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Abstract 
The intent of this study is to provide an analysis of the scattering from a crevasse in 
Antarctic ice, utilizing a physics-based model for the scattering process. Of primary 
interest is a crevasse covered with a snow bridge, which makes the crevasse 
undetectable in visible-light images. It is demonstrated that a crevasse covered with a 
snow bridge can be visible in synthetic-aperture-radar (SAR) images. The model of the 
crevasse and snow bridge incorporates a complex dielectric permittivity model for dry 
snow and ice that takes into account the density profile of the glacier.  The surface 
structure  is based on a fractal model that can produce sastrugi-like features found on 
the surface of Antarctic glaciers.  Simulated phase histories, computed with the 
Shooting and Bouncing Ray (SBR) method, are processed into SAR images.  The 
viability of the SBR method for predicting scattering from a crevasse covered with a 
snow bridge is demonstrated.  Some suggestions for improving the model are given. 
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Introduction 
This study provides an analysis of the scattering from a crevasse in ice, utilizing a physics-based 
model for the scattering process.  After a brief historical review of some earlier attempts to see 
crevasses with radar, a discussion of the physical model is provided.  The model for the dielectric 
properties of ice and Antarctic fern (partially compacted granular snow on the surface of a glacier) is 
given in some detail.  This model depends on several parameters, including location. Models for 
three locations are given, but only the Siple Dome and Newall glacier models are used in generating 
the simulated synthetic-aperture-radar (SAR) images of the crevasse and snow bridge. 
 
Because the size of a crevasse in a glacier is extremely large when measured in wavelengths of the 
radar signal, an exact physical model is not practical.  The geometric model for the crevasse must be 
limited in extent to allow the computation of the scattering to be tractable, so only a limited section 
of a crevasse is modeled.  A fractal-surface model is used to account for the surface features.  The 
fractal model is capable of including sastrugi-like features, produced by winds blowing over the 
Antarctic ice.  The method of computing the fractal surface is described in Appendix I.   
 
The radar-scattering model is based on numerical calculation, but even with the power of modern 
computers, it is necessary to use approximations in the physics to achieve a practical solution.  The 
physics approximation allows the size of the crevasse model, though small in comparison to a real 
crevasse, to be sufficiently large so that formation of meaningful images is possible.  The 
electromagnetic scattering phenomena will be modeled with a method called the Shooting and 
Bouncing Ray method (SBR), which is an extension of the Physical Optics method (PO) [1, 2, 3].  
Appendix II provides a description of the SBR method.  Results from some validation tests for the 
specific implementation of SBR used here are discussed in Appendix III.  
 
Finally, the simulated SAR images are discussed.  Creating SAR images with the SBR method can 
introduce some artifacts, if the method is not applied appropriately.  These are discussed in Appendix 
IV, where the artifacts are demonstrated along with the method used to mitigate their effects.  The 
approach described there is used for all images of the crevasse and ice bridge.  The first part of the 
discussion addresses the transparency of the Antarctic snow and glacial ice.  Then the geometry of 
the crevasse and snow-bridge model is described.  An appropriate set of simulated SAR images are 
presented and compared.  A more complete set of images is included in Appendix V, along with a 
table providing a key to the relevant parameters for each figure.   
 
The total surface area of the model measures over 250,000 square wavelengths and contains a 
volume of over 6,800,000 cubic wavelengths at X-band.  Thus, each SAR image requires a 
considerable amount of computer time, even though the SBR method is an efficient, yet reasonably 
accurate, approximation to the physics of electromagnetic scattering.  As a consequence, this study 
only allowed for modeling one geometry for the crevasse.  The features and limitations of this single 
geometry are addressed.  Future work should include variations of this geometry.  Additional 
recommendations are stated in the conclusion. 

Brief history 
The detection of crevasses in glacial ice has proven difficult when the top of the crevasse is bridged 
with snow.  In this case, the crevasse can be virtually indistinguishable visually from nearby solid 
portions of the glacier which are also covered with snow.  Attempts to detect crevasses with 
electromagnetic or electrostatic methods date to as early as 1956 [4].  Typical methods involve 
dragging an apparatus over the snow in an attempt to detect changes in the electrical properties when 
the hollow crevasse is traversed.  In 1987, an X-band pulsed radar system demonstrated that 
Antarctic snow and fern could be penetrated [5].   
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In 1992, the synthetic-aperture radar carried by the European Research Satellite 1 (ERS-1) was used 
to image the Greenland Ice Sheet [6]. In 1993, the same SAR was used to image the Columbia 
Glacier in Prince William Sound, Alaska [7].  The ERS-1 SAR, operated at C-band (5.3 GHz) and 
produced a resolution of 25-30 m.  The Greenland data showed distinguishable zones in the ice 
sheet, based on variations in amounts of surface accumulation and melting.  Dry-zone areas 
produced low backscatter, while refrozen zones, where surface-melt water percolates down into the 
ice, showed higher backscatter, apparently due to the increased surface roughness.  The wet-snow 
zones produced intermediate backscatter.  The bare-ice zones also produced relatively low 
backscatter.  Rough zones, containing crevasses, were bright.  The 30-m resolution allowed the 
boundaries of the different zones to be seen.  Zones with heavy crevassing could be distinguished, 
but it appears that the resolution was not adequate to map individual crevasses.   
 
The Columbia Glacier began a rapid retreat in 1985, was known to be calving icebergs, and was also 
known to contain numerous crevasses.  The ERS-1 SAR, providing a resolution of 25 m, was able to 
distinguish large crevasses, which were visible in optical photos [7].  The data show that crevasse 
patterns are most visible when the crevasses are aligned normal to the radar look direction.  It is 
likely that backscatter from the opposite wall of the crevasse is the dominant component.  Crevasses 
oriented at diagonal angles to the look direction are barely visible in the SAR images.  The course 
resolution is apparently a limiting factor here. 
 
Recently, ground-penetrating radar has successfully located crevasses covered by snow bridges [8].  
The instrumentation consisted of a pulsed radar operating at 400 MHz, the antenna of which was 
suspended a few centimeters above the surface and pushed at low speeds with a tracked vehicle.  The 
range resolution was about 35 cm.  The reflections from snow layers were very weak, but reflections 
were absent in the region of the crevasse void.  It was noted that moving the radar parallel and offset 
from the crevasse made detection difficult.  However, when the radar path crossed a crevasse, 
detection was possible. 
 
In December of 2006, Sandia National Laboratories collected data near McMurdo Station and 
Pegasus in Antarctica with the X-band Miniature Synthetic-Aperture Radar (MiniSAR) [9].  The 
Pegasus wreck site, where an LC-130 aircraft encountered a crevasse hidden by a snow bridge after 
landing, was one of the sites where image data were collected.  However, the higher-priority image 
data were collected for a trio of crevasses covered with snow bridges (named Tres Hermanas).  From 
the air, these crevasses were difficult to discern optically from the relatively flat glacier surface.  The 
crevasses were about twelve feet wide at the top, with snow-bridge depth of about six feet.  The data 
show that detection of a crevasse with 1-m resolution is difficult when the range direction is along 
the length of the crevasse, but that detection improves at the finer 12-inch and 8-inch resolutions.  
When the range direction moves away from the direction of the crevasse length, even slightly, the 
crevasse appears wider in the SAR image, and is easier to discern.  The data imply that both 
resolution and crevasse orientation affect the appearance of the crevasse, but that resolution is more 
important than the geometry.  The finer resolutions provide the most easily discernable images of the 
crevasses.  The data also show that contrast between the glacier surface and the crevasse is better at 
lower grazing angles compared to higher grazing angles.  The signature of a crevasse appears to be a 
narrow line of low radar return accompanied by bright returns, which presumably originate from the 
far wall of the crevasse.  The line corresponding to the bright return appears somewhat broken, or at 
least consists of returns of significantly varying intensity along its length.  The darker, low-return 
line appears to be more continuous for greater lengths. 
 
The Sandia National Laboratories X-band miniSAR data [9] provide very convincing evidence that 
synthetic-aperture radar, operating at X-band, can detect crevasses even in the presence of snow 
bridges.  The often-presumed mechanism is that a low-level return is obtained from the snow bridge 
itself, while a brighter return is obtained from the far (down-range) wall of the crevasse.  The low-



return component is darker than the adjacent surface scattering. The brighter return exceeds that of 
the adjacent surface over much of the length of the crevasse.  It is assumed that the far wall is 
illuminated by energy which penetrates the snow bridge.   
 
However, in the December 2006 Antarctica mission, 8-inch resolution data was collected from a 
simulated crevasse with buried corner reflectors.  A reflector buried two feet below the surface was 
not visible in the image, but one buried four feet below the surface was apparent.  Contrast between 
returns from deeper corners was insufficient to distinguish them from the surface clutter.  This data 
seems to indicate that penetration to at least four feet is possible, but even so, penetration to two feet 
is not guaranteed. 
 
While it is difficult to argue with the demonstrated success of the Sandia National Laboratories 
miniSAR images in detecting the crevasses, it is also important to understand the physical process of 
scattering from a crevasse in the presence of a snow bridge.  An understanding of the scattering 
process can improve understanding of the advantages and possible limitations of using synthetic-
aperture radar to locate crevasses in the Antarctic ice.  
 
The visibility of the crevasse arises from two simple scattering processes: 

 Different reflection coefficients resulting from different dielectric permittivity (index of 
refraction) of adjacent materials, and 

 Different backscatter reflection arising from surfaces with different geometry. 
While this much is obvious, it is desirable to quantify the processes in order to understand if 
conditions can arise that would tend to obscure the crevasses and prevent their detection in a SAR 
image.  The Pegasus wreck site and the experiences of the Sandia team [9] are sufficient to show that 
such conditions can occur at optical wavelengths, but the question is whether such conditions can 
occur at centimeter wavelengths, too. 

Dielectric properties of ice and snow  
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
Propagation through ice and snow depends on its complex permittivity, 
 , (1.1) j    
where the real part, , is often called the dielectric constant, and the imaginary part, which 
contributes to propagation loss, is often described by the loss tangent, 


tan , as 

 . (1.2) tan    
A model for the complex permittivity of dry snow and ice will be needed for computing the 
scattering from the crevasse and snow bridge.  This section will describe the model used in this 
study. 
 
Measurements of the dielectric properties of water, ice, and snow are reported by von Hippel [10] for 
frequencies ranging from 1 kHz to 10 GHz in Table 1.  While this data is over 50 years old, it is 
considered to be of high quality.  These data show that the relative dielectric permittivity of ice 
decreases slightly as the signal frequency increases.  The loss tangent also decreases as frequency 
increases.  This behavior for the loss tangent seems to apply to freshly fallen snow as well, and for 
hard-packed snow after light rain.  Although the relative permittivity of liquid water decreases as 
frequency increases, the loss tangent increases.  The decreasing permittivity and loss tangent of ice, 
as frequency increases, indicates that the loss per wavelength decreases as frequency is increased.  
However, it will be shown below that the critical parameter, loss per meter, actually increases as 
frequency increases. 
 
 
 



Table 1 Dielectric Properties of Water and Ice (from von Hippel [10]) 

 Temp °C  1 kHz 10 kHz 100 kHz 1 MHz 10 MHz 300 MHz 3 GHz 10 GHz 

r   4.8 4.15 3.7  3.20 3.17 Ice −12 
tan    0.8000 0.1200 0.0180  0.0009 0.0007 
r 3.33 1.82 1.24 1.20 1.20 1.20 1.20  Freshly fallen snow −20 

tan  0.4920 0.3420 0.1400 0.0215 0.0040 0.0012 0.00029  
r        1.26 Freshly fallen snow −6 

tan         0.00042 
r   1.9 1.55   1.5  Hard-packed snow after light 

rain 
−6 

tan    1.5300 0.2900   0.0009  
r   87.0 87.0 87.0 86.5 80.5 38.0 water 1.5 

tan    0.1900 0.0190 0.0020 0.0320 0.3100 1.0300 
r    85.5  85.2 80.2 41.0 water 5 

tan     0.0220  0.0273 0.2750 0.9500 
r    81.7  81.0 78.8 49 water 15 

tan     0.0310  0.0210 0.2050 0.7000 
r   78.2 78.2 78.2 77.5 76.7 55 water 25 

tan    0.4000 0.0400 0.0046 0.0160 0.1570 0.5400 
r    68.2  68 67.5 60 water 55 

tan     0.0720  0.0092 0.0890 0.3600 
water 85 r   58 58 58 57 56.5 54 

  tan    1.2400 0.1240 0.0125 0.0073 0.0547 0.2600 

 
The permittivity of pure liquid water at frequency f in the microwave region is given by the Debye 
formula [11], 

 
2 2 21

static
H O




     
  

 (1.3) 

and 

 
 

2 2 21
static

H O
   

 
  



2

 (1.4) 

where 
 

2 2H O H O Hj      O  (1.5) 

and 2 f  , and at 0 , , C 87.90static  5.7  , and 17.67 ps  . 
 
Mätzler [12] described what appear to be very accurate measurements of the real part of the 
permittivity for dry snow (no quasi-liquid layer) at 1 GHz as a function of ice density.  This data, 
measured at temperatures between 8  C   and 1  C  , cover the range of ice volume fraction from 
about 0.05 to 0.5.   Over this range of ice density, the measured real part of the relative permittivity, 

, ranges from about 1.1 to about 1.9.  The real part of the permittivity is essentially constant to at 
least 10 GHz.  Mätzler concluded that the Polder- van Santen mixing formula [


13] provides an 
extremely good fit to this data.  His model for the real part of the dielectric constant of dry snow is 

 

   

   
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 (1.6) 

with 

 
 1 1

1
a

i

a

a A

    

 
 (1.7) 

where  for ice (slightly higher than given by von Hippel [3.185s  10]), and v is the volume 
fraction of ice.  For dry snow, the best fit to the carefully measured data has 
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3

2

1 2

0.1 0.5 0 0.33

0.18 3.24 0.49 0.33 0.71

1 3 0.71

A A A

A A

v v

A v v

v

 
 

 
    
 



 (1.8) 

The standard deviation from the measured data in [12] is 0.0064.  Note that (1.6) must be iterated to 
find the effective dielectric constant, since   appears on both the left- and right-hand sides.  When 
the volume fraction of ice is , 0v  (1.6) gives 1   as expected.  When the mixture is entirely ice, 

, then 1v  s   , as expected.   
 
Koizumi and Sato et al measured the dielectric constant and loss tangent ( ) for snow and 
shaved ice at several temperatures at 9.5 GHz [

tan

1T
14].  Their data show that both dielectric constant and 

loss tangent are nearly constant versus temperature when the temperature  C  

T

.  While there is 
some small variation near , the variation increases rapidly as T approaches zero and 
beyond.  The increased slope of both dielectric constant and loss tangent are apparently due to a 
liquid water component that is present at the higher temperatures.  Since the dielectric constant and 
loss tangent of liquid water are both higher than that of ice, the mixture properties will be sensitive to 
the fractional volume of water.  However, for dry snow at temperatures below , the 
temperature dependence of both can be ignored.  Koizumi et al report the dielectric constant as a 
function of density at T , giving 7% – 8% higher values than reported by Mätzler [

1  CT   

5  C  

1  C 

12] near 
1 GHz.  Although they report that the error in measuring the loss tangent is large, they report a value 
of .  This is larger than von Hippel [tan ~ 0.001 10] reports for ice at 3GHz and 10 GHz (see Table 
1), which might imply very slight water content in their snow samples.  Unfortunately, the variations 
in the measured data were too large to draw conclusions about the variation of the loss tangent with 
density.  Koizumi and Sato et al [14] suggest Wiener’s mixing formula for dry snow 

 
1 1 1snow air ice water

air ice water
snow air ice water

v v v
u u u

       
  

       
1

u

5

v

 (1.9) 

where , ,  and  are the volumetric fractions of air, ice, and water, respectively.  The 
parameter u is a polarity factor that depends on the shape and features of the particles.  For their 
model of dry snow,  

airv icev waterv

  (1.10) 
0 1

1 3.17
water ice air

air ice

v v v v

u

  

    
Putting (1.10) into (1.9),  their model for the real part of the dielectric constant depends only on the 
volumetric fraction of ice as follows: 

 
3.765 5

3.765dry snow

v

v


 


. (1.11) 

 
Tiuri and Sihvola et al considered both the real and imaginary parts of the dielectric permittivity 
[15].  Based on measurements of dry snow in a cylindrical cavity, they report the following second-
order fit for the real part, , dry snow

  (1.12) 21 1.7 0.7dry snow     

where   is the density of snow relative to water. (1.13) 
 
The models for the permittivity use either volume fraction of ice or density as the parameter 
describing the snow.  The relation between volume fraction v and density   is 

 . (1.14) icev  

 
 
 - 11 - 



The three models for the real part of the dielectric permittivity given by Mätzler (equations (1.6) – 
(1.8)), Koizum et al (equation (1.11)), and Tiuri et al (equation (1.12)) are compared in Figure 1 as a 
function of volume fraction of ice,  .  The models are very similar, with the largest disagreement 
occurring at volume fractions between about 0.2 and 0.45. 
 

 
Figure 1 Real part of dielectric constant for dry snow for three models. 

 
For the loss tangent, Tiuri and Sihvola et al give [15] 

 
2

6
2

0.52 0.62 1
tan 1.59 10 1.23 10

1 1.7 0.7
dry snow Tice ice

dry snow ice ice

f e
f


   

            
14 0.036

 , (1.15) 

where f is the frequency in hertz and T is the temperature in degrees Celsius.  Since the medium is 

lossy, the minus sign is consistent with the time convention j te  , which is used here. 
 
