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Abstract

Circuit simulation tools (e.g., SPICE) have become invaluable in the development
and design of electronic circuits. However, they have been pushed to their performance
limits in addressing circuit design challenges that come from the technology drivers of
smaller feature scales and higher integration. Improving the performance of circuit sim-
ulation tools through exploiting new opportunities in widely-available multi-processor
architectures is a logical next step. Unfortunately, not all traditional simulation appli-
cations are inherently parallel, and quickly adapting mature application codes (even
codes designed to parallel applications) to new parallel paradigms can be prohibitively
difficult. In general, performance is influenced by many choices: hardware platform,
runtime environment, languages and compilers used, algorithm choice and implemen-
tation, and more. In this complicated environment, the use of mini-applications small
self-contained proxies for real applications is an excellent approach for rapidly explor-
ing the parameter space of all these choices [7]. In this report we present a multi-core
performance study of Xyce, a transistor-level circuit simulation tool, and describe the
future development of a mini-application for circuit simulation.
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Parallel Algorithm Strategies for Circuit Simulation

1 Introduction
Circuit simulation tools (e.g., SPICE [14]) have become invaluable in the development and
design of electronic circuits. However, they have been pushed to their performance limits
in addressing circuit design challenges that come from the technology drivers of smaller
feature scales and higher integration. Improving the performance of circuit simulation tools
through exploiting new opportunities in multi-processor architectures is a logical next step.
With the advent of multi-core technology, supercomputing has become democratized, and
large-scale parallel platforms are becoming widely available.

Unfortunately, not all traditional simulation applications are inherently parallel, and quickly
adapting mature application codes (even codes designed to parallel applications) to new
parallel paradigms can be prohibitively difficult. Application code performance is influ-
enced by many choices: hardware platform, runtime environment, languages and compil-
ers used, algorithm choice and implementation, and more. However, it if often uncertain
which choices have the most impact on application performance. In this complicated envi-
ronment, the use of mini-applications small self-contained proxies for real applications is
an excellent approach for rapidly exploring the parameter space of all these choices [7].

1.1 State of the Field

Various methods of analog circuit simulation are well described by Vlach and Singal [18],
among others [1, 5, 19]. The circuit to be simulated is represented as a system of cou-
pled DAE’s, which are obtained from the enforcement of Kirchhoff’s current and voltage
laws (KCL and KVL, respectively) across an electrical network. The resulting system of
differential algebraic equations (DAE) has the following form:

f(x(t)) +
dq(x(t))

dt
= b(t). (1)

Simulation of this transient equation results in linear systems of the form:

(G + Q/δt)δx = (b− f)/δt (2)

involving the conductance matrix G(t) = df
dx(x(t)), and the capacitance matrix Q(t) =

dq
dx(x(t)). In general, there are several mathematical formulations that may be used to
produce this DAE system, but in practice, nearly all circuit simulators such as SPICE [12],
use the “modified KCL” formulation [15]. This is also the formulation used by Xyce [9].

The system of equations (1) is solved by implicit methods, resulting in the nested solver
loop of Fig. 1. In the initial DC operating point (DCOP) problem, the q terms are not
present, so equation (1) is reduced to the nonlinear equation f(x) = 0, and the linear
system is simplified to:

G δx = −f(x). (3)

9
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Figure 1. Solver structure

Linear systems resulting from circuit simulation are sparse, typically have heterogeneous
non-symmetric structure, and are often ill-conditioned. Direct sparse linear solvers [6], [10],
are the industry standard approach for solving these linear systems due to their reliability
and ease of use in practice. Additionally, for smaller problems they are usually faster than
iterative methods. However, direct solvers suffer from poor scaling and become impractical
when the linear system has hundreds of thousands of unknowns or more.

By comparison, iterative solvers have the potential to be a scalable solution method for
large-scale linear systems with a lower algorithmic complexity. The down-side is that they
are not as easy to use as direct solvers because their effectiveness is dependent upon the
appropriate choice of filtering, reordering, partitioning, and preconditioning.

There has been some progress on the use of iterative methods for circuit simulation,
notably Basermann [2, 3] and Bomhof [4], both of whom relied on distributed Schur-
complement based preconditioners. Additionally, Thornquist [17] successfully applied pre-
condioners based on block-triangular factorization. Matrix-free implementations of iterative
methods are commonly used in Harmonic Balance simulators. Multi-grid methods have
successfully been applied to power-grid simulation by several authors [13], [16], [20]. How-
ever, for conventional transient full-system simulation, which includes functional blocks,
iterative matrix solvers have yet to be widely used.

