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Abstract 

 

We recently performed an evaluation of the implications of a reduced stockpile of nuclear 

weapons for surveillance to support estimates of reliability.  We found that one technique 

developed at Sandia National Laboratories (SNL) under-estimates the required sample size for 

systems-level testing.  For a large population the discrepancy is not important, but for a small 

population it is important.  We found that another technique used by SNL provides the correct 

required sample size. 

 

For systems-level testing of nuclear weapons, samples are selected without replacement, and the 

hypergeometric probability distribution applies.  Both of the SNL techniques focus on samples 

without defects from sampling without replacement.  We generalized the second SNL technique 

to cases with defects in the sample. 

 

We created a computer program in Mathematica to automate the calculation of confidence for 

reliability.  We also evaluated sampling with replacement where the binomial probability 

distribution applies.  
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EXECUTIVE SUMMARY 
 

We recently performed an evaluation of the implications of a reduced stockpile of nuclear 

weapons for surveillance to support estimates of reliability. [Stockpile Surveillance]  As part of 

this effort, we looked at the number of samples required to support statements about confidence 

for reliability; we considered very small population sizes of weapons. 

 

For systems-level testing of nuclear weapons, samples are selected without replacement, and the 

hypergeometric probability distribution applies. 

 

We found that one technique developed at Sandia National Laboratories (SNL) under-estimates 

the required sample size for systems-level testing.  For a large population the discrepancy is not 

important, but for a small population it is important.  We found that another technique used by 

SNL provides the correct required sample size. 

 

Both of the SNL techniques focus on samples without defects from sampling without 

replacement.  We generalized the second SNL technique to cases with defects in the sample. 

We created a computer program in Mathematica to automate the calculation of confidence for 

reliability. [Mathematica]  We also evaluated sampling with replacement where the binomial 

probability distribution applies.  Both sampling without and with replacement are addressed in 

this report, and techniques for calculating confidence for reliability for both sampling strategies 

are implemented in the Mathematica program. 

 

Previous discussions of the sample size summarize the required sample size for sampling without 

replacement, given no defects in the sample, as a function of population size. [Hahn]  Typically, 

both 90% confidence for 90% reliability and 90% confidence for 95% reliability are considered.  

Some of these discussions used the incorrect technique.  We evaluated the required sample size 

for both cases using the correct and the incorrect technique.  The results are as follows.   

 

 

  



  

8 

 

Table E-1. 
Required Sample Size for Various Population Sizes  

for 90% confidence for 90% Reliability 
With No failures in the Sample 
Sampling without Replacement  

 

Population Size Required Sample Size from 

SNL Second Technique 

Required Sample Size from  

SNL First Technique 

(INCORRECT) 

10  9  7 

20  14  11 

30  16  13 

40  17  14 

50  18  16 

70  19  17 

90  20  18 

120  20  19 

150  21  20 

250  21  21 

275  22
a
  21 

532 or greater 22 22
a 

a
The sample size for sampling with replacement required by the binomial distribution is 22.  

 
Table E-2. 

Required Sample Size for Various Population Sizes  
for 90% confidence for 95% Reliability 

With No failures in the Sample 
Sampling without Replacement  

 

Population Size Required Sample Size from 

SNL Second Technique 

Required Sample Size from  

SNL First Technique 

(INCORRECT) 

10  9  8 

20  18  14 

40  27  21 

100  37  32 

200  41  37 

300  42  40 

400  43  41 

500  43  42 

800  44  43 

1000  44  44 

1200 45
b
  44 

2131 or greater 45 45
b 

b
The sample size for sampling with replacement required by the binomial distribution is 45.  
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 1. INTRODUCTION 
 

This report summarizes techniques to calculate classical statistical confidence limits for 

reliability based on sample results.  Two sampling distributions are discussed: 

 

1. Sampling with replacement, the binomial distribution, and 

2. Sampling without replacement, the hypergeometric distribution. 

For sampling with replacement, three techniques are discussed, including a simple one limited to 

the special case of no failures in the sample. 

 

For sampling without replacement, three techniques are discussed.  Two of the techniques are 

provided in Sandia National Laboratories (SNL) reports for estimating the reliability of nuclear 

weapons; these two focus on samples with no defective items found in the sample.  The first 

technique is not as accurate as the second as subsequently discussed; specifically, the first 

technique under-predicts the required sample size for a small population.    

 

In this report, the second technique for sampling without replacement is expanded to a third 

technique to address cases where there are defective items found in the sample.  

 

All the techniques are implemented in a Mathematica program, ConfidenceLimitsIterative.nb, 

written by the author.  The program is provided in Appendix A with example calculations; 

results were verified by comparison with published values. 

 

 

2. SAMPLING PROCESS 
 

Sampling with replacement means that each item selected from a population is replaced and can 

possibly be selected again.  Sampling without replacement means that once an item is selected it 

is not returned to the population.   

 

The binomial distribution is used to model sampling with replacement.  The binomial 

distribution has two parameters p and n, and is denoted here as BinDist(p, n).  p is the probability 

that an item in the population is failed and n is the number of items in the sample.  p must be a 

constant and can be any value in [0, 1].  The binomial distribution is independent of the 

population size N.  For a small population with a large sample, n > N, this means that some items 

in the population will be sampled- with replacement- more than once.  Although the binomial 

distribution is mathematically applicable for n > N, the extent to which a small sample is 

representative of the population is questionable.  

