alternate sources such as thermoelectric power. We include the impact of 
developing the alternative production facilities.  

 Climate change may also increase the temperature of water and air, which may 
decrease the cooling efficiency of thermoelectric power plants. Additionally, 

                                                 
21 Consumption is higher in agriculture because 91% of thermoelectric withdrawals are used in once-
through cooling, which consumes very little water. 
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“warmer water discharged from power plants can alter the species composition in 
aquatic ecosystems” (Karl et al. 2009). Because the temperature changes in river 
water are not explicitly considered by the Sandia hydrological model, we do not 
explicitly consider the economic effects of these changes for the power plants. As 
noted in Section 2.6, the impact of the changes in efficiency of the power plants is 
small compared with the cost increases already assumed by retrofitting the 
cooling system.  

 In addition to once-through cooling and closed-loop cooling, there is a third type 
of cooling referred to as air-cooled (dry) cooling. This expensive but universally 
applicable technology to combat water shortage is called the backstop technology. 
This technology consumes little water, and instead works similarly to air cooling 
by removing heat from steam and transferring it to the ambient air with fans. We 
assume that electricity producers will retrofit to dry cooling only when that are 
faced with water shortages, A large portion of thermoelectric power generation 
involves converting to combined-cycle generation technologies (Powers 
Engineering 2006), much of which can more easily use dry cooling (and in the 
event of water shortages, an even greater share will be dry cooling) due to the 
reduced cooling needs of these plants.  

 We use an estimate of the additional cost of dry cooling from calculations made 
by Powers Engineering (2006) for retrofitting generation in California. The 
company performed calculations for a hypothetical plant that find the increased 
cost of generation of converting from once-through cooling to a wet tower will be 
between $0.0013/kilowatt hour (kWh) and $0.0039/ kWh (against a wholesale 
price of $0.07/kWh) depending on the capacity utilization of the plant. Powers 
Engineering also cites projections that dry-cooling retrofits would cost 25% more 
than wet-tower retrofits, which means that the range would be $0.0016 to 
$0.0049/kWh. These calculations assume a 7% interest rate and 100% debt 
financing. A more realistic mix with 55% debt financing, 45% equity financing 
(taxed at 50%), and property taxes triples the cost in the range of $0.0048 to 
$0.0147/kWh. 

 Retrofits have the additional effect of making power production less efficient. 
Powers Engineering estimates that cooling will reduce the efficiency of the 
hypothetical plant and cost an additional 1–2% for retrofitting to wet closed-loop 
cooling. However, the company does not recommend a value for dry cooling, 
which is more energy intensive. A power consultant identifies increases of 1.9 % 
for production costs when retrofitting wet, closed-loop cooling and 4.9% for dry 
cooling (Maulbetsch 2006). Assuming that wholesale prices of $0.07/kWh can be 
used as costs, multiplying those prices by 4.9% increases the cost by 
$0.00343/kWh. 

 The increased investments in equipment increases the total cost of retrofits in a 
range of $0.00823 to $0.01813/kWh. We assume that the high end of the range is 
correct and that retrofits to dry cooling will increase generation costs by an 
additional $18.13/megawatt hour (MWh).We assume that the high end of the 
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range is correct and that retrofits to dry cooling will increase generation costs by 
an additional $18.13/megawatt hour (MWh). 

 An alternative backstop technology is gas turbines. The turbines tend to be 
relatively expensive to use because the price of natural gas is high, and the 
turbines have low utilization rates because they mainly are used to serve peak 
demand. For these reasons, we assume that power producers will not switch to gas 
turbines to mitigate water shortages. 

 We assume that once retrofits have been implemented, the electric power in a 
state will be able to operate fully with the reduced level of water consumption at 
the increased costs in future years.  

As different states have different mixes of once-through cooling, the states are 
affected differently by water shortages. For example, all cooling in many arid states is 
done by the wet, closed-loop type because such states lack the water volume required for 
once-through cooling.22 However, we assume that water shortages will affect the power 
production of generation technologies that commonly consume water (i.e., fueled by coal, 
natural gas, nuclear, other, other biomass, other gases, petroleum, and wood and derived 
fuels) in proportion to the state’s water shortage. This is a conservative estimate for four 
reasons. First, wet, closed-loop cooling consumes a much greater amount of water than 
does once-through cooling for the same power production. It is likely that wet, closed-
loop cooling would be converted first to dry cooling. This conversion would reduce a 
large fraction of water consumption but affect relatively little power production. For 
example, we estimate that in Texas wet, closed-loop cooling consumes 97% of all water 
consumed for cooling but produces only 62% of power.23 Our conservative assumption is 
that a 97% reduction in available water would require that 97% of the power-plant 
capacity be retrofitted to deal with that water shortage—likely an overestimate. Second, 
some portion of the power produced in each state, especially the power produced with 
natural gas, already uses dry cooling. Consequently, fewer power plants within each state 
would need to retrofit their cooling mechanisms. Third, retrofits would first occur for 
power plants that operate at a high-capacity utilization rate; thus the costs of a retrofit in 
reality should be lower for mild water shortages. Fourth, power plants that use ocean 
water as their source are unlikely to require retrofitting because they consume salt water 
from a source that is expected to increase in volume. 

B.4.1.2 Modeling Procedures 

The additional production cost of electric power in each state, i, and each year, t, is 
calculated from EIA (2009) as 

Yt
i $18.13(1Et

i)Xi , 

where  

                                                 
22 Calculated from EIA (no associated date) titled “Annual Steam-Electric Plant Operation and Design 
Data” using data from 2005.  
23 Ibid. 
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Et
i = the fraction of normal demand for water by electric power producers that 

is satisfied and  

X i  = the total power production, in MWh, of production in the state in 2007 for 

power fueled by coal, natural gas, nuclear, other, other biomass, other 
gases, petroleum, and wood and derived fuels.   

Because producers can permanently operate with a reduced supply of water 

following retrofits, Et1
i  Et

i . In years where the electric power available for electricity 

production decreases (i.e., Et
i  Et1

i ), investment in cooling retrofits is measured by24  

INt
i  $71.35(Et1

i  Et
i)Xi , 

which assumes that all investments are made immediately. 

The REMI model contains a “Cap and Trade Scenario” testing capability that 
provides guidance in modeling the economic impacts of cap-and-trade policies. Because 
cap and trade is likely to impact the electric power generation sector, the REMI Cap and 
Trade analysis suggests manipulating utility costs. An increase in production costs due to 
retrofitting equipment to reduce water use, as used in our analysis, is a similar cost 
increase. 

Utility costs are changed by increasing the production costs for the utilities sector. 
Specifically, we exogenously increase the value of the production costs in the utilities 

sector by the amount (Yt
i) determined by the above equation. During years where 

producers must invest in retrofitting technologies, this additional demand (INt
i from the 

above equation) is invested. We then exogenously modify the REMI model’s investment 
spending for what REMI calls “Producer’s Durable Equipment.” This approach, 
however, allocates demand generically in a way that overly favors production in 
industries like computer and electronic product manufacturing. Thus, we use REMI’s 
translator module to adjust these numbers for different types of equipment, such as 
industrial equipment. Like the translator for agriculture, the equipment translator 
produces many variables (up to 65) that are slightly different for each region. We 
estimate that around 60% of additional net demand goes to the machinery manufacturing 
sector and 33% goes to the electrical equipment and appliance manufacturing sector. To 

simplify the calculations, we assume that two-thirds of INt
i goes to the machinery 

manufacturing sector and one-third goes to the electrical equipment and appliance 
manufacturing sector by modifying the REMI policy option for exogenous final demand. 

