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Abstract

2-Chloroethyl phenyl sulfide (CEPS), a surrogate compound of the chemical warfare
agent s ulfur m ustard, w as examined us ingt hermal d esorption ¢ oupled gas
chromatography-mass s pectrometry (TD/GC-MS) and mu Itivariate an alysis. T his
work describes a novel method of producing multiway data using a stepped thermal
desorption. V arious m ultivariate a nalysis s chemes w ere e mployed t o analyze t he
data. These methods may be able to discern different sources of CEPS. In addition,
CEPS was applied to cotton, nylon, pol yester, and silk s watches. T hese s watches
were p laced in controlled h umidity ch ambers maintained at 23%, 56%, and 85%
relative humidity. At regular intervals, samples were removed from each test swatch,
and t he s amples a nalyzed us ing TD/GC-MS. The r esults w ere co mpared a cross
fabric substrate and humidity.
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1. INTRODUCTION

Chemical warfare agents (CWAs) are a significant concern as a terrorist actor’s weapon of mass
destruction and fear. Most CWAs are easy to synthesize and can be done so at fairly low cost, an
ideal combination for small terror cells bent on instilling fear in a target population. As a result,
they present a significant concern to policy makers and public safety officials. These weapons
also p ose a ch allenge f or | aw en forcement a gencies charged w ith pos t-attack investigation.
Unlike commercially-produced toxic compounds, CWAs are likely to be produced, rather than
purchased, by the end user. Thus, there is likely not a paper trail tying the end-product material
directly to the criminal. T herefore, the forensics investigator must rely on linking the chemical
precursors used in the synthesis to a suspect.

Identification of the sources of chemical reagents used in the “home” production of a ch emical
agent can b e an important as pect in the forensic process. C omplicating th is p roblem, many
CWAs have multiple s ynthetic p athways u tilizing d ifferent c hemical precursors. Given these
multifarious ¢ hallenges, a ke yinthe forensic processi s identifying and qua ntifying m inor
components and contaminants in the final synthetic product which link it to the precursors and/or
synthetic r oute. One goal of t his pr oject s ought t o e valuate m ethods of i dentifying m inor
components in a simulant of one CWA, sulfur mustard.

Another consideration of this problem regards aging of CWAs. Since civilian structures may be
quarantined after deployment of CWAs, many days may elapse before the collection of samples
for f orensic pur poses ¢ ould oc cur. P resumably the s tructure w ould be s ecured, a ssessed,
decontaminated, and, finally, re-entered. In this regard, efforts here sought two objectives; what
are the significant aging effects of a sulfur mustard surrogate b ased on substrate and relative
humidity conditions, and how does one determine forensic information using relatively low-cost
analytical instrumentation that is available to mo st metropolitan police crime laboratories so a
local evaluation of evidence may be performed.

1.1. Mustard Gas

Mustard gas or sulfur mustard (HD), 1,1 -Thiobis[2-chloroethane], is an oily liquid with a weak,
slightly sweet odor reminiscent of oil of mustard or garlic.'"” Figure I contains the structural
formula for sulfur mustard. Itis an alkylating agent and a strong vesicant that predominantly
affects the eyes, skin and respiratory tract of its victims.* The first presumed report o f s ulfur
mustard synthesis was in 1822, as the byproduct of reactions of sulfur chloride with ethylene.’
This, a nd s ubsequent s yntheses in 1860, "¢ were p erformed by chemists w ithout a co mplete
understanding of the hazards associated with their products. Sulfur mustard was finally isolated
and purified in 1886 by Meyer.”®
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Figure 1. Structural formula for sulfur mustard (HD).

Sulfur mustard has been used intentionally and unintentionally in various military conflicts over
the past 100 years.” It was used extensively in the First World War (WWI), by the Axis powers
at various times preceding the S econd W orld War, and by Iraq during the Iran-Iraq W ar and



against the Kurds prior to the 1991 Gulf War. During WWII, the mustard gas was released as a
consequence of a German air raid on Allied ships moored in the port of Bari, Italy.”"

As a weapon of terrorism, there are no reported uses of mustard gas, but its ease of fabrication
and acute and chronic effects, ® make it a potent concern for policy makers. H-12

1.2. Mustard Simulants

Useful simulants or surrogates for mustard have been investigated for environmental studies and
protective ¢ quipment te sting.">'*  These i nclude 2 -chloroethyl me thyl s ulfide ( CEMS),
2-chloroethyl p henyl s ulfide ( CEPS), c hloroethyl e thyl sulfide ( CEES), and me thyl s alicylate
(MS). For this work, C EPS was s elected be cause of our familiarity with this c ompound, its
structural similarity to HD, and its lower toxicity.

s
A Hye™ g C H3C\/S\/\C|

OH @)

Figure 2. Structural formulas for selected mustard simulants.
The species depicted are CEMS (A), CEPS (B), CEES (C), and MS (D).
(See text for abbreviations.)

1.3. Thermal Desorption Gas Chromatography-Mass Spectrometry

Thermal d esorption ¢ oupled w ith gas ¢ hromatography-mass s pectrometry (TD/GC-MS)is a
flexible experimental technique that permits the direct analysis of volatile organic species from
liquid or solid substrates. T D/GC-MS al so facilitates the i ndirect an alysis o f o rganic s pecies
when collected on a suitable adsorbent.

Thermal d esorptioni s as ample p reparation p rocesst hath eats as amplet oas pecified
temperature under an inert gas chromatography carrier gas. T he volatile species desorbed from
the s ample s ubstrate ar e co llected an d concentrated o n an ad sorbent-packed t rap, whichis
typically held at a sub-ambient temperature during desorption from the original substrate. A fter
desorption from the sample is complete, the trap is heated to volatilize the adsorbed species and
introduce them to the gas c hromatograph-mass spectrometer for s eparation and i dentification.
Thermal desorption permits the direct analysis of volatile species from samples with little sample
preparation; since no extraction solvents are used, dilution, solubility issues, and loss of analytes
that may be part of a solvent extraction method are avoided.

Typically, TD/GC-MS1i spe rformedus ing as ingle, predetermined s ample de sorption
temperature. T his allows th e c hemist to e xtract ma terials that may b e o f in terest, w hile n ot
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damaging the collection m edium or g enerating de composition products. A notherissueisto
select a te mperature th at w ill n ot d ecompose the ta rget a nalytes. A di sadvantaget ot his
technique is that all o f the target m aterials are driven out o fthe sample in a ggregate. An
alternative strategy, which depends on t he variable volatility o f different species, is to step the
desorption temperature to generate a series of desorptions.

The technique o f stepping through a series of temperatures works as follows: (1) Perform an
initial desorption at a temperature slightly above ambient temperature that is easy to maintain by
the temperature controller. ( 2) Concentrate these higher-volatility species in the trap and then
introduce them into the GC-MS. (3) After collection of the full-mass spectrum-chromatogram,
step the temperature up to the next desired level and return to step one. (4) Repeat until the
maximum desired desorption temperature is achieved. This process allows one to progressively
extract the sample, removing the target species from the matrix as a function of volatility and/or
adsorption a ffinity. In a ddition, b y ¢ ollecting a full ma ss s pectrum for e ach e lution time

increment one can generate three-way data. Since three-way data that follow a trilinear model
has s ome s pecial p roperties w ith r egard to mu Itivariate a nalysis, th is te chnique can be v ery
advantageous.

The m ethods and i nstrumentation us ed in t his s tudy are widely available, uns pecialized, and
relative low cost. This is by design so that the methods developed can easily be replicated by the
widest possible audience responsible for analysis or performing forensic investigations. As such,
the G C-MS c onditions are not optimized t oward particular targets or s pecies, but in fact are
unrestricted in order to detect the widest possible range of marker compounds. For example, the
scan range was set from 50 to 380 atomic mass units (amu) and scanned at each time increment.
In the case of a forensic investigation targeted methods may be used to look in an optimized way
for s pecific s pecies, s uch a s s elected i on m onitoring m ethods and s maller s can r anges o r
temperature ramps. For unknowns, critical information can be overlooked or not even detected.

As more knowledge is gained as to markers of particular CWAs and their synthesis methods, the
chemical d etection m ethods can b e i mproved in t he us ual w ays f or 1 ower de tection | imits,
analysis speed, etc. By demonstrating these expanded techniques in a broad sense, we have not
constrained 1 arge s ections of t he f orensic popu lation t o pur chase hi ghly specialized, s ingle
purpose, or extremely expensive hardware.

1.4. Multivariate Data Analysis

1.4.1. Data Scaling

Prior t o performing f actor a nalysis, G C-MS d ata mustb e ap propriately s caled so th at it
approximates the assumptions of the factor analysis technique. T he factor analysis techniques
used he re are b ased o nt he m ethod o f1 east s quares, w hich as sumes t hat t he er rors are
independently and identically distributed (i.i.d.) normal. Since these GC-MS data are collected
as counts from a quadrupole mass spectrometer, the first principles assumption is that the data
are a ctually P oisson di stributed."””” SNL has ex tensive ex perience w ith o ptimal scaling o f
multivariate Poisson-distributed data.'**° Briefly, the data can be scaled using the inverse of the
square root of the mean mass spectrum.
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Consider s ome G C-MS datainthe m x n matrix D oriented as m ass s pectral d omain b y
chromatographic domain with mean m/z spectrum Hm given by

d, =1D1n (1)
n

where 1 is an n-vector column of ones. Now, the data can be scaled in D using the diagonal

matrix H whose diagonal elements are a;% using
D=HD )

where D is the data s caled for P oisson s tatistics. T his s caling d ecreases the ef fect o f 1arge
variations i n t he da ta due s olely t o noi se i n i ntense s pectral r egions. Itis i mportant f or
subsequent factor analysis as it effectively down-weights the effect of variance due to noise in
intense spectral features and concomitantly up-weights minor spectral features, which in the raw
data are smaller in magnitude than noise elsewhere.