  

The hypergeometric distribution is used to model sampling without replacement.  The 

hypergeometric distribution has three parameters N, n, and D, and is here denoted as 

HyperDist(n, D, N).  N is the population size, n is the sample size, and D is the number of 

defective items in the population.  D must a be discrete value {0, 1, 2, … N}.  The probability 

that an item in the population is defective is D/N and is restricted to {0, 1/N, 2/N, …, 1}.        
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The probability of selecting a defective item changes as the sample is taken, since once an item is 

selected it is not returned to the population. 

 

Let R denote the reliability.  For sampling with replacement R = 1 - p; for sampling without 

replacement, R = 1 – D/N.
1
    

 

For simplicity of nomenclature, “probability of failure” denoted as P is defined to mean either p 

or D/N depending on the type of sampling being discussed, with or without replacement, 

respectively. R = 1 - P; R can be expressed as a percent. 

 

 
3. CONFIDENCE LIMITS 
 

P is not known but is estimated from the sample.
2
  Due to uncertainty, P is expressed with an 

upper one-sided confidence limit.
3
  Let the probability that P is in the interval [0, UCLγ] be 1-γ.  

UCLγ is called a (1-γ)100% upper one-sided confidence limit for P. [Martz]  If P is in [0, UCLγ] 

with probability 1-γ, R is in [1 - UCLγ, 1] with probability 1-γ. 

 

For simplicity of nomenclature, “confidence” is defined to mean (1-γ)100%.   

 

For example, for 50% confidence γ is 0.5; if UCL0.5 is 0.3, the probability that P is in [0, 0.3] is 

0.5.For 90% confidence γ is 0.10; if UCL0.1 is 0.6, the probability that P is in [0, 0.6] is 0.9. 

  

Statements about the confidence of reliability specify 1 - UCLγ.  For example “90% confidence 

for 95% reliability” means 1 – UCL0.1 is 0.95.   

 

In the following, R will be used to denote the specific value 1 - UCLγ, and P will denote the 

specific value UCLγ. 

 

 

4. CONFIDENCE LIMITS FOR THE BINOMIAL DISTRIBUTION 
 

For sampling with replacement, UCLγ depends on the confidence desired, the size of the sample, 

and the number of failures in the sample; it does not depend on the size of the population.   Let 

UCLγ(x, n) denotes UCLγ for confidence (1-γ)100% for a sample of size n with x failures. 

 

                                                 
1 If the samples are never returned to the population (perhaps because they were destroyed), the reliability for the 
population of size N-n that is left changes as a result of the permanent removal of items.  Suppose a sample of size 
37 is drawn from a population of 100 and no failures are observed.  It is correct to assert with 90% confidence that 
that the original population did not contain more than five defective units, 95% reliability.  But we know that there 
were no defective units in the sample, so the five possible defective units could only be in the remaining 
population of 63 units.  For the remaining population, the reliability at 90% confidence is decreased to a little more 
than 92%. [Loescher]    
2
 Classical probability treats the probability as fixed but perhaps unknown. [Dougherty]  A Bayesian approach 

considers probability as a random variable; Bayesian confidence limits are not addressed in this report. 
3
 Two sided confidence limits can also be generated. [Martz] 
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For the case of no failures, SNL uses a simple formula to calculate UCL0.5(0, n): [SNL Weapon 

Reliability Guide]   

 

UCL 0.5(0, n)  =   1 – 0.5
1/n

  (Eqn. 1) 

 

With no failures in the sample this simple formula can be generalized for any desired confidence:  

 

UCLγ (0, n)  =   1 – γ
1/n

  (Eqn. 2) 

 

Considering any number of failures in the sample: [Martz] 

 

    (   )     
(     )    (             )

(  –   )  (     )    (             )
  (Eqn. 3) 

 

where F is the F-ratio distribution.  For no failures, equation 3 and equation 2 provide identical 

results. 

 

A third technique for calculating UCLγ(x, n) directly from the Cumulative Distribution Function 

(CDF) is as follows. [Beyer, Section III.3]   For the binomial distribution BinDist(p, n), find the 

p for which the CDF evaluated at x equals γ; that p is UCLγ(x, n).  For example, for 95% 

confidence given x failures in n samples, the p for which CDF(BinDist(n, p), x) equals 0.05 is 

UCL0.05(x, n).   

 

For the special case of no failures, CDF(BinDist(n, p), x) equals PDF(BinDist(n, p), 0) where 

PDF is the Probability Density Function.   

 

The technique using the CDF provides results identical to those obtained using equations 2 and 

3.  

 

The three techniques were implemented in ConfidenceLimitsIterative.nb.  Example results using 

the three techniques follow. 

 

Example 1: For n = 20, x = 2, 95% confidence 

 

Using equation 3, UCL0.05(2, 20) is 0.283.   

 

Using the CDF approach, the p for which   

CDF(BinDist(20, p), 2) equals 0.05 is 0.283.   