The modeling of the loss tangent of ice is complicated by the variations in measured values obtained 
by different experimenters.  While different values are often attributed to varying amounts of 
impurities in different samples, another possibility has been suggested by Bordonski and Krylov 
[16].  They suggest that the loss tangent as a function of temperature exhibits a hysteresis effect; the 
loss tangent depends not only on the current temperature, but also on the temperature history.  
Although they do not suggest a mechanism to cause this, they do describe a series of measurements 
at 13.5 GHz and 37.5 GHz on the upper ice layer of the Arakhley Lake of the Chita region of Russia.  
The data were collected over a span of more than 100 days, starting from the time the ice sample 
froze, with temperature slowly varying over that time span.  The data show a general downward 
trend as the ice ages, although the loss tangent begins to increase after about 80 days.  Of course, the 
temperature varied from day-to-day and week-to-week.  As temperature is thought to be the primary 
parameter needed to describe the variation of loss tangent at a fixed frequency, the data were plotted 
as a function of temperature, with time as a parameter along the path joining the data points.  The 
surprising result is that different loss tangent values were obtained with the same sample at the same 
temperature, but at different times.  Bordonski and Krylov conclude that this is due to a hysteresis 
effect as temperature fluctuates while the ice ages. These measurements were obtained with 
microwave radiometers, and estimated accuracy of the loss tangent values was 10%. 
  
The density of ice varies slightly with temperature.  Some accepted values [11] are listed in  
Table 2.  A quadratic fit to the data in [11] is 

   40.91692 1.6712 10 4.5253 10ice T T      7 2T . (1.16) 
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Table 2 Density of ice [11]. 

 CT   Density,  3g cmice  

0 0.9167 
10 0.9187 
20 0.9203 
30 0.9216 
40 0.9228 
50 0.9240 
60 0.9252 
80 0.9274 
100 0.9290 

 
 

Assuming time dependence of j te  , a plane wave propagates as  j t kre   , where r is the distance 
along the direction of propagation, and  the wave number k is 

 
 1 tansnow j

k
c

  
     j , (1.17) 

where 2 f   and c is the speed of light in vacuum.  Since the loss tangent is very small, 

 snow

c


  , (1.18) 

and 

 
1

tan
2

snow

c


   . (1.19) 

The plane wave propagating in the snow propagates according to  j t rre e   , and thus decays 
exponentially as it propagates.  This means that the propagation loss, measured in decibels, is 
directly proportional to the propagation distance. 
 
Combining the Mätzler  model (1.6) – (1.8) for dry snow  and the Tiuri-Sihvola model (1.15) for 

 provides a reasonable model for the complex dielectric constant for dry snow.  In this 

case,  is a function of the volume fraction of ice, and is assumed to be independent of 

temperature and frequency over the microwave frequencies of interest.  However, the loss tangent is 
characterized as a function of the fraction of ice, the temperature, and the frequency.  This is the 
model for permittivity that will be used in this study. 

tan dry snow

dry sno w

 
The propagation loss, in decibels per meter, is plotted in Figure 2 as a function of frequency for T = 
0° C, and in Figure 3 for T = 20° C, for various densities, given as the volume fraction of ice.  The 
radar frequency allocation, as designated by the FCC [17], is also indicated for C-, X-, and Ku-
bands.  The loss roughly doubles (in decibels per meter) from one band to the next higher band.  
Clearly, greater penetration into the ice can be expected at C-band, but the available bandwidth is 
limited.  The propagation loss also depends on the temperature of the ice.  Figure 4 shows the loss in 
decibels per meter as a function of temperature when the frequency is held constant at 10 GHz.  As 
the temperature approaches the 0° C, the loss begins to rise rapidly, with the slope becoming steeper 
as the volume fraction of ice increases. 
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Figure 2 Propagation loss through dry snow as function of frequency for several fractional volumes of 

ice at temperature T = 0° C. 

 
Figure 3 Propagation loss through dry snow as function of frequency for several fractional volumes of 

ice at temperature T = 20° C. 

 
Figure 4 Propagation loss through dry snow, at  f = 10 GHz, as a function of temperature. 

Density profiles for Antarctic snow and glacial ice 
Density data has been obtained from core-sample data at three sites, plotted (approximately) on the 
map of Landsat Image Mosaic of Antarctica [18] in Figure 5, and on the true-color image in Figure 
6. The data sets are:  

Siple Dome, cores C, E, F at 148° 49´ W 81° 40´ S [19], plotted in Figure 7; 
Newall Glacier at 162° 30´ E 77° 35´ S [20], plotted in Figure 8; 
Dominion Ridge at 166° 10´ E 85° 15´ S [21], plotted in Figure 9. 
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Figure 5 Approximate locations of the Siple Dome, Dominion Range, and Newall Glacier sites. 

(Antarctica map is the overview map from the Landsat Image Mosaic of Antarctica, courtesy 
of the U.S. Geological Survey [18].) 

 
Figure 6 Approximate locations of the Siple Dome, Dominion Range, and Newall Glacier site plotted 

on Landsat Image Mosaic of Antarctica. (Landsat Image Mosaic of Antarctica, courtesy of 
the U.S. Geological Survey [24]) 

The Siple Dome data extends from about 4 m below the surface to about 100 m depth.  However, the 
data is plotted in Figure 7 to only a depth of 60 m.  The Newall Glacier data extends from the surface 
to about 129 m depth, but it is plotted to only 60 m depth in Figure 8.  There is considerable variation 
in the first 5 m of depth, and the surface density is about 0.32 g/cm3.  The Dominion Range data is 
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very shallow, extending from the surface to nearly 1.8 m.   Figure 9 shows that the density is quite 
variable, with a surface density ranging from about 0.35 g/cm3 to 0.426 g/cm3.  The large variation of 
the Dominion Range data is consistent with the variation in the first few meters of the Newall 
Glacier data.  It appears that the snow and glacial ice density near the surface is quite variable, but 
becomes more consistently monotonic as the depth increases.  A typical snow and glacial ice density 
at the surface is 0.35 g/cm3 [23].    
 
The density can be modeled as a function of depth, x, with a rational curve fit to the data.  The 
following rational curve fits have been calculated for the Siple Dome data, and are plotted in Figure 
7, 

 
2

,

212 822

283 2,950Siple C

x x

x

 
 


 for core C, (1.20) 

 
2

,

491 3,800

553 11,200Siple E

x x

x

 
 


for core E, (1.21) 

 
2

,

505 5,680

332 16,900Siple F

x x

x

 
  


 for core F, (1.22) 

and 

 
2 969 8,560

945 25,500Siple

x x

x

 
 


 for the composite data. (1.23) 

In (1.20) through (1.23), x is the depth in meters, and   is the density in 3g cm . 
 
For the Newall Glacier, the dip in the density between about 1.6 m and 4 m causes some difficulty.  
The following rational fit provides a dip in that region, 

 ,

3 2

4 3 2

2.73 1.53 6.20

0.004 1.27 1.38 19.0 23.8
Newall dip

x x x

x x x x

  
    

  . (1.24) 

However, if the dip is ignored, the following rational fit is obtained 

 
2

2

13.5 8.54

0.852 30.1 30.6
Newall

x x

x x

 
 

 
. (1.25) 

In (1.24) and (1.25), as before,  x is the depth in meters, and   is the density in 3g cm .The density 
computed from (1.24) and (1.25) are plotted in Figure 8 with the measured data.   
 
The Dominion Range data was obtained from shallow pits, and extends no more than 2 m deep.  The 
data is quite variable, and appears almost random. A least-squared-error linear fit is 

 20.367 1.39 10Dominion errorx     , (1.26) 

where the units for Dominion  are 3g cm , the depth x is in meters, and the standard deviation of the 

zero-mean error term, , is 0.044 error 3g cm .  To underscore the variability of the density as a 
function of depth, Figure 10 shows the range of values obtained in November, 2009, in an area 
known as the Shear Zone [22], located near S 78° 01.9´, E 168° 32.0´. 
 
Since the complex electric permittivity of the snow and glacial ice depends on the density, this data 
implies that there will be some scattering in the first few meters of depth due to the fluctuating 
density.  This scattering will compete with scattering from surface features and with scattering from 
buried objects.  It will also compete with the scattering from the walls of a crevasse as seen through a 
snow bridge.  The net result will be a loss of contrast of the crevasse image, compared to the image if 
the snow and glacial ice were more homogeneous. 
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Figure 7 Siple Dome ice-core density as a function of depth [19]. 

 
Figure 8 Newall Glacier ice-core density as a function of depth [20]. 

 
Figure 9 Dominion Range ice-core density as a function of depth [21]. 
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Figure 10 Shear-zone fern density as a function of depth, obtained in November, 2009 [22]. 

 
Figure 11 Dielectric permittivity profile at 9.5 GHzf   and 0  CT     for the Siple Dome C, E, F 

cores and composite models for the entire core depth. 

 
Figure 12 Dielectric permittivity profile at 9.5 GHzf   and 0  CT     for the Siple Dome C, E, F 

cores and composite models for the top 6 m depth. 
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Figure 13 Dielectric permittivity profile at 9.5 GHzf   and 0  CT     for the Siple Dome composite 

and Newall Glacier models for the entire core depth. 

 
Figure 14 Dielectric permittivity profile at 9.5 GHzf   and 0  CT     for the Siple Dome composite 

and Newall Glacier models for the top 6 m core depth. 

Crevasse geometric model 
The crevasse will be modeled as a void in the glacier, filled with air.  It is assumed that the sides of 
the crevasse are rough, so the fractal-surface model will be used for the walls.  The top of the glacier 
and snow bridge are also assumed to have rough surfaces, so a fractal surface will be applied to 
these.  A cross section of the geometry is illustrated in Figure 15.  Because of the nature of the SBR 
method, only surfaces are relevant to the model, and the extent of the material beyond the surface is 
modeled by specifying a material profile.   
 
The top surface will be modeled as layered media, with each layer 2 cm thick.  The dielectric 
properties are obtained from the various models described above.  The snow-bridge region will 
terminate in a region filled with air (the crevasse), while the remaining top surface adjacent to the 
snow bridge will terminate with a dielectric half-space (the remaining glacier).  The dielectric 
properties of the walls of the crevasse will be modeled with several regions, according to depth, 
consisting of dielectric half-spaces, each region having dielectric properties associated with the 
density at the middle of the region.  With the SBR method, when an incident ray enters the half 
space, it terminates.  Reflection occurring at the surface is retained, of course. 
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The geometric crevasse model is created in two steps.  The first step creates a smooth solid model for 
the top layer of snow (including the snow bridge), for the glacier, and for the crevasse structure by 
extruding the two-dimensional outline illustrated in Figure 15 into a smooth three-dimensional solid.  
The model has different profiles for the snow bridge and the surface region on either side.  The 
parameter  is a geometry parameter, while depth represents the thickness of the multilayer 

dielectric model representing the surface materials.  Also, note the initial symmetry of the models. 
topd

 
The second step is to extract the appropriate surfaces and apply the fractal-creation algorithm 
described in Appendix I.  The result of applying the fractal-creation algorithm to the crevasse 
geometry is illustrated in Figure 16.  To avoid anomalous results from the simulation due to the 
truncation of the surface geometry, an absorbing box is placed around the model.  When a ray 
encounters the absorber, it is terminated.  Consequently, no reflection occurs from the surface, and 
no scattered-field contribution is computed from the surface.  This allows the crevasse to be 
illuminated only through the snow bridge material, and prevents illumination of the crevasse walls 
from the wrong side. 

 
Figure 15 Diagram of the smooth cross section of the crevasse, with parameters, before fractal 

generation is applied.   

  

Lx Lysnow bridge 

top surface 

absorbing walls 
crevasse surfaces 

view from above view from inside and below 

Figure 16 Illustration of the fractal surface geometry, with different colors representing regions with 
different material properties.  The smooth, green sides represent perfect absorber, which, in 
the complete model, actually extents downward to enclose the interior of the model. 
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The different regions where the dielectric properties are defined separately are delineated in Figure 
16 with different colors.   The gray-green region on the top surface represents the snow bridge, and 
the adjacent purple regions represent the glacier.  The smooth green vertical sides at the edges of the 
top surface represent the absorbing walls that prevent illumination of the crevasse walls from the 
wrong side.  Although the absorbing walls extend only a small depth in the illustration, they extend 
to the full depth in the computational model and completely shield the crevasse from any 
illumination, except that entering through the top surface.  The absorber is necessary since the 
surface does not extend indefinitely in all directions, exposing the interior of the model to the 
incident energy if the absorber were not present. 
 
The dielectric permittivity will be modeled with a series of layers to an appropriate depth for both the 
top layer and snow-bridge layer.  For the images presented here, the top layer and the snow bridge 
will have identical density profiles, except that the snow-bridge layer is terminated by air and the 
remainder of the top layer is terminated by a dielectric half-space.  Since the permittivity varies with 
density, the density profile will affect reflection from, propagation into, and propagation through the 
snow-bridge layer.  The variations of the density profile will have the largest effect in the near-
surface region, so the permittivity of the top regions will be modeled with 2 cm resolution in depth.  
The total depth of the top layer varies from 0.5 m to 4 m for different simulations.  On the walls of 
the crevasse, the permittivity will also vary with depth.  Since scattering from the crevasse walls will 
be dominated by the large difference in permittivity between the air inside the crevasse and the ice of 
the glacier, and will not be strongly affected by small changes in the permittivity of the glacier, only 
a few regions will be modeled inside the crevasse.  The dielectric properties will be appropriate for 
the depth at the center of each region.   
 
The geometric and fractal parameters for the model used in the simulations are given in Table 3.  The 
geometrical parameters are defined in Figure 15 and Figure 16, except for gN , which is the number 

of regions modeled along the crevasse walls.  The fractal parameters are described in Appendix I, 
except for topN , which is the number of rectangular sections (along the direction) into which the 

top surfaces on either side of the snow bridge are divided.  Starting the fractal-generation process 
with long, narrow rectangular regions will produce the linear features that mimic the sastrugi 
produced by winds blowing over the Antarctic ice.  That is how the long, linear features visible in 

x̂

Figure 24 and Figure 16 were produced.  Note that the snow-bridge region does not slump below the 
surrounding region in this particular model. 
 

Table 3  Geometric and fractal parameters for crevasse model. 

 

 Top Surface Snow-bridge definition Crevasse definition 

Lx 
(m) 

Ly 
(m) 

wtop 
(m) 

dtop 
(m) 

ddip 
(m) 

wsnow bridge, top 

(m) 
wsnow bridge, bottom

(m) 
dcrevasse

(m) 

dwide 
(m) 

wscrevassee,top 

(m) 
wscrevassee,mid 

(m) 
wscrevassee,bottom 

(m) 
NgBasic 

geometry 
6.0 6.0 2.25 0.5 0.001 1.5 0.5 6.0 0.50 1.25 0.90 0.50 7 

fractal
levels 

peak 
height 

(m) 

scale 
factor 

Ntop levels 
peak height 

(m) 
scale factor fractal levels 

peak height 
(m) 

scale factor Fractal 
parameters 

5 0.125 0.5 2 5 0.125 0.5 5 0.05 0.50 

The top surface, after application of the fractal-surface algorithm, is illustrated in Figure 17.  The 
regions are no longer delineated by color, but the snow-bridge region is still visible due to its finer 
fractal detail.  The mesh is somewhat finer on the snow-bridge surface than on the surrounding 
surface, as can be easily seen in the wire-grid representation in Figure 18.  This will have both 
positive and negative consequences in the simulated SAR images.   
 
Because the texture of the snow bridge is rougher than the surrounding surface, it will appear 
brighter at some aspect angles.  This will aid the differentiation of the scattering from the top of the 
snow bridge and the scattering from the bottom within the image.  In some cases, these components 
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of the image overlap, but in others they will be quite distinct.  However, this does increase the 
contrast between the parts of the image due to surface scattering from the snow bridge and the 
adjacent glacier surface.   
 
Initially, the intent of this study was to include several different geometrical models, with some 
having the snow-bridge and adjacent regions with more similar structure, much like that in Figure 
24.   For other models, the snow bridge would slump below the adjacent regions, as allowed by 
choices of parameters illustrated in Figure 15.  Unfortunately, the current study was limited to a 
single geometric model because of the long computational times required for each phase history, and 
by the need to examine the performance with respect to variation of a number of parameters.  Such a 
parametric examination requires that a common geometry be used to obtain valid comparisons.   
 
 

 
Figure 17 Illustration of the fractal surface geometry of the top layer, without the snow-bridge area 

differentiated by different color. 

 
 
 

 
Figure 18 Illustration of the fractal surface geometry of the top layer, showing a smooth rendition on 

the left, and a wire-frame rendition on the right.  The finer resolution of the fractal surface is 
clearly visible. 
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Simulated SAR images 
The glacial ice and fern exhibit loss at microwave frequencies, and Figure 2 and Figure 3 show that 
lower frequencies have lower losses.  Because of this frequency dependence, images produced in 
three radar bands will be examined.  The FCC frequency-allocation chart [17] shows the following 
allocations (combining primary and secondary allocations) for radiolocation in C-, X-, and Ku-
bands: 
 C-band: 5.25 to 5.65 GHz 
 X-band: 8.5 to 10.55 GHz 
 Ku-band: 15.7 to 17.7 GHz 
If the SAR images are processed with Taylor weighting, 4n  , 35 dBSLL   , then the resolutions 
that are possible (using up to the entire allocation) are listed in Table 4. 
 