                                                 
24 Calculations from Powers Engineering (2006) for a retrofit from once-through to wet-tower cooling are 
$100,000/MW of capacity. Using their estimate that dry cooling costs 25% more, this value becomes 
$125,000/MW. Using the low-end capacity of 20% (8,760 hours  0.20 = 1,752 kWh per year), this 
averages to $71.35/MWh. 
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B.4.2 Thermoelectric Power in States Adjacent to an Ocean 

If there is a shortage of fresh water, power plants near the ocean can directly use 
saline water, can have the water shipped inland via a pipeline to the facility, or can 
convert (municipal) desalinated water for their own use.  

B.4.2.1 Modeling Assumptions 

In states that are adjacent to oceans, we assume that water shortages experienced by 
the electric power industry are mitigated by using once-through cooling with saline ocean 
water or by desalinating water and using it in wet-tower cooling. We assume that 
thermoelectric generation plants in a state will conserve water by switching wet-tower 
cooling systems to desalinated water during water shortages.  

Because desalination is a proven technology, we assume that any state on a coast has 
access to desalinated water as a backstop before water shortages become too severe. (In 
addition, states not on the coast may have access to desalinated brackish water, but we 
ignore this possibility because it would affect a relatively small population.) In these 
states, the main consideration for modeling is the increased cost of the desalination 
process. 

Desalinated saline water is more expensive than surface or ground water. A recent 
study cited the current price of water in San Diego as $0.24/m3 but the cost of 
desalination as between $0.64 and $1.04/m3 (NRC 2008). A review of cost estimates for 
various technologies conducted by Miller (2003) at Sandia found estimates from 23 
studies. For sea water, these estimates ranged from $0.27 to $6.56/m3; however, the high 
range is an outlier. Removing one study puts the upper estimate at $1.86/m3. We assume 
that the upper estimate is correct and that using desalinated water will increase the cost 
by $1.62/m3. 

A study of water use by thermoelectric plants found that the mean withdrawals per 
kWh of electricity for evaporative cooling was between 4.54 and 4.95 cubic decimeters 
(dm3) for one kWh, depending on the technology used (Yang and Dziegielewski 2007). 
Taking the larger value, we assume a value of 4.95m3/MWh. Thus the additional cost of 
using desalinated water in wet-tower cooling is $9.21/MWh. Because the cost of using 
desalinated water is about half the cost of converting to dry cooling ($9.21/MWh versus 
$18.13/MWh), conservation of water will likely occur by substituting desalinated water. 

B.4.2.2 Modeling Procedures 

The additional production cost of electric power in each state, i, and each year, t, is 
calculated by 

Yt
i $9.21(1Et

i)Xi ,  

where 

Et
i = the fraction of normal demand for water by electric power producers that 

is satisfied, and  
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X i  = the total power production, in MWh, of production in the state in 2007 for 

power fueled by coal, natural gas, nuclear, other, other biomass, other 
gases, petroleum, and wood and derived fuels (EIA 2009).  

In states where cooling retrofits are necessary to conserve water, electricity 
production could permanently operate with less water. However, in the case of states 
adjacent to oceans, electricity producers may use desalinated water in one year and return 
to fresh water in the following years if the shortages are less severe. 

As discussed previously, we exogenously increase the value of the REMI 

“Production Cost" (amount)” variable for the utilities sector by the amount Yt
i 

determined by the above equation. In addition, we exogenously increase the value of the 

“Industry Sales/Production” variable for the utilities industry by an amount equal to Yt
i 

to account for the increased water production that the power generators require from 
water utilities that provide desalinated water. Increases in production in the REMI model 
automatically trigger investment in the industry; thus the REMI model automatically 
accounts for investments that are made to build desalination capacity.   

B.4.3 Hydroelectric Power 

Hydroelectric plants are fully dependent on water flow. The enduring loss of water 
requires the construction of new renewable-energy, fossil, or nuclear-powered facilities. 

B.4.3.1 Modeling Assumptions 

Drought conditions will change rainfall and thus change the volumes of water 
flowing through rivers and streams. Hydroelectric power creates electricity from the 
potential energy in water, so lesser or greater flows of water correspondingly reduce or 
increase the amount of power that can be generated by a hydroelectric plant. 

We approximate the marginal cost of producing hydroelectric power as zero because 
the major costs of producing hydroelectric power are about the same regardless of how 
much power the plant actually produces. Capital costs to build hydroelectric power 
generation are sunk costs. Thus the cost of producing electricity is the same no matter 
how much power is produced. Labor costs are relatively small; the same amount of labor 
is required from workers, such as guards and operators, irrespective of the level of power 
production. Hydroelectric power does not use a costly fuel source as does thermoelectric 
power. Thus changes to hydroelectric power, alone, are not assumed to have any 
aggregate macroeconomic impact. 

Changes to hydroelectric power production will have a macroeconomic impact 
through substitutions away from or to other forms of production with a greater marginal 
cost. We assume that reductions in hydroelectric power lead to an equally large increase 
in demand for thermoelectric power, whereas decreases in hydroelectric power lead to an 
equally large decrease in demand for thermoelectric power within the state where the 
hydroelectric power is produced. These changing demands change production levels but 



 176

not necessarily within the same state—power can be imported or exported outside a 
region. 

We assume a monetary value for changes in demand of $138.13/MWh, which is 
equal to the cost of new coal-power generation ($120/MWh)25 plus the costs of retrofits 
to dry cooling towers ($18.13/MWh—a conservative assumption because cooling 
“retrofits” will likely be cheaper to implement when designed into new construction). 

We do not calculate any changes to demand for other sectors. In reality, an increase 
in demand for the utilities sector, for example, could reduce demand for other sectors 
because of price and income effects. However, modeling at this detailed level is beyond 
the scope of this study. By assuming that there are no changes to demand in other sectors 
due to changes in demand for the utilities sector, we are setting the bounds of the 
maximum possible impact. 

B.4.3.2 Modeling Procedures 

Changes in the demand for alternate sources of power resulting from changes in 
hydroelectric production are treated in the REMI model as a change in the “Exogenous 
Final Demand (amount)” variable of the utilities sector. To satisfy changes in demand, 
the REMI model changes production and investment in capital stock (e.g., increasing 
capital stock if thermoelectric power plants are needed) in a state and its neighbors.  

The change in the “Exogenous Final Demand (amount)” variable for the utilities 
sector in state i and year t is calculated as 

i
HP

i
t

i
t XHPD  )1(13.138$  

where  
i

tHP  =  the fraction of normal hydroelectric power production in state i and year t 

and 

i
HPX  =  the total hydroelectric power production, in MWh, in the state in 2007 

(EIA 2009). 

B.5 Modeling Impacts to Industry and Mining 

Of all the major sectors of water withdrawal for the United States, industry is the 
smallest (5% of all water withdrawals) after thermoelectric power (48%), irrigation of 
agriculture (34%), and public water supplies (11%) (Hutson et al. 2004). Mining, whose 
water availability is modeled separately from the aggregate of other industries, consumes 
less than 1% of all water. 

