
SANDIA REPORT

SAND2010-1192
Unlimited Release
Printed March 2010

SIERRA Toolkit Computational Mesh
Conceptual Model

H. Carter Edwards, Alan B. Williams, Gregory D. Sjaardema, David G. Baur,
William K. Cochran

Prepared by

Sandia National Laboratories

Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,

a Lockheed Martin Company, for the United States Department of Energy’s

National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia

Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government, nor any agency thereof, nor any of their employees,

nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied,

or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any infor-

mation, apparatus, product, or process disclosed, or represent that its use would not infringe privately

owned rights. Reference herein to any specific commercial product, process, or service by trade name,

trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recom-

mendation, or favoring by the United States Government, any agency thereof, or any of their contractors

or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of

the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available

copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401

Facsimile: (865) 576-5728

E-Mail: reports@adonis.osti.gov

Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce

National Technical Information Service

5285 Port Royal Rd

Springfield, VA 22161

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders@ntis.fedworld.gov

Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

• •U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

SAND2010-1192

Unlimited Release

Printed March 2010

SIERRA Toolkit Computational Mesh

Conceptual Model

H. Carter Edwards Alan B. Williams Gregory D. Sjaardema

David G. Baur William K. Cochran

Computational Simulation Infrastructure

Sandia National Laboratories

P.O. Box 5800

Albuquerque, NM 87185

Abstract

The Sierra Toolkit computational mesh is a software library intended to support

massively parallel multi-physics computations on dynamically changing unstructured

meshes. This domain of intended use is inherently complex due to distributed memory

parallelism, parallel scalability, heterogeneity of physics, heterogeneous discretization

of an unstructured mesh, and runtime adaptation of the mesh. Management of this

inherent complexity begins with a conceptual analysis and modeling of this domain

of intended use; i.e., development of a domain model [3]. The Sierra Toolkit compu-

tational mesh software library is designed and implemented based upon this domain

model. Software developers using, maintaining, or extending the Sierra Toolkit com-

putational mesh library must be familiar with the concepts / domain model presented

in this report.

3

4

Contents

Glossary . 9

1 Fundamental Concepts . 11

1.1 Mesh Entity, Part, and Field . 11

1.2 Domain Model “Big Picture” . 13

1.3 Mesh Meta Data and Mesh Bulk Data Aggregates . 13

1.4 Heterogeneity and Modifiability . 15

1.5 Parallel Computing and Data Distribution . 15

2 Mesh Entity . 17

2.1 Mesh Entity Rank . 17

2.2 Unique Identification and Ordering . 17

2.3 Mesh Part Membership and Efficient Selective Iteration 18

3 Mesh Entity Relation . 20

3.1 Uniqueness Condition . 20

3.2 Querying and Ordering . 21

3.3 Closure of an Entity . 22

3.4 Customary Finite Element Topological Relations . 23

3.5 Examples of Non-topological Relations . 24

4 Mesh Part . 25

4.1 Identifiers and Attributes . 25

4.2 Set Hierarchy . 25

4.3 Induced Entity Membership . 26

5 Mesh Field . 29

5.1 Field Type and Declaration . 29

5.2 Field Data . 29

5.3 Field Restriction for Heterogeneous Field Data . 30

5.4 Field Data Relation Stencil . 31

6 Mesh Bucket: Homogeneous Chunk of Field Data . 33

6.1 Buckets, Entities, Parts, and a Mesh . 33

6.2 Iteration and Separation of Concerns . 34

6.3 Performance Considerations . 35

7 Parallel Distribution . 36

7.1 Parallel Ownership and Sharing . 36

7.2 Parallel Ghosting . 38

7.3 Parallel Consistency . 38

8 Mesh Meta Data Management . 40

9 Mesh Bulk Data Management . 41

9.1 State of a Mesh Includes Ordering of its Data . 41

9.2 Runtime Modifications . 42

9.3 Transaction Strategy for Modifications . 42

9.4 Creating, Changing, and Destroying Mesh Entities and Relations 44

9.5 Transferring Parallel Ownership . 47

9.6 Modifying Parallel Ghosting . 48

10 Sierra Toolkit Mesh Implementation . 49

5

11 Future Development . 50

11.1 Thread Parallelism . 50

11.2 Field Data Consistent Units System. 50

11.3 Entity Ordering . 51

11.4 Mesh Modification Transaction Logging . 52

6

Figures

1 Illustrative multi-physics and multi-part problem of fluid flow through pipe

with localized heating. 12

2 Illustrative fluid element with velocity field data at all node and pressure

field data only at vertex nodes . 12

3 Components and interrelationships of the Sierra Toolkit mesh domain model,

as presented throughout this document . 13

4 Parallel domain decomposition for illustrative multi-physics problem. 16

5 Example of mesh entity relations from a hexahedral element to eight nodes

associated with the element’s vertices . 21

6 Example element-to-node relation attribute values and stencil functions for

the illustrative fluid element . 27

7 Example of potential homogeneous subsets from problem domain with

three mesh parts. 33

8 Illustration of relationships between buckets, entities, parts, and mesh. 34

9 Mesh entity sharing in illustrative multi-physics problem parallel domain

decomposition. 36

10 State diagram for serial transactions . 55

7

List of Algorithms

1 Algorithm for bucket selection and entity field data array iteration. 34

2 Example application driver for creating, using, and modifying mesh meta

data and mesh bulk data . 43

3 General simulation algorithm . 53

8

Glossary

The following key terms are listed with an abbreviated definition, and the section of this

report where the term / concept is fully defined.

Mesh For the domain of intended use, a mesh is an unstructured spatial discretization

(Section 1).

Mesh Entity Fundamental unit of a spatial discretization (Sections 1.1 and 2).

Mesh Entity Rank Placement of mesh entities in a composition hierarchy (Section 2.1).

Mesh Entity Identifier Persistent integer identifier for a mesh entity (Section 2.2).

Mesh Entity Relation Directed relationship between two mesh entities in a composition

hierarchy (Section 3).

Mesh Entity Closure A set of mesh entities defined by traversing mesh entity relations

(Section 3.3).

Mesh Entity Topology A set of expected and well-defined mesh entity relations (Sec-

tion 3.4).

Mesh Part A subset of mesh entities in the problem domain (Sections 1.1 and 4).

Mesh Part Induced Membership A mesh entity may be induced to be a member of a

mesh part through its relations (Section 4.3).

Mesh Part Relation Stencil A mesh entity may be induced to be a member of a mesh part

through a stencil of its relations (Section 4.3).

Mesh Field A variable associated with mesh entities (Sections 1.1 and 5).

Mesh Field Type A multidimensional array type defined for one or more mesh fields (Sec-

tion 5.1).

Mesh Field Restriction A restriction of a field to exist for specified mesh parts (Sec-

tion 5.3).

Mesh Field Data Data associated with the pairing of a mesh field with a mesh entity (Sec-

tion 5.2).

Mesh Field Data Relation Stencil A means of quickly accessing field data associated with

related mesh entities (Section 5.4).

Mesh Field Data Bucket A contiguous block of similarly defined (i.e., homogeneous)

field data associated with a collection of mesh entities (Section 6).

9

Mesh Meta Data Aggregate A software-architecture motivated grouping of mesh parts,

mesh fields, and similar mesh data (Section 8).

Mesh Bulk Data Aggregate A software-architecture motivated grouping of mesh entities,

mesh field data, and similar mesh data (Section 9).

Parallel Ownership Mesh entities are distributed among the processes of a parallel appli-

cation. Every mesh entity is owned by exactly one process (Section 7.1).

Parallel Sharing and Ghosting A mesh entity may reside on more than one process of a

parallel application. These mesh entities are either shared or ghosted (Sections 7.1 and 7.2).

Parallel Consistency A mesh entity is parallel consistent if all shared or ghosted copies

of that mesh entity are consistent with the owned copy of that mesh entity. A mesh

is parallel consistent if all of its mesh entities are parallel consistent (Section 7.3).

10

1 Fundamental Concepts

The SIERRA Toolkit is a collection of software libraries that provide physics-independent

capabilities needed by computational mechanics simulations. The intended domain of com-

putational simulations are those requiring massively parallel computations, multiple cou-

pled models with varied physics and scales, unstructured meshes with multiple types of

discretization cells, and solution strategies that dynamically modify the unstructured mesh.

A fundamental concept of these simulations is of a computational mesh comprised of both

the spatial discretization (e.g., the elements, nodes, and connectivity) and field variables

discretized over the spatial discretization.

This report presents the concepts or domain model [3] for the SIERRA Toolkit Mesh

Module. A domain model expresses the requirements for software within a conceptual

model of the problem domain. This model spans the software’s requirements and architec-

tural design—the decomposition of software into architectural components and relation-

ships among those components.

The concepts synthesized in this domain model are influenced by numerous research

and development projects over the past decade. The projects that had the most significant

influence include:

• SIERRA Framework [2, 10, 1] at Sandia National Laboratories,

• Unstructured Grid (UG) [5, 6, 16] at the University of Heidelberg, and

• AOMD [9, 11] and its predecessor Trellis [15] at Rensselaer Polytechnic Institute.

1.1 Mesh Entity, Part, and Field

Mesh Entity: A computational mesh contains a collection of mesh entities which rep-

resent the fundamental, atomic units of the spatial discretization. For example, the mesh

entities of a finite element mesh may include nodes, edges, faces, and elements. Mesh en-

tities are connected to one another through directed mesh entity relations. For example, an

element within a finite element mesh has relations directed from the element to the nodes

that define its vertices.

Mesh Part: A problem domain defines subsets of mesh entities, or mesh parts, for

problem-specific subdomains or other computational subsets of the problem domain. Con-

sider the simple problem of fluid flowing through a pipe with localized heating illustrated

in Figure 1. In this illustrative multi-physics problem, fluid computations are applied to the

fluid subdomain, deformation computations are applied to the pipe subdomain, and heat

transfer computations are applied to the entire domain.

11

Figure 1. Illustrative multi-physics and multi-part problem of

fluid flow through pipe with localized heating.

A spatial discretization is generated from a geometric representation of the problem

domain. For interesting problem domains, this representation is typically constructed from

a collection of simpler geometric components. These components could be carried through

the meshing process to define mesh parts. The mesh parts may not have one-to-one corre-

spondence with a set of computations. Mesh parts will also be defined by the discretization

scheme. For example, a traditional simple finite element discretization may partition a three

dimensional problem domain into hexahedral mesh entities with node mesh entities at the

vertices. This simple discretization scheme induces two mesh parts: a set of hexahedra and

a set of nodes.

Mesh Field: Mesh fields are the independent, dependent, or scratch variables that are

required by the applications’ computations, and have data associated with mesh entities.

In the illustrative problem (Figure 1, the discretization of a fluid element (Figure 2) could

have velocity and pressure (V,P) field data at the vertex nodes, while the mid-edge nodes

only have velocity field data (V). Such a discretization scheme is referred to as a mixed

element formulation.