Table 4 Possible resolutions available within the FCC radiolocation allocations. 
 Resolution and bandwidth with Taylor weighting ( 4n  , 35 dBSLL   ) 

 
24-inch 

(0.2912 GHz) 
18-inch 

(0.3882 GHz) 
12-inch 

(0.5824 GHz) 
8-inch 

(0.8735 GHz) 
6-inch 

(1.1647 GHz) 
4-inch 

(1.7471 GHz) 

C-band   — — — — 
X-band       
Ku-band       

 
The simulated synthetic-aperture-radar images will be presented in several forms.  When 
appropriate, the amplitude scale will be radar cross section,  , usually plotted in decibels relative to 
a square meter (dBsm).  The radar cross section is an effective area that describes how effectively the 
object scatters the incident radar signal back to the radar.  The product of the radar cross section with 
the incident power density gives the total power scattered in the direction of the radar.  Scaling the 
image to radar cross section is appropriate for objects like trihedral corner reflectors, but is less 
appropriate for distributed objects, and for this reason it is not often used for SAR images.   
 
When the scattering is from a distributed scatterer, it is appropriate to use a reflection coefficient 
without units, , that represents the radar cross section per unit area of the distributed scatterer.  
The amplitude scale will be labeled in decibels relative to the unit area.  Because SAR images 
typically contain distributed clutter, it is appropriate to measure the image amplitude in terms of 

0

0 .   
 
A third representation of the image will simply plot the square root of the magnitude of the response 
at each point.  This representation provides different contrast in the printed image, and is typical of 
the way SAR images are displayed.  When used here, there will be no scale given with the plot.  This 
representation is proportional to the fourth root of power. 
 
The logarithmic (decibel), square root, and linear intensity curves are compared in Figure 19.  The 
non-linear curves expand the intensity range for weak responses and compress the intensity for 
strong responses.  The decibel weighting strongly emphasizes the weak responses, while the linear 
response treats all responses equally.  The square root weighting exaggerates the weak responses 
much less severely than the decibel weighting, but still improves their visibility in the image. 
 
Phase histories for the images are computed with an implementation of the shooting and bouncing 
ray (SBR) method, called Xpatch® [27, 28].  The SBR is described in Appendix II.  Some 
computations for canonical objects show that Xpatch® is capable of producing reasonably realistic 
results for scattering from dielectric objects, although it appears that results with polarization 
perpendicular to the plane of incidence is somewhat more accurate than with polarization parallel to 
the plane of incidence (see Appendix III).  An array of 15 triangular trihedral reflectors was modeled 
to test the imaging capability of Xpatch®.   
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Figure 19 Comparison of different intensity curves used to plot images. 

Trihedral array 
The corner-seam dimension of each trihedral is 0.200 m.  The nominal radar cross section of each 
trihedral is +8.3 dBsm at 9.5 GHz.  The reflectors were placed on the surface  in the pattern 
illustrated in 

0z 
Figure 20.  Note that the dimension x is measured positive down and y is positive to the 

right.  The location of each reflector is listed in Table 5.  The SAR image, based on a phase history 
computed by Xpatch® at X-band over a 1.75 GHz bandwidth is shown on the right in Figure 20.  The 
elevation angle to the SAR platform is 30°.  Each trihedral reflector is clearly visible as a bright spot.  
To suppress sidelobes, the phase-history data is weighted with a Taylor window in both dimensions, 
with 4n   and the design sidelobe level 35 dB , giving resolution of about 4.0 inches (at the 

points).  This Taylor window will be used with all subsequent images.  However, as different 
bandwidths will be used, the resolution will change.  The resolution obtained with this weighting will 
be noted for each SAR image.  

3 dB

Figure 21 shows simulated SAR images of the trihedral array for 
resolutions of 18, 12, 8, and 4 inches.  Note that the 18- and 12-inch resolutions are not capable of 
resolving the most closely spaced reflectors. 
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Figure 20 Diagram of the array of 15 trihedral corner reflectors (left) and a synthetic-aperture image 
of the array (right). 

 

Table 5  Location of the trihedral reflectors in the array illustrated in Figure 20. 

 tri-1 tri-2 tri-3 tri-4 tri-5 tri-6 tri-7 tri-8 tri-9 tri-10 tri-11 tri-12 tri-13 tri-14 tri-15 

x –3 m 0 m 3 m –3 m 0 m 1.5 m 3 m –3 m 0 m 3 m 0 m 0 m 0.5 m 1 m 2 m 
y –3 m –3 m –3 m 0 m 0 m 0 m 0 m 3 m 3 m 3 m 2 m 2.5 m 0.5 m 1 m 2 m 
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 18-inch resolution 12-inch resolution 

   
 8-inch resolution 4-inch resolution 

Figure 21 Images of the trihedral array with resolutions of 18, 12, 8, and 4 inches, at X-band.  The 8-
inch-resolution image resolves each trihedral, but the 12-inch and 18-inch images cannot 
completely resolve the closely spaced trihedrals. 

 

As an example of the ways images will be reproduced here, Figure 22 shows the image of the 
trihedral array at 8-inch resolution, with each of the different representations.  The image on the far 
right is most representative of a typical SAR image, while the other three representations allow 
amplitude values to be read more easily.  Of these, the color scale is best for reading amplitude 
values.  The two center monochrome images differ in measurement scale. The image at center left is 
scaled according to the radar cross section (decibels with respsect to a square meter), appropriate for 
non-distributed scatterers, like corner reflectors.  The image at center right is scaled according to 
reflection coefficient (decibels with respsect to unit area), appropriate for distributed scatterers, like 
surface clutter. The color images will be scaled as radar cross section or reflection coeffcient, as 
appropriate.  The label for the magnitude scale should be referenced to decern the difference. 
 

     

Figure 22 Illustration of the various image representations:  far left is radar cross section,  in dBsm, with 
color scale; middle left is radar cross section (dBsm) with gray scale; middle right is cross 
section per unit area,  in dB; and far right is square root of the amplitude (no scale given). 



0
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Transparency of the Antarctic snow and glacial ice 
For the initial transparency tests, a flat surface 12 m x 12 m was placed 1 m above the trihedral array.  
The dielectric model consisted of 50 layers, each 2.0 cm deep, for a total depth of 1 m.  The 
dielectric profile is based on the composite Siple Dome density profile; the density is given by 
equation (1.23).   Simulated X-band SAR images with 18-, 12-, and 8-inch resolutions are illustrated 
in Figure 23 for the case where the trihedral array buried under the 1-m deep flat layer, with 
depression angle of 30°.  The array is imaged faithfully, without distortion, except for the image-
processing sidelobes associated with the Taylor weighting.  However, the HH polarization (on the 
left) clearly shows the multiple reflections (manifest as a delayed “ghost” image) between the 
reflector and dielectric layer.  This is an expected and potentially important aspect of the scattering 
from a crevasse.  Fortunately, the SBR method as implemented by Xpatch® includes this effect.  
 

 18-inch resolution  

 12-inch resolution   

 8-inch resolution  

Figure 23 X-band response of trihedral array buried under a perfectly flat, 1 m deep layer of Siple 
Dome composite snow and glacial ice, for HH (left) and VV (right) polarizations, with three 
resolution bandwidths.   
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The Antarctic snow and glacial ice is not perfectly flat, so the model is modified to include a rough 
surface.  The surface roughness is based on a fractal-surface model.  A fractal-surface representation 
of the glacial surface is illustrated in Figure 24.  This surface was generated from a perfectly flat 
surface by applying five levels of the algorithm described in Appendix I.  The parameters (see 
Appendix I for definitions) are  and 0.1 mmax  1 2  .  The area represented measures12 along 

each side.  The initial surface, before applying the fractal algorithm, was located 1 m above the  

plane.  The level 0 mesh was obtained by dividing the surface into strips 2 m wide in the  
direction, and then dividing each strip into two right triangles.  By using parallel diagonals to form 
the triangles in each of the strips, the wind-blown-drift (sastrugi) nature of the surface was obtained.  
The resulting mesh cells are narrow triangles, elongated in the  direction, as illustrated in 

 m

ŷ

ˆ ˆ,x y

x̂ Figure 24. 
 
 

   
Figure 24 Fractal surface representing the top surface of the Antarctic snow and glacial ice, with the 

full surface on the left and the mesh detail near center of the fractal surface on the right. 

 
The SAR images of the trihedral array beneath the 1-m deep fractal-surface cover are shown in 
Figure 25, for resolutions of 18, 12, and 8 inches.  The dielectric model consists of 50 layers, each 2 
cm thick, based on the profile of the Siple Dome density model.  The images of the trihedral array 
are not quite as crisp as those for the flat-layer covering.  There is some additional surface scattering, 
as expected.  There is also a sidelobe on either side of the main lobe of each trihedral response that 
was not present in the images with the flat layer.  The rough surface introduces some phase error 
which will increase sidelobes, but these sidelobes are at least partially due to an artifact associated 
with the creating SAR images with the SBR method.  This artifact, its cause, and appropriate 
Xpatch® parameter settings to reduce its effect are discussed in Appendix IV.  Parameters for the 
simulations in this study have been chosen to minimize the artifact. 
 
A side-by-side comparison between X-band images of the uncovered array, the array beneath the 
perfectly flat cover, and beneath the fractal-surface cover are provided in Figure 26, Figure 27, and 
Figure 28 for resolutions of 18, 12, and 8 inches, respectively, with the cover thickness of 1 m.  The 
center frequency is .  Evidence of multiple reflections is seen clearly in the HH-
polarized response when the flat surface is present, and is visible to a lesser degree when the fractal 
surface is present.  With the perfectly flat cover, the response of the reflectors is reduced somewhat, 
but the image is not substantially different from the image of the uncovered reflectors.  However, 
with the fractal cover, the response of the reflectors is reduced, but not uniformly.  The rough surface 
reduces the response of the reflectors, in addition to the inherent propagation loss of the material. 

9.5 GHzf 
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 18-inch resolution   

 12-inch resolution   

  8-inch resolution  

Figure 25 X-band response of trihedral array buried under a rough, 12 m x 12 m x 1 m deep layer of 
Siple Dome composite snow and glacial ice, for HH (left) and VV (right) polarizations, with 
three resolution bandwidths.  The rough surface is the fractal-based surface illustrated in 
Figure 24. 
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Figure 29 compares the response of the trihedral array at C-band (18-inch resolution) when the array 
is uncovered, covered with a smooth surface, and covered with a rough fractal surface for depths of 
1 m, 2 m, and 4 m.  Figure 30 and Figure 31 provide the same comparison at X-band and Ku-band, 
respectively, but with 8-inch resolution.  The peak radar cross section is reduced by the presence of 
the cover, and when surface roughness is introduced, the effect is to increase the loss, and to make 
the loss nonuniform over the image.  With the rough cover in place, most of the reflectors are 
dimmer than the peak response within the image.  The peak radar cross sections in the various 
images of the trihedral array are listed in Table 6, Table 7, and Table 8 for C-band, X-band, and Ku-
band respectively.  The minimum loss, defined as the difference between peak radar cross section 
with no cover and the peak radar cross section with cover, is also tabulated.  Although the C-band 
signal suffers less loss when the surface is smooth, consistent with the propagation loss per meter 
plotted in Figure 2, the lower resolution image shows more loss than X-band at the 1-m and 4-m 
depths for the rough surface.  Ku-band produces brighter images of the trihedrals (because they are 
smooth, flat objects), but exhibits more loss at all depths than either C-band or X-band.  It is not 
expected that the scattering from the bottom of the snow bridge and the crevasse walls will be 



significantly different for each frequency band, so the loss is very important in determining which 
band would be optimum.   

 

    
  no covering 1-m deep flat layer 1-m deep fractal layer 

Figure 26 Comparison of the X-band response of trihedral array uncovered (left), buried under a 
perfectly flat surface (middle), and buried under a rough, fractal surface (right).  The center 
frequency is 9.5 GHz with 18-inch resolution.  The covering is a stack of 50 layers totaling 
1 m deep with a density profile corresponding to the Siple Dome composite model.   

   

    
  no covering 1-m deep flat layer 1-m deep fractal layer 

Figure 27 Comparison of the X-band response of trihedral array uncovered (left), buried under a 
perfectly flat surface (middle), and buried under a rough, fractal surface.  The center 
frequency is 9.5 GHz with 12-inch resolution.  The covering is a stack of 50 layers totaling 
1 m deep with a density profile corresponding to the Siple Dome composite model.   
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  no covering 1-m deep flat layer 1-m deep fractal layer 

Figure 28 Comparison of the X-band response of trihedral array uncovered (left), buried under a 
perfectly flat surface (middle), and buried under a rough, fractal surface.  The center 
frequency is 9.5 GHz with 8-inch resolution.  The covering is a stack of 50 layers 1-m deep 
with a density profile corresponding to the Siple Dome composite model.   
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 trihedral array with no covering 

 
 smooth, flat surface 1-m depth rough, fractal surface 

 
 smooth, flat surface 2-m depth rough, fractal surface 

 
 smooth, flat surface 4-m depth rough, fractal surface 

Figure 29 C-band response of the trihedral array buried under a smooth, flat surface (left) and buried 
under a rough, fractal surface (right), for three depths of snow and glacial ice.  The center 
frequency is 5.45 GHz, and the bandwidth corresponds to 18-inch resolution.  The top row is 
the reference response, with no covering over the array.  The covering is a stack of 2-cm 
thick layers totaling 1 m deep (next to top), 2 m deep (next to bottom), and 4 m deep 
(bottom).  The density profile corresponds to the Siple Dome composite model.   

Table 6  Peak radar cross section of the trihedral reflector array with and without the 
presence of the snow and glacial ice cover, at C-band with 18-inch resolution. 

 peak radar cross section (dBsm) minimum loss (dB) 

depth (m) no cover smooth cover fractal cover smooth cover fractal cover 
1 6.9 5.7 0.4 1.2 6.5 
2 6.9 4.7 0.6 2.2 7.1 
4 6.9 2.4 8.5 4.5 15.4 

 
 
 - 31 - 



    
 trihedral array with no covering 

 
 smooth, flat surface 1-m depth rough, fractal surface 

 
 smooth, flat surface 2-m depth rough, fractal surface 

 
 smooth, flat surface 4-m depth rough, fractal surface 

Figure 30 X-band (9.5 GHz) 8-inch resolution response of the trihedral array buried under a smooth, 
flat surface (left) and a rough, fractal surface (right), for three depths of snow and glacial 
ice.  The top row is the reference response, with no covering over the array.  The covering is 
a stack of 2-cm thick layers totaling 1 m deep (next to top), 2 m deep (next to bottom), and 
4 m deep (bottom).  The density profile corresponds to the Siple Dome composite model.   

Table 7  Peak radar cross section of the trihedral reflector array with and without the 
presence of the snow and glacial ice cover, at X-band with 8-inch resolution. 

 peak radar cross section (dBsm) minimum loss (dB) 

depth (m) no cover smooth cover fractal cover smooth cover fractal cover 
1 8.4 6.3 2.8 2.1 5.6 
2 8.4 4.3 2.3 4.1 10.7 
4 8.4 0.2 5.4 8.2 13.8 
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 trihedral array with no covering 

 
 smooth, flat surface 1-m depth rough, fractal surface 

 
 smooth, flat surface 2-m depth rough, fractal surface 

 
 smooth, flat surface 4-m depth rough, fractal surface 

Figure 31 Ku-band (16.8 GHz) 8-inch resolution response of the trihedral array buried under a 
smooth, flat surface (left) and buried under a rough, fractal surface (right), for three depths 
of snow and glacial ice.  The top row is the reference response, with no covering over the 
array.  The covering is a stack of 2-cm thick layers totaling 1 m deep (next to top), 2 m deep 
(next to bottom), and 4 m deep (bottom).  The density profile corresponds to the Siple Dome 
composite model.   

Table 8  Peak radar cross section of the trihedral reflector array with and without the 
presence of the snow and glacial ice cover, at Ku-band with 8-inch resolution. 

 peak radar cross section (dBsm) minimum loss (dB) 

depth (m) no cover smooth cover fractal cover smooth cover fractal cover 
1 13.3 9.8 3.9 3.5 9.4 
2 13.3 6.3 2.1 7.0 15.4 
4 13.3 0.7 3.7 14.0 17.0 
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Simulated images of the crevasse and snow bridge 
A large collection of simulated images of the crevasse and snow bridge is contained in Appendix V.  
This collection includes 768 images in 96 sets, representing 128 computer simulations.  These 
images encompass the following set of parameters: 
 Radar band: C-band, X-band, and Ku-band 
 Resolution: 18-inch (all bands) and 8-inch (X-band, Ku-band only) 
 Geometry model: Crevasse with snow bridge and snow bridge only (without crevasse) 
 Snow-bridge depth: 0.5 m, 2.0 m, 4.0 m 
 Permittivity profile: Siple Dome composite and Newall Glacier (with dip), both at  0  CT  
 Depression angle: 15° and 30° 
 Azimuth angle: 0°, 30°, 60°, and 90° 
 Polarization: HH and VV (transmit and receive horizontal, transmit and receive vertical) 
The images from each simulation are displayed in three different formats: monochrome reflection 
coefficient ( , dB), color reflection coefficient (0 0 , dB), and monochrome 4th-root of power 
(typical SAR image format).  By using permittivity profiles at a temperature of 0° C, a worst-case 
propagation model for dry snow is obtained.   
 
Note:  azimuth is measured positive in the direction from the  axis toward the negative axis.  

