
1

SAND2009-7909

Unlimited Release SANDIA REPORT
SAND2009-7909
Unlimited Release
Printed November 2009

Autonomous Intelligent Assembly
Systems LDRD Final Report

Robert J. Anderson

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

 2

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represent that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States
Government, any agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from
 U.S. Department of Energy
 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN 37831

 Telephone: (865) 576-8401
 Facsimile: (865) 576-5728
 E-Mail: reports@adonis.osti.gov
 Online ordering: http://www.osti.gov/bridge

Available to the public from
 U.S. Department of Commerce
 National Technical Information Service
 5285 Port Royal Rd.
 Springfield, VA 22161

 Telephone: (800) 553-6847
 Facsimile: (703) 605-6900
 E-Mail: orders@ntis.fedworld.gov
 Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-
0#online

mailto:reports@adonis.osti.gov
http://www.osti.gov/bridge
mailto:orders@ntis.fedworld.gov
http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online
http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

 3

SAND 2009-7909
Unlimited Release
Printed April 2013

Autonomous Intelligent Assembly Systems LDRD 105746

Final Report

Robert J. Anderson

Sandia National Laboratories

P.O. Box 5800

Albuquerque, New Mexico 87185-1125

Abstract

This report documents a three-year to develop technology that enables mobile

robots to perform autonomous assembly tasks in unstructured outdoor

environments. This is a multi-tier problem that requires an integration of a large

number of different software technologies including: command and control,

estimation and localization, distributed communications, object recognition, pose

estimation, real-time scanning, and scene interpretation. Although ultimately

unsuccessful in achieving a target brick stacking task autonomously, numerous

important component technologies were nevertheless developed. Such

technologies include: a patent-pending polygon snake algorithm for robust

feature tracking, a color grid algorithm for uniquely identification and calibration, a

command and control framework for abstracting robot commands, a scanning

 4

capability that utilizes a compact robot portable scanner, and more. This report

describes this project and these developed technologies.

 5

Acknowledgements

This author wishes to thank the following Sandians for their invaluable contributions to

this project over the last three years and for their input to this final report.

Fred Rothganger, who spent many long hours developing vision algorithms and

implementing behavior on board the Hagar platform.

Charles Q. Little, who interfaced with the Canesta sensor, and helped identify its

deficiencies.

Ralph Peters, who both interfaced with the Swiss Ranger imager, and brought the

marching cubes algorithm to fruition on our system.

Dan Morrow, who mastered the intricacies of voice recognition.

 6

Table of Contents

Abstract ... 3

Acknowledgements ... 4

Table of Contents .. 5

Table of Figures .. 7

List of Tables .. 8

1. Introduction ... 9

 1.1 Defining a Focus Task.. 10

 1.1 Technology Starting Point .. 11

2. Command and Control .. 12

 2.1 The SmartCmd Class Structure ... 12

 2.2 Chaining Commands in Sequence ... 13

 2.3 Command Summary .. 15

 2.4 Command Execution: Simple GUI .. 17

3. Audio Commands ... 18

 3.1 Audio Example ... 20

 3.2 Audio Feedback ... 21

4. Broadcast Communications .. 22

5. Robot Platform Development ... 24

6. 3D Scanning ... 27

 7

 6.1 The Canesta Scanner .. 27

 6.2 Problems with scanner data ... 28

 6.3 Scanning Revisited: Using the MESA SR4000 29

 6.4 Using Marching Cubes to Build Surface Models 30

 6.5 Scanning Conclusions .. 33

7. Feature Tracking and Object Recognition .. 35

 7.1 First-Year Efforts: Canny Detectors & Hough Transforms 35

 7.2 Polygon Snakes ... 37

 7.3 Identifying Polygons ... 41

 7.4 Rapid Image Segmentation .. 42

 7.5 Autonomous Model Building ... 44

 7.6 Issues with Polygon Tracking ... 46

 7.7 Color Grid Pattern Matching ... 47

 7.8 Image Processing Conclusions .. 48

8. Conclusions .. 50

Appendix A: Glossary .. 53

References ... 56

Distribution: ... 59

 8

Table of Figures

Figure 1.1: The Robot Brick-Laying Focus Task ... 10

Figure 2.1: SmartCmd State Engine .. 13

Figure 2.2: Composite Command State Diagram For MultiCmd. 14

Figure 2.3: Automatically Generated User Interface for SmartCmds 17

Figure 3.0: Two-Stage Grammar For Speech Recognition 19

Figure 5.1: HAGAR at Take Your Sons & Daughters to Work Day ’08 24

Figure 5.2: Turing Robot at Take Your Sons & Daughters to Work Day ’08 25

Figure 5.3: New Modules Developed For Navigation Robot 25

Figure 6.1 Canesta DP300B Scanner and Umbra Scan Data 28

Figure 6.2: Anomalies in Canesta Scan Data. .. 28

Figure 6.3 MESA SR4000 and a Stairway Scan ... 29

Figure 6.4: One corner of a sample office. .. 31

Figure 6.5: A series of scans to be merged for the office. 31

Figure 6.6: Overhead view of data set of complete office scan. 32

Figure 6.7: The resulting merged scan using Marching Cubes. 32

Figure 7.1 Hough Transform Approach to Cone Detection 36

Figure 7.2 Hagar automatically moving to Cones on Feb 2008. 36

Figure 7.3. Classical Snake Algorithm ... 38

Figure 7.4: New Polygon Snake Algorithm .. 39

 9

Figure 7.5: Target Blocks .. 40

Figure 7.7: Evolving Snake .. 40

Figure 7.8: Snake Settled on Contour .. 41

Figure 7.9: Polygon Identification and Matching. .. 42

Figure 7.10: Image Output from imageBlobber ... 42

Figure 7.11 Automated Model Building of a Brick Wall 45

Figure 7.12: Matching and Tracking Color Grid Patterns 48

List of Tables

Table 2.1: Robot Motion Commands. .. 14

Table 2.2: Composite and Miscellaneous Commands. 15

Table 2.3: Visual Tracking and Servoing Commands. 15

Table 3.0: Speech Commands and Actions. .. 20

 10

1.0 Introduction

Robot systems have recently achieved remarkable success in military missions, both on

ground and in the air, but there is a huge difference in the how these missions are

conducted. Air missions are entirely autonomous. Robot aerial drones receive their

flight plans and target coordinates, and can then perform with minimal human

intervention. Ground robots, on the other hand, are entirely teleoperated. Robot

operators use closed-circuit cameras to monitor, and joystick controllers to remotely

control every action of a remote robot. The goal of this LDRD was to develop a level of

autonomy so that ground based robots could perform manipulation tasks in a cluttered

environment without constant human intervention.

