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Abstract 
 
An increasing number of corporate security policies make it desirable to push security closer to the desktop. It is not 
practical or feasible to place security and monitoring software on all computing devices (e.g. printers, personal digital 
assistants, copy machines, legacy hardware). We have begun to prototype a hardware and software architecture that will 
enforce security policies by pushing security functions closer to the end user, whether in the office or home, without 
interfering with users' desktop environments. We are developing a specialized programmable Ethernet network switch to 
achieve this. Embodied in this device is the ability to detect and mitigate network attacks that would otherwise disable or 
compromise the end user's computing nodes. We call this device a “Secure Programmable Switch” (SPS). The SPS is 
designed with the ability to be securely reprogrammed in real time to counter rapidly evolving threats such as fast moving 
worms, etc. This ability to remotely update the functionality of the SPS protection device is cryptographically protected 
from subversion. 
 
With this concept, the user cannot turn off or fail to update virus scanning and personal firewall filtering in the SPS device 
as he/she could if implemented on the end host. The SPS concept also provides protection to simple/dumb devices such as 
printers, scanners, legacy hardware, etc. 
 
This report also describes the development of a cryptographically protected processor and its internal architecture in which 
the SPS device is implemented.  This processor executes code correctly even if an adversary holds the processor.  The 
processor guarantees both the integrity and the confidentiality of the code: the adversary cannot determine the sequence of 
instructions, nor can the adversary change the instruction sequence in a goal-oriented way.   
 
 
 



 4 

 
 

Acknowledgments 
 
The authors would like to acknowledge Student Interns Jason Hamlet, Ben Hamlet, and Paul 
Cotton for their contributions to this work. These students did a fine job completing and 
debugging certain pieces of the software and hardware implementation, and performed an 
initial “black-hat” assessment of the protection system.



 5 

 
Table of Contents 
1 Conventions and Definitions............................................................................................9 
2 Protection of Distributed Internetworked Computers .......................................................9 

2.1 Introduction..............................................................................................................9 
2.2 Design Approach ....................................................................................................10 
2.3 Cryptographic Assurance of Execution Correctness ................................................11 
2.4 SPS Design.............................................................................................................12 

2.4.1 Secure Software/Hardware Programmability....................................................12 
2.4.2 Attack Detection/Mitigation.............................................................................12 
2.4.3 Design Summary .............................................................................................13 

3 Using MON to Detect and Mitigate attacks....................................................................13 
3.1 Implementing MON on SPS ...................................................................................13 

3.1.1 MON ...............................................................................................................14 
3.1.2 Real-time O/S: eCos or MicroC/OS-II?............................................................14 
3.1.3 PCAP – Packet Capture Library.......................................................................15 

4 Implementing a Software Vulnerability (for demonstrating resistance to subversion).....16 
4.1 eCos HTTP Monitor ...............................................................................................16 
4.2 “Buffer Overrun”....................................................................................................17 

5 Cryptographically Assured Processor ............................................................................18 
5.1 Cryptographic Assurance Processor Architecture....................................................19 

5.1.1 Overview .........................................................................................................19 
5.1.2 Protected Volume ............................................................................................20 

5.2 Concept of Operations – Updating Code operating on the Secure Processor............21 
5.3 Cryptographic Considerations.................................................................................21 

5.3.1 Overview of Cryptographic Processor ..............................................................21 
6 Results ..........................................................................................................................23 
7 Summary and Conclusion..............................................................................................23 
Appendix A: Cryptographically Assured Processor System Operation.................................25 
1 System Operation ..........................................................................................................25 

1.1 Operation of the Target Processor...........................................................................25 
1.2 Operation of the Pre-Processor ...............................................................................26 
1.3 Processor Interface Logic .......................................................................................27 
1.4 Software .................................................................................................................27 

1.4.1 Target Code .....................................................................................................27 
1.4.2 Compiling Code for Pre-Processor and Target Processor..................................28 
1.4.3 Cryptographic Assurance Processor Memory Map ...........................................28 
1.4.4 The Code Execution Process ............................................................................29 

1.5 Code Shrink-Wrapping...........................................................................................30 
1.5.1 Shrink-Wrapper Overview ...............................................................................30 
1.5.2 Procedure to Shrink-Wrap Files .......................................................................34 
1.5.3 Demonstration Hardware Connections .............................................................35 

1.6 Summary of Cryptographic Processor System Operation ........................................35 
Appendix B.  Build Notes ...................................................................................................36 
Appendix C.  LDRD Data ...................................................................................................38 
 



 6 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This Page Intentionally Left Blank



 7 

List of Figures 
 
Figure 1:  Secure Programmable Switch Concept ................................................................11 
Figure 2.  Two common CPU architectures. ........................................................................20 
Figure 3.  Cryptographic Assurance architecture. ................................................................20 
Figure 4.  Cryptographic Assurance Processor block diagram..............................................22 
Figure 5.  Example SOPC Builder window for Target Processor. ........................................25 
Figure 6.  Example SOPC window of the Pre-Processor. .....................................................27 
Figure 7.  CAPA memory map. ...........................................................................................29 
Figure 8.  Demonstration hardware configuration (after Altera documentation). ..................35 
 
 
 
 



 8 

List of Tables 
 
Table 1.  Interrupt Routines in Pre-Processor. ..................................................................... 26 
Table 2  Wrapped code layout............................................................................................. 30 
Table 3: Cryptographic Execution Assurance Header.......................................................... 32 
Table 4  “As Built” Shrink-Wrapped Program..................................................................... 34 
 



 9 

 

1 Conventions and Definitions 
 
There are several conventions used in this document.  The main body of the document is 
printed in 12 pt. Times New Roman.  Computer program listings (i.e. C code) are given in 
10 pt. Courier New and are generally indented.  Filenames are printed in 12 pt. Arial 
italics.  The names of files are generally limited to the root part of the name, leaving off the 
version number.  The convention is to have a meaningful root name, such as cap_main that 
would be followed by the version number before the file extension (i.e. cap_main5.c would 
be found in the text as cap_main.c). 
 
There are several definitions used in this document. 
 

• The word byte refers to 8-bits. 
• A half-word is two bytes. 
• A word is four bytes. 

 

2 Protection of Distributed Internetworked Computers 
 
Current methods of enforcing security policy depend on security patches, anti-virus 
protections, and configuration control, all updated in the end user’s computer with ever 
increasing frequency.  This research is producing a method of hardening the 
corporate computer infrastructure by prototyping a mixed hardware and software architecture 
that will enforce policies by pushing distributed security functions closer to the end user’s 
computer, but without reconfiguring the end user’s computer itself, and without relying on 
the correct configuration of the end user’s computer.  Previous research has developed highly 
secure network components  [2][3][4][5][6][7]. Because it is impractical to replace our entire 
infrastructure with secure, trusted components, this paper investigates how to improve the 
security of a heterogeneous infrastructure (Distributed Internetworked Computers) composed 
of both trusted and untrusted components. 
 

2.1 Introduction 
In current practice, network security functions, including virus scanning and personal 
firewall filtering, are pushed onto the end hosts. These functions are susceptible to failure 
because of being turned off by the user or not being updated as often as required. Automating 
the update of security configuration on the end user platform also introduces a new 
vulnerability in the form of the powerful automatic update mechanism itself (if subverted). 
 