Thus, when the radar is at azimuth, it is looking down the  axis.  Similarly, when it is at 

x̂

x̂

ŷ

0 90   
azimuth, it is looking down the axis, and azimuth of ŷ 30   or 60  is looking between the positive 

and  axes.  See x̂ ŷ Figure 16 and Figure 20 for the location of these axes. 
 
As stated earlier, the top of the snow-bridge region in this model is slightly rougher than the 
surrounding material (see Figure 17).  For some azimuth angles, this leads to stronger scattering from 
the top surface of the snow-bridge region than from the surrounding surface.  The scattering from a 
point in the interior region (on the bottom of the snow bridge or on the crevasse wall) is at a greater 
range than the corresponding point directly above it on the top surface.  This additional range causes 
a time delay, and, when imaged, these interior points appear at a greater range in the image.  
Scattering components that are delayed sufficiently that they appear beyond the extent of the 
truncated geometry will be easily discernable in the images.  When the delay is not sufficient to 
extend outside the truncated geometry of the model, the returns from depth will cause the image of 
the crevasse to be broadened when compared to its extent on the surface.  However, care must be 
taken to not confuse the scattering directly from the top surface of the snow bridge with scattering 
from the interior.  Only those components that are delayed in time, and thus appear at a greater 
range, are from the interior.  Because the model produces a strong return from the surface of the 
snow bridge, its location in the image can be easily indentified.  The image from interior points is 
then indentified by its increased range in relation to the surface image.  This is a potential point of 
confusion, since the surface image is quite prominent in many of the images, and could be easily 
confused with the image of the below-surface features of the crevasse.  Thus, appropriate care must 
be taken when interpreting the images. 
 
All three radar bands can support imaging at 18-inch resolution, but only X-band and Ku-band can 
support 8-inch resolution.  However, Figure 2 shows that C-band will have an advantage with less 
loss and greater penetration depth.  To answer whether or not improved penetration depth or finer 
resolution is most important, examine Figure 32 and Figure 33.  These images are formed with a 
depression angle of 30° and azimuth of 0°.  The radar is looking down the length of the crevasse, 
which seems to be the worst aspect, based on images from the Sandia Antarctic mission in 
December, 2006 [9].  In this example, the snow bridge is 2 m deep, with dielectric properties based 
on the Siple Dome composite profile.  The images are presented as the 4th root of power, which is a 
typical presentation for SAR images.   
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Figure 32 compares the response among the three radar bands when the resolution is 18 inches.  
Within the square image of the top surface, it is difficult to distinguish the crevasse and snow bridge 
from the surface clutter on either side. The image of the crevasse should be a vertical strip in the 
center.  However, the delayed response from the interface between the ice and the air at the bottom 
of the snow bridge is clearly present, especially in the HH-polarized data.  This response is not 
brighter than the surrounding surface, but because the model is limited in extent and surrounded by 
vacuum, the delayed response shows clearly in the void above the image of the surface.  The 
response is weakest at Ku-band, especially in the VV-polarized image, but any advantage between 
C- and X-band is less clear at this resolution.   

    
 2-m depth, 18-inch resolution, C-band, 30° depression angle, AZ = 0° 

    
 2-m depth, 18-inch resolution, X-band, 30° depression angle, AZ = 0° 

    
 2-m depth, 18-inch resolution, Ku-band, 30° depression angle, AZ = 0° 

Figure 32 Comparison of response in the three radar bands for 2-m depth Siple Dome model with 18-
inch resolution, 30° depression angle, and 0° azimuth. (plotted as 4th root of power) 

 
The 8-inch-resolution image at X-band in Figure 33 clearly demonstrates the advantage of the higher 
resolution available at X-band, even over the better penetration depth at C-band.  The snow-bridge 
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region is clearly visible in the HH-polarized image, even in the portion of the image where it 
overlaps the surface response.  Figure 33 also shows that the snow bridge is not as clear at Ku-band 
as it is at X-band, implying that the additional propagation loss at the higher frequency is taking its 
toll.   
 

    
 2-m depth, 8-inch resolution, X-band, 30° depression angle, AZ = 0° 

    
 2-m depth, 8-inch resolution, Ku-band, 30° depression angle, AZ = 0° 

Figure 33 X- and Ku-band responses at 8-inch resolution with snow-bridge depth of 2 m, Siple Dome 
model, 30° depression angle, and 0° azimuth (plotted as 4th root of power . 

 
When the scattered return comes primarily from the region near the bottom of the snow bridge, a 
bright response will occur at an offset in range, consistent with the depth.  If the top surface scatters 
weakly, there will be a dark region at the near-range part of the crevasse image.  When significant 
scattering occurs both near the surface of the snow bridge and at the bottom of the snow bridge, then 
the additional delay can cause the crevasse can appear wider than it really is, as illustrated in Figure 
34.  With sufficient resolution, the image of the bottom of the snow bridge, if deep enough, can 
appear to be entirely separated from the image associated with surface scattering, as illustrated in 
Figure 35, where the depth of the snow bridge is 4 m. 
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Figure 34  Crevasse with snow bridge, 2-m depth, 18-inch resolution, , 90° azimuth,  30° 

depression angle (from 

9.5 GHzcf 
Figure V-34). 

 
Figure 35  Snow bridge only, 4-m depth, 8-inch resolution, , 90° azimuth,30° depression 

angle, 4th-root of power  (from 

9.5 GHzcf 
Figure V-78). 

Snow bridge only, without crevasse walls 
With this model for the crevasse and snow bridge, the dominant scattering at depth comes from the 
interface between the bottom of the snow bridge and the air interior to the crevasse.  The crevasse 
walls provide only a minor contribution.  The computational burden is quite heavy for the complete 
model of the crevasse and snow bridge.  The model of the top surface with the snow bridge alone is 
significantly smaller.  By terminating the surface layers on either side of the snow bridge with a 
dielectric half-space, the deeper part of the glacier is included.  By terminating the snow bridge with 
air, the discontinuity leading to the hollow crevasse is included.  Since the walls of the crevasse are 
missing, direct scattering from the walls of the crevasse are not included.  Images formed with the 
complete model (top two rows) and with only the top layers and snow bridge (bottom two rows) are 
shown in Figure 36.  The depth of the top layer is 2 m.  The differences in the images computed from 
the two models are very subtle.   
 
These are X-band images, with 8-inch resolution, and the model measures (6 m = 190 
wavelengths at 9.5 GHz).  The computations for the complete model require considerably more time 
than for the snow bridge alone.  For example, computing the phase history for the entire model at X-
band with 8-inch resolution, at elevation of 30° and azimuth of 60°, required 66h  44m 4.44s on an 
Intel® Xeon® X5365 CPU core running at 3.00GHz .  The same calculation with only the snow 
bridge required only 27h 30m 26.6s.  For this reason, the computations at some of the depths were 

6 6 6 m 
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performed with only the snow bridge, without the crevasse walls.  These are indicated in Appendix 
V, where appropriate.  
 
The conclusion is that, at least for snow bridge depths of about 2 m and larger, the scattering 
contribution from the crevasse walls is minor compared to the scattering from the discontinuity 
associated with the hollow crevasse. 
___________________________________________________________________________________________________________________________________________________ 

Crevasse and snow bridge, 8-inch resolution at X-band, fc = 9.5 GHz 

    

    

___________________________________________________________________________________________________________________________________________________ 

Snow bridge only, 8-inch resolution at Ku-band, fc = 9.5 GHz 

    

    

Figure 36 Comparison of responses at X-band for crevasse with snow bridge and snow bridge only , 
2.0-m depth, 30° depression angle, magnitude plot (dB). 

Optimum radar band for imaging crevasses 
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Having established that finer resolution is a significant advantage, C-band is no longer attractive, 
even though it exhibits lower propagation loss in ice.  One might expect that X-band would perform 
better than Ku-band at the same resolution, since propagation losses will be greater at Ku-band.  The 
modeled results are consistent with this expectation, as illustrated in Figure 37.  In this case, the 



snow-bridge depth is 4 m, and to save time, the computation only included the snow bridge.  The 
dielectric properties are based on the Siple Dome composite profile, and the resolution is 8 inches.  
The top two rows are X-band images, while the bottom two rows are Ku-band images.  The presence 
of the snow bridge is very apparent in the X-band image.  The delay is sufficient so that the image 
from the surface features and the image from the air-dielectric interface at the bottom of the snow 
bridge are well separated.  In the Ku-band images, the response from depth is considerably weaker 
than in the X-band images.  This provides evidence that X-band is the best choice for this resolution. 
___________________________________________________________________________________________________________________________________________________ 

8-inch resolution at X-band, fc = 9.5 GHz 

    

    

___________________________________________________________________________________________________________________________________________________ 

8-inch resolution at Ku-band, fc = 16.8 GHz 

    

    

Figure 37 Comparison of responses at X-band and Ku-band for snow bridge,4.0-m depth, 30° 
depression angle, magnitude (dB). 

Effect of depression angle 
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The choice of depression angle affects how bright the image of the snow bridge appears, as 
illustrated in Figure 38 and Figure 39.  The image of the 2-m-depth Siple Dome snow bridge at 
azimuth angle 30° becomes brighter as the depression angle increases from 15° to 45°.  However, 



when the depression angle is about 30°, the direct return from the surface begins to become more 
apparent.  For this surface-roughness model, the top surface of the snow bridge appears brighter than 
the adjacent surface, making the snow bridge obvious at all of these depression angles.  Although an 
optimum depression angle will likely depend on the details of the surface roughness, there appears to 
be an optimum depression angle to maximize contrast between the surface returns and the snow-
bridge returns.  In this case, the contrast is clearly poorer at 15° and 45°, and the contrast begins to 
deteriorate about 20° and 40°.  The best contrast is at a depression angle of about 30°, but there is 
little change in the vicinity of this angle. 
 

   

   

 15° 20°  25° 30° 35° 40° 45° 

Figure 38 Magnitude plot (dB), snow bridge only, 2-m depth, 8-inch resolution, , AZ = 

30° at several depression angles. 

9.5 GHzcf 

    

    

 15° 20°  25° 30° 35° 40° 45° 

Figure 39 Fourth root of power (typical SAR image format), snow bridge only, 2-m depth, 8-inch 
resolution, , AZ = 30° at several depression angles. 9.5 GHzcf 

Effect of non-monotonic density profile 
The smooth, gradual change in permittivity with depth produces little direct reflection.  However, 
with the Newall Glacier data, there is a fairly sharp dip in the density at a depth of about 2.1 m 
(Figure 8), with a corresponding dip in the permittivity (Figure 14).  The low density at this depth is 
not as abrupt as the change from the snow bridge to the air-filled crevasse, but it might be expected 
to produce measurable backscatter and be visible in the SAR image.  Examination of the HH 
polarized image at 0° azimuth in Figure 40 illustrates this.  In addition to the delayed return from the 
bottom of the snow bridge, visible at the middle of the top of the image, the entire top edge of the 
image has been extended.  (The top surface stops at the bright edge at cross-track range of 3 m.)  In 
this case, the contribution from the density dip is not quite as bright as the surface clutter, and would 
probably not be visible if the extent of the model had not been truncated.  Nevertheless, this is an 
indication that information about density variations less severe than the presence of an air-filled 
crevasse can be present in the SAR phase history.  This information might be accessible through the 
application of interferometric or tomographic techniques.  However, current techniques are 
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dominated by the brightest return at a given position, so if the return from depth is overlaid onto a 
brighter surface feature, it will be difficult, if not impossible, to detect. 

 
Figure 40 X-band image of a 4-m deep snow bridge, using the Newall Glacier profile containing the 

dip in density at a depth of about 2 m, 8-inch resolution, , 0° azimuth,  30° 

depression angle.  

9.5 GHzcf 

For an additional example, the permittivity profile on either side of the snow bridge was set to match 
the Newall Glacier profile without the dip, and the profile of the snow bridge was set to the Newall 
Glacier profile with the dip.  Both profiles were terminated with a dielectric half-space, so that the 
model did not include the abrupt discontinuity associated with the void of the crevasse.  A portion of 
the simulated SAR image of this configuration is shown in Figure 41.  The resolution is 8 inches at  
X-band, with 30° depression angle and 0° azimuth.  The part of the image extending beyond the top 
edge of the square image of the surface is caused by reflection from the dip in the permittivity 
profile.  The extension measures slightly more than 2 m beyond the edge, consistent with the 
position of the minimum in the profile.  The total thickness of the model, before the half-space 
termination, is 4 m.  The scattering from the dip in permittivity is fairly weak, however, and is 
visible because it extends into the dark region outside the extent of the model. 

  
Figure 41 Simulated SAR image of the snow bridge model with Newall Glacier profile, for 8-inch 

resolution at X-band, 30° depression angle, and 0° azimuth.  The snow-bridge region 
incorporates the dip, but the adjacent material does not.  There is no air-filled crevasse in 
the model:  all permittivity profiles are terminated with a dielectric half-space. 

 
 
 
 
 

 
 
 - 41 - 

 



 
 
 - 42 - 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This Page Intentionally Blank 



Conclusions and recommendations 
It has been illustrated that the dry snow and glacial ice are sufficiently transparent at X-band that 
significant radar return can be obtained at depths to at least four meters.  It has also been shown that 
significant reflection occurs from the bottom of the snow bridge, at the interface between the snow 
and the void of the crevasse.  This reflection is delayed in time because of the depth and the slower 
light speed in the medium, and its contribution will overlay onto the surface clutter at a range beyond 
the actual location of the snow bridge.  The image from the bottom of the snow bridge will be 
obscured if the surface clutter at that location is of comparable or greater brightness.   Additional 
scattering at depth will occur from the walls of the crevasse.  However, it has been demonstrated that 
the contribution from the walls may be less significant than that from the bottom of the snow bridge, 
at least with the single example of crevasse geometry examined in this study.  This is a surprise, 
since it has been suggested that scattering from the walls of the crevasse would be the dominant 
component.  Clearly, the walls can be efficient scattering surfaces, but whether a significant portion 
of the scattered energy is scattered back to the radar depends on the details of the geometry.  A better 
understanding of the geometry of the crevasse and snow bridge is needed to improve the fidelity of 
the model.  Nevertheless, it is important to see that scattering from the dielectric-to-air interface at 
the bottom of the snow bridge can be a dominant contributor. 
 
Because the glacial ice exhibits measureable propagation loss at microwave frequencies, scattering 
from features at depth need to be fundamentally brighter than the surface clutter onto which they are 
overlaid, if these features are to be detected in a two-dimensional SAR image.  When the structure at 
the bottom of the snow bridge or on the surface of crevasse walls is rougher than the top surface of 
the glacier, it is likely that the scattering from depth will be visible against surface clutter.  
Unfortunately, at this time there is no way to be certain that this will always be the case.  However, 
since it is has been shown that the glacier exhibits good transparency at X-band, it may be possible to 
reliably identify the image of the bottom of the snow bridge and the crevasse walls by using 
interferometry or tomography.   Standard algorithms may not be adequate, however, so this remains 
an area for future research.  If successful, such an approach might allow a more reliable detection of 
the presence of a snow bridge over a crevasse, and even provide some measure of the depth of the 
snow bridge.    
 
This study focused on modeling dry snow and glacial ice, not wet snow.  Applying the permittivity 
models at  represents a worst-case model in terms of propagation loss.  However, this 
model assumes there is no liquid present, even at 

0  CT  
0  CT   .  The propagation losses for wet snow 

can be considerably higher, but the loss is extremely variable for different environments.  When even 
small amounts of liquid are present, the loss is very sensitive to the impurity content (both to the 
chemical composition and to the concentration), which can be different at different locations, even in 
the same environment.  Because of the extreme variability across environments and locations, it will 
be necessary to model the complex permittivity of wet snow using a range of values for the loss 
tangent.  Wet snow should be considered in future studies. 
 
This study has demonstrated the viability of using an extended physical-optics method, the shooting 
and bouncing ray method, to compute phase histories for imaging a crevasse covered by a snow 
bridge.  The particular implementation of the SBR method used in this study was designed with a 
focus on PEC objects, PEC objects with thin dielectric coatings, dielectric layers bounded by 
dielectric half-space, and thin dielectric objects surrounded by air [25].  The modeling of a dielectric 
gradient is accomplished by modeling a solid object with  surfaces only, and by applying reflection 
and transmission coefficients computed for the layered media.  When the surface has structure, such 
as the fractal surface used to simulate the sastrugi on the Antarctic glaciers, there is one noticeable 
drawback:  the surface geometry of the bottom surface matches that of the top surface precisely.  In a 
real snow bridge, it is very likely that the top surface is smoother than the interior bottom surface, 
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where ice crystals are known to grow into interesting shapes.  Unfortunately, the simulation did not 
support the modeling of this condition, and the top and bottom surfaces of the snow bridge had 
identical fractal surfaces.  The result is that the scattering from the dielectric-to-air interface at the 
bottom of the snow bridge had to compete with similar scattering from the air-to-dielectric interface 
at the top surface.   Future work should focus on eliminating this shortcoming, and direct the 
modeling to allow different surface structures on the top and bottom surfaces of the snow bridge.   
 
Long computation times of several days for just one phase history have been encountered with the 
detailed fractal-surface models.  The SBR method should be able to advantageously utilize parallel 
processing, making use of the large number of stream processors being implemented in modern 
graphics processors [31].  Future efforts should also consider implementing the SBR method for 
parallel processing. 
 