Navigation for ground robots is substantially more complex than for their aerial cousins.

The potential for collision for ground based vehicles is constant, whereas aerial vehicles

have tens to hundreds of meters separation between nearest obstacles. Air-based

navigation via either GPS or target tracking is also simpler. GPS is fully adequate for

navigation for an aerial vehicle without any additional decision making processes

required. Furthermore, vision based operations for aerial vehicles are essentially 2-D,

i.e., occlusion doesn‟t present a problem to aerial operations. Ground based vehicles, on

the other hand, can see a very different view of the world just by moving a few feet.

The mission space for the ground robotic systems is also substantially different. Military

ground robots are deployed for disabling IEDs (Improvised Explosive Devices) as a

primary mission. They are used to open doors, deploy sensors, aim weapons, and gather

debris. In the future they could be used for setting up a “Green-zone”, conduct

decommissioning in a contaminated facility, or build barriers for force protection. NASA

tasks of interest include docking to moon-based trailers, base-station maintenance and

satellite assembly. Mobile robots have the ability to reach out and manipulate objects in

their environments, and this ability we loosely call “assembly”.

Currently these tasks are conducted by remote teleoperation or by humans or not at all,

but there are high costs associated with manual operations. In a war zone, the humans

present targets for insurgents. In radiation areas, the humans are receiving unnecessary

 11

doses. On a proposed lunar base both humans the neither operators nor teleoperator

currently exist, and are extremely expensive to provide.

This LDRD seeks to prove that autonomous mobile robots can perform useful

cooperative assembly operations in unstructured outdoor environments. Tasks should be

defined by object primitives: not by hardcoded waypoints and/or taught motion paths.

Whereas DARPA had already focused on navigation for mobile vehicles, this LDRD

seeks to take it a step further: actual interaction and manipulation with the environment.

1.1 Defining a Focus Task

Autonomy for mobile robots is a broad goal, and we decided early on to define a task that

would provide focus for our research efforts. The task needed to be achievable in

payload, reach, and grasping capabilities for our current robot platforms, be both unique

and difficult, and require us to solve relevant problems for an actual application.

We chose “brick-laying” as our sample assembly task. The plan was to use a pair of

robots, one as a navigational/leader/transport robot, and one as a follower/manipulator.

This concept is shown in Figure 1 below.

Figure 1.1: The Robot Brick-Laying Focus Task

The robots would navigate relative to a set of colored cones, identify a work-site, and

then systematically construct a wall of specially made bricks at the site. We would be

 12

free to engineer the bricks to have a simple grasp point, and to have visual recognizable

features to simplify recognition and alignment.

This task would showcase precision assembly, landmark navigation, advanced

scanning/segmentation/subtraction technique, pack-mule operations, follower modes,

object recognition, and robust error recovery and planning. It would create a compelling

demonstration of advanced assembly ---- if we could pull it off.

With this task in mind we started to focus on key elements. We would need capable

platforms for implementing and demonstrating the technology. We would need a

framework for command and control for these platforms. We would need to be able to

identify and localize brick and cones. We would need to accurately navigate around a

site. We would need to be able to communicate between robot components and maintain

a common database for our models, and we would need to be able to orchestrate

advanced combinations of scanners, planners, and motions.

1.2 Technology Starting Point

A number of the necessary components were already available at the outset of this

project. A pair of 6-Degree-of-freedom (DOF) mobile manipulators called Turing robots

had been used for substantial work in remote teleoperation (Anderson, 2008). They had

no navigation system, but did utilize a pair of calibrated targeting cameras. The HAGAR

robot system had been first developed for remotely monitoring Army depots, and had

been used in earlier research into Autonomous Navigation. (Klarer, 1994, Eisler, 2002).

In addition, Sandia‟s Robotics group had already developed two mature software

frameworks: SMART, for-real time control (Anderson, 1995) , and Umbra for high-level

visualization and planning (Gottleib, 2001), and we had faith that commercial scanning

technology would provide the data we needed for manipulation.

We also had an active perception group with substantial experience in interfacing with

commercial sensor systems and interpreting the data streams.

 13

2.0 Command and Control

Implementing autonomous robot behavior requires methods and techniques for

converting sensory data and goals into actions for the robots. These actions cover a wide

variety of different actions the involve servoing pan-tilt units, adjustments to zoom

settings, driving robot bases, moving robot manipulators, setting up planners, etc. In our

prior systems we had relied heavily on human operators to perform and execute these

actions, usually by interacting with a graphical user interface, clicking on buttons and

manipulating joysticks. To achieve autonomy, however, we needed to rethink this

approach. We needed a system that would allow us to incrementally build up complex

behavior using building blocks and scripting.

2.1 The SmartCmd Class Structure

The first step in developing an abstract command class was to determine the elements of

a generic command – without getting caught up in the specifics of our particular robot

systems. A command has a beginning and an ending. It requires time to execute and

utilizes resources during execution. It can either achieve success or fail along the way.

Furthermore, the operator needs to determine status for an executing command and be

able interact with its execution. The operator might need to stop and abort any command.

In many cases, especially in the case of robot motion, the operator needs to be able to

pause, play and rewind and commands. The commands should be loaded and created

from a database in a flexible fashion. Finally, the command class needed be fully

embeddable. Complex command sequences should evolve from much simpler

commands.

These concepts were implemented in IncrTcl (http://incrtcl.sourceforge.net/itcl) inside a

base class that we designate a SmartCmd. Each SmartCmd object has the following key

components:

• Methods for Init, Play, Pause, Stop, Exit, getting the current state (GetCmdState),

and getting the percent of the task completed (GetPercentDone).

http://incrtcl.sourceforge.net/itcl

 14

• An Update method which is attached to a wall clock timer during execution and

periodically calls GetCmdState, & GetPercentDone methods.

• Methods for reading and writing parameters from XML files.

• The ability to recursively imbed other command objects, in parallel, or in series.

• A global “resource” list that ensures that only one command is simultaneously

utilizing a named resource.

By requiring that all commands implement methods for Init, Play, etc, we were able to

develop an abstract framework that extended to all of the specifics activities needed for

robot control. The SmartCmd framework then implements a state engine for all objects

of the class, as shown in Figure 2.1.