1.4.2. Principal component analysis (PCA)

PCA is a statistical method that decomposes a matrix into two sets of orthogonal of basis vectors,
ordered by decreasing variance, that model the row and column spaces of the matrix.?'** It is
often used as an initial data reduction method, whose subspace r epresentation may b e readily
factor-analyzed by additional statistical treatments.'® PCA can be represented in matrix form as

D=TP'+E (3)

where T is an m x p matrix which describes the row (or mass spectral) space of the scaled data
in D, P isan n x p matrix describing the column (or chromatographic) space of D, E is an m x
n matrix of s caled r esiduals or noi se, and t he s uperscript “T” i ndicates t he t ranspose of the
preceding matrix or vector. W e use p to define the size, or pseudorank, of the subspace model
that describes the chemically meaningful information contained in D ; simply put, the number of
distinguishable ch emical s peciesin D. T is orthogonal and P is or thonormal ha ving t he
properties:
s

AT @

I=PP
where I is a p % p identity matrix and A is a p x p diagonal matrix of eigenvalues ordered from
largest to smallest. O ne can also compute a “f ull set” of ei genvalues o f1ength min(m, n) for
fairly low computational cost. T hese eigenvalues can be used to estimate the pseudorank, p, in
numerous ways.”’ Commonly, a semi-logarithmic plot of eigenvalue versus factor number is
produced and the number of factors selected where a “knee” occurs in the plot.”
There is a variety of methods to compute the PCA, among these are nonlinear iterative p artial
least square (NIPALS),** eigenanalysis,”2® and singular value decomposition (SVD).2**" SVD
is very convenient since it decomposes the matrix D as

D=USV' +E (5)
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where U and V are, respectively, the m x p and n X p matrices of orthogonal 1eft and right
singular vectors and S is the diagonal matrix o f singular values. The singular values are the
square roots of the eigenvalues, viz.

A=S§’ (6)
We can combine equations (3) and (5) to show that
T=0US
(7)
P=V

We have been careful in this section to utilize notation that indicates which data domain bears
the scaling, in this case the mass-spectral domain. T his is important since after factor analysis
we will want to return those factors to their native scale, specifically

T=H'T (8)

1.4.3. Orthogonal Factor Rotation

After performing PCA, one will have an orthogonal, rank-p representation of the data that will
probably not r esemble any m eaningful i nformation t o t he ¢ hromatographer. C onsequently,
additional factor analysis is required to transform the PCA factors into interpretable factors. A
reasonable approach to transforming the factors is to use a factor rotation method.

Factor rotation methods seek to maximize (or minimize) some criterion that is consistent with the
nature of the data. In the case o f GC-MS d ata, t he v arimax r otation™®" isana ppropriate
criterion for the chromatographic domain. T he varimax criterion seeks an orthogonal rotation
matrix, R, which maximizes the row (or time) variance o f the orthonormal matrix P, thereby
maximizing the "simplicity" of the rotated elution-time or chromatographic factors. In matrix
form we have

D=TP"=TRR'P" = TP’ 9)

Generally, the factors of chromatographic domain are simple or sparse. For example, when a
species elutes it produces a peak in the chromatogram, generating a chromatographic factor with
a single peak, and zeros or noise at all other times. U nless another species co-elutes, all other
factors will be zero-valued (or baseline-noisy) at the elution times encompassing that s pecies
peak. So, the chromatographic domain is, generally, sparse. O verlapping due to co-elution or
the presence of a large background is a violation of this premise. By contrast, there is no reason
to expect that the mass-spectral domain is sparse since many different compounds generate the
same m ass f ragments, althoughnot i nt hes ame pattern; s o th is v iolates th e s implicity
assumption.

1.4.4. Multivariate Curve Resolution (MCR)

If all species were to elute at different times such that none were overlapped, and no background
arose f rom ¢ olumn pa cking | oss a nd di scharge, t hen P CA a nd va rimax r otation w ould be
sufficient to produce interpretable results. U nfortunately, one often has to deal with these and
other problems, and so needs to find a method applicable to these issues. M CR, also called
linear unmixing, is a factor analysis method that utilizes an alternating least squares strategy

13



31-33 34-35

while e mploying c onstraints;
MCR seeks to solve

the m ost c ommon c onstraint us ed be ing nonne gativity.
D=MC' +E (10)

where M is the nonne gative m x p matrix modeling the row (or mass spectral) space of the
scaled datain D, C is the nonnegative N X p matrix modeling the column (or chromatographic)
space of D. Combining equations (10) and (9), we can form the relationship

TP' =MC" (1)

which r epresents t he di mension r eduction o f D as well as t he i mposition of non negativity
constraints on the rotated PCA factors. Finally, following MCR, we would rescale the factors in

M using the appropriate substitution into Eq. (8).

1.4.5. Trilinear Data Analysis
In its rudimentary data acquisition mode, GC-MS data is bilinear. That is, for an R-component
chemical system, the data follow the model

dj =D My,C, (12)

p=I

where dj; is the intensity at mass element i and elution time j, my; is the concentration, or relative
amount of the pth chemical species at mass element i, and Cp; is the unit-concentration response
for the p™® species at elution time j. W hile bilinear d ata is rich in in formation ¢ ontent, its
decomposition into pure component concentrations and spectra is complicated by a mathematical
peculiarity known as the rotation problem. The rotation problem arises because any solution for
the factors matrices representing mass spectra and concentrations, i.e., M and C. Simply stated,
one can construct any invertible transformation matrix, Tj, to operate on M and C producing an
identical solution to the least-squares cost function. Thus, in a least squares sense

D=MC' =(MT,")(T,C"). (13)

Often, w e c an get around t he r otation pr oblem us ing constraints s uch as nonne gativity a nd
various equality and other constraints, as is done in MCR. However, there is no guarantee that
the solution one obtains is the most accurate representation of the true underlying information.
Fortunately, there exist data types and analysis methods that can overcome the rotation problem,
even in the absence of constraints. Trilinear data and trilinear decomposition methods fall into
this category. Since the TD/GC-MS allows us to add an additional acquisition mode, desorption
temperature, which can vary linearly as do the mass spectral and concentration modes, producing
information-rich, rotationally-unique trilinear data.

Trilinear data follow the model’®*,

R
dijk = zmpicpj fpk ’ (14)
p=l1
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where dij isth e djj measured att he k™ thermal de sorption t emperature and fp isth e
concentration-independent desorption rate for species p evaluated at temperature interval k. The
matrix or array representation of Eq. (14) is

D =®(M,C,F), (15)

where the fancy D is now a three-way array and the operator ® represents the triple product of
the pure component factor matrices M, C, and F. The solutions to the factor matrices can be
estimated in a number of ways involving iterative methods and direct methods. This group has
had success using an iterative method known as parallel factors analysis or PARAFAC, which
uses an alternating least squares scheme similar to MCR. W hile MCR alternately estimates M
given C, and then C given M until c onvergence; PARAFAC-ALS (alternating 1 east s quares)
estimates M given C and F, then C given M and F, and finally F given M and C. This approach
lends itself well to our established expertise and fast algorithms developed for use with MCR.

SNL h as developed no vel f ast a Igorithms f or a nalyzing la rge th ree-way d ata s ets an d h ave
successfully applied them to hyperspectral imaging-confocal microscopy (HSI-CM) photobleach
data. ***

1.5. Effects of Age and Humidity

To investigate the effects of humidity on the aging of CEPS, swatches of common fabrics were
spiked with neat surrogate and were placed in constant humidity chambers. After a set period of
time, t est s amples w ere cu t f rom t he s watches an d t he co upons an alyzed u sing t hermal
desorption with gas chromatography with mass spectrometry detection.

15



2. METHODS AND EXPERIMENTAL
2.1. Sample Preparation

2.1.1. Dilution procedure, sample deposition

CEPS (CAS 5535-49-9) was purchased from Sigma-Aldrich (St. Louis, MO), henceforth “New”
CEPS, and another s ample of Sigma A Idrich that w as obt ained from ol der laboratory s tock,
henceforth “Old” CEPS. Some CEPS samples were diluted using hexanes and stored in capped
sample vials. D ilution factors were calculated by mass. When looking for l ow-level m arker
compounds in the CEPS solution, a high concentration standard (7123 ng/ul) was used. A 40 nl
aliquot was deposited onto unsilanized glass wool inside the quartz desorption tubes and allowed
to air dry for 30 seconds before sealing for analysis. This permitted the light hexane solvent to
nearly co mpletely evaporate prior t o analysis, but r etained the C EPS and ot her I ess vol atile
species. Alternatively, some tests were performed using neat CEPS deposited onto glass wool.
This limited the complication of solvent-based trace contaminants corrupting the results, but is
only qualitative as mass or volume measurement of sample quantity is difficult.

2.2. TD/GC-MS

2.2.1. Thermal desorption methods and instrumentation

Samples were placed in desorption tubes and inserted into a Perkin Elmer model TurboMatrix
ATD thermal desorption unit. The automated thermal desorption (ATD) was operated with an
inlet valve temperature of 50°C, while maintaining the transfer line at 240°C. T he sample trap
low temperature was set at -30°C in order to collect the sample, and then ramped to 300°C at a
heating rate 40°C/min to revolatilize the sample. The system used a purge time of one minute, a
desorb time one minute, and a trap hold time of 5.0 min. A cycle time 60 min was chosen for
these experiments, for compatibility with the expected elution times. The inlet split was off and
outlet split on, and two-stage desorb mode was employed. The column pressure was set at 14.5
psi, outlet split of 36.3 mL/min, with desorb flow 46 mL/min, and inlet split of 197 mL/min.

Several temperature profile experiments were performed to investigate the temperature steps that
would provide additional thermal s eparation of components, w hile s imultaneously generating
three-way data suitable for PARAFAC analysis. After a number of “trial and error” experiments
a d esorption temperature series of 50 °C, 65 °C, 80 °C, 100 °C, and 125°C was chosen since it
provided good analyte response and thermal separation of the minor component species observed
in the CEPS samples.

2.2.2 GC methods and instrumentation

All s eparations w ere p erformed using an A gilent 6890N ga s ¢ hromatograph with an Agilent
model 5975 i nert XL M SD mass spectrometer (Agilent Technologies, Santa Clara, CA). T he
instrument w as e quipped with a HP-1701 GC column, 60 m x 0.32 mm ID and 0.1 pm film
thickness. T emperature profile parameters were 50°C, hold 2 m in; ramp at 6°C/min to 230°C,
hold 20 min, for a total time of 52 min. Mass spectrometer details were to scan 50 to 380 amu
(4.27 scans/sec) with samples at 2, threshold equal to 0, and sampling rate 2"2.

The photo in Figure 3 shows the instrumentation used in this work. The large tube above the
instruments is the insulated capillary transfer line between the thermal d esorption autosampler
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and the gas chromatograph’s heating inlet. The glass sample tubes on the circular stage at right
contain the glass wool on which the sample is deposited. T he tubes are rotated into place and
heated i nternally in the ATD unit and swept w ith helium to release ch emical co nstituents.
Within the ATD is a thermoelectrically cooled trap of small internal volume that cryogenically
traps the constituents that are released. A ta p redetermined time, the trap is rapidly heated to
release the constituents which travel through the transfer line into the gas chromatograph. Inside
the GC ovenisa long capillary separation c olumn that separates the constituents in time and
introduces them into the mass spectrometer detector (MSD) for detection.