                                                 
25 LAZARD (2008) and a transmission and distribution cost of $20/MWh (Northwest Power and 
Conservation Council [2009]). 
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B.5.1 Modeling Assumptions 

A USGS report (Hutson et al. 2004) provides information about aggregate 
withdrawals of water for all industries and mining but does not break down the numbers 
by specific industry or provide data on how much water is consumed (e.g., evaporated or 
incorporated into a product) or returned to its source, such as with once-through cooling. 
Statistics Canada (2005a), on the other hand, provides a large number of tables with a 
large breadth of data based on surveys of industrial and mining users of water. We 
assume that the water use of Canadian industries mirrors that of U.S. industries, 
proportionally. This assumption is reasonable because the two countries use similar 
technologies, and the industries are both classified according to the North American 
Industry Classification System (NAICS). (Because temperatures in the United States are 
generally warmer than in Canada, it is possible that more U.S. industrial water is used for 
cooling. In the bullets below [beginning with “Food”], a greater amount of cooling means 
that there are more opportunities for cutting back the amount of water used by converting 
to dry cooling. Thus assuming that the United States and Canada use the same 
proportions for cooling is a conservative approach.)  

Hutson et al. (2004) state that food, paper, chemicals, refined petroleum, and primary 
metals are the largest industrial users of water, and these researchers provide separate 
data for the mining industry. The Statistics Canada (2005a) survey reports similar 
findings but also includes the beverage and tobacco manufacturing sector as a significant 
consumer of water. These six industries account for 87% of all industrial (nonmining) 
consumption of water. We have focused on these industries. 

The data from the hydrological model used in this study give the percentage of 
normal consumption that can be provided by water supplies. Therefore, we assume there 
is plenty of water to withdraw, but only a limited amount of this water can be consumed. 
The remainder of the water must be treated and returned to water supplies where it can be 
withdrawn and ultimately consumed by other users. 

A summary of pertinent statistics for the Statistics Canada survey is provided in 
Table B-4. Only 13.5% of water intake is actually consumed. The remainder of the water 
is for the following: 

 Food. Disclosure problems make it difficult to see clearly what is happening in 
the data. It is likely that a large portion of the food industry’s water consumption 
is used for sanitary service, most likely in the animal-processing industries. This 
water is probably relatively difficult to conserve, but it can be treated or 
transferred to irrigation use. Surface discharge is very small, probably because it 
is difficult to treat. It is likely that most of the discharge becomes irrigation water. 
(The italicized values in Table B-4 indicate undisclosed data that we input by 
assuming that 29% of water intake is used for cooling, as it is in the beverage and 
tobacco industry.) 
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 Beverage and Tobacco. This industry’s consumption rate is the highest of all at 
51%. The high percentage is likely due to the fact that water composes the 
majority of most beverages.  

 Paper. This industry’s consumption rate is only 5%, and it discharges 89% of its 
intake to the surface, and it spends a lot of money doing these activities. There is 
very little this industry can do to conserve because it consumes so little and is 
already spending a lot to treat water. 

 Petroleum and Coal. This industry is based on transforming petroleum and coal 
into usable products (i.e., the industry does not include extraction). The industry 
has a consumption rate of 12%. Much of this is likely due to evaporation, as 87% 
of the water is used for cooling, condensing, and steam. The 12% could be 
conserved using similar technologies to those identified for electricity generation. 

 Chemicals. This industry consumes a relatively high amount of water, probably 
because the water is used in chemical reactions or as a solute. There is no 
conservation opportunity with this use of water. Because a large portion of water 
is used for cooling, condensing, and steam (80%), there are opportunities to 
conserve water here by using similar technologies to those identified for 
electricity generation. 

 Primary Metals. Primary metals manufacturing uses a moderate amount of water 
in cooling, condensing, and steam (hence there are moderate conservation 
opportunities) and returns a relatively large percentage of water (80%) in surface 
discharge.  

 Mining. Statistics Canada surveys only the mining (except oil and gas) sector. 
Surface discharge is 98% of withdrawals. Consumption is –37% because mining 
often “generates” water when mines are below the water table. If the intake is 
adjusted by adding mine water, the total intake is 674.9 million cubic meters (mil 
m3) of water per year and 7% of that amount is consumption. The recycling rate is 
448%, meaning that the same water is used over and over again. Since mining 
consumes so little water and already has a high recycling rate, there are few 
conservation opportunities. 

The USGS study of water use in the United States, i.e., Hutson et al. (2004), includes 
oil and gas in its mining data. These data are much more limited than the Canadian data 
and cover only a subset of states. The data report that mining uses 2,250 thousand acre-
feet per year of fresh water and 1,660 thousand acre-feet of saline water. Of the saline 
water, 1,260 thousand acre-feet per year is ground water. 
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Table B-4. Industrial Use of Water in Canada26 

 
 Food Beverage/

Tobacco Paper
Petroleum
and Coal Chemicals

Primary
Metals Mining

Mining
(adjusted)

Intake (mil m3) 1366.8 160.6 2598.3 364.8 532.5 1606.2 458.9 674.9

Consumption (mil 
m3) 272.7 81.3 134.3 42.3 149.9 238.4 -171.7 44.3

Consumption Rate 20% 51% 5% 12% 28% 15% -37% 7%

Process Water 869.4 - 1800.4 42.5 92 518.8 376.7 376.7

% Intake 64% - 69% 12% 17% 32% 82% 56%

% Cons. 319% - 1341% 100% 61% 218% -219% 850%

Cooling, 
Condensing, Steam 394.0 46.3 731.9 317.5 423.4 839.6 37.7 37.7

% Intake 29% 29% 28% 87% 80% 52% 8% 6%

% Cons. 144% 57% 545% 751% 282% 352% -22% 85%

 

                                                 
26 Data from Statistics Canada (2005a). 
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Information about the output of Canadian industries is included in Table B-5. We 
assume that U.S. industries use water at the same rate, per amount of output, as Canadian 
industries (i.e., the right column of Table B-5 is representative of U.S. industries). Due to 
a lack of information about water use in oil and gas extraction, we assume that the 
industry has the same water-use characteristics as the mining (except oil and gas) sector. 

To calculate the costs of retrofitting cooling systems to dry-cooling systems, we 
assume that the costs per amount of water consumption saved are the same as in the 
electric power industry. We assume that the maximum percentage of water that can be 
conserved by retrofitting cooling systems in each industry is equal to the amount of water 
used in cooling divided by the total intake. This value ranges from 6% for mining to 87% 
for petrochemicals and coal. Again, we assume a value of the previously mentioned 
4.95m3/MWh for the amount of water used by thermoelectric plants for evaporative 
cooling (Yang and Dziegielewski 2007), and we use the previous value for retrofitting 
power generation plants of $18.13/MWh. Dividing $18.13/MWh by 4.95m3/MWh equals 
an additional cost of $3.66/m3 for water saved by retrofitting to dry cooling.27 

We use the previous value of investment necessary to retrofit power generation 
plants of $71.35/MWh. Dividing this value by 4.95m3/MWh equals an investment cost of 
$14.41/m3 for water conserved by retrofitting to dry cooling. As with electric power, any 
cooling retrofits that occur will reduce the industrial requirements for water in future 
years. 

We assume that once the maximum amount of water has been conserved by 
retrofitting to dry cooling, additional water is not easily conserved because it often goes 
into production or is otherwise lost in the production process. Water must be obtained 
through desalination, or otherwise firms must shut down production to conserve any 
remaining water. Desalination is available to firms in states that are adjacent to an ocean 
at an increased cost of $1.62/m3 (for the reasons noted previously). Because the increased 
cost of using desalinated water is much cheaper than the increased cost of retrofitting to 
dry cooling, we assume that firms will use desalinated water to adjust to the shortfall in 
water. Firms in all industries conserve water in the same proportion (e.g., if the available 

water is a fraction It
i
 of normal demand, all firms have access to that fraction.) 