Figure 2.1: SmartCmd State Engine

 15

2.2 Chaining Commands in Sequence

The SmartCmd approach allows advanced commands to be constructed from other

simpler commands, which can in turn be combined into even more sophisticated

commands. As an example of how this is done, we look at defining the commands for

the SmartMultiCmd object. In the SmartMultiCmd, multiple command objects are

executed in temporal sequence. The command object is initiated with a list of

subcommands, each being a SmartCmd object itself. Initialization of the command

begins with initialization of the first command in the list. Once one command in the list

is finished, the next command should be executed and so forth. Upon success, each

proceeds to the next command state automatically. Each command objects calls the

current embedded command methods.

The GetCommandState method for the SmartMultiCmd returns the command state of the

current queued command . The Play/Pause/Stop methods simply call the same methods

for the currently running queued command. The Resource queue keeps track of named

resources required for each command. If resources aren‟t available, the system goes into

InTransition state. The bulk of the work in the SmartMultiCmd is in the update loop

which must monitor the current command and initialize the next command in the queue

once it completes. Figure 2.2 summarizes this behavior.

 16

Figure 2.2: Composite Command State Diagram For MultiCmd.

2.3 Command Summary

Other composite commands implement additional features: performing operations in

parallel, queuing for events, branching to an error recovery procedure if a system failed.

Since every command is an instance of the base command class, methods for loading and

saving via XML, for initializing, for aborting, playing, pausing etc are always available.

Advanced commands such as DoUntil, DoAndWait, AorB, MultiCmd interface to

individual sub-command objects, and allow increasingly sophisticated robot behaviors to

be created from primitive parts. Tables 2.1, 2.2, & 2.3 summarize the different command

objects that have been implemented.

Table 2.1: Robot Motion Commands.

Command Name Description

SmartTrajCmd Moves a robot device a long a motion trajectory

 17

SmartMoveAlongHighwayCmd Moves a robot to nearest point along a motion highway

and continues till end of highway

SmartTagCmd Move a robot device to a single tag point

SmartMoveRelCmd Moves a robot device a relative distance

TrajDualCmd Queue up a joint motion followed by a straight-line

world motion.

SmartPlanTagCmd Call planner to generate a goal destination tag.

SmartMoveAxisCmd One degree of freedom of device is move to defined

location (e.g,, just change zoom setting

SmartMoveToHighwayCmd Move to nearest point on a motion highway.

Table 2.2: Composite and Miscellaneous Commands

Command Name Description

SmartDoAndWait Initiate first command, wait, and call final command.

SmartDoAorB Do initial command, if it fails, try the second.

SmartDoUntilCmd Execute sub-command A until sub-command B is done

SmartMultiCmd Do a series of sub commands in sequence

SmartTimerCmd Wait a given time

SmartStartWaitAndFinish Start one command, wait for timer, call an exit command

SmartSimulcastCmd Initiate a series of commands from a list, wait till they

all complete, or one fails

SmartLoadScriptCmd Load a defined Tcl script from file.

SmartInstantCmd Execute a single Tcl procedure immediately

 18

Table 2.3: Visual Tracking and Servoing Commands

Command Name Description

SnakeGrowerCmd Grow a polygon snake to find a target object

SnakeFindCmd Find a desired polygon inside a visual image.

GridServoCmd Servo PTU on found color grid

GridFindCmd Find a match to a given color grid.

BlobServoCmd Servo based on the centroid of a color blob.

BlobFindCmd Find a color blob that matches a criterion.

2.4 Command Execution: Simple GUI

The figure below shows a sample GUI that is automatically created from a command set.

XML files describe the various commands in system. When the XML files are parsed,

the command objects are instantiated and the GUI page is automatically generated for the

commands. Ideally, large sequences of commands would be chained together and

executed as a single command object, but the divide and conquer approach helps to make

debugging sub-commands tractable.

A VCR-line control interface provides an intuitive interface for pausing and playing and

rewinding the robot behaviors.

 19

Figure 2.3: Automatically Generated User Interface for SmartCmds

 20

3.0 Audio commands

By the final year of the LDRD it became clear that full autonomy was not going to be

achievable, and that a high level of operator intervention was still required to guide and

direct robot systems. Because our operations were directed to robot systems working

outdoors over large areas and that likely operators would be foot soldiers, it seemed

natural to free up the operator from being chained to a desktop and let them command

semi-autonomous behaviors in the field by using audio commands.

To make this happen, an audio layer was implemented within the SmartCmd base class,

called the smartSpeechRecognizer. Because every command had an associated label to

display on the button, we decided to reuse this label as a means to queue the command.

The belief was that voice recognition had advanced to a point that we could quickly and

reliably recognize phrases from a command set and initiate various robot operations.

A key concept in the speech recognition is the definition of grammars. A grammar

defines which phrases (as strings) that the system is able to recognize. Grammars can be

defined in sophisticated ways to form numerous recognizable phrases. In addition, a

callback function is invoked when a phrase is recognized. Multiple grammars can be

defined and active. In this way, unique event handlers (e.g. callbacks) can be attached to

each different grammar to achieve different behaviors.

The smartSpeechRecognizer implements two grammars: A Command grammar which is

built on-the-fly based on the SmartCmds in the system, and a Control grammar which is

fixed. The recognition logic implemented in the callback also tries to implement a valid

state transition from various command states as shown in Figure 3.0. These grammars

are mutually exclusive in activation – only one is active at time – which one is controlled

by the state machine shown below. The Command grammar is always the initially active

grammar.

 21

Figure 3.0: Two-Stage Grammar For Speech Recognition

The Grammar is defined by passing various string phrases to the grammar. In addition,

the smartSpeechGrammar is designed to have an option prefix phrase. The default ones

are “Command” for the Command grammar, and “Control” for the Control grammar.

Control grammar phases are based on the familiar VCR controls:

 Play

 Pause

 Rewind

 Exit

 Abort

and are intimately associated with the state engine of the SmartCmds (Figure 2.1). Exit

and abort are commands to abort the command and begin listening for a new command.

Control

STOP

RUN

PAUS
E

Command

exit, abort

exit, abort

Command

<cmd>

exit, abort

Rewind, play

pause
stop

stop

 22

3.1 Audio Example

As an example of the implemented grammar, consider the following robot system

commands.

 “Move to start”

 “scan left”

 “scan right”

 “box motion”

Table 3.0 summarizes the phrases spoken by an operator, and then resulting behavior

queued by the speech system based on its current state.

Table 3.0 Speech Commands and Actions

Spoken phrase Resulting Action Speech System state

Move to start Nothing – prefix Command
was left out

Still listening for command

Command Move to Start Move to Start begins to
execute

System now listens for
Control command; in RUN
state

Control Pause Move to Start pauses System is now in PAUSE
state

Control Play Move to Start cmd resumes System is now in RUN state

Control Abort Move to Start cmd aborted System is now listening for
Command

Control Pause Nothing – no recognition System is still listening for
a Command

One reason we use the prefix is it seems to increase the accuracy by providing a longer

phrase for recognition. Short, terse phrases seem to be more easily mistakenly

recognized – and even totally different noises are sometimes recognized as these one-

word phrases. But including the prefix has drastically cut down on these false positives.