Figure 3: Photo of TD/GC-MS instrumentation used in this work.
From left to right, mass spectrometer detector (MSD), gas
chromatograph (GC), and automated thermal desorption (ATD).

2.3. Data Processing and Analysis

Agilent d ata w ere converted to M ATLAB® file format u sing M assTransit s oftware ( Palisade
Corp, Newfield, NY). All data processing and analysis w ere pe rformed using S NL authored
programs written in MATLAB®* m-file language. All computations were performed using Dell
Precision 690 e quipped with two, dual-core, 3.2 G Hz X eon processors and 4.0 G byte R AM;
operating under Windows XP Professional Version 2; and running MATLAB® version 7.8.0.347
(R2009a) and l ater. PCA was p erformed using a freely available S VD algorithm written in
MATLAB® m-file format.*

2.4. Fabric Spiking and Aging

CEPS (Sigma-Aldrich, St. Louis, MO) was used as received. Undyed swatches of cotton, ripstop
nylon, pol yester, a nd s ilk w ere pur chased from a 1ocal fabric s tore and us ed asr eceived.
Humidity chambers were constructed using desiccator jars with a water-saturated salt in the base:
potassium acetate (23% RH), magnesium nitrate (56% RH) and potassium chloride (85% RH).
Relative humidity was confirmed with a VWR Thermo-Hygro hygrometer.
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Samples were prepared by cutting a 1.125 inch diameter circle from the selected fabric as shown
Figure 4.

Figure 4. Swatch Samples for CEPS Aging Study

After spiking, each swatch was placed in a glass jar, and each jar, without a lid, was placed in a
constant humidity c hamber for aging. T hree 2x4 mm samples w ere c ut from each s watch at
Days 0, 2, 7, 14, 21, and 28.

Thermal desorption was performed using a P erkin-Elmer TurboMatrix thermal d esorption unit
operated in the combined inlet and outlet split mode. Thermal desorption parameters are shown
in Table 1. Samples for thermal desorption were centered in a glass desorption tube using glass
wool. Prior to use, the desorption tube had been conditioned at 380°C and was demonstrated to
be free of organic species.

Table 1. Aging Study Thermal Desorption Parameters

Parameter Value
Desorption Temperature 200°C
Desorption Time 5 minutes
Desorption Flow 31.6 mL/min
Trap Temperature, Trapping -30.0°C
Trap Temperature, Injection 300°C
Injection time 5 minutes
Inlet split 150 mL/min
Outlet split 51.0 mL/min
Valve Temperature 240°C
Transfer Line Temperature 240°C

Gas chromatography-mass s pectrometry w as pe rformedus inga n A gilent 6890 N gas
chromatograph coupled with an A gilent 5975 m ass spectrometer (Agilent T echnologies, Santa
Clara, CA) operated in the electron ionization mode. An Agilent Technologies HP-1701 column,
60 m % 0.32 mm with a 1.0 pm film thickness, was used in the analysis. Analysis parameters are
shown in Table 2.
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Table 2. Aging Study GC-MS Analysis Parameters

Parameter Value

Initial Temperature 100°C, hold for 3 minutes
Ramp 1 30°C/min

Temperature 2 280°C, hold for 5 minutes
Ramp 2 20°C/min

Temperature Final 300°C, hold for 10 minutes
Solvent Delay 3.30 minutes

Scan range 33 to 380 amu

Scan rate 4.08 spectra per second

Source Temperature
Quadrupole Temperature

230°C
150°C

The peaks observed were tentatively identified by computer comparison of the resulting mass
spectrum with a NIST mass s pectral library, and were confirmed by retention time ma tching

using known materials where available.
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3. RESULTS
3.1. TD/GC-MS Chemometric Analysis

Data were collected essentially as an array of mass counts and organized as mass spectral mode
by chromatographic elution time by desorption temperature. Fractional mass channel data were
summed into unit mass spectral elements. The total size ofthe arrays was then 331 s pectral
elements ( 50-380 a mu) b y 13,260t ime e lements ( 0-52 m in, ~ 0.24 s i ncrements) b y f ive
temperatures ( 50, 65, 80, 100,a nd 125 °C). Figure 5 contains th e plot o fth e to talio n
chromatograms (TICs) for the five thermal desorption temperatures of a sample of CEPS diluted
in hexane and then evaporated. Here, the sample is the “Old” CEPS. The chromatograms are
dominated by a single peak at ~32 minutes, which is the CEPS peak.

T T T T T T T T T
50-C
65°C
N 80-C
N 100-C
N 126=C

5 10 15 20 25 30 35 40 45 50
Elution Time (min)
Figure 5. Total Ion Chromatograms of CEPS at Five Thermal Desorption Temperatures.
Shown are total ion chromatograms (TICs) of CEPS after dilution in hexane. Dilution and evaporation
was computed by summing all mass channels. From top to bottom are the TICs for thermal desorption
temperatures 50, 65, 80, 100, and 125°C. Stagger on y-axis is 25M counts from baseline to baseline.

While it is not obvious in Figure 5, the CEPS peak indicates column saturation, which is readily
apparent in Figure 6. Not only is the column saturated, where the number of theoretical plates is
exceeded as is reflected in the severe distortion and spreading of the peak, the mass detector is
also saturated. M ass d etector s aturation p resents a v ery s erious ch allenge f or multivariate
analysis. U nder co nditions o f d etector s aturation, a s ingle ch emical s pecies w ill n eed m any
factors to describe it ma thematically; as a result it w ill appear to be many s pecies during an
analysis. O ne tactic for o vercoming this problem is to simply e liminate th e o ffending p eak.
Figure 7 is a plot of the data in Figure 5 restricted to the first 31.125 minutes and scaled up by a
factor of 70. None of the peaks in this region of higher volatile compounds indicate column or
detector saturation. In addition, they display peak height variability as a function of temperature.
This behavior is desirable and bodes well for multiway analysis.
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Figure 6. TICs of CEPS at Five TD Temperatures Showing CEPS Peak.
The TICs above are those from Figure 5 over a limited elution time range to highlight the CEPS peak.
The progression through the desorption temperatures illustrates the extent of column saturation..
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Figure 7. Higher Volatility Range TICs of CEPS at Five TD Temperatures.
The TICs above are those from Figure 5 expanded by a factor of 70. Note the variability in the ratios of
peaks heights as a function of temperature. This clearly illustrates the effects of volatility and/or
adsorption differences for the species represented by the peaks. Each chromatogram has 7916 elements.
Stagger on y-axis is ~357k counts baseline to baseline.
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Figure 8 contains an amplified-scale of the l ower-volatility range of the previously described
data. A gain, t here i s n o1 ndication of s aturationa ndt hereis good peak v ariability from
temperature to temperature.
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Figure 8. Lower Volatility Range TICs of CEPS at Five TD Temperatures.
The TICs above are those from Figure 5 expanded by a factor of 85. Again, note the variability in the
ratios of peaks heights as a function of temperature. In contrast to the lower volatility region, peaks tend
to “grow in” with increasing desorption temperature. Stagger on y-axis is ~294k counts.

Prior to multivariate analysis the data were Poisson-scaled using the mass spectral grand mean of
the array as described in Eq. (2). Following scaling, the data were subjected to eigenanalysis to
estimate the pseudorank. Since the reduced data is now 331x7916x5 this is not a daunting task,
and 1s accomplished by reorganizing the data as a 331x39580 matrix. A plot of the eigenvalues
for the higher-volatility data in Figure 7 is displayed in Figure 9. Ideally this type of plot would
have a rather distinctive cutoff between the signal eigenvalues and the noise eigenvalues. Such a
pattern would be represented by a decreasing set of signal eigenvalues from left to right, ending
somewhere above a set of noise eigenvalues of essentially constant magnitude. T his plot does
not indicate a clean cutoff, and so rank estimation is more difficult. A close evaluation reveals
approximately 48 factors for these data.

After estimating a rank for decomposition, the next step is to perform a data reduction and factor
analysis s tep using P CA. F ollowing P CA, the factors are rotated as de scribed a bove us ing
varimax rotation to impose ¢ lution time s implicity. A sample region of 12.7t o 13.7 m inute
containing five peaks (species) and five of the 48 factors of PCA-varimax analysis are displayed
in Figure 10. These results indicate a very nice match of the data over this region.
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Figure 9. Eigenvalues of Poisson-scaled Data.
Eigenvalues of the data depicted in Figure 7 were computed using the
331x7916x5 data array arranged as a 331x39580 matrix. Only 128 of the
computed 331 eigenvalues are shown here.
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Figure 10. PCA-Varimax Solution Obtained for Region 12.7-13.7 Minutes.

On the left are plotted the expanded scale TIC of data displayed in Figure 7 of the elution time region12.7
to 13.7minutes. Five varimax-rotated PCA components that described the data over the same region are

plotted on the right. Factor numbers for peaks from left-right are 30, 10, 6, 13 and 1.
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Following PCA, the mass spectral factors were entered into the NIST mass spectrum matching
routine. Table 3 is a p artial list of the matches that exceeded a m atch value of 800 as well as
those factors whose factor chromatograms are depicted in Figure 10.

Table 3. NIST Mass-spectral library matches for PCA-Varimax Model Factors*

PCA Match

Factor NIST Assigned Compound Formula value CAS #
8 Ethene, chloro- C,H;Cl 954 75-01-4
16 Benzene C¢Hg 932 71-43-2
3 Cyclopentene, 3-methyl- CsHio 922 1120-62-3
11 Benzene, (ethenylthio)- CsHgS 898 1822-73-7
15 Benzenethiol Ce¢HeS 867 108-98-5
5 Octane, 1-chloro- CgH,,C1 852 111-85-3
6 3-Hexanol Ce¢H,4,0 850 623-37-0
25 Decane, 1-chloro- C,oH,,Cl 842 1002-69-3
1 Cyclopentanol, 1-methyl- C¢H,0 818 1462-03-9
9 Phenol C¢HO 818 108-95-2
13 5-Hexen-3-ol, 2,2 4-trimethyl- CoH 50 701 90676-50-9
10 5-Nonanone CoH 30 699 502-56-7
30 2-Pentene, 4,4-dimethyl-, (E)- C,Hy, 683 690-08-4

* Shaded rows are for factors depicted in Figure 10.

