
SANDIA REPORT
SAND2010-1756
Unlimited Release
Printed April 2010

SAPLE: Sandia Advanced Personnel
Locator Engine

Michael J. Procopio

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy

by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United

States Government. Neither the United States Government, nor any agency thereof, nor any

of their employees, nor any of their contractors, subcontractors, or their employees, make any

warranty, express or implied, or assume any legal liability or responsibility for the accuracy,

completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-

resent that its use would not infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,

does not necessarily constitute or imply its endorsement, recommendation, or favoring by the

United States Government, any agency thereof, or any of their contractors or subcontractors.

The views and opinions expressed herein do not necessarily state or reflect those of the United

States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best

available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401

Facsimile: (865) 576-5728

E-Mail: reports@adonis.osti.gov

Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce

National Technical Information Service

5285 Port Royal Rd

Springfield, VA 22161

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders@ntis.fedworld.gov

Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
EP

ARTMENT OF ENERG
Y

• •U
N

IT
ED

STATES OF AM

ER
I C

A

2

SAND2010-1756
Unlimited Release
Printed April 2010

SAPLE: Sandia Advanced Personnel Locator Engine

Michael J. Procopio

Sandia National Laboratories

Albuquerque, NM 87185

Email: mprocopio@gmail.com

Abstract

We present the Sandia Advanced Personnel Locator Engine (SAPLE) web application, a directory
search application for use by Sandia National Laboratories personnel. SAPLE’s purpose is to return
Sandia personnel “results” as a function of user search queries, with its mission to make it easier and
faster to find people at Sandia. To accomplish this, SAPLE breaks from more traditional directory
application approaches by aiming to return the correct set of results while placing minimal constraints
on the user’s query. Two key features form the core of SAPLE: advanced search query interpretation and
inexact string matching. SAPLE’s query interpretation permits the user to perform compound queries
when typing into a single search field; where able, SAPLE infers the type of field that the user intends
to search on based on the value of the search term. SAPLE’s inexact string matching feature yields
a high-quality ranking of personnel search results even when there are no exact matches to the user’s
query. This paper explores these two key features, describing in detail the architecture and operation of
SAPLE. Finally, an extensive analysis on logged search query data taken from an 11-week sample period
is presented.

3

Acknowledgment

Much of the software development for the production version of SAPLE was done by Jesse Flemming,
whose software engineering effort helped bring SAPLE to reality. Bill Cook provided vision and support
for SAPLE which directly resulted in its deployment at the laboratory. Sam Cancilla and Tracy Walker
were instrumental in coordinating the initial SAPLE deployment as well as ongoing enhancements. Brian
Byers created the current user interface for SAPLE, with input from both SWIFT team usability personnel
as well as Alisa Bandlow. Joe Lewis supported SAPLE at important points in its deployment, especially
during enterprise/ADP review. Cara Corey and Matt Schrager facilitated SAPLE’s deployment, and Cara
also presented SAPLE at the Department of Energy InterLab 2009 conference.

Ken Osburn’s load testing yielded important insights. The Middleware team, especially Mathew An-
derson, supported SAPLE on their Web Logic servers from the earliest prototypes to its current lab-wide
realization. The Enterprise Database Administration team, especially Peggy Schroeder, Mike Mink, and Bill
Mertens, provided crucial support for SAPLE’s database components. Andrew Steele led SAMS, the first
project to use SAPLE’s external search web service. David Gallegos provided helpful managerial support
and perspective. Philip Kegelmeyer, Travis Bauer, Bryan Kennedy, Brian Jones, Pete Oelschlaeger, and
Andy Tzou all provided suggestions and guidance along the way.

To all of these individuals, and to the other unnamed “Friends of SAPLE” who supported the SAPLE
concept as it evolved over the years: thank you.

4

Contents

1 Introduction . 7
1.1 Emergence of Advanced Web Applications . 7
1.2 Related Work . 8
1.3 Searching with SAPLE . 10
1.4 Organization of the Paper . 10

2 Architecture and Implementation. 13
2.1 Personnel Index . 14
2.2 Organization Index . 15
2.3 Motivation for Indexing . 15
2.4 Creation of the Indexes . 16
2.5 Querying the Index: An Example . 16
2.6 Implementation Technologies . 17

3 Search Query Interpretation . 19
3.1 Inference of Query Terms . 21
3.2 Cautious Query Inference . 22
3.3 Implementation of Query Parsing . 23

4 Scoring and Ranking Search Results . 25
4.1 SAPLE Fuzzy Search Algorithms . 25
4.2 Combination of Algorithms . 27
4.3 Examples of Algorithm Ensemble Combination . 27

5 SAPLE Web Service . 29
5.1 Web Service Interface and Specification . 29
5.2 Example Client Application: Software Asset Management System (SAMS) 30

6 Analytics and Usage Analysis . 31
6.1 General Usage and Load . 31
6.2 Search Query Type Breakdown. 32
6.3 Search Usage by User . 36
6.4 User Type Breakdown . 36
6.5 SAPLE Search Sources . 38
6.6 SAPLE Computational Performance . 39

7 Conclusions and Future Work . 43
References . 45

Figures

1 The SAPLE Home Page (http://saple.sandia.gov). 10
2 Screenshots from the SAPLE application. 11
3 Screenshots for Facebook.com (a), Google.com (b), and Amazon.com (c) websites demonstrat-

ing use of approximate string matching. In all three cases, inexact (or fuzzy) string matching
algorithms are used to determine more likely user queries, and the results for the predicted
user query are instead returned. Instead of returning “zero results found,” the correct set of
results for the user’s intended query is displayed. 12

4 SAPLE three-tiered application architecture, containing a presentation layer, an application
layer, and a data layer. 13

5 Legacy Directory application architecture. In contrast to a three-tiered application archi-
tecture (Figure 4), here, the layers are less distinct; business rules may be contained in the
presentation and/or data layers. 14

6 Multiple search fields (input text boxes) in the Legacy Directory personnel search application. 19
7 Google.com interpretation of multiple query parameters from a single text string input 20
8 SAPLE’s Advanced Search screen. The values entered in by the user for each text box are

consolidated into a single string with multiple field:value pairs, illustrated in Figure 7. . . . 20

5

9 Example of a compound query (i.e., query with multiple field:value pairs) 21
10 Example of a “search space collision,” in which a ambiguous value (not specifically associated

with a field name), if the field name is inferred, could be associated with multiple fields. In
this case, the user query 6710 could be in reference to both Building 6710, or Organization
6710, both of which are real entities. 22

11 Example XML result set from the SAPLE web service (left). XML Schema Excerpt (saple.xsd)
(right). 30

12 Screenshot of SAMS Application. In this scenario, the query org 10501 lab staff has been
passed to the SAPLE web service via AJAX (JavaScript), and the XML result set returned
by SAPLE has been parsed and presented to the user in a dropdown list. 30

13 SAPLE Usage for Monday, 9/21/2009 – Friday, 12/4/2009. 31
14 SAPLE Usage for Thursday, 12/3/2009. 32
15 Breakdown of SAPLE Searches by type. Type names correspond to entries in Table 5. The

data show that single-token name searches and organization-related searches form the majority
of the queries processed by SAPLE. 33

16 SAPLE search usage (frequency) for the top 5,000 SAPLE users . 36
17 SAPLE Searches by Title (Grouped) . 37
18 Breakdown of SAPLE Searches by Title . 37
19 SAPLE Algorithm Computation Time by Search Type . 40
20 Distribution of SAPLE Computation Times, Fastest 99%. Approximately 1% of the slowest

queries have been removed as outliers. The distribution exhibits clear trimodality, which is
correlated to the actual type of search performed and resulting computational complexity. . . 41

Tables

1 Example Index Entries . 16
2 Example Alias Table for Job Title (plural entries removed for brevity) 23
3 Score computation table for user query “Tayler” vs. candidate matches “Taylor” and “Tyler” 28
4 Score computation table for user query “Consillo” vs. candidate matches “Cancilla” and

“Castillo” . 28
5 SAPLE Searches by Type . 32
6 Top 50 SAPLE Search Queriesa . 34
7 Random 200 SAPLE Search Queries . 35
8 SAPLE Searches by Title (All Titles) . 37
9 SAPLE Search Sources . 38
10 SAPLE Computation times and count by query type . 40

6

1 Introduction

SAPLE (Sandia Advanced Personnel Locator Engine) is a web-based personnel search engine, also referred
to as a directory application. Its purpose is to return Sandia personnel “results” as a function of user search
queries. A variety of personnel-related query mechanisms are supported; for example, “Chris Smith” would
find and return all such individuals at Sandia, while “5527” would return a roster of results of all personnel in
Sandia’s Organization 05527. As of this writing, SAPLE is deployed laboratory-wide at Sandia and services
an approximate query load of 10,000 personnel searches daily.

SAPLE’s mission is to make it easier and faster to find people at Sandia. To accomplish this, SAPLE
breaks from more traditional directory application approaches by aiming to return the correct set of results
while placing very minimal constraints on a user’s query. This mission, which is focused on the user experi-
ence, largely informs the requirements of SAPLE and drives many engineering and architectural decisions.

SAPLE’s aim to make finding people at Sandia easier and faster results in some key differences versus
traditional directory approaches. Most notably, legacy approaches enforce certain constraints on the user’s
query (and hence the user experience). For example, search queries must be in lastname, firstname

format; the user must not omit a comma; spelling must be exact; search terms such as phone number or job
title are not supported; compound queries are not supported; and so on.

Beyond concerns about the user experience, the primary drawbacks to legacy directory applications
generally pertain to search quality concerns, i.e., retrieving correct results for the user:

• It may require the user several attempts to identify the person for whom they’re searching;

• It may require a significant amount of the user’s time to identify the correct person from a large,
unranked list of results;

• Given what vague information a user knows about some individual in question, in may not be possible
to find that person with traditional directory searches.

Existing legacy personnel directory approaches at Sandia have been generally effective in providing a
nominal search capability, which is certainly improved in many ways over manual hardcopy directory-based
methods. SAPLE, as shown in Figure 1, represents a natural, next iteration for this capability, in much the
same way as other information technology services at Sandia have also improved over time (for example,
Techweb, Sandia’s Intranet). In general, SAPLE is designed less like a legacy web tool, and more like a
contemporary search engine such as Google. In particular, SAPLE uses advanced algorithms operating on
an index, an internally constructed representation of raw personnel data, from which a ranked list of all
applicable results (personnel) is computed and returned.