 

Example 2: For n = 13, x = 0, 90% confidence 

 

Using equation 3, UCL0.1(0, 13) is 0.162 .   

 

Using the CDF approach, the p for which   

CDF(BinDist(13, p), 0) equals 0.1 is 0.162.    

 

Using equation 2, UCL0.1 (0, 13) is 0.162. 
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5. CONFIDENCE LIMITS FOR THE HYPERGEOMETRIC 
DISTRIBUTION 
 

For sampling without replacement, UCLγ depends on the confidence desired, the size of the 

sample, the number of defective units in the sample, the size of the population, and the number 

of defects in the population.   Let UCLγ(x, n, D, N) denotes UCLγ for confidence (1-γ)100% for a 

sample of size n with x defective units for a population N with D defective units. 

 

For the case of no defective units in the sample, SNL documentation for weapons reliability 

discusses two techniques.   

 

The first SNL technique utilizes a smoothing process. [Muller]  The referenced report states that 

the smoothing technique “adds one more defective unit”; this appears to cause problems as 

discussed later.  For a specific population N, the referenced report develops a formula for finding 

the minimum sample size n with no defective units required to provide “90% confidence for 95% 

reliability”.  This is called a “90/95” sample size in the report.  γ = 0.1.  Using the nomenclature 

of section III, R is 0.95, so 1 - UCL0.1 = 0.95 .  UCL0.1 = 0.05, so P = 0.05.  Since D = (1 - R)N, 

D= 0.05N.  n is the minimum value that satisfies:  

 

   
 (     ) (     )

 (   ) (       )
          (Eqn. 4) 

 

where Γ is the gamma function.  n is found by iteration.   

 

With no defective units in the sample, this technique can be generalized for any confidence and 

reliability R.  D is (1 – R)N. For a given R and γ, n is the minimum value that satisfies   

 
 (  ) (     )

 (   ) (    )
       (Eqn. 5) 

 

n is found by iteration.   

 

The second SNL technique uses the PDF for the hypergeometric distribution. [SNL Weapon 

Reliability Guide]  It also is restricted to no defective units in the sample.  To find the minimum 

n required for given N,  γ, and R,  the following technique can be used.  Note that D is (1 - R) N 

rounded to the nearest integer.  For the hypergeometric distribution HyperDist(n, D, N), find the 

minimum n for which PDF(HyperDist(n, D, N), 0) does not exceed γ.  D/N is UCLγ(0, n, D, N) 

which is P; R = 1 - P.  Iteration is used to find the minimum n.  For example, for a population 

of 100, for 90% confidence, for 95% reliability find the minimum n for which PDF(HyperDist 

(n, 5, 100), 0) exceeds 0.10.  

 

The second SNL technique for the hypergeometric distribution is analogous to the CDF 

technique for the binomial distribution previously discussed; for the special case of no defects in 

the sample (x of 0) the CDF is the PDF.   
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The second SNL technique can be extended for any number of defective units in the sample by 

using the CDF for the hypergeometric distribution.  This extension is referred to as the third 

technique.  To find the minimum n given a specific x required for given N,  γ, and R,  the 

following technique can be used.  Note that D is (1 - R) N rounded to the nearest integer.  For 

the hypergeometric distribution HyperDist(n, D, N), find the minimum n for which 

CDF(HyperDist(n, D, N), x) does not exceed γ.  D/N is UCLγ(x, n, D, N) which is P; R = 1 - P.  

Iteration is used to find the minimum n.  For example, for 3 failures in the sample, for a 

population of 100, for 95% confidence, for 95% reliability find the minimum n for which  

CDF(HyperDist (n, 5, 100), 3) exceeds 0.05.  

 

The three techniques were implemented in ConfidenceLimitsIterative.nb.  Example results using 

the three techniques follow. 

 

Example 3: N = 100, confidence of 90%, reliability of 95%, no defective items in sample 

 

D is (1 - R) N = 5. 

 

Using the first SNL technique (equation 5), n is 32. 

 

Using the second SNL technique or the third technique, n is 37.
  

 

 Example 4: N = 20, confidence of 90%, reliability of 90%, no defective items in sample 

 

D is (1 - R) N = 2. 

 

Using the first SNL technique (equation 5), n is 11. 

 

Using the second SNL technique or the third technique, n is 14.
  

 

As indicated in these two examples, the two SNL techniques do not provide the same result. The 

difference between the two techniques is due to the first technique implicitly “adding an 

additional defective unit” as discussed on the reference for that technique. [Muller]  This can be 

verified as follows.  Consider example 3.  For N of 100 and 95% reliability, D is 5.  If we “add 

an additional defective unit” D is 6, and the reliability decreases to 94%.  With a reliability of 

94%, the second and third techniques indicate a sample size of 32 is required, the sample size 

from the first SNL technique.        

 

Consider example 4.  For N of 20 and 90% reliability, D is 2.  If we “add an additional defective 

unit” D is 3, and the reliability decreases to 85%.  With a reliability of 85%, the second and third 

techniques indicate a sample size of 11 is required, the sample size from the first SNL technique.  