In addition to PCA and varimax rotation, factors were estimated using MCR and P ARAFAC.
The results for the same elution time region depicted in Figure 10 are presented in Figure 11.
MCR w as in itialized u sing th e P CA-varimax r esults a nd w as pe rformed us ing t he r educed
dimension da tar epresentation of t he P CA-varimax f actors r athert hant he fulld atas et.
Nonnegativity constraints were imposed in both the elution time and mass spectral modes. The
results appear very similar to the P CA-varimax s olution. T he m ost notable di fference is the
elimination of the ne gative excursion of factor 1 (blue) around 13.3 min in PCA, which has a
near-baseline value in MCR. Table 4 contains a list of the NIST mass spectrum matches that
exceeded a match value of 800 as well as those factors whose factor chromatograms are depicted
in Figure 10. Note that M CR tends to find m ore c omponents w ith hi gh s cores t han P CA.
However, this is due more likely to the property of nonnegativity than the quality of the solution.
All of the MCR mass spectral factors are all-positive while the PCA mass spectral factors have
some s mall (and a f ew r elatively | arge) n egative v alues. These n egative v alues certainly
complicate the mass spectral recognition process.

The P ARAFAC s olution pr esented in Figure 11 was obt ained w hile e mploying nonne gative
constraints in all three modes during analysis. T he plots exhibit an interesting feature with this
methodology; there is substantial mixing of the peak at 13.4 min and the peak at 13.0 min. This
mixing is due to the number of common mass spectral peaks observed in the peaks at 13.0 and
13.4 minutes, such as m/z 41, 57, 58, a nd 85. While the mixing may degrade identification of
component peaks, it may actually increase the subsequent ability to determine the similarity (and
therefore f orensic q uality) o fd ata from d ifferent s amples. T he r elative ef fectiveness, in a
forensic context, of the M CR and P ARAFAC solutions t herefore n eeds t o be a ssessed with
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additional data. T he a dditional c omputing burden of pe rforming t he P ARAFAC analysisis
minimal.
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Figure 11. MCR and PARAFAC Solutions Obtained for Region 12.7-13.7 Minutes.
Five MCR components (left) and PARAFAC components (right) that describe the data that are plotted on
the right in Figure 10 are shown here. Factor numbers for peaks from left-right are 30, 10, 6, 13 and 1.

Table 4. NIST Mass-spectral library matches for MCR Model Factors*

MCR Match
Factor NIST Assigned Compound Formula value CAS #
8 Ethene, chloro- C,H;5C1 958 75-01-4
7 Biphenyl CiHyo 920 92-52-4
11 Benzene, (ethenylthio)- CgHgS 910 1822-73-7
15 Benzenethiol CcHeS 904 108-98-5
16 Benzene C¢He 898 71-43-2
3 Cyclopentene, 1-methyl- CeHyo 897 693-89-0
14 2-Benzothiophene # CgHgS 888 270-82-6
9 Phenol C¢HgO 847 108-95-2
25 Decane, 1-chloro- C,oH,,Cl 842 1002-69-3
6 3-Hexanol CsH 140 826 623-37-0
Cyclopentanol, 1-methyl- Ce¢H .0 808 1462-03-9
5 Octane, 1-chloro- CgH,-,C1 808 111-85-3
27 (R)-(+)-3-Methylcyclopentanone Ce¢H,(O 805 6672-30-6
30 2-Propenoic acid, anhydride C¢HsO4 784 2051-76-5
13 4-Octanol, 2-methyl- CoH,,0 701 40575-41-5
10 5-Nonanone CoH 30 681 502-56-7

* Shaded rows are for factors depicted in Figure 11.
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The M CR factors p rovide higher library m atch s cores, in general; b ut also more factors th at
"mix" mu lItiple p eaks w ith s imilar mass s pectral co mponents. W hile t his hi nders s ome
identification, it may actually benefit the differentiation of samples.

After evaluating the solvent extracted CEPS, the next step was to look at neat CEPS. In this
case, the two C EPS sources were used, “Old” and “New.” Figure 12 contains a plot of the
higher volatility range for five thermal desorptions of the neat “New” CEPS. The most striking
difference between this and the data in Figure 7 is the reduced complexity of the data. One may
conclude t hatus e of as olventt o e xtractt he C EPS w ill m ake t he a nalysis m uch m ore
complicated and the solvent must also be analyzed carefully for contaminants, regardless of the
quality or the grade. Figure 13 is a corresponding plot of the progressive temperature TD/GC-
MS of the “Old” sample.

There is an obvious problem in the 65°C plot in the “Old” CEPS data in Figure 13, where there
is a large irregularly structured artifact in the time range 15 to 18 minutes. An inspection of the
mass s pectra for the artifact reveals a | arge magnitude, nearly uniformly distributed s pectrum.
This may be a mass detector or electronic problem in the instrument or some external electronic
noise. In any case, it is certainly not from a chemical analyte source. Fortunately, the region in
which it is found is devoid of any real signal in the other TD chromatograms. Since, this would
have a real influence on the analysis; that region was simply zeroed-out in the 65°C data, while
the other TD chromatograms were untouched.

The two sets of plots look very similar with only some minor differences in proportions of peaks,
which is certainly important in discriminating one from another. The rank analyses indicate that
the Aldrich sample has a rank of 14 while the SNL sample has a rank of 17. In this sense, rank is
the number of independent mass spectral components that are found in the data. It may not be
equal to the number of chemical species if, say, two species have the same mass spectrum.

Tables 5 and 6 report the NIST mass spectrum matches that exceed a match value of 800 for the
PCA-varimax analysis of the neat “New” and “Old” CEPS samples, respectively. The “New”
sample analysis shows that eight of the 14 mass spectra were identified with a fairly high score,
while the “Old” sample had 11 of 17 identified with reasonable confidence. One will note that
one of the compounds (CgHgS) has two associated peaks. The compounds identified by factor 6
for the “New” and “Old” sample have very similar library mass spectra. Because of this high
level o f's imilarity, the spectral id entification is s omewhat a mbiguous. It is lik ely th at b oth
compounds are present in both samples, and while the mixing degrades absolute identification it
may as mentioned increase the ability to differentiate samples. In comparing the PCA model
factors with higher than 800 library match values; both samples have a benzothiophene (isomer)
peak identified at 26.5 minutes, 6 identical matches, and a mixed factor with very similar library
spectra.

Table 7 contains the NIST mass spectrum matches for all of the MCR analysis of the neat “New”
and “Old” CEPS samples, respectively. Again, MCR apparently performs better, however this is
due, in part, to the nonnegative nature of the resolved mass spectra. Inthe M CR model the
“Old” sample has an additional phenol peak. While the samples are highly similar, as expected
given the common source, they do not appear to be identical as demonstrated by the PCA and
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MCR factor models. In addition, processing the data with these algorithms allows for sample
differentiation and chemical identification of individual peaks.
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Figure 12. Higher Volatility Range TICs of Neat “New” CEPS at Five TD Temperatures.
TICs of neat the “New” CEPS measured for thermal desorption temperatures 50, 65, 80, 100, and 125°C.
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Figure 13. Higher Volatility Range TICs of Neat “Old” CEPS at Five TD Temperatures.
TICs of neat the “Old” CEPS measured for thermal desorption temperatures 50, 65, 80, 100, and 125°C.
The 65°C TIC has a large artifact from approximately 15 to 18 minutes.
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Table 5. Neat “New” CEPS library matches for PCA Model Factors

PCA Match

Factor NIST Assigned Compound Formula value CAS # Time(s)
3 Biphenyl CioHo 929 92-52-4  31.0
5 Benzo[b]thiophene CgHgS 923 95-15-8 26.5
9 Benzene, (methylthio)- C/HgS 908 100-68-5 22.7
6 Benzo[b]thiophene, 2,3-dihydro-  CgHgS 894 4565-32-6 233 283
4 Acetaldehyde, (phenylthio)- CgHgOS 887 66303-55-7  30.6
2 Ethane, 1,2-dichloro- C,H,Cl, 881 107-06-2 8.6
7 Decane, 1-chloro- C,oH,,Cl 864 1002-69-3  26.1
1 Octane, 1-chloro- CgH,Cl1 861 111-85-3 20.3

Table 6. Neat “Old” CEPS library matches for PCA Model Factors

PCA Match

Factor NIST Assigned Compound Formula factor CAS # Time(s)
1 Octane, 1-chloro- CgH,,C1 950 111-85-3  20.3
5 Decane, 1-chloro- C,oH,,Cl 940 1002-69-3  26.1
4 Benzo[c]thiophene CgHeS 937 270-82-6  26.5
2 Biphenyl CpHjo 925 92-52-4  31.0
8 Benzene, (methylthio)- C;H;S 924 100-68-5 22.7
7 Ethane, 1,2-dichloro- C,H,Cl, 923 107-06-2 8.6
3 Acetaldehyde, (phenylthio)- CgHg0S 915 66303-55-7  30.6
6 Benzene, (ethenylthio)- CgHgS 910 1822-73-7 23.3 28.3
11 Octanal CgH;60 891 124-13-0  19.6
16 Octane, 1-chloro- CgH,,C1 890 111-85-3 5.5 T
12 Benzene, nitro- CcHsNO, 840 98-95-3 24.6

1 chromatographic factor contains multiple small peaks
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Table 7. Neat “New” and “Old” CEPS library matches for MCR Model Factors

“New” “New” “Old” “Old”
Time(s) match match Time(s)
min  value NIST Assigned Compound Formula CAS# value min
26.5 933 Benzo[b]thiophene * C8H6S 95-15-8 939 26.5
31.0 926 Biphenyl Ci.Ho 92-52-4 937 31.0
227 912 Benzene, (methylthio)- C/HgS 100-68-5 910 22.7
23.3,28.3 899 Benzene, (ethenylthio)- CgHgS 1822-73-7 898 23.3,28.3
30.6 891 Acetaldehyde, (phenylthio)- CsgHgOS 66303-55-7 922 30.6

30.9 876 2-Chloroethyl phenyl sulfide CsHyCIS 5535-49-9
8.6 874 Ethane, 1,2-dichloro- C,H,Cl, 107-06-2 940 8.6
26.1 867 Decane, 1-chloro- C,oH,,Cl 1002-69-3 937 26.1
20.3 853 Octane, 1-chloro- CgH;;Cl 111-85-3 959 20.3
24.6 805 Benzene, nitro- C¢HsNO, 98-95-3 864 24.6T
19.6 764  Octanal CgH;60 124-13-0 940 19.6

N/A" 748  Endrin CpHgCisO 72-20-8

23.0F 720  p-hydroxyphenyl-Phosphonic acid Ce¢H,04P 33795-18-5
26.8 678 1,2-Benzenedithiol, 4-methyl- C;HsS, 496-74-2 695 26.8
Phenol CsHsO 108-95-2 851 23.0F
Pentane, 3-methyl- C¢H4 96-14-0 806 5.5F
Benzenethiol C¢HeS 108-98-5 770 19.1
Olean C30H5004 15399-43-6 713 N/A"
Ruthenium organometallic C4sH,;BOsRuSeSi 118772-38-6 687 N/AF
1-Decanol C10H»,0 112-30-1 681 28.2F

1 chromatographic factor contains multiple small peaks

* “Old” NIST Assigned Compound: Benzo[c]thiophene

" both “New” and “Old” results appear as rising structureless background, with noisy mass spectrum
* weakly structured chromatogram, with broad continuous mass spectrum

Independent library searching of the data (not shown) validates both the identification and the
retention time of all but factor 16 in Table 6. For those factors with two elution times listed, the
independent search matches the first listed time. Thus, the MCR analysis here is providing the
same identification for these data as the commercial library search tool.