Also, security functions are available on computing devices to varying degrees (e.g. printers 
typically do not have built-in virus protections). We need a way to incorporate functions such 
as these, with centralized control to keep protections up to date, while taking the less trusted 
end user platform out of the management process. We prototyped an architecture which 
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combines both hardware and software elements that will enforce security policies by pushing 
security functions closer to the end user, whether in the office or home, without interfering 
with users’ desktop environments. A central component of this architecture is a specialized 
programmable Ethernet network switch which is hardened against subversion. Embodied in 
this device is the ability to detect and mitigate network attacks that would otherwise disable 
or compromise the end user’s computing nodes. We call this device a “Secure Programmable 
Switch” (SPS, shown in Figure 1). The SPS is also designed with the ability to be securely 
reprogrammed in real time to counter rapidly evolving threats such as fast moving worms, 
email viruses, etc. The remote update function of the SPS protection device is 
cryptographically protected from subversion. With this concept, the user cannot turn off or 
fail to update virus scanning and personal firewall filtering in the SPS device as he/she could 
if implemented on the end host. The SPS concept also provides protection to simple/dumb 
devices such as printers, scanners, legacy hardware, etc.  The switch is designed to be 
programmable by an authorized party wishing to push security functions to end users – 
government organizations, large corporations, ISPs, or any other network managing entity. 
That entity will be able to cryptographically restrict programmability to authorized sources. 
We are investigating many security functions including the abilities to authenticate and 
authorize devices to the network, monitor for cyber attacks (both external and internal 
including denial of service (DOS) attacks), provide firewall and virus blocking capabilities, 
record audit logs, and other administrator-programmable functions. We leveraged existing 
work on Cryptographic Assurance of Execution Correctness (CAEC) [5][6][7] in 
programmable logic devices to allow easily secured and authorized upgrades of the switch 
code. We explored some of the issues regarding the integration of existing state-of-the-art 
software security mechanisms into programmable hardware to provide a robust and efficient 
security switch. Our design also addresses the physical security concerns of such a device.  
 

2.2 Design Approach 
 
Current network security monitoring and intrusion detection methods are highly centralized. 
We believe that by distributing some parts of these functions out to the network edges we 
gain higher granularity of monitoring. Such a high granularity of information may not always 
be warranted, however a security team monitoring a network using our device would then 
have that option at their disposal. Data reduction techniques will facilitate this monitoring 
capability. Using this data reduction, one can implement a mechanism to allow real-time 
drill-down or zoom-out logging for network traffic. Devices similar to our proposed 
programmable switch exist but without the combination of capabilities proposed here. 
Consumer switches are now marketed with router, firewall and many other built-in features, 
but they lack support for monitoring and inspection of traffic in higher speed networks (1+ 
Gb/s) and lack a centralized, trusted mechanism for software distribution. Other vendors have 
introduced hardware and software that inspect network traffic at speeds up to 2.4 Gb/s and 
higher. To our knowledge, these devices require placement as a network gateway and 
therefore lack the ability to inspect traffic at a more granular scale on the edges of the 
network. Other researchers have pioneered development of reconfigurable logic that can 
search for string matches in real-time network traffic between 1 and 10 Gb/s [9][10][11] 
Some of these techniques are approaching the ability to search the entire "SNORT Intrusion 
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Detection Match list" (currently about 5,000 character strings). Each individual technique 
suffers from some feature trade-offs (such as ability to fit large numbers of "fixed matches" 
in a single programmable logic device but having the inability to handle flexible variable 
length string matches, for example). Extension of the prototype components described here 
would enable the compilation of efficient virus detection search engines and the secure 
downloading of these engines into the programmable security switch. This will enable 
increased continuous protection and the flexibility to respond swiftly to new threats. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1:  Secure Programmable Switch Concept 

2.3 Cryptographic Assurance of Execution Correctness 
 

Current computing architectures are “inherently insecure” because they are designed to 
execute any arbitrary sequence of instructions without regard to execution correctness. As a 
result they are subject to subversion by malicious code. We have developed a method of 
faithfully executing instruction sequences called “Cryptographic Assurance of Execution 
Correctness” (CAEC). This method protects instruction sequences from subversion during 
code distribution and storage [2][5]. Our method cryptographically seals the program 
instructions at a certification facility, then decrypts and authenticates each instruction within 
the executing Central Processing Unit (CPU), thereby providing a mechanism for detecting 
and responding to the insertion of malicious code or the unauthorized modification of 
previously certified code. By decrypting and authenticating the instructions within the CPU 
itself, the dependence on a “trusted software loader” is eliminated. This also reduces the 
“Trusted Volume” (i.e., the computing machinery, including communication lines, within 
which data is assumed to be physically protected from an adversary) by shrinking the control 
boundaries using cryptography. A design approach for the physical security (tamper-
resistance) of the reconfigurable logic to be loaded into the prototype platform was 

security-enabled 

programmable 
switch 

Control System 

Secure code updates  
via insecure path 
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developed. (The implementation of chip-level tamper resistance is beyond the scope of this 
work.) The authors have implemented CAEC using a configurable soft-core processor 
[5][6][7] in a Field Programmable Gate Array (FPGA) logic device. For this project the 
“Cryptographic Assurance of Execution Correctness” techniques were redesigned for the 
chosen hardware and embedded software platform that was chosen for the prototyping of the 
distributed security functions. This method provides a type of software protection that begins 
when the software leaves the control of the developer and ends within the trusted volume of a 
target processor [2][5]. That is, CAEC provides program integrity, even while the program is 
in execution. 
 

2.4 SPS Design 
 
We have built a prototype FE engine in hardware using the latest generation of FPGAs. This 
specific implementation was developed using Altera's NIOS II configurable soft-core 
embedded processor.  The NIOS II processor offered many advantages to this project, 
including the ability to compile two Altera NIOS II CPUs into a single Stratix 2S60 FPGA 
device. This design also allows a combination of fast, specialized hardware processing for 
high throughput as well as data processing by a general purpose CPU.  
 

2.4.1 Secure Software/Hardware Programmability 
 
Faithful Execution protects software through a cryptographic process. The application of this 
protection, which we call the "shrink wrap" process, protects both code confidentiality and 
code integrity by encoding and packaging the software at the instruction level. Individual 
instructions or sequential chains of instructions are encrypted to maintain confidentiality. 
Additionally, the encoding process includes redundant instruction information so as to allow 
authentication of each machine instruction and the execution order of the instructions. This 
work builds on the referenced previous work in Faithful Execution to allow easy yet 
cryptographically protected and authorized remote upgrades of the switch hardware as well 
as software. Protection of hardware upgrades is accomplished by encrypting the check-
summed hardware download, and decrypting the hardware download within the FPGA [1]. 
 

2.4.2 Attack Detection/Mitigation 
 
A Denial of Service (DOS) attack was selected for study [12], and detection and mitigation 
techniques were designed. A small network test bed in which to demonstrate successful 
detection and mitigation of such attacks was designed and constructed. Various codes 
suitable for the detection and mitigation of this initial attack scenario were examined. This 
project chose to build on an in-house tool called netload that gathers packet statistics on a 
given network link, providing statistics on a per TCP port basis. This gives an idea of typical 
use on the host side of the monitoring point and will provide a basis for identifying 
significant new worm/virus threats and helps detect anomalies in host network behavior. The 
SPS provides a platform for initiation of network countermeasures. Network 
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countermeasures may include traffic rate limiting as well as artificially generated deceptive 
responses to network stimuli, appearing as if authentic responses from real network hosts. 
This type of network deception has proven operationally to add another layer of protection to 
networks [13]. Mechanisms in the SPS permit variable granularity of data collection.  
 
A Sandia-developed network flow monitoring system (“MON”) implemented in the SPS 
provides a capability in the switch for passing flow information to a management node. This 
design allows the amount and type of data for examination to be alterable in real time. This 
feature will essentially allow an analyst to drill down or zoom out in any part of the network 
to view and/or record desired traffic. 
 
The prototype device helps to address the problem of fast-moving attacks via computer 
networks. Fast and secure reconfiguration of such a device will aid in mitigating these fast 
attacks. These components will facilitate in monitoring for DoS attacks and mitigation of 
Internet worms. We have tested the completed work in an isolated test bed. 
 