1.2 Accomplishments

The focus of the work presented in this report is on improving the performance of the device
evaluation phase within Xyce. While the matrix solution phase is more ripe with opportu-
nities for performance improvements, the device evaluation phase is more straightforward.
This allows us to more quickly assess different approaches for improving performance. In
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Figure 2. MPI-based parallel load/solve structure

particular, the results presented here are for cases in which multi-threading is integrated
into the device load procedure.

2 Parallel Approach
Xyce is already parallelized using a message-passing programming paradigm (MPI), where
the number of devices are split (almost) evenly across the number of processors (figure 2).
However, each individual device evaluation is carried out serially on each processor or
compute node and then loaded into a globally distributed matrix. This is an effective strat-
egy that allows Xyce to scale well across multiple processors. However, modern desktop
computers and the compute nodes of parallel computers often contain multiple CPU’s per
workstation or compute node. Running Xyce in parallel via MPI on such an architecture
effectively loads multiple copies of Xyce which then use MPI to send messages all within
a shared memory system. This reduces memory efficiency and ignores multi-threading
optimizations designed into modern CPU’s. Thus, we seek a more fine-grained parallelism
that uses threading to better utilize multiple CPU’s or cores. A good target for threading is
the individual device loads.

To obtain this more fine-grained parallelism through threading, we used the OpenMP stan-
dard. Unfortunately, this type of parallelism is invasive, requiring the modification of each
device with parallel directives so that it can take advantage of multi-threading. Caution
needs to be taken with the insertion of directives because threading is a shared-memory
programming paradigm, so multiple threads could be modifying the same place in memory.
Thus it is necessary to identify and address computations where “race conditions” could
occur, resulting in memory overwrites.

11
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Our first approach consisted of having the device-loads dynamically split among the num-
ber of threads used during a given run. In this scenario, devices are divided up among the
available threads in sets. As each thread finishes with a given set of devices, it requests a
new set to work on. Dynamic splitting of the devices is better than static or linear division as
the magnitude of calculations that must be done for various devices can differ greatly. For
example, a resistor or capacitor device have minimal calculations that need to be done for
a load while a modern transistor model like the BSIM3 can have thousands of calculations
to do to prepare for its load.

Once a device has calculated its updates to the jacobian and residual, it must load or add
the result into a memory space that is shared among all the threads. To safely do this
addition, threading locks must be used to avoid thread conflicts. Augmenting the code to
make such locking feasible proved difficult and slowed the resulting threaded application
considerably.

An improved approach would be to duplicate the jacobian and residual for each thread, so
that the threads could add to these memory spaces without first obtaining locks. When all
the devices are done loading, each thread’s copy of the jacobian and residual could then be
summed into the final value. When running in parallel, the threading layer operates below
the MPI parallel layer. Specifically, when Xyce is running in parallel the threading occurs
within one of the copies of Xyce. The data to be duplicated on the thread level would
only be the data that already exists on that parallel copy of Xyce. Thus, no additional
parallel communication would be need to keep execution synchronized. The threading
would complete before the next MPI level communication would normally occur.

Duplicating some data on the thread level avoids all the complicated locking that must be
done at the cost of allocating an extra jacobian and residual vectors (e.g. F, Q and their
voltage limited counterparts.). This improved approach has not yet been implemented, but
is planned for Xyce. Finally, while we have studied multi-threading the device loads, we
have not yet looked at threading in other areas of the codes such as in the linear solver.
Since the device loads are fully within Xyce it’s an area of code that we can fully modify.
Linear solver technology resides in Trilinos and is thus somewhat outside the development
scope of this work.

3 Results and Discussion
In this section we will present the performance results from integrating multi-threading
into the device load procedure. All the simulations are performed on the compute platform
described in section 3.1, using Intel 10.1 compilers. The test circuits we use to obtain these
results, as described in section 3.2, have a wide variety of problem size and complexity.
To fairly discern the performance gains or losses, we include performance results obtained
from Xyce before any modifications were made to the device load procedure. Furthermore,
we compare the performance with the modified version of Xyce that is not compiled to use
any multi-threading. Lastly, we study the threading overhead by reporting the performance

12
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Table 1. Circuits: matrix size(N), capacitors(C), MOSFETs(M),
resistors(R), inductors (L), voltage sources(V), current sources (I),
expression-based sources (B), diodes (D), mutual inductors (K),
BJTs (Q), controlled switches (S).