1.1 Emergence of Advanced Web Applications

In recent years, a number of factors have come together to motivate and enable the design and deployment
of a search application like SAPLE.

• There is now a mature, generally robust infrastructure for developing and supporting contemporary
web applications like SAPLE at Sandia. Corporate-maintained Middleware services such as Web
Logic Server and Enterprise Database services such as SQL Server are central components of this
infrastructure. Moreover, Sandia employs key personnel to maintain these resources, which allow
application developers to spend more time focusing on their primary task, software engineering.

• High-level, mature, and widely adopted programming languages, such as the Java programming lan-
guage, are now common and supported in corporate environments. These languages have improved

7

over the course of 15 years, to include very important and enabling programming constructs, such as
those required for multithreading (concurrent) programming. These languages (Java in particular) are
well supported by the corporate server environments available at Sandia.

• SAPLE and other search engines require the use of advanced search algorithms to generate their internal
indexes, search results, and associated ranking of output. These algorithms, many of which appear
only in the recent literature from the past 15 years, enable increasingly sophisticated and relevant
output from search engines.

• Sandia has placed great focus on hiring and retaining Computer Scientists, who are comfortable operat-
ing in environments which require knowledge in many areas. Beyond up-to-date software engineering
using contemporary programming languages (such as Java) and recent best practices (unit testing,
agile development methodologies), these individuals have experience with algorithm design, analysis,
and optimization, and in many cases, experience with large-scale applications in high performance
computing contexts.

• Increasingly, users are demanding richer and richer capabilities and user experiences.

1.2 Related Work

The use of computational methods for improving directory-based lookup services dates back to the 1980s
[12], while methods that help link related last names together for census purposes have been described in
the early 1900s [7]. More sophisticated solutions have been developed over time and for varying purposes
[14]. The record linkage problem [11] and the related duplicate record detection problem [4] are well studied,
and pose challenges to domains as diverse as informational retrieval and databases [20] to biology [3]. The
approximate string matching function in SAPLE is a composite of many algorithms found in the above
references. Excellent surveys of direct relevance to SAPLE’s approximate string matching task are provided
[18], [1], and [10].

String-Similarity Metrics

The basic principles of fuzzy string matching, also known as inexact or approximate string matching, have
been known for some time (here, string refers to a series of one or more letters). For example, string-based
similarity metrics are used in inexact text searching command-line utilities built into the Unix and Linux
operating systems, most notably, agrep (for approximate grep [17]).

As another prevalent example, the spell checker feature found on many modern day word processors
is based primarily on the “string distance” metric, in which words “closest to” some unrecognized word
are identified and presented to the user as suggested spellings for the misspelled word. This spell check
capability dates back to research from the late 1970’s; implementations of spell checkers first appeared on
personal desktop computers in the early 1980s, becoming common later that decade.

Traditionally, spelling suggestions were determined by taking those words in a known dictionary with
small Levenshtein distance values to the misspelled word. For example, “keybord” and “keyboard” have
a very small Levenshtein distance (only one letter needs to be added to “keybord” in order to match
“keyboard”), so “keyboard” would be suggested by the spell checker. Meanwhile, words in the dictionary
with large Levenshtein distance to the misspelled word would not be included in the list of suggestions.

The Levenshtein distance is a canonical string-distance algorithm and is more commonly known as “edit
distance.” There are many variants of the basic edit distance algorithm; for example, different penalties can
be applied for different types of transformations (insertions, deletions, and swaps) when trying to make a
misspelled word match some known word. Other string-based similarity metrics are known; for example,
longest common subsequence and longest common substring both return values that are indicative of string

8

similarity. More esoteric approaches are also known, for example Smith-Waterman [3], Jaro-Winkler [16],
and n-gram [15] metrics. For a survey of these and related string-based similarity metrics, see [2].

Phonetic Algorithms

In addition to the string-based similarity metrics described above, so-called phonetic methods are also known.
These methods consider not just the letters in the string, but also how the string is pronounced. Such
phonetic-based approaches are used for many tasks today, for example, contemporary spell checking modules
that utilize both string-based and phonetic-based similarity measures [8].

One of the earliest examples of a rule-based phonetic method is the Soundex algorithm [9], a crude
method patented in the early 1900s and used by the United States Census during that time [7]. With this
method, “procopio” and “persopio” both return an encoding of p621, and would be declared a phonetic
match. A number of issues occur in practical use of Soundex leading to low-quality phonetic matching, and
Soundex is therefore not in widespread use today.

More contemporary phonetic approaches include the Double Metaphone algorithm by Lawrence Philips
[13]; the operation is similar to Soundex, but uses a much larger encoding rule set and is generally considered
more effective. Other methods, such as Phonix [5] [6] and the New York State Identification and Intelligence
System (NYSIIS) phonetic code [14] are also known. An important hybrid algorithm that combines both
distance-based and phonetic-based approaches is the Editex algorithm [19]. This algorithm is an extension
of the Levenshtein (basic edit distance) algorithm, but phonetic similarity is considered when computing the
cost of each transformation (substitution, swap, etc.) and the final similarity score (string distance) is thus
a combination of both the transformations required and the letters involved.

Phonetic algorithms can be very powerful but suffer from being generally language specific. This is due
to the various phonetic encodings and equivalences in such algorithms being tuned to the pronunciation of
one particular language. Because sounds vary from language to language, it is very difficult to create a
universal phonetic algorithm, and that is why many of the algorithms noted above have direct equivalents in
different languages. Consider the double consonant sequence “ll.” In Spanish-language names, this sequence
is almost always pronounced like the English “y.” In English, and even in other closely related Latin-derived
languages such as Italian, it is pronounced as the consonant “l.” Many other examples exist.

Certainly, it is possible to create or even modify an existing algorithm with this phonetic equivalence.
However, if not done carefully, such an algorithm will do better for some names, but will negatively impact
the search quality on others. Nonetheless, as shown in Table 6, five out of the six most frequent name queries
in SAPLE’s search logs are for Spanish-language last names. This finding supports investing future effort
on improving the phonetic-based search algorithms used in SAPLE to perform better for Spanish-language
last names.

Examples of Approximate String Matching

Although somewhat rare in the early 2000s, examples of approximate string matching had become widespread
by late that same decade. Most of the major websites which accept typed user queries as input use some form
of approximate string matching. For example, as shown in Figure 3, the websites Facebook.com, Google.com,
and Amazon.com all have this capability built in. In each of these three examples, poor results would have
been returned for the user’s initial query on an “exact match” basis. Therefore, a query close to the initial
query (in terms of edit distance or phonetic similarity) that returned good search results would instead be
suggested; in these cases, the suggested query is actually used instead of the user’s initial query. This same
behavior—returning high-quality search results for the user’s intended query—is found in these and many
other major web sites found on the Internet (including eBay, Yahoo!, YouTube, Wikipedia, and so on).

9

1.3 Searching with SAPLE

Figure 1 shows the home page for the SAPLE application, located at http://saple.sandia.gov. Figure 2
shows two screenshots of SAPLE in action. In the first, the search results for user query gensalis tech

staff ipoc are given in Picture View. In the second, a roster listing for Organization 10501 is shown in
List View, as returned by the user query 10501.

Figure 1: The SAPLE Home Page (http://saple.sandia.gov).

1.4 Organization of the Paper

This paper is divided into two general sections; the first half introduces SAPLE, while the second half
presents an analysis on the logged query data for an 11-week sample period. In Section 2, SAPLE’s three-
tiered application architecture is presented in detail, as well as the structure of its internal indexes. In
Section 3, SAPLE’s methods for interpreting the user’s query are examined. Section 4 presents SAPLE’s
internal search and ranking algorithms. SAPLE’s web service, which permits external application developers
to use SAPLE, is described in Section 5. An extensive analysis on logged query data is presented in Section 6.
Finally, conclusions and areas for future work are given in Section 7.

10

(a) SAPLE Screenshot for user query gensalis tech staff ipoc. Here, the user intends to show all technical staff
(STAFF-TECH) in the IPOC building with “Gonzales” as their last name. The search is still successful, despite
misspelling Gonzales as “gensalis.”

(b) SAPLE Screenshot in “List View” showing the org roster listing for Organization 10501, returned by a user query
of 10501.

Figure 2: Screenshots from the SAPLE application.

11

(a) Facebook.com screenshot showing approximate string matching; here, “sharron perco-
pio” is correctly mapped to “sharon procopio.”

(b) Google.com screenshot showing approximate string matching; here, “james camrin” is
correctly mapped to “james cameron.”

(c) Amazon.com screenshot showing approximate string matching. Here, the user query
“nonparimetric statistical methods” is correctly mapped to “nonparametric statistical
methods.”

Figure 3: Screenshots for Facebook.com (a), Google.com (b), and Amazon.com (c) websites demonstrating
use of approximate string matching. In all three cases, inexact (or fuzzy) string matching algorithms are
used to determine more likely user queries, and the results for the predicted user query are instead returned.
Instead of returning “zero results found,” the correct set of results for the user’s intended query is displayed.

12

2 Architecture and Implementation

SAPLE is based on a standard, three-tier web application architecture comprising a data layer, an appli-
cation or business logic layer, and a presentation layer (Figure 4). The presentation layer is the part of
the application that the user interacts with through their browser; in this layer, queries are submitted by
the user, and results are displayed in response. The query is interpreted according to rules found in the
application/logic layer; query interpretation is discussed in Section 3. Also in the application/logic layer,
various search algorithms, described in Section 4, are used to compute the similarity of the user’s query
to each person in the personnel index. This personnel index (described below) is created from underlying
personnel data by querying Sandia’s personnel databases using stored procedures, all of which is done in
the data layer. Finally, the scores are tabulated, sorted, and the ranked list of results is returned to the
presentation layer for display to the user.

This approach differs from the simpler architecture used by legacy directory applications. These simpler
approaches—for example, Sandia’s legacy directory application—do not contain a true application layer, as
illustrated in Figure 5. Instead, in the simpler legacy approach, user queries are formulaically translated into
SQL query where clauses, and passed directly to the data layer as a database query. The raw results from
the query (rows in the database selected by the where clause) are then returned to the user (in this case,
with minimal processing).

Figure 4: SAPLE three-tiered application architecture, containing a presentation layer, an application layer,
and a data layer.

13

Figure 5: Legacy Directory application architecture. In contrast to a three-tiered application architecture
(Figure 4), here, the layers are less distinct; business rules may be contained in the presentation and/or data
layers.