2.4.3 Design Summary  
 
Our approach to fortifying the security of a heterogeneous infrastructure involves the 
development of a programmable network switch to place in-line with computing devices in 
an office or enclave setting. This device, hardened against malicious code by using 
cryptographically protected processor techniques initially described in a previous paper [2], 
provides many security functions. Some of the functions required are secure re-
programmability and/or secure administration by authorized parties 1) without the end user 
giving up control of his/her computer and 2) without relying on the timely installation of 
patches by the end user. This approach should provide deployment of more scalable security 
protection by reducing the required number of computer security personnel to assure proper 
installation of patches and updates. This specialized “trusted” hardware can be distributed 
strategically throughout a network and made to mitigate fast moving cyber attacks, to 
mitigate the insider threat, and to enhance data collection and reduction during a fast attack. 
This approach is expected to allow finer-grained control of security functions and enable 
cooperative network monitoring, resulting in rapid detection and mitigation of new, 
undetected threats. 
 
 

3 Using MON to Detect and Mitigate attacks 
 

3.1 Implementing MON on SPS 
 
“MON” is a network traffic monitoring tool written by Jim Hutchins (8965) and used by 
computer security at Sandia/CA for intrusion detection purposes.  MON captures session 
information about TCP/IP traffic on the network and logs information about different types 
of sessions, such as TCP, ICMP, UDP sessions (address, port, time, duration, amount of data, 
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which TCP flags were set in that session, etc.).  It also can log additional information about 
certain types of application protocols, such as HTTP (web traffic) or FTP (file transfer).  The 
production version of MON logs this information to a set of files, which are examined by an 
automated tool or human expert, and also archived.   Note that MON simply monitors the 
traffic and logs information about it – it does not take any specific actions based on 
anomalous traffic, but it can be combined with other tools in order to take actions (raise 
alarms, block intruders, etc.). 
 
Currently, MON is deployed at the border of the network (at a capture point located near the 
corporate firewall).   We would also like to distribute MON internally within a network, in 
order to monitor internal network traffic.  The SPS is an example of an ideal platform for 
deploying MON (or other intrusion detection tools) at the switches in the internal network.  
In addition, the core functionality of MON is also used in the program “NetState”, which is 
another intrusion detection tool that is used to monitor the state of hosts on a network.  The 
NetState sniffer is another tool that would be very useful to deploy internally on a switched 
network, so by successfully porting MON to SPS, we also demonstrate the viability of 
porting NetState. 

3.1.1 MON 
MON is a fairly simple program.  It captures Ethernet traffic from a network interface, parses 
the traffic, and keeps session information in memory.  By choosing to log the session 
information to a serial channel, instead of saving it to disk, we eliminate any need for disk 
access by MON, so it is a totally memory-bound program.  In a real production environment, 
each distributed version of MON would need to log its output to some central point, possibly 
on a separate (logically or physically segmented) intrusion detection monitoring network, but 
that is beyond the scope of this research.  The amount of memory needed is proportional to 
the amount of traffic (specifically, the number of different simultaneously active sessions that 
MON has to keep track of).  If MON is monitoring traffic seen by a local switch, then the 
number of sessions (and thus the amount of memory needed) is fairly small, which makes the 
program suited for a small embedded application such as SPS.   
 
MON is a program that is easily portable to any Unix-like system (Linux, BSD, etc.).  
Besides the basic standard I/O facilities (stdio.h), it also needs timer interrupt support, and a 
method to get Ethernet packets from the operating system without disrupting normal network 
traffic by other applications.  The method used to gain access to the Ethernet packets is the 
“pcap” library, which uses the Berkeley packet filter (BPF) library to capture packets from 
the operating system’s TCP/IP stack. 

3.1.2 Real-time O/S: eCos or MicroC/OS-II? 
 
Since MON requires quite a bit of system support, the most expeditious way to port it to an 
embedded system like the SPS was to port it to run under one of the several embedded real-
time operating systems that are available for the NIOS II processor.  Two such operating 
systems, both freely available for the NIOS II processor, are MicroC/OS-II (which comes 
with the Altera Stratix II development kit) and eCos (http://ecos.sourceware.org/ ).    
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The key factors in selecting an operating system were: 1) ease of porting MON to the 
operating system, 2) stability of the TCP/IP stack, particularly the threading support.  Though 
both MicroC/OS-II and eCos have support for the basic functions needed by MON, after 
some initial investigation we selected eCos for use in the SPS project, mainly because it 
provided a very unix-like library interface, and it appeared that the TCP/IP implementation 
was more stable than the lightweight IP stack (lwip) implemented in MicroC/OS-II.  Also we 
had evidence that the threading support in the Nios II port of MicroC/OS-II was very poor.   
 
For this project we used version 5.0 of the port of eCos for Nios (nios2ecos50.exe 
available from http://forum.niosforum.com/forum/).  Version 5.1 is available as of the 
writing of this document, but we did not attempt to use it in this project. 

3.1.3 PCAP – Packet Capture Library 
 
Most of the port of MON to eCos is straightforward, because of eCos’ unix-compatible 
library interface.  The most difficult aspect was porting the packet capture functionality – that 
is, the capability to write an application that can capture raw Ethernet traffic in promiscuous 
mode.  The canonical application used to implement this function in unix systems is the 
tcpdump program (http://www.tcpdump.org/ ), which uses the PCAP packet capture library, 
which in turn relies on the Berkeley Packet Filter library (BPF).  
  
PCAP and BPF have been ported to many operating systems, but unfortunately eCos is not 
yet among them.  The eCos code does support some basic hooks for implementing BPF, but 
the actual implementation of BPF has not been done (or at least is not publicly available).    
 
The difficult part of implementing BPF is the functionality that grabs packets from the low-
level Ethernet driver, bypasses the TCP/IP stack, and passes the raw packets to an application 
(in this case MON) for processing.  Ideally this packet capture should be implemented so that 
it does not interfere with normal operation of the TCP/IP stack.  We wanted to be able to run 
other applications on the SPS alongside  MON, such as a web server or other programs that 
uses TCP/IP sockets. 
 
Due to time constraints, we did not attempt to do a complete proper port of the PCAP and 
BPF libraries to eCos for Nios.  A correct port would involve implementing BPF as a device 
driver that allows any application to open and read the “device” to receive data.  That is the 
normal way of passing data between the operating system (“kernel”) and an application.  
However, writing a correct device driver would likely have taken several weeks to get 
properly working and debugged, whereas a “hacked” port of just enough BPF functionality 
to allow the raw Ethernet packets to be passed to MON took only about a day.   
 
The “hacked” port takes advantage of the fact that there is not a true “kernel mode” in the 
eCos operating system.  Unlike with a true unix-os, there is no memory protection between 
“kernel mode” and “user mode”, so it is possible to pass data directly from the kernel to an 
application, just in the same way it can be passed between user mode applications.  So, a 
simple message queue was implemented using the eCos provided “mailbox” synchronization 
primitive.  The queue passes Ethernet packets between the low-level Ethernet driver thread 
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(running in the “kernel”) and MON.   The packets are hooked at the same place they would 
be for a true BPF implementation (using the bpf_mtap function call).  Since this simply 
taps into the device data stream and makes an extra copy of each packet, it doesn’t interfere 
with normal operation of the TCP/IP stack.  
 
The main limitation of the hacked implementation of BPF is that only one application can 
tap into the network data stream at a time.  That means we cannot have more than one 
application running that examines raw Ethernet traffic.  Eventually we may desire to have 
more than one such application, so it may become necessary to do a proper port of BPF to 
implement this cleanly.  Also, the behavior of the BPF “hack” in the presence of multiple 
Ethernet device interfaces is currently unknown. 
 
In addition, we need the Ethernet device to run in “promiscuous” mode, so that it captures all 
traffic seen on the Ethernet wire, and not just packets addressed to its own IP address.  This 
was implemented by modifying the device initialization code to force the promiscuous mode 
to always be on.  That was the most expeditious way to implement it, due to the lack of a 
conveniently exported functional interface to enable this feature properly.  This could be 
fairly easily corrected (to make promiscuous mode selectable by the application) in a future 
revision of the software.  Note that a complete implementation of the PCAP library includes 
a functional interface to enable/disable promiscuous mode, so that would be the cleanest way 
to implement it properly in the future. 