Circuit N C M R L V I B D K Q S

ckt1 1191 66 875 250 20 15 9 12 225 4 57 5
ckt2 15622 7507 10173 11057 0 29 0 0 0 0 0 0
ckt3 572 236 240 342 0 12 0 0 0 0 0 0
ckt4 366 36 0 108 10 2 8 0 40 4 50 0
ckt5 25187 0 71097 0 0 264 0 0 0 0 0 0
ckt6 1220 0 432 17 0 66 0 0 0 0 0 0
ckt7 3003 3001 0 3001 0 1 0 0 0 0 0 0
ckt8 5109 0 2002 0 0 2 0 0 0 0 0 200
ckt9 1815 32 4063 4 0 10 0 0 0 0 0 0

ckt10 63761 208236 11732 51947 0 56 0 0 0 0 0 0

of the modified version of Xyce compiled for multi-threading, but only given a single thread
at runtime.

3.1 Compute Platform

All computations are done on a 2.2 GHz AMD quad socket/quad core processor, using
the OFED software stack. This processor has 32 GB DDR2 RAM and a total of sixteen
cores. If only two, four, or eight of the sixteen cores are used, the memory is evenly divided
between the cores.

3.2 Circuits

The experiments are based on transient simulations, and provide measure of both the
efficiency and the reliability of the multi-core approach. The goal of this work is to examine
how the computation work scales under different conditions, so for the purposes of testing,
circuits were chosen that had a wide variety of problem size and complexity.

Table 1 partially describes the circuits used in the numerical experiments. All the circuits
with ‘M’ devices use the BSIM3 [8] model, with a few exceptions. The ‘M’ devices in ckt2 are
based on the SPICE level= 1 and level= 3 MOSFET models, as well as the [8] model. The
‘M’ devices in ckt11 are based on the BSIM4 [11] model. As clarification of the ‘K’ devices,
the mutual inductors in ckt5 are all nonlinear and in ckt2 are both linear and nonlinear.

3.3 Discussion

The performance results for this study are found in table 2. To fairly discern the perfor-
mance gains or losses, we include performance results obtained from a serial build of
Xyce before any modifications were made to the device load procedure. These results can
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be found in the first row for each circuit, and is indicated by “1(H)” in the “# Cores” column.
Furthermore, we compare the performance with the modified version of Xyce that is not
compiled to use any multi-threading. These results can be found in the second row for
each circuit, and is indicated by “1(T)” in the “# Cores” column. Lastly, we study the thread-
ing overhead by reporting the performance of the modified version of Xyce compiled for
multi-threading, but only given a single thread at runtime. These results can be found in
the third row for each circuit, and is indicated by “1” in the “# Cores” column.

The performance results indicate that, in all but one circuit, using multi-threading in the de-
vice loads results in a speedup of the load time. Furthermore, in most cases the speedup
increases with the number of cores. The net effect of the load speedup on the total simula-
tion time was lessened in all cases. This can be seen by comparing the load speedup with
the load and linear solve speedup. This is because the sparse linear solver used in these
tests is not threaded, and thus will not scale with the number of cores. When the Jacobian
and residual load time dominates the cost of the simulation, as with ckt8 and ckt9, then the
multi-threaded loads result in a 2- to 3-times speedup in total simulation time. Even when
the linear solver time dominates the cost of the simulation, as with ckt6, the simulation time
is still decreases by 30 percent.

Given ten circuits with a wide variety of problem size and complexity, only ckt1 and ckt4
suffered from performance issues. These are the only two circuits that include diodes,
BJTs, and mutual inductors, which may indicate that multi-threading is not effective in one
or more of those devices.
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ckt1 1(H)

D=1539 1(T)

N=1191 1

2 1 1 5307 966 228117 28752 618683 875560 2567 1012 966 5308

4 1 1 4278 974 228557 28843 619418 876826 1843 739 974 4280

8 1 1 3875 912 228131 28715 618533 875387 1631 632 912 3876

16 1 1 4240 841 228409 28844 619299 876560 1955 798 842 4242

ckt2 1(H) 13 13 288 52 364 39 1585 1988 158 58 54 314 1.00 1.00

D=28766 1(T) 13 11 232 51 359 34 1550 1943 128 35 53 255 1.24 1.23

N=15622 1 13 12 278 51 362 37 1536 1935 141 70 53 303 1.12 1.04

2 13 10 207 51 354 41 1565 1960 87 46 54 231 1.83 1.36

4 13 8 171 51 365 38 1580 1983 63 37 53 192 2.53 1.64

8 13 7 143 48 351 30 1494 1875 46 29 50 163 3.45 1.93

16 13 7 148 50 383 48 1649 2080 44 32 52 169 3.60 1.86
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ckt3 1(H) 1 0 8 2 920 76 2037 3033 4 1 2 9 1.00 1.00