Figure 2. Illustrative fluid element with velocity field data at all

node and pressure field data only at vertex nodes

12

1.2 Domain Model “Big Picture”

A “big picture” diagram of the Sierra Toolkit mesh domain model is given in Figure 3. This

diagram identifies components and interrelationships which have not yet been defined or

described. As such, this domain model diagram is intended to provide the reader with a

“big picture” context to the domain model’s components and interrelationships as they are

described in the remainder of this document.

Figure 3. Components and interrelationships of the Sierra Toolkit

mesh domain model, as presented throughout this document

1.3 Mesh Meta Data and Mesh Bulk Data Aggregates

The data of a computational mesh are divided into mesh meta data and mesh bulk data.

Mesh meta data defines a specification for the discretization of a problem domain and fields.

Mesh bulk data implements a particular discretization conformal to the specification. Given

a specification for a computational mesh (mesh meta data) there are numerous admissible

implementations (mesh bulk data) which conform to that specification.

Mesh Meta Data: The meta data for a computational mesh discretization includes spec-

ifications for: types of mesh entities, mesh parts, mesh fields, and where fields are required

13

to exist. In Figure 1, mesh meta data specify that the discretization will include elements,

nodes, and faces, the existence of interior fluid, enclosing pipe, interface surface, and other

mesh parts; the existence of temperature, fluid velocity, fluid pressure, and other mesh

fields; and that fluid fields exist only on nodes which are members of the fluid mesh part.

Mesh Bulk Data: A computational mesh’s bulk data includes mesh entities and their

interrelationships, mesh entities’ membership in mesh parts, and mesh field data variables.

For the illustrative problem (Figure 1) the mesh bulk data would include elements and

nodes exclusively in the fluid part, elements and nodes exclusively in the pipe part, and

nodes which are members of both the fluid part and pipe part. The mesh bulk data would

also include basis function variables for temperature, fluid velocity, fluid pressure, and

other discretized mesh fields. Note that the fluid variables should exist for nodes which are

members of the of the fluid part only.

Multiple instances of mesh bulk data are possible for a given mesh meta data specifi-

cation. For example, a particular discretization of the problem domain could be uniformly

refined to generate a different instances which is conformal to the same mesh meta data

specification. It is the difference between the specification of a computational mesh and

the instances of a computational mesh which differentiates mesh meta data from mesh

bulk data.

Aggregate design principle The architectural decomposition of a computational mesh

into meta data and bulk data is derived from the aggregate design principle [3]. This prin-

ciple is summarized as follows.

“An aggregate is a cluster of associated objects that we treat as a unit for

the purpose of data changes. Each aggregate has a root and a boundary. The

boundary defines what is inside the aggregate. The root is a single, specific

entity contained in the aggregate. Choose one entity to be the root of each

aggregate, and control all access to objects inside the boundary through the

root. This arrangement makes it practical to enforce all invariants for objects in

the aggregate and for the aggregate as a whole in any state change. [Invariants

of an aggregate] are consistency rules that must be maintained whenever data

changes [and] will involve relationships between members of the aggregate.”

[3]

The aggregate design principle is applied to facilitate enforcement of the complicated

invariants (a.k.a., consistency rules) of the mesh meta data and mesh bulk data aggregates.

Mapping of this conceptual design into the software design and subsequent implementation

supports more robust and maintainable enforcement of invariants. These invariants are

described throughout subsequent sections of this report.

14

1.4 Heterogeneity and Modifiability

A computational mesh can have multi-physics computations, multiple mesh parts, multi-

ple mesh fields which are not uniformly defined over the discretization, and multiple kinds

of mesh entities (e.g., hexahedra, wedges, pyramids). Heterogeneities of a computational

mesh are captured in the mesh meta data; i.e., through the identified mesh entity types,

mesh parts, mesh fields, and rules for laying out fields over the spatial discretization. The

complexities and heterogeneities of the application’s computations are not part of the com-

putational mesh; however, the computations’ spatial discretization and field requirements

are realized in the mesh meta data.

An application’s solution algorithm can include runtime modifications to the mesh. For

example, the mesh may be refined or coarsened to satisfy a discretization error condition

or elements on an eroding boundary of a mesh may be removed from the computation.

Runtime modifications to a computational mesh include creating or destroying mesh enti-

ties, creating or destroying mesh entity relations, and adding or removing mesh entities as

members of mesh parts. These changes are limited to modifying the mesh bulk data while

conforming to mesh meta data.

1.5 Parallel Computing and Data Distribution

Parallel processing is a critical high performance computing (HPC) capability. The com-

putational environment is assumed to provide at least one of two levels of parallelism:

distributed memory processes and/or shared memory threads.

Distributed Memory Processes: The computational environment is assumed to con-

sist of a collection of processing nodes connected through a dedicated high performance

communication network. A parallel process executes within a particular node and has ex-

clusive ownership over a well-defined memory space within that node. Data are explicitly

exchanged between processes’ memory spaces through the communication network by the

application developer. The de facto standard mechanism for explicit data exchange is mes-

sage passing via a Message Passing Interface (MPI) [14] compliant library.

Shared Memory Threads: A processing node may support multiple parallel threads

of execution within a process. A thread is a lightweight execution environment within

a process that has shared access to some or all of the resources of the process. There are

several different multi-core and memory programming models available for threads [7, 13],

each affecting software design and implementation differently. The threads of a process

could be heterogeneous in that they run on different types of cores (e.g. cpu vs. gpu) and

access the process memory through different mechanisms. The potential heterogeneity of

threads is not addressed in the current scope of this domain model.

15

Distribution of Mesh Bulk Data: When using distributed memory parallel processing

it is typical that the memory required for mesh bulk data will typically be too large to reside

in the memory space of a single process. As such the mesh bulk data must be partitioned

and distributed among processes, such as with a domain decomposition approach. Domain

decomposition exploits the geometric or topological locality of a spatial discretization to

group neighboring or connected mesh entities together on a process. Domain decomposi-

tion of an unstructured mesh typically results in portions of the mesh, and corresponding

parts of mesh entities, being shared among processes as illustrated in Figure 4.

Figure 4. Parallel domain decomposition for illustrative multi-

physics problem.

Duplication of Mesh Meta Data: When using distributed memory parallel processing

it is typical that the memory required for mesh meta data will typically not be too large

to reside in the memory space of a single process. Mesh meta data is duplicated in the

memory space of all processes.

16

2 Mesh Entity

A mesh entity has a role within a computational mesh. In a three dimensional finite ele-

ment mesh the points, line segments, bounded areas, and bounded volumes of the spatial

discretization are represented by node, edge, face, and element mesh entities. Mesh entities

are typically composed from, or defined by, other mesh entities. For example, the element

mesh entity in Figure 2 can be defined by node mesh entities located at the element’s ver-

tices and mid-edges. The composition of mesh entities from other mesh entities defines

composition-hierarchy for mesh entities.

2.1 Mesh Entity Rank

A mesh entity rank is a non-negative integer which enumerates both the role of a mesh

entity in the mesh, and the position of a mesh entity the composition-hierarchy. In a three

dimensional finite element mesh the ranks, and corresponding roles, are typically defined

to correlate with the topological dimension of the mesh entities; e.g., rank 0 = node, rank

1 = edge, rank 2 = face, and rank 3 = element. A mesh entity’s position in a composition-

hierarchy is defined by its rank: a mesh entity can only be composed from mesh entities

with lesser ranks. For example, an edge (rank 1) can be composed of nodes (rank 0), but

an edge cannot be composed of faces (rank 2).

The application-defined mesh entity ranks are part of the mesh meta data. The integer

values for mesh entity ranks are in the range [0,N], where the upper bound of the range is

specified by the application within the mesh meta data. For example, an application may

extend the traditional finite element mesh entity roles with constraint mesh entities = rank

4 and patch mesh entities = rank 5.

2.2 Unique Identification and Ordering

A mesh entity (entityJ
a) is uniquely identified within a computational mesh by its integer

rank J and integer identifier a, as per Equation 1. For example, a finite element mesh may

have a mesh entity identified as node #5 (entity0
5) as well as another mesh entity identified

as element #5 (entity3
5), but at most one of each.

entityJ
a →

{

J ∈ [0 .. number of application-defined mesh entity ranks)
a ∈ [1 .. maximum value defined by implementation]

entityJ
a = entityK

b ⇐⇒ (J,a) = (K,b) .

(1)

A computational mesh is not required to have mesh entities for all defined mesh entity

ranks. In the finite element mesh example mesh entity ranks can be defined for nodes,

17

edges, faces, and element; but the mesh may only contain node and element mesh entities.

A computational mesh is not required to have mesh entities with contiguous identifiers. As

such the space for unique identification (rank×identifier) is sparse.

A mesh entity’s unique identification is persistent for the lifetime of that entity; i.e.,

the rank and identifier of an entity cannot be changed. Given a mesh entity, its rank and

identifier shall be computed in constant time, independent of the number of entities or entity

types. Furthermore, mesh entities are well-ordered under the following relation.

entityJ
a < entityK

b ⇐⇒

{

J < K or

J = K and a < b.
(2)

The mesh bulk data may be queried for a mesh entity (entityJ
a) by its rank and identifier

(J,a). This query operation shall have a computational complexity that is at worst loga-

rithmic with respect to the number of mesh entities contained within the mesh bulk data

and on that process. This performance bound is acceptable because most computations on

mesh bulk data iterate over selected mesh entities as opposed to performing these random

access queries.

2.3 Mesh Part Membership and Efficient Selective Iteration

A mesh entity is a member of one or more mesh parts. Whereas the mesh entity’s rank and

identifier are persistent for the lifetime of that entity, the part membership of an entity may

be changed. The state of a mesh entity is defined to be the set of application-defined parts

for which it is a member. Put another way, the state of a mesh entity is the intersection of

the mesh parts in which the mesh entity resides.

A mesh entity may be queried for the mesh parts for which that mesh entity is a mem-

ber. This query operation shall have a computational complexity that is constant time,

independent of the number of mesh entities or number of mesh parts.

An application’s computation may operate on a collection of mesh entities of a selected

mesh entity type and are members (or are not members) of a selected set of mesh parts.

For example, in the fluid-in-a-pipe illustrative problem (Figure 1), a computation could

compute on each node that is a member of the fluid part but is not a member of the pipe

part.

An inefficient approach to iterate selected mesh entities is to iterate every mesh

entity, query each each mesh entity for its mesh part memberships, and compute on those

mesh entities which are members of the selected mesh part. In this example, selective

iteration can be further complicated, and increasingly inefficient, when computing on each

fluid node exactly once. Such an inefficient iteration would require:

• iterating every element of the mesh,

18

• querying if that element is a member of the fluid part, and, if so,

• querying that element for each of its nodes,

• somehow detecting and avoiding nodes on the fluid/pipe interface, and

• somehow detecting and avoiding reduntantly computing on nodes shared by two or

more fluid elements.

