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Abstract 

This report documents a three-year to develop technology that enables mobile 

robots to perform autonomous assembly tasks in unstructured outdoor 

environments.  This is a multi-tier problem that requires an integration of a large 

number of different software technologies including: command and control, 

estimation and localization, distributed communications, object recognition, pose 

estimation, real-time scanning, and scene interpretation.   Although ultimately 

unsuccessful in achieving a target brick stacking task autonomously, numerous 

important component technologies were nevertheless developed. Such 

technologies include: a patent-pending polygon snake algorithm for robust 

feature tracking, a color grid algorithm for uniquely identification and calibration, a 

command and control framework for abstracting robot commands, a scanning 
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capability that utilizes a compact robot portable scanner, and more.   This report 

describes this project and these developed technologies. 
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1.0 Introduction 

Robot systems have recently achieved remarkable success in military missions, both on 

ground and in the air, but there is a huge difference in the how these missions are 

conducted.  Air missions are entirely autonomous.  Robot aerial drones receive their 

flight plans and target coordinates, and can then perform with minimal human 

intervention.  Ground robots, on the other hand, are entirely teleoperated.  Robot 

operators use closed-circuit cameras to monitor, and joystick controllers to remotely 

control every action of a remote robot.   The goal of this LDRD was to develop a level of 

autonomy so that ground based robots could perform manipulation tasks in a cluttered 

environment without constant human intervention. 

Navigation for ground robots is substantially more complex than for their aerial cousins.  

The potential for collision for ground based vehicles is constant, whereas aerial vehicles 

have tens to hundreds of meters separation between nearest obstacles.  Air-based 

navigation via either GPS or target tracking is also simpler.  GPS is fully adequate for 

navigation for an aerial vehicle without any additional decision making processes 

required.   Furthermore, vision based operations for aerial vehicles are essentially 2-D, 

i.e., occlusion doesn‟t present a problem to aerial operations.  Ground based vehicles, on 

the other hand, can see a very different view of the world just by moving a few feet. 

The mission space for the ground robotic systems is also substantially different.  Military 

ground robots are deployed for disabling IEDs (Improvised Explosive Devices) as a 

primary mission.  They are used to open doors, deploy sensors, aim weapons, and gather 

debris.   In the future they could be used for setting up a “Green-zone”, conduct 

decommissioning in a contaminated facility, or build barriers for force protection.  NASA 

tasks of interest include docking to moon-based trailers, base-station maintenance and 

satellite assembly.   Mobile robots have the ability to reach out and manipulate objects in 

their environments, and this ability we loosely call “assembly”. 

Currently these tasks are conducted by remote teleoperation or by humans or not at all, 

but there are high costs associated with manual operations. In a war zone, the humans 

present targets for insurgents.  In radiation areas, the humans are receiving unnecessary 
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doses.  On a proposed lunar base both humans the neither operators nor teleoperator 

currently exist, and are extremely expensive to provide.   

This LDRD seeks to prove that autonomous mobile robots can perform useful 

cooperative assembly operations in unstructured outdoor environments.   Tasks should be 

defined by object primitives: not by hardcoded waypoints and/or taught motion paths.  

Whereas DARPA had already focused on navigation for mobile vehicles, this LDRD 

seeks to take it a step further: actual interaction and manipulation with the environment. 

1.1 Defining a Focus Task 

Autonomy for mobile robots is a broad goal, and we decided early on to define a task that 

would provide focus for our research efforts.  The task needed to be achievable in 

payload, reach, and grasping capabilities for our current robot platforms, be both unique 

and difficult, and require us to solve relevant problems for an actual application. 

We chose “brick-laying” as our sample assembly task.  The plan was to use a pair of 

robots, one as a navigational/leader/transport robot, and one as a follower/manipulator.  

This concept is shown in Figure 1 below. 