D=830 1(T) 1 0 7 2 923 83 2056 3062 3 0 2 8 1.17 1.09

N=572 1 1 0 8 2 936 79 2079 3094 4 1 2 9 1.04 0.96

2 1 0 6 2 951 80 2111 3142 2 1 2 7 1.96 1.26

4 1 0 5 2 930 75 2056 3061 1 1 2 6 2.78 1.41

8 1 0 5 2 933 80 2070 3083 1 1 2 6 3.02 1.40

16 1 0 5 2 935 78 2073 3086 1 1 2 6 3.24 1.56

ckt4 1(H) 0 0 194 66 162557 17087 222850 402494 63 18 66 195 1.00 1.00

D=258 1(T) 1 0 180 67 163462 17599 224752 405813 52 13 67 181 1.21 1.08

N=366 1 0 0 208 67 163462 17599 224752 405813 68 24 67 208 0.92 0.93

2 0 0 285 67 163884 17070 224662 405616 123 35 67 286 0.51 0.68

4 0 0 335 68 166650 17662 228750 413062 175 28 68 335 0.36 0.58

8 1 0 418 70 169458 17575 230615 417648 258 28 70 418 0.24 0.47

16 0 0 553 68 168916 17702 231121 417739 401 34 68 553 0.16 0.35

ckt5 1(H) 57 366 952 262 288 17 936 1263 592 208 345 1375 1.00 1.00

D=71361 1(T) 57 346 862 268 288 17 936 1263 543 132 353 1266 1.09 1.09

N=25187 1 58 365 946 263 288 17 936 1263 538 258 346 1370 1.10 1.00

2 58 290 706 260 288 17 934 1261 340 157 341 1054 1.74 1.30

4 58 250 581 261 288 17 927 1254 229 107 340 889 2.59 1.55

8 57 235 514 260 288 17 933 1260 175 78 341 806 3.39 1.70

16 58 242 507 258 288 17 935 1262 174 74 341 807 3.41 1.70

ckt6 1(H) 1 3 2361 1565 87719 7512 194223 289454 546 85 1568 2365 1.00 1.00

D=515 1(T) 1 4 2330 1540 87995 7618 195016 290629 513 106 1543 2334 1.06 1.01

N=1220 1 1 5 2461 1529 87813 7511 194449 289773 564 199 1532 2467 0.97 0.96

2 1 4 2111 1521 87829 7553 194570 289952 313 105 1525 2115 1.74 1.12

4 1 4 1984 1534 87619 7533 194040 289192 206 74 1537 1989 2.65 1.19

8 1 4 1915 1540 87716 7559 194267 289542 154 51 1544 1919 3.55 1.23

16 1 3 1688 1341 87845 7536 194551 289932 140 48 1344 1692 3.91 1.40

ckt7 1(H) 3 0 399 57 26522 5 26526 53053 159 55 57 403 1.00 1.00

D=6003 1(T) 3 0 324 57 26522 5 26526 53053 78 34 57 328 2.04 1.23

N=3003 1 2 0 364 57 26522 5 26526 53053 92 58 57 366 1.73 1.10

2 2 1 337 58 26522 5 26526 53053 77 50 58 339 2.07 1.19

4 2 1 324 58 26522 5 26526 53053 75 45 58 327 2.12 1.23

8 2 0 333 57 26522 5 26526 53053 82 48 57 335 1.94 1.20

16 2 0 338 57 26522 5 26526 53053 94 55 57 340 1.68 1.19
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ckt8 1(H) 174 2 2497 303 15501 0 46461 61962 1736 333 303 2673 1.00 1.00