Efficient selective iteration is achieved by inducing mesh part membership from mesh

entity relations (Section 4.3) and grouping mesh entities into homogeneous subsets (Sec-

tion 6). The just-the-fluid-nodes selective iteration example is simplified by inducing

nodes’ memberships in the fluid part from element-node relationships. This allows the

fluid nodes to be iterated without having to iterate the fluid elements. Selective iteration

in this example is made more efficient by grouping together nodes which are members of

the fluid part. This allows selective iteration to query groups of nodes for their part mem-

bership, as opposed to querying individual nodes. Details of the conceptual design (a.k.a.

domain model) for efficient selective iteration are developed in Section 3 through Section 6.

Selective iteration patterns include the following. Visit each entity of a given entity

type exactly once. Visit each entity of a given entity type and member of a given mesh part

exactly once. Visit each entity of a given entity type and member of a union, difference, or

intersection of mesh parts exactly once.

19

3 Mesh Entity Relation

A mesh entity relation is a directed relationship between two entities contained within the

same mesh, entityJ
a→ entityK

b . The relationship is directed from the mesh entity with the

greater rank to the mesh entity with the lesser rank. Thus, mesh entities of the equal mesh

entity rank cannot have a relation, as per Equation (3).

entityJ
a→ entityK

b ⇒ J > K therefore J ≤ K ⇒ 6 ∃ entityJ
a→ entityK

b . (3)

A mesh entity relation consists of the two mesh entities and a relation attribute,

Relation≡
(

entityJ
a , entityK

b , attribute
)

, (4)

where the attribute is a non-negative integer value. The mesh entity with the greater rank

is referred to as the from-entity and the mesh entity with the lesser rank is referred to as the

to-entity. An implementation for mesh entity relations may explicitly provide both forward

relations (e.g., element→node) and backward relations (e.g., node→element). In such an

implementation the direction of the relation is understood to be from the higher ranking en-

tity to the lower ranking entity. Thus when a computational mesh implementation provides

node→element data it is defined to be a mesh entity relation directed from the element to

the node.

An entity may be a member of an arbitrary number of relations. For example, the

hexahedral element in Figure 5 is the from-member of eight relations, one for each vertex-

associated node. In this example, the eight element-to-node relations have relation attribute

values of [0..7], which define a convention for identifying vertices.

3.1 Uniqueness Condition

Higher ranking mesh entities are composed from, or defined by, lower ranking mesh entities

(Section 2.1). Well-defined composition relatonships requires the uniqueness condition

defined by Equation 5.

If ∃
(

entityJ
a , entityK

b , d
)

, ∃
(

entityJ
a , entityK

c , d
)

, and J > K

then entityK
b = entityK

c and b = c .
(5)

This uniqueness condition requires that the combination of a from-entity, to-entity rank,

and relation attribute (entityJ
a , K , d) defines at most one mesh entity relation. In the ex-

ample of Figure 5, each of the eight element-to-node relations are required to have a unique

relation attribute value. However, if this element had an element-to-face relation then such

20

Figure 5. Example of mesh entity relations from a hexahedral

element to eight nodes associated with the element’s vertices

a relation is permitted to have an attribute value of “1” bacause the rank of a face is different

than the rank of a node.

This uniqueness condition does not hold for the combination of a to-entity, from-entity

rank, and relation attribute. For example, a node is permitted to be the to-entity of more

than one element-to-node relations with an attribute value of “1”. This is permitted because

from-entities are composed from, or defined by, the to-entities of their relations and not

vice-versa.

3.2 Querying and Ordering

Computations on a mesh entity often iterate over a given mesh entity’s relations (Equa-

tion 7). For example, computations on a given face (entity2
a) could iterate over

• face→node relations (entity2
a→ entity0),

• face→edge relations (entity2
a→ entity1), or

• element→face relations (entity3→ entity2
a).

The ordering of mesh entity relations (Equation 9) is defined such that each of these itera-

tion scenarios accesses a span of the well-ordered mesh entity relations Relation
(

entity2
a

)

.

It is frequently necessary to refer to subsets of relations for which a given mesh entity

is a member. For such relation subsets are compactly described in Equation 6 via the→
operator. Let R be the set of all relations in a mesh, then the following expressions for

21

subsets of R are defined.

entityJ
a→ entityK ≡

{(

entityI
a , entityK

b , x
)

∈ R ; ∀ b,x
}

: J > K

entityJ
a→ entity ≡

{(

entityJ
a , entityK

b , x
)

∈ R ; ∀ K,b,x : J > K
}

entityK → entityJ
a ≡

{(

entityK
b , entityJ

a , x
)

∈ R ; ∀ b,x
}

: K > J, and

entity→ entityJ
a ≡

{(

entityK
b , entityJ

a , x
)

∈ R ; ∀ K,b,x : K > J
}

.

(6)

For example, the element (rank = 3)→ node (rank = 0) relations for element a are com-

pactly expressed as entity3
a→ entity0.

Given entityJ
a, the complete subset of mesh entity relations for which that entity is a

from-member or a to-member is identified by Relations
(

entityJ
a

)

, where

Relations
(

entityJ
a

)

≡
(

entityJ
a→ entity

)
⋃

(

entity→ entityJ
a

)

(7)

=
{(

entityJ
a , entityK

b , x
)

∈ R ; ∀ K,b,x : J > K
}

⋃

{(

entityK
b , entityJ

a , x
)

∈ R ; ∀ K,b,x : K > J
}

.

The mesh bulk data for Relations
(

entityJ
a

)

subset can be compactly represented as

Relations
(

entityJ
a

)

→
{(

entityK
b ,x

)

:
(

entityJ
a,entityK

b ,x
)

or
(

entityK
b ,entityJ

a,x
)

∈ R
}

(8)

where the members of this compact representation are well-ordered

(

entityK
b ,x

)

<
(

entityL
c ,y

)

⇔

K < L or

K = L , x < y or

K = L , x = y , b < c.

(9)

A query operation to access this subset shall have a constant time complexity; i.e., no search

operations shall be required. The results of this query operation shall support iteration

conformal to the defined ordering.

3.3 Closure of an Entity

A mesh’s collection of entities and relations forms a directed acyclic graph (DAG) where

entities are nodes in the graph and the directed relations are the edges. This graph is guaran-

teed to be acyclic due to relations being directed from entities of greater rank to entities of

lesser rank, and disallowing relations between entities of the same rank. Thus the traversal

semantics and algorithms applicable to a DAG are applicable to a mesh.

22

A computation on an entity commonly operates on data associated with that entity and

those entities obtained by following all relations directed away from the entity. For exam-

ple, an element computation typically operates on data from the element and its connected

nodes.

The closure of an entity is the collection of entities and relations reachable from that

entity. For example, the closure of an element consists of the element and any faces, edges,

nodes, and relations that lie in a path originating from the element. A contrasting example

is the closure of an edge includes its nodes, but not the higher-ranking faces or elements

connected to that edge since all paths from edges must point to entities of lower types.

The closure of an entity is guaranteed to be well-defined and bounded. The concept

of the closure of an entity is critical to generating a well-defined parallel-distribution of

entities. For example, if an entity is to be computed on by a given process then the closure

of that entity must also reside on that process for efficiency.

3.4 Customary Finite Element Topological Relations

Mesh entity relations are used to implement finite-element topological relations, as illus-

trated in Figure 5. These relations are identified by defining a specific relation attribute

value for each defined topological relationship. For example, the vertices of the hexahedral

element in Figure 5 are uniquely identified by the relation attribute values of [0..7]

Topological relations may not be fully populated. For example, a hexahedral element

entity can have relations to six quadrilateral face entities; however, only one such face

entity and corresponding relation might exist. In this scenario, it is useful for the relation

attribute to identify which element-face in the element’s local face-numbering convention

is denoted by the element→face relation.

Cell Topology: The family of Sierra Mechanics applications use element entities that

conform to the standard element types defined in the ExodusII manual [8]. These ExodusII

standard element types define a local numbering convention for element-node and element-

face relationships for beam, triangle, quadrilateral, tetrahedral, pyramid, wedge, and hex-

ahedral element entities with various numbers of nodes. The ExodusII standard element

type numbering conventions describe connections from a higher dimensional topological

entity to its lower dimensional topological entities that are associated with its faces, edges,

or vertices. This concept of a standard description for element topological relationships

includes:

• local numbering conventions for topologically related entities,

• descriptions of the expected topologically related entities (e.g., a pyramid is expected

to have one quadrilateral face and four triangular faces), and

• orientation-mappings between the topologically related entities (e.g., the vertices of

local face #1 of a pyramid are defined by the pyramids local vertices #1, #2, and #5).

23

3.5 Examples of Non-topological Relations

Non-topological relations have been used between mesh entities in Sierra Mechanics ap-

plication codes. These include

• constraint entity relations with its constrained entities, and

• relations between level set surface entities and volume mesh entities.

The flexibility and extensibility of the mesh entity relation concept support research and

development of these and other discretization approaches.

24

4 Mesh Part

A mesh part defines a subset of an application’s mesh entities. A part may be used to reflect

the physics modeled, discretization methodology, solution algorithm, meshing artifacts, or

other application requirements.

4.1 Identifiers and Attributes

A mesh part has an unique text name identifier which is specified by the application. This

text name is intended to support text input and output by the application, e.g., parsing,

logging, and error reporting. The text name is not intended for referencing a mesh part

within application computations. Such undesired text-based references will lead to text-

based searches within the application’s computations, resulting in unnecessarily degraded

performance.

A mesh part has a unique non-negative integer identifier which is internally generated

by the mesh meta data. This internal integer identifier is intended to support fast referenc-

ing and ordering of mesh parts. The internal integer identifier is also intended to support

efficient communication of mesh part information among distributed memory processes.

Given the need for efficient referencing, querying a mesh part from its integer identifier

shall have constant time complexity.

An application may specify that a mesh part is intended to define a subset of mesh

entities of a given mesh entity rank. For example, an “element block” mesh part is intended

to define a collection of elements.

PartA ≡ mesh part identified by A

PartJ
A ≡ mesh part intended for mesh entities of rank J and identified by A

(10)

4.2 Set Hierarchy

Two mesh parts within the same mesh can be given a directed subset relationship that

defines a partial order on the mesh parts. If the relationship PartA
⊃
→ PartB is defined then

by directedness the reverse relationship cannot be defined. The set hierarchy can be used

to aggregate similar parts, or partition a given part into subsets with unique properties. For

example, a collection of independent boundary condition parts may be aggregated with an

“all boundary conditions” superset part.