When viewing the data in the form of SAR images, the brain’s ability to recognize patterns makes 
recognition of the signature of the crevasse and snow bridge relatively easy.  Although this study 
emphasized computation of simulated SAR images, useful information also can be obtained from 
simpler models.  For example, instead of computing complete SAR phase histories, time-domain 
response computed with the radar located at a single position can be useful for understanding the 
scattering mechanisms.  Since this computation is considerably faster than computing a complete 
phase history, more variations in geometry can be examined.  This approach could be applied in the 
future to efficiently identify appropriate geometrical configurations to study in more detail with 
complete image simulations.  
 



Appendix I – Building a fractal surface 
Strictly, a fractal surface is one which exhibits self-similarity (or statistical self-similarity when 
the surface has a random character) at all scales.  However, for the purposes of computer 
modeling, the number of scales must be limited; it is not practical to decrease the scale without 
limit.  In contrast, a true mathematical fractal can be examined at any scale without limit, and the 
fractal function maintains its self-similarity.  The surface described here might best be designated 
a fractal-like surface, but the term fractal surface will continue to be used. 
 
The fractal surface utilized here is not based on a self-similar function, but on an algorithm that 
enforces self-similarity over a limited number of scale sizes.  The algorithm begins with a surface 
divided coarsely into one or a few triangular facets.  This beginning state is called level 0.  As the 
algorithm progresses to higher levels, the facets from the previous level are divided by creating 
new nodes at the midpoint of the edges of the parent triangle.  Each parent triangle becomes four 
triangles.  Each new node is then moved a distance   along the parent triangle’s normal vector.  
The distance  is a uniform random variable such that 
  (I-1) level level    
where 

  (I-2) 1level
level max

   
with 0  and is the maximum deviation to be applied at level one.  As the algorithm 
proceeds, the scale decreases, and the peak random deviation that can be applied to the new nodes 
decreases with the scale.  With the bisection of the edges and setting

1   max

1 2  , the statistical 
properties at each scale are self-similar. 
 
Consider a single triangle, as illustrated on the left in Figure I-1.  For many applications, the 
equilateral triangle is desirable, but triangles of unequal sides can be used as well.  The triangle is 
divided by placing new nodes at the bisection of each side and connecting all of the nodes to form 
four triangles, as illustrated in Figure I-1.  Defining the initial triangle to be level 0, the first 
division will be level 1, with each subsequent division labeled accordingly, as illustrated.   
 

 

level facets nodes edges 
0 1 3 3 
1 4 6 9 
2 16 15 30 
3 64 45 108 

Figure I-1  Illustration of a single triangle as it is subdivided at different levels. 

 
Thus, at level 0, nodes {a, b, c} are connected to form three edges, which is the initial triangle.  
At level 1, nodes {d, e, f} are added at the bisection of the edges.  The four triangles are {a,d,f}, 
{d,b,e}, {e,c,f}, and {d,e,f}.  Note that the nodes have been ordered in a right-hand direction.  By 
exchanging the order of any two nodes in a triangle, the order will be in the left-hand direction.  
The right-hand ordering will be used here. 
 
While the illustration in Figure I-1 is two-dimensional, it could just as easily represent the surface 
of some smooth three-dimensional object.   Consider first triangle, with nodes {a, b, c}.  These 

 
 
 - 45 - 



points can be considered vectors in some coordinate system.  Thus point a is located by vector a


, 
point b by b , and so on.  The unit normal to the facet is  



  
   
   

   
   

   
   , ,

ˆ
a b c

        
  

        

b a c b c b a c a c b a
n

b a c b c b a c a c b a

          
           . (I-3) 

 
To reach level 1, the new nodes are 

  , ,
ˆ

2 a b c


  

a b
d n


 , (I-4) 

  , ,
ˆ

2 a b c


  

b c
e n

 
 , (I-5) 

and 

  , ,
ˆ

2 a b c


  

a c
f n

 
 , (I-6) 

where the random deviation, , is taken to be an independent draw for each node. 
 
Let n be the level of subdivision.  Beginning with a single triangle, the number of facets at each 
level is 

 . (I-7) 22 n
facetN 

The number of nodes is 

   12 1 2 1n n
nodesN    . (I-8) 

The number of edges, accounting for the shared edges, is 

   13 2 1 2n n
edgesN   . (I-9) 

The numbers of facets, nodes, and edges at each level from 0 to 3 are tabulated in Figure I-1.   
 
An example of the evolution of a fractal surface with the application of a 9-level algorithm is 
illustrated in Figure I-2.  The surface at level 0 is entirely flat and smooth.  As can be seen, levels 
1 and 2 determine the large-scale shape of the surface.  As the number of the level increases, the 
detail becomes finer, and the deviation from the previous surface decreases.  However, the 
character of the surface structure at each level (scale) is statistically similar to that of the adjacent 
levels.  At the scale of this illustration, there is little obvious difference between the results of the 
last three or four levels.  That is not surprising, since the ratio of scales from level 1 to level 9 is 
256.  The additional detail becomes apparent when a small section near the center is magnified, as 
in the illustration of levels 8 and 9 in Figure I-3.  Although the scale at level 9 is comparable to 
the resolution of the image, the difference in roughness between levels 8 and 9 is still visible.  
 

 
 
 - 46 - 



 
 Level 0 Level 1 Level 2 

  
 Level 3 Level 4 Level 5 

 
 Level 6 Level 7 Level 8 

 
  Level 9  

Figure I-2 Evolution of a fractal surface, with 9 levels of iteration. 
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 Level 8 Level 9 

Figure I-3 Comparison of the detail contained in levels 8 and 9, near the center of the surface. 
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Appendix II – Shooting and Bouncing Ray (SBR) Method  
The solution of Maxwell’s equations with rigorous numerical methods generally presents 
difficulty when structures are large when measured in wavelengths of the electromagnetic field.  
However, since exact analytic solutions are only available for certain idealized geometries and 
cannot be obtained for arbitrary structures, computer modeling is still the primary tool to apply.  
When the objects of interest are small (measured in wavelengths), several rigorous numerical 
methods can be applied:  the method of moments (MoM), the finite-difference-time-domain 
method (FDTD), the finite-integral-time-domain method (FITD), and finite-element methods 
(FEM).  Several less rigorous methods, each involving physical or mathematical approximations 
(or both) have been devised to evaluate electromagnetic scattering and propagation in the 
presence of large structures.  Some of these are more rigorous than others, while some (for 
example geometric optics) provide good visualization and intuition. 
 
The physical-optics (PO) method is often used to obtain scattered fields from large objects.  This 
method is particularly suited to scattering from large perfect-electric-conductor (PEC) surfaces  
The PO method integrates surface currents against the free-space Green’s function to obtain the 
scattered field.  However, rather than rigorously solve for the surface currents as the method of 
moments (MoM) does, PO assumes the surface currents, based on local geometry and the 
tangential component of the incident magnetic field.  The assumption is fairly accurate on 
surfaces directly exposed to the source, but it does not accurately account for the behavior of the 
current at edges, nor does it account for currents that exist in the shadow region.  PO can be 
extended beyond PEC surfaces to include dielectric surfaces by applying the appropriate 
boundary conditions and using equivalent magnetic currents associated with the tangential 
electric fields at the dielectric interface.  Another extension, called physical theory of diffraction 
attempts to improve PO by including estimates of the edge currents.   
 
The shooting and bouncing ray (SBR) method is an extension of physical optics, merging 
geometric optics with physical optics.  Usually with physical optics, the incident field is taken to 
be a plane wave propagating from some specified direction.  In the SBR method, the incident 
field is defined using geometric optics (ray tracing), while the scattered field is computed with 
physical optics.  If only the direct incident rays are used, SBR reduces to physical optics.  The 
advantage of SBR lies in the inclusion of multiple reflections of the incident rays.  SBR can be 
used efficiently to compute the electromagnetic fields, radar cross-section, and coupling between 
antennas for geometries that are very large with respect to a wavelength.  As does PO, the SBR 
method computes the scattered field from an object by integrating surface currents (both electric 
and magnetic) against the free-space Green’s function to propagate the associated fields to the 
field point.   
 
Apparently, the SBR method was initially used to analyze scattering from cavities [1], where the 
multiple reflections of the incident rays produced significant contributions to the currents used to 
compute the scattered field.  The SBR method has been successfully applied to scattering from 
rough surfaces, with results that agree well with a method-of-moments calculation [2].  Like the 
method of moments, it is often implemented in the frequency domain.  It has, however, also been 
used to generate inverse-synthetic-aperture-radar images directly in the time domain [3].  The 
time-domain implementation of SBR, while faster, is not quite as accurate as computing phase 
histories in the frequency domain [25].  Phase histories will be computed in the frequency domain 
in this study.  
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As noted above, unlike simple physical optics, SBR can include the effect of multiple reflections.  
It does so by tracing rays (representing plane waves) from the source of the incident field, 
allowing the rays to reflect and refract from and through the various surfaces and materials.  The 
reflected and refracted rays contribute additional components to the PO currents beyond the 
currents due simply to the direct incident field used in the traditional physical-optics method.  
Thus, the SBR method can account for multipath propagation.  However, it should be noted that 
the effects of multipath propagation are modeled only by the multiple reflection / refraction of 
rays originating from the source.  Specifically, radiation from secondary sources (surface 
currents) is not considered in generation of rays in directions other than the specular directions 
associated with the reflected and refracted rays.  The coupling between the currents on various 
surfaces is modeled only by the specular reflection and refraction of the rays.  While this is a 
significant improvement to the PO method, incorporating those components of the multipath 
interaction that are usually dominant, situations can be contrived where the more exact coupling 
modeled with the method of moments is needed to produce accurate and meaningful results.  
Nevertheless, the SBR method is very useful in situations where the multipath coupling is 
dominated by specular reflections from the source, such as a source antenna radiating into a 
region containing many large objects, and other situations that are not tractable with the method 
of moments or other rigorous methods. 

Relationship between MoM and SBR 
The level of rigor contained in the shooting-and-bouncing-ray method can be assessed by 
comparing it with the rigorous method of moments.  Both the method of moments and the 
shooting-and-bouncing-ray method are based on the volume-equivalence and surface-equivalence 
principles of electromagnetics [26].   
 
In the equivalence principles, the incident field is defined to be the field produced by some source 
in free space, without the presence of the scattering objects.  The scattered field is an additional 
field component required to satisfy the boundary conditions on the objects.  In the equivalence-
principle view, currents are induced by the incident field, which become the sources for the 
scattered field.  The scattered field is computed by integrating the equivalent electric currents on 
the PEC surfaces and the equivalent magnetic and/or electric currents on the boundaries of the 
permeable objects against the free-space Green’s function.  The computation is performed in free 
space, without any objects present, with only the equivalent currents present.  The total field at 
any point is the coherent sum of the incident and scattered field.  Since the incident and scattered 
fields are defined without any objects present, there are no shadowing or blockage issues.  In the 
shadow regions, the incident and scattered fields cancel each other to a lesser or greater degree.  
Where the field cancellation is imperfect, the total field is described as a diffracted field. 
 
The only difference between MoM and SBR is the way in which the equivalent currents are 
computed.  However, this is a very significant difference:  MoM rigorously solves for the 
currents, where SBR approximates the currents in the same way as the physical-optics 
approximation.  Once the currents are determined, both methods compute the scattered field by 
integrating the currents against the free-space Green’s function. 
 
In the method of moments, interactions between various parts of the object are contained in the 
solution of an integral equation.  The integral equation embodies all of the physics of the 
problem, including Maxwell’s equations and the boundary conditions specific to the problem, 
with no approximations.  However, in order to solve for the unknown currents, the integral 
equation is discretized by expanding the unknown with an appropriate set of basis functions.  If 
the set spans the space, and is complete, then the solution is still exact.  In reality, though, the set 
must be infinite in order to be complete, but in order to solve the problem numerically, the set 
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must be truncated.  The accuracy and precision of the solution is determined by how the set of 
basis functions is truncated.  In principle, arbitrary precision can be achieved by simply adjusting 
the truncation to include more basis functions.  In practice, the computing resources limit the 
number of basis functions that can be used.  Problems that include objects that are large 
(measured in wavelengths) require a larger number of basis functions for an accurate solution 
than do problems containing only smaller objects.  Thus, there exists a practical limit to the size 
of problem that can be handled with MoM. 
 
Rather than solve for the unknown currents directly, the shooting-and-bouncing-ray method 
simply estimates the currents.  As already noted, SBR is an extension of the physical-optics (PO) 
method, which approximates the currents by relating them to the tangential components of the 
incident field (defined according to the equivalence principles).  SBR simply extends physical 
optics by adding contributions from reflected rays.  Geometric-optics methods are used to trace 
rays from the incident-field source, allowing for reflection and refraction.  The equivalent 
currents are then approximated as the physical-optics current from the incident field plus 
contributions from the tangential fields of the reflected and refracted rays.  In this way, 
interactions between various parts of the objects are handled through multiple reflections of the 
incident rays.  Since rays are not generated for the scattered field computed from the equivalent 
currents, in regions that are not reached directly by incident rays or the reflected rays, no 
equivalent currents are generated, even if the scattered field is nonzero in these regions.  For 
many applications, this is acceptable, but it does raise questions about using SBR for computing 
fields inside closed structures with only small openings and some other geometries.   
 
It is well known that the physical-optics current does not include the integrable singularity at 
edges of PEC objects, nor does it (or SBR) include currents in the shadow region (for example on 
the back of a PEC sphere).  Similarly, PO does not incorporate the interaction between currents.  
The improvement offered by SBR over PO is the inclusion of an approximate interaction between 
currents on different objects, through the inclusion of additional physical-optics-like currents 
caused by reflected and refracted rays.  Thus in this sense, the SBR method is a higher-order 
version of the physical-optics method.  While SBR does approximate the physics, it has the 
advantage of requiring considerably fewer computing resources for a given size problem than the 
more rigorous methods.  Thus, it can handle much larger problems than the method of moments 
and other rigorous solvers.  Fortunately, the computed fields are accurate enough for many 
purposes.  In fact, physical-optics (and the SBR method) can and does predict fields inside 
shadow regions that are not reached by the incident (or multiple reflected rays).  This field is 
called the physical-optics diffraction field, and is often approximated with Fresnel or Fraunhofer 
diffraction, where additional mathematical approximations are applied to the “exact” physical 
optics formula.  

The Xpatch® implementation of the SBR method 
The Xpatch® software [25, 27] uses the shooting and bouncing ray (SBR) method to compute 
scattered electromagnetic fields and coupling between antennas for geometries that are very large 
with respect to a wavelength.  A good summary of its capabilities is contained in [28].  As noted 
above, the SBR method is an extension of the physical-optics (PO) method, which computes the 
scattered field from an object by integrating surface currents against the free-space Green’s 
function to propagate the associated fields to the field point.   
 
In PO, the surface currents are assumed to be determined locally by the object’s geometry, 
composition, and the incident field.  For example, the surface electric current density on a perfect 
electrical conductor (PEC) is related to the tangential magnetic field at the surface, and is 
assumed to be 
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 ˆ2surface inc J n


H


, (II-1) 

where surfaceJ


 is the surface current,  is the unit normal at the local point on the surface, and 

 is the incident magnetic field.  Similarly, for non-PEC materials, the surface current (electric 
and/or magnetic) can be obtained from the local boundary conditions.   

n̂

incH


 
Nevertheless, while the PO surface currents amount to an approximation of the true physics, for 
large objects the approximation is usually very good.  However, if the currents were computed 
rigorously, for example with the method of moments (MoM), one would discover that the current 
on a PEC surface rises to a peak at edges, and that there is some current flow around edges 
toward the back side of the object, so that currents exist in the shadowed region of the object.  
The SBR method ignores those contributions.  While the edge and shadow-region currents do 
contribute to diffraction, they are not the sole contribution to the diffracted field.  The diffracted 
field is still approximated by PO, although not perfectly.   
 
To understand how PO computes a diffracted field, consider that the physical-optics method 
depends on the volume equivalence and surface equivalence principles [26].  These principles 
state that the total field in a region containing an incident field and scattering objects is identical 
to the coherent sum of the incident field in free space plus the field due to the equivalent 
volumetric and surface currents, also radiating into free space.  The objects have been replaced by 
their associated equivalent currents, so the field calculation is now a free-space problem.  Thus, 
the total field anywhere is obtained by the adding the contributions from the currents to the free-
space incident field, without any need to consider geometric blockage by the objects.  In the 
shadow region of an object, the incident field and the scattered field radiated by the equivalent 
currents associated with the object tend to cancel, but usually not entirely.  The residual field is 
the physical-optics diffracted field.  The physical-optics diffracted field does not include 
contributions from the edge currents or the currents that actually flow on the object in the region 
shadowed from the incident field.  However, when the objects are large, the physical-optics 
diffracted field is a good approximation.  
 
As noted, the SBR method extends PO by including equivalent currents due to multiple 
reflections in addition to the traditional PO currents caused by the direct incident field alone.  
With the SBR method, the equivalent currents are obtained by launching (shooting) geometric 
rays and following the reflected (bouncing) rays.  At each point where a ray intersects an object, 
the equivalent currents are computed, taking into account the reflection coefficients and 
divergence along the ray path.  When a permeable material is encountered, a transmitted ray is 
also created with an intensity determined by the local transmission coefficient.  The transmitted 
and reflected rays are followed until they escape the environment, or until a “bounce limit” is 
reached.  In the special case that no rays other than those associated with the incident field are 
included, the SBR method reduces to the PO method.  
 
Xpatch® has been demonstrated to produce results which appear to be accurate and faithful to 
physical optics and the SBR method.  The results of some validation tests are given in 
Appendix III. 
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Appendix III – Some validation tests for Xpatch® 
A limited set of field-strength and radar-cross-section values computed with Xpatch® will be 
compared to values computed with the physical optics method, the finite-integral time-domain 
solver in CST Microwave Studio [29], and the SAIC Full-wave solver (SAF) [30], as appropriate.   