2.1 Personnel Index

The inclusion of an application layer enables most of the advanced functionality present in SAPLE. In
particular, it is in this layer that the personnel index is created. This index is a condensed, optimized,
in-memory representation of the information for all personnel searchable by SAPLE. Each entry in the index
corresponds to one individual, and comprises standard attributes about them (location, phone number, etc.)
as well as custom values computed from the standard attributes when the index is created.

In the application layer, the index is created by a call to a stored procedure exposed in the Microsoft
SQL Server SAPLE database maintained by Sandia’s Enterprise Database Administration team. The stored
procedure contains a simple SQL SELECT statement, which for efficiency returns a subset of selected at-
tributes (i.e., database columns or fields) for selected personnel (i.e., database rows or entries). The stored
procedure retrieves records from an SQL Server view of the ePerson table. This view enables access to
an exported subset of records and attributes retrieved from a larger, more comprehensive set of personnel
records (namely, PeopleSoft).

The raw ePerson table (view) is quite large, containing 209,549 entries for the production ePerson export
at last count. As noted above, for efficiency, the stored procedure only returns a subset of this information.
In particular, the attributes chosen to return in the stored procedure’s results include only those required
by the SAPLE application itself (these appear in the SELECT statement).

Importantly, only a fraction of the actual entries in the ePerson table are returned. Currently, 21,706
entries of the 209,549 are returned (10%). This is because only active personnel (to include those personnel
on leaves of absence) are included in SAPLE results; former employees including retirees are not included.

The actual SELECT statement used in SAPLE’s stored procedure for retrieving personnel records is
shown below:

14

SELECT SNL ID, SL OPERID, SL FIRST NAME, SL MIDDLE NAME, SL LAST NAME, SL NAME SUFFIX,

SL NAME, SL NICKNAME, SL JOBTITLE ABBRV, SL MAILSTOP, SL FAX, SL CELL, SL AREA MSTR CD,

SL SITE MSTR CD, SL STRUCT MSTR CD, SL ROOM MSTR CD, SL WORK PHONE, SL DEPTNAME ABBRV,

SL JOBTITLE, SL JOB FAMILY, SL JOBFAMDES, SL PGRNM, SL URL, SL LOCATION ID,

SL REL STATUS, SL REL NAME, SL REL SNAME, SL EMPL TYPE, SL EMAIL ADDR

FROM extcopy.dbo.eperson

WHERE ((SL REL STATUS = ’A’ OR SL REL STATUS = ’L’))

ORDER BY SL NAME

2.2 Organization Index

SAPLE includes in its results certain organizational information, such as department name, homepage web
URL, manager of record, and secretary of record. Because this information is not available in ePerson, a
separate, smaller index is created, similar to the personnel index. This organization index is generated along
with and in the same manner as the personnel index. It currently contains 1,085 rows.

This information is generated by a stored procedure that creates an SQL join of the SL DEPT URL VW
table with the SL ORGN table using a field common to both, the organization number. Table SL DEPT URL
VW includes name and homepage web URL attributes, while table SL ORGN contains the SNL IDs of the
managers and secretaries of record for each organization.

When generating results, entries in the organization index are referenced as needed, using the organization
number as the lookup key. For example, when a user searches on “5527,” the organization name, web address,
manager, and secretary are retrieved from the organization index and displayed accordingly, followed by the
staff in that organization (whose information in turn comes directly from the personnel index).

The SELECT statement used in the stored procedure to generate the organization index is shown below:

SELECT extcopy.dbo.sl orgn.SL ORGNUM, extcopy.dbo.SL DEPT URL VW.DESCR,

extcopy.dbo.SL DEPT URL VW.SL URL, extcopy.dbo.SL DEPT URL VW.SL DEPT DESCR,

extcopy.dbo.sl orgn.MANAGER SNL ID, extcopy.dbo.sl orgn.SL SECRETARY ID

FROM extcopy.dbo.SL DEPT URL VW INNER JOIN extcopy.dbo.sl orgn ON

extcopy.dbo.SL DEPT URL VW.DESCRSHORT = extcopy.dbo.sl orgn.SL ORGNUM

WHERE extcopy.dbo.sl orgn.SL STATUS CD = ’A’

2.3 Motivation for Indexing

The indexes are maintained in main memory (RAM) on the web application server, enabling the search
algorithms to operate much faster than if the index were kept on disk. In fact, performance is the primary
motivating factor of creating and maintaining a custom search index in RAM. In particular, the using an
index prevents multiple repeated calls to the backend databases; not only is making such a call for each user
query inefficient (resulting in increased latency), but such calls could become burdensome to the database
servers handling the requests. With an index, only a single call to the databases is needed when the index
is created or refreshed (which may happen several times per day).

Maximizing precomputation is a key component motivating creating and maintaining an internal index.
The index permits as much as possible to be precomputed when the index is created (e.g., phonetic encodings
of names), improving latency (response time) for use queries. This in turn enables certain search algorithms
to operate very efficiently; because these algorithms can be computationally intensive, it is important that
as much as possible be computed ahead of time during index creation.

15

For example, SAPLE uses phonetic (sound-based) search algorithms that can identify that “humfrey”
sounds like “humphrey.” To accomplish this, the phonetic encodings are computed; in this fictitious example,
both could would be represented as “HMFR.” Rather than re-compute the same phonetic encoding for each
name in the index every time a search is done, this only needs to be done once, at index creation time. The
only cost is a small amount of extra space, but this reduces search time (latency) for the end user vastly
(e.g., by an order of magnitude). Not all algorithms are able to be optimized in this manner, but many are.

Additional details regarding SAPLE’s search algorithms are presented in Section 4.

2.4 Creation of the Indexes

Creation of the personnel and organizational indexes happens in two ways. First, the indexes are created
whenever the application is freshly deployed (i.e., when no index currently exists). The same behavior
effectively happens when the corporate servers hosting SAPLE reboot, and the application effectively gets
re-deployed.

SAPLE is also designed to refresh its index periodically throughout the day. The frequency of rebuilding
the indexes can be easily controlled in the program source code. Currently, the indexes are set to refresh
every four hours, with the intention being to pick up “live” changes to personnel data throughout the day.
The frequency of the underlying ePerson data refresh is only once per day at present. Nonetheless, refreshing
every four hours ensures that SAPLE “picks up” the nightly-refreshed ePerson data within a reasonable time
window.

Actual creation of the two indexes takes approximately 15 seconds. Therefore, when SAPLE determines
the indexes are over four hours old, it triggers a rebuild process in the background using Java-based multi-
threading/concurrent programming constructs. This monitoring check itself happens only upon a user query.
While the new indexes are being refreshed in the background, current searches continue to be handled using
the existing index. When the background index build process is complete, the old indexes are instantly
replaced by the new ones, transparently to users, and SAPLE queries after this point will use the updated
indexes.

2.5 Querying the Index: An Example

Table 1 shows a figurative excerpt from an index for four Sandia staff members. The first two columns,
first name and last name, show actual attribute data (columns) from the underlying database tables. The
last two columns show the phonetic representations of both the first and last name for each person, as
computed by the Double Metaphone algorithm (see Section 4.1). Computation of these is time intensive,
and only needs to be done once, ahead of time, during index creation.

Now, consider a user’s hypothetical query of Mickeal Percoppia. Before comparison, the phonetic
encoding for each term in this query is computed—MKL PRKP—and then compared to the precomputed
phonetic encodings of each the name in the index. Because the phonetic encodings computed for the user’s
query match those computed earlier in the index, the “Michael Procopio” index entry would be scored highly
in this example.

Table 1: Example Index Entries

first name last name org first phonetic last phonetic

Bettina Schimanski 01234 PTN XMNSK
Samuel Cancilla 01234 SML KNSL
Michael Procopio 01234 MKL PRKP
Jesse Flemming 01234 JS FLMNK

16

2.6 Implementation Technologies

In addition to the three layers in the SAPLE architecture, Figure 4 also shows the associated technologies
for each layer. In the presentation layer, a user uses a web browser, such as Google Chrome, Mozilla FireFox,
or Microsoft Internet Explorer to view the main SAPLE search page. This is the user interface. The web
page is programmed in HTML (HyperText Markup Language), which is created by a user interface designer.
The designer also creates accompanying CSS, or cascading style sheets, which controls how the page appears
in terms of layout, fonts, spacing, colors, and so on. The application developers add in JavaScript code,
which enables certain rich user interactions in the presentation layer, for example, switching between views
and handling other user input. Finally, all of this is rendered on the server side by Java Server Pages, or
JSPs, which get compiled to Java servlets on the back end. These JSP pages are responsible for returning
structured blocks of HTML code back to the user, and will vary depending on the user’s query and other
parameters. For example, the SAPLE JSP page will return HTML to render a “picture view” (with badge
photos) or a tabular “list view,” depending on the user preference. Browser cookies are used to store user
preferences such as this in between browser sessions.

The application layer is written entirely in Java Enterprise, formerly known as J2EE. This is essentially
the core SAPLE application, and it is hosted on a Java Enterprise application server. At Sandia, corporate
resources provide and support the use of Oracle Corporation’s Web Logic Server. The particular server—
which at Sandia, is divided among development (webdev), quality (webqual), and production (webprod)
server instances, controls the execution of server side Java code associated with SAPLE. This includes the
SAPLE Java code to create the internal personnel and organization indexes, the code needed for search
query interpretation (see Section 3), as well as the search algorithms themselves.

Finally, in the data layer, Java modules known as Java Database Connectivity, or JDBC, components are
called to execute stored procedures hosted on the database server. Here, Microsoft SQL Server is used, as this
is a corporate-supported solution at Sandia; other database options, such as Oracle, are also available. The
stored procedures are written in Microsoft’s transact-SQL extended database query language. The stored
procedures query the underlying data source very efficiently. Here, this data source is a view of selected
personnel data for selected individuals, that is built nightly from the core Sandia personnel data repository,
PeopleSoft. The stored procedures return a set of results, which are processed by the JDBC components,
and returned to the application layer where they are transformed accordingly to form an index.

17

18

3 Search Query Interpretation

SAPLE supports searching on a variety of fields ; for example, searches can be performed by specifying not
just name, but also organization, mailstop, building, employee type, etc. Moreover, compound searches can
be performed, in which only personnel who match all specified query terms are returned (for example, “10221
lab staff”).

In a traditional personnel search approach, multiple text boxes, one for each field, are presented to the
user; the user must identify which fields and textboxes to place the various terms relevant to their search.
This is shown below in Figure 6.