4 Implementing a Software Vulnerability (for 
demonstrating resistance to subversion) 

 
A goal of this project was to demonstrate the implementation of “secure intrusion detection” 
functionality on the SPS.  To that end, we wanted to develop a demonstration of how a 
security flaw (such as a buffer overflow vulnerability) could be exploited in the non-SPS 
system, but not in an SPS-based system.  This means we wanted to embed some kind of 
vulnerability in the software, and then be able to exploit it. 
 
In order for MON to run securely, both MON and the operating system (eCos) need to be 
secure.  Since there is no memory protection implemented in the Nios II processor, any 
security vulnerability on any software running on the system can be potentially exploited to 
subvert the behavior of the intrusion detection software.  That means the security flaw we 
exploit for demonstration purposes does not have to be present in MON itself. 
 

4.1 eCos HTTP Monitor 
One of the optional features of eCos is an implementation of an HTTP-based web server 
“monitor” program.  This monitor allows the current system status (threads, memory, 
network statistics) to be displayed remotely over the Ethernet connection by using a web 
browser.  For ease of demonstration, we chose to implement our “software vulnerability” in 
the HTTP Monitor program, rather than in MON.  This way we can invoke the vulnerability 
remotely, just by typing an address into a web browser.  In particular, we implemented a new 
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HTML page (located at http://<ip address>/monitor/hack.html) that executed code that 
“exploits” the software vulnerability. 

4.2 “Buffer Overrun” 
Rather than implement a complete exploit, we chose instead to implement code that executes 
a necessary component of a “buffer overrun” attack – specifically the portion of the attack 
that modifies a data buffer and then executes it.   
 
A typical buffer overrun exploits a vulnerability that allows the attacker to insert his own 
data into an internal buffer of the program, in order to corrupt the stack and then execute his 
own code (which is typically part of the data he sends).  A true buffer overrun attack 
generally must be tailored very specifically to a given executable image, since the offsets and 
addresses necessary to execute the attack can change each time the program is modified and 
recompiled.   Also there may be tricks involved in formatting the data and actually sending it 
to an exploitable buffer in the program.  
 
Rather than get bogged down in the details of implementing a complete buffer overrun, we 
just coded some hooks into the HTTP Monitor program that would execute when the 
hack.html page was invoked by the web browser.  The code of the “hack” sets up a data 
buffer with the correct machine opcodes that execute a function call.  The address of the 
function to be called is determined by the code at run time, which makes the code easily 
relocatable/recompilable, but would not be possible in a true buffer overrun attack.  The 
actual contents of the function to be called are arbitrary.  For demo purposes we simply 
display a message indicating that the code was executed.  In a true attack scenario, we would 
execute code that does something malicious that (for example) prevents MON from 
executing correctly or subverts other security features of the switch. 
 
In a non-SPS system, when hack.html is invoked, a message is printed at the web browser 
indicating the hack was successful.  In the SPS system, since the processor is attempting to 
execute data as code, this will be detected and the system will halt (with a diagnostic error 
message).  Arguably if a software vulnerability exists in a program, and an exploit is run 
against this program, you would prefer that the program halt execution (giving you a chance 
to find and fix your security vulnerability), rather than that the exploit be successful. 
 
This code was tested in a non-cryptographically assured processor system and the 
vulnerability introduced behaved as described above.  The protected behavior described 
above was not fully demonstrated in a cryptographically assured processor due to problems 
properly integrating and shrinkwrapping certain libraries that use system timer functions.  
(The cryptographically assured processor used in this experiment operated without hardware 
acceleration of the cryptographic unwrapping function, and operated too slowly to properly 
execute the system timer functions.)  The cryptographically assured processor was shown to 
detect instruction integrity violations in simpler test codes that did not involve these timer 
functions. 
 



 18 

5 Cryptographically Assured Processor 
 
Today's general-purpose processors, based on the Von Neumann Architecture, allow the 
execution of any arbitrary sequence of instructions.  While this has led to wide spread use, it 
also represents a major vulnerability as malicious code can easily be substituted and executed 
(as in a software virus).  Also, programs that attempt to protect data from disclosure are 
fraught with difficulty since the keys and instructions used by the program to encrypt its data 
can be inspected and reverse-engineered. 
 
We developed a Cryptographic Assurance Processor Architecture (CAPA), built on a 
technique called Faithful Execution (FE) that can execute code correctly even if the 
adversary owns the processor.  The processor guarantees both the integrity and the 
confidentiality of the code: the adversary cannot determine the sequence of instructions, nor 
can the adversary change the instruction sequence in a goal-oriented way. 
 
Faithful Execution protects instruction sequences from corruption or subversion during code 
distribution and storage by cryptographically sealing the instructions and at execution time, 
decrypting and authenticating instructions within the trusted volume of the executing 
computer.  We have implemented FE by cryptographically “shrink-wrapping” executable 
code in a trusted verification facility where the correctness of the code has been determined.  
The shrink-wrap process is performed using a special compiler.  At run-time, within the 
protected volume of the computer system, the processor removes the protection and confirms 
the instruction and sequence integrity.  This method protection over a large portion of the 
software life cycle from the time it is shrink-wrapped in the trusted facility through the 
distribution, loading, and storage phases, up to the point where the instructions or data are 
accessed by the target CPU [2].  More details on the FE concept can be found in earlier 
works [3], [4], [5]. A detailed description of an implementation of cryptographic assurance of 
execution correctness using the Nios I soft core processor is found in [6].   This 
implementation was extended and adapted to operate on the Nios II soft core processor for 
application of these techniques to the Secure Programmable Router.  In the following 
discussion, only the basic concept and those elements that have changed since the NIOS I 
implementation are documented.  Please refer to [6] for a more complete discussion of the 
design tradeoffs considered in the context of the Nios I soft core processor. 
 
Our “Cryptographic Assurance of Execution Correctness” approach differs from previous 
attempts in two ways. First, the decryption of instruction sequences is performed within the 
CPU chip hardware itself, thereby eliminating the need for “trusted loader software” to 
decrypt the executable and load plaintext code into memory. Since the trusted loader 
software is absent, it cannot be subverted to load a malicious code in place of the intended 
one.  Second, the instructions and data are cryptographically protected even while in 
memory, waiting to be fetched by the CPU for execution.  This protects against the 
possibility of modification by malicious code after load time, and protects secret variables 
that may be embedded in the code against disclosure.  In addition to providing privacy, our 
method provides “sequence integrity” and “instruction integrity.  The approach can be 
tailored to provide transparency (integrity only) and non-transparency (privacy and integrity) 
and for use with exportable algorithms.  Methods of "bootstrapping" the key generation and 
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management to achieve transparency in an environment of mutual suspicion were also 
investigated [7]. 
 
This team has previously implemented FE using a Java Virtual Machine (JVM) prototype.  
This software implementation, in which a protection engine was inserted between the JVM 
and the data store, was successfully demonstrated in September 2002.  Details of the software 
prototype can be found in [4] and [5]. 
 
This project used a prototype execution platform consisting of a Programmable Logic Device 
(PLD) developed by Altera combined with a soft-core processor called Nios developed by 
Altera for use in their PLDs.  The prior implementation [6], based on the Nios I processor, 
was augmented to operate using the Nios II processor and to shrink-wrap and un-shrink-wrap 
more complex programs.  The Nios I processor is a 32-bit RISC processor having fixed sized 
16-bit op-codes.  The Nios II processor is a 32-bit RISC processor with more powerful 
instruction set organized as fixed sized 32-bit op-codes. The processor core and bus 
interconnect switch are completely configurable using Altera’s System On a Programmable 
Chip (SOPC) Builder.  This greatly sped up the prototype development by providing a 
flexible, re-configurable platform to try out various architectures variations.  
 