25

4.3 Induced Entity Membership

A mesh entity may be an explicit member or an induced member of a mesh part. A mesh

entity can be explicitly inserted into or removed from a mesh part. A mesh entity’s mem-

bership in a part may also be induced through its relationship to a higher rank mesh entity.

There are two methods of inducing entity membership in a part. The first method induces

entity membership simply based on entity relations. The second method induces entity

membership based on a subset of entity relations selected by a stencil (Equation 12).

4.3.1 Relation-based membership

When a mesh part has a specified entity rank (PartJ
A) then only mesh entities of the same

entity rank J may be explicitly added as members to that mesh part. If a mesh entity is an

explicit member of such a mesh part, entityJ
a ∈ PartJ

A, and that mesh entity (entityJ
a) is the

from-entity of a relation, then the to-entity of that relation is an induced member of that

mesh part.

Given a relation
(

entityJ
a , entityK

b , x
)

: J > K and

entityJ
a ∈ PartJ

A via explicit membership

then entityK
b ∈ PartJ

A via induced membership.

(11)

Induced membership only occurs in the presence of a mesh entity relation; i.e., induced

membership is not transitive. For example, if a mesh has both element-to-face and face-to-

edge relations, but does not have element-to-edge relations, then the edges in the element’s

closure (via element-to-face-to-edge) are not induced members.

Recall the selective iteration example of iterating all nodes in the fluid mesh part in-

troduced in Section 2.3, Mesh Part Membership and Efficient Selective Iteration. In this

example an application would designate that the fluid mesh part is intended for elements,

Part3
Fluid

. Through this designation all nodes of the fluid elements are induced to be mem-

bers of the fluid part. As such these fluid nodes can be selectively iterated without having

to iterate the fluid elements and traverse the element-to-node relations.

4.3.2 Stencil-based membership: part relation stencil

A part relation stencil is a means of selecting a subset of mesh entity relations through

which part membership is induced. Recall the example of a fluid element introduced in

Figure 2. In the fluid computation the vertex nodes and mid-edge nodes are treated differ-

ently; the vertex nodes have both velocity and pressure field data while the mid-edge nodes

have only velocity field data. In this example a stencil is used to select those element-to-

node relations that are associated with the element’s vertices.

26

A stencil is a function that maps a mesh entity relation’s from-entity rank, to-entity rank,

and relation attribute to an integer value (Equation 12). If the mapped value is non-negative

then the associated relation is accepted. A negative value indicates that the associated

relation is rejected.

stencil : (J , K , x) 7→ Z

J ≡ a relation’s from-entity rank

K ≡ a relation’s to-entity rank

x ≡ a relation’s attribute

(12)

The element in Figure 6 has twenty element-to-node relations, each with a specific rela-

tion attribute value in the range [0..19]. In this example the eight element-to-node relations

associated with the element’s vertices have attribute values in the range [0..7]. The pressure

stencil in Figure 6 selects this element’s vertex-associated element-to-node relations. The

particular non-negative return value of the stencil is not important for part relation stencils;

however, this return value is important to field data relation stencils (Section 5.4).

pressure stencil(J,K,x) =

{

x : J = element, K = node, x < 8

−1 : otherwise

Figure 6. Example element-to-node relation attribute values and

stencil functions for the illustrative fluid element

A part relation stencil is the combination of a from-part, to-part, and stencil function.

When the from-entity of a relation is explicitly a member of the from-part, and the relation

is accepted by the stencil function, then the to-entity of that relation is induced to be a

27

member of the to-part. This part relation stencil rule is denoted by Equation 13.

Given a part relation stencil = (Partfrom , Partto , stencil) and

a relation =
(

entityJ
a , entityK

b , x
)

: J > K and

0≤ stencil(J,K,x) and

entityJ
a ∈ Partfrom via explicit membership

then entityK
b ∈ Partto via induced membership.

(13)

Mesh entities are prohibited from being explicit members of the to-part of part relation

stencil (Partto in Equation 13). This additional rule is imposed so that membership in the

to-part is well-defined. Well-defined rules for induced part membership are necessary for

manageable modification of mesh bulk data (Section 9).

Recall that in the illustrative flow-in-a-pipe problem (Figure 1) only some of the nodes

in the fluid part have pressure field data (Figure 2). These nodes become induced members

of a fluid-pressure-node mesh part (Partpress) by

• adding the fluid elements as explicit members of the fluid-part (Partfluid),

• using the element-to-node relation attributes defined in Figure 6, and

• defining a mesh part stencil
(

Partfluid, Partpress, pressure stencil
)

with the pressure

stencil defined in Figure 6.

28

5 Mesh Field

A computational mesh is field-centric—the purpose of entities, relationships, and parts

is to provide a foundation upon which computational field data is defined and used. A

field specification has three components: (1) field type, (2) field declaration, and (3) field

restrictions. Field data are automatically created for mesh entities in compliance with the

field specification.

5.1 Field Type and Declaration

A field type is an application-defined multidimensional array of a numerical data type (e.g.,

int, float, double). The number of dimensions of the array and intent of each dimension are

components of the field type. For example, an array may be dimensioned by the number

of spatial ordinates, the number of basis function ordinates, and the number of integration

rule ordinates:

REAL*8 ArrayType(nSpace , nBasis , nIntegration) ! FORTRAN notation

double ArrayType[nIntegration][nBasis][nSpace] // C or C++ notation

A field declaration defines a specific computational field of a specified field type within

a computational mesh. For example, the vector fields of coordinates, velocity, and accel-

eration are three distinct field declarations all having the same field type. A field decla-

ration has an identity (or handle) through which the field is referenced in constant time-

complexity. A field declaration also has a text name to support input or output references

to that field.

A potential use case is for an array type to be the auto-differentiation types implemented

by SNL’s Sacado package within Trilinos [?]. If such complicated data types are supported

then they must support the “plain old data” [4] semantics for simple creation, assignment,

and destruction operations.

5.2 Field Data

Field data values are associated with, or defined by, the pairing of a field declaration with

an entity; e.g., (field-declaration , entityI
a)→ field-data. Not all entities will have field

data for every field declaration. For example, in the illustrative flow-in-a-pipe problem

(Figure 1) only the nodes with relations to fluid elements will have field data for the fluid

velocity and pressure. The field restriction defines whether or not field data exists for a

given (field-declaration , entityI
a) pair.

29

Field data are accessed in different ways, depending upon the computation being per-

formed. Examples of common field data access patterns include the following.

• Access all field data for a collection of fields without knowledge of the associated

entities. Uses cases include computing a norm of a field, adding two fields into a

third field or performing a simple kinematic update on acceleration, velocity, and

coordinate fields during a time step.

• Access field data for a collection of fields and collection of entities within a selected

subset of the mesh. Use cases are similar to the previous example except on a part-

defined subset of the mesh. For instance, applying a boundary condition.

• Access field data associated with the collection of mesh entities related to a given

mesh entity (entityI
a→ entity). For example, access field data associated with nodes

of a given element. Use cases typically traverse well-defined relationships (e.g., de-

fined by a cell topology) and read or update field data on the to-entity of the rela-

tionship. Such field data access patterns have been referred to as “gather” or “scatter

add.”

The performance of computations is sensitive to the layout of field data associated with

collections of entities and fields. This performance sensitivity is pronounced for linear al-

gebra operations. Array-like contiguous field data layouts provide better performance than

other non-contiguous field data layouts. Thus, array-like contiguous field data structures

are used as much as feasible. However, such data structures can be complicated by the

heterogeneous nature of the mesh and the field data layout.

5.3 Field Restriction for Heterogeneous Field Data

A field restriction is a rule which defines both the existence of field data and the dimensions

of the field data array. The dimensions of the field data are dependent upon the entity with

which the field is paired. For example, a field may have one of its dimensions associated

with the integration points on a mesh entity, which can vary with the mesh entity’s topology

and approximation order (e.g., linear, quadratic).

A field restriction maps a specific field declaration (FieldX), mesh entity rank (J), and

mesh part (PartA) to an array dimension. Field data will exist for a given field declaration

and mesh entity (FieldX ,entityK
b) if-and-only-if a field restriction exists to relate the field

declaration and mesh entity as per Equation 15.

Field-Restriction≡ (FieldX ,J,PartA)→ ArrayDimX ,J,A

where ArrayDimX ,J,A = (N1,N2, . . .) or [. . .][N2][N1] .
(14)

The pair
(

FieldX ,entityK
b

)

→ FieldData
[

ArrayDimX ,K,A

]

⇐⇒

∃ (FieldX ,K,PartA)→ ArrayDimX ,K,A such that entityK
b ∈ PartA .

(15)

30

A direct consequence is that if no such field restriction exists then that pairing of a field

declaration and mesh entity will not have field data.

Multiple field restrictions may exist for a given field declaration. Some of these field

restrictions may specify different array dimensions. In this situation, the consistency con-

dition of Equation 16 must be enforced.

If ∃ (FieldX ,K,PartA)→ ArrayDimX ,K,A and

∃ (FieldX ,K,PartB)→ ArrayDimX ,K,B and

∃ entityK
b ∈ PartA∩PartB

then ArrayDimX ,K,A = ArrayDimX ,K,B for consistency.

(16)

5.4 Field Data Relation Stencil

Computations can access field data associated with mesh entities in the set entityI
a→ entity

by iterating the relations of this set and querying field data from each of the to-entities. The

overhead of this common field data access pattern can be amortized by saving the results

of the relation iteration and field data query.

A field data relation stencil specifies that the results of this field data access pattern

shall be maintained in an array of pointers to field data; e.g., double * pointers[N] in

C or C++ notation. The pointer field data (pointers) is associated with the from-entity

of the relations. Field data associated with related entities can then be accessed through

the pointer field data without the overhead of iterating over relations and retrieving field

data from related entities. The runtime performance improvement can be significant, at the

expense consuming more memory for the pointer field data.

A field data relation stencil formally defines a relationship between a pointer-valued

field FieldPX and another field FieldX . For example, an element may have a pointer-valued

field with values that point to the coordinate field associated with its nodes. Such a pointer-

to-node-coordinates field allows computations on that element to directly access the nodal

coordinates without having to traverse the element-to-node relations. The stencil function

use here has the identical interface and functionality as the stencil function used for part

31

relation stencils (Section 4.3). This relationship is defined by Equation 17.

Given a field relation stencil (pointer FieldPX ,value FieldX , stencil) ,

if ∃ (FieldPX ,J,PartA)→ (N) and

∃ (FieldX ,K,PartB)→ ArrayDimX ,K,B and

∃ Relation =
(

entityJ
a,entityK

b ,attr
)

such that entityJ
a ∈ PartA and entityK

b ∈ PartB and

i = stencil (J,K,attr) , 0≤ i < N

then pointer
(

FieldPX ,entityJ
a

)

[i] references value
(

FieldX ,entityK
b

)

.