Figure 6: Multiple search fields (input text boxes) in the Legacy Directory personnel search application.

In contrast, search engines such as Google use the single search box approach; Figure 7 provides an
example. Here, the actual search query text is procopio filetype:pdf site:sandia.gov; in fact, the real
search query is “procopio,” but additional search specifiers—in this case, file type and website—can also be
provided. These field:value pairs are automatically identified and parsed from the query, and influence
the operation of the search.

Like Google, SAPLE adopts the single search box approach described above. In this sense, SAPLE’s
single search box approach is not novel, nor is its use of key/value pairs. SAPLE’s use of a single search box
was a decision made in support of SAPLE’s aim to make searching easier for the user, and has been generally
well received. Nonetheless, some users may prefer the multiple-field method for searching, perhaps in part
as it provides “prompts” for fields a user could search on. In this sense, a multiple-field search approach
may allow for better discoverability of search features. SAPLE still allows this search method by use of its
“Advanced Search” screen, shown in Figure 8.

In SAPLE’s single search box approach, the user’s search query is intelligently interpreted in order to
infer the query fields and their corresponding values. Achieving this in practice requires two capabilities.
First, multiple field:value pairs must be parsed from the user’s query string (for example, org:5527
type:staff-tech). The second capability is described below.

19

Figure 7: Google.com interpretation of multiple query parameters from a single text string input

Figure 8: SAPLE’s Advanced Search screen. The values entered in by the user for each text box are
consolidated into a single string with multiple field:value pairs, illustrated in Figure 7.

20

3.1 Inference of Query Terms

The second capability needed to support a single search box approach is the inference of query terms.
To illustrate, consider the Google search query described above. What if, instead, the search query were
procopio pdf sandia.gov? In this case, it seems clear that the user had the same or similar intention as
the search procopio filetype:pdf site:sandia.gov; it can be inferred that the user means to constrain
the search to PDF files. It is less clear whether or not they mean to constrain their search to only PDF
files hosted on the *.sandia.gov website, or if they are looking for PDF files that contain both procopio

and sandia.gov. This is representative of the challenges and ambiguities that can occur when attempting
to perform automatic inference on a single-box search query.

In SAPLE, where possible, field names are inferred if only corresponding values are provided; so 5527

staff-techwill be inferred as org:5527 type:staff-tech. This is one of SAPLE’s most important features
in support of efficient and accurate personnel searching. The aim is for the user to be able to specify whatever
information they know about a person. As another example, if a Sandian met someone named Mike “P-
something” while walking to a meeting in Area 1, they could search Mike P tech staff TA1. Here, SAPLE
would know that “tech staff” refers to an employee type, and “TA1” refers to a work area, and hence the
interpreted query would be Mike P jobtitle:tech staff workarea:TA1.

Figure 9 presents an example of SAPLE’s automatic query interpretation. Here, the query M Proco 5527

845-9653 Employee 758 tech staff TA1 is automatically interpreted as M Proco org:5527 phone:845-

9653 employeetype:Employee building:758 jobtitle:tech staff workarea:TA1. In a very important
usability feature, SAPLE’s interpretation of the user query is always rendered back to the user so that they
may confirm the automatic interpretation or make adjustments accordingly. In this example, organization,
phone number, employee type, building job title, and work area were all automatically parsed and interpreted,
leaving the remaining query terms, “M Proco,” for the actual name component of the search.

SAPLE is able to perform field name inference for many values through a careful partitioning of the
input space. For example, numerical values of seven digits or larger is probably a phone number; three to
six digits is (likely) an organization number. However, such a number could also be a building number of a
mailstop number. Such collisions in the input (or search) space demonstrate how challenging it can be to
reliably automatically interpret certain types of queries.

Figure 9: Example of a compound query (i.e., query with multiple field:value pairs)

21

3.2 Cautious Query Inference

To cope with the above challenge, we take a number of approaches. First, some fields are not automatically
inferred; for example, mailstops are never inferred and so must be used with the mailstop: or ms: field
name prefix. For the same reasons (potential collisions with buildings, orgs, etc.), Sandia IDs (or SNL IDs)
are never inferred and so must always be prefixed with the field name (snlid:71569).

Sometimes, a potential collision is identified, but we can be reasonably sure of the user’s intention. For
example, the query 6710 probably refers to Organization 6710 (since, as shown in the analytics in Section 6.2,
organization queries form a larger percentage of SAPLE searches than building queries). In this case, an
actual search for org:6710 is inferred and performed, but the user is presented with an option to run their
search as a building search, as shown in Figure 10. This is a data-driven design decision.

The third primary mechanism for performing automatic query inference is to use an alias lookup table,
which identifies certain search terms as values that can only be paired with a specific field. For example,
when TA1 is encountered, it is natural to infer that the user means workarea:TA1. area 1 is similarly
associated with the workarea prefix (field name), i.e., it is an alias for TA1. The same general example
applies to job titles; the terms manager, mgr, and level 1 mgr can all be considered aliases and interpreted
as jobtitle:manager. Table 2 provides an condensed example of the alias lookup table for the job title

field.

Care must be taken so as to not automatically associate a legitimate query component for the name
portion of a query with a value keyword. In the above situation, it seems unlikely that a user searching on
manager would actually mean to search for someone named manager. (However, this query interpretation
behavior can be overridden by specifying the name: prefix, i.e., name:manager, and people named “Mansker”
and “Manzer” will show up.) This situation illustrates the fine line between maximizing automatic interpre-
tation accuracy and convenience for the user, while not misinterpreting their intention. For example, for the
Nevada Test Site, NTS would be a useful query that could reliably interpreted as worksite:nts and so it is
considered an alias. On the other hand, using “Nevada” as an alias would be bad, since there are in fact
staff at Sandia with that last name and somebody searching for “Ernie Nevada” would be surprised to get
a listing of all staff at the Nevada Test Site instead!

Figure 10: Example of a “search space collision,” in which a ambiguous value (not specifically associated
with a field name), if the field name is inferred, could be associated with multiple fields. In this case, the
user query 6710 could be in reference to both Building 6710, or Organization 6710, both of which are real
entities.

22

Table 2: Example Alias Table for Job Title (plural entries removed for brevity)

Title Alias Alias Alias Alias

MANAGER MGR Level 1 Manager Level 1 Mgr

Ombuds Ombudsman

POST DOC Post Doctoral Postdoc

SR ADMIN Senior Admin Senior Administrator

SR MGR Senior Manager Level 2 Manager Level 2 Mgr Sr Manager

STAFF-LAB Lab Staff Laboratory Staff Stafflab Labstaff

STAFF-TECH Tech Staff Technical Staff Stafftech techstaff

STUDNT INT Intern Student Student Intern

3.3 Implementation of Query Parsing

In implementation, SAPLE uses a sophisticated regular expression matching scheme, in which tokens of the
query are matched to their most likely field names, with preference being given to longer string matches and
certain hard-coded priorities where applicable. Such an approach makes case-insensitive and plural matching
generally easier, and the matching itself is extremely reliable once the intricate regular expression patterns
are designed and tested.

SAPLE also supports limited natural language search, by using a simple, naive scheme for selective
removal of certain tokens. For example, a select list of verbs such as “show all,” “search for,” and “return”
are pruned behind-the-scenes from the user’s search. Similarly, quantifiers appearing after a verb such as “all”
and “only” are removed, as are certain prepositions. The result allows for queries such as show all tech

staff at snl/ca in center 8600 to be successfully evaluated, although log analysis shows that natural
language queries are not common.

23

24

4 Scoring and Ranking Search Results

At the very core of SAPLE lies its ability to return a set of personnel results matching the user’s query,
with the constraint that the top-most results are the highest ranking, that is, best scoring. Implicit in this
general approach is that each person in SAPLE’s personnel index must be scored with respect to the user’s
query. The scores are sorted, with the resulting ranked list of results returned to the presentation layer for
display to the user. This general approach is analogous in principle to that taken by other search engines.

SAPLE’s scoring mechanism comprises two parts, and the exact scoring operation will depend on the
nature of the search query. As discussed in Section 3, SAPLE handles compound queries, which can comprise
both name tokens and filters. Name tokens refer to those search tokens (components of the search string)
that are intended to match part of a name—first, last, nickname, etc. These tokens are used by the search
algorithms (discussed below) to score matches in SAPLE’s personnel index.

In contrast, a filter is designed to exclude certain results altogether. For example, in the query mike

percoppia tech staff, “mike” and “percoppia” are name tokens, while “tech staff” is a filter that con-
straints the results to only those individuals whose employee type is STAFF-TECH. Other filters include
organization filters (org:5527), building filters (building:758), mailstop filters (ms:0401), and so on.

In practice, filters are evaluated first, because they are computationally inexpensive to evaluate. (They
prune the number of results that must next be considered by the more expensive approximate string matching
algorithms.) Because SAPLE supports multiple filters, filters can be combined together in a LOGICAL AND
operation such that results that do not match all specified filters (e.g., Filter A AND Filter B AND Filter
C) will be excluded from the results.

After evaluating any filters, each of the remaining results is scored by SAPLE’s search algorithms, using
any name tokens provided in the search query. If there are no name tokens provided, for example, if the
search query only consists of filters as would be the case for Division 5000 directors, then all of the
results that do not get excluded by the filter will be returned, and will have equal score. By default, results
with equal score will simply be returned in alphabetical order, last name first.

If one or more name tokens is provided, however, SAPLE will score each result in the personnel index
(i.e., any ones not already excluded by filters) using a series of search algorithms described below.

4.1 SAPLE Fuzzy Search Algorithms

When performing approximate string matching, SAPLE adopts an ensemble approach, in which the similarity
scores from multiple algorithms are considered. Further, some algorithms carry more weight than others, so
the resulting combination of the various algorithms’ scores is done in a weighted manner.

The algorithms used within SAPLE to score individual personnel index entries against the user query
are presented below. These algorithms are divided into two general categories: String Similarity Algorithms,
and Phonetic Algorithms. (See Section 1.2 for additional background on these algorithms.)

String-Similarity Algorithms

• Edit distance, see [2]; also known as Levenshtein distance. This algorithm calculates the minimum
number of replacements, substitutions, or deletions required to make two words exactly the same. This
value is normalized by a hand-picked maximum value (here, 10), and finally is subtracted from 1 to
arrive at the final score. Thus, scores will range on the interval [0, 1], with higher scores representing
“closer” (more similar) words. As an example, the edit distance to go from “apple” to “ape” is two
deletions. Here, the final similarity score will be 1 − (2/10) = 0.8, which is higher than the score for
“apple” to “apricot” indicating that the former pair is more similar than the latter.