       

To check the validity of the third technique- the CDF extension of the second SNL technique- to 

cases with defective items in the sample, results were compared to published graphs of 

confidence limits for the hypergeometric distribution. [Hypergeometric Graphs]  The graphs 

provide two-sided confidence limits (upper and lower); the upper one-sided confidence limit can 

also be obtained from the graphs as stated in the reference.  For example, 90%, 95%, 99% upper 
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two-sided limits are equivalent to  95%, 97.5%, 99.5% upper one-sided confidence limits, 

respectively.  

 

Examples comparing results of the third technique to the published graphical results follow. 

 

Example 5: N = 500, D = 110, n = 50, x = 6 

 

The graph from the reference indicates 95% confidence (90% upper two-sided on the 

graph) . 

 

The third technique indicates that for N = 500, D = 110, n = 50, x = 6, γ is 0.0468, so the 

confidence, (1-γ)100% , is 95.3% in close agreement with the result from the graph. 

 

Example 6: N = 10,000, D = 35, n = 2000, x = 1 

 

The graph from the reference indicates 99.5% confidence (99% upper two-sided on the 

graph) . 

 

The third technique indicates that for N = 10,000, D = 35, n = 2000, x = 1, γ is 

0.00391145, so the confidence is 99.6% in close agreement with the result from the 

graph. 

 

Example 7: N = 500, D = 20, n = 250, x = 4 

 

The graph from the reference indicates 99.5% confidence (99% upper two-sided on the 

graph) . 

 

The third technique indicates that for N = 500, D = 20, n = 250, x = 4, γ is 0.00512136, so 

the confidence is 99.5% in agreement with the result from the graph. 

 

 

6. SAMPLE SIZES FOR NUCLEAR WEAPONS RELIABILITY 
 

SNL uses confidence limits for reliability to indicate the required number of system level tests to 

be performed for nuclear weapons. [Muller]  For sampling from the population without 

replacement and assuming no defects found in the sample, the number of weapons to be tested to 

meet a required confidence/reliability can be specified.  Here, two confidence/reliability 

requirements are considered: 90/90 and 90/95.  90/90 means 90% confidence that the reliability 

is 90%; 90/95 means 90% confidence that the reliability is 95%.  Using the techniques 

previously described for confidence for the hypergeometric distribution, Tables 1 and 2 

summarize required sample sizes for various population sizes. The results were calculated using 

the ConfidenceLimitsIterative.nb Mathematica code.   

 

Required sample sizes predicted by both the first and second SNL techniques are provided.  As 

discussed previously, the first SNL technique under-predicts the required sample size. 
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Table 1. 
Required Sample Size for Various Population Sizes  

for 90% confidence for 90% Reliability 
With No failures in the Sample 
Sampling without Replacement  

 

Population Size Required Sample Size from 

SNL Second Technique 

Required Sample Size from  

SNL First Technique 

(INCORRECT) 

10  9  7 

20  14  11 

30  16  13 

40  17  14 

50  18  16 

70  19  17 

90  20  18 

120  20  19 

150  21  20 

250  21  21 

275  22
a
  21 

532 or greater 22 22
a 

a
The sample size for sampling with replacement required by the binomial distribution is 22.  

 
Table 2. 

Required Sample Size for Various Population Sizes  
for 90% confidence for 95% Reliability 

With No failures in the Sample 
Sampling without Replacement  

 

Population Size Required Sample Size from 

SNL Second Technique 

Required Sample Size from  

SNL First Technique 

(INCORRECT) 

10  9  8 

20  18  14 

40  27  21 

100  37  32 

200  41  37 

300  42  40 

400  43  41 

500  43  42 

800  44  43 

1000  44  44 

1200 45
b
  44 

2131 or greater 45 45
b 

b
The sample size for sampling with replacement required by the binomial distribution is 45.  
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7. CONCLUSIONS AND RECOMMENDATIONS 
 

This report provides a number of techniques for evaluating upper one-sided confidence limits for 

reliability based on sampling with and without replacement, using the binomial and 

hypergeometric distributions, respectively. 

 

For the binomial distribution the SNL technique used for the special case of no failures in the 

sample agrees with a general technique which apples for any number of failures in the sample.  

This report also provides a technique applicable to any number of failures in the sample using the 

CDF of the binomial distribution. 

 

For the hypergeometric distribution, two SNL techniques developed for no defective items in the 

sample do not agree.  The first technique under-predicts the required sample size.  This is due to 

an additional defective item being implicitly added in the first technique.    

 

This report also provides a technique applicable to any number of defective items in the sample 

using the CDF of the hypergeometric distribution.  This technique provides results in agreement 

with published graphical results of confidence limits for the hypergeometric distribution. 

 

To meet confidence/reliability requirements for nuclear weapons, the sample size for sampling 

without replacement, assuming no defects found in the sample, for various population sizes is 

provided. 

 

All the techniques discussed in the report are implemented in the Mathematica code, Confidence 

Limits Iterative.nb written by the author. 
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APPENDIX A.  MATHEMATICA CODE 
 

This appendix provides the functions and algorithms programmed in the Mathematica program 

ConfidenceLimitsIterative.nb which implements all six techniques discussed in the main report.  