Perfectly conducting circular disk 
First, the scattered field of a perfect-electrical-conductor (PEC) circular disk will be considered.  
This test will examine the field on a plane behind the disk, and in particular, in the shadow of the 
disk.  Consider a perfectly conducting disk with diameter of 3 m, as illustrated in Figure III-1.  
The field will be computed on the observation plane indicated in the illustration, which will be 
located at 2.5 cm and 1 m behind the PEC disk.  The incident field is a plane wave, propagating 
in the  direction as shown.  The field will be evaluated at the position given by , and ˆz r

 r


 
locates a point on the surface of the PEC disk.  The field is polarized so the electric-field vector is 
in the direction.  The field computed with Xpatch® in the observation plane will be compared 
with that computed by the exact physical-optics method, the 1st-order physical-optics method, the 
Fresnel approximation, the Fraunhofer approximation, and the rigorous finite-integral time-
domain solver. 

ŷ

 
Figure III-1 Illustration of the geometry for scattering from a PEC circular disk. 

When the incident field is a plane wave, propagating in the ˆz direction, with the electric field in 
the  direction, the exact physical-optics field can be shown to be ŷ
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where 0E  is the amplitude of the incident plane-wave electric field, 0 2k    , is the free-

space wavelength, the radius of the disk is , and 



a  ˆ ˆcos sin    r x y 
.  By neglecting terms 

proportional to 
nr r

 
, where , the 1st-order physical-optics field is obtained, 1n 
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By applying an approximation for square root in r r
 

, the Fresnel and Fraunhofer 

approximations are obtained, 
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and 

      0

0 1 0
0

sin
ˆˆˆ ˆ

sin

jk r
jk zFraunhofer

total

J k ae
E e a

r


 

     
E r y y I rr 

 
, (III-4) 

where the unit vectors are ˆ r r r
 

and ˆ  r r r
 

, r  r


, and  1J x is the cylindrical Bessel’s 

function of the first kind and order 1. 
 
In Figure III-2, total field is plotted on the observation plane located 2.5 cm behind the 3-m 
diameter PEC disk.  The frequency is 1 GHz, and the incident field strength of the plane wave is 

 0 29.1 dB V mE   ,  The field computed by the SBR method as implemented in Xpatch® is 

essentially the same as computed by 1st-order physical optics, (III-2).  Diffraction rings are clearly 
visible in both the shadow and directly illuminated regions.  However, exact physical optics, 
(III-1), produces a darker shadow, but the there is essentially no difference between the fields 
computed in the illuminated region by the three methods.  When compared to the rigorous finite-
integral time-domain solution, plotted Figure III-3, we see that the true shadow is darker still.  For 
a narrow ring just inside the edge of the shadow, the field computed by the exact physical optics 
method is very similar to that computed by the finite-integral time-domain method, which in turn 
is very similar to that compute by SBR.  However, SBR clearly over-predicts the field strength 
deeper in the shadow. 
 
When the observation plane is moved to a distance of 1 m behind the 3-m diameter PEC disk, the 
SBR method agrees very well with both exact physical optics and the finite-integral time-domain 
method, as illustrated in Figure III-4.  The scale is identical for each of the plots in Figure III-4, 
and the dynamic range from blue to red is 22 dB.  Note that neither the Fresnel, (III-3), nor 
Fraunhofer, (III-4), approximation gives a good result for the shadow at this distance.  For these 
approximations to be useful, the distance, R, from the disk to the field point should satisfy 
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Total field, Ey, on observation plane 12-dB dynamic range

“Exact” Physical Optics 1st-order Physical Optics SBR Method
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Figure III-2 Computed total field when the observation plane is 2.5 cm behind a PEC disk with 
diameter of 3 m. 
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Figure III-3 Comparison of total field computed with exact physical-optics and the finite-integral 

time-domain methods, when the observation plane is 2.5 cm behind a PEC disk with 
diameter of 3 m. 
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Figure III-4 Comparison of the total field computed with the Fraunhofer approximation, the Fresnel 

approximation, SBR method, the exact physical-optics method, and the finite-integral 
time-domain method, when the observation plane is 1 m behind a PEC disk with diameter 
of 3 m. 
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The radar cross section of a PEC trihedral corner reflector is computed with Xpatch® and 
compared with the results from the SAIC Full-wave solver (SAF), using the Multi-level Fast 
Multiple Algorithm (MLFMA) [30].  The trihedral, illustrated in Figure III-5, has corner-edge 
length of 100 mm and mesh size of 1.5 mm.  The radar cross section is plotted in Figure III-6 as a 
function of frequency, when the radar is at azimuth 45° and elevation 35.26°, so that the incident 
vector has the same angular distance to each of the coordinate axes.  Figure III-7 shows the radar 
cross section at 16.8 GHz, when azimuth varies while the elevation of the radar remains at 
35.26°.  In general, the agreement is quite good between the approximate solver (Xpatch®) and 
the rigorous solver (SAF).   

 
Figure III-5 Illustration of trihedral-corner-reflector model, with corner-edge length of 100 mm. 

 

 
Figure III-6 Radar cross section of the trihedral corner reflector at Ku-band, with the radar at 

azimuth 45° and elevation 35.26°. 

 

 
Figure III-7 Radar cross section of the trihedral corner reflector at 16.8 GHz, with the radar at 

elevation 35.26°. 
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Rectangular dielectric slab 
The radar cross section of a simple rectangular dielectric slab (Figure III-8) will be modeled with 
the following parameters 

  1

1

100 mm

10 mm

1.3 0.0

a b

t

j

 


  

 
Figure III-8 Rectangular dielectric slab with dimensions. 

 
The Xpatch® solver requires a triangular surface mesh, as illustrated in Figure III-9.  However, 
only the front surface is used in the simulation, since the thickness is taken into account in the 
definition of the dielectric.  Although there is an option to use a closed surface with a bulk 
material definition, it appears that the best results are obtained with the single open-surface 
model.  A comparison of the monostatic radar cross section at normal incidence ( ) and 
oblique incidence for the open- and close-surface models is shown in 

0  
Figure III-10 through 

Figure III-13.  There is considerable difference between the two models.  However, a comparison 
with the results from an integral-equation solver (SAIC Fast Solver [30]) shows that the open-
surface model agrees best, especially at or near normal incidence.  At oblique incidence 
( ), the character of the solutions agree (peaks and valleys agree), but Xpatch® under-
predicts the RCS.  It is believed that the results from the SAIC Fast Solver are the most accurate. 

30 , 60   

 

                                

width = 100 mm 
height = 100 mm 

thickness = 10 mm 
r = 1.3 

Figure III-9 Dielectric slab with triangular surface mesh. 

 
 
 - 57 - 



 
Figure III-10 Comparison of the monostatic radar cross section computed by Xpatch® with the single 

open-surface model (red), and the closed-surface model (blue). 

 

 
Figure III-11 Comparison of the monostatic radar cross section computed by Xpatch® with the single 

open-surface model (red) and the SAIC Fast Solver (multi-level fast multipole 
algorithm) (blue). 

 

 
Figure III-12 Comparison of the monostatic radar cross section computed by Xpatch® with the 

closed-surface model without blockage checking (red) and the SAIC Fast Solver (multi-
level fast multipole algorithm) (blue). 
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Figure III-13 Comparison of the monostatic radar cross section computed by Xpatch® with the closed-

surface model with reverse ray trace (red) and the SAIC Fast Solver (multi-level fast 
multipole algorithm) (blue). 

Finite-integral time-domain model – normal incidence 
The slab in Figure III-8 is modeled with the transient solver, using open boundaries.  The 
dielectric properties of the slab are  1.3 0.0r j    and 1.0 0.0r j   .  For two different runs, 
the boundaries are placed at 20 mm and 30 from the surface of the slab.  The maximum mesh step 
is less than 1.6 mm.  The field-decay criterion is –40 dB.   
 
The radar cross section as a function of frequency is plotted in Figure III-14.  The considerable 
disagreement between the solutions is troublesome.  The implication is that the absorbing 
boundary used by the CST solver is not adequate for this problem.  
 

 
Figure III-14 Radar cross section of dielectric slab for normal incidence and emptyspace, computed 

with transient solver (VV polarization). 

The discrepancies between the two CST transient solver solutions require examination.  Since the 
volume of the solution space, and consequently the distance to the absorbing boundaries, it is 
reasonable to expect that the disagreement is related to the absorbing boundary.  Although 
designated a Perfectly Matched Layer [29], the boundary is not a perfect absorber.  Because the 
dielectric constant of the slab is low, the scattering from it will also be much lower than from a 
perfect electrical conductor (PEC).  Thus, it is reasonable to suspect that an interaction between 
the scattering from the slab and the residual scattering from the boundary is present.   An accurate 
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scattering model is needed that does not depend on the performance of an absorbing boundary is 
needed.  

Method of Moments and Multilevel Fast Multipole Algorithm 
The radar cross section the rectangular dielectric slab (Figure III-8) will be modeled with the 
SAIC Full-wave solver (SAF) [30].   SAF is an electromagnetic scattering computation program 
based on the Method of Moments (MoM) solution of the hybrid volume-surface integral equation. 
The solver incorporates the Multilevel Fast Multipole Algorithm (MLFMA), and provides 
efficiency in computation speed and memory requirements.  Since MoM incorporates the 
radiation condition into the formulation, no absorbing boundary is necessary.  Figure III-15 
compares the computed normal-incidence radar cross section of the dielectric slab using MLFMA 
(blue), Xpatch® (red), CST integeral-equation iterative MLFMA solver (green), and the CST 
integral-equation direct MoM solver (purple).  The agreement among all of the codes is within 
less than 1 dB at 8 GHz to about 2 dB at 12.4 GHz.  The Xpatch® model uses the single-surface 
model for the slab.   
 
The radar cross section at 10 GHz as a function of the angle  , measured from the surface 
normal, is plotted in Figure III-16.  The multilevel fast multipole method agrees very well with 
the method of moments using the iterative solver.  The agreement with Xpatch® is very good for 
both VV and HH polarizations from normal incidence to about 17   .  The VV results from 
Xpatch® begin to deviate for larger angles, with substantial disagreement .  
However, the agreement for HH is much better, and is quite good from normal incidence to 
around . 

40 60    

60  
 
 
 
 

 
Figure III-15 Radar cross section for normal incidence, computed with various solvers (linear 

polarization). 
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Figure III-16 Radar cross section of a dielectric slab, with , as a function of angle from 

normal as computed by Xpatch®, the MLFM method, and full-matrix MoM. 

1.3 0r j  

 
 
 

 
Figure III-17 Radar cross section of a dielectric slab with , as a function of angle 

from normal as computed by Xpatch®, the MLFM method, and full-matrix MoM. 

3.0 0.001r j  

 

 

Dielectric slab covering a PEC corner reflector 
Another test example is illustrated in Figure III-18, where a dielectric slab is placed in front of a 
PEC triangular trihedral corner reflector.  The trihedral dimension along the corner edges is 100 
mm.  The slab is 150 mm along each side, and is 10 mm thick.  The slab is located 2.5 cm along 
the normal vector from the face of the trihedral. 
 
 
 

 
 
 - 61 - 



 
 
 

 

150 mm  150 mm  10 mm 

100 mm corner edge

Figure III-18  Test example with dielectric slab in front of a triangular trihedral corner reflector. 

 
 
 

 
Figure III-19  Comparison of Xpatch and SAF (MLFMA) solutions for the radar cross section of the 

trihedral and slab configuration in Figure III-18 at elevation 30°. 
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Appendix IV – Considerations for computing SAR phase 
histories with Xpatch® 
The Xpatch® code has features which allow the computation of synthetic-aperture-radar phase 
histories.  However, since the code is an approximation of the true physics, artifacts can be 
introduced into the computed phase history.  Two important code settings, the maximum number 
of bounces and the multi-look field compensation, will be examined. 

Maximum-bounce limit 
The Xpatch® software allows the choice of the maximum number of bounces considered when 
determining the physical-optics currents.  The importance of this setting is not limited only to 
simulation of SAR images, but impacts the accuracy of all computations.  The number of bounces 
really refers to the number of ray segments, beginning with the initial incident ray.  Apparently, 
the choice of the single-bounce model would be equivalent to the simple physical-optics model 
with plane-wave illumination, since only the first ray hit contributes to the physical-optics 
current.  In this case, there will be no contributions from reflections.  When the maximum-bounce 
choice is set to two, the incident ray will reflect from the location of the first hit to a second 
possible hit, in the case of non-penetrable materials.  In the case of penetrable materials, there 
would be both a reflected ray and a transmitted ray.  In this case, the ray path would not extend 
beyond two segments in either the reflected or transmitted path, including the incident segments.  
The rays are tracked up to the maximum number of bounces (segments), or until they pass outside 
the volume containing the model.  Rays are also terminated at bulk media or perfect absorbers.  
The maximum number of bounces must be chosen to provide a trade off between fast execution 
and accuracy.   
 
To see the effect of limiting the number of bounces, consider a single trihedral corner reflector.  
Simulated SAR images will be computed for several values for the limit.  The corner reflector 
measures 0.221 m on the corner edge.  The parameters for the simulation are: 

Xpatch® settings: 
 First-bounce algorithm:  z-buffer 
 Use all bounce contributions (total field) 
 Center frequency: 9.5 GHz 
 Bandwidth: 1.775 GHz 
 Number frequencies: 512 
 Synthetic-aperture width:  10.7° 
 Azimuth:  0° 
 Elevation:  30° 

FFT settings: 
 Taylor weight, 4n  , 35SLL    
 Zero-padding factor = 4 
 Resolution:  0.1 m 

 
The simulated SAR images are shown in Figure IV-1 for 1, 2, 3, and 5 maximum bounces.  As 
expected, it is clear that 1 or 2 bounces are insufficient to properly model the trihedral; the image 
of the trihedral is distorted by spreading in the along-track direction.  (The reason the error is 
manifested as spreading in the along-track direction is discussed in the next section.)  With the 
maximum-bounce limit set to 3, the response of the trihedral looks like the ideal point-spread 
function that is expected with these parameters.  Increasing the limit to 5 bounces has no 
additional effect, since the rays leave the volume after the third reflection.  Thus, a maximum of 
three reflections is all that is needed to properly define the complete physical-optics current on 
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the trihedral surface.  More complex objects may require a larger maximum in order to create a 
high-fidelity image. 
 
In a complex scene, the maximum number of reflections allowed should be chosen to ensure that 
all the important contributions to the physical-optics current are included, without unduly 
increasing the computer run time.  Setting the limit higher than necessary can greatly increase the 
run time.   
 

   
 1 bounce 2 bounces 3 bounces 5 bounces 

Figure IV-1  Simulated SAR image of a trihedral corner reflector with the maximum number of 
bounces limited as indicated. 

Multi-look field compensation 
Because the physical-optics current is obtained by ray tracing the incident field, non-physical 
discontinuities can occur in the phase history.  The effect of a discontinuity in the phase history is 
to spread energy over the range of the Fourier transform when an image is created.  The 
discontinuity occurs as a result of geometric shadowing of various features in the scene as the 
source moves across the angular aperture.  Since the discontinuities are a function of the azimuth 
angle (position of the radar in the synthetic aperture), the energy is spread in the along-track 
direction and not in the cross-track direction.  Fortunately, Xpatch® includes a computational 
feature, called Multi-look Field Compensation to mitigate this problem. 
 
The Multi-look Field Compensation option has two parameters, a window size measured in 
azimuth bins, and an angle-skip size, also measured in azimuth bins [25].  The window is 
centered at the current azimuth angle, and contributions from other angles within the window, 
sampled according to the angle-skip size, are weighted and included with the primary 
contribution from the current azimuth angle.  This method smoothes the discontinuity caused to 
geometric shadowing of the incident field, but avoids severe degradation of the along-track 
resolution in the resulting image.  Two examples will illustrate the problem, and the effectiveness 
of the Multi-look Field Compensation option. 
 
First, consider a single trihedral corner reflector located at the origin.  A perfectly absorbing strip 
is placed in front of the trihedral so that it is completely shadowed over 1  of the synthetic 
aperture.  The relevant geometry is illustrated in plan view in 


Figure IV-2  

 

 
Figure IV-2 Plan view of the geometry used in the Multi-look Field Compensation example. 

The trihedral is imaged with and without the absorbing strip, using the following parameters: 
Xpatch® settings: 
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 First-bounce algorithm:  z-buffer 
 Use all bounce contributions (total field) 
 Maximum bounce: 5 
 Center frequency: 9.5 GHz 
 Bandwidth: 1.775 GHz 
 Number frequencies: 512 
 Synthetic-aperture width:  10.7° 
 Azimuth:  0° 
 Elevation:  30° 

FFT settings: 
 Taylor weight, 4n  , 35SLL    
 Zero-padding factor = 4 
 Resolution:  0.1 m 

 
The magnitude of the computed phase history is illustrated in Figure IV-3.  The phase history at 
far left is for the trihedral without any blockage.  The amplitude is fairly uniform, but increases 
slightly in the frequency ( ) direction.  At center left is the phase-history amplitude with the 

absorber strip in place, but without multi-look field compensation.  The strong discontinuity is 
very apparent.  Applying multi-look field compensation with 10 samples within a window 100 
bins wide softens the discontinuity a small amount (center right), but increasing the window to 
500 bins (with 10 samples) produces a smooth transition (far right).  The SAR images associated 
with these phase histories are shown in 

yk

Figure IV-4.  The shadowing causes significant smearing 
of the trihedral image in the along-track direction (center left).  Applying the multi-look field 
compensation significantly improves the image (far right).   

   
 trihedral, no blockage  no multi-look  multi-look (100, 10)  multi-look (500, 50) 

Figure IV-3 Magnitude of the phase history computed with no blockage (left), with the blockage 
illustrated in Figure IV-2 (center left), and with multi-look field compensation,(center 
right and right).  The multi-look windows contain 100 and 500 bins, respectively, with 
spacing of 10 and 50 bins.  

 
 trihedral, no blockage  no multi-look  multi-look (100, 10)  multi-look (500, 50) 

Figure IV-4 SAR image of trihderal with no blockage (left), with the blockage illustrated in Figure IV-
2 (center left), and with multi-look field compensation,(center right and right).  The 
multi-look windows contain 100 and 500 bins, respectively, with spacing of 10 and 50 
bins.  