 
Figure 1.1:  The Robot Brick-Laying Focus Task 

The robots would navigate relative to a set of colored cones, identify a work-site, and 

then systematically construct a wall of specially made bricks at the site.  We would be 
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free to engineer the bricks to have a simple grasp point, and to have visual recognizable 

features to simplify recognition and alignment. 

This task would showcase precision assembly, landmark navigation, advanced 

scanning/segmentation/subtraction technique, pack-mule operations, follower modes, 

object recognition, and robust error recovery and planning.  It would create a compelling 

demonstration of advanced assembly ---- if we could pull it off. 

With this task in mind we started to focus on key elements. We would need capable 

platforms for implementing and demonstrating the technology.  We would need a 

framework for command and control for these platforms.  We would need to be able to 

identify and localize brick and cones.  We would need to accurately navigate around a 

site.  We would need to be able to communicate between robot components and maintain 

a common database for our models, and we would need to be able to orchestrate 

advanced combinations of scanners, planners, and motions.   

1.2 Technology Starting Point 

A number of the necessary components were already available at the outset of this 

project.  A pair of 6-Degree-of-freedom (DOF) mobile manipulators called Turing robots 

had been used for substantial work in remote teleoperation (Anderson, 2008).  They had 

no navigation system, but did utilize a pair of calibrated targeting cameras.  The HAGAR 

robot system had been first developed for remotely monitoring Army depots, and had 

been used in earlier research into Autonomous Navigation. (Klarer, 1994, Eisler, 2002).   

In addition, Sandia‟s Robotics group had already developed two mature software 

frameworks: SMART, for-real time control (Anderson, 1995) , and Umbra for high-level 

visualization and planning (Gottleib, 2001), and we had faith that commercial scanning 

technology would provide the data we needed for manipulation. 

We also had an active perception group with substantial experience in interfacing with 

commercial sensor systems and interpreting the data streams. 
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2.0 Command and Control 

Implementing autonomous robot behavior requires methods and techniques for 

converting sensory data and goals into actions for the robots.  These actions cover a wide 

variety of different actions the involve servoing pan-tilt units, adjustments to zoom 

settings, driving robot bases, moving robot manipulators, setting up planners, etc.  In our 

prior systems we had relied heavily on human operators to perform and execute these 

actions, usually by interacting with a graphical user interface, clicking on buttons and 

manipulating joysticks.  To achieve autonomy, however, we needed to rethink this 

approach.  We needed a system that would allow us to incrementally build up complex 

behavior using building blocks and scripting.   

2.1 The SmartCmd Class Structure 

The first step in developing an abstract command class was to determine the elements of 

a generic command – without getting caught up in the specifics of our particular robot 

systems.   A command has a beginning and an ending.  It requires time to execute and 

utilizes resources during execution.  It can either achieve success or fail along the way.  

Furthermore, the operator needs to determine status for an executing command and be 

able interact with its execution.  The operator might need to stop and abort any command.  

In many cases, especially in the case of robot motion, the operator needs to be able to 

pause, play and rewind and commands.  The commands should be loaded and created 

from a database in a flexible fashion.  Finally, the command class needed be fully 

embeddable.  Complex command sequences should evolve from much simpler 

commands. 

These concepts were implemented in IncrTcl (http://incrtcl.sourceforge.net/itcl) inside a 

base class that we designate a SmartCmd.  Each SmartCmd object has the following key 

components: 

• Methods for Init, Play, Pause, Stop, Exit, getting the current state (GetCmdState), 

and getting the percent of the task completed (GetPercentDone). 

http://incrtcl.sourceforge.net/itcl
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•  An Update method which is attached to a wall clock timer during execution and 

periodically calls GetCmdState, & GetPercentDone methods. 

•  Methods for reading and writing parameters from XML files. 

•  The ability to recursively imbed other command objects, in parallel, or in series. 

• A global “resource” list that ensures that only one command is simultaneously 

utilizing a named resource. 

By requiring that all commands implement methods for Init, Play, etc, we were able to 

develop an abstract framework that extended to all of the specifics activities needed for 

robot control.  The SmartCmd framework then implements a state engine for all objects 

of the class, as shown in Figure 2.1. 