 23

3.2 Audio Feedback

In addition to recognition, the SpeechSDK also supports speech synthesis. Each

recognized phrase is echoed to the user which gives the user confidence in what was

recognized. We can specify an echo phrase or rely on a default one for Commands. For

example, “Move to Box” might have a defined echo of “moving to box” or the default

which prepends “executing” to the command (in this case: “executing move to box”).

The recognition engine is actually turned off during this echo phase so that the echo is not

in turn recognized. With a headset this is unnecessary, but with speakers it can become a

problem if recognition is on while this feedback occurs.

Feedback turned out to be critical in establishing a rapport with the operator. Without

audio feedback queues, the operator would be confused as to the state of the robot. Did it

understand the command? Was if finished with a command?

 24

4.0 Broadcast Communications

Another technology required for implementing cooperative autonomy among multiple

robots is a robust communication framework. The communication layer must keep each

robot informed of what others are doing, what sensors are reading, and the current desired

and actual command state of each subtask in the system. In our architecture, all of this

data is transmitted to a base station computer that orchestrates the underlying behaviors

of the distributed system.

Our previous communication framework was based on point-to-point TCP and UDP

sockets. A single workcell defining all of the robots and all of the data that needed to be

transmitted was defined and channels were setup up between each computation pair.

This worked well for a single base station and a single robot, but as more and more

subsystems were added, it became more unwieldy.

We had also investigated numerous other communication frameworks: SPREAD

(http://spread.org/) , Remote Procedure Calls (RPC), JAUS (http://www.openjaus.com),

etc. and found them all to be lacking for one reason or another. Spread, for instance

lacked efficiency due to its dual transmission of data over UDP and TCP. RPC required

recompiles of each target system whenever a new communication object was required,

and JAUS added significant overhead and would force us to use a limited robot

vocabulary.

The requirements for communications were as follows:

 The communication architecture would need to pass data freely between any

combination of SMART and Umbra subsystems.

 Data passing should be passed with minimal latency

 The overhead associated with information passing should be minimal.

 Information must transfer between processes running on the same CPU and

between processes running on different CPUs.

http://spread.org/

 25

 Rapidly changing data should be transmitted within a guaranteed minimum time

step.

 Static data should still be transmitted periodically in case remote systems missed

an earlier transmission.

The eventual implementation of our communication is called smartBroadcast and

utilizes UDP Broadcasts over sockets. The UDP Broadcast allows multiple targets to

receive data at once without any additional overhead. A blackboard framework is

used for logging data that needs to be transmitted to a target. Only the most recent

data is sent. Data is backed in binary with coded host and processor id, data type, and

a two-byte cyclic-redundancy-check (CRC). To improve efficiency, name

synchronization packets are used to associate multi-character data names with

efficient register numbers. The data is passed at high rates with only the register

numbers rather than the descriptive names.

 26

5.0 Robot Platform Development

At the initiation of the project we had two robot platforms available: the meter sized

RATLER vehicle known as HAGAR (Fig 5.1), and the mobile manipulator arm known

as Turing (Fig 5.2). Hagar provided cross-country mobility, power, and suitable size for

mounting sensors and scanners. The Turing system had an existing SMART based open-

control architecture and a highly capable arm with installed camera PTU systems.

Unfortunately, neither platform was ready for autonomous operations. Hagar had been

running a MSDOS era computing stack and a substandard GPS system. It used an

Analog 2.4 GHz video radio, and a simple serial radio for command and control. The

prior developers of Hagar had either retired or had left Sandia.

Turing on the other hand used a tether to hook back to the base station, and had neither

GPS, nor obstacle avoidance safety sensors. The wrist/grasping closure of the Turing

gripper was also not position-servo controlled, which meant we would have to

accomplish wrist closure control via visual servoing.

Figure 5.1: HAGAR at Take Your Sons & Daughters to Work Day ‘08

 27

Figure 5.2: Turing Robot at Take Your Sons & Daughters to Work Day ‘08

Under the LDRD we were able to upgrade Hagar to make a viable system for research at

the robot vehicle range. New SMART modules for the compass (TCM2), Tilt sensor

(XBOX_TILT), and high-precision GPS (NOVATEL_OEM4) were added to the base

Hagar system (Fig 5.3). A Kalman-Filter based motion estimator module

(POS_KALMAN) was developed to provide continuous inertial reference frames

estimates for Hagar based off of compass data, velocity commands and GPS updates.

With differential corrections, Hagar is now able to achieve positioning accuracies within

a few centimeters. Furthermore, a remote “Xbox” interface was added to the Hagar

platform so it could be easily moved and setup at different sites.

Figure 5.3: New Modules Developed For Navigation Robot

 28

With the upgrades provided by this LDRD, Hagar has made numerous public showing

and demonstrations: The X-Prize ‟07, American Nuclear Society Conference „08,

Family Day „09, etc.

Updates to free Turing from its tether were planned, but were put on hold as we focused

on software activities.

 29

6.0 3D Scanning

Three-dimensional scanning had always been viewed as a critical part of autonomous

assembly in unstructured environments. For manipulation, objects need to be grasped,

candidate grasp points on objects need to be identified, and object poses need to be

accurately measured. Even when manipulating known objects with given a priori grasp

points (such as the brick targets), the objects need to be matched to existing data sets and

positioned in space.

Range scanning provides two benefits over vision based systems. The scans provide a

rich set of points for correlating to known models to, and it can define areas of collision

free space in which a robot can move. We had hoped that commercially available

portable scanning technology had evolved to a point to be useable. What we learned was

that scanners each had their own idiosyncrasies, and that substantial algorithm work was

still needed to make the leap from sensor scans to robot action.

6.1 The Canesta Scanner

The Canesta DP300B (Fig 6.1) was the first candidate sensor. It provided distance scans

at 4 Hz over a 40 degree cone and with a 200x200 pixel array. It was affordable ($7K)

and suitably compact to be deployed by a mobile robot.

We developed an Umbra module to interface to the sensor and display the data. For fine

assembly we hoped to first generate background scans, and then as new objects were

added or deleted from the scene planned on looking at the differences of the scan data

and fit our set of known objects to the data scan. Figure 6.1 shows the scanner data of a

brick object within the Umbra environment using the Canesta.