5.1 Cryptographic Assurance Processor Architecture 
 

5.1.1 Overview 
 
How does the CAPA differ from the traditional Von Neumann computer architecture?  Let’s 
look at the Von Neumann architecture first.  In the Von Neumann architecture, memory 
holds both instructions and data.  A central processing unit (CPU) fetches instructions from 
memory and executes them, often performing operations on data.  Having memory separate 
from the CPU makes the computer programmable.  Registers in the CPU are used to hold 
operational information.  Commonly, we find a program counter (PC), an instruction register 
(IR) and multiple general-purpose registers in the CPU.  When the instruction memory and 
the data memory are contained in separate physical memory spaces, the architecture is 
referred to as a Harvard architecture.  A comparison of the two architectures is shown in 
Figure 2. 
 
When the two architectures are compared, it can be easily seen that while the Harvard 
architecture does not permit self-modifying code, it can permit simultaneous memory 
fetches.  One advantage of this is the greater memory bandwidth. 
 
In the CAPA, shown in Figure 3, a Pre-Processor serves as the memory for the Target 
Processor’s CPU.  In a way, this is similar to the Harvard Architecture in that the Pre-
Processor can enforce data and instruction separation rules preventing modification of a 
program by itself.  However, the Pre-Processor delivers instructions and accepts data through 
a single common interface. 
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There are two processors, one to run the target application called the Target Processor (TP) 
and one that fetches, decodes and delivers instructions and data to the TP called the Pre-
Processor (PP).  The Pre-Processor and the Target Processor are both constructed from Altera 
Nios Processors.  The processors contain 32-bit CPUs with 32 bit registers.  The two 
processors have separate buses and are interconnected via glue logic that takes care of 
latching and decoding instructions and data. 
 
 

 
Figure 2.  Two common CPU architectures. 

 

 
Figure 3.  Cryptographic Assurance architecture. 

 
 

5.1.2 Protected Volume 
 
The required protected volume is minimized by shrinking the decryption/authentication 
process and implementing it within the volume of the CPU chip.  This eliminates the need to 
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provide physical protection at the equipment or circuit module level, and allows application 
of chip-level anti-tamper techniques to the physical protection of this volume.  The 
application of chip level anti-tamper techniques is beyond the scope of this paper. 
 
 

5.2 Concept of Operations – Updating Code operating on the 
Secure Processor. 

The design of the Altera Stratix II programmable logic devices allow a 128-bit AES 
decryption key to be programmed into individual Stratix II devices, enabling decryption of an 
encrypted hardware configuration file at load time.  
 The same key is used by the Quartus II design software to generate an encrypted 
configuration file stored in an external memory or configuration device.  At configuration 
load time, the Stratix II device uses the pre-stored key to decrypt the configuration file before 
checking error checksums and installing the configuration file in the SRAM that controls the 
operation of the FPGA chip. While this capability is primarily designed to protect royalty 
income for intellectual property (IP) vendors (since only with the proper decryption key can 
one properly load and operate the IP configuration file), it can also be used to prevent 
unauthorized modification of the hardware configured to operate in the FPGA. Attempts to 
configure the Stratix II device with an unencrypted donfiguration file or a configuration file 
encrypted with the wronk key result in configuration failure.  Therefore, tampering of the 
design file can be detected. 
 
This implementation is FIPS-197 certified. The decryption key is stored securely inside the 
FPGA. Many security techniques have been implemented to provide secure key storage 
within the chip. In addition, readback of any configuration file, regardless of encrypted or 
unencrypted, is not permitted in Stratix II or Stratix II GX FPGAs, adding another layer of 
security. 
 
 

5.3 Cryptographic Considerations 
 
A prior work [5][6] examined various cryptographic modes of operation for privacy and 
integrity of an instruction stream as it is being fetched by a processor.  Tradeoffs between 
speed, required memory space, and security were analyzed.  Based on this earlier work, a 
lightweight yet non-trivial cryptographic algorithm that incorporated fetch address locations 
to provide sequence authentication was implemented.  The basic cryptographic algorithm is a 
place-holder and can be replaced with other algorithms of a robustness suitable to the 
intended application. 
 

5.3.1 Overview of Cryptographic Processor 
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The Cryptographic Processor in total consists of a Target Processor and an instruction/data 
Pre-Processor interconnected by glue logic.  The block diagram is shown in Figure 4.   

 
 

 
Figure 4.  Cryptographic Assurance Processor block diagram. 
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The Target Processor makes a request to the Pre-Processor for an instruction or data and 
supplies the address.  The Pre-Processor fetches the instruction (or data) and decodes it 
delivering the decoded data to the Target Processor.  The glue logic is used to handle the 
timing and to condition some of the control lines for proper operation. 
 
Appendix A contains specifics regarding the Cryptographically Assured Processor System 
Operation. 
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6 Results 
 
The intrusion detection code called MON was successfully ported to the eCOS embedded 
real-time operating system for Nios II (including the insertion of a vulnerability for the 
purpose of demonstrating its detection.  This vulnerability to the HTTP Monitor was 
implemented and the Nios II implementation (without the Cryptographic Processor) was 
shown to be susceptible to subversion.  The Cryptographic Processor implementation of this 
code was not fully demonstrated due to the difficulties described below.   
 
Major components of the Secure Programmable Switch system were prototyped. Previously 
developed concepts in the cryptographic assurance of execution correctness were applied to 
the chosen embedded hardware platform. An Altera NIOS-II "soft core" CPU was compiled 
into an FPGA along with the cryptographic means to decrypt and authenticate the protected 
instruction stream.  
 
Methods for encrypting the compiled hardware to protect the physical security of the the 
reconfigurable logic to be loaded into the prototype platform were also examined. This 
encryption of the FPGA hardware configuration is separate from the cryptographic software 
protection described above.  
 
The ability to shrinkwrap a program intended to be protected by encrypting and signing the 
instruction sequence and its data, heap and stack areas was developed. The ability to 
"unwrap" such a protected program by decrypting and authenticating the instruction sequence 
within the CPU was then prototyped in an FPGA. This resulted in the ability to protect not 
only simple programs, but also more complex programs that manipulated the stack and the 
heap as well as simple static data structures. After application of this technique to protect 
programs that extensively used interrupt processing, we found that the protected instruction 
fetch rate was insufficient to perform both the interrupt processing and the main program 
processing. This necessitated the acceleration of the protected instruction fetch process with 
specialized hardware, including the decryption and authentication of the instruction stream. 
 
This re-focusing of effort to deal with the cryptographic overhead of the slow prototype 
prompted the project to re-design the implementation of the secure switching function, and 
the development of hardware acceleration of the cryptographic functions. 
 
While this change prevented full exploration of the use of the prototyped SPS in a network 
testbed environment before the end of the project, the hardware acceleration will enable the 
prototyping of the protection of larger, more complex and wider variety of programs as they 
execute. 
 

7 Summary and Conclusion 
 
An increasing number of corporate security policies make it desirable to push security closer 
to the desktop. It is not practical or feasible to place full security and monitoring software on 
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all computing devices (e.g. printers, personal digital assistants, copy machines, legacy 
hardware). We have begun to prototype a hardware and software architecture that will 
enforce security policies by pushing security functions closer to the end user, whether in the 
office or home, without interfering with users' desktop environments. We designed a 
specialized programmable Ethernet network switch to achieve this. Embodied in this device 
is the ability to detect and mitigate network attacks that would otherwise disable or 
compromise the end user's computing nodes. We call this device a "Secure Programmable 
Switch" (SPS). The SPS is designed with the ability to be securely reprogrammed in real 
time to counter rapidly evolving threats such as fast moving worms, etc. This ability to 
remotely update the functionality of the SPS protection device is cryptographically protected 
from subversion. 
 
With this concept, the user cannot turn off or fail to update virus scanning and personal 
firewall filtering in the SPS device as he/she could if implemented on the end host. The SPS 
concept also provides protection to simple/dumb devices such as printers, scanners, legacy 
hardware, etc.  
 