3.2. Fabric Aging Analysis
The analysis of the Day 0 sample from the cotton substrate is shown in Figure 14. The major

species observed is CEPS, and this peak is saturated under the conditions of the analysis. This
result is typical of all of the fabric substrates analyzed on Day 0.
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Figure 14. Day 0, CEPS on Cotton.

The first observed change was found in the Day 2 cotton sample from the 23% RH chamber.
This total ion chromatogram is shown in Figure 15. In addition to CEPS, 2-(phenyl thio)ethyl
acetate (CAS 20-93-1) is observed. T his species was not observed on any of the other fabrics
from 23% RH chamber, nor was it observed in the 56% RH and 85% RH samples.
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Figure 15. Day 2, CEPS on Cotton, 23% RH.
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By Day 7, 2-(phenyl thio)ethyl acetate was detected on the nylon, polyester, and silk substrates
from 23% RH chamber. T he signal strength continued to increase with time on all 23% RH
samples; t he nor malized r esponse of 2 -(phenyl thio)ethyl a cetate from Day?2 to Day2 8 is
summarized in Table 8.

Table 8. Peak Area of 2-(phenyl thio)ethyl acetate, normalized to Day 2

Day Peak Area Normalized to Day 2
2 100.0
7 196.9
14 387.8
21 636.6
28 675.2

The generation of 2-(phenylthio)ethyl acetate is due to the presence of acetic acid in the vapor
phase of the 23% RH chamber reacting with the CEPS on the substrates; a gas phase sample of
the 23% RH chamber revealed the presence of acetic acid in the vapor phase.

The s econd obs erved ¢ hange w as found in the D ay 14 ¢ otton a nd n ylon s amples from t he
56% RH chamber. This total ion chromatogram for nylon is shown in Figure 16. In addition to
CEPS, 2-(Phenylthio)ethanol (CAS 699-12-7) is observed.

Abundance
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Figure 16. Day 14, CEPS on Nylon, 56% RH.
As the nylon aged, diphenyl disulfide (CAS 882-33-7), was identified as shown in Figure 17. No

changes were observed in the 85% RH chamber samples until Day 28, w hen a trace amount of
2-(phenylthio)ethanol was observed on all samples.
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Figure 17. Day 28, CEPS on Nylon, 56% RH.

The major CEPS aging product observed in this study was 2-(phenylthio)ethyl acetated, which is
areaction product of CEPS and acetic acid. This product was only observed in the 23 % RH
chamber, which w as m aintained w ith a water-saturated p otassium a cetate s alt ma ss in the
desiccator base. No other product was observed in the 23% RH samples. In the higher humidity
chambers, the hydrolysis product 2-(phenylthio)ethanol was observed earliest at 14 days in the
56% RH chamber, and at 28 days in the 85% RH chamber.

The us e of t he t hermal de sorption/gas ¢ hromatograph/mass s pectrometer s ystem pr oduced
reproducible results from the samples provided. This relatively inexpensive system was able to
prepare and a nalyze s amples and s how di fferences i n t he a ged m aterials w ithout t he us e of
extraction solvents.
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4. CONCLUSIONS
We ha ve pr esented r esults of a nove l m ethod f or e xamining s urrogates of a C WA. T hese
methods may have the ability to discern different sources of the same compound. O ur novel
methods involve utilizing a stepped T D/GC-MS d ata a cquisition s cheme th at may be almost
totally automated, coupled with multivariate analysis schemes. These multivariate methods are
extensible t o ot her t ypes of G C-MS an alyses, as can b e seen inthe m anuscript at tached i n
Appendix A.

The al gorithms u sed h ere w ere n ot d eveloped specifically f or GC/MS d ata, yet ch emically
relevant information is extracted as evidenced by the high match factor in the library searches.
Broad s earch p arameters w ere u sed, t he full s pectral 1 ibrary was s earched (i.e.no C WA
sublibrary was needed), no training set was needed, and the interaction between algorithm output
and the NIST search was not optimized. No assumptions about peak width, quality, or overlap
parameters t hat a re n ecessary for conventional deconvolution s oftware were n eeded, and no
alignment of peaks across data files was required. In short, less user input was required, fewer
data quality c onstraints w ere n ecessary, and yet v ery high quality ch emical i nformation w as
obtained. T he results shown in the Tables de monstrate that these algorithms can process this
type of data and show benefits over currently used techniques.

While it is true that good peak intensity was not a requirement for obtaining a high match factor
(the peaks in Table 8 represent a range of intensities), further work includes dealing with noise
issues to improve deconvolution of very low intensity peaks.

A ch emical w arfare agents urrogate’s aging pr oducts m ay be ob served us ingt hermal
desorption/gas chromatography/mass spectrometry. T he aging products observed vary with the
aging environment, and caution will be needed when interpreting any analytical result from the
aftermath of an attack on a civilian structure if the ambient conditions after agent deployment are
not known.

These studies provide an excellent introduction into the types of analyses that can be conducted
in a standard forensics laboratory without the use of exotic equipment or ex ceptional ex pertise.
Further development of these methods will facilitate technology transfer of these techniques to
users in the field.

33



N —

10.

11.

12.

13.

14.

15.

16.

17.

18.

5. REFERENCES

F. Guthrie, "On some derivatives from the olefines," Q. J. Chem. Soc. 12(109 - 126 (1860)
S. Budavari, M. J. O'Neil, A. Smith and P. E. Heckelman, Eds., The Merck Index, 11 ed.,
Merck & Co., Inc., Rahway, NJ (1989).

D. Evison, D. Hinsley and P. Rice, "Chemical weapons," British Medical Journal
324(7333), 332-335 (2002)

J. S. Graham, et al., "Wound healing of cutaneous sulfur mustard injuries: strategies for the
development of improved therapies," J Burns Wounds. 4(c1. (2005)

L. Szinicz, "History of chemical and biological warfare agents," Toxicology 214(3), 167-181
(2005)

M. Gomberg, "Ethylene Chlorohydrin and B,3-Dichloroethyl - Sulfide," J. Am. Chem. Soc.
41(9), 1414-1431 (1919)

V. Meyer, "Ueber Thiodiglykolverbindungen," Berichte der deutschen chemischen
Gesellschaft 19(2), 3259-3266 (1886)

K. Kehe and L. Szinicz, "Medical aspects of sulphur mustard poisoning," Toxicology 214(3),
198-209 (2005)

Force Health Protection & Readiness Policy & Programs, "Mustard Disaster at Bari,"
http://thp.osd.mil/CBexposures/ww2mustard.jsp, Date Accessed: 01/19/2010.

Department of the Navy -- Naval Historical Center, "Naval Armed Guard Service: Tragedy
at Bari, Italy on 2 December 1943," (2006) http://www.history.navy.mil/fags/faq104-4.htm,
Date Accessed: 01/19/2010.

G. C. Oehler, "Continuing Threat from Weapons of Mass Destruction," in Senate Armed
Services Committee, Central Intelligence Agency, Washington, D.C. (1996),
https://www.cia.gov/news-information/speeches-testimony/1996/go_toc_032796.html,
Accessed: 01/19/2010.

"Terrorist CBRN: Materials and Effects," Central Intelligence Agency, Washington, D.C.,
CTC 2003-40058, (2003).

S. L. Bartelt-Hunt, D. R. U. Knappe and M. A. Barlaz, "A review of chemical warfare agent
simulants for the study of environmental behavior," Critical Reviews in Environmental
Science and Technology 38(2), 112-136 (2008)

V. Dubey, T. Parmar, A. Saxena and D. D. Agarwal, "Thiocompounds as Simulants of
Sulphur Mustard for Testing of Protective Barriers," J. Appl. Polym. Sci. 111(2), 928-933
(2009)

C. Hackett, et al., "Laser ablation sampling for induction coupled plasma source quadrupole
mass spectrometry of Cd-Zn-Te materials," J. Electron. Mater. 28(6), 774-784 (1999)

I. S. Begley and B. L. Sharp, "Characterisation and correction of instrumental bias in
inductively coupled plasma quadrupole mass spectrometry for accurate measurement of lead
isotope ratios," J. Anal. At. Spectrom. 12(4), 395-402 (1997)

B. El Abbassi, H. Mestdagh and C. Rolando, "Automatic extraction of relevant peaks and
reconstruction of mass spectra for low signal-to-noise GC-MS data," Int. J. Mass Spectrom.
lon Processes 141(2), 171-186 (1995)

M. R. Keenan, "Multivariate Analysis of Spectral Images Composed of Count Data," in
Techniques and Applications of Hyperspectral Image Analysis H. F. Grahn and P. Geladi,
Eds., pp. 89-126, John Wiley & Sons, Ltd, Chichester, West Sussex, England (2007).

34


http://fhp.osd.mil/CBexposures/ww2mustard.jsp�
http://www.history.navy.mil/faqs/faq104-4.htm�
http://www.cia.gov/news-information/speeches-testimony/1996/go_toc_032796.html�

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

31.

32.

33.

34.

35.

36.

37.

38.

M. R. Keenan and P. G. Kotula, "Optimal scaling of TOF-SIMS spectrum-images prior to
multivariate statistical analysis," Appl. Surf. Sci. 231/232(240-244 (2004)

M. R. Keenan and P. G. Kotula, "Accounting for Poisson noise in the multivariate analysis
of ToF-SIMS spectrum images," Surf. Interface Anal. 36(3), 203-212 (2004)

E. R. Malinowski, Factor Analysis in Chemistry, John Wiley and Sons, Inc., New York
(1991).

M. R. Keenan, "Maximum likelihood principal component analysis of time-of-flight
secondary ion mass spectrometry spectral images," J. Vac. Sci. Technol. A 23(4), 746-750
(2004)

M. L. Braun, "Spectral Properties of the Kernel Matrix and their Relation to Kernel Methods
in Machine Learning," Dissertation in Mathematics, University of Bonn, Bonn (2005).

P. Geladi and B. R. Kowalski, "Partial least-squares regression: A tutorial," Anal. Chim.
Acta 185(1-17 (1986)

R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical Analysis, : Prentice Hall,
Englewood Cliffs, N.J. (1992).

G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University Press,
Baltimore (1996).