Also, solutions for some of the examples from Sections 4 and 5 of the main report are provided. 

 

Equation 2 for the binomial distribution is represented by the following function defined in 

Mathematica: 

 

UCLNoFailures[ n_, _] = 1 - ^(1/n)  

(* SNL technique *) 

 

Equation 3 for the binomial distribution is represented by the following function defined in 

Mathematica: 

 

UCLMartz[x_, n_, _] =  

(1 + (n - x)/((x + 1) Quantile[FRatioDistribution[2 x + 2, 2 n - 2 x], 1 - ]))^-1   

(*Martz 3.19 for one sided *) 

 

The third technique for the binomial distribution is implemented using the following function 

defined in Mathematica: 

 

GammaFromBinomialCDF[n_, P_, x_] = CDF[BinomialDistribution[n, P], x]  

(* using CDF solve for P such that function value equals  *) 

 

Equation 5 for the hypergeometric distribution is represented by the following function defined 

in Mathematica: 

 

SNLOneIncorrect[R_, Nh_, n_] =  

Gamma[R*Nh] * Gamma[Nh - n + 1] / (  Gamma[R*Nh - n] * Gamma[Nh + 1]) 

(* SNL approach 1, no failures in sample, incorrect model *)  

 

The second SNL technique for the hypergeometric distribution is implemented using the 

following function defined in Mathematica: 

 

           [          ]     [                          [       ]  ] 

(                                      ) 
 

The third SNL technique for the hypergeometric distribution is implemented using the following 

function defined in Mathematica:  

 

GammaFromHyperGeometricCDF[n_, Dh_, Nh_, x_] =  

CDF[HypergeometricDistribution[n, Dh, Nh], x] 

(* x failures in sample, solve for minimum D such that function  

value exceeds , probability failure for confidence for  is D/N *) 

The algorithms and solutions for selected examples in Sections 4 and 5 of the main report follow. 
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Example 1 Binomial Distribution: For n = 20, x = 2, 95% confidence 

 

Using equation 3: 

 

Clear[x, n, , P, R, Nh, Dh, boolTest]; 

n = 20; (* enter n *) 

 = 0.05;  (* enter  *) 

x = 02; (* enter x *) 

Print["Binomial Distribution UCLMartz. With sample size ", n, ", number of failures in sample ", 

x, ",  

and required confidence ", (1 - ) 100, "%.  P is ", UCLMartz[x, n, ],  

 ", and R is " , 1 -  UCLMartz[x, n, ]] 

 

Binomial Distribution UCLMartz. With sample size  20 , number of failures in sample  2 , and 

required confidence  95. %.  P is  0.282619 , and R is  0.717381 

 

Using the CDF approach: 

 

(* Given n and x, find P for which GammaFromCDF[n, P, x] is <=  *) 

Clear[x, n, , P, R, Nh, Dh, boolTest]; 

n = 20; (* enter n *) 

 = 0.05; (* enter  *) 

x = 2; 

Print["Binomial Distribution GammaFromBinomiaUCL. With sample size of ", n, ",  

number of failures in sample ", x, ", and required confidence ", (1 - ) 100, "%.  P is: ",  

FindRoot[GammaFromBinomialCDF[n, P, x]  == , {P, 0.5}],  

 ", and R is: " , 1 -  FindRoot[GammaFromBinomialCDF[n, P, x]  == , {P, 0.5}]] 

 

Binomial Distribution GammaFromBinomiaUCL. With sample size of  20 , number of failures in 

sample  2 , and required confidence  95. %.  P is:  {P0.282619} , and R is:  {1-(P0.282619)} 

 

Example 2 Binomial Distribution: For n = 13, x = 0, 90% confidence 

 

Using equation 3: 

 

Clear[x, n, , P, R, Nh, Dh, boolTest]; 

n = 13; (* enter n *) 

 = 0.1;  (* enter  *) 

x = 0; (* enter x *) 

Print["Binomial Distribution UCLMartz. With sample size ", n, ",  

number of failures in sample ", x, ", and required confidence ", (1 - ) 100, "%.   

P is ", UCLMartz[x, n, ],  

 ", and R is " , 1 -  UCLMartz[x, n, ]] 
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Binomial Distribution UCLMartz. With sample size  13 , number of failures in sample  0 , and 

required confidence  90. %.  P is  0.162322 , and R is  0.837678 

 

Using the CDF approach: 

 

(* Given n and x, find P for which GammaFromCDF[n, P, x] is <=  *) 

Clear[x, n, , P, R, Nh, Dh, boolTest]; 

n = 13; (* enter n *) 

 = 0.1; (* enter  *) 

x = 0; 

Print["Binomial Distribution GammaFromBinomiaUCL. With sample size of ", n, ",  

number of failures in sample ", x, ", and required confidence ", (1 - ) 100, "%.  P is: ",  

FindRoot[GammaFromBinomialCDF[n, P, x]  == , {P, 0.5}],  

 ", and R is: " , 1 -  FindRoot[GammaFromBinomialCDF[n, P, x]  == , {P, 0.5}]] 

 

Binomial Distribution GammaFromBinomiaUCL. With sample size of  13 , number of failures in 

sample  0 , and required confidence  90. %.  P is:  {P0.162322} , and R is:  {1-(P0.162322)} 

 

Using equation 2: 

 

(* For x of 0, given n and , Calculate the upper one sided confidence  

limit for P parameter for binomial distribution *) 

Clear[x, n, , P, R, Nh, Dh, boolTest]; 

n = 13; (* enter n *) 

 = 0.1; (* enter  *) 

Print["Binomial Distribution UCLNoFailures. With sample size ", n, ",  

number of failures in sample ", x, " , and required confidence ", (1 - ) 100, "%.  ", (1 - ) 100, 

"%.   