This work investigated appropriate security functions to be provided by the Secure 
Programmable Switch. The detection and mitigation of Distributed Denial of Service 
(DDOS) attacks was chosen for extensive study. A small network test bed in which to 
demonstrate successful detection and mitigation of such attacks was designed and built. The 
code for the detection and mitigation of this initial attack scenario was developed, based on 
an intrusion detection system developed at Sandia called "MON". These components were 
exercised in the isolated network testbed. 
 
When fully deployed, this development of a Secure Programmable Switch (SPS) distributed 
network protection device will allow finer-grained control of security functions and enable 
cooperative network monitoring resulting in rapid detection of new, undetected threats. This 
device will enable monitoring for insider and outsider threats, necessary components of a 
robust security architecture. Because this device would sit "in-line" with a user's network 
connection and presumably be required for network access, end-user devices without built-in 
security capabilities, such as printers or PDAs (personal digital assistants), would be 
protected from malicious traffic. 
 
While this project demonstrated the basic feasibility of such a Secure Programmable Switch, 
the enhancements to the underlying protection technology now enable protection of large, 
complex embedded programs from subversion, thereby leveraging the security of other high 
assurance applications of interest to the HS and DSA/IO program areas.  
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Appendix A: Cryptographically Assured Processor System 
Operation 

 

1 System Operation 
 

1.1 Operation of the Target Processor 
 
The Target Processor is configured using Altera’s SOPC Builder application.   
 
The Target Processor runs the main application code.  The Pre-processor and the Target 
Processor have a common address space from 0x1000000-0x2000000 that is used to pass 
instructions and data between the two processors.  The target processor has on-chip boot 
ROM and RAM space to run protected local instructions and for debug during development.  
The Target Processor begins operation by fetching the first application address which is the 
beginning of a header inserted ahead of the application code by the shrink-wrap process.   
 
 
 

 
Figure 5.  Example SOPC Builder window for Target Processor. 

 
The Target Processor is configured using Altera’s SOPC Builder application.  The 
application window for the Target Processor is shown in Figure 6.  The Target Processor is 
an instantiation of a Nios II soft core processor  together with other bus components on an 
instantiation of Altera’s Avalon Bus. 
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1.2 Operation of the Pre-Processor 
 
 
The preprocessor holds the application program and fetches instructions for the Target 
Processor.  There is a main program preproc.c that controls this process.  This program 
initializes the interrupt processing routines and timers and then starts the kernel.  The kernel 
in our prototype is a while loop that accumulates fetch performance information.  
 
There are four primary interrupt routines used in the Pre-Processor as shown in Table 1. 
 
Table 1.  Interrupt Routines in Pre-Processor. 

Routine Description 
tproc() Timer 
button_push() Detect button pushes 
inst_fetch() Get & decrypt instruction from memory at address 
data_read() Read and decrypt data in memory at address 
data_write() Encrypt and Store data in memory at address 

 
 
Tproc() is used to handle a timer that is set to interrupt the processor once every second.  As 
an example, this routine flashes the green LEDs on the development board. 
 
Button_push() is used to detect a button press.  Currently, nothing is done. 
 
Inst_fetch() is used to get requested instructions and immediate operands and sends them to 
the TP. 
 
Data_read() is used to retrieve data to be fetched by the Target Processor. 
 
Data_write() is used to store data coming from the Target Processor. 
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Figure 6.  Example SOPC window of the Pre-Processor. 

 

1.3 Processor Interface Logic 
 
Between the two processors is a block of logic, written in VHDL, that makes the pre-
processor appear as if were standard memory to the Target Processor.   The preprocessor 
fetches, decodes, and delivers the requested memory contents to the Target Processor.  The 
interface logic also takes data from the TP and presents it to the Pre-Processor. 
 
The operation is as follows.  The preprocessor CPU core performs an instruction fetch in the 
memory space serviced by the processor interface logic.  The Avalon Bus first translates the 
request and writes it to the instruction port.  The processor interface logic next raises a wait 
request line to the target processor and likewise raises an instruction request line to the 
preprocessor.  The preprocessor, seeing the request line high, responds to the interrupt.  The 
interrupt service routine first raises a line that tells the logic that the instruction is being 
fetched (this also clears the interrupt request) and it reads a 32-bit parallel address port and 
fetches the actual data from memory connected to the preprocessor’s Avalon bus.  The 
fetched data is decrypted and latched out a second 32-bit parallel data port.  The preprocessor 
next lowers the line telling the processor interface logic that valid data is present on the 
instruction port.  The target processor lowers the wait request line going to the target 
processor.  The Avalon bus lastly finishes the memory fetch cycle. 
 
This memory cycle is repeated for each instruction or data fetch/store. 
 

1.4 Software 
 

1.4.1  Target Code 
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There are two pieces of code executed by the Target Processor.  The first is a ROM-resident 
program called the GERMS monitor. The second is the protected application code itself, as 
unwrapped and fetched through the Pre-Processor. The Target Processor’s reset address 
begins execution of the GERMS monitor which processes simple memory read/write and go 
(begin execution at a particular address). The GERMS monitor instructions are retrieved 
directly from protected, on-chip ROM-resident locations that are not mediated by the Pre-
Processor. The only function of the GERMS monitor in the Target Processor is to facilitate 
debugging and to initiate the fetch of the first address of the shrink-wrapped header.  Later 
versions of the target processor may simply reset to begin fetching the first address of the 
header, thereby eliminating the use of the GERMS monitor.  
 
 
  
 

1.4.2  Compiling Code for Pre-Processor and Target Processor 
 
 
Nios I versions of the cryptographic assurance processor used a utility called “nios-build” to 
cross-compile a C program to be executed on a Nios I soft core processor compiled and 
configured into an Altera FPGA.  While this utility can still be used, the preferred method for 
cross-compilation of Nios II programs is to use an Altera Nios Integrated Development 
Environment (IDE) that provides integration of coding, compiling, software load, and debug 
functions.  The main portions of code to be compiled are the preproc.c which is executed by 
the Pre-Processor, and the application to be shrinkwrapped.  The application to be 
shrinkwrapped must be compiled for the Target Processor’s environment but must go 
through additional processing steps before loading into the Pre-Processor’s memory (for later 
delivery to the Target Processor).  In order to provide better configuration management 
(specifically to avoid the potential for incorporating outdated or improper code libraries), we 
ceased using the “nios-build” tool and compiled both the Pre-Processor code and the Target 
Processor code via the IDE.  
 
 

1.4.3  Cryptographic Assurance Processor Memory Map 
 
The CAPA uses the memory map shown in Figure 7.  CAPA memory map..  The Pre-
Processor and the Target Processor each have their own separate memory spaces.  The 
common memory addressed at 0x10080000 is used to pass instructions and data between the 
two CPUs. 
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Figure 7.  CAPA memory map. 

 
 
 

1.4.4  The Code Execution Process 
 
Compiled software can be loaded into the configured hardware by using either the nios-2-
download utility or by using the Nios II IDE interface. Either of these methods provides for 
download of the compiled code into the configured hardware via a specialized USB adapter 
to a JTAG interface (Joint Test Action Group, an IEEE standard for boundary scan 
technology for communicating serial data into and out of integrated circuits).  Embedded and 
compiled into the FPGA hardware is a JTAG slave interface that acts as a memory loader as 
well as a debugger and a serial communications device for the pre-processor.  
 
First, the shrinkwrapped code for the Target Processor is loaded into the Pre-Processor’s 
SDRAM memory space via nios-2-download prior to the load of the preproc.c code that 
executes in the Pre-Processor.   
 