25

• Prefix. A simple, special-use algorithm that rates the length of the prefixes that two words have in
common relative to the length of the shortest of the two words. This is accomplished by diving the
length of the common prefix by the length of the shorter of the two words. For example, “catastrophe”
and “cataclysm” have a common prefix of “cata” with length 4 out of a possible 9 because “cataclysm”
has only 9 letters. The similarity score for these two words is thus 4/9.

• Containment. This is a simple, special-use algorithm that checks if the search term is contained in
a name from the index. Being contained at the beginning of the word is preferred by being scored
a 1 while being contained anywhere else is scored as 0.5. A lack of containment is given a zero.
For example, the similarity score using containment of “dog” in “doghouse” will be scored a 1 while
the containment of “house” in “doghouse” will only receive a 0.5. For certain cases, this behavior
duplicates that of the Prefix algorithm described above. This illuminates the more general challenge
of an ensemble-of-algorithms approach; some algorithms will yield similar results for certain cases, but
different results in others, and can thus be said to overlap in some areas of input space.

Phonetic Algorithms

• Double Metaphone, see [13]. Calculates a phonetic encoding of two words according to the Meta-
phone algorithm, and checks if they are exactly the same. If so, the similarity score is 1; otherwise, it
is scored as zero. Double Metaphone focuses mostly on consonant sounds, like many other phonetic
encodings. This is based on the observation that as a group, vowel sounds are more easily confused
for each other in conversation and especially across dialects. Moreover, vowels can have widely varying
pronunciation depending on context (“said” and “bread”, “said” and “wait”). Because of this, the
Double Metaphone algorithm only considers the vowels that are the first character in the word and
even then, all vowels receive the same encoding.

• NYSIIS, see [14]. The New York State Identification and Intelligence System phonetic code is a
simpler encoding and with the same scoring strategy as Double Metaphone (score of 1 if encodings
match exactly, score of 0 otherwise). A custom set of encodings is present; for example “ph” and “pf”
both map to “ff’ in the encoding string. The encodings are stored as 32-bit integers, which limits the
length of the encoding and has the potential to destroy later evidence in the source words. This bias
towards considering later characters less is present in other similarity algorithms, however.

• Phonix, see [6]. Phonix is similar encoding and scoring strategy to Double Metaphone and NYSIIS.
Here, encodings are stored as 16-bit integers. The set of encodings shares similarities but also has
differences from the other phonetic encoding methods above. For example, “b” and “p” are equated,
as are “f” and “v.” One can see how these consonant sounds could easily be confused in conversation,
in particular with last names.

• EDITEX, see [19]. Editex is combination of both edit distance and phonetic similarity. As with
the Levenshtein algorithm, a basic edit distance is computed, identifying the requires substitutions,
deletions, and swaps required to transform one word to another. However, the costs (distances) incurred
for deletions and replacements are no longer constant; instead, they are a function of the phonetic
properties of the letters in question. For example, swapping “p” and “b” should incur lower cost than
swapping “p” and “l” because the former is more phonetically similar.

Other algorithms considered, but not used

Some algorithms were implemented for SAPLE and were, at one point in time, used within SAPLE. They
have now been excluded due to one of three reasons. First, some algorithms give poor performance in terms
of their impact on search quality (Soundex). Second, some algorithms were excluded because their output
was very similar to that of another algorithm already being used (Longest Common Substring/Subsequence).
Finally, some algorithms performed well, but their computational requirements were high, to the point of
causing unacceptable latency (i.e., low response times) in returning search results (N -gram).

26

4.2 Combination of Algorithms

The algorithms are executed independently, with each returning a match score. The resulting scores given
by the algorithm ensemble are combined on a per-word basis as a weighted average of all the algorithm
scores. That is, each algorithm is associated with a weight, with final combination for a particular name
part (first name, last name, nickname, etc.) being a linear combination of the algorithm’s score and its
associated weight. The composite score for the entire name is calculated as the product of the squares of
the per-component scores. In this sense, the best score is a 1 (first/middle/last name having a combined
algorithm score of 1, i.e., exact match), while the worst score is 0.

As of this writing, the algorithm weights have been hand-tuned by the developers after extensive testing
and observation. Editex and Edit Distance (Levenshtein) receive the majority of the weight in the algorithm
ensemble. The current weights are:

• Edit Distance: 0.3

• Prefix: 0.1

• Containment: 0.05

• Double Metaphone: 0.1

• NYSIIS: 0.1

• Phonix: 0.05

• Editex: 0.3

4.3 Examples of Algorithm Ensemble Combination

Tables 3 and 4 provide specific examples for how scores are computed in the above weighted ensemble of
algorithms. In Table 3, consider a user’s query for the last name “Tayler,” which is a misspelling and no
such last name exists in the Sandia personnel database. Phonetically, the user probably means “Taylor.”
On the other hand, the extra “a” could be a typographical error.

So, “Taylor” and “Tyler” then seem to be reasonable matches. The key question is: what should their
relative ranking be in the search results? Relative rank is the key question that must be answered by any
search engine. As described above, SAPLE takes the weighted linear combination of multiple algorithms,
including both string-similarity algorithms and phonetic algorithms.

In Table 3, the final score (represented as the sum of the weighted terms (the weighted combination) for
“Tayler” vs. “Taylor” is shown as the left number in the last row (0.86). The score for “Taylor” vs. “Tyler”
is shown as the right number (0.78). Because the score for “Tayler” vs. “Taylor” is higher than vs. “Tyler,”
the “Taylor” entry would be ranked higher. What accounts for the difference? Most of the algorithms rated
these two candidate matches the same. However, “Taylor” was a closer match than “Tyler” for the Prefix
algorithm, because the common prefix “Tayl” has 4 characters, normalized by a word length of 6, for a score
of 0.67. This is in contrast to “Tyler,” where the shared prefix “T” only has one character, normalized by
6, is 0.17.

Meanwhile, while both had the same Edit Distance score, Editex says the replacement of “e” with “o” to
make “Tayler” be “Taylor” costs less than the deletion of “a” to make “Taylor” be “Tyler.” With everything
else a tie, “Taylor” has a higher score because of these two algorithms rating it slightly higher. Note that an
interesting situation arises here; “Tyler” is both a last name and a first name. By convention, when there is
a tie, precedence in the ranking is given to last name. Therefore, everything else being equal, “Tyler” will
result in results with people with last name “Tyler” ranked higher than those with first name “Tyler.”

27

Consider another example in Table 4. Here, the user searches for the last name “Consillo,” where perhaps
they meant “Cancilla.” Another reasonable match could be “Castillo.” Here, “Cancilla” (final score of 0.58)
will be ranked higher than Castillo (final score of 0.37). As above, the Edit Distance algorithm reports the
exact same score, because in both cases, three letters must be replaced make “Consillo” match. However, the
Editex algorithm’s ability begins to show here. It treats a replacing vowels as less expensive than replacing
most consonants. Replacing the “ons” in “Consillo” with “can” to make “Castillo” is more expensive,
phonetically, than replacing two “o” characters in “Consillo” with “a,” and one “s” character with “c,” to
make “Cancilla.” This seems very intuitive.

The Double Metaphone algorithm also identifies the same phonetic encoding for “Consillo” and “Cancilla”
(KNSL) but not for “Castillo” (KSTL). The same applies to the Phonix. Overall, in the final weighted
combination (sum), “Cancilla” has a higher score and will be ranked higher than “Castillo.”

Table 3: Score computation table for user query “Tayler” vs. candidate matches “Taylor” and “Tyler”

USER QUERY: “Tayler”

vs. “Taylor” vs. “Tyler”

ALGORITHM WEIGHT SCORE WEIGHTED SCORE WEIGHTED

Edit Distance 0.30 0.90 0.27 0.90 0.27

Prefix 0.10 0.67 0.07 0.17 0.02

Containment 0.05 0.00 0.00 0.00 0.00

DoubleMeta 0.10 1.00 0.10 1.00 0.10

NYSIIS 0.10 1.00 0.10 1.00 0.10

Phonix 0.05 1.00 0.05 1.00 0.05

Editex 0.30 0.90 0.27 0.80 0.24

WEIGHTED COMBINATION (SUM) 0.86 0.78

Table 4: Score computation table for user query “Consillo” vs. candidate matches “Cancilla” and “Castillo”

USER QUERY: “Consillo”

vs. “Cancilla” vs. “Castillo”

ALGORITHM WEIGHT SCORE WEIGHTED SCORE WEIGHTED

Edit Distance 0.30 0.70 0.21 0.70 0.21

Prefix 0.10 0.13 0.01 0.13 0.01

Containment 0.05 0.00 0.00 0.00 0.00

DoubleMeta 0.10 1.00 0.10 0.00 0.00

NYSIIS 0.10 0.00 0.00 0.00 0.00

Phonix 0.05 1.00 0.05 0.00 0.00

Editex 0.30 0.70 0.21 0.50 0.15

WEIGHTED COMBINATION (SUM) 0.58 0.37

28

5 SAPLE Web Service

Across the laboratory, software developers have written a number of “home grown” personnel searches, each
custom-developed for one particular web application. A more efficient and cost-effective approach would be
to provide a centralized directory search service, implemented and made available as a web service for other
applications to use. Then, the various personnel search components across Sandia could be consolidated.
As a result, the software development and maintenance burden could be greatly reduced, while the user
experience—the person using the directory component in the web application—would be more uniform.

Further, to the extent that the centralized directory web service provides a more effective or easier to use
search capability, those benefits would accordingly be passed on to any client applications (both web and
desktop applications) making use of the SAPLE search service. Finally, using a centralized search service
with a single, clean interface encapsulates and hides a large amount of infrastructure complexity, freeing the
application developers from having to do any personnel database queries, custom string parsing, and so on.

5.1 Web Service Interface and Specification

SAPLE was designed to act like such a service; in fact, it could be said that the SAPLE web application
itself (at http://saple.sandia.gov) is just one example of many customized end-user applications making use
of, or consuming, the services provided by the SAPLE search engine.

SAPLE’s web services implementation is very simple, and is designed to allow very quick adoption with
minimal overhead in a software engineering context. SAPLE adopts a RESTful web services approach, which
does not expose a formal set of methods or RPC (remote procedure call) specification. Moreover, this ap-
proach does not require software overhead associated with more sophisticated web services implementations.
Such implementations may expose a WSDL (Web Service Definition Language) file, and may require the use
of SOAP (Simple Object Access Protocol) to transmit search queries and receive results.