 

 
Figure 2.1:  SmartCmd State Engine 
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2.2 Chaining Commands in Sequence 

The SmartCmd approach allows advanced commands to be constructed from other 

simpler commands, which can in turn be combined into even more sophisticated 

commands.   As an example of how this is done, we look at defining the commands for 

the SmartMultiCmd object. In the SmartMultiCmd, multiple command objects are 

executed in temporal sequence.  The command object is initiated with a list of 

subcommands, each being a SmartCmd object itself.  Initialization of the command 

begins with initialization of the first command in the list.  Once one command in the list 

is finished, the next command should be executed and so forth. Upon success, each 

proceeds to the next command state automatically. Each command objects calls the 

current embedded command methods.  

The GetCommandState method for the SmartMultiCmd  returns the command state of the 

current queued command .  The Play/Pause/Stop methods simply call the same methods 

for the currently running queued command. The Resource queue keeps track of named 

resources required for each command. If resources aren‟t available, the system goes into 

InTransition state.  The bulk of the work in the SmartMultiCmd  is in the update loop 

which must monitor the current command and initialize the next command in the queue 

once it completes.  Figure 2.2 summarizes this behavior. 
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Figure 2.2:  Composite Command State Diagram For MultiCmd. 

2.3 Command Summary 

Other composite commands implement additional features:  performing operations in 

parallel, queuing for events, branching to an error recovery procedure if a system failed.  

Since every command is an instance of the base command class, methods for loading and 

saving via XML, for initializing, for aborting, playing, pausing etc are always available.  

Advanced commands such as DoUntil, DoAndWait, AorB, MultiCmd interface to 

individual sub-command objects, and allow increasingly sophisticated robot behaviors to 

be created from primitive parts.  Tables 2.1, 2.2, & 2.3 summarize the different command 

objects that have been implemented. 

Table 2.1:  Robot Motion Commands. 

Command Name Description 

SmartTrajCmd Moves a robot device a long a motion trajectory 
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SmartMoveAlongHighwayCmd Moves a robot to nearest point along a motion highway 

and continues till end of highway 

SmartTagCmd Move a robot device to a single tag point 

SmartMoveRelCmd Moves a robot device a relative distance  

TrajDualCmd Queue up a joint motion followed by a straight-line 

world motion. 

SmartPlanTagCmd Call planner to generate a goal destination tag. 

SmartMoveAxisCmd One degree of freedom of device is move to defined 

location (e.g,, just change zoom setting 

SmartMoveToHighwayCmd Move to nearest point on a motion highway. 

 

 

Table 2.2:  Composite and Miscellaneous Commands 

Command Name Description 

SmartDoAndWait Initiate first command, wait, and call final command. 

SmartDoAorB Do initial command, if it fails, try the second. 

SmartDoUntilCmd Execute sub-command A until sub-command B is done 

SmartMultiCmd Do a series of sub commands in sequence 

SmartTimerCmd Wait a given time 

SmartStartWaitAndFinish Start one command, wait for timer, call an exit command 

SmartSimulcastCmd Initiate a series of commands from a list, wait till they 

all complete, or one fails 

SmartLoadScriptCmd Load a defined Tcl script from file. 

SmartInstantCmd Execute a single Tcl procedure immediately 
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Table 2.3:  Visual Tracking and Servoing Commands 

Command Name Description 

SnakeGrowerCmd Grow a polygon snake to find a target object 

SnakeFindCmd Find a desired polygon inside a visual image. 

GridServoCmd Servo PTU on found color grid 

GridFindCmd Find a match to a given color grid. 

BlobServoCmd Servo based on the centroid of a color blob. 

BlobFindCmd Find a color blob that matches a criterion. 

 

2.4 Command Execution: Simple GUI 

The figure below shows a sample GUI that is automatically created from a command set.  

XML files describe the various commands in system.  When the XML files are parsed, 

the command objects are instantiated and the GUI page is automatically generated