The second example images a rough PEC fractal surface, illustrated in Figure IV-5.  The 
following parameters were applied: 
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Xpatch® settings: 
 First-bounce algorithm:  z-buffer 
 Use all bounce contributions (total field) 
 Maximum bounce: 5 
 Center frequency: 9.5 GHz 
 Bandwidth: 0.3550 GHz 
 Number frequencies: 256 
 Synthetic-aperture width:  2.14° 
 Azimuth:  0° 
 Elevation:  15° 

FFT settings: 
 Taylor weight, 4n  , 35SLL    
 Zero-padding factor = 4 
 Resolution:  0.5 m 

 
The simulated SAR images, with several choices for the multi-look field compensation 
parameters are illustrated in Figure IV-6.  The severe smearing in the along-track direction 
without the multi-look field compensation (far left) is completely unacceptable.  However, the 
smearing is essentially eliminated when the window width is 100 bins, sampled every 10 bins (far 
right). 
 
These two examples demonstrate that the multi-look field compensation option in Xpatch® is 
effective in mitigating the smearing caused by the geometric shadowing of the illumination.  The 
optimum choice of the window width and sampling interval appears to be somewhat dependent 
on the specific situation.   

 
Figure IV-5 Rough-surface model, using a three-level fractal model, used to illustrate the multi-look 

field compensation option. 

 

 
 no multi-look multi-look (25, 5) multi-look (50, 5) multi-look (100,10) 

Figure IV-6 Simulated SAR image of the rough-surface model, with several parameters for the multi-
look field compensation. 
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Sampling the reflection / transmission coefficient table 
When the surface to be modeled is a dielectric, Xpatch® will build a reflection coefficient table 
with frequency and incident angle as parameters into the table.  Apparently, the number of angles 
is fixed at 90 [25].  However, the number of frequencies can be equal to or smaller than the 
number of frequencies used in the simulation.  For multilayer dielectrics, the frequency 
dependence can be strong, and it is necessary to build the table for each frequency rather than use 
coarse sampling.  When the reflection coefficient is not sampled sufficiently with frequency, 
aliasing occurs, as illustrated in Figure IV-7.  Here, the radar cross section is plotted for a 
rectangular dielectric slab, one meter on each side and one-half meter thick, for normal incidence 
and linear polarization.  The parameters for the computation are: 

Xpatch® settings: 
 First-bounce algorithm:  z-buffer 
 Use all bounce contributions (total field) 
 Maximum bounce: 5 
 Center frequency: 9.5 GHz 
 Bandwidth: 1.7471 GHz 
 Number frequencies: 512 
 Azimuth:  0° 
 Elevation:  90° 

FFT settings: 
 Zero-padding factor = 4 
 Kaiser weighting 
 Sidelobe level: 60 dB 
 Resolution: 0.07 m 

 
The dielectric has 25 layers, each 2 cm thick.  The dielectric permittivity profile is from the Siple 
C model.  For the plot on the left, the reflection coefficient was computed for every tenth 
frequency and the values were extracted from the table using the “nearest neighbor” method.  For 
the plot on the right, the reflection coefficient was computed at each of the 512 frequencies used 
on the computations.  While the true scattering profile is essentially unchanged by the inadequate 
sampling, the aliased components are strong, only about 17 dB below the correct profile. 
 

   
 compute reflection coefficient for every 10th frequency compute reflection coefficient for every frequency 

Figure IV-7 Example of range aliasing that is caused by inadequate sampling of the reflection 
coefficient with frequency. 
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Appendix V – SAR images of the crevasse and snow 
bridge 
This appendix contains simulated SAR images created from the geometry described in the main 
text.  All images are based on the same top surface structure, although the thickness and number 
of layers beneath the top surface and in the snow bridge vary.  Images were formed with and 
without the crevasse walls present.  Most of the images are based on the density profile for the 
composite Siple Dome data, although a small set uses the Newall Glacier profile, which includes 
the dip in density.  A key to the parameters associated with each figure are listed in Table V-1. 
 

Table V-1  Key for the parameters of the simulated SAR images. 

Snow-bridge 
Depth (m) 

Radar Band 
Resolution 

(inch) 
Density Profile Image Format 

Depression 
Angle 

 
Crevasse 

Walls 
Included 0.5 2.0 4.0 C X Ku 18 8 

Siple 
Dome 

Newall 
Glacier 

Monochrome 
(dB) 

4throot 
of 

power 

Color 
(dB) 

15° 30° 

Figure 
V-1                 

Figure 
V-2                 

Figure 
V-3                 

Figure 
V-4                 

Figure 
V-5                 

Figure 
V-6                 

Figure 
V-7                 

Figure 
V-8                 

Figure 
V-9                 

Figure 
V-10                 

Figure 
V-11                 

Figure 
V-14                 

Figure 
V-12                 

Figure 
V-13                 

Figure 
V-15                 

Figure 
V-16                 

Figure 
V-17                 

Figure 
V-18                 

Figure 
V-19                 

Figure 
V-20                 

Figure 
V-21                 

Figure 
V-22                 

Figure 
V-23                 

Figure 
V-24                 

Figure 
V-25                 

Figure 
V-26                 
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Snow-bridge 
Depth (m) 

Radar Band 
Resolution 

(inch) 
Density Profile Image Format 

Depression 
Angle 

 
Crevasse 

Walls 
Included 0.5 2.0 4.0 C X Ku 18 8 

Siple 
Dome 

Newall 
Glacier 

Monochrome 
(dB) 

4throot 
of 

power 

Color 
(dB) 

15° 30° 

Figure 
V-27                 

Figure 
V-28                 

Figure 
V-29                 

Figure 
V-30                 

Figure 
V-31                 

Figure 
V-32                 

Figure 
V-33                 

Figure 
V-34                 

Figure 
V-35                 

Figure 
V-36                 

Figure 
V-37                 

Figure 
V-38                 

Figure 
V-39                 

Figure 
V-40                 

Figure 
V-41                 

Figure 
V-42                 

Figure 
V-43                 

Figure 
V-44                 

Figure 
V-45                 

Figure 
V-46                 

Figure 
V-47                 

Figure 
V-48                 

Figure 
V-49                 

Figure 
V-50                 

Figure 
V-51                 

Figure 
V-52                 

Figure 
V-53                 

Figure 
V-54                 

Figure 
V-55                 

Figure 
V-56                 

Figure 
V-57                 

Figure 
V-58                 

Figure 
V-59                 

Figure 
V-60                 

Figure 
V-61 

                

 
 

 - 70 - 



Snow-bridge 
Depth (m) 

Radar Band 
Resolution 

(inch) 
Density Profile Image Format 

Depression 
Angle 

 
Crevasse 

Walls 
Included 0.5 2.0 4.0 C X Ku 18 8 

Siple 
Dome 

Newall 
Glacier 

Monochrome 
(dB) 

4throot 
of 

power 

Color 
(dB) 

15° 30° 

Figure 
V-62 

                

Figure 
V-63 

                

Figure 
V-64 

                

Figure 
V-65 

                

Figure 
V-66 

                

Figure 
V-67 

                

Figure 
V-68 

                

Figure 
V-69 

                

Figure 
V-70 

                

Figure 
V-71 

                

Figure 
V-72 

                

Figure 
V-73 

                

Figure 
V-74 

                

Figure 
V-75 

                

Figure 
V-76 

                

Figure 
V-77 

                

Figure 
V-78 

                

Figure 
V-79 

                

Figure 
V-80 

                

Figure 
V-81 

                

Figure 
V-82 

                

Figure 
V-83 

                

Figure 
V-84 

                

Figure 
V-85 

                

Figure 
V-86 

                

Figure 
V-87 

                

Figure 
V-88 

                

Figure 
V-89 

                

Figure 
V-90 

                

Figure 
V-91 

                

Figure 
V-92 

                

Figure 
V-93 

                

Figure 
V-94 

                

Figure 
V-95 

                

Figure 
V-96 

                
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Crevasse with snow bridge, Siple Dome model, 0.5-m depth 

Monochrome, snow-bridge depth is 0.5 m   

  AZ = 0°   

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-1 Crevasse with snow bridge, 0.5-m depth, 18-inch resolution, , 15° 

depression angle. 

5.45 GHzcf 
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  AZ = 0°  

  AZ = 30°   

  AZ = 60°   

  AZ = 90°  

Figure V-2 Crevasse with snow bridge, 0.5-m depth, 18-inch resolution, , 30° 

depression angle. 

5.45 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-3 Crevasse with snow bridge, 0.5-m depth, 18-inch resolution, , 15° 

depression angle. 

9.5 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-4 Crevasse with snow bridge, 0.5-m depth, 18-inch resolution, , 30° 

depression angle. 

9.5 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-5 Crevasse with snow bridge, 0.5-m depth, 18-inch resolution, , 15° 

depression angle. 

16.8 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-6 Crevasse with snow bridge, 0.5-m depth, 18-inch resolution, , 30° 

depression angle. 

16.8 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-7 Crevasse with snow bridge, 0.5-m depth, 8-inch resolution, , 15° depression 

angle. 

9.5 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-8 Crevasse with snow bridge, 0.5-m depth, 8-inch resolution, , 30° depression 

angle. 

9.5 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-9 Crevasse with snow bridge, 0.5-m depth, 8-inch resolution, , 15° 

depression angle. 

16.8 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-10 Crevasse with snow bridge, 0.5-m depth, 8-inch resolution, , 30° 

depression angle. 

16.8 GHzcf 
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Square root of magnitude (4th root of power), crevasse with snow bridge, 
0.5-m depth 

  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-11 Crevasse with snow bridge, 0.5-m depth, 18-inch resolution, , 15° 

depression angle. 

5.45 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-12 Crevasse with snow bridge, 0.5-m depth, 18-inch resolution, , 30° 

depression angle. 

5.45 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-13 Crevasse with snow bridge, 0.5-m depth, 18-inch resolution, , 15° 

depression angle. 

9.5 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-14 Crevasse with snow bridge, 0.5-m depth, 18-inch resolution, , 30° 

depression angle. 

9.5 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-15 Crevasse with snow bridge, 0.5-m depth, 18-inch resolution, , 15° 

depression angle. 

16.8 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-16 Crevasse with snow bridge, 0.5-m depth, 18-inch resolution, , 30° 

depression angle. 

16.8 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-17 Crevasse with snow bridge, 0.5-m depth, 8-inch resolution, , 15° depression 

angle. 

9.5 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-18 Crevasse with snow bridge, 0.5-m depth, 8-inch resolution, , 30° depression 

angle. 

9.5 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-19 Crevasse with snow bridge, 0.5-m depth, 8-inch resolution, , 15° 

depression angle. 

16.8 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-20 Crevasse with snow bridge, 0.5-m depth, 8-inch resolution, , 30° 

depression angle. 

16.8 GHzcf 
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Color, snow-bridge depth is 0.5 m   

  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-21 Crevasse with snow bridge, 0.5-m depth, 18-inch resolution, , 15° 

depression angle. 

5.45 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-22 Crevasse with snow bridge, 0.5-m depth, 18-inch resolution, , 30° 

depression angle. 

5.45 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-23 Crevasse with snow bridge, 0.5-m depth, 18-inch resolution, , 15° 

depression angle. 

9.5 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-24 Crevasse with snow bridge, 0.5-m depth, 18-inch resolution, , 30° 

depression angle. 

9.5 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-25 Crevasse with snow bridge, 0.5-m depth, 18-inch resolution, , 15° 

depression angle. 

16.8 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-26 Crevasse with snow bridge, 0.5-m depth, 18-inch resolution, , 30° 

depression angle. 

16.8 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-27 Crevasse with snow bridge, 0.5-m depth, 8-inch resolution, , 15° depression 

angle. 

9.5 GHzcf 

 
 

 - 98 - 



  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-28 Crevasse with snow bridge, 0.5-m depth, 8-inch resolution, , 30° depression 

angle. 

9.5 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-29 Crevasse with snow bridge, 0.5-m depth, 8-inch resolution, , 15° 

depression angle. 

16.8 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-30 Crevasse with snow bridge, 0.5-m depth, 8-inch resolution, , 30° 

depression angle. 

16.8 GHzcf 
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Crevasse with snow bridge, Siple Dome model, 2-m depth 

Monochrome, snow-bridge depth is 2.0 m   

  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-31 Crevasse with snow bridge, 2-m depth, 18-inch resolution, , 15° 

depression angle. 

5.45 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-32 Crevasse with snow bridge, 2-m depth, 18-inch resolution, , 30° 

depression angle. 

5.45 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-33 Crevasse with snow bridge, 2-m depth, 18-inch resolution, , 15° depression 

angle. 

9.5 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-34 Crevasse with snow bridge, 2-m depth, 18-inch resolution, , 30° depression 

angle. 

9.5 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-35 Crevasse with snow bridge, 2-m depth, 18-inch resolution, , 15° 

depression angle. 

16.8 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-36 Crevasse with snow bridge, 2-m depth, 18-inch resolution, , 30° 

depression angle. 

16.8 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-37 Crevasse with snow bridge, 2-m depth, 8-inch resolution, , 15° depression 

angle. 

9.5 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-38 Crevasse with snow bridge, 2-m depth, 8-inch resolution, , 30° depression 

angle. 

9.5 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-39 Crevasse with snow bridge, 2-m depth, 8-inch resolution, , 15° depression 

angle. 

16.8 GHzcf 

 
 

 - 110 - 



  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-40 Crevasse with snow bridge, 2-m depth, 8-inch resolution, , 30° depression 

angle. 

16.8 GHzcf 
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Square root of magnitude (4th root of power), crevasse with snow bridge, 2-
m depth 

  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-41 Crevasse with snow bridge, 2-m depth, 18-inch resolution, , 15° 

depression angle. 

5.45 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-42 Crevasse with snow bridge, 2-m depth, 18-inch resolution, , 30° 

depression angle. 

5.45 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-43 Crevasse with snow bridge, 2-m depth, 18-inch resolution, , 15° depression 

angle. 

9.5 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-44 Crevasse with snow bridge, 2-m depth, 18-inch resolution, , 30° depression 

angle. 

9.5 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-45 Crevasse with snow bridge, 2-m depth, 18-inch resolution, , 15° 

depression angle. 

16.8 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-46 Crevasse with snow bridge, 2-m depth, 18-inch resolution, , 30° 

depression angle. 

16.8 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-47 Crevasse with snow bridge, 2-m depth, 8-inch resolution, , 15° depression 

angle. 

9.5 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-48 Crevasse with snow bridge, 2-m depth, 8-inch resolution, , 30° depression 

angle. 

9.5 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-49 Crevasse with snow bridge, 2-m depth, 8-inch resolution, , 15° depression 

angle. 

16.8 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-50 Crevasse with snow bridge, 2-m depth, 8-inch resolution, , 30° depression 

angle. 

16.8 GHzcf 
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Color, snow-bridge depth is 2.0 m   

  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-51 Crevasse with snow bridge, 2-m depth, 18-inch resolution, , 15° 

depression angle. 

5.45 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-52 Crevasse with snow bridge, 2-m depth, 18-inch resolution, , 30° 

depression angle. 

5.45 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-53 Crevasse with snow bridge, 2-m depth, 18-inch resolution, , 15° depression 

angle. 

9.5 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-54 Crevasse with snow bridge, 2-m depth, 18-inch resolution, , 30° depression 

angle. 

9.5 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-55 Crevasse with snow bridge, 2-m depth, 18-inch resolution, , 15° 

depression angle. 

16.8 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-56 Crevasse with snow bridge, 2-m depth, 18-inch resolution, , 30° 

depression angle. 

16.8 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-57 Crevasse with snow bridge, 2-m depth, 8-inch resolution, , 15° depression 

angle. 

9.5 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-58 Crevasse with snow bridge, 2-m depth, 8-inch resolution, , 30° depression 

angle. 

9.5 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-59 Crevasse with snow bridge, 2-m depth, 8-inch resolution, , 15° depression 

angle. 

16.8 GHzcf 

 
 

 - 130 - 



  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-60 Crevasse with snow bridge, 2-m depth, 8-inch resolution, , 30° depression 

angle. 