P is: ", UCLNoFailures[ n, ],  

 ", and R is: " , 1 -  UCLNoFailures[ n, ]] 

 

Binomial Distribution UCLNoFailures. With sample size  13 , number of failures in sample  x  , 

and required confidence  90. %.   90. %.  P is:  0.162322 , and R is:  0.837678 

 

Example 3 Hypergeometric Distribution: N = 100, confidence of 90%, reliability of 95%, no 

defective items in sample 

 

D is (1 - R) N = 5. 

 

Using equation 5: 

 

(* Assumes x = 0. Given Nh, R, and , Find required n.  Note: Dh = (1 - R)Nh *) 

Clear[x, n, , P, R, Nh, Dh, boolTest]; 

Nh = 100; (* enter required Nh *) 

R = 0.95; (* enter required R *) 
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 = 0.1; (* enter  *) 

(* Iterate upward on n starting from 0 until SNLOneIncorrect[R, Nh, n] is less than  *) 

n = 0;  

boolTest = False; 

While[! boolTest && n <= Nh, 

  {If[SNLOneIncorrect[R, Nh, n] <= , 

    {boolTest = True; Print["INCORRECT  Hypergeometric Distribution SNLOneIncorrect 

is ",  

    N[SNLOneIncorrect[R, Nh, n]], ".  For population ", Nh, ", with required reliability ", R , 

"%,  

    required confidence ", (1 - ) 100, "%, and No failures in sample.  Minimum sample size 

is ", n]}, 

   { Print["INCORRECT  For n of ", n, " SNLOneIncorrect[R, Nh, n] is ",  

   N[SNLOneIncorrect[R, Nh, n]]], n = n + 1}] 

  } 

 ] 

 

INCORRECT  For n of  0  SNLOneIncorrect[R, Nh, n] is  1. 

INCORRECT  For n of  1  SNLOneIncorrect[R, Nh, n] is  0.94 

INCORRECT  For n of  2  SNLOneIncorrect[R, Nh, n] is  0.88303 

INCORRECT  For n of  3  SNLOneIncorrect[R, Nh, n] is  0.828967 

INCORRECT  For n of  4  SNLOneIncorrect[R, Nh, n] is  0.777691 

INCORRECT  For n of  5  SNLOneIncorrect[R, Nh, n] is  0.729085 

INCORRECT  For n of  6  SNLOneIncorrect[R, Nh, n] is  0.683038 

INCORRECT  For n of  7  SNLOneIncorrect[R, Nh, n] is  0.63944 

INCORRECT  For n of  8  SNLOneIncorrect[R, Nh, n] is  0.598185 

INCORRECT  For n of  9  SNLOneIncorrect[R, Nh, n] is  0.559173 

INCORRECT  For n of  10  SNLOneIncorrect[R, Nh, n] is  0.522305 

INCORRECT  For n of  11  SNLOneIncorrect[R, Nh, n] is  0.487484 

… 

INCORRECT  For n of  28  SNLOneIncorrect[R, Nh, n] is  0.131067 

INCORRECT  For n of  29  SNLOneIncorrect[R, Nh, n] is  0.120145 

INCORRECT  For n of  30  SNLOneIncorrect[R, Nh, n] is  0.109992 

INCORRECT  For n of  31  SNLOneIncorrect[R, Nh, n] is  0.100564 

 

INCORRECT  Hypergeometric Distribution SNLOneIncorrect is  0.0918192 .  For population  

100 , with required reliability  0.95 %, required confidence  90. %, and No failures in sample.  

Minimum sample size is  32 

 

Using the second SNL approach for the hypergeometric distribution: 

 

(* Assumes x = 0. Given Nh, R, and , Find required n such that  

GammaSNLTwo[n_,Dh_,Nh_] is less than ,  Note: Dh = (1 - R)Nh *) 

Clear[x, n, , P, R, Nh, Dh, boolTest]; 

Nh = 100; (* enter required Nh *) 

 = 0.1; (* enter  *) 
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R = 0.95;(* enter required R *) 

Dh = Round[(1 - R) Nh]; (* Dh = (1 - R)Nh  rounded to closest integer*) 

(* Iterate upward on n starting at 0 until GammaSNLTwo[n,Dh,Nh] is less than  *)  

n = 0;  

boolTest = False; 

While[! boolTest && n <= Nh, 

  {If[GammaSNLTwo[n, Dh, Nh] <= , 

    {boolTest = True; Print["Hypergeometric Distribution GammaSNLTwo is ",  

    N[GammaSNLTwo[n, Dh, Nh]], " .  For population ", Nh, ", with required confidence ", 

(1 - ) 100,  

       "%, and with required reliability ", R 100 , "% (maximum number defects, rounded, is ", Dh, 

").   