In states not adjacent to an ocean, we assume that all industries initially retrofit 
cooling systems to conserve water. For simplification purposes, industries retrofit 
according to a linear function that is proportional to the industry’s consumption of water 
for cooling purposes multiplied by the water shortfall.28 Once all retrofits have been 
performed, if the retrofits have not conserved enough water, industries shut down in 
equal proportions. This is a conservative assumption because industries are likely to shut 
down according to how intensively they use water for noncooling purposes (based upon 
                                                 
27 This amount is slightly more expensive than the $1.62/m3 increase for desalinated water used previously. 
Thus, it may be slightly cheaper for a wet closed-loop cooling system to use desalinated water rather than 
to retrofit the system. However, the cooling in these data is an aggregate of both wet closed-loop and once-
through types. 
28 The implication of this assumption is that different industries will conserve water at different rates 
depending upon the intensity at which the industries consume water for cooling. 
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water consumption per dollar of output), with the most intensive industries shutting down 
first. Calculations of these intensities are given in Table B-5. 

Table B-5. Noncooling Consumption Rates Compared with Industry Output 

  
Noncooling 

Consumption 
(mil m3) 29 

 
2005 Output 

$CAN mil 
(2002) 30 

 
Output in  
$US mil 
(2008) 31 

Noncooling 
Consumption 

m3/$M US 
Output 

Food 
Manufacturing 

194.1 $71,028 $102,330  1,897

Beverage and 
Tobacco 
Product 
Manufacturing 

57.9 $13,901 $20,027 2,889

Paper 
Manufacturing 

96.5 $33,546 $48,330  1,996

Petroleum and 
Coal Product 
Manufacturing 

5.5 $59,228 $85,330  64

Chemical 
Manufacturing 

30.7 $54,659 $78,747  390

Primary Metal 
Manufacturing 

113.8 $49,790 $71,733  1,586

 

Table B-6 provides the water use by industry based on Canadian statistics. Column 
one gives the percentage of water intake that is used for cooling, column two gives the 
total amount of water consumed by each industry in 2005 on an annual basis, and 
columns three and four list the value of economic output from each industry in Canadian 
and U.S. dollars, respectively. Column five lists the resulting consumption rate in terms 
of water volume per unit of economic activity. 

                                                 
29 Statistics Canada (2005a). 
30 Statistics Canada (2005b). 
31 Converted to 2005 Canadian dollars by multiplying by 1.099 (112.27/102.13) (NationalMaster), 
converted to 2005 USD by multiplying by 1.21 (2005 exchange rate and PPP equivalence (International 
Comparison Project [2008]) and converted by 2008 USD by multiplying by 1.08 (122.422/113.026, 
EconStats). 
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Table B-6. Total Consumption32 

  
 

Cooling % 
Intake 

 

 
 

Consumption
(mil m3) 

2005 
Output 

$CAN mil 
(2002) 

 
Output in 
$US mil 
(2008) 

 
Consumption 

m3/$M US 
output 

Food 
Manufacturing 

29% 272.7 $71,028 $102,330 2,665 

Beverage and 
Tobacco 
Product 
Manufacturing 

29% 81.3 $13,901 $20,027 4,059 

Paper 
Manufacturing 

28% 134.3 $33,546 $48,330 2,779 

Petroleum and 
Coal Product 
Manufacturing 

87% 42.3 $59,228 $85,330 496 

Chemical 
Manufacturing 

80% 149.9 $54,659 $78,747 1,904 

Primary Metal 
Manufacturing 

52% 238.4 $49,790 $71,733 3,323 

Mining 
(adjusted) 

6% 44.3 $24,351 $35,083 1,263 

 

B.5.2 Modeling Procedures 

The following sections outline the equations used to determine the impacts from 
water shortages in industry, using the assumptions generated in Section B.5.1. 

B.5.2.1 States not Adjacent to an Ocean 

These states first retrofit industrial cooling systems to conserve water. If additional 
water conservation is necessary, industries must halt some production. For each state i 
and year t, a fraction of water consumption that can be saved through dry-cooling 
retrofits is calculated by weighting each industry’s cooling-water intake as follows, using 
data from Table B-6, presented previously, and the REMI model’s standard regional 
control outputs: 

                                                 
32Based on calculations in Tables B-4 and B-5. 
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where  

f, b, p, e, c, and m represent the six nonmining industries,  

xc%  = the percentage of consumption assumed to be used in cooling,  

xWI  = the water intensity of each industry, and  

i
txY ,  = the output of industry x (in millions of 2008$ US, from the REMI model’s 

standard regional control).  

Because mining is disaggregated from data in the Sandia hydrological model, its value is 
simply 6%. 

Production costs in each industry increase by33 
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where  

i
tI  = the fraction of usual water demanded that is available to all industries.  

For mining, which includes both the mining (except oil and gas) sector and the oil 
and gas extraction sector, this equation simplifies to 
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where  

i
tM  = the fraction of usual water demanded that is available to mining. 

Increases in production costs, i
txPC , , are inputs into the REMI model that 

exogenously increase the “Production Cost (amount)” variable for the appropriate 

                                                 
33 The vertical line at the end of each equation given in this section notes the domain of the independent 
variable for which the equation is applicable. 
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industries. Investment in cooling-system retrofits are made until all industrial cooling 

systems have been retrofitted (i.e., 
i
tc%  has been conserved. Investment is based upon 

previous retrofits in the following sets of equations:  

otherwise
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The first case occurs when water availability is lower than the previous year but still 
higher than the maximum amount that can be conserved with cooling retrofits. The 
second case occurs when water availability is lower than the previous year and lower than 
the maximum that can be conserved with cooling system retrofits. The third case occurs 
when water availability increases or decreases further below the maximum retrofitting 
conservation amount. Because the industry can operate with less water every year to the 
point where all possible retrofits have been made,  

 )%1(,max 1

i
t

i
t

i
t cII     

and  

 .)06.01(,max  1  
i
t

i
t MM  

As with investments for dry-cooling retrofits for electric power generation, we 
assume that two-thirds of i

txIN ,  goes to the machinery manufacturing sector and one-

third goes to the electrical equipment and appliance manufacturing sector by modifying 
the “Exogenous Final Demand (amount)” variable. 

When water availability is below the level that can satisfy industry needs through 

cooling-system retrofits (e.g.,
i
t

i
t cI %)1(  ), firms must shut down some portion of 

production to conserve water. We assume that firms reduce their output in proportion to 
the amount that the water shortage exceeds the level that can be conserved with cooling 
system conservation. This can be represented as 
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For mining, the equation simplifies to 
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This change in industry output is treated in the REMI model as a change to the “Industry 
Behavior” component of the model through exogenously reducing  “Industry 
Sales/Exogenous Production” in the model by an amount equaling i

txY , . An alternative 

strategy is to adjust “Firm Sales” by changing “Firm Behavior,” In the REMI model 
“Firm Behavior” is represented by a set of input adjustment parameters that allow 
“displacement [of production by local industries] due to competition in the local and 
nearby markets and the national market,” whereas changes to what REMI calls “Industry 
Behavior” leads to an exogenous change in the production of local industries that will not 
be compensated for by other firms increasing their production levels. Although it is likely 
that firms in regions of the country with abundant water increase production to take up 
the slack created by water shortages, the REMI model does not include explicitly 
consider water availability. Because many of the firms picking up the slack in a REMI 
simulation would be within the same region, using “Firm Behavior” would result in 
unrealistically high levels of production as a result of water shortages. Thus, choosing 
“Industry Behavior” is the more suitable  assumption. 