Subsequently, the IDE download causes this memory loader to populate the SRAM with the 
preproc.c code that executes in the Pre-Processor. During this process, a “system id” 
embedded in the hardware at hardware configuration time is checked against a “system id 
and timestamp” compiled into the load file.  If no match is found, warning messages indicate 
a mismatch between the compiled software and the hardware target into which it is being 
loaded, and the load operation does not complete.  (This mechanism is disabled for the prior 
load of the shrink-wrapped program by nios-2-download switch options and/or by removing 
the system id from the Target Processor configuration.)  In a production system, this 
subsequent load of preproc.c may be replaced with a pre-placed ROM-based memory 
(generated at hardware compile time and loaded at hardware configuration time) containing 
the pre-proc.c executable. 
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Reset of the Pre-Processor begins its execution of preproc.c, and reset of the Target 
Processor (or the GERMS command “g1000000” entered on the Target Processor’s UART, 
if so configured) causes the Target Processor to perform its the first fetch of the 
shrinkwrapped header. 
 
The preproc.c code executing in the Pre-Processor services the first instruction fetch 
interrupt from the Target Processor, and upon finding its cache of header data un-initialized, 
proceeds to process the information in the shrinkwrapped header before finally delivering the 
first fetch to the Target Processor (which is a JMP past the rest of the header data, to the start 
of the shrinkwrapped code segment).  Subsequent fetches cause decryption and delivery of 
instruction or data without further header processing. 
 
 

1.5 Code Shrink-Wrapping  
 

1.5.1  Shrink-Wrapper Overview 
FE protects software through a cryptographic process. The application of this protection, or 
the "Shrink-Wrap" process, protects both code confidentiality and code integrity by encoding 
and packaging the software at the instruction level. Individual instructions or sequential 
chains of instructions are encrypted to maintain confidentiality. Additionally, the encoding 
process includes redundant instruction information so as to authenticate each machine 
instruction and the execution order of the instructions. 
 
After a trusted facility develops and certifies as correct a piece of software, it encodes the 
software for execution on the FE hardware. The encoding process repackages the software 
into six segments, as shown in Table 2  Wrapped code layout.  The segments include a 
software header, the encrypted software code, a heap area,  the authentication data, the 
initialization vector data, and the preprocessor instructions. The Initialization Data field and the 
Preprocessor Instructions field are necessary only with stateful encryption and are not implemented in 
the current version. 
 
Table 2  Wrapped code layout 

Header 
Code 
Heap 

Authentication Data 
Initialization Data (IV) 

Preprocessor Instructions (PP) 
 
Implementation of FE permits several variables in its design. Both stateless and stateful instruction 
encryption is possible as well as the use of several encryption algorithms. Additionally, it may be 
desired that different parts of a piece of software be protected differently. In particular, the handling 
of a software's code segment and data segment may be different. The shrink-wrap header defines 
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these variables to the preprocessor as well as the memory size and the relative memory locations of 
the encoded software segments. 
 
 
The shrink-wrap process uses a python script (targetbuild.py) to prepare the input files and 
parameters.  The python script starts with the ”*.elf” file (“Executable and Linkable Format”)from the 
output of the gcc code cross-compiler, and uses the utilities nios2-elf-objcopy to convert the “.elf” file 
to a “.srec” file (Motorola S-records (SREC) are a form of simple ASCII encoding for binary data). 
 
The shrink-wrap software (wrapper.c), starts with the ”*.srec” file and produces a file called 
“wrapped.srec” that must be subsequently moved and/or renamed to the appropriate directory from 
which it will be loaded.  The Wrapper converts the srec input records to binary and appends the 
Header data to the front of the binary.  It then encrypts the binary code. Finally, the Wrapper appends 
an authenticated copy of the code to the end of the file and outputs these pieces in srec format.  For 
the prototype, encryption and authentication transformations follow the methods described for 
encryption modes B0, B1, B2, B3, B4, B5,.C1or C2 as defined in [6]. 
 
What follows is a description of the Header format.  The header is composed of two sections: a First 
Preamble and one or more Second Preamble(s).  The shrink-wrap process allows for multiple  
sections of the binary code to be encrypted with different keys and methods. However, for the SPS 
prototype, we used only a single encryption segment. Hence, only one Second Preamble is ever used.  
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(32 bit 
word) 
index   

example 
contents         Description Comment 

                  
1 06 13 00 00     Passback Instruction (1) jump over header 
2 00 30 00 30     Passback Instruction (2) (PC + 0x46 = 0x50 past header) 

3 01 FF 02 FE     Preamble (1) 

arbitrarily chosen pattern used to 
identify memory area as containing a 
valid header 

4 03 FD 04 FC     Preamble (2)   
5 01 00 00 00     Preamble Version   

6 01 00 00 00     # encryption segments set to 1 for initial version of wrapper 

7             length of preamble Total length of all preambles combined 
8 01 02 03 04     Preamble checksum (1)   
9 05 06 07 08     Preamble checksum (2)   

10 00  00 00 00     Program ID 
Unique ID for each and every encrypted 
program; maps to key list ID 

11 50 00 00 00     Program Offset 
# bytes from start of the file where 
executable code starts 

12 00 00 01 70     Program Segment length 
Length in bytes of program (executable) 
code 

13 00 00 01 70     Program Integrity Length 
length in bytes of the Program's 
Integrity segment 

14 01 40 00 00     Data Segment Base 
Base address of Data Space; needed 
for split bus 

15             Data Segment end 
preprocessor needs to know end of 
data space to set up stack 

16 00 00 00 10     Data Segment Length   
17 00 00 00 10     Data Integrity Length    

18 00 00 00 00     IV Segment Length 
Length in bytes of IV segment  
(currently not used) 

19 00 00 00 00     
PP Instruction Segment 
Length 

Length in bytes of PreProcessor 
Instruction Segment (Currently not 
used) 

20 00           Crypto Mode 
select B or C series encryption; 0=B0; 
6=B6;7=C1;12=C6 

 

Table 3: Cryptographic Execution Assurance Header 
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One should note that in the header description there is no mention of encryption keys or encryption 
method. The index into this information is the "program_id" in the Second Preamble.  A separate key 
file or data structure links the N-tuple of (program_id, encryption method, encryption keys). Key 
management is maintained by control of this data.  Both the Wrapper and the UnWrapper make use of 
the key file. For the prototype, we compiled the key file into the code for both the Wrapper and the 
UnWrapper; however, in an applied application, this data would require further protection. 
 
 
Every time a Target CPU application runs, several events occur.  The application starts by requesting 
its first CPU instruction from memory through the Pre-processor.  The Pre-processor places the 
Target CPU in a wait state and interrogates the application's header segment to determine 
cryptographic context and retrieves the correct keys from a secure memory location within the Pre-
processor. After the first instruction request, the cryptographic context for that occurrence of the 
application is established and is not repeated for following instruction requests from the application 
occurrence.  The Pre-processor then retrieves the instruction and performs the instruction decryption 
and authentication.  Providing that the instruction is authentic, the Pre-processor passes the decrypted 
instruction on to the Target and removes the wait state.  The Target then executes the instruction and 
increments its program counter to request the next instruction through the Pre-processor.  Should the 
authentication check fail, the Pre-processor withholds passing the instruction on to the Target, and 
performs an exception handling process. 
 
In the B series of encryption, the IV and PP sections are not used in general. However, to 
overcome the issue of separating the heap and the integrity data, the integrity data is placed 
in two segments. The preprocessor does not use the first segment. Rather it is set aside for 
use as heap space.  The shrink-wrapped code is built as follows in Table 3: Cryptographic 
Execution Assurance Header to overcome this issue. 
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Table 4  “As Built” Shrink-Wrapped Program  

Pre-amble or Header 
Encrypted Program Code 
Place Holder for the Heap 
Encrypted Integrity Code  
    (used for integrity check) 
 
 

1.5.2  Procedure to Shrink-Wrap Files 
 
 
To shrinkwrap a new code for the target processor, the application is first compiled using the 
Nios II IDE (after pointing the IDE to the Target Processor’s hardware environment and 
associated system library).  The application is required to be linked at an address just above 
the header.  This is most easily done by pre-compiling the application to start at the header 
location, then editing the resulting linker generation script to move the application up by 
exactly the space required for the header (50 hex bytes).  A second compilation specifying 
the modified linker script will result in proper location of code and variables for input to the 
shrink-wrap process.  
 