R. M. Larsen, "Lanczos bidiagonalization with partial reorthogonalization," Department of
Computer Science - Daimi, Aarhus University, Aarhus, Denmark, DAIMI PB-357, (1998).
R. J. Rummel, Applied Factor Analysis, Northwestern University Press, Evanston, IL
(1970).

H. H. Harman, Modern Factor Analysis, University of Chicago Press, Chicago (1976).

M. R. Keenan, J. A. Timlin, M. H. Van Benthem and D. M. Haaland, "Algorithms for
constrained linear unmixing with application to the hyperspectral analysis of fluorophore
mixtures," in Imaging Spectrometry VIII S. S. Shen, Ed., pp. 193-202, SPIE - The
International Society for Optical Engineering, Seattle, WA, USA (2002).

R. Tauler, E. Casassas and A. Izquierdo-Ridorsa, "Self-modelling curve resolution in studies
of spectrometric titrations of multi-equilibria systems by factor analysis," Anal. Chim. Acta
248(447-458 (1991)

M. H. Van Benthem, M. R. Keenan and D. M. Haaland, "Application of equality constraints
on variables during alternating least squares procedures," J. Chemom. 16(12), 613-622
(2002)

P. G. Kotula, M. R. Keenan and J. R. Michael, "Automated analysis of SEM X-ray spectral
images: a powerful new microanalysis tool," Microsc Microanal 9(1), 1-17 (2003)

R. Bro and S. DeJong, "A fast non-negativity-constrained least squares algorithm," J.
Chemom. 11(5), 393-401 (1997)

M. H. Van Benthem and M. R. Keenan, "Fast algorithm for the solution of large-scale non-
negativity-constrained least squares problems," J. Chemom. 18(10), 441-450 (2004)

R. A. Harshman and M. E. Lundy, "Parafac : Parallel Factor-Analysis," Computational
Statistics & Data Analysis 18(1), 39-72 (1994)

R. Bro, "PARAFAC. Tutorial and applications," Chemometrics Intell. Lab. Syst. 38(2), 149-
171 (1997)

J. B. Kruskal, "Rank, Decomposition, and Uniqueness for 3-way and N-way Arrays," in
Multiway Data Analysis R. Coppi and S. Bolasco, Eds., pp. 7-18, North-Holland,
Amsterdam (1989).

35



39.

40.

41.

42.

43.

44,
45.

B. C. Mitchell and D. S. Burdick, "Slowly Converging parafac sequences: Swamps and two-
factor degeneracies," J. Chemom. 8(155-168 (1994)

S. E. Leurgans and R. T. Ross, "Multilinear models: Applications in spectroscopy,"
Statistical Science 7(3), 289-319 (1992)

G. Tomasi and R. Bro, "A comparison of algorithms for fitting the PARAFAC model,"
Computational Statistics & Data Analysis 50(7), 1700-1734 (2006)

M. H. Van Benthem and M. R. Keenan, "Tuckerl model algorithms for fast solutions to
large PARAFAC problems," J. Chemom. 22(5), 345-354 (2008)

M. H. Van Benthem, et al., "Trilinear Analysis Of Images Obtained With A Hyperspectral
Imaging Confocal Microscope," J. Chemometrics (Published Online: Jul 9 2008 )
"MATLAB," The MathWorks, Inc., Natick, MA (2009).

R. M. Larsen, "PROPACK," http://sun.stanford.edu/~rmunk/PROPACK/, Stanford, CA
(2004).

36


http://sun.stanford.edu/~rmunk/PROPACK/�

APPENDIX A — MANUSCRIPT PENDING DHS RELEASE

FACTOR ANALYSIS OF GC/MS DATA WITH
SELECTED ION DEPLETION

Mark H. Van Benthem*, Theodore T. Borek I, Curtis D. Mowry, and Paul G. Kotula

Sandia National Laboratories, Albuquerque, NM 87185-0886

Correspondence to: Mark H. Van Benthem
Sandia National Laboratories

MS0886

Albuquerque, NM 87185-0886

Voice: (505) 844-5443

Fax: (505) 844-2974

Email: mhvanbe(@sandia.gov

37



ABSTRACT

We present a fast. robust. and automated multivariate statistical analysis method for the analysis
of GC/MS data sets. Our method involves systematic elimination of undesired, saturated peak
masses lo yield data that follow a linear, additive model. The cleaned data are then subjected to
a combination of principal component analysis (PCA) and orthogonal factor rotation followed by
multivariate curve resolution (MCR) to yield highly interpretable results. Our analysis of two
data sets on standard mixtures illustrates the power of the technique, highlighted by separation

and identification of heavily overlapped peaks caused by an isotopic chlorine effect.

INTRODUCTION

Hyphenated chromatographic methods are some of the most powerful techniques for analysis of
mixtures available.! Gas chromatography coupled with mass spectrometry (GC/MS) is one of
the most widely utilized methods for the analysis of volatile species. A very powerful technique
for improving the selectivity and signal 1o noise ratio (SNR) of GC/MS is selected ion
monitoring (SIM).> SIM works by limiting the mass spectral filter to those ions associated with
a chemical species of interest.® It can produce spectacular results when the analysis is limited to
a few species. However, when the analysis is intended to find minor or unknown species in a

mixture, use of SIM could result in missing important information.

There have been numerous methods developed to analyze GC/MS data over the years. One early
method focused on identifying m/z indices which represented the pure chromatogram of each
chemical component." Knorr, et al.” took a different tack by modeling chromatogram peaks as
skewed Gaussian functions while using a SIMPLEX minimization. Various modifications and

advancements of the first theme®” have led to a very popular and versatile approach.® which has
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become known as AMDIS.” These approaches use the mass spectral information as well as

assumptions about peak shape to “deconvolute™ the chromatogram.

Factor analysis methods that assume no analytic model of the character of the data are often
called soft models or matrix-based methods. Such self modeling methods typically make only
limited assumptions about the nature of the data, but impose constraints such as nonnegativity to
achieve physically meaningful results. Alternating least squares (ALS) or alternating regression
(AR) methods have been employed successfully in GC/MS analysis. 1 Un fortunately, that
algorithm was initiated with random starting points, which can lead to solutions trapped in local

minima. We will present what we believe to be a better alternative.

Analysis of forensic samples presents a case where the identification of minor or unsuspected
chemical species is very important. Minor components may present themselves as evidence of
the source of a compound used in a criminal activity, such as an accelerant in arson or a
byproduct from production of material used in a chemical attack. Separating the small but
important components from a solvent or a dominant agent can be critical to identifying the
source of the material. In the case of GC/MS, identifying minor components can be quite a
challenge when the data are dominated by solvents or the major components, which may even
saturate the column and/or detector. In this work, we will present a technique for performing a

rapid analysis of GC/MS data containing large, interfering solvent peaks.

Our method for extracting information on minor components while reducing the impact of
dominant components is two-pronged: first, we ignore the mass-spectral information originating

from dominant species using a technique we call selected ion depletion (SID); and second, we
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use factor analysis methods that take special advantage of the character of GC/MS data. These

methods are fast, reasonably straightforward and easy to apply.

This paper is organized so as to walk a prospective user through a data analysis. We will
initially discuss our method and strategy for SID and/or saturated peak depletion, followed by
additional data preprocessing and factor analysis, finally we will present results from data

acquired on commercially obtained standard mixtures.

THEORY
SELECTED ION DEPLETION

Selected ion monitoring 1s a technique that is implemented in the data acquisition phase of an
experiment. It is accomplished by tuning the mass spectrometer to a suitable mass-charge (m/z)
value or set of values and acquiring the current(s) as counts as a function of elution time.” In this
way, the mass spectrometer becomes a very effective mass filter with high SNR at the expense of
mass spectral range. By contrast, in our technique the mass spectrometer is scanned continually
over an applicably wide m/z range sufficient to capture all of the fragments that one could
reasonably expect in the sample. This may be seen as a more traditional, if brute force, method
of obtaining data, where a larger range of m/z is collected at the expense of SNR. The advantage
of collecting the full mass spectral range is that one has access to all mass fragments, which may

include information on unexpected chemical species.

Often, chromatographic data contain peaks from dominant species or solvent that may be
saturated either in the chromatographic domain or the mass spectral domain. Saturation, or
overloading, in the chromatographic domain is frequently manifested as a distorled, non-

, : ; . was 11 . ¥ .
Gaussian shaped peak with excessive tailing.” Saturation in the mass spectral domain can be

40



recognized as distorted mass spectra across the chromatographic peak, with the most populated
mass channels saturating, resulting in reduced relative ratios to unsaturated peaks. These effects
can make factor analysis more difficult by obscuring small peaks and increasing the complexity
of the data. As intensity of the saturated peaks no longer increases with concentration, they are
highly non-linear and thus linear factor analysis methods fail to produce easily interpretable
results. Our solution for this type of problem is to remove the m/z channel data for major

components and solvents via selected ion depletion (SID).

FACTOR ANALYSIS

Data Scaling

Prior to performing factor analysis, we must appropriately scale our GC/MS data so that it
approximates the assumptions of the factor analysis technique. The factor analysis techniques
we will use are based on the method of least squares, which assumes that the errors are
independently and identically distributed (7.7.d ) normal. Since these GC/MS data are collected
as counts from a quadrupole mass spectrometer, the first principles assumption is that the data
are actually Poisson distributed."™"" Our group has extensive experience with optimal scaling of
multivariate Poisson-distributed data.'*!” Briefly, we can scale the data using the inverse of the

square root of the mean mass spectrum.

Consider some GC/MS data in the m * n matrix D oriented as mass spectral domain by

chromatographic domain with mean m/z spectrum h given by

- 1
d,=-D1 (M
where 1 is an »-vector column of ones. We can now scale the data in D using the diagonal

. . oo
matrix H whose diagonal elements are d /* using
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D=HD )
where D is the data scaled for Poisson statistics. This scaling decreases the effect of large
variations in the data due solely to noise in intense spectral regions. It is important for
subsequent factor analysis as it effectively down-weights the effect of variance due to noise in
intense spectral features and concomitantly up-weights minor spectral features, which in the raw

data are smaller in magnitude than noise elsewhere.