B.5.2.2 States Adjacent to an Ocean 

The hydrological model first attempts to purchase water rights to mitigate the impact 
or reduce regional water availability. Once this option is exhausted, these states conserve 
water by purchasing desalinated water with a cost of $1.62/m3 for water conserved. The 
increase in production costs for each industry is based upon the industry’s water intensity 
for water consumption and the industry’s output, as represented by

i
txx

i
t

i
tx YWIIPC ,, )1(62.1$  . This equation assumes that each industry loses the 

same fraction )1( i
tI of its normal water demanded. The whole amount of the change in 

production costs is applied as increased production costs for industry x, and a fraction of 

the amount,
i
tc% , is applied to increased production in the utility industry to correspond 

to increased production of desalinated water. 
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Appendix C.  Base-Case Normalization 

Even in the absence of climate change, economic and population growth will lead to 
potential water shortages (EPA 2002; GAO 2003; Karl et al. 2009). The impacts from 
these water constraints are typically not considered within macroeconomic forecasts and 
are not included in the base-case REMI forecast used as the macroeconomic referent in 
the analysis presented in the body of this report.  

The study uses the concept of water availability, which compares indicated demand 
with expected supply. If there is no change in usage behaviors, the macroeconomic 
referent would produce reduced water availability in the future. In reality, if there were 
constraints of water availability, industries and consumers would more efficiently use 
water to maintain operations. The analysis of the main text only includes differences in 
water availability beyond what are considered in the hydrological referent. We call this a 
normalization, where the implied (lack of) water availability in the referent is disregarded 
and only additional changes due to climate change are associated with macroeconomic 
impacts. 

To present a more complete picture, this appendix presents the impacts of water 
constraints that are not due to climate change. The color-coded tables, organized by year 
and state, note the water availability for municipal utilities, industry, and thermoelectric 
facilities (Figure C-1) and for mining (Figure C-2). The estimated impacts that would 
occur for the GDP and for employment follow in Figure C-3, Figure C-4, and Table C-1. 
For all the tables and figures in this appendix, note that precipitation and thus hydrology 
is assumed constant over the entire time period. The change in water availability is solely 
due to the demand exceeding a constant supply. 

In Figures C-1 and C-2 shown first, a water availability value of 1.0, depicted as 
green, indicates that all the water needed is available. As demand starts to exceed supply, 
a value less than 1.0 is present, and the color starts to turn yellow. When there is a 
significant gap between supply and demand, the numerical value diminishes further as 
yellow turns to red. Several states, including South Carolina, Tennessee, Virginia, and 
West Virginia, may experience rather severe water constraints even in the absence of 
climate change.  
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Figure C-1. Municipal, industry, and thermoelectric water availability in the hydrological referent. 
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Figure C-2. Mining water availability in the hydrological referent. 
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The implied impacts of the water-availability constraints in the hydrological and 
macroeconomic referents on potential GDP and employment are noted in Figure C-3 and 
Figure C-4, respectively. 

  
Figure C-3. National GDP impacts in the hydrological referent. 

 
Figure C-4. National employment impacts in the hydrological referent. 
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Table C-1 provides a numerical listing of the implied impacts of water-availability 
constraints in the hydrological and macroeconomic referents. Note that the impacts are 
relatively small compared with the low-exceedance-probability climate impacts, such as 
in the $2 trillion in the 1% case. Nonetheless, the value of the implied impacts is nearly 
half the size of the 99% exceedance-probability results ($638 billion) in the body of the 
report, The national GDP loss due to predicted water constraints, even in the absence of 
climate change, is $316 billion (2008 $) at a 0% discount rate and $114 billion at a 3% 
discount rate. In other words, had the projected water shortages been included, the 
macroeconomic referent’s forecast of the GDP (the starting point of the analysis) would 
have been $316 billion less at a 0% discount rate. Note again that none of these impacts 
are contained in the reported impacts of climate change. The climate-change impacts 
reflect only the difference between the referent and any simulation. See Section 3.2.4 for 
more information. 
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Table C-1. Base-Case Impacts 
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Appendix D.  National and State Reference Values 

(REMI Base-Case Control Run) 

The analysis results presented in the body of this report are based on comparing 
macroeconomic values in the base-case forecast of the REMI model, the macroeconomic 
referent, with simulation values. Thus, the analysis results are the differences between the 
estimated values without climate change and the simulated values with climate change. In 
this appendix, we simply report the macroeconomic values from the base-case forecast so 
that one can compare the impacts (changes) noted in the analysis results on national- and 
state-level GDP, employment, personal income, and population. Table D-1 summarizes 
the national values of these variables for three sample years from the base-case forecast. 
Although data for all years during the period of the study are available, we have selected 
three representative years as illustrative of the economic trend. 

Table D-1. National Summary Values 

REMI Summary - National 

  2007 2025 2050 

National GDP ($B) $14,396.5 $23,304.3 $52,577.0 

Employment 
(1K People) 181,668.7 201,023.2 275,903.9 

Personal Income 
($B) $14,285.9 $38,129.8 $185,936.6 

Population 
(1K People) 301,697.4 356,252.5 431,634.3 

 

Table D-2, Table D-3, and Table D-4 provide values for state-level GDP, 
employment, and population, respectively, for the three sample years. As an example, 
from Table D-3, West Virginia is forecast to have 1.249 million people employed in 2050 
in the macroeconomic referent that does not consider future climate change.  
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Table D-2. GDP Values (2008$) in Base Case 
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Table D-3. Employment Values in Base Case 

 

  

Region

2007 2025 2050 2007 2025 2050

United States 181,668.7 201,023.2 275,903.9 Montana 648.2 691.3 946.3

Alabama 2,629.7 2,667.1 3,633.6 Nebraska 1,260.0 1,293.1 1,688.0

Arizona 3,427.1 4,277.7 7,142.0 Nevada 1,653.3 1,995.6 3,041.7

Arkansas 1,629.6 1,656.0 2,206.3 New Hampshire 872.4 1,032.7 1,518.1

California 20,858.1 25,805.3 42,573.6 New Jersey 5,250.7 6,044.3 7,817.8

Colorado 3,241.5 3,797.3 5,001.3 New Mexico 1,118.7 1,199.4 1,639.6

Connecticut 2,291.6 2,716.3 3,598.3 New York 11,279.2 14,183.8 19,805.2

Delaware 554.0 620.3 817.5 North Carolina 5,401.3 5,723.9 7,632.1

District of Columbia 819.5 897.2 1,095.0 North Dakota 492.6 506.1 691.2

Florida 10,781.8 12,110.2 16,457.8 Ohio 6,991.9 6,940.1 8,721.5

Georgia 5,499.9 6,081.5 7,886.2 Oklahoma 2,184.1 2,164.7 2,550.3

Idaho 919.1 1,035.8 1,554.2 Oregon 2,327.4 2,681.6 4,031.8

Illinois 7,744.8 8,043.8 9,579.3 Pennsylvania 7,430.0 7,971.3 10,368.3

Indiana 3,785.0 3,706.4 4,816.5 Rhode Island 631.3 706.8 962.1

Iowa 2,053.0 2,072.1 2,757.7 South Carolina 2,484.8 2,590.7 3,446.4

Kansas 1,876.0 1,911.6 2,424.0 South Dakota 564.3 577.7 792.8

Kentucky 2,462.9 2,427.0 3,131.0 Tennessee 3,795.7 3,995.6 5,442.4

Louisiana 2,510.1 2,505.0 3,224.4 Texas 13,795.8 15,031.5 19,580.4

Maine 857.1 932.0 1,324.4 Utah 1,626.4 1,877.9 2,807.3

Maryland 3,460.6 3,808.8 4,834.7 Vermont 437.9 498.9 732.3

Massachusetts 4,299.5 5,276.1 7,712.2 Virginia 4,929.5 5,246.5 6,390.4

Michigan 5,596.7 5,500.6 7,221.2 Washington 3,947.0 4,469.7 5,985.1

Minnesota 3,620.7 3,956.9 5,269.7 West Virginia 941.2 952.4 1,249.6

Mississippi 1,555.6 1,561.5 2,135.7 Wisconsin 3,658.2 3,640.9 4,615.5

Missouri 3,739.4 3,830.2 4,798.1 Wyoming 384.5 387.3 482.2

REMI Summary - Employment

Region
Employment (1K People) Employment (1K People)
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Table D-4. Population Values in Base Case 
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Table D-5 lists the sums of GDP and employment from 2010 to 2050 for comparison 
with summary-risk values presented in the body of the report. Note that the population 
column in Table D-5 reflects only the number of people in 2050 and thus does not 
contain summed values. As an example from Table D-5, from 2010 to 2050 West 
Virginia is forecast to produce a GDP of $4,139 billion with approximately 42,000 labor 
years of work. In 2050, the population of West Virginia is estimated to be 2,270,400. 
Note that the values in all tables in this appendix are raw numbers; no discount rate has 
been applied to any monetary quantity. 