(17)

32

6 Mesh Bucket: Homogeneous Chunk of Field Data

Field data can be defined heterogeneously (Section 5.3) over a mesh such that field data

may not exist for a given mesh entity, and if it does exist, the dimensions of the field data

array can vary between mesh entities. However, there will always exist subsets of mesh

entities which are of the same entity rank and are members of the same mesh parts. The

mesh entities within such a homogeneous subset will have the same field data, and that

field data will have the same array dimensions.

Consider a problem domain in with three mesh parts: A, B, and C (Figure 7). In this ex-

ample, there are seven possible homogeneous subsets in which an entity may be a member.

A\ (B∪C) : in A but not in B or C

B\ (C∪A) : in B but not in C or A

C\ (A∪B) : in C but not in A or B

(A∩B)\C : in both A and B but not in C

(B∩C)\A : in both B and C but not in A

(C∩A)\B : in both C and A but not in B

A∩B∩C : in A and B and C

Figure 7. Example of potential homogeneous subsets from prob-

lem domain with three mesh parts.

6.1 Buckets, Entities, Parts, and a Mesh

A mesh bucket is a block of contiguous memory that contains all of the field data associated

with a homogeneous subset of mesh entities. The mesh entities are homogeneous in that

they are of the same entity rank and are members of the same subset of mesh parts. Each

mesh entity is associated with exactly one mesh bucket. Thus, the collection of a mesh’s

buckets defines a partitioning of the mesh’s bulk data. The relationships between mesh,

mesh parts, mesh entities, and buckets are illustrated in Figure 8.

33

Figure 8. Illustration of relationships between buckets, entities,

parts, and mesh.

6.2 Iteration and Separation of Concerns

Partitioning a heterogeneous collection of mesh entities into homogeneous subsets encour-

ages a separation of concerns leading to better performance. First, all field data associated

with a homogeneous subset of entities are maintained in contiguous multidimensional ar-

rays, with the longest-striding dimension corresponding to the number of entities in the

subset. This allows a computational kernel to access many entities’ field data through a

simple loop over the number-of-entities dimension. Second, the logic which selects mesh

entities for computations (recall Section 2.3 on mesh entity iteration) can be applied to

choose a bucket of mesh entities, and does not have to be repeated for each mesh entity

within that bucket’s homogeneous subset. Third, this abstraction encourages a separation

of concerns between entity selection logic and computational kernels—allowing the effi-

cient use of dense computational kernels, such as basic linear algebra subprograms [12].

This separation of concerns is illustrated in Algorithm 1.

foreach Bucket in Bulk Data do

if Bucket is selected then
get number of entities N associated with Bucket

get reference to field data array A in Bucket

get reference to field data array B in Bucket
...

call ComputationalKernel(N,A,B, . . .)

end

end

Algorithm 1: Algorithm for bucket selection and entity field data array iteration.

This algorithm has three application-supplied operations: selecting buckets, getting ref-

34

erences to selected field data from a selected bucket, and invoking a computational kernel

on selected field data. The two operations of selecting a bucket and getting references to

selected field data within a selected bucket are overhead operations (i.e., non-computational

kernel operations) which would not be necessary for a completely homogeneous problem.

Two assumptions are made regarding this overhead. First, that an application will, at some

point in its lifecycle, be required to cope with heterogeneity. Second, that these overhead

operations will require signficantly less time compared to the computational kernel’s oper-

ations on the bucket’s field data.

6.3 Performance Considerations

The possible number of buckets grows factorially with the number of mesh parts. As such,

it is prudent to create only non-empty homogeneous subsets and corresponding buckets

whenever possible.

Fragmentation of complex meshes: If the number of mesh entities is large compared

to the number of mesh parts, then there will be (on average) a large number of entities in

each bucket. This is the assumed HPC application use case; e.g., millions of entities but

only hundreds of parts. If the number of mesh entities is relatively small compared to the

number of parts then there will be a small number of mesh entities in each bucket.

In large (many mesh entities) and complex (many mesh parts) problem domains the

number of mesh entities in each mesh part varies significantly. For example, some mesh

parts have millions of mesh entities while other mesh parts have tens of mesh entities.

Cardinality of buckets: The number of mesh entities associated with each homoge-

neous (i.e., the cardinality of the homogeneous subset) is highly variable and problem de-

pendent. The cardinality of a homogeneous subset will impact runtime performance. If

the cardinality is small then the runtime overhead (selecting buckets and getting references

to selected field data) is proportionately larger compared to the runtime of the computa-

tional kernel. However, if the cardinality becomes large then the runtime and memory

overhead for adding/removing mesh entities to/from a buckets can increase due to memory

management operations. It is this too-small versus too-large tradeoff that led to allowing a

homogeneous subset to be partitioned into multiple buckets, where an application defines

a maximum cardinality for buckets.

35

7 Parallel Distribution

Mesh bulk data is distributed among the processes of a distributed memory parallel en-

vironment. A domain decomposition algorithm is typically used to assign mesh entities

to processes. In order to support computations on a mesh entity, the mesh entity and its

closure must be present on the process performing the computation. This requirement nec-

essarily causes some mesh entities and their field data to be duplicated on more than one

process.

Consider a parallel domain decomposition of the illustrative problem in Figure 9 that

assigns elements to processes. The closures of these elements contain nodes which, if

they are on the boundary of the parallel domain decomposition, will reside in two or more

processes. These nodes are shared by the processes in which the nodes reside.

Figure 9. Mesh entity sharing in illustrative multi-physics prob-

lem parallel domain decomposition.

7.1 Parallel Ownership and Sharing

When a mesh entity resides on more than one process then an owner is selected from

among those processes. A mesh entity is owned by exactly one of the processes in which

it resides. This owner process establishes the correct field data and state when there is a

discrepancy among processes. A global reduction, such as a dot-product, includes only

contributions from owning processes. The collection of process-owned subsets of a mesh

define a partitioning of a mesh’s entities.

OwnedP ≡ subset of entities owned by process P
⋃

P

OwnedP = all mesh entities

OwnedP

⋂

OwnedQ = /0 ∀ P 6= Q.

(18)

36

The closure of a subset of owned mesh entities is typically known as a subdomain of a

parallel domain decomposition. This subdomain contains the mesh entities and associated

field data that are most often required for computations performed by a process.

OwnedP ≡

{

closure of all owned mesh entities on process P ;

i.e., mesh entities used by process P .
(19)

The closure of an owned mesh entity is required to exist within the process that owns

the entity. Mesh entities in the closure of two different processes’ owned subsets are shared

by those processes.

SharedP,Q ≡ OwnedP

⋂

OwnedQ ∀ P 6= Q (20)

Note that a mesh entity may be in the closure of several processes’ owned subsets, as

illustrated in Figure 9, and thus have multi-way sharing.

Some computations require communication and synchronization of field data associ-

ated with shared mesh entities. For example, a computation that generates and accumulates

partial sums on each process must sum results among processes that share mesh entities as

in the “swap-add” operation. This communication operation requires the following com-

munication list, where process Q sends / receives field data for entityJ
a to / from process

P.

SharedCommQ ≡ {(entityJ
a,P) : entityJ

a ∈ SharedP,Q ∀ P 6= Q} (21)

Members of SharedCommQ communication list are fully ordered by entity rank, then by

entity identifier, and finally by process rank. This ordering groups sharing data by mesh

entity and supports efficient querying of which process’ share a given mesh entity.

Reduction operations: A dot product computation must visit field data for each mesh

entity exactly once to generate the correct result. Thus, iteration of mesh entities and mesh

buckets must include selection of mesh entities which are owned by the local process.

This selective iteration is supported by defining an owned mesh part which is composed of

the owned mesh entities as members of that mesh part. Selective iteration is then accom-

plished by selecting buckets which are subsets of the owned mesh part as well as any other

application-defined mesh parts.

37

7.2 Parallel Ghosting

A mesh entity that resides in a process and is not in the closure of the process’ owned subset

is termed a ghost mesh entity.

OwnedP

⋃

GhostedP ≡ all entities existing in process P

OwnedP

⋂

GhostedP ≡ /0 (22)

Ghost entities are typically needed by computations that gather field data from an owned

entity’s neighbors. For example, a computation applied to an owned element may gather

field data from other elements that share a side with the owned element (e.g., an upwinding

computation). These side-neighbor elements may be owned by another process and not

shared by the local process. Thus, they may be parallel-ghosted on the local process to

improve performance.

Field data must be communicated from an owned mesh entity to the ghosted parallel-

replication of that entity before the field data can be gathered from the ghosted mesh entity.

This communication operation requires the following communication lists, where (entity→
P) means the entity is being communicated to P.

GhostCommSendQ = {(entity→ P) : entity ∈GhostedP

⋂

OwnedQ ∀P 6= Q}
GhostCommReceiveQ = {(entity← P) : entity ∈GhostedQ

⋂

OwnedP ∀P 6= Q}.
(23)

Note that a ghosted mesh entity will appear exactly once in a process’ GhostCommReceive

list, but may appear many times in a process’ GhostCommSend list.

Multiple independent computations may require their own particular subsets of parallel-

ghosted mesh entities. These computation-specific {GhostedP}Φ
subsets are mesh bulk

data that is created, owned, modified, and destroyed by an application.

7.3 Parallel Consistency

When a mesh entity is duplicated on two or more processes (shared or ghosted) then the

parallel consistency of that mesh entity is a concern. A mesh entity is parallel consistent if

it meets the following three consistency criteria.

• Consistency of duplicated mesh entities’ state—each shared mesh entity is a mem-

ber of the same application-defined mesh parts on each process. This consistency

condition does not include the owned mesh part because a shared mesh entity will be

a member of this owned mesh part on exactly one process.

38

• Consistency of duplicated mesh entities’ relations—each shared mesh entityJ
a has

the same entityJ
a→ entity relations on each process. This consistency condition can-

not include the entity→ entityJ
a relations as such a condition would consequently lead

to duplication of the entire mesh on every process.

• Consistency of duplicated mesh entities’ field data—the field data values asso-

ciated with each mesh entity are the same on each process. This last consistency

concern is left up to the application. However, some “helper” communication opera-

tions for maintaining consistency is provided.

39

8 Mesh Meta Data Management

Mesh entity rank, mesh part, and mesh field specifications are grouped into a mesh meta

data aggregate. This aggregate has the responsibility for creating, owning, modifying,

and destroying mesh meta data. Thus, an application works through the mesh meta data

aggregate to create, modify, and destroy mesh meta data.

A mesh meta data aggregate has two states: under construction and in use. When

an application creates a mesh meta data aggregate it is in the under construction state.

Mesh meta data specifications are created and modified while the aggregate is in the under

construction state. After a mesh meta data aggregate is fully populated the application

commits it to the in use state. Mesh meta data invariants are enforced while mesh meta

data is created and modified, and verified when committed to the in use state. Once in the

in use state it cannot be reverted to the under construction state.