Principal component analysis (PCA)
PCA is a statistical method that decomposes a matrix into two sets of orthogonal of basis vectors,
ordered by decreasing variance, that model the row and column spaces of the matrix.'**? 1t is

often used as an initial data reduction method. whose subspace representation may be readily

factor-analyzed by additional statistical treatments.'” PCA can be represented in matrix form as

D=TP" +

=)

(3)

where T is an m » p matrix which describes the row (or mass spectral) space of the scaled data
in D, Pisann = p matrix describing the column (or chromatographic) space of D. E isanm =
n matrix of scaled residuals or noise, and the superscript 1™ indicates the transpose of the
preceding matrix or vector. We use p to define the size, or pseudorank, of the subspace model
that describes the chemically meaningful information contained in D, simply put the number of

distinguishable chemical species in D. Tis orthogonal and P is orthonormal having the

properties:

G
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where I is a p > pidentity matrix and A is a p * p diagonal matrix of eigenvalues ordered from
largest to smallest. One can also compute a “full set”™ of eigenvalues of length min{m, n) for
fairly low computational cost. These eigenvalues can be used to estimate the pseudorank. p, in
numerous ways.'S Commonly. a semi-logarithmic plot of eigenvalue versus factor number is

produced and the number of factors selected where a “knee” oceurs in the plot.?”

There is a variety of methods to compute the PCA, among these are nonlinear iterative partial

least square (NIPAI ,S),El el genanalysiﬂ_.n'zs and singular value decomposition (S V])).B'24 SVD

is very convenient since it decomposes the matrix D as

D=USV'+E (5)
where U and V are, respectively, the m # p and n % p matrices of orthogonal left and right
singular vectors and S is the diagonal matrix of singular values. The singular values are the

square roots of the eigenvalues, viz.

A=§? (6)

We can combine equations (3) and (5) to show that

1

=08
=V

(7

-]

We have been careful in this section to utilize notation that indicates which data domain bears
the scaling, in this case the mass-spectral domain. This is important since after factor analysis

we will want to return those factors to their native scale, specifically

T=H'T (8)
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Orthogonal Factor Rotation

Afier performing PCA. one will have an orthogonal. rank-p representation of the data that will
probably not resemble any meaningful information to the chromatographer. Consequently,
additional factor analysis 1s required to transform the PCA factors into interpretable factors. A

reasonable approach to transforming the factors is to use a factor rotation method.

Factor rotation methods seek to maximize (or minimize) some criterion that is consistent with the

2

i 5 . 25.27 . -
nature of the data. In the case of GC/MS data, the varimax rotation®>’ is an appropriate
criterion for the chromatographic domain. The varimax criterion seeks an orthogonal rotation
matrix, R, which maximizes the row (or time) variance of the orthonormal matrix P, thereby

maximizing the "simplicity" of the rotated elution-time or chromatographic factors. In matrix

form we have

D=TP"=TRR"P" =TP" ©)
Generally, the factors of chromatographic domain are simple or sparse. For example, when a
species elutes it produces a peak in the chromatogram, generating a chromatographic factor with
a single peak, and zeros or noise at all other times. Unless another species co-elutes. all other
factors will be zero-valued (noisy) at the elution times encompassing that species peak. So, the
chromatographic domain is, generally, sparse. Overlapping due to co-elution or the presence of
a large background is a violation of this premise. By contrast, there is no reason to expect that
the mass-spectral domain is sparse since many different compounds generate the same mass

fragments, although not in the same pattern; so this violates the simplicity assumption.
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Multivariate Curve Resolution (MCR)

If all species were to elute at different times such that none were overlapped, and no background
arose from column packing loss and discharge, then PCA and varimax rotation would be
suflicient to produce interpretable results. Unfortunately, we often have to deal with these and
other problems, so we need to find a method applicable to these issues. MCR, also called linear
unmixing,”’ is a factor analysis method that utilizes an alternating least squares strategy while

28-3

employing constraints;***° the most common constraint used being nonnegativity.1** MCR

seeks to solve

D=MC"+E (10)
where M is the nonnegative m > p matrix modeling the row (or mass spectral) space of the
scaled datain D, C is the nonnegative # * p matrix modeling the column (or chromatographic)

space of D. Combining equations (10) and (9), we can form the relationship

TP = MC"* (11)

which represents the dimension reduction of D as well as the imposition of nonnegativity

constraints on the rotated PCA factors. Finally, following MCR, we would rescale the factors in

M usin g the appropriate substitution into equation (8).

EXPERIMENTAL

In order to test the data analysis strategy described above, two known mixtures were analyzed.
Commercially available volatile organic compound (VOC) mixtures, VOC Mix 6. and VOC Mix
8 (Supelco Inc., Bellefonte, PA) were analyzed as received. VOC Mix 6 (catalog number 4-
8799), contains six compounds: dichlorofluoromethane, chloromethane, vinyl chloride,

bromomethane, ethyl chloride. and trichlorofluoromethane.  VOC Mix 8 (catalog number 4-
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8803), contained 11 compounds: trans-1,2-dichloroethylene, cis-1,2-dichloroethylene, 1,2-
dichloropropane, toluene, tetra-(per)chloroethylene (PCE), chlorobenzene, ethylbenzene, p-
xylene, styrene, o-xylene, 1,2-dichlorobenzene. These mixtures were analyzed using an Agilent
6890 gas chromatograph/5975N mass spectrometer equipped with a J&W DB-3ms, 60m x 0.32
mm x 1.0pm film thickness, gas chromatography column. The analytical conditions for the
mixture were modified for each mixture. The GC conditions used for VOC Mix 6 were
isothermal at 35°C for 7 minutes, helium carrier gas flow rate of 1.2 mL/min, splitless injection
of 0.2 uL of solution into 250°C injector. The mass spectrometer was operated in the full scan
mode from m/z: 27-120. The GC conditions used for the VOC Mix 8 were isothermal at 35°C
for 2 minutes, then ramped at 10°C/min to 200°C and held for 2 minutes, then 20°C/min to
290°C and held for 15 minutes. The helium carrier gas was kept at a constant flow rate of

1.4 mL/min. A splitless injection of 0.2 uL of solution into 250°C mjector was used to introduce
the mixture. The mass spectrometer was operated in the full scan mode from m/z: 27-120 to the
7 minute mark, then m/z: 33-320 through 18 minutes, then finally to m/z: 33-380 through the end

of the analytical run.

Data were exported as netCDF files using Agilent ChemStation software version D.01.02.16 and
subsequently imported into MATLAB® version 7.8.0.347 (R2009a)* using a freely available
routine®* modified by one of us to rapidly read these GC/MS data. Mass data were collected in
merements of 0.1 amu, and upon importation binned to the nearest unit amu. Computations were
performed using MATI AB® running under Microsoft Windows XP on a Dell Precision 690
computer, with two, dual-core, 3.2 GHz Intel® Xeon processors and 4.0 Gbyte RAM. PCA was
performed using a freely available SVD algorithm written as MATLAB® m-file.”* Analysis

times were under ten seconds.
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RESULTS AND DISCUSSION
VOC Mix 6

The VOC Mix 6 data were collected over a time range of approximately six minutes constituting
4287 time elements. The mass spectral domain covered m/z 27-119., whose non-zero entries
consisted of 65 m/z elements. Of course, an all-zero column of mass spectral values is
“depleted” and not analyzed since it contains no information. The top plot in Figure 1 is the total
ion chromatogram of the raw data for VOC Mix 6; which is dominated by the methanol peak.
The elution time range was truncated to a range of approximately 3-5.5 minutes to focus on the
region of interest. In addition, the range m/z 28-33 represents the SID region for the methanol
peak.’® After this modification, the data size was 741 time elements by 56 m/z elements. The
bottom plot in Figure 1 contains expanded-scale total ion chromatogram of the raw data as well
as the SID plot with the methanol m/z eliminated. Most obvious here is complete loss of the
methanol peak and its long tail, but an important consequence is the appearance of a peak (#4)
that previously was concealed completely. Elimination of the methanol contribution is important
for several reasons. Due to saturation effects, it makes the data much more complex than simply
the addition of another chemical species. Its long tail complicates the analysis of overlapped
peaks, since this behaves like a non-zero baseline, which prevents complete unmixing with PCA

and presents special challenges for MCR.

Figure 2 is a scree plot of the eigenvalues of Poisson-scaled data VOC Mix 6. The plot shows
nine or 10 significant PCA factors indicating nine or 10 possible analytes in the chromatogram.
While the mixture purports to contain six species, the mixture and/or the solvent may be
contaminated, or the column could have some carryover. We conducted analyses of both ranks

nine and 10 on the data. The results of the rank-nine model, constituting over 99% of the total
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variance, are presented below. The rank 10 analysis differs little from that of rank 9, with the

additional component giving insignificant interpretive value.

The chromatographic factors for the varimax-rotated PCA analysis are presented in the top plot
of Figure 3. While it is difficult to see. the extent of negativity in the factors is very small, even
in the presence of overlap in the second and third peaks with centers at 3.67 and 3.71 minutes.
For ease of viewing, we have expanded the scale and superpositioned the region describe here in
the plot. Given the excellent performance of the algorithm, we required minimal “polishing”
with MCR. The bottom plot of Figure 3 contains the MCR factors of the nine-factor model
initialized using the varimax solution and completing only 10 iterations. Again, the expansion of
the overlap region demonstrates the ability of MCR with nonnegativity constraints to “unmix”

these factors. The MCR mass spectral factors for the nine components are displayed in Figure 4.

Identities of the six expected chemical species; with peak labels 1. 3, 5. 6, 7. and 8 in the Figures
1, 2 and 4 and Table 1: were confirmed using the mass spectral factors as inputs to the NIST
mass spectral library search routine provided with the Agilent GC/MS software. In addition, the
NIST routine identified peak 2 as dimethyl ether, a common contaminant of methanol; and peak
9 as acetonitrile, with a confirmatory match factor of =860. While the source of acetonitrile is
mysterious, we did confirm its presence by comparing its elution time to that of an independent
experiment involving only acetonitrile in methanol. The identity of the final species eluting as
peak 4, was not revealed using the NIST mass spectral library search routine. This lack of
library match is not unexpected because this factor is believed to represent ion-molecule
reactions of methanol in the mass spectrometer source and thus not a separate distinct compound.
The most abundant ion observed in the factors of peak 4 (see Figure 4) is m/z 34. For methanol

there is a small (0.21%) isotopic contribution at m/z 34, likely which also has abundance from
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protonated methanol. This factor demonstrates the sensitivity of the method to very low

abundance chromatographic peaks.