Table D-5. REMI Control Totals from 2010 to 2050 for Comparison 
with Summary-Risk Values 
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Appendix E.  1% Exceedance-Probability Impacts 

National and State 

This appendix provides detailed national and state information at the 1% exceedance 
probability. Our interest in this study has been to address the full range of possibilities of 
climate change, including the impacts of events that have a low probability and also a 
high consequence. The analysis results at the 1% exceedance probability in this appendix 
represent the worst-case example in our study and provide a more in-depth look at the 
impacts and their volatility by state and industry over time. The analysis results are the 
differences between the values forecast without climate change (from the macroeconomic 
referent discussed in Appendices C and D) and the simulated values with climate change. 
Note that the analysis results are based on a single motif as discussed in the main text. 
Thus, the results presented for any particular year are realizable for that time period but 
should not be considered a point prediction (see the discussion of motif in Section 3.1). 

Note that some states experience a change in the sign of the impacts (from positive to 
negative or vice versa) or a reversal in the magnitude of the impacts. For example, a state 
may initially be positively affected because it has adequate water, but reduced 
precipitation in later years finally has an overall negative impact on the state. Conversely, 
a state may initially be negatively affected because of reduced precipitation, but the state 
may be positively affected (e.g., losses are reduced) in later years because the states 
surrounding it suffer more.  

Table E-1 shows the GDP impacts for industry at the national level by decade. The 
values in this table and other “by decade” tables in this appendix are not cumulative over 
the particular decades. Thus, the values listed in Table E-1 for, say, 2050, for all 
industries listed represent only the GDP impacts for 2050, not a summation of such 
impacts from 2040 to 2050. Taking the ambulatory health care services industry as an 
example, we note that in 2050 this industry is estimated to experience a loss of $11.3 
billion at the 1% exceedance probability. This loss is due to reduced labor earnings 
reducing the demand for health care along with the demand for other goods and services. 

Table E-2 provides the contribution of individual states to the GDP by decade at the 
1% exceedance probability. The entry for the United States (entire nation) in the table 
includes the impacts on Alaska and Hawaii, which are not listed in the table. Each 
succeeding decadal value for the United States (on the first row) is reflective of the 
overall downward trend. Most states at these 10-year marks are also illustrative of this 
trend, though there is some volatility in loss in a few of the states, like California, and no 
loss in some states such as Idaho, Oregon, and Washington.  

Table E-3 and Table E-4 illustrate the yearly changes in the contributions to the GDP 
by individual states. These tables highlight the volatility as well as the potential change in 
the sign of impacts for some states. Taking New Mexico as an example, we observe the 
volatility at the 1% exceedance probability beginning in 2012, where the loss goes back 
and forth from $0.2 to $0.1 billion until 2015 when the loss jumps by a factor of 10 to 



204 

$1.2 billion. Similar volatility is present to 2050, reflective of the overall downward trend 
in the state’s contribution to the GDP. In 2050, the impact reaches $2.9 billion, which is 
the greatest loss for New Mexico in the whole 40-year period.  

 Table E-5 shows the employment impacts per state by decade. As an example, the 
impact of climate change on West Virginia is a loss of 54,200 jobs in 2050 at the 1% 
exceedance probability. To determine the difference between this value and the 
employment value estimated in the base-case referent (in Appendix D, Table D-2), we 
subtract 54,200 from 1,249,000. This difference, 1,194,800, reflects the adjustment to the 
base case for 2050 as a result of climate change. In effect, the employment in West 
Virginia grows, but it grows more slowly with climate change.  

Finally, Table E-6 through Table E-24 display the impacts for each state by industry-
group with decadal resolution at the 1% exceedance probability. The values listed in each 
of these tables represent a particular industry’s contribution (i.e., value-added output) to 
the GDP. To explain the contents of this data set, we look at Table E-10, which gives the 
contribution to the GDP by the educational services industry in 2020, 2030, 2040, and 
2050. In 2050, Connecticut, Colorado, New Mexico, West Virginia, and Wisconsin all 
show a loss of $4.9 million as a result of climate change at the 1% exceedance 
probability. On the other hand, the educational services industry in 2050 does show 
positive impacts for some states. For example, from a loss in 2040 of $6.1 billion, this 
industry shows a gain of $11 million in 2050 in this worst-case example. Part of the 
explanation could be that people from other states that suffer as a result of climate change 
will have moved to California and led to growth in the educational services industry. 
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Table E-1. Change in GDP Contribution by Industry (1% Case) 
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Table E-2. Change in GDP Contribution by State (1% Case) 
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Table E-3. Change in GDP Contribution by State and Year (in Billions) 
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Table E-4. Change in GDP Contribution by State and Year (in Billions) 
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Table E-5. Change in Employment by State (1% Case) 

 

 