Parallel duplication: Mesh meta data is assumed to be duplicated in all processes over

which the computational mesh will exist. It is assumed that this requirement will not con-

sume an unreasonable amount of the processes’ memory. It is the responsibility of the

application to construct the mesh meta data through the same sequence of creation and

modification operations on each process. For performance efficiency, the consistency of

mesh meta data on each process is not verified until after the construction process is com-

pleted.

40

9 Mesh Bulk Data Management

A mesh bulk data aggregate is composed of mesh entities and their part memberships,

relations, field data, and parallel communication lists. This aggregate has the responsibility

for creating, owning, modifying, and destroying mesh bulk data conforming to mesh meta

data specifications. An application (1) creates a mesh bulk data aggregate, providing a

mesh meta data aggregate in the consistent state, and (2) works through the mesh bulk data

aggregate to create, modify, and destroy mesh entities and relations. The mesh bulk data

aggregate automatically allocates and manages mesh field data according to the mesh meta

data specifications provided by the application.

A mesh bulk data aggregate has two states: modifiable and consistent. When an appli-

cation creates a mesh bulk data aggregate, with the application’s mesh meta data aggregate,

it is in the modifiable state. Mesh bulk data are created, modified, and destroyed while

the aggregate is in the modifiable state. After a mesh bulk data aggregate is satisfacto-

rily populated the application changes it to the consistent state. Mesh bulk data invariants

(Section 1.3) are enforced on the local process while mesh bulk data are being created and

modified, and verified when changed to the consistent state.

Parallel distribution: Mesh bulk data are distributed among parallel processes. Cre-

ation, modification, and deletion of mesh bulk data can affect parallel consistency. Parallel

consistency is resolved and enforced when the application changes the mesh bulk data

from the modifiable state to the consistent state. In this approach, requisite parallel com-

munication can be performed as a parallel collective batch operation, which provides the

greatest opportunity to reduce parallel communication overhead. In contrast, enforcing par-

allel consistency at each modification would have an unacceptable parallel communication

overhead.

9.1 State of a Mesh Includes Ordering of its Data

Ordering of data (e.g., mesh parts or mesh entities) is significant because computations fre-

quently have an order-dependency. For example, floating point operations performed by a

CPU are not associative — they are order-dependent. Thus an order-dependent computa-

tion performed on two meshes with the exact same mesh meta data and mesh bulk data will

have different results if that data has a different ordering.

The state of a mesh is defined by its mesh meta data, mesh bulk data, and the ordering

of that data. This definition is made to allow applications to perform order-dependent

computations on a mesh with repeatable results. For example, an application which check-

points (saves to permanent storage) a mesh and subsequently reloads that mesh can assume

that its order-dependent computations to produce the same results as if the mesh had not

been check-pointed and restarted.

41

Consistent ordering of mesh data is enforced when an application changes the mesh

bulk data aggregate from the modifiable state to the consistent state. This state transition

includes an operation to sort the mesh entities into a well-defined and consistent order.

This ordering is not enforced when the mesh is in the modifiable state as other sources

of inconsistencies will also be present, and enforcement during mesh modifications can

introduce undesirable runtime overhead.

The ordering of mesh data is inherently dependent upon its parallel distribution. A

different parallel distribution will result in a different ordering, which results in a different

result from an order-dependent computation. Thus for a computation to be insensitive to

the parallel distribution of a mesh it must also be order-independent, or that computation

may iterate data in a prescribed order. Reordering or remapping of mesh data is a potential

enhancement described in Section 11.3.

9.2 Runtime Modifications

An application may change the mesh bulk data from the consistent state to the modifi-

able state as many times as required. However, each subsequent change to the consistent

state will have the overhead of resolving and enforcing parallel consistency. As such, it

is strongly recommended that an application change that state of the mesh bulk data only

when necessary, perform as many modifications as are needed, and then change the mesh

bulk data to the consistent state. The expected sequence of operations performed by an

application on its computational mesh are illustrated in Algorithm 2.

Runtime modifications to mesh bulk data often affect only a localized portion of the

mesh. For example, a mesh adaptation algorithm may refine some tens of elements in

a million-element mesh to reduce the spatial discretization error. In such a localized-

modification scenario, the parallel consistency resolution operation, and other operations

that update external dependencies on MeshBulkData (Algorithm 2), should be proportion-

ately localized for better runtime performance.

9.3 Transaction Strategy for Modifications

Mesh bulk data modifications which occur between changing to the modifiable state and

changing back to be in use constitute a transaction on the mesh bulk data. This state-

change and transaction strategy, illustrated in Algorithm 2, is chosen to (1) support effi-

cient enforcement of parallel consistency of distributed mesh bulk data, and (2) support

coordination of modifications among components of an application. Such a coordination

operation is reflected in the update external dependences on MeshBulkData operation of

Algorithm 2. In this operation, the mapping from a computational mesh to an external

component, such as an equation solver, must be updated to reflect the mesh bulk data mod-

ifications. One approach is to rebuild the entire mapping from scratch, a potentially costly

42

begin Application Driver
create MeshMetaData(input EntityRanks)

populate MeshMetaData from problem specification

// e.g., parse user input to create parts and fields

commit MeshMetaData to final state

create MeshBulkData(input MeshMetaData)

populate MeshBulkData with initial mesh

// e.g., read mesh file to create entities and relations

change MeshBulkData to consistent state

setup external dependencies on MeshBulkData

// e.g., equation solvers, output database, code-coupling

for simulation steps do
perform computations on MeshBulkData

revert MeshBulkData to modifiable state

modify MeshBulkData

// e.g., load balancing, adaptivity, element death

change MeshBulkData to consistent state

update external dependences on MeshBulkData

end

destroy MeshBulkData

destroy MeshMetaData

end

Algorithm 2: Example application driver for creating, using, and modifying mesh

meta data and mesh bulk data

operation. Another approach is to modify the mapping to reflect the small modification

that occurred. To support coordination among components of the application, the mesh

bulk data provide information about what modifications were performed while in its most

recent modifiable state.

Mesh bulk data modifications are supported through the following process-local atomic

operations:

• create mesh entity,

• change mesh entity part memberships,

• destroy mesh entity,

• create mesh entity relation, and

• destroy mesh entity relation.

Other more complex (i.e., higher-level) modification functions are constructed from these

atomic operations. Transaction information includes, to some level of detail, what mesh

bulk data modifications have occurred.

43

9.4 Creating, Changing, and Destroying Mesh Entities and Relations

Creating, changing part memberships, and destroying mesh entities and mesh entity re-

lations occurs through process-local atomic operations on the mesh bulk data aggregate.

These atomic operations shall have at worst logarithmic time complexity with respect to

the number of mesh entities in the local process. The parallel consistency of these op-

erations is resolved when the mesh bulk data is changed from the modifiable state to the

consistent state. The time complexity for parallel resolution of these operations should be

proportional to the number of created, changed, or destroyed mesh entities and communi-

cation overhead.

9.4.1 Mesh entity creation

A mesh entityJ
a is created to be of a mesh entity rank J, to have a unique integer iden-

tifier a (unique for the given rank), and to be the member of a specified collection of

mesh parts. A mesh entity is created without any relations to other mesh entities; i.e.,

Relation
(

entityJ
a

)

= /0.

Parallel consistency: The created mesh entity is automatically a member of the OwnedP

mesh part where P is the local process. When mesh entities are created on different pro-

cesses with the same mesh entity rank and identifier then these entities are assumed to be

duplicates. However, this duplication is not discovered until the parallel consistency of

the mesh bulk data is resolved—which occurs when the mesh bulk data is changed to the

consistent state. The parallel consistency resolution operation will:

• insert the duplicated mesh entity into the mesh bulk data for mesh entity sharing

(Equation 21),

• choose one of the sharing processes to be the unique owner (Equation 19), and

• insert the duplicated mesh entity into the union of mesh parts obtained from all du-

plicates.

Parallel index: Parallel resolution of mesh entity creation uses a parallel index which

assigns all potential mesh entity identifiers to one of the parallel processes. During parallel

resolution each created mesh entity identifier is communicated to the assigned process.

The assigned process then informs the creating processes of any parallel duplication of

their created mesh entities. Given this parallel sharing information, the sharing processes

choose a process owner and update the shared mesh entity communication information.

44

9.4.2 Mesh entity destruction

A mesh entityJ
a can only be destroyed if it is not the to-entity of a relation; i.e., entity→

entityJ
a = /0. For example, a node cannot be destroyed on the local process if an element

still depends upon it on the local process. As such, if there are such relations, then they

must be destroyed before the mesh entity can be destroyed.

Transaction considerations: A request to destroy a mesh entity immediately deprecates

the mesh entity—it destroys its associated field data and removes the entity from its mesh

part memberships and mesh bucket. However, the mesh entity itself is not immediately de-

stroyed. It must persist until the transaction is completed, parallel consistency is resolved,

and dependent components are updated. As such, the destroy operation deprecates the

mesh entity by destroying its field data and removing it from its mesh part memberships

and mesh bucket. Final deletion is postponed until the transaction has been fully processed.

Parallel consistency: The parallel resolution operation removes the destroyed copy of

the mesh entity from all communication lists, including lists on other processes. This par-

allel resolution is only possible if the destroyed mesh entities persists until after parallel

resolution has completed. When a shared mesh entity is destroyed, it is assumed that if

there are ghost copies of that mesh entity then the intent of those ghost copies has been in-

validated and the ghost copies are destroyed. If a shared and owned mesh entity is destroyed

on the owning process, but not destroyed on all other sharing processes, then ownership of

that mesh entity is transfered to one of the sharing processes.

Identifier recycling: It may be necessary to recycle the integer identifier of a destroyed

entity. For example, consider an application that performs local mesh refinement and coars-

ening to resolve spatially a localized phenomenon which moves through a mesh. After

enough refinement and coarsening cycles, the set of possible identifiers will be exhausted

if they are not recycled.

9.4.3 Mesh Entity Relation Creation

A mesh entity relation
(

entityJ
a , entityK

b , attribute
)

is created with a

• from-entity entityJ
a,

• to-entity entityK
b where J > K, and

• integer attribute value.

The from-entity, to-entity rank K, and attribute value are required to be matched with a

single to-entity, as per Equation (5).

45

Induced part membership: When a mesh entity relation is created, the part member-

ships of the to-entity are automatically modified to enforce induced part membership spec-

ifications (Section 4.3). For example, when an element→node relation is created, the node

will automatically become an induced member of the element block mesh part containing

the element.

Parallel consistency: If a created mesh entity relation’s from-entity is parallel-duplicated,

then the closure of the from-entity changes and can become inconsistent among duplicating

processes. If a created mesh entity relation’s to-entity is parallel-duplicated and changes

part memberships due to an induced part membership rule, then the to-entity can become

inconsistent among duplicating processes. The parallel consistency resolution operation

will add new induced part memberships to parallel-duplicated to-entities as necessary, as

well as create new relations and copies of to-entities for parallel-duplicated from-entities

as necessary.