       With No failures in sample required sample size is ", n]}, 

   { Print["For n of ", n, " GammaSNLTwo[n,Dh,Nh] is ", N[GammaSNLTwo[n, Dh, Nh]]], n = 

n + 1}] 

  } 

 ] 

 

For n of  0  GammaSNLTwo[n,Dh,Nh] is  1. 

For n of  1  GammaSNLTwo[n,Dh,Nh] is  0.95 

For n of  2  GammaSNLTwo[n,Dh,Nh] is  0.90202 

For n of  3  GammaSNLTwo[n,Dh,Nh] is  0.855999 

For n of  4  GammaSNLTwo[n,Dh,Nh] is  0.811875 

For n of  5  GammaSNLTwo[n,Dh,Nh] is  0.76959 

For n of  6  GammaSNLTwo[n,Dh,Nh] is  0.729085 

For n of  7  GammaSNLTwo[n,Dh,Nh] is  0.690304 

For n of  8  GammaSNLTwo[n,Dh,Nh] is  0.653191 

For n of  9  GammaSNLTwo[n,Dh,Nh] is  0.617691 

For n of  10  GammaSNLTwo[n,Dh,Nh] is  0.583752 

… 

For n of  33  GammaSNLTwo[n,Dh,Nh] is  0.128277 

For n of  34  GammaSNLTwo[n,Dh,Nh] is  0.118704 

For n of  35  GammaSNLTwo[n,Dh,Nh] is  0.109711 

For n of  36  GammaSNLTwo[n,Dh,Nh] is  0.101272 

 

Hypergeometric Distribution GammaSNLTwo is  0.0933601  .  For population  100 , with 

required confidence  90. %, and with required reliability  95. % (maximum number defects, 

rounded, is  5 ).  With No failures in sample required sample size is  37  

 

Using the third approach for the hypergeometric distribution: 

 

(* Given Nh, R, x and , Find required n such that GammaFromCDF[n, Dh, Nh, x] = ,   

Note: Dh = (1 - R)Nh *) 

Clear[x, n, , P, R, Nh, Dh, boolTest] 

Nh = 100; (* enter required Nh *) 

x = 0; (* enter required x must be <= Nh *) 
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 = 0.1; (* enter  *) 

R = 0.95; (* enter required R *) 

Dh = Round[(1 - R) Nh]; (* Dh = (1 - R)Nh  rounded to closest integer*) 

(* Iterate upward on n starting at 0 until GammaFromHyperGeometricCDF[n, Dh_ Nh, x] is less 

than  *)  

n = 0;  

boolTest = False; 

While[! boolTest && n <= Nh, 

  {If[ GammaFromHyperGeometricCDF[n, Dh, Nh, x]  <= , 

    {boolTest = True; Print["Hypergeometric Distribution GammaFromHyperGeometriCDF 

is ",  

    N[ GammaFromHyperGeometricCDF[n, Dh, Nh, x]  ], ".  For population ", Nh, ", with 

required confidence ", (1 - ) 100,  

       "%, number failures in sample ", x, ", with required reliability ",  

       R  100, "% (number defects in population, rounded, is ", Dh, ").  Required sample size is ", 

n]}, 

   { Print["For n of ", n, " GammaFromHyperGeometricCDF[n, Dh, Nh, x] is ",  

   N[GammaFromHyperGeometricCDF[n, Dh, Nh, x]] ], n = n + 1}] 

  } 

 ] 

If[! boolTest, Print["#!#!#!# No n exists; x is too large #!#!#!#"]] 

 

For n of  0  GammaFromHyperGeometricCDF[n, Dh, Nh, x] is  1. 

For n of  1  GammaFromHyperGeometricCDF[n, Dh, Nh, x] is  0.95 

For n of  2  GammaFromHyperGeometricCDF[n, Dh, Nh, x] is  0.90202 

For n of  3  GammaFromHyperGeometricCDF[n, Dh, Nh, x] is  0.855999 

For n of  4  GammaFromHyperGeometricCDF[n, Dh, Nh, x] is  0.811875 

For n of  5  GammaFromHyperGeometricCDF[n, Dh, Nh, x] is  0.76959 

For n of  6  GammaFromHyperGeometricCDF[n, Dh, Nh, x] is  0.729085 

For n of  7  GammaFromHyperGeometricCDF[n, Dh, Nh, x] is  0.690304 

For n of  8  GammaFromHyperGeometricCDF[n, Dh, Nh, x] is  0.653191 

For n of  9  GammaFromHyperGeometricCDF[n, Dh, Nh, x] is  0.617691 

For n of  10  GammaFromHyperGeometricCDF[n, Dh, Nh, x] is  0.583752 

… 

For n of  33  GammaFromHyperGeometricCDF[n, Dh, Nh, x] is  0.128277 

For n of  34  GammaFromHyperGeometricCDF[n, Dh, Nh, x] is  0.118704 

For n of  35  GammaFromHyperGeometricCDF[n, Dh, Nh, x] is  0.109711 

For n of  36  GammaFromHyperGeometricCDF[n, Dh, Nh, x] is  0.101272 

Hypergeometric Distribution GammaFromHyperGeometriCDF is  0.0933601 . 