In contrast, the SAPLE web service has a single URL-based specification to invoke a search:
https://webprod.sandia.gov/SAPLE/search?query=<user’s query here >. For example, one would use
the URL https://webprod.sandia.gov/SAPLE/search?query=procopio 5527 to use the web service to
search for staff members named “procopio” in Organization 5527. This in turn invokes the search servlet and
the search otherwise follows the same execution path inside the application as a search submitted through
the web interface (i.e., using the search.jsp file).

SAPLE returns search results in XML format. These results conform to a well defined specification,
provided to the user as an XML Schema file. This file can be accessed by anyone, and the URL to the file is
provided in the XML set of results returned in response to a query. The XML data returned is guaranteed
to validate against the XML Schema. Software developers can then develop their applications against this
specification. Figure 11 provides an example of the XML results as returned by the SAPLE web service, as
well as a snapshot of the XML schema specification to which the results conform.

Access to the SAPLE web service must be done in an authenticated context. Application developers
making use of the SAPLE web service are encouraged to create an entity account, which will be granted
access to the SAPLE web service once that entity account is added to the wg-saple-entityacctmetagroup.

29

(a) SAPLE Web Service XML Result Excerpt (b) SAPLE XML Schema Excerpt

Figure 11: Example XML result set from the SAPLE web service (left). XML Schema Excerpt (saple.xsd)
(right).

5.2 Example Client Application: Software Asset Management System (SAMS)

The first external application to use the SAPLE web service is the Software Asset Management System
(SAMS) application, which provides real-time, fully automated software acquisition and installation at San-
dia. SAMS provides software license tracking and an eCommerce-like online store, where customers acquire,
install, uninstall, and transfer software. Sandia personnel play a prominent role in this application, because
some software licenses are tracked at the individual level. Instead of custom-developing a one-off personnel
lookup component from scratch, the SAMS application developers simply connected to the SAPLE Web
Service.

All of the features of SAPLE—single-textbox query interpretation, inexact string matching, compound
query searches, etc.—are fully available to the SAMS application user. The SAMS software developers use
AJAX (asynchronous JavaScript and XML) to create a rich user experience, passing the user’s query to the
SAPLE service, parsing the returned XML result set, and dynamically presenting the results to the user in
a drop down list. Figure 12 shows SAPLE in use by the SAMS application.

Figure 12: Screenshot of SAMS Application. In this scenario, the query org 10501 lab staff has been
passed to the SAPLE web service via AJAX (JavaScript), and the XML result set returned by SAPLE has
been parsed and presented to the user in a dropdown list.

30

6 Analytics and Usage Analysis

SAPLE, by design, logs every search query performed in order to support extensive search analytics later
on. Such analytics can provide useful insights into how SAPLE is being used, and drive priorities for
future enhancement. For example, for the static analysis presented here, it was discovered that a small but
significant percentage of SAPLE search queries failing—i.e., those queries returning zero results—were due to
searches like mike 55 and 57 managers. Inspection shows that the user intended for the two-number search
term to be interpreted as the Center, i.e., Center 5500 and Center 5700. A small change in the SAPLE
program code was made and now the user is prompted with a “Did you mean: center 5700 managers” for
a query such as 57 managers. Similar analysis yielded search quality improvements for queries containing
three-digit organization numbers.

As described in the above scenario, log file analysis can be done on a one-time basis, but such analysis
can also occur on an ongoing basis, dynamically and in real-time, in order to automatically tune the search
system to yield increasing search quality over time. For example, the weights used in the linear weighting
scheme for combining the ensemble of algorithm scores (Section 4.1) could be tuned over time, if it was
found that one of the algorithms in the ensemble was more correlated with successful search. (This has been
done manually by inspection in the past, but such hand-tuning can be fragile and time consuming.) Such
dynamic or on-line tuning of the system is not currently in place, but could be an element of future work.

In order to quantify and characterize SAPLE usage patterns, an in-depth, one-time analysis was per-
formed. The following sections present key results and statistics from logfile analytics performed on SAPLE
query data during a sample period of 9/21/2009 to 12/4/2009.

6.1 General Usage and Load

One of the first questions that can be asked is, “howmuch is SAPLE used?” For the sample period (9/21/2009
to 12/4/2009), SAPLE was used to conduct 515,272 searches. Excluding the Thanksgiving holiday week,
this represents an average weekly load of about 48,727 searches. On standard business days, SAPLE received
about 10,687 queries per day on average during the sample period. On Fridays, as expected, the search load
was about half that, 5,292. (This is because at Sandia, a large number of staff work a compressed work week
in which every other Friday is taken off.) A chart showing the usage, broken out by day and grouped by
week, is shown in Figure 13.

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11
0

2000

4000

6000

8000

10000

12000

14000

N
um

be
r

of
 S

ea
rc

he
s

SAPLE Usage, Mon 9/21/2009 − Fri 12/4/2009

Figure 13: SAPLE Usage for Monday, 9/21/2009 – Friday, 12/4/2009.

31

Figure 14 characterizes the search load for one day, Thursday, 12/3/2009. SAPLE begins to see searches
around 6:00am, with the search load peaking between 9am and 10am, falling off slightly towards the middle
of the day (presumably to staff’s lunch period), resuming at slightly reduced rates in the afternoon, tapering
off around 4pm, and finally reducing to very nominal levels after 6pm. The heaviest search load appears to be
at a rate of approximately 1500 searches per hour, or about one search every two seconds. This corroborates
estimated search loads from a survey of Sandia staff familiar with the legacy directory application, and is
well within target search loads conducted in load testing of approximately 3,000 searches/hour.

6am 7am 8am 9am 10am 11am 12pm 1pm 2pm 3pm 4pm 5pm 6pm
0

100

200

300

400

500

600

700

800
SAPLE Usage, Thursday, 12/3/2009

N
um

be
r

of
 S

ea
rc

he
s

Figure 14: SAPLE Usage for Thursday, 12/3/2009.

6.2 Search Query Type Breakdown

The breakdown of search queries processed by SAPLE during the sample period is given in Table 5. Approx-
imately half of the searches performed (49%) consist of a single token name search, for example, martinez
or gardner. Half of the remaining searches (25% total) are organization searches, including Organization,
Business Area, Center, and Division. 20% of the total searches are name searches involving two tokens (e.g.,
last name, first name). The remaining 5% of the searches include searches for building, phone number,
mailstop, User ID, and related queries, as well as compound queries containing multiple query components
(e.g., Mike center:5500.

Table 5: SAPLE Searches by Type

QUERY TYPE COUNT % OF TOTAL

name (single token) 263899 49%

org 132657 25%

name (two or more tokens) 102747 19%

userid 24040 4%

other (bldg, phone, etc.) 12982 2%

compound searches 3690 1%

a Other category includes building, phone, jobtitle, mailstop, type, snlid, area, and room.

32

Figure 15: Breakdown of SAPLE Searches by type. Type names correspond to entries in Table 5. The data
show that single-token name searches and organization-related searches form the majority of the queries
processed by SAPLE.

Top 50 SAPLE Queries

The top 50 most frequent SAPLE queries are listed in Table 6. These 50 distinct query terms represent
approximately 5% of the total searches considered in the sample period, which is not particularly high; the
query space handled by SAPLE is quite large. Nonetheless, looking at this data can provide some interesting
insights into how SAPLE is used, which are confirmed in later analysis. Not surprisingly, the most common
searches in SAPLE are single-token last name searches. Names that are more heavily represented in the
Sandia population, such as martinez, chavez, and smith, generally receive proportionately higher search
density.

Observation yields that searches on Center (e.g., 5400) are also very common, although this can be
explained somewhat by considering there is a relatively small number of Centers at Sandia (approximately
50 to 60). A second factor that may contribute to this is the increased use of SAPLE to dynamically generate
organization rosters; in multiple places throughout the labs, department homepages are linking to SAPLE
to show listings at the Organization, Business area, and Center levels.

200 Random SAPLE Queries

Table 7 lists a random sample of 200 queries from the SAPLE logs during the sample period. This gives
a representative snapshot of the sorts of things that SAPLE is used to search for, as well as a rough point
estimate of the frequency of certain types of searches (this is characterized fully in later analysis). The data
comprise a variety of search types, from single-token last name searches (both wildcarded and not), org
searches, phone number lookups, User ID lookups, job title lookups, etc. Rarely, a non-personnel related
query, such as “video services,” shows up in the data; this indicates people, through one mechanism or
another, are on occasionally using SAPLE to search for something it is not designed to search for.

33

Table 6: Top 50 SAPLE Search Queriesa

RANK QUERY COUNT RANK QUERY COUNT

1 martinez 903 26 5400 450

2 2700 898 27 anderson 449

3 4211 777 28 trujillo 447

4 chavez 768 29 4000 439

5 smith 763 30 gonzales 437

6 garcia 753 31 6000 418

7 sanchez 674 32 org:9343 418

8 5700 673 33 5600 415

9 romero 660 34 1700 414

10 6700 610 35 6400 412

11 4100 595 36 lopez 411

12 5000 569 37 1500 405

13 jones 567 38 5300 404

14 montoya 548 39 5900 393

15 johnson 536 40 10500 392

16 lucero 523 41 10200 378

17 4200 510 42 gardner 368

18 davis 508 43 padilla 363

19 baca 508 44 4800 361

20 williams 489 45 2900 357

21 plummer 485 46 rivera 349

22 2600 477 47 clark 347

23 miller 466 48 gallegos 344

24 2000 453 49 walker 340

25 brown 451 50 moore 338

a Top 50 queries represent 4.7% of total searches.