Region 2010 2020 2030 2040 2050 Region 2010 2020 2030 2040 2050

United States -0.7 -104.5 -307.1 -474.3 -688.7 Montana 0.0 0.2 -0.1 -0.3 -0.5

Alabama -0.2 -2.9 -5.3 -7.7 -13.6 Nebraska 0.1 -0.2 -1.0 -2.0 -3.3

Arizona 1.5 -4.6 -20.1 -33.7 -30.4 Nevada 0.3 -1.1 -6.4 -18.8 -10.3

Arkansas 0.0 -1.2 -2.5 -3.9 -7.2 New Hampshire 0.0 -0.1 -0.3 -0.6 -1.0

California 2.0 -3.9 -15.5 -31.8 -7.6 New Jersey -0.4 -2.6 -5.7 -7.9 -11.5

Colorado 0.2 -0.6 -11.8 -9.1 -12.5 New Mexico 0.0 -2.3 -14.9 -12.7 -15.4

Connecticut 0.0 -0.3 -1.2 -1.9 -2.9 New York -0.7 -6.7 -15.0 -22.9 -32.9

Delaware 0.0 -0.4 -0.8 -1.1 -1.6 North Carolina -0.4 -7.2 -11.5 -16.2 -24.6

D.C. 0.0 -0.1 -0.5 -0.9 -1.5 North Dakota 0.0 -0.1 -0.4 -0.7 -1.2

Florida -1.6 -19.3 -28.5 -37.0 -49.2 Ohio 0.0 -0.1 -8.6 -19.3 -32.4

Georgia -0.6 -11.2 -16.5 -22.1 -32.4 Oklahoma 0.1 -4.5 -25.2 -11.1 -23.7

Idaho 0.0 0.3 0.1 0.4 0.8 Oregon 0.1 2.0 2.4 4.6 6.4

Illinois 0.2 1.3 -0.1 -6.1 -24.0 Pennsylvania -0.5 -5.7 -11.9 -17.4 -26.2

Indiana 0.0 0.1 -4.2 -13.2 -25.8 Rhode Island 0.0 0.0 -0.2 -0.2 -0.4

Iowa 0.1 0.6 -0.4 -2.4 -6.3 South Carolina -0.1 -3.4 -5.3 -7.3 -11.2

Kansas 0.1 -0.7 -2.0 -2.8 -6.3 South Dakota 0.0 0.1 -0.3 -0.5 -1.0

Kentucky -0.1 -2.0 -4.9 -21.1 -40.3 Tennessee -0.2 -4.9 -10.7 -21.4 -31.3

Louisiana 0.0 -1.5 -3.5 -4.7 -8.2 Texas -0.4 -14.2 -31.8 -36.0 -53.8

Maine 0.0 0.0 -0.2 -0.3 -0.5 Utah 0.1 -1.4 -5.1 -12.3 -10.6

Maryland -0.2 -2.1 -4.6 -6.5 -10.0 Vermont 0.0 0.0 -0.3 -0.8 -1.2

Massachusetts 0.0 -0.3 -1.6 -2.4 -4.1 Virginia -0.4 -4.3 -8.9 -12.5 -18.7

Michigan 0.0 -0.5 -2.4 -8.4 -15.8 Washington 0.1 2.3 2.6 5.9 7.6

Minnesota 0.2 0.2 -0.8 -3.7 -9.2 West Virginia 0.0 -0.7 -17.2 -33.7 -54.2

Mississippi 0.0 -0.5 -1.5 -2.5 -4.8 Wisconsin 0.2 0.0 -0.5 -3.5 -9.5

Missouri 0.1 0.1 -1.0 -2.7 -9.2 Wyoming 0.0 -0.4 -1.5 -1.9 -5.6

Change in Employment (1K Labor Years) - 1% Case
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Table E-6. Change in Contribution to GDP and GSP by State and Industry 
Group (1% Case) for Accommodation and Food Services ($M) 
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Table E-7. Change in Contribution to GDP and GSP by State and Industry 
Group (1% Case) for Administrative and Waste Services ($M) 
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Table E-8. Change in Contribution to GDP and GSP by State and Industry 
Group (1% Case) for Arts, Entertainment, and Recreation ($M)  
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Table E-9. Change in Contribution to GDP and GSP by State and Industry 
Group (1% Case) for Construction ($M)  

 

 



214 

Table E-10. Change in Contribution to GDP and GSP by State and Industry 
Group (1% Case) for Educational Services ($M)  
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Table E-11. Change in Contribution to GDP and GSP by State and Industry 
Group (1% Case) for Finance and Insurance ($M)  
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Table E-12. Change in Contribution to GDP and GSP by State and Industry 
Group (1% Case) for Forestry, Fishing, Related Activities, and Other ($M)  
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Table E-13. Change in Contribution to GDP and GSP by State and Industry 
Group (1% Case) for Health Care and Social Assistance ($M)  
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Table E-14. Change in Contribution to GDP and GSP by State and Industry 
Group (1% Case) for Information ($M)  
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Table E-15. Change in Contribution to GDP and GSP by State and Industry 
Group (1% Case) for Management of Companies and Enterprises ($M) 
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Table E-16. Change in Contribution to GDP and GSP by State and Industry 
Group (1% Case) for Manufacturing ($M)  
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Table E-17. Change in Contribution to GDP and GSP by State and Industry 
Group (1% Case) for Mining ($M)  
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Table E-18. Change in Contribution to GDP and GSP by State and Industry 
Group (1% Case) for Other Services, except Public Administration ($M)  
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Table E-19. Change in Contribution to GDP and GSP by State and Industry 
Group (1% Case) for Professional and Technical Services ($M)  
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Table E-20. Change in Contribution to GDP and GSP by State and Industry 
Group (1% Case) for Real Estate and Rental and Leasing ($M)  
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Table E-21. Change in Contribution to GDP and GSP by State and Industry 
Group (1% Case) for Retail Trade ($M)  
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Table E-22. Change in Contribution to GDP and GSP by State and Industry 
Group (1% Case) for Transportation and Warehousing ($M)  
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Table E-23. Change in Contribution to GDP and GSP by State and Industry 
Group (1% Case) for Utilities ($M)  
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Table E-24. Change in Contribution to GDP and GSP by State and 
Industry Group (1% Case) for Wholesale Trade ($M)  
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Appendix F.  Lost Function for Small Exceedance 
Probabilities 

Section 2.5 in the body of the report considers the problem of extrapolating the result 
between the 99% and 1% exceedance probability intervals and the 1% to 0% intervals. 
The 1% to 0% interval is potentially problematic if the value of risk (probability 
multiplied by consequence) is either not convergent or has a value in excess of that 
explicitly simulated for the 99% to 1% exceedance-probability range In this appendix we 
develop and justify a functional form for extrapolation based on the underlying analogy 
of using the logic of a finite resource depletion to represent how the costs of climate 
change “deplete” the finite GDP.   

Because we only address economic impacts, the maximum cost of climate change is 
limited to the near total loss of the entire GDP of the United States or the gross state 
product (GSP) of an individual state. In the extreme, with a probability of occurrence 
approaching 0%, there is the potential of losing most of the economy. We select an upper 
limit of a 90% loss of the U.S. GDP from the forecast by the macroeconomic referent 
(discussed in Appendix D). The limit to the maximum loss represents the GDP as if all 
areas of the United States, in the most extreme case of minimal precipitation, had a 
climate comparable to New Mexico. This maximum (finite) impact only occurs as the 
probability approaches zero in the impact distribution, and we assume that the climatic 
conditions only grow to dominance over the last 10 years of the analysis horizon, i.e., 
from 2040 to 2050. These assumptions lead to the fraction of loss having the following 
analytical form:  
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The integral of Equation (F-1) and the reference GDP over time is the maximum cost 
(Cmax) of the loss in the asymptotically most extreme circumstance, as in  

.     
2050

2010
  dt Lost GDP of Fraction  DPReferent_GCmax  (F-2)

 
The probability of this fractional loss and its attendant risk depends on how fast the tail of 
the probability distribution falls to zero and how fast the costs rise with the risk variable, 
for example, temperature or precipitation (Yohe and Tol 2009). 

 In the absence of technological change, the concept of rising costs as a function of 
the reduced probability of finding additional (finite) resources emulates the consideration 
here of rising climate costs as extreme climatic conditions have diminishing probability.  

Historically, the finding rate, R, for a finite resource was often approximated by an 
exponentially decreasing function, for example, the barrel of oil found per foot as a 
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function of cumulative drilling feet, x (Ghosh and Prelas 2009; Hubbert 1969, 1982; 
Crovelli 1993):  

 .)( uxexR    (F-3)

  
 The cost, C, of finding new resources then exponentially rises as the inverse of the 

finding rate:   

 .)( uxexC      (F-4)

 
Per Equation (F-3), the finding rate is a random variable whose values conform to an 

exponentially declining probability distribution. The change in the probability, p, of 
finding a new unit of oil per foot of drilling is just a scaling of the exponentially declining 
finding rate in terms of, for example, feet drilled:  

 .)( uxexp     (F-5)

 
Analogously, the temperature increase from climate change is comparable to the 

drilling activity (the tail of the distribution of temperature is well approximated by an 
exponential function); and the exponential cost function corresponds to the exponential 
damage-function approach recommended by Weitzman (2009). For this analogy to hold 
in a mathematical sense and establish a finite risk, the probability must fall no slower 
than exponentially. Because the tail of the gamma distribution of precipitation falls faster 
than the exponential function, the gamma distribution used to capture the uncertainty in 
precipitation due to climate change meets this criterion. In other words, the mathematical 
approach used in this appendix is compatible with the cumulative gamma distribution that 
describes how fast the precipitation goes to zero and, in tandem, how fast the losses are 
increasing.  