Creation of a relation may add the to-entity into a process’s OwnedP subset. If the

mesh entity already existed in that process’s GhostedP subset, it must be removed from the

GhostedP subset to satisfy Equation (22), and introduced into the mesh bulk data’s parallel

sharing information.

9.4.4 Mesh Entity Relation Destruction

Destruction of mesh entity relations updates induced part memberships as well as parallel

consistency, as described below.

Induced part membership: If the to-entity of a destroyed relation has an induced part

membership due to that relation, then the to-entity may have to be removed from that mesh

part. However, the to-entity may have the same induced part membership from a different

mesh entity relation. In this case, the to-entity would not be removed from that mesh part.

The induced part memberships of a shared to-entity of a destroyed relation can only be

correctly resolved as part of the parallel consistency resolution operation.

Parallel consistency: Destruction of a mesh entity relation can remove the to-entity

from the closure of the from-entity. This removal can be recursive; for example, given the

simple mesh of entityJ
a→ entityK

b → entityL
c then destruction of relation entityJ

a→ entityK
b

results in the removal of both entityK
b and entityL

c from the closure of mesh entity entityJ
a.

Removal of mesh entities from the mesh entity closures can remove mesh entities from a

process’s closure, OwnedP. Such an occurrence can cause shared mesh entities to be shared

no longer and ghosted mesh entities to be needed no longer. Resolution of these complex

changes is the responsibility of the parallel consistency resolution operation.

46

9.4.5 Mesh entity part membership changes:

The part memberships of a mesh entity may be changed by adding that entity to or removing

it from membership of selected mesh parts. When a mesh entity is added to a mesh part it

is automatically added to all supersets of that mesh part. Likewise, when a mesh entity is

removed from a mesh part, it is automatically removed from all subsets of that mesh part.

Thus, the added mesh parts, and their supersets, must be disjoint from the removed mesh

parts, and their subsets.

Induced memberships: Mesh part membership changes to a mesh entityI
a will most

likely cause induced mesh part membership changes to the to-entities in the entityI
a→ entity

relations. Such potential changes are resolved by adding new mesh part memberships and

removing an existing mesh part membership.

Parallel consistency: Part memberships may be added to or removed from shared mesh

entities. These changes may be inconsistent among the sharing processes. Parallel consis-

tency is resolved according to the following two rules.

• Adding a new part membership to a shared mesh entity on any sharing process causes

that part membership to be added to all duplicates of that mesh entity.

• Removing an existing part membership from a shared mesh entity is successful if-

and-only-if that existing part membership is removed on all sharing processes.

Thus, adding a mesh part membership will always occur but removing a mesh part mem-

bership will not occur if any one of the sharing processes does not remove that mesh part

membership.

9.5 Transferring Parallel Ownership

Parallel ownership of a mesh entity may be transfered by the owning process to another

process. Transfer of ownership does not modify a mesh when viewed as a whole; however,

it will modify the parallel distribution of that mesh and memberships in the OwnedP sub-

sets. Ownership transfer is typically performed as part of a parallel dynamic load balancing

operation.

Transfer of ownership performs a collective communication to copy the mesh entities,

their closures, and associated field data from the previous owner process to the new owner

processes. Thus mesh entities are copied or moved among the OwnedP subsets. If a mesh

entity is no longer in a OwnedP subset then it is deleted from that process. Resolution

of changes to the OwnedP subsets revise the sharing communications lists (Equation 21)

accordingly.

47

Changing the OwnedP membership of a ghosted mesh entity is likely to invalidate the

application’s intended use for that ghosted mesh entity. As such, the parallel resolution

operation destroys all ghosts of mesh entities which have changed OwnedP memberships.

An application will have to re-evaluate the ghosting needs for these mesh entities following

an onwership-transfer operation.

9.6 Modifying Parallel Ghosting

An application can modify parallel ghosting by adding mesh entities to, or removing mesh

entities from, its chosen ghosting subset {GhostedP}Φ
(recall Section 7.2). Such modifi-

cations do not change the computational mesh when viewed as a whole. An application

provides a collection of add-to and remove-from instructions to a parallel collective opera-

tion to allow efficient parallel resolution of the modification operation.

Parallel ghosted mesh entities are automatically removed, during parallel consistency

resolution, due to the following changes to the mesh.

• A ghost mesh entity’s membership in OwnedP subsets is changed. This can occur

due to transfer of parallel ownership (Section 9.5), or due to the destruction of a

shared-duplicate of the ghosted mesh entity.

• The relations of a ghosted mesh mesh entity change—potentially invalidating the

application’s intended use for that ghosted mesh entity. For example, if a mesh entity

that was ghosted because it is the neighbor of a shared mesh entity, and a relation in

that “neighbor path” is destroyed, then the intended use of that ghosted mesh entity

is invalidated.

48

10 Sierra Toolkit Mesh Implementation

The domain model for a parallel, heterogeneous, and dynamically modifiable unstructured

mesh presented in this report is implemented as a component of the Sierra Toolkit. This im-

plementation and its application programmer interface (API) are being developed through

an agile software development process. As such this domain model, the derived software

design, and API are subject to change as new use-cases are defined and existing use-cases

are refined.

The concepts described in the previous sections of this report are considered by the

Sierra Toolkit development team to be sufficiently stable to archive in this written report.

However, the derived software design and API for these capabilities is subject to change as

the collection of use-cases is broadened and performance is optimized. As such documen-

tation for the software design and API currently limited to extensive commentary within

the Sierra Toolkit Mesh source code.

The Sierra Toolkit Mesh is available through Sandia National Laboratories’ Trilinos

repository at http://trilinos.sandia.gov/.

49

11 Future Development

Continued development of the Sierra Toolkit computational mesh is planned, with many

potential ideas for future development. Identification and description of these ideas in this

section carries no implications as to development priorities, schedule, or even guarantee

for follow-through. The concepts for these planned capabilities have not been thoroughly

evaluated through multiple use-cases and are not as stable as the domain model presented

in the previous sections of this report.

11.1 Thread Parallelism

Two levels of parallel execution are considered: (1) process-parallelism and (2) thread-

parallelism within each process. To date, parallel execution efforts have focused exclusively

on process-parallelism via a Message Passing Interface (MPI) compliant inter-process com-

munication library. Given new multicore architectures it is necessary to consider thread-

parallelism in addition to the existing process-parallelism programming model. The goal

for this two-level parallel programming model is to achieve better parallel performance

than could be achieved by simply applying the single-level process-parallel programming

model to the processing cores of a compute-node. For compute-node architectures with

a heterogeneous collection of processing cores, such as those that utilize graphics accel-

erators, it may not be possible to use a single-level process-parallel programming model.

An additional complication that can be present with heterogeneous processing cores is the

requirement to explicitly manage the movement of data between distinct portions of the

node’s or process’ memory. For example, data may need to be copied between a node’s

main memory and a graphics accelerator’s internal memory in order for the processing

cores of the graphics accelerator to operate on that data. A homogeneous collection of

processing cores may appear to have equal access to the process memory. However, such

multicore system’s cache memory architecture can have significant variations in overall

performance with respect to a computation’s memory access patterns. As such data layouts

and parallel programming models need to be considered when determining how to most

effectively use multicore resources.

11.2 Field Data Consistent Units System

Another potential use case is for a field declaration to have mathematical units of measure

(e.g., meters, degrees Celsius, kilograms). This potential use case is not currently realized

in the domain model or implementation of the SIERRA Toolkit Mesh.

50

11.3 Entity Ordering

Currently, the entity ordering relation expresses a unique ordering of mesh entities used to

ensure mesh results are invariant for meshes with identical data in identical computation

environments. This idea can be extended to provide several other services to applications.

For instance, a relation can be supplied by the application developer to reduce cancellation

in local operations and reorder computations to use cache more efficiently.

11.3.1 Operator Mappings

A simulation generally defines a problem on a particular discretization, uses the discretiza-

tion to construct a mathematical operator, and then computes an approximation to the

problem. As part of this procedure, the application developer constructs an application

mapping, the process by which a discretization can be used to build an operator A:

A : mesh 7→ operator.

By using the SIERRA toolkit, the application developer can translate the mesh into a par-

allel, consistent data structure that can be used to construct an operator.

The SIERRA Toolkit provides a mapping from mesh entities to owning process and in-

tersection of mesh parts. For instance, given a node in a finite element mesh, the SIERRA

Toolkit computes an owning process for the node and maintains a bucket on that pro-

cess in which the node is stored. Thus, a Toolkit mapping can be defined as S : mesh→
(process, storage). Each entity in the mesh is associated with an owning process and a

place in its memory.

The application developer could transform the mesh stored in memory into an oper-

ator. For example, the application may require construction of a finite element stiffness

matrix. In parallel, the matrix would be distributed among processes in a matrix stor-

age scheme such as compressed sparse row. The source code defines another mapping

T : (process, storage) 7→ (process,operator component). Thus, A is the composition of S

and T . The operator (process,operator component) is then provided to computational ker-

nels to approximate a solution to the problem.

In order to remove mesh evolution-dependent effects from construction of A, a math-

ematical relation is used to sort mesh entities. The relation well orders (process, storage),
implying a bijective ordering map from the integers Z = [1, ||storage||] to the R : [1, ||storage||] 7→
storage. This allows the application developer to use the mesh interface in a straightforward

fashion. Rather than creating a fine grain source code mapping, the application developer

can use the familiar iterator access pattern: given the nth item in the bucket, construct the

mth line in the operator component. Therefore, the application developer creates a map

T ′ : (process,Z+) 7→ (process,operator component)

. In this way, applications can be described as A′ : T ′ ◦R−1 ◦S.

51

11.3.2 Operator Permutations

A more sophisticated mechanism may be implemented that introduces a permutation on

(process, storage). For two computational environments i and j, there are two Toolkit map-

pings Si and S j. Si = S j if and only if i = j. Let Ri j : (process, storage) 7→ (process, storage)
be a bijective permutation such that S j = Ri j ◦Si. Then, given Ai = T ◦Si, it is possible to

compute A j = T ◦Ri j ◦Si. In other words, given the storage scheme computed by the Toolkit

in environment i, R can transform it to the same storage scheme computed in environment

j.

An ordering can be computed from the current environment variables (e.g. process rank,

communicator size) and variables provided to the Toolkit describing the desired environ-

ment. Consider a single mesh with 220 = 1,048,576 nodes, each in the same homogeneous

subset and stored in a bucket labeled “nodes.” Each node is given an offset into the bucket,

a pointer that identifies where in memory the data for the node is stored.

Let two different simulations use this mesh, simulation i on 210 = 1,024 processes and

simulation j on 215 = 32,768 processes. Assume the mesh is decomposed to be perfectly

load balanced in each simulation and each node assigned to a process by integer division.