34

Table 7: Random 200 SAPLE Search Queries

anaya org:2110 org:5579 kempka

shiplet 8446067 userid:drhelmi eppinga

miller,mark org:00421 orsbun coffey

4219 martin den rid goodrich

userid:jamaher phone:284-6327 video services djwilco

sanch sinclair 10600 nelson,sh

hill evantich curtis spence

amberg falconi business area:5340 5700

lon gutierrez, t slater steve

kowalchuk division:5000 org:8622 lo

harper smith robertson, donna chavez

lovato-teague alexander, richard userid:sakemme petersen

boruff 10503 org:9753 chen

felix Anderson 102633 dorsey

cook ewen ross,k gallegos,john

2700 eisenman romero, mary hall, g

org:00212 lau glover lovato

flores,c anderson, d dramer stubblefield

grach drayer johnsen userid:dmartin

neely 284-9986 org:6451 barclay

McLain 4211 chri org:1813

Hogue sanchez-godin farmer pitman

hale 5900 org:1516 STAKE

kim gallagher paz, l 4225 blackar

org:6736 hertel phone:5058450130 9383

vega-prue mckean, solis, p ayer

gallegos, grace montoya, charle Johnson, Alfred E koch, consta

jensen werhling userid:wrbolto Lingerfelt

2733 5343 polonis 5350

lopez,jose Lu 5900 witze

userid:bahendr mcdowel phone:8446568 sena

oneil hartman %Janet 4217

2662 ANDREW LOPEZ Hardesty glover, b

org:5353 Wakefield org:1526 brightwell

barbour org:42181 heckart hamilton, tom

chase mead,m preston mcilroy

martinez may, ro BARNETT, GRIFFITH

schorzmann gunckle phone:8457139 phone:8450555

delozier Naranjo 6330 cook, j

Duus center:6300 rondeau 10629

wheeler stayton, ann org:6338 Pickering

rogers drew parson Heyborne,Melanie 1800

phone:5052841246 anderson, robert Rom shaver

4211 gall org:8621 holle

1800 mert Mulligan 10263

garcia, p Montoya pope, r sulivan

lopez, mich org:9537 trujillo 4848

walck webb garcia, virginia lierz

userid:wdwilli 6760 title:MANAGER 1832

35

6.3 Search Usage by User

During the sample period, SAPLE was used by 9,936 unique users, which represents the majority of the
people with access to the search mechanism at the laboratory. The distribution of the searches was not
uniform across users, as shown in Figure 16. Some users had very heavy search loads (with six users with
over a thousand searches during the sample period). Others had more moderate loads, with half the users
represented in the population had 16 searches or less. Overall, the distribution exhibits an approximately
logarithmic trend.

0 1000 2000 3000 4000 5000
0

500

1000

1500

2000 SAPLE Search Frequency by User (Top 5000 Users)

User ID

N
um

be
r

of
 S

ea
rc

he
s

Figure 16: SAPLE search usage (frequency) for the top 5,000 SAPLE users

6.4 User Type Breakdown

Table 8 presents a full breakdown of SAPLE usage by user type, i.e., job title. Table 17 presents a consolidated
breakdown, with the resulting distribution charted in Figure 18. Overall, SAPLE usage is distributed quite
evenly across the various job titles across the laboratory. Management, technical staff, laboratory staff, and
administrative staff are all well represented.

A secondary analysis was performed in order to compare the distribution of SAPLE user types with
the overall distribution of Sandia’s general population. This analysis revealed that overall, Sandia technical
staff (including technologists) used SAPLE commensurate with their representation in the general popu-
lation. However, management, administrative staff, laboratory staff, and student interns all used SAPLE
approximately three times more frequently than their proportion in the general population would predict. In
contrast, contractors, including staff augmentation, used SAPLE less three times less frequently than their
representation in the general population.

36

Table 8: SAPLE Searches by Title (All Titles)

TITLE COUNT % TITLE COUNT %

STAFF-TECH 129596 24.0% GRP TRADES 4376 0.8%

CONTRACTORa 75048 13.9% LTD TERM 4208 0.8%

STAFF-LAB 70694 13.1% DIRECTOR 2458 0.5%

MANAGER 48445 9.0% POST DOC 1883 0.3%

OAA 41782 7.7% SECURITY 1854 0.3%

TECHNOLGIST 41322 7.6% GRADED 1814 0.3%

ASA 38779 7.2% TRADES 956 0.2%

SR MGT AST 18138 3.4% SR SCI/ENG 833 0.2%

MGMT ASST 17113 3.2% SR ADMIN 831 0.2%

TIER 14849 2.7% TEAM SUPVR 610 0.1%

SR MGR 9495 1.8% TEAM LIEUT 332 0.1%

STUDENT INT 8469 1.6% VICE PRESb 378 0.1%

TEAM LEADER 5536 1.0% OTHERc 1004 0.2%

a Includes Staff Augmentation.
b Includes VP-EXEC.
c Includes TEAM CAPT, OMBUDS, DSP/MFP, etc.

Figure 17: SAPLE Searches by Title (Grouped)

TITLE COUNT %

STAFF-TECH 129596 24.0%

ADMINISTRATIVEa 116643 21.6%

CONTRACTORb 75048 13.9%

STAFF-LAB 70694 13.1%

MANAGEMENTc 64684 12.0%

TECHNOLGIST 41322 7.6%

TIER 14849 2.7%

STUDENT INT 8469 1.6%

EXECUTIVEd 2836 0.5%

OTHERe 16576 3.1%

a Includes OAA, ASA, (SR) MGT ASST, SR ADMIN
b Includes PO Contractor, Staff Augmentation.
c Includes MANAGER, SR MGR, TEAM LEADR, etc.
d Includes DIRECTOR, VICE PRES, and VP-EXEC.
e Includes GRP TRADES, LTD TERM, GRADED, etc. Figure 18: Breakdown of SAPLE Searches by Title

37

6.5 SAPLE Search Sources

Table 9 lists the breakdown of SAPLE search sources, that is, where the SAPLE query is initiated. Currently,
the majority (69%) of SAPLE queries are initiated from Techweb (the search textbox in the upper-right hand
corner of the Techweb page). About 24% of the searches came from the SAPLE search header, the search
text box at the top of a SAPLE results page. Most of these are likely follow-up queries to the original query.
About 2.5% of searches came from the “Advanced Search” page (see Figure 8), with another 2.5% coming
from the SAPLE homepage (http://saple.sandia.gov). About 1% of SAPLE searches were done from
the search footer (the search text box at the bottom of a SAPLE search results page, suggesting that it could
be eliminated with minimal impact while making the user interface a little neater. Another 1% of searches
came from external applications; as of this writing, these are searches initiated from the SAMS application
(see Section 5.2).

SAPLE also tracks internal actions, which are not a user-typed query directly, but do represent a user
action; the bottom half of Table 9 provides the breakdown. There are a number of important inferences
from this data. First, users frequently click on the “Org Roster” listing for a specific entry. So if they were
searching for Joe Smith, about 10% of the time, they want see the other members of Joe’s organization.
This is an important finding.

The Manager Lookup function was also clicked frequently; this may be used less frequently with the
recent changes of showing the Manager of Record and Secretary of Record at the top of an organization
listing page (see Figure 2b). Another key finding here is that the “Next” link—which advances to the next
page of results—is clicked extremely infrequently, less than 0.1% of the time. This is strong evidence that the
majority of the time, the user has found who they are looking for on the first page. A counter argument to
this claim, however, could be that the high number of Search Header searches indicate that some percentage
of the time, users are submitting revised queries directly from a results page.

Finally, the “Show all” function is almost never clicked. If it is useful, it probably is not very discoverable.
Regardless, it could probably be safely eliminated with minimal user impact.

Table 9: SAPLE Search Sources

SOURCE COUNT %

SAPLE Search Query Sources, External

Techweb 319406 68.9%

Search Header 113123 24.4%

SAPLE Home Page 12135 2.6%

Advanced Search 10945 2.4%

Search Footer 4625 1.0%

External Applications 3485 0.8%

SAPLE-Internal Search Actions

Org Roster 58808 —

Manager Lookup 16368 —

“Did you Mean” Suggestion 1488 —

Next/Page N 323 —

Show All 12 —

38

6.6 SAPLE Computational Performance

Some of the search algorithms used by SAPLE (described in Section 4) are very computationally intensive.
Moreover, for each query, there are a large number of comparisons that must be done (approximately 20,000
personnel entries in the search index), while the search load placed on the SAPLE application by users is
considerable (up to one search a second during peak times). Because the application must be responsive
to the user—the target metric is for results to be returned within two seconds, 80% of the time—heavy
emphasis has been placed on algorithm optimization.

The following analysis considers the computation time that SAPLE spends on the algorithmic scoring
portion of the query. (SAPLE times each search and logs the elapsed time along with other query infor-
mation.) These times will be exclusive of other overhead associated with SAPLE, for example, the time
required to render the JSP search page and to transmit the resulting HTML back to the user’s web browser.

Table 10 presents the computation time of various types of queries; the times are plotted in Figure 19. All
searches have an average search time of less than 0.2s, which is excellent. Single-token name searches involving
wildcards are fastest; wildcards, by definition, imply an exact match and therefore the computationally
intensive fuzzy-matching algorithms are not invoked for queries containing wildcards. Filter searches (see
Section 3) are also very fast, because filters such as org:, building:, userid, and similar require exact
matching. Phone number searches are somewhat slower, because one phone number must be compared with
multiple phone number fields, for example, office, fax, pager, and mobile.

The non-wildcarded name searches take the longest; these require the invocation of SAPLE’s inexact
(fuzzy) string matching algorithms. An important distinction arises when considering those queries with
commas, versus those without. Queries in which a user specifies a comma occur almost four times as often
as those without a comma, most likely due to many years’ worth of the Legacy Directory application requiring
queries to be in this format. When a user inputs a two-token name search with a comma, SAPLE assumes
they are signalling that the first token corresponds to the last name, and the second token, the first name
(i.e., last name, first name format). In other words, the user is specifying the order. Therefore, when
scoring, each token needs to only be compared with the corresponding first name or last name as stored in
the index; this is very efficient.

In contrast, when the user does not specify a comma, the order is unspecified. The two tokens could either
be in last name first name or first name last name formats. In this case, twice as many comparisons
need to be performed, because it is not clear which of the two search tokens match up to which of the first/last
names in SAPLE’s personnel index. The reality is a bit more complicated, since middle names and nicknames
are also considered, but the principle is still valid. One result from this analysis that merits further study
concerns the single-token name search without wildcards. Because this involves fewer comparisons overall,
its algorithmic execution time should be faster, but instead, it is slower than the other types searches. This
will be investigated.

Figure 20 shows the distribution of SAPLE search times for the sample period. The slowest 1% of the
queries were disregarded as outliers (server error, network anomaly, unexpectedly high server load, etc.). The
distribution exhibits trimodality, which is correlated with the count (frequency) and associated computation
time data presented in Table 10. There is strong peak around 100ms, corresponding to the second- and
third-most frequent types of searches, org and two-token-with-comma name search (98ms and 108ms mean
search computation time, respectively). A broader peak occurs around 180ms, corresponding to the most
frequent type of search, the single-token name a search. Finally, a small peak is present around 45ms,
corresponding to a single-token name search using wildcards.