VOC Mix 8

The original VOC Mix & data were collected over a time range of approximately 34 minutes
constituting nearly 12,000 e¢lements. and a mass range m/z: 27-371 comprising 240 nonzero mass
channels. Initial data trimming reduced the time domain to 3-24 minutes (7554 elements) and
the mass range mv/z: 27-355 (148 mass channels), including S1D of methanol m/z (28-33). The
top plot in Figure 5 contains expanded-scale total ion chromatogram of the raw data as well as
the SID plot with the methanol m/z eliminated. As in VOC Mix 6, complete loss of the methanol
peak and its long tail are dramatic. The twelve major peaks have been numbered for
convenience, and their expected identities, as per NIST MS library matching, are contained in
Table 2. The table lists only the “best hit”, which misassigned the dichloroethylene, xylene, and
dichlorobenzene isomers. This is common for these types of 1somers in many other types of data
processing; and then GC/MS practitioners will employ retention time information or Kovats
indices for confirmation. Browsing the NIST library matching results, the correct assignment in
each case is within 1% of the “best hit” match score, and thus these misassignments are of minor
concern. The important point is that the MCR is correctly modeling and separating the peaks. In
addition to the eleven known constituents of the mix, the first peak is that of dimethoxymethane.
Figure 6 is a scree plot of the eigenvalues of the Poisson-scaled data after trimming the time
domain and removal of the methanol m/z channels. Unfortunately, in this plot there is not a
distinct or obvious transition from data eigenvalues to noise eigenvalues. Upon expansion of the

plot, we estimated that a 25-factor model would be appropriate.

49



The bottom plot in Figure 5 contains the rank-25 model, chromatographic factors from MCR,
initiated using the varimax-rotated PCA solution. While it 1s difficult to make out all of the
factors, we were able to model all of the major peaks. plus a significant number of minor peaks.
For reasons which will become obvious. here we are using a lettering scheme for the thirteen
major MCR factor peaks that model the fwelve major data elution peaks. Species whose mass
spectra are highly correlated pose a special problem; the results plotted in Figure 7 represent one

such challenge.

The species giving rise to the peaks displayed in Figure 7 are, from left to right, ethylbenzene
(8), p-xvlene (9), styrene (10). and o-xylene (11). The first two peaks at times 15.3 and 15.5
minutes are well resolved, but have very similar, but discernable, mass spectra; so they are
separable with PCA and MCR. The second two peaks are highly overlapped, but have very
different mass spectra, so they are mostly separable with varimax-PCA with significant negative-
going lobe so as to be orthogonal. The problem arises because the mass spectra of ethylbenzene,
p-xylene, and o-xylene are so similar that the o-xylene peak is best modeled as a linear
combination of ethylbenzene and p-xylene. We conducted a separate analysis of the data for all
times greater than 15.8 minutes and were able to obtain a distinct peak for styrene at 15.99
minutes and another distinct peak for o-xylene at 16.02 minutes. While having to partition the
data matrix in this manner not the most desirable situation, it does represent an option for

identifying isomeric species whose mass spectra are nearly indistinguishable.

Perhaps the most impressive demonstration of the power of the techniques employed here is
represented in Figure 8. IHere in the top plot, we see in red the elution peak for PCE its two
varimax-rotated PCA factors in blue and green. Due to orthogonality constraints the peaks have

both positive and negative lobes, but more fundamentally one would ask, “Why two peaks?”
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Even in the bottom plot, the MCR results nicely resolve the two peaks with Gaussian shapes.
The answer to our question resides in Figure 9 which contains the peak-integrated mass
spectrum, and the mass spectral factors of the first factor (left) and second factor (right) in the
top, middle, and bottom panels, respectively. These plots reveal a chlorine isotope abundance
dependence as a function of elution time. An analysis of these plots is found in Tables 3-5. The
theoretical probability for the two. three and four chlorine fragments using a binomial probability

distribution and a 24.22% natural abundance for ¥'C1.*’

Table 3 is a comparison of the theoretical and actual proportions of C,Cl; fragment for the
possible combinations of **Cl and *'Cl. A comparison of the theoretical proportions with that of
the integrated peak of the raw data shows excellent agreement, as well as with the NIST
Standard Data.*® However, the first (left) peak appears to have enrichment in the lighter isotope
sinee its 0/2 *'C1*°Cl proportion is larger than the expected value while the 2/0 *'C1/**Cl
proportion is lower than expected. In contrast, the second (right) peak values show enrichment
in the heavier isotope. This pattern is repeated in the subsequent tables: enrichment of **CI in the
left peak and complementary enrichment of >’Cl in the right peak. This is entirely consistent

with i1sotopic behavior in a diffusion controlled process.

CONCLUSIONS

We have presented a very powerful technique for analyzing GC/MS data using multivariate
analysis. The method is based on established data analysis techniques that may be easily applied
by most chromatographers using a small laboratory computer. We have demonstrated the
method using some simple GC/MS data with excellent results. The ability of the analysis to
extract very subtle details from the data is highlighted by the separation of heavily overlapped

peaks due to an isotopic chlorine effect.
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Figure 1. Top plot displays VOC Mix 6 total ion chromatogram prior to data pretreatment shows the dominance of
the methanol solvent peak. Bottom plot is the comparison of the total ion chromatograms of the raw VOC Mix 6
GC/MS data (black) and of the same data after SID removing m/z 28-33 (red).
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Figure 2. Eigenvalues of Poisson-scaled GC/MS VOC Mix 6 data plotted versus PCA factor number.
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Figure 3. Top plot contains the eigenvectors for varimax-rotated PCA on the Poisson-scaled SID data. The plots
are total ion chromatograms of the reconstructed individual components; which are essentially the scaled
chromatographic factors. The inset shows the negative lobes of the overlapped peaks. Bottom plot contains results
of ten iterations of MCR with nonnegativity applied in both domains and initialized using the varimax-rotated PCA
factors. Peaks labels correspond to peak numbers in Table 1. The amplitude of peak 9 has been increased by a
factor of 10 to improve visibility.
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Figure 4. Mass spectral factors for 10 iterations of MCR initialized with varimax-rotated, nine-factor PCA model.
MCR employed nonnegativity in both domains. Factors are color-coded to correspond to factors in the bottom plot
of Figure 3.
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Figure 5. Top plot displays the comparison of the total ion chromatograms of the raw VOC Mix 8 GC/MS data
(black) and of the same data after SID removing m/z 28-33 (red). Bottom plot contains results of ten iterations of
MCR with nonnegativity applied in both domains and initialized using the 25-factor model, varimax -rotated PCA -
factors. See text for species in mixture.
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Figure 6. Eigenvalues of Poisson-scaled GC/MS VOC Mix 8 data plotted versus PCA factor number.
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Figure 7. Top plot contains the chromatographic factors from the varimax-rotated PCA of the Poisson-scaled SID
data for VOC Mix 8 over the clution time period 15.2-16.2 minutes. The red plot is the total ion chromatogram of
the SID data, the blue, green, and black plots are scaled PCA chromatographic factors. Bottom plot is the
chromatographic factors for 10 iterations of MCR initialized with varimax-rotated, 25-factor PCA model. MCR
employed nonnegativity in both domains. The peaks from left to right are ethylbenzene (8), p-xylene (9), styrene
(10) and o-xylene (11). Ethylbenzene, p-xylene and styrene are modeled by MCR factors I, T and K, respectively;
while o-xylene is modeled as contributions from both factors I and J.

58



S
L ——

13.5 14 14.5
Elution Time (minutes)

Figure 8 Top plot contains peak 6, PCE, and the chromatographic factors from the varimax-rotated PCA of the
Poisson-scaled SID data for VOC Mix 8. The red plot is the total ion chromatogram of the SID data, the blue and
green plots are scaled PCA chromatographic factors. Bottom plot is the chromatographic factors for 10 iterations of
MCR initialized with varimax-rotated, 25-factor PC A model. MCR employed nonnegativity in both domains.
Factor F is the lighter chlorine isotope PCE and G is the heavier isotope.
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Bottom: Mass spectral MCR factor for the later eluting PCE factor.

Table 1. Chemical species assignments made from mass spectral factors derived from MCR analysis of VOC Mix 6
data. Notes: TDimethyl ether believed to be a contaminant from methanol solvent. *Contaminant was unidentified.

TABLES

¥ Acetonitrile contaminant was from an unknown source, but may be column or system carryover,

Peak Elution Time Chemical Compound
(min) (NIST Library Assigned)
1 3.52 Dichlorodifluoromethane
2 3.67 Dimethyl ether’
3 3.71 Chloromethane
4 3.83 Unknown*
5 3.89 Vinyl chloride
6 4.33 Bromomethane
7 4.50 Ethyl chloride
3 5.11 Trichloromonotfluoromethane
9 5.31 Acetonitrile**
Table 2.
Peak | MCR Expected Chemical Elution Time Chemical Compound
Factor Compound (min) (NIST Library Assigned)
1 A [Dimethoxvmethane 5.80 Dimethoxymethane
2 B [trans-1,2-Dichloroethylene ik cis-1.2-Dichloroethylene
3 C  leis-1.2-Dichloroethylene 8.33 trans-1.2-Dichloroethylene
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4 D |1.2-Dichloropropane 11.20 1.2-Dichloropropane
5 E [Toluene 13.00 I'oluene

6 F PCE 14.01 PCE

6 G PCE 14.03 PCE

7 H IChlorobenzene 15.03 Chlorobenzene

8 I Ethylbenzene 15.30 Ethylbenzene

9 J -Nvylene 15.52 Im-Xvlene

10 Kk Styrene 15.99 [Stvrene

11 (L) Jo-Xyvlene 16.02

12 L 1,2-Dichlorobenzene 19.00 1.3-Dichlorobenzene
12 M [1.2-Dichlorobenzene 19.01 1.4-Dichlorobenzene

Table 3. Probabilities and actual proportions calculated for the two-chlorine fragments of PCE.

F'CI*Cl ratio: 0/2 1/2 2/0
IMass C,Cl; 94 96 98
Theoretical Prob. (%): 574 36.7 59
Raw Data Dist. (%): 56.9 371 6.0
IPeak One Dist. (%): 58.8 36.1 5.1
Peak Two Dist. (%0): 55.8 378 6.4
NIST data Dist. (%): 56.7 372 6.1

Table 4. Probabilities and actual proportions calculated for the three-chlonne [ragments of PCE.

Y'CI*Cl ratio: 0/3 2/ 211 30
Mass C,Cly 129 131 133 135
Theoretical Prob. (%) 435 4.7 133 1.4
IRaw Data Dist. (%): 432 41.7 13.5 15
Peak One Dist. (%): 146 412 128 13
Peak T'wo Dist. (%): 423 422 13.9 1.5
NIST data Dist. (%): 42.6 42.4 13.6 1.4

Table 5. Probabilities and actual proportions calculated for cationic PCE.

CI/*Cl ratio: 0/4 13 212 3/ 4/0
Mass C,Cl, 166 168 170 170 172
Theoretical Prob. (%): 33.0 42.2 20.2 43 03
IRaw Data Dist. (%0): 328 422 203 43 03
Peak One Dist. (%0): 343 42.0 194 4.0 0.3
Peak Two Dist. (%): 320 423 209 45 0.4
INIST Data Dist. (%): 333 41.2 20.7 45 0.3
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