D=2204 1(T) 174 0 2321 304 15501 0 46461 61962 1625 263 304 2495 1.07 1.07

N=5109 1 174 1 2683 303 15501 0 46461 61962 1752 500 303 2858 0.99 0.94

2 175 0 1786 296 15501 0 46461 61962 1060 299 296 1962 1.64 1.36

4 175 0 1344 310 15501 0 46480 61981 692 208 310 1519 2.51 1.76

8 174 0 1048 296 15501 0 46480 61981 475 148 296 1222 3.65 2.19

16 174 0 950 296 15501 0 46480 61981 367 157 296 1124 4.73 2.38

ckt9 1(H) 3 3 381 28 3026 277 6808 10111 260 56 28 386 1.00 1.00

D=4109 1(T) 3 2 326 27 3028 278 6815 10121 230 37 28 331 1.13 1.17

N=1815 1 3 3 385 27 2973 285 6734 9992 245 82 27 391 1.06 0.99

2 3 2 293 27 3027 286 6840 10153 172 62 28 298 1.51 1.30

4 3 2 215 28 3002 279 6781 10062 111 42 28 219 2.33 1.77

8 3 1 145 27 2986 264 6713 9963 62 24 27 149 4.18 2.59

16 3 1 123 25 2984 277 6738 9999 42 23 26 127 6.11 3.05

ckt10 1(H) 549 37 231 79 74 2 177 258 104 40 92 818 1.00 1.00

D=271971 1(T) 554 32 190 80 74 2 177 258 71 26 93 776 1.45 1.05

N=63761 1 557 33 197 78 74 2 177 258 71 39 91 787 1.47 1.04

2 562 28 162 78 74 2 177 258 44 25 91 752 2.38 1.09

4 565 26 144 79 74 2 177 258 31 20 91 735 3.38 1.11

8 555 25 137 78 74 2 177 258 26 17 91 717 4.05 1.14

16 556 24 133 78 74 2 177 258 24 15 90 713 4.32 1.15

Table 2: Multi-core performance results; D=#devices, N=matrix
dimension, H=Xyce before performance improvements,
T=Xyce after performance improvents without threading.

4 Conclusions

In this paper we discussed parallel circuit simulation, particularly for mixed-architecture
parallelism, in which combinations of threading and message-passing may be components
of a optimal parallel simulation strategy. Experimental results indicate that, even if only
threading parallelism is used, a significant speedup can be expected with Xyce. While the
combination of threading and message-passing was not explored here, it is reasonable
to assume that the coarser-grained device distribution (via MPI) will be enhanced by the
finer-grained device evaluation parallelism (via threading).
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The performance study presented in this paper, has been enlightening, but time consum-
ing. Furthermore, have focused on only one piece of functionality, device loading, that is
required for transistor-level circuit simulation. A full simulation performance study would
be too involved for even once choice of architecture. This is the motivating factor for mini-
applications, like MiniXyce, so that computational kernels pertinent to a particular applica-
tion can be easily and quickly assessed.

4.1 Future Work: MiniXyce

Throughout this performance study, a considerable amount of thought has been put into
creating a mini-application for transistor-level circuit simulation. Even though the mini-
application, MiniXyce, has not been implemented, it is the future tool for prototyping new
parallel paradigms for Xyce.

Xyce, the original code upon which MiniXyce would be based, consists of over 500,000
lines of C++ code. However, much of the source is required to support capabilities that are
not needed for MiniXyce. For example, the Xyce input file (IO) parser is very complex, sup-
porting user-defined expressions, hierarchical subcircuiting, as well as the physics (com-
pact device) model library. For large circuit simulations, the input file itself can be so large
as to exceed the memory constraints of a single processor. As a result, it is necessary for
Xyce’s parsing to be conducted in parallel.

In addition to the IO parser support, a large fraction of the Xyce source is devoted to the
library of device models. In circuit simulation, device models are used to enforce KCL
equations, by applying Ohmic relationships to discrete electrical components to branches
of the circuit graph. Typical examples of such components include transistors, diodes,
resistors, and capacitors. While some device models, such as the resistor, are quite simple,
modern transistor models can be extremely complex. It is common for modern CMOS
based transistor models to consist of over 10,000 lines of C/C++ code.

For MiniXyce, both source code burdens (IO and device models) can be avoided or mit-
igated. The approach taken for MiniXyce will be based on the following ideas. (1) Most
large circuits that could benefit from parallel computing methods will be CMOS integrated
circuits. (2) CMOS integrated circuit designs can be divided into a few general categories
and/or building blocks, such as memory, PLL, ADC, DAC, power grids and multipliers. As
such, only a handful of device models are necessary: resistor, capacitor, voltage source,
and a simplified MOSFET model. Additionally, a traditional circuit parser is not necessary,
as the connectivity structure of many building blocks can be hard-coded with repeated unit
cells. Realistic circuits will have more variability than can possibly be represented with
such an approach, but this should be sufficient to investigate performance and scalability.
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