The integral of Equation (F-3) represents the total use of a resource from 0% to 
100% of its initial base, while the integration of Equation (F-5) captures the same 
concept. That is, the total finding of the resource with infinite drilling is the entire 
resource base, and by the time the probability of finding more of the resource goes to 
zero, the entire resource base has been exhausted. Equation (F-3) integrates to 100% of 
the resource base. Equation (F-5) integrates to 100% of the probability of finding the 
resource.   

The resource exploited, E, is the integral of Equation (F-3) and a proportionality 
constant (K1): 
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The integral from zero to infinity is the entire resource base, B: 

 .)( 1


K
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Therefore, 

 ),1()( uxeBxE     (F-9)

 
or 

 .1 uxe
E

B    (F-10)

 
Define the term  EB1 as the fraction of the resource remaining, F. This term also 

represents the probability, p, of how much of the resource remains to be found at a given 
level of total drilling. 

 .uxepF    (F-11)

 
Equation (F-3) and Equation (F-5) are equivalent, and we have used the two 

equations containing both the finding rate and the probability to make functions of the 
finding rate, x, into functions of the probability, p. Therefore, the integral of Equations 
(F-3) and (F-5) allows the transformation of Equation (F-4) from a function of feet-
drilled into a function of probability. Equation (F-4) is transformed into a more formal 
equation with the use of a proportional constant, K2. Then, substituting Equation (F-11) 
for the exponential term of Equation (F-4) gives 
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In the more general case, 
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Although this exercise uses a concrete example of feet-drilled, the logic applies to 

any set of relationships where the probability of an occurrence declines exponentially, the 
consequence increases exponentially, and the integral of all occurrences has a specified 
finite value (such as the GDP in the actual concern of this study).  

We can use Cmax to limit the maximum value of Equation (F-12) when p goes to 0 to 
obtain  
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where α is the reciprocal of the known loss (e.g., GDP loss at the 1% exceedance 
probability) times its associated probability. The β  term is the reciprocal of Cmax. The 
value of α is much larger than that of β. In the absence of β, the loss would go to 
infinity as the probability goes to 0.0. The β term limits the loss to the maximum it 
specifies. We can formally derive the functional form of the denominator of Equation (F-
14) but here simply state that it has the required mathematical characteristics for our 
purposes. We use Equation (F-14) to extrapolate the cost, C, or loss over the range of the 
1% to 0% exceedance probabilities. 

As noted in Section 2.5, the maximum loss is assumed to be 90% of the GDP. From 
Section 4 of the main text, the simulated 1% exceedance-probability loss is in the range 
of tenths to a single-digit percentage of the GDP for the nation and the individual states. 
In using the 1% exceedance-probability cost for determining α , empirically and 
definitionally α is much larger than β .  

Equation (F-14) is the analytical function used for extrapolating costs within the 
interval of the 1% and 0% exceedance probability.  
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Appendix G.  The Discount Rate with Proportional 
Costs 

As noted in Section 1.2, economic studies use a discount rate to assign a value in the present 
to costs that will occur in the future. Also as noted in Section 1.2, the determination of the 
discount rate is often represented by the equation  

 .gpr   (G-1)

Here, r is the social discount rate, p is the pure rate of time preference (PRTP), θ  is the income 
elasticity of the marginal utility of consumption, and g is the growth rate in per capita 
consumption. Cline (1992) provides a relatively complete derivation of Equation (G-1), but 
Cline’s derivation is based on absolute (or additive) costs. With precipitation as the primary 
uncertainty, the damage costs are proportional to the size of the economy, and the justification 
for the θ  in Equation (G-1) may be absent. This appendix provides one justification for 
disregarding θ  under such situations.  

If  the costs associated with climate change have a positive or negative effect on the 
economy, the emphasis on future, richer generations having a better ability to cope with climate-
related costs may have some merit. (Note that this approach disregards concerns that the 
ecological footprint of humankind indicates increasing consumption may be unsustainable even 
into the midterm future [Wackernagel et al. 2002; Lenzen and Murray 2003]). If the costs are 
proportional to the existing economy, Cline’s (1992) derivation may not apply as the equations 
below indicate. 

If the utility, U, of consumption, C, is 

 
CKU  , (G-2) 

where 0.0 < α  < 1.0, and K is a constant, and if consumption is a share, S, of the economy, and if 
the climate impacts are proportional, F, to the size of the economy, then the fractional change in 
utility is 

 )/())1((/  CKCFSCKUU  (G-3)
  

or  

 ./ FSUU  (G-4)
      

Therefore, the change in utility is independent of the level of consumption, contrary to the 
implicit assumption in Equation G-1. 

An allometric function (econometrically estimated as a log-linear function), such as that 
represented by Equation G-2, commonly describes economic data. Monetary value is a relative 
concept. A dollar in 1920 had much more buying power than a dollar today, but it could not buy 
the conveniences we have today. Proportional measures of value maintain their meaning whether 
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measured in yen or dollars, in the year 1850 or 2050. Using the conventional assumptions of a 
homogenous population and the allometric representation for the utility of consumption 
(Equation [G-2]), Equation [G-4]) indicates that a 20% loss in consumption for Warren Buffet is 
the same proportional loss in utility as a 20% loss to a minimum wage worker. Such a 
proportional loss is independent of the level of consumption, and thus the utility is not a function 
of income levels. Although it is possible to argue that increased temperature has positive or 
negative impacts, this study shows that the impact of reduced precipitation is clearly 
proportional. Therefore, the second term in the discount equation becomes questionable at best 
and possibly not applicable. As such, only the PRTP term may have meaning, and as noted 
above, some economists rationalize its value as being close to zero (Quiggin 2008). 

References 

Cline, W. R. (1992). The Economics of Global Warming. Washington DC: Institute of 
International Economics. 

Lenzen, M., and S. A. Murray. (2003). The Ecological Footprint — Issues and Trends. ISA 
Research Paper 01–03. Sydney, Australia: The University of Sydney.  
http://www.isa.org.usyd.edu.au/publications/documents/Ecological_Footprint_Issues_and_Tr
ends.pdf (accessed on February 24, 2010). 

Quiggin, J. (2008). “Stern and His Critics on D Quiggin, J. (2008). “Stern and His Critics on 
Discounting and Climate Change: An Editorial Essay.” Climatic Change 89, nos. 3–4: 195–
205.iscounting and Climate Change: An Editorial Essay.” Climatic Change 89, nos. 3–4: 
195–205. 

Wackernagel M., N. B. Schulz, D. Deumling, A. Callejas Linares, M. Jenkins, V. Kapos, C. 
Monfreda, J. Loh, N. Myers, R. Norgaard, and J. Randers. (2002). “Tracking the Ecological 
Overshoot of the Human Economy.” Proceedings of the National Academy of Sciences 99, 
no. 14: 9266–9271. http://www.pnas.org/content/99/14/9266.full.pdf (accessed on February 
20, 2010). 

 

  



235 
 

Distribution 

 
 
 
2 MS9018 Central Technical Files 8944 (electronic copy) 
2 MS0899 Technical Library 9536 (electronic copy) 
 
1 MS0123 D. Chavez, LDRD Office 1011 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



236 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 