 30

Figure 6.1 Canesta DP300B Scanner and Umbra Scan Data

6.2 Problems with scanner data.

As we worked more with the data we realized that our goal of localizing objects with 1.5

centimeters and orienting objects with 5 degrees would be difficult to achieve. There

were a number of anomalies with the data. Flat surfaces, especially corners, would be

distorted. Objects would have aliased appearances so an object at 6 meters of distance

may appear at three meters of distance. Surfaces with poor incidence angles with respect

to the scanner would give misleading data. Some of these effects are shown in Fig. 6.2.

Figure 6.2: Anomalies in Canesta Scan Data.

Traffic cone (edge smeared)

Brick (edge offset)

Wall to floor (corner warped)

 31

Ultimately the number of issues in the data made it difficult for algorithms to

automatically fit known objects to the scan data with a high-level of confidence. After

the first year‟s efforts in scanning, we decided to drop scanning as a primary activity for

the LDRD and decided to rely entirely on vision based approaches for recognizing

objects and placing them in the robot scene.

6.3 Scanning Revisited: Using The MESA SR4000.

Despite our early frustrations with converting scan data to accurate models for robot

interaction in the first year, we considered the type of data available from an imager as a

critical for successful robot operations in unstructured worlds. When we became aware

of a new, more capable imager we decided to reinvestigate 3D imaging in the third year.

Figure 6.3 MESA SR4000 and a Stairway Scan

The MESA SR4000 imager (Fig 6.3) is a 5cm cube that meets many of our requirements.

It is eye-safe, it has a high-speed USB interface with a 30 Hz update and a 176x144 array

of points , it has double the range of the Canesta (7 meters vs. 3 meters), and is more

reliable and has far less noise than the Canesta.

 32

As with the Canesta, we developed an interface into our Umbra environment that would

allow us to visualize and process the data clouds. A sample scan is shown in Figure 6.3.

6.4 Using Marching Cubes to Build Surface Models.

One of the limitations of our first year‟s work in scanning is that we didn‟t address how

to combine multiple scans. With a scanner having only a 40 degree field of view, it is

critical to be able to constantly merge new scans with old. Ideally as data is accumulated

a comprehensive map of the environment is obtained. With a better scanner in hand, we

decided to attack the problem of combining data into a single surface model.

A variety of methods have been suggested for merging scans. Two major classes are

merging surfaces (Turk and Levoy, 94) and volumetric methods (Curless and Levoy, 96).

After a review of the voluminous literature, a volumetric approach based on marching

cubes (Lorenson and Cline, 87) was chosen for this work. Marching cubes software is

available from a number of sources including “experimental” software that is highly

parallelized and uses the large number of simple processors available on modern graphics

cards. As a result of various constraints, the marching-cubes algorithm available in the

Visualization Toolkit (http://www.vtk.org) was chosen because it was available, robust,

and documented.

An office (Fig 6.4) was scanned using the MESA imager. The scanner was placed near

the center of the room on a tripod and rotated horizontally in 0.5 radian increments for a

total of 13 horizontal scans. The scanner was located at three different heights, 0.63

meters, 1.14 meters, and 1.42 meters above the floor to get better vertical coverage of the

room. At each scan location, three scans were taken to provide more data which is useful

in the averaging process inherent in all approaches for merging scans. A total of 117

scans were taken containing almost 3 million points (Fig. 6.5 & 6.6). Some surfaces may

be invisible to the scanner because they are “dark” and reflect very little IR light. The

black cases of Dell computers, and LCD monitors are almost invisible to the SR 4000

scanner.

http://www.vtk.org/

 33

Figure 6.4: One corner of a sample office.

Figure 6.5: A series of scans to be merged for the office.

 34

Figure 6.6: Overhead view of data set of complete office scan.

Figure 6.7: The resulting merged scan using Marching Cubes.

 35

Figure 6.7 shows the resulting merged scan using the Marching Cubes algorithm. The

segments of rough surfaces should be smooth, such as the lower vertical surfaces of the

desk and the right half of the closed space-saver door, result from error in positioning the

scans relative to each other.

This investigation was intended as exploratory, however, the computational time required

to complete the building of the 3D model is important as it indicates future directions for

further work. The scan data must be loaded, filtered for noise and other artifacts, and

stored in a voxel object before the marching-cubes algorithm can be used to extract the

surfaces of the 3D model. On a Dell Dimension 670 PC, the time required to sequentially

load, filter, and store the data (117 scans containing 3 million points) was 370 seconds.

The time used to extract the 3D surfaces, including a variety of filters to remove various

artifacts like tiny, unconnected triangle patches, was 39 seconds. Little work was done in

optimizing portions of the software where a lot of time is consumed; major speedups may

be possible after a careful rewrite. Parallelizing this software is possible and would

reduce the task time roughly in proportion to the number of CPU's available Some

experimental software uses the processors on the graphics card (up to 240 processors per

card!) for the marching cubes calculations and claim to have several hertz performance

rates (http://nvision.sourceforge.net/).

6.5 Scanning Conclusions

Although 3D range scanning will in the future play a critical role for robot systems in

unstructured environments, we barely scratched the surface in terms of generating the

data needed for robot assembly. Two different sensor systems were successfully

integrated into the Umbra framework. We deployed our own segmentation and

difference algorithms, and integrated a conventional marching cubes algorithm for

combining multiple scans. Data was successfully reduced from 3 million points to

surfaces with thousands of polygons.

http://nvision.sourceforge.net/

 36

The scanning data was substantially simplified using Marching cubes, but not to a point

where it could be used by an autonomous robot planning system. A robot system needs a

world model database that can be queried, ideally consisting of known objects, and

convex polygon hulls for unknown objects. The generated data set needs to be able to

quickly generate answers to simple questions. What is the nearest distance to a surface?

Is an object in the scanner view a known object that needs to be manipulated, or is it just

clutter that needs to be avoided? In order for the data generated from the combined scans

to be useful for robotic assembly operations, the data needs to be iteratively matched to

expected and known objects and differenced out from the data set, and it needs to happen

in real-time. In this area we grossly underestimated the level of work required to achieve

success.

 37

7.0 Feature Tracking and Object Recognition

The scanning approach described in the previous section was never intended to be the

sole approach for building robot compatible models. Our teleoperated robots are all

outfitted with cameras, and human operators are able to achieve incredibly dexterous

operations solely from visual feedback. If an operator can make sense of a live visual

camera feed, we might expect our autonomous systems to as well. For this reason,

computer vision approaches have been pursued throughout this LDRD. In this section we

discuss a large number of techniques and tools that were developed over the last three

years.