16.8 GHzcf 
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Snow bridge only, Siple Dome model, 2-m depth 

Monochrome, snow-bridge depth is 2.0 m 

  AZ = 0°   

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-61 Snow bridge only, 2-m depth, 8-inch resolution, , 15° depression angle. 9.5 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-62 Snow bridge only, 2-m depth, 8-inch resolution, , 30° depression angle. 9.5 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-63 Snow bridge only, 2-m depth, 8-inch resolution, , 15° depression angle. 16.8 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-64 Snow bridge only, 2-m depth, 8-inch resolution, , 30° depression angle. 16.8 GHzcf 
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Square root of magnitude (4th root of power), snow bridge only, 2-m depth 

  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-65 Snow bridge only, 2-m depth, 8-inch resolution, , 15° depression angle. 9.5 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-66 Snow bridge only, 2-m depth, 8-inch resolution, , 30° depression angle. 9.5 GHzcf 

 
 

 - 137 - 



  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-67 Snow bridge only, 2-m depth, 8-inch resolution, , 15° depression angle. 16.8 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-68 Snow bridge only, 2-m depth, 8-inch resolution, , 30° depression angle. 16.8 GHzcf 
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Color, snow bridge only, 2-m depth 

  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-69 Snow bridge only, 2-m depth, 8-inch resolution, , 15° depression angle. 9.5 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-70 Snow bridge only, 2-m depth, 8-inch resolution, , 30° depression angle. 9.5 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-71 Snow bridge only, 2-m depth, 8-inch resolution, , 15° depression angle. 16.8 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-72 Snow bridge only, 2-m depth, 8-inch resolution, , 30° depression angle. 16.8 GHzcf 
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Snow bridge only, Siple Dome model, 4-m depth 

Monochrome, snow-bridge depth is 4.0 m 

  AZ = 0°   

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-73 Snow bridge only, 4-m depth, 8-inch resolution, , 15° depression angle. 9.5 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-74 Snow bridge only, 4-m depth, 8-inch resolution, , 30° depression angle. 9.5 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-75 Snow bridge only, 4-m depth, 8-inch resolution, , 15° depression angle. 16.8 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-76 Snow bridge only, 4-m depth, 8-inch resolution, , 30° depression angle. 16.8 GHzcf 
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Square root of magnitude (4th root of power), snow bridge only, 4-m depth 

  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-77 Snow bridge only, 4-m depth, 8-inch resolution, , 15° depression angle. 9.5 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-78 Snow bridge only, 4-m depth, 8-inch resolution, , 30° depression angle. 9.5 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-79 Snow bridge only, 4-m depth, 8-inch resolution, , 15° depression angle. 16.8 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-80 Snow bridge only, 4-m depth, 8-inch resolution, , 30° depression angle. 16.8 GHzcf 
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Color, snow-bridge depth is 4.0 m 
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Figure V-81 Snow bridge only, 4-m depth, 8-inch resolution, , 15° depression angle. 9.5 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-82 Snow bridge only, 4-m depth, 8-inch resolution, , 30° depression angle. 9.5 GHzcf 
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  AZ = 0°  
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  AZ = 60°  

  AZ = 90°  

Figure V-83 Snow bridge only, 4-m depth, 8-inch resolution, , 15° depression angle. 16.8 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-84 Snow bridge only, 4-m depth, 8-inch resolution, , 30° depression angle. 16.8 GHzcf 
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Snow bridge only, Newall Glacier model, 4-m depth 

Monochrome, snow-bridge depth is 4.0 m 
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Figure V-85 Snow bridge only, 4-m depth, 8-inch resolution, , 15° depression angle. 9.5 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-86 Snow bridge only, 4-m depth, 8-inch resolution, , 30° depression angle. 9.5 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-87 Snow bridge only, 4-m depth, 8-inch resolution, , 15° depression angle. 16.8 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-88 Snow bridge only, 4-m depth, 8-inch resolution, , 30° depression angle. 16.8 GHzcf 
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Square root of magnitude (4th root of power), snow bridge only, 4-m depth 
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Figure V-89 Snow bridge only, 4-m depth, 8-inch resolution, , 15° depression angle. 9.5 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-90 Snow bridge only, 4-m depth, 8-inch resolution, , 30° depression angle. 9.5 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-91 Snow bridge only, 4-m depth, 8-inch resolution, , 15° depression angle. 16.8 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-92 Snow bridge only, 4-m depth, 8-inch resolution, , 30° depression angle. 16.8 GHzcf 
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Color, snow-bridge depth is 4.0 m 
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Figure V-93 Snow bridge only, 4-m depth, 8-inch resolution, , 15° depression angle. 9.5 GHzcf 
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  AZ = 0°  
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  AZ = 90°  

Figure V-94 Snow bridge only, 4-m depth, 8-inch resolution, , 30° depression angle. 9.5 GHzcf 
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  AZ = 0°  
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  AZ = 60°  

  AZ = 90°  

Figure V-95 Snow bridge only, 4-m depth, 8-inch resolution, , 15° depression angle. 16.8 GHzcf 
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  AZ = 0°  

  AZ = 30°  

  AZ = 60°  

  AZ = 90°  

Figure V-96 Snow bridge only, 4-m depth, 8-inch resolution, , 30° depression angle. 16.8 GHzcf 

 
 

 - 167 - 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This Page Intentionally Blank 

 
 

 - 168 - 



References 
[1] H. Ling, R. Chou, S. Lee, “Shooting and bouncing rays: Calculating RCS of an arbitrary 

cavity”, Digest of the IEEE Antennas and Propagation Society 1986 International 
Symposium, Vol. 24,  June 1986, pp 293-296. 

[2] A. M. Marzougui, S. J. Franke, “Scattering from rough surfaces using the `shooting and 
bouncing rays' (SBR) technique and comparison with the method of moments solutions”, 
IEEE Antennas and Propagation Society International Symposium, 1990,  AP-S Digest 
'Merging Technologies for the 90's', vol.4, 7-11 May 1990 pp 1540-1543. 

[3] Rajan Bhalla and Hao Ling, “A Fast Algorithm for Signature Prediction and Image 
Formation Using the Shooting and Bouncing Ray Technique”, IEEE Transactions On 
Antennas And Propagation, Vol. 43, No. 1, July 1995, pp 727-731. 

[4] John C. Cook, “An Electrical Crevasse Detector”, Geophysics, vol. XXI, No. 4, October, 
1956, pp. 1055-1070. 

[5] Curt H. Davis and Vladimir I. Poznyak , “The Depth of Penetration in Antarctic Firn at 10 
GHz”, IEEE Transactions on Geoscience and Remote Sensing, vol. 31, No. 5. September 
1993, pp 1107-1111. 

[6] Mark Fahnestock, Robert Bindschadler, Ron Kwok, and Ken Jezek, “Greenland Ice Sheet 
Surface Properties and Ice Dynamics from ERS-1 SAR Imagery”, Science, vol. 262, 
December 3, 1993, pp 1530-1534. 

[7] E.G. Josberger, M.A. True, and R.A. Shuchman, “Determination of Surface Features on 
Glaciers in Alaska from ERS-1 SAR Observations”, International Geoscience and Remote 
Sensing Symposium 1994 (IGARSS '94), Vol. 4,  8-12 Aug. 1994, pp 2398 – 2400. 

[8] A. J. Delaney, S. A. Arcone, A. O’Bannon, J. Wright, “Crevasse detection with GPR across 
the Ross Ice Shelf, Antarctica”, Tenth International Conference on Ground Penetrating 
Radar, Delft, The Netherlands, June, 2004. 

[9] Grant J. Sander, Douglas L. Bickel, Antarctica X-Band MiniSAR Crevasse Detection 
Radar: Final Report, Sandia National Laboratories Report, SAND2007-3526, Unclassified 
Unlimited Release, September 2007. 

[10] Arthur R. Von Hippel, ed., Dielectric Materials and Applications, The Technology Press of 
M.I.T and John Wiley & Sons, Inc., New York, 1954. 

[11] David R. Lide, editor-in-chief, CRC Handbook of Chemistry and Physics, 88th Edition, a 
CRCnetBASE product, CRC Press, Boca Raton, 2008. 

[12] Christian Mätzler, “Microwave Permittivity of Dry Snow”, IEEE Transactions on 
Geoscience and Remote Sensing, Vol. 34, No. 2, March 1996, pp 573-581. 

[13] D. Polder and J. H. van Santen, “The Effective Permeability of Mixtures of Solids”, 
Physica XII, no. 5, August 1946, pp 257-271. 

[14] S. Koizumi, K. Sato, T. Sato, M. Shimba, “Dielectric Characteristics Of Snow”, Electronic 
Letters Vol.22 No. 15, 17th July 1986. 

[15] Martti E. Tiuri, Ari H. Sihvola, Ebbe G. Nyfors, Martti T. Hallikaiken, “The Complex 
Dielectric Constant of Snow at Microwave Frequencies”, IEEE Journal of Oceanic 
Engineering, Vol. OE-9, No. 5, December 1984, pp 377-382. 

 
 

 - 169 - 



[16] Georgi S. Bordonski, Sergei D. Krylov, “Loss-Factor Behavior of Freshwater Ice at 13.5 
and 37.5 GHz”, IEEE Transactions on Geoscience and Remote Sensing, Vol. 36,  No. 2, 
March 1998, pp 678-680. 

[17] The United States Frequency Allocations, the Radio Spectrum, U.S. Department of 
Commerce, National Telecommunications and Information Administration, Office of 
Spectrum Management, October 2003. Available: 
http://www.ntia.doc.gov/osmhome//allochrt.PDF . 

[18] Landsat Image Mosaic of Antarctica overview map, produced by the British Antarctic 
Survey, Natural Environment research Council, in collaboration with the U.S. Geological 
Survey and the National Aeronautic and Space Administration.  Available on Jan. 20, 2009:  
http://lima.usgs.gov/ 

[19] Gregg W. Lamorey, Siple Shallow Core Density Data, WAISCORES, National Snow and 
Ice Data Center (NSIDC), Boulder, Colorado, 2003.  Available on Jan. 20, 2009: 
http://nsidc.org/data/nsidc-0129.html  

[20] Sallie Whitlow, Paul Mayewski, Newall Glacier Ice Core Data, Institute for the Study of 
Earth, Oceans and Space, Glacier Research Group, University of New Hampshire, Durham, 
New Hampshire, 1988-1989. Available on Jan. 20, 2009:  
http://www.ncdc.noaa.gov/paleo/icecore/antarctica/newall/newall.html  

[21] Paul Mayewski, Dominion Range Ice Core Data. International Ice Core Data Cooperative. 
IGBP Pages/World Data Center-A for Paleoclimatology, NOAA/NGDC Paleoclimatology 
Program, Boulder CO, USA, 1998.  Available on Jan. 20, 2009: 
ftp://ftp.ncdc.noaa.gov/pub/data/paleo/icecore/antarctica/dominion/  

[22] Personal communication from Lt. Col. Mark A Armstrong, New York Air National Guard, 109th 
Airlift Wing. 

[23] Michiel van den Broeke, “Depth and Density of the Antarctic Firn Layer”, Arctic, 
Antarctic, and Alpine Research, Vol. 40, No. 2, 2008, pp 432-438. 

[24] Landsat Image Mosaic of Antarctica, National Landsat Archive Processing System, 
Landsat Image Mosaic of Antarctica (LIMA) Project.  Available on Jan. 20, 2009:  
http://lima.usgs.gov/ 

[25] Xpatch Advanced EM Topics,  Xpatch® code suite, ver. 4.7, SAIC / DEMACO, a division 
of Science Applications International Corporation. 

[26] Constantine A. Balanis, Advanced Engineering Electromagnetics, John Wiley & Sons, 
New York, 1989.  

[27] Xpatch® code suite, ver. 4.7, SAIC / DEMACO, a division of Science Applications 
International Corporation. 

[28] D. Andersh, et al, “XPATCH 4: The Next Generation in High Frequency Electromagnetic 
Modeling and Simulation Software”, The Record of the IEEE 2000 International Radar 
Conference, 7-12 May 2000, pp 844-849. 

[29] CST Design Studio Suite™, CST Microwave Studio®,  electromagnetic solver software 
from CST Computer Simulation Technology, Bad Nauheimer Str. 19, D-64289 Darmstadt, 
Germany (2007, June).  Available: http://www.cst.com . 

[30] C. Lu and S. W. Lee, Documents of Computer Code SAF: Volume 1, User Manual of SAF, 
Version 3.1, SAIC/DEMACO, Champaign, October, 2005. 

 
 

 - 170 - 

http://www.ntia.doc.gov/osmhome//allochrt.PDF
http://lima.usgs.gov/
http://nsidc.org/data/nsidc-0129.html
http://www.ncdc.noaa.gov/paleo/icecore/antarctica/newall/newall.html
ftp://ftp.ncdc.noaa.gov/pub/data/paleo/icecore/antarctica/dominion/
http://lima.usgs.gov/
http://www.cst.com/


[31] NVIDIA Tesla GPU Computing Solutions For Workstations, NVIDIA Corporation, Santa 
Clara, California, December 2009. Available: http://www.nvidia.com/object/personal_supercomputing.html  

 
 

 - 171 - 

http://www.nvidia.com/object/personal_supercomputing.html


 
 

 - 172 - 

Distribution 
 
5 Mark A. Armstrong, Lt Col, NYANG 

Commander 109th Communications Flight 
1 ANG Road 
Scotia, New York 12302 

 
5 Walter Hallman 

NGB/A5RM (SRG) 
3500 Fetchet Ave 
Andrews AFB, MD 20762 
 

2 Dr. Mark A. Sletten 
Naval Research Laboratory 
Code 7264 
4555 Overlook Ave. SW 
Washington DC 20375 

 
1 MS 0501  R. M. Bugos  5343 
 
1 MS 0501  M. C. Dowdican 5338 
 
1 MS 0509  M. G. Knoll  5300 
 
1 MS 0509 K. D. Meeks 5350 
 
10 MS 0519  T. J. Mirabal  5341 
 
1 MS 0519  D. L. Bickel  5354 
1 MS 0519  C. L. Smithpeter  5354 
 
1 MS 0519  L. C. Velasquez  10653 
 
1 MS 0529 S. E. Allen 5345 
1 MS 0529 K. Coperich Branch 5345 
5 MS 0529 B. C. Brock 5345 
1 MS 0529 G. K. Froehlich 5345 
1 MS 0529 H. Loui 5345 
1 MS 0529 B. Strassner 5345 
 
1 MS 1330  J. J. Hudgens  5340 
1 MS 1330  B. L. Burns  5340 
 
1 MS 1330  S. D. Bensonhaver  5342 
1 MS 1330  A. W. Doerry  5342 
1 MS 1330  D. Harmony  5342 
1 MS 1330  W. H. Hensley  5342 
1 MS 1330  M. S. Murray  5342 
1 MS 1330  R. Riley  5342 
 
1 MS 1330  D. F. Dubbert  5345 
1  MS 1330  F. E. Heard  5345 
1 MS 1330  G. R. Sloan  5345 
1 MS 1330  K. W. Sorensen  5345 
 
1 MS 1330  S. M. Becker  5348 
1 MS 1330  A. D. Sweet  5348 
1 MS 1330  M. E. Thompson  5348 
 
1  MS 1330  S. A. Hutchinson  5349 
 
1 MS 1332  T. P. Bielek  5342 
1 MS 1332  J. D. Bradley  5342 
1 MS 1332  J. A. Hollowell  5342 
10 MS 1332  G. J. Sander  5342 
 
1 MS 0899 Technical Library  9536  (electronic copy) 

 



 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 


	Introduction
	Brief history
	Dielectric properties of ice and snow 
	Density profiles for Antarctic snow and glacial ice

	Crevasse geometric model
	Simulated SAR images
	Trihedral array
	Transparency of the Antarctic snow and glacial ice
	Simulated images of the crevasse and snow bridge
	Snow bridge only, without crevasse walls
	Optimum radar band for imaging crevasses
	Effect of depression angle
	Effect of non-monotonic density profile


	Conclusions and recommendations
	Appendix I – Building a fractal surface
	Appendix II – Shooting and Bouncing Ray (SBR) Method 
	Relationship between MoM and SBR
	The Xpatch® implementation of the SBR method

	Appendix III – Some validation tests for Xpatch®
	Perfectly conducting circular disk
	Rectangular dielectric slab
	Finite-integral time-domain model – normal incidence
	Method of Moments and Multilevel Fast Multipole Algorithm

	Dielectric slab covering a PEC corner reflector

	Appendix IV – Considerations for computing SAR phase histories with Xpatch®
	Maximum-bounce limit
	Multi-look field compensation
	Sampling the reflection / transmission coefficient table

	Appendix V – SAR images of the crevasse and snow bridge
	Crevasse with snow bridge, Siple Dome model, 0.5-m depth
	Monochrome, snow-bridge depth is 0.5 m  
	Square root of magnitude (4th root of power), crevasse with snow bridge, 0.5-m depth
	Color, snow-bridge depth is 0.5 m  

	Crevasse with snow bridge, Siple Dome model, 2-m depth
	Monochrome, snow-bridge depth is 2.0 m  
	Square root of magnitude (4th root of power), crevasse with snow bridge, 2-m depth
	Color, snow-bridge depth is 2.0 m  

	Snow bridge only, Siple Dome model, 2-m depth
	Monochrome, snow-bridge depth is 2.0 m
	Square root of magnitude (4th root of power), snow bridge only, 2-m depth
	Color, snow bridge only, 2-m depth

	Snow bridge only, Siple Dome model, 4-m depth
	Monochrome, snow-bridge depth is 4.0 m
	Square root of magnitude (4th root of power), snow bridge only, 4-m depth
	Color, snow-bridge depth is 4.0 m

	Snow bridge only, Newall Glacier model, 4-m depth
	Monochrome, snow-bridge depth is 4.0 m
	Square root of magnitude (4th root of power), snow bridge only, 4-m depth
	Color, snow-bridge depth is 4.0 m


	References