Overall, the vast majority of searches performed by SAPLE during the sample period require less than
0.25s of computation time. This result, which is characterized as excellent performance, is due to index-based
approach taken by SAPLE in its architecture, as well as the extensive optimization of search and scoring
algorithm implementations within SAPLE.

39

Table 10: SAPLE Computation times and count by query type

QUERY TYPE EXAMPLE COUNT COMPUT. TIME (MS)

name (single, w/ wildcards) proco* 3681 46

othera ms 0401 1089 90

userid mjproco 24040 94

org 5527 132657 98

compound query mike 758 3690 104

name (two tokens, w/comma) procopio, mike 78041 108

name (three tokens, w/ comma) procopio, mike j 2459 108

phone 845-9653 8019 136

name (three tokens, w/ no comma) mike j procopio 2625 142

name (two tokens, no comma) mike procopio 19622 153

name (single, no wildcards) procopio 260218 186

a Other category includes building, jobtitle, mailstop, type, snlid, area, and room.

Figure 19: SAPLE Algorithm Computation Time by Search Type

40

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Computation Time (ms)

C
ou

nt

Distribution of SAPLE Computation Times, Fastest 99% (534181 Queries)

Figure 20: Distribution of SAPLE Computation Times, Fastest 99%. Approximately 1% of the slowest
queries have been removed as outliers. The distribution exhibits clear trimodality, which is correlated to the
actual type of search performed and resulting computational complexity.

41

42

7 Conclusions and Future Work

In this paper, we presented the Sandia Advanced Personnel Locator Engine (SAPLE) web application, a
directory application for use by Sandia National Laboratories personnel. Its purpose is to return Sandia
personnel “results” as a function of user search queries. SAPLE’s mission is to make it easier and faster
to find people at Sandia. To accomplish this, SAPLE breaks from more traditional directory application
approaches by aiming to return the correct set of results while placing very minimal constraints on a user’s
query.

Two key features form the core of SAPLE: advanced search query interpretation and inexact string
matching. The former feature permits the user to make advanced, compound queries by typing into a single
search field. Where able, SAPLE infers the type of field that the user intends, for example, 758 refers to a
building, while 5527 refers to an organization. The second feature, inexact string matching, allows SAPLE
to return a high quality ranking of personnel results that, while not being exact matches to the user’s query,
will be close.

SAPLE also exposes a simple-to-use web service, permitting external applications to leverage SAPLE’s
search engine with a minimal amount of overhead. All of SAPLE’s benefits—query interpretation, high
quality search results—are immediately realized by the consumers of SAPLE’s web service. Meanwhile,
application developers are shielded from the complexities of having to develop and maintain a one-off custom
search component, including interfacing to Sandia’s proprietary personnel databases, parsing user input, etc.
The SAMS application, Sandia’s first external application to use the SAPLE web service, was described.

This paper also presented an extensive characterization of SAPLE usage for an 11-week sample period.
Key results from this analysis showed that SAPLE usage was widely distributed over job titles across the
laboratory; SAPLE handles approximately 10,000 queries per day, and this search load is generally evenly
distributed throughout business hours; most searches are either single-token name searches or organization
searches; and SAPLE is able to perform the vast majority using less than 0.25s of compute time.

Future Work

Future work for SAPLE will focus on three key areas. First, the user interface will continue to improve,
incorporating higher and higher degrees of rich-client user interface components implemented using AJAX.
This will include integration with Sandia’s forthcoming web-based mapping capability.

Second, additional effort will be spent improving SAPLE’s approximate string matching algorithms, to
further improve search quality. For example, specific phonetic encodings will be developed to achieve higher
search quality when searching for Spanish-language names (see discussion in Section 1.2). Another option
for improved search quality involves using the updated Metaphone 3 algorithm. Also, the discussion in
Section 4.3 suggests a high degree of overlap between the Editex and the Edit Distance (Levenshtein) algo-
rithms. One of these could be removed in order to make SAPLE more computationally efficient, improving
latency for the end user while incurring a minimal or negligible impact in search quality.

Meanwhile, the same principles used by the Editex algorithm to compute string similarity could also
be applied to better cope with mechanical or typographical errors. In this case, the cost of replacing “d”
with “s” is low because they are adjacent on the keyboard. Such algorithms are known and in common
use. For example, Apple’s iPhone automatically corrects typing based on an Editex-like algorithm with
replacement costs based on keyboard letter proximity. Third, advanced scoring and ranking methods that
consider patterns in the logged query data, many of which are off-the-shelf algorithms, could be employed to
automatically improve the quality of SAPLE’s search results over time. Related to this, principled metrics
such as precision and recall, in particular the former, have been used to evaluate search engine performance
in the informational retrieval domain. These could be used to more rigorously quantify the overall quality
of the SAPLE search results.

43

Finally, the benefits of consolidating the many one-off custom personnel search modules deployed in
web applications across the laboratory is clear. Future applications requiring a personnel search component
should rely on SAPLE’s web service component exclusively, while existing applications could be converted
to use the centralized SAPLE search service with a minimum of effort. Consolidating personnel search will
not only be cost-effective, but the resulting user experience consistency and high-quality search results from
a SAPLE-branded search will improve the user experience across the laboratory, allowing personnel searches
to be easier and more efficient wherever they are done.

44

References

[1] Peter Christen. A comparison of personal name matching: Techniques and practical issues. In ICDMW
’06: Proceedings of the Sixth IEEE International Conference on Data Mining - Workshops, pages 290–
294, Washington, DC, USA, 2006. IEEE Computer Society.

[2] William W. Cohen, Pradeep Ravikumar, and Stephen E. Fienberg. A comparison of string distance
metrics for name-matching tasks. pages 73–78, 2003.

[3] Richard Durbin, Sean Eddy, Anders Krogh, and Graeme Mitchison. Biological sequence analysis: prob-
abilistic models of proteins and nucleic acids. Cambridge Univ. 1998.

[4] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios. Duplicate record detection:
A survey. IEEE Trans. on Knowl. and Data Eng., 19(1):1–16, 2007.

[5] T. N. Gadd. ‘fisching fore werds’: phonetic retrieval of written text in information systems. Program:
electronic library and information systems, 22(3):222–237, 1988.

[6] T. N. Gadd. Phonix: The algorithm. Program: electronic library and information systems, 24(4):363–
366, 1990.

[7] Patrick A. V. Hall and Geoff R. Dowling. Approximate string matching. ACM Comput. Surv., 12(4):381–
402, 1980.

[8] Victoria J. Hodge, Jim Austin, Yo Dd, and Yo Dd. An evaluation of phonetic spell checkers. Technical
report, Mechanisms of Radiation Eflects in Electronic Materials, 2001.

[9] Karen Kukich. Techniques for automatically correcting words in text. ACM Comput. Surv., 24(4):377–
439, 1992.

[10] Gonzalo Navarro. A guided tour to approximate string matching. ACM Comput. Surv., 33(1):31–88,
2001.

[11] H. B. Newcombe, J. M. Kennedy, S. J. Axford, and A. P. James. Automatic Linkage of Vital Records.
Science, 130:954–959, October 1959.

[12] Beatrice T. Oshika, Bruce Evans, Filip Machi, and Janet Tom. Computational techniques for improved
name search. In Proceedings of the second conference on Applied natural language processing, pages
203–210, Morristown, NJ, USA, 1988. Association for Computational Linguistics.

[13] Lawrence Philips. The double metaphone search algorithm. C/C++ Users J., 18(6):38–43, 2000.

[14] Robert L. Taft. Name search techniques. Technical Report 1, New York State Identification and
Intelligence System, 1970.

[15] Esko Ukkonen. Approximate string-matching with q-grams and maximal matches. Theor. Comput.
Sci., 92(1):191–211, 1992.

[16] William E. Winkler. The state of record linkage and current research problems. Technical report,
Statistical Research Division, U.S. Census Bureau, 1999.

[17] Sun Wu and Udi Manber. Agrep - a fast approximate pattern-matching tool. In In Proc. of USENIX
Technical Conference, pages 153–162, 1992.

[18] Justin Zobel and Philip Dart. Finding approximate matches in large lexicons. Softw. Pract. Exper.,
25(3):331–345, 1995.

[19] Justin Zobel and Philip Dart. Phonetic string matching: lessons from information retrieval. In SIGIR
’96: Proceedings of the 19th annual international ACM SIGIR conference on Research and development
in information retrieval, pages 166–172, New York, NY, USA, 1996. ACM.

45

[20] Justin Zobel, Alistair Moffat, and Ron Sacks-Davis. An efficient indexing technique for full text
databases. In VLDB ’92: Proceedings of the 18th International Conference on Very Large Data Bases,
pages 352–362, San Francisco, CA, USA, 1992. Morgan Kaufmann Publishers Inc.

46

DISTRIBUTION:

5 Mike Procopio
Google, Inc.
2590 Pearl St., Suite 110
Boulder, Colorado 80302

1 MS 9533 Mathew Anderson, 0805

1 MS 6323 Alisa Bandlow, 1138

1 MS 6324 Keith Bauer, 1138

1 MS 89441 Brian Byers, 0947

3 MS 8944 Samuel Cancilla, 0807

1 MS 8944 Cara Corey, 0947

1 MS 9544 Leonard Chavez, 1457

3 MS 9530 William Cook, 0807

3 MS 5527 Jesse Flemming, 0401

1 MS 5527 David Gallegos, 0401

1 MS 9543 Dublin Gonzales, 1498

1 MS 0630 Arthur Hale, 9600

1 MS 0630 Barry Hess, 9610

1 MS 6233 Brian Jones, 1138

1 MS 8962 Philip Kegelmeyer, 9159

1 MS 5634 Brian Kennedy, 0621

1 MS 8944 Joseph Lewis, 9019

1 MS 9537 John Mareda, 0899

1 MS 9543 Patrick Milligan, 1498

1 MS 9329 James Muntz, 0838

1 MS 9151 Leonard Napolitano, 8900

1 MS 5534 Andrew Scholand, 1243

1 MS 8944 Matthew Schrager, 9019

1 MS 9538 Peggy Schroeder, 0805

1 MS 9537 Judith Spomer, 0899

1 MS 9342 Andrew Steele, 0931

1 MS 9549 Andy Tzou, 1482

3 MS 8944 Tracy Walker, 9036

1 MS 8944 Jeffrey West, 0899

1 MS 0899 Technical Library, 9536 (electronic)

47

48

v1.32