7.1 First-Year Efforts: Canny Detectors & Hough Transforms

In the first year of the LDRD we decided to assess what conventional approaches would

be able to do for us. The initial question was, could a vision system identify, track and

monitor traffic cones under adverse conditions and in real-time on conventional PC

hardware? These conditions included: large amounts of foreground and background

clutter, occlusion of objects, partial views of cones, and highly variant lighting

conditions.

Our initial approach was to use a color filter to emphasize objects matching the hue of the

cones. Conventional Canny edge detectors were then used to determine line features.

Finally these line features were searched to find candidate polygons. When this proved

to be unsuccessful, we developed a new approach using a line-detector on a Hough

transform of the gradient of the filtered image. This was first tested in the lab (Fig 7.1)

and looked promising for fielding.

 38

Figure. 7.1 Hough Transform Approach to Cone Detection

Figure 7.2 Hagar automatically moving to Cones on Feb 2008.

In early February of 2008 we were to a point where we could test the cone finding

algorithm on board the Hagar robot. We used the current estimate of the cone‟s position

relative to the robot‟s base to drive the robot. The goal was for the robot to simply find

cones and approach them.

The system was partially successful. Cones were recognized and the robot did approach

them. But real world testing made the lack of robustness of this approach all too

 39

apparent. This conventional computer vision approach did not maintain any state

information. Every camera image it received it would reprocess, rediscover edges, and

make a new estimate of a cone‟s position. There was no model evolution and there was

no confidence metric for the data. With the camera placed on a jerky skid-steer vehicle

the image quality was degraded by noise, and even with a ninety percent cone detection

accuracy the robot would rapidly start chasing phantom estimates. Furthermore, without

maintaining state, there was no means to keep track of multiple cones in the field of view.

Clearly a new approach was needed.

7.2 Polygon Snakes

Real-time vision systems in unstructured environments needs to be fast (processing 30 Hz

640x480 pixel images at frame rate), they need to handle variable lighting changes and

shadows, they need to identify features that can be associated with objects (i.e., good

features to track), they need to be robust to noisy images, and they need to maintain state,

i.e., an object tracked in one frame needs to correspond to the same object in the next

frame.

Statistical pressure snakes (Shaub & Smith, 2003) or Active Contours is a computer

vision technique that achieves many of these objectives. The algorithm grows or shrinks

a contour based on a computed energy function. The energy function pushes out nodes

when they lie inside an image region, and the line energy pulls the contour in. It is robust

to noise, it tracks targets, and gives a sense of an object by wrapping it in a closed

contour. State is maintained from image frame to image frame. By emphasizing hue

over grey scale variations, it is possible to obtain good performance in-spite of variations

in external lighting and shadows.

The conventional snake (or active contour) algorithm still has a number of issues,

however. As a target image changes in the image size, the number of nodes on the snake

would change. Sharp corners, which are normally considered excellent tracking features,

are rounded when using a conventional pressure snake.

 40

We decided we could do better, and developed a new algorithm, called “Polygon Snakes”

that would accurately track objects with feature corners.

Figure 7.3 illustrates the classical snake, and Figure 7.4 shows our polygon snake

algorithm.

Figure 7.3. Classical Snake Algorithm.

 41

Figure 7.4: New Polygon Snake Algorithm

The process of converting video data to object models is shown below. First a target area

of interest is identified from the original video (Fig 7.5).

 42

Figure 7.5: Target Blocks

Then a Snake is seeded based on the color blob (Fig 7.6).

Figure 7.6: Initial Snake Seed

The snake then grows till it reaches the contour segment as shown in Figure 7.7. This

happens in fractions of a second, but is broken into steps here to illustrate the snake in

operation.

 43

Figure 7.7: Evolving Snake

And finally it settles on a final contour (Fig 7.8).

Figure 7.8: Snake Settled on Contour

The polygon snake approach overcame many of the limitations of the line detection

systems. It maintains state. It tracks critical feature points. It is robust to noisy signals.

7.3 Identifying Polygons.

One of the advantages of using polygons as features of interest to recognize is that they

are easy to identify and they maintain their functional shape under perspective distortion.

In general, perspective distortion will cause large variations in the amount of corner

angles (e.g., a rectangle may look like a diamond under a perspective transformation), but

because straight lines map into straight lines under perspective transformation, it also

follows that the convexity condition (i.e., is the corner angle positive or negative) is also

invariant under perspective distortion.

By using polygons with unique patterns of inner and outer corners it is possible to

uniquely mark and identify objects. In our code we associated target polygons with a

binary encoding of their corners (i.e., a one for every corner that is convex, zero if

concave), and looked for polygon snakes that mapped within the set of possible

permutations. Figure 7.9 gives a sample set of polygons and the binary coding associated

with the patterns.

 44

Figure 7.9: Polygon Identification and Matching.

By marking objects with polygon patterns having non-repeating encoding (such as the

Chevron pattern), it became trivial to identify known objects with any orientation. These

patterns were applied to the sides of the target bricks to allow automated recognition.

7.4 Rapid Image Segmentation

In prior implementations of the Snake algorithm a full 24-bit color image was used and a

match quality function was applied just within a small neighborhood of the contour. The

image function used a complex mapping of RGB space into HSV (Hue-Saturation-Value)

space in order to detect match conditions for pixels that emphasized hue over saturation

and value, and required 10 floating point operations per measurement.

Figure 7.9: Polygon Identification and Matching.

 45

This approach had limitations. Defining the delta neighborhoods to get good match/no-

match segmentation was a hit-or-miss process. For images with lots of snakes or long

contours the excessive floating point computation could get burdensome, and most

importantly, this approach did nothing to help with seeding new snakes. For a PTU

system that is scanning, the ability to recognize potential regions for growing a snake was

critical.

To overcome these issues we developed two new image processing modules within the

Umbra framework. The first module, the imageBlobber, coverts a 24-bit RGB image into

a palletized color image. This is done using a table lookup function that is extremely fast.

Figure 7.10: Image Output from imageBlobber

The trick is in segmenting the image color cube into palette regions that provide the

appropriate matches. Color regions are defined using a 10-sided convex polyhedra in

RGB space which can be generated by simple inequalities. To define a color match

region, the developer aims the camera at a color feature to be monitored and takes

samples under various lighting conditions by clicking on matching pixels in a sampled

image. The convex hull of all of the match samples is used to define the color region.

Once the color tables are defined, live video can be plugged into the module, and a much

 46

simpler palletized color view is generated as an output using the resulting table lookups.

(See Fig 7.10)

In addition to isolating regions of the desired color, the imageBlobber also deploys a

rapid contiguous region growing algorithm, which provides as an output the centroid,

size, and maximal extents of each color blob.