There are two different Toolkit mappings. In this example, let each node be placed on

process in a round-robin fashion: process = rank mod communicator size and let each

node be placed in memory in a similar fashion, pointer = rank div communicator size.

Si(rank, id) = (rank mod 1024, (“nodes”, rank div 1024))
S j(rank, id) = (rank mod 32768, (“nodes”, rank div 32768)),

where (“nodes”, rank div 1024) fully specifies the mesh storage.

From these mappings, a permutation Ri j can be constructed so that simulation j will be

presented the mesh in exactly the same fashion as simulation i:

Ri j(x, (y, z)) = S j ◦S−1
i

= ((1024z+ x) mod 32768, (y, (1024z+ x) div 32768)).

This mapping is constructed by inverting the current mapping computed by the Toolkit

and recomputing the mapping for a new enviornment. This mapping is identical to R′i j =
(rank mod 32768, (“nodes”, rank div 32768)). However, this formulation implies the Toolkit

can infer rank = 1024z + x, which it may not be able to. In the former formulation, the

constants are available as parameters that describe the current environment (1024) and the

desired environment (32768).

11.4 Mesh Modification Transaction Logging

Mesh modifications potentially affect any capability that maps a mesh to a data structure

external to that mesh. For example, after mesh refinement, the mappings between the

52

mesh and output files, mappings between the mesh and equation solvers, or even mappings

between two different meshes may have changed. These mappings can be expensive to

compute from scratch but easy to update given a list of incremental changes to the mesh.

With sufficient knowledge of the incremental mesh modifications, these mappings could be

incrementally updated.

11.4.1 Mesh Modification Transaction

Algorithm 3 depicts an example multi-physics simulation algorithm. In this algorithm,

modifications to mesh entities must occur between “begin MeshBulkData modification”

and “end MeshBulkData modification.” A mesh modification transaction is the collective

description of these modifications to mesh entities.

begin Simulation Algorithm

while simulating do

// begin application’s transaction

begin MeshBulkData modification

Modify MeshBulkData

// e.g., refine elements, element death, etc.

end MeshBulkData modification

// mesh modification is done;

// but mappings are inconsistent

Create/update mappings between mesh and external data structures

// end application’s transaction

Perform simulation
end

end

Algorithm 3: General simulation algorithm

These transactions are serializable with respect to the processes. Each process tracks

its own local contribution to the transaction, called a transaction fragment. That is, each

transaction fragment is assumed to have executed atomically and the order of commitment

of these transaction fragments does not affect the resulting mesh. To ensure this property,

only the total change of the mesh entity is recorded. Thus, the transaction log is only

required to record two states of each modified entity: the beginning state and the final state.

When the transaction is committed at “end MeshBulkData modification”, the parallel

consistency rules are applied to ensure the final state of each entity is consistent across all

processors. By induction, the beginning state of the transaction is always in a consistent

state.

A potential use of the transaction log is to determine which changes in the mesh affect

mappings to external data structures and update these mappings accordingly. For instance,

the element-sides belonging to a part representing a Dirichlet boundary condition may have

53

changed due to element death. The element death module removed elements, exposing in-

terior faces to the boundary condition. In this case, the application can update its boundary

condition mapping by learning from the log which elements were destroyed and which

faces were exposed.

11.4.2 Types of Transaction

There are two types of transactions based on how the transaction will be used. The first

type, bulk transactions, are used when mapping repairs are too expensive, unstable, or ill-

advised for other reasons. Alternatively, incremental transactions are used whenever it is

cheaper to repair mappings than to rebuild them.

Bulk Transaction: Individual mesh entities are not logged. Rather, it is assumed that

most of the mesh entities owned by a process will be changed. Mesh parts containing

changes are noted.

Incremental Transaction: All information from a bulk transaction is included in an

incremental transaction. Each mesh entity inserted, deleted, or modified is tracked in the

transaction. Through various mechanisms, applications developers can select, iterate, or

otherwise access these entities just as any other mesh entity.

11.4.3 Incremental Transactions as State Changes

The incremental transaction records three types of entity changes: insertion, deletion, and

modification. Insertion and deletion of entities are straightforward to track. On the other

hand, an entity is modified if it matches any one of the following three criteria:

• Relation is modified. Any of the relations in the set of relations from the entity is

changed, either in to-entity or attribute. For instance, if the local node numbering of

a face changes, then the face is modified but the nodes are not.

• The state of entity changes. If a mesh entity is added or removed from a mesh part,

the mesh entity is considered modified

• Any entity directly related to the entity is modified. Continuing the element-side

example from above, both elements incident on the face are modified.

The mesh state is independent of the transaction log. The transaction log maintains

three sets: Deleted, Inserted, and Modified. The transaction log does not track changes to

field data or relations. Mesh bulk data and transaction sets share the same meta data. In

this way, the two have the same mesh parts

54

Figure 10. State diagram for serial transactions

When a mesh entity is modified, inserted, or deleted, it may be logged. If the entity is

not already in Deleted, Inserted, or Modified, the entity will be placed in the appropriate

set along with the parts in the transaction bulk data that describe its current state.

Entity Insert When an entity is inserted into the mesh, it is added to Inserted.

Entity Modification If the entity is a member of Inserted or Modified already, nothing

happens. Otherwise, the entity is added to Modified along with the rest of the parts that

describe its current state.

Entity Delete If the entity is in Modified, it is removed from this group and placed in

Deleted, keeping the bucket parts. If it is in Inserted, the entity is deleted from memory.

Otherwise, it is added to Deleted and the rest of the parts that describe its state.

55

The state diagram in Figure 10 describes how an entity will be stored in the transac-

tion based on how the entity is changed. An entity in the Universal part can be modified

or deleted, placing the entity into the transaction log. A created entity is placed in the

Universal set (indicated by the dotted line). This entity is also placed in the transaction log.

For instance, let entity be in parts A, B, and C but not in any transaction set. If entity is

added to part D, then entity is added to Modified. The state of entity at the beginning of the

transaction (a member of A, B, and C) is preserved in the transaction log.

11.4.4 Transaction Lifetime

The transaction log can be reset at any time when the mesh is in a parallel consistent state

(i.e., no mesh modification is in progress). For bulk transactions, resetting involves erasing

the list of stored modified parts. For incremental transactions, resetting the transaction

involves two steps. First, the mesh entities in Deleted are finally deleted from mesh bulk

data. Next, the remaining parts of the transaction bulk data are emptied without deleting

the entities.

Once the change has been committed, the three mesh parts can be used by the appli-

cation to find which entities were changed and how they were modified. For instance, if a

bulk transaction is used, and a mesh part called “Interior Elements” was modified, then it is

assumed that any of the entities in the mesh part “Interior Elements” could have been mod-

ified. If the transaction is incremental, then individual mesh entities can be iterated over

based on querying of mesh parts. In either case, after the end of the bulk data modification,

the application can look through the various mesh parts to repair or rebuild mappings as

necessary. The data are available until the transaction log is reset.

11.4.5 Parallel Consistency and Ambiguities

If one process modifies a mesh entity, then it will be modified on other processes when

the parallel synchronization operation is applied. The transaction log tracks modifications

across process boundaries.

Mesh entities can be stored differently in the transaction log depending on the process

they are stored and the mechanism by which they were changed. For instance, an entity can

be modified on one process and deleted from another simultaneously. On each process, the

entity will be handled differently by the transaction log.

56

References

[1] H. Carter Edwards. Sierra framework version 3: Core services theory and design.

Technical report SAND2002-3616, Sandia National Laboratories, Albuquerque, New

Mexico 87185, November 2002.

[2] H. Carter Edwards. Managing complexity in massively parallel, adaptive, multi-

physics applications. Engineering with Computers, 22(3-4):135–156, 2006.

[3] Eric Evans. Domain-Driven Design, Tackling Complexity in the Heart of Software.

Addison-Wesley Publishing Company, 2004.

[4] Information Technology Industry Council. Programming Languages — C++, Inter-

national Standard ISO/IEC 14882. American National Standards Institute, 11 West

42nd Street, New York, New York 10036, first edition, 1998.

[5] Stefan Lang. Parallel-adaptive simulation with the multigrid-based software frame-

work UG. Engineering with Computers, 22(3-4):157–180, 2006.

[6] Stefan Lang and Gabriel Wittum. Large-scale density-driven flow simulation using

parallel unstructured grid adaptation and local multigrid methods. Concurrency and

Computation: Practice and Experience, 2003.

[7] IEEE Std 1003.1, 2004 Edition, <pthread.h>, 2004.

[8] Larry A. Schoof and Victor R. Yarberry. EXODUS II: A Finite Element Data Model.

Technical report SAND92-2137, Sandia National Laboratories, Albuquerque, New

Mexico 87185, November 1995.

[9] Seegyoung E. Seol and Mark S. Shepard. Efficient distributed mesh data structure for

parallel automated adaptive analysis. Engineering with Computers, 22(3-4):197–214,

2006.

[10] James R. Stewart and H. Carter Edwards. A framework approach for developing

parallel adaptive multiphysics applications. Finite Elements in Analysis and Design,

40:1599–1617, 2004.

[11] AOMD home page. http://www.scorec.rpi.edu/AOMD/, July 2005.

[12] Basic linear algebra subprograms (BLAS) website. http://www.netlib.org/blas/, Oc-

tober 2009.

[13] Nvidia cuda home page. http://www.nvidia.com/object/cuda home.html, October

2009.

[14] Message passing interface (MPI) standard documents. http://www.mpi-

forum.org/docs/docs.html, October 2009.

[15] Trellis home page. http://www.scorec.rpi.edu/Trellis/, July 2005.

[16] UG home page. http://cox.iwr.uni-heidelberg.de/~ug/, July 2005.

57

DISTRIBUTION:

1 MS 0380 David E. Womble, 01540

1 MS 0382 Basil Hassan, 01541

1 MS 0380 Joe Jung, 01542

1 MS 0382 Ted D. Blacker, 01543

1 MS 0828 Anthony A. Giunta, 01544

1 MS 0382 David G. Baur, 01543

1 MS 0382 H. Carter Edwards, 01543

1 MS 0382 Michael W. Glass, 01543

1 MS 0382 Greg D. Sjaardema, 01543

1 MS 0382 Alan B. Williams, 01543

1 MS 0380 James G. Foucar, 01543

1 MS 0382 Kenneth Belcourt, 01543

1 MS 0370 James R. Overfelt, 01433

1 MS 1320 Todd S. Coffey, 01414

1 MS 1313 Russel Hooper, 01414

1 MS 1137 Daniel Sunderland, 06326

1 MS 0380 Kendall H. Pierson, 1542

1 MS 0336 Patrick K. Notz, 1541

1 MS 0382 Kevin D. Copps, 1544

1 MS 0899 Technical Library, 9536

58

v1.27