 

For population  100 , with required confidence  90. %, number failures in sample  0 ,  

with required reliability  95. % (number defects in population, rounded, is  5 ).   

Required sample size is  37 

 

Example 5 Hypergeometric Distribution: N = 500, D = 110, n = 50, x = 6 
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Using the third approach for the hypergeometric distribution: 

 

 (* Given Nh, n, x and , Find R such that GammaFromCDF[n, Dh, Nh, x] <= ,  Note: Dh = (1 

- R)Nh  *) 

Clear[x, n, , P, R, Nh, Dh, boolTest] 

Nh = 500; (* enter required Nh *) 

n = 50; (* enter required n *) 

x = 6; (* enter required x must be <= n *) 

 = 0.05;  

(* iterate upward on Dh starting at 1 until GammaFromHyperGeometricCDF[n, Dh, Nh, x] is 

less than  *) 

Dh = 1; (* R = N[1 - Dh/Nh] *) 

boolTest = False;  

While[! boolTest && Dh <= Nh, 

  {If[GammaFromHyperGeometricCDF[n, Dh, Nh, x] <= , 

    {boolTest = True; Print["Hypergeometric Distribution GammaFromCDF is ", 

N[GammaFromHyperGeometricCDF[n, Dh, Nh, x] ], ".   

    For population ", Nh, ", with required confidence ", (1 - ) 100,  

       "%, number failures in sample ", x, ", and sample size ", n, ".  Reliability is ",  

       N[1 - Dh/Nh] 100 , "%, (number defects in population is ", Dh ")"]}, 

   { Print["For Dh of ", Dh, " GammaFromHyperGeometricCDF[n, Dh, Nh, x] is ",  

   N[GammaFromHyperGeometricCDF[n, Dh, Nh, x]]], Dh = Dh + 1}] 

  } 

 ]  

 

For Dh of  1  GammaFromHyperGeometricCDF[n, Dh, Nh, x] is 1. 

For Dh of  2  GammaFromHyperGeometricCDF[n, Dh, Nh, x] is  1. 

For Dh of  3  GammaFromHyperGeometricCDF[n, Dh, Nh, x] is  1. 

For Dh of  4  GammaFromHyperGeometricCDF[n, Dh, Nh, x] is  1. 

For Dh of  5  GammaFromHyperGeometricCDF[n, Dh, Nh, x] is  1. 

For Dh of  6  GammaFromHyperGeometricCDF[n, Dh, Nh, x] is  1. 

For Dh of  7  GammaFromHyperGeometricCDF[n, Dh, Nh, x] is  1. 

For Dh of  8  GammaFromHyperGeometricCDF[n, Dh, Nh, x] is  1. 

For Dh of  9  GammaFromHyperGeometricCDF[n, Dh, Nh, x] is  0.999998 

For Dh of  10  GammaFromHyperGeometricCDF[n, Dh, Nh, x] is  0.999994 

For Dh of  11  GammaFromHyperGeometricCDF[n, Dh, Nh, x] is  0.999984 

For Dh of  12  GammaFromHyperGeometricCDF[n, Dh, Nh, x] is  0.999964 

For Dh of  13  GammaFromHyperGeometricCDF[n, Dh, Nh, x] is  0.999928 

For Dh of  14  GammaFromHyperGeometricCDF[n, Dh, Nh, x] is  0.999868 

For Dh of  15  GammaFromHyperGeometricCDF[n, Dh, Nh, x] is  0.999771 

For Dh of  16  GammaFromHyperGeometricCDF[n, Dh, Nh, x] is  0.999624 

For Dh of  17  GammaFromHyperGeometricCDF[n, Dh, Nh, x] is  0.99941 

For Dh of  18  GammaFromHyperGeometricCDF[n, Dh, Nh, x] is  0.999108 

For Dh of  19  GammaFromHyperGeometricCDF[n, Dh, Nh, x] is  0.998696 

For Dh of  20  GammaFromHyperGeometricCDF[n, Dh, Nh, x] is  0.998148 

For Dh of  21  GammaFromHyperGeometricCDF[n, Dh, Nh, x] is  0.997435 
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… 

For Dh of  105  GammaFromHyperGeometricCDF[n, Dh, Nh, x] is  0.0660439 

For Dh of  106  GammaFromHyperGeometricCDF[n, Dh, Nh, x] is  0.0617367 

For Dh of  107  GammaFromHyperGeometricCDF[n, Dh, Nh, x] is  0.0576694 

For Dh of  108  GammaFromHyperGeometricCDF[n, Dh, Nh, x] is  0.0538319 

For Dh of  109  GammaFromHyperGeometricCDF[n, Dh, Nh, x] is  0.0502143 

 

Hypergeometric Distribution GammaFromCDF is  0.0468071 .  For population  500 , with 

required confidence  95. %, number failures in sample  6 , and sample size  50 .  Reliability is  

78. %, (number defects in population is  110 ) 
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