7.5 Autonomous Model Building

The Snake algorithm, combined with the imageBlobber gave excellent feature points for

object tracking, and helped us achieve our objective of object recognition and alignment

with centimeter accuracy. By combining these visual process techniques with the

command sequences, we were able to “automate” the recognition and model building of a

wall of bricks.

Figure 7.11 shows the process.

 47

Figure 7.11 Automated Model Building of a Brick Wall

 48

7.6 Issues with Polygon Tracking

The polygon snakes and image segmentation techniques developed within the second

year were a big improvement over the first year‟s efforts. When used together, they were

able to successfully scan, identify, and localize objects with known features with high

precision and minimal computational overhead. They were not entirely without problems

however.

A primary issue was that noise in the image and/or image distortion could cause a

polygon to have more feature corners detected then actually existed. A sharp corner

might be slightly rounded, or a long linear edge may split into two nearly co-linear

segments. This would cause the simple matching techniques to fail. Furthermore, if the

camera or vehicle was moving, then interlacing in the video feed and motion blur could

greatly disrupt the input signal. Certainly the polygon representation could still be used

to seed a rapid correlation match search, but this was far less efficient.

Occlusion was also a problem. If only a partial segment of a polygon was visible then the

algorithm would fail to correctly identify the polygon feature. This problem could be

mitigated by using zoom controls and centering on the color features before growing

snakes, but this was time consuming.

Finally, color blending would affect the accuracy of the corner point measurements.

Within a camera CCD, the colors on the border of a region have their perceived color

altered by the colors of their neighboring pixels. This would make a color region always

appear slightly smaller than its actual size, which would induce fitting errors. By

zooming in to the target before growing a snake, this effect could also be minimized, but

this was also time consuming.

In summary, although the approach worked for recognizing and localizing objects with

know color regions, small errors were accumulating, and the resulting system robustness

was less than desired.

 49

7.7 Color Grid Pattern Matching

In the third year of the LDRD, we developed yet another approach for object marking and

tracking that overcame the shortcomings of the polygon snakes. The output of the

imageBlobber module was highly immune to the two problems plaguing the snake

algorithm: image disruption due to motion, and color blending.

The imageBlobber directly and rapidly generates both a visual output of palletized color

but also a list of each color blob, along with its centroid, size in pixels, and maximal

values in UV coordinates. The centroid of a color blob is relatively immune to color

blending and the disruptive effects of motion blur and vertical scan interlacing.

We decided to take advantage of this, by generating calibration targets that contained

random color dot patterns arranged on a grid. A new module, the imageColorGrid

module took the output of the imageBlobber, and searched for regular grid patterns in the

data. These grid subsets could then be compared to stored grid patterns to find a unique

match. Although the imageBlobber didn‟t have the tracking features directly that we

needed for motion servoing, the imageColorGrid pattern did.

The random colored grid patterns had other advantages. There were no partial occlusion

issues. Only a small subset of the grid was needed for unique identification of the grid.

This made the grid a great target for calibrating zoom camera systems. The same grid

could be used for a large number of zoom settings.

Figure 7.12 shows the color grid matching technique being applied within an office

setting.

 50

Figure 7.12: Matching and Tracking Color Grid Patterns

7.8 Image Processing Conclusions.

The polygon snakes, image segmentation techniques, and color grid approaches are all

important steps in obtaining good robust recognition of known objects using vision. The

polygon snake approach, itself, has deemed suitably unique to justify a patent application.

(Submitted to US Patent Office, pending as of Sept. 17, 2009). The color grid approach

has become a major feature of camera and robot calibration, and helps support on-going

work in visual targeting.

The remaining processing algorithms have been incorporated into a copywritten Umbra

add-on package called imageApps. The complete set of image processing modules

developed by this LDRD are listed in Table 7.1 below.

Unfortunately, the image processing algorithms developed so far still fall short of the

requirements needed for autonomous robot assembly. If known targets are viewed from

poor angles they won‟t be recognized. Large changes in lighting conditions can still

disrupt the algorithms. The approach deployed searches for matches to known objects

with distinctive markings, but is still unable to assess the unknown.

 51

Table: 7.1 Umbra Modules For Image Processing.

Command Name Description

imageAverage Performs a moving average of last N frames

imageBlobber Converts RGB color to pallette color to isolate colors of interest.

Peforms blob region growing on the result.

imageBlobPicker Tracks given color-in-color combination, and provides input for

camera tracking.

imageColorGrid Takes output from imageBlobber, and searches for exact matches to

a color grid pattern used for camera calibration.

imageCrop Simple Region-of-Interest reduction of an image.

imageDifference Takes two images as an input and computes their difference

imageHalve Simple down sample of an image

imageSegmentation Original version of imageBlobber. It uses a less-efficient Hue-

Saturation distance to determine region membership.

imageSnake Implements the polygonSnake algorithm. Takes palette color image

from imageBlobber module and grows and tracks snake objects.

imageSnakePicker Tracks outputs of the imageSnake module and isolates snakes that

match a desired goal object.

imageUVMonitor Tracks the delta changes in U and V values for a tracked grid object.

 52

8.0 Conclusions

The Autonomous Assembly LDRD set out to demonstrate robot assembly operations in

unstructured environments, and failed to achieve its final objective. No robot ever

assembled a brick wall as initially intended, nor did one get particularly close. Along this

path of shattered dreams, however, there were a number of successes.

There were significant advances in visual processing for live video in unstructured

environments. The polygon snake approach provided tracking, accuracy and object

recognition. A patent for polygon snakes has been filed. The imageBlobber provides

rapid image segmentation, the color dot grid tracking provides a robust means for

calibrating and tracking. A new library of image processing code (imageApps) has been

copy written and is now a package available within the Umbra framework.

A command and control structure has been developed that enables sophisticated

autonomous scripting. Commands can be declared and defined simply by parsing an

XML file. Higher level commands can then be chained together from simpler commands

to create ever more advanced behaviors. Voice-direction has been investigated as a

means to direct outdoor mobile robots, and provides another means to interact with robot

systems.

A communications framework was developed that enabled complex interactions between

multiple targets. This framework has greatly simplified how distributed robots

communicate and how advanced systems can be built. It has already been used to

support multiple projects at the robot vehicle range.

All of these software technology components have been copy written and added to our

code base as registered intellectual property. These tools have already helped to advance

current projects and has helped to attract new funding for visual targeting and advanced

telemanipulation.

 53

Scanning code has been developed, and two different commercial scanners have been

thoroughly investigated. Limitations of these scanning technologies have been identified,

and software interfaces have been developed that can process the data.