For example, in the generated linker script, find and comment out the line that specifies the 
location and extent of the memory region containing the target processor’s instruction port 
(inst_port memory region): 
 
/* inst_port_UNUSED : ORIGIN = 0x01000020, LENGTH = 4186080 */ 
 
And replace it with a similar line with the origin increased by hex 50 and 
length decreased by the same amount (decimal 80): 
 
inst_port_UNUSED : ORIGIN = 0x01000050, LENGTH = 4186000 
 

The resultant linker script is renamed (generated.x, for example) and 
specified to guide the linkage of the subsequent build of the application 
program. 
 
Once the object file is located to compensate for the length of the header file, the “*.elf” file 
is then input to the python script called targetbuild.py, along with parameters 
communicating the start and ending address (of the header and instruction space), the start 
and end address of the data space, the size of the header, and the desired 
encryption/authentication mode.   
 
A specific example of a sequence of commands to shrink-wrap an application are given in 
theAppendix B.  Build Notes. 
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1.5.3   Demonstration Hardware Connections 
 
The firmware design for this demonstration was compiled using Quartus II 5.0.  The software 
was compiled using the nios-build command as described in Appendix A: 
Cryptographically Assured Processor System Operation.  Two computers are used for this 
demonstration.  One is connected via its serial port to the Console Serial Port and the other is 
connected to the Debug Serial Port.  The Console Port is connected to the Pre-Processor.  
The Debug Port is connected to the Target Processor.  

 
Figure 8.  Demonstration hardware configuration (after Altera documentation). 

 

1.6 Summary of Cryptographic Processor System Operation 
A Cryptographic Processor has been developed using two Altera embedded Nios processors.  
One processor runs the decoded application code while the other fetches and decodes the 
instructions.  Both processors were compiled and demonstrated using an Altera Stratix 
FPGA. 
 
We implemented all  shrink-wrap methods described in SAND2004-6478 “Stateless and 
Stateful Implementation of Faithful Execution” [8], however, only Methods 1 and 2 produced 
a sufficiently fast fetch rate to cope with system timer interrupts when processed without 
hardware acceleration of the cryptographic overhead.    
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We have shown how secure computing is possible by using cryptographic assurance of 
execution correctness, implemented through the concept of Faithful Execution.  We have 
explained how Faithful Execution cryptographically seals a piece of software at a code 
testing and certification facility, keeps it secure by distributing it in the encrypted form, and 
decrypts and authenticates it as it is being executed. We then detailed the implementation of a 
hardware prototype using an FPGA and configurable soft-core processors, an implementation 
that effectively has a cryptographic wedge inserted between the CPU and memory.  We also 
described  the related shrink-wrap process to seal the certified code for use in a Faithful 
Execution environment. 
 
We performed an initial “black hat” assessment of the hardware prototype to verify the 
security of the system and demonstrate proper operation.  We also measured the instruction 
processing performance overhead incurred by several variations of the decryption and 
authentication processes.  Next steps should explore applications that could benefit from 
Faithful Execution and that can tolerate and justify the instruction processing overhead of the 
cryptographic operations.  Future improvements could include inserting stronger 
cryptographic algorithms, more flexible modes of authentication, and faster hardware 
implementations to improve performance. 
 

Appendix B.  Build Notes 
 
 

Notes regarding setup of applications and windows to operate the 
prototype: 
 
 
Run Quartus II 5.0 Programmer 
 
Set project: 
 
C:\CAP\CAP_target_9_13_06\CAP_target_sdram\standard.qpf 
 
Open programmer window  (tools.>>programmer) 
 
Make sure program/configure is set 
 
Check hw setup (usbblaster) 
 
Start programming hardware  (if no errors, dual processor cryptograpically 
assured hardware is loaded) 
 
 
SDK window ( used to download the shrinkwrapped code) 
 
Cd 
/cygdrive/c/CAP/CAP_target_sdram_9_13_06/CAP_target_sdram/software/hello_w
orld_3/Debug/test/ 
 
Nios2-download –d 1 –I 1 wrapped.srec  (to download shrinkwrapped program) 
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Nr –t –p com1  (to connect to the target processor serial port) 
 
Run NIOS II IDE 
 
Workspace: C:\CAP\workspace 
 
Right click on “preproc” >> run as >>nios 2 hardware 
 
(when verified, preproc.c code is loaded into the preprocessor cpu and 
begins execution, ready for first fetch from target processor) 
 
 In an SDK window: 
 
Nr –t –p com1  (to connect to the target processor serial port) 
 
Press sw0 on prototype (reset target processor to start germs monitor) 
 
G1000000       (fetch instruction at 0x1000000 and begin execution in 
target processor) 
 
(at this point the preprocessor begins fetching instructions and data for 
execution by the target processor   The first fetch causes the 
preprocessor.c to process the header at 1000000-1000050, then delivery of 
the instruction at 1000000 (which is a jump to 1000050)) 
 
 
 
To shrinkwrap a new code for the target processor: 
 
Compile in the NIOS II IDE, then perform wrap operation in /Debug/ above 
the new directory “test” (placed below /Debug/). 
 
In a CYGWIN window: 
 
Cd 
/cygdrive/c/CAP/CAP_target_sdram_9_13_06/CAP_target_sdram/software/hello_w
orld_3/Debug/test/ 
 
Python targetbuild.py <name_of_srec_file_to_be_shinkwrapped> 1000000 
13fffff 1400000 17fffff 50 0 
 
(the hex address parameters are mostly ignored in this version.  The main 
parameter is the last one 0-5 encodes B0 –B5) 

 
 
 
 

 



 38 

Appendix C.  LDRD Data 
 
 
The Sandia National Laboratories’ Laboratory Directed Research and Development program 
under Project 79813 funded this effort, “Security Enabled Programmable Switch for 
Protection of Distributed Internetworked Computers”.  The project manager was John 
Howard; the principal investigator was Jamie VanRandwyk.  Team members included Philip 
Campbell, Nancy Durgin, Tim Toole, Perry Robertson, Lyndon Pierson, and Brent Kucera. 
 
Awards:  N/A. 
 
Publications: 
 
Type: Refereed Publication, Presented and Published in Proceedings 
Authors: Lyndon G. Pierson, Perry J. Robertson, Timothy J. Toole, Jamie Van Randwyk  
Title: Protection of Distributed Internetworked Computers 
Publication Name: 39th IEEE International Carnahan Conference on Security Technology, 
October, 2005, Las Palmas De Gran Canaria, Spain. 
 
Type: Other Publication, Miscellaneous publications 
Authors: Jamie VanRandwyk, Timothy J. Toole, Nancy A. Durgin, Lyndon G. Pierson, Perry 
J. Robertson, Philip L. Campbell, Brent Kucera 
Title: Final Report: Secure Programmable Switch for Protection of Distributed 
Internetworked Computers LDRD 
Location Published: Albuquerque NM, USA 
Detail: SAND Report in process of publication, Report Number SAND 2010-0516 
 
Patents (applied or issued):  In preparation based upon prior Technical Advances SD-6192, 
SD-7051, SD-7052, and new material in SD-10424 developed and tested under this LDRD.   
 
Technical Advances:  SD-10424.  This Technical Advance describes a method of assuring 
against introduction of malicious code in computer systems by cryptographically decrypting 
and authenticating the sequence of instructions inside the CPU chip itself. 
 
Copyrights (for Software):  None. 
 
Employee Recruitment:  N/A 
 
Student Involvement:  This project engaged summer student intern Jason Hamlet, Ben 
Hamlet, and Paul Cotton.  

 
Non-LDRD Funding:  None. 
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