Demonstrations for X-Prize shows, Family Day, multiple technical conferences, and the

Border commission were given and were well received. Finally, we now have a series of

permanent demonstrations showing autonomous components.

Work continues, and will likely continue for decades to come, in the area of providing

autonomy for mobile robot systems. This LDRD helped develop many of the tools that

can and will be deployed in future systems.

 54

Intentionally Left Blank

 55

Appendix A: Glossary of Terms Used

Autonomous Navigation
 Point-to-point vehicle traversals without human intervention.
Canesta
 A manufacturer of 3D Range imagers using time-of-flight pulses of infrared

light.
CCD
 Charge-Coupled Device. A common technology used for capturing a

digital image, i.e., a CCD camera.
Color Spaces
 Digital representations of color, e.g., RGB or HSV.
FOV
 Field-of-View. A measurement in degrees of the viewing angle of a

camera.
GUI
 Graphical User Interface – A user interface on a computer that an operator

interacts with using a pointing device such as a mouse or touchscreen.
HAGAR
 High Agility Ground Assessment Robot – A Sandia developed version of

the RATLER dual –body platform.
HSV
 Hue-Saturation-Value. A representation of color used for digital imagery..
IncrTcl
 A object oriented extension of Tcl. It expands the standard behavior of Tcl

in much the same way that C++ extends the C programming language.
IED
 Improvised Explosive Device – a makeshift bomb.
JAUS
 Joint Architecture for Unmanned Systems a communications framework

developed by the U.S. Dept of Defense for controlling unmanned robot
systems.

Inertial Measurement Unit (IMU)
 a device which typically measures rates that describe changes of the six

degrees of freedom (3 rotation, 3 translation) of a moving entity with

 56

respect to a local level (inertial) system. Integration of these
measurements can produce position and attitude.

Kalman-Filter
 A Bayesian Estimate filter that uses a prediction-correction stage for

estimating robot position and orientation from multiple noisy sensor
readings.

GHz Analog Radio
 Giga-Hertz radio. Typically used for transmitting NTSC video. Old analog

radios suffered from multi-path and signal noise.
GPS
 Global-Positioning System.
MSDOS
 Microsoft Disk Operating System. An early operating system.
Novatel
 A vendor of GPS units with high accuracy.
PTU
 Pan-Tilt Unit. A typical two-stage control unit for moving a camera head.
RATLERTM
 Remote All- Terrain Lunar Explorer Robot. A multi-purpose research dual-

body robot developed by Sandia’s Robotics Group.
(http://www.sandia.gov/isrc/sadrat.html)

RGB
 Red-Green-Blue. A representation of color used for digital imagery.

RPC
 Remote Procedure Call -- A interprocess communication protocal that

allows a computers in a network to initiate routines on another computer.
SMART
 Sandia’s Modular Architecture for Robotics and Teleoperation. A modular

control framework for building telerobotics control systems.
(http://www.sandia.gov/isrc/SMART.html)

SmartBroadcast
 A software package developed in this project that enables multiple

computing elements to transfer information in real-time utilizing broadcast
UDP.

SmartCmd
 An abstract software entity developed in this project that encapsulates the

essence of a execution element.
Spread
 An open source toolkit for high-performance messaging.

(http://www.spread.org)

http://www.sandia.gov/isrc/sadrat.html
http://www.sandia.gov/isrc/SMART.html

 57

TCP
 Transmission Control Protocol. A core internet protocol of the internet.
Tcl
 Tool Command Language. A general scripting language similar to python.

(http://www.tcl.tk).
Teleoperation
 The operation of a remotely located robot system via operator input

devices such as joysticks and spaceballs.
Turing
 A 6-DOF mobile research robot on a skid-steer base with a gripper and

calibrated cameras.
UDP
 User Datagram Protocol. A core internet protocol of the internet. Uses

minimal handshaking compared to TCP..
Umbra
 A Sandia developed framework for software development.

(http://www.sandia.gov/isrc/UMBRA.html)
voxel
 A volume element similar to a pixel, but representing a 3-dimensional

element.
XML
 Extensible Markup Language is a set of rules for encoding documents

electronically.

http://www.tcl.tk/
http://www.sandia.gov/isrc/UMBRA.html

 58

References

Anderson, Robert J.“Cooperating Robots For Improvised Explosive Device Defeat”,

American Nuclear Society Topical Meeting on “Emergency Management &

Robotics for Hazardous Environments”, March, 2008.

Anderson, Robert J, "SMART: A Modular Control Architecture for Telerobotics", IEEE

Robotics & Automation Magazine, Sept. 1995, pp.10-15.

Curless, Brian and Marc Levoy, “A Volumetric Method for Building Complex Models

from Range Images”, SIGGRAPH '96, (New Orleans). In Computer Graphics

Proceedings, Annual Conference Series, 1996, ACM SIGGRAPH, pp. 303-312.

August 4-9, 1996.

Gottlieb, Eric, et.al. The Umbra Simulation Framework, Sandia Internal Report,

SAND2001-1533. June 2001.

Eisler, G. Richard “Robust Planning for Autonomous Navigation of Mobile Robots in

Unstructured, Dynamic Environments: An LDRD Final Report”. SAND2002-

2596, August 2002.

Klarer, P.K., “A Highly Agile Ground Assessment Robot (HAGAR) for Military

Battlefield and Support Missions, SAND 94-0689C, March 1994.

Lorensen, William E. & Harvey E. Cline, “Marching Cubes: A high resolution 3D

surface construction algorithm”, Computer Graphics, Vol. 21, Nr. 4, July 1987)

Padilla, Denise D., “Obstacle Detection for Autonomous Navigation: An LDRD Final

Report”, SAND2004-1173, March 2004.

Schaub, H. and C. Smith, “Color snakes for dynamic lighting conditions on mobile

manipulation platforms,” In Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2003.

Turk, Greg and Marc Levoy, Proc. “Zippered Polygon Meshes from Range Images”,

SIGGRAPH '94 (Orlando, Florida). In Computer Graphics Proceedings, Annual

Conference Series, 1994, ACM SIGGRAPH, pp. 311-318. , July 24-29, 1994.

 59

Distribution:

2 MS1125 Robert J. Anderson 6472

1 MS1188 Fred Rothganger 1434

1 MS1188 Dan Morrow 1432

1 MS1188 Ralph Peters 1434

1 MS1125 Jake Deuel 6472

1 MS9018 Central Technical File 8945-1

2 MS0899 Technical Library 9616

1 MS0188 LDRD Office 1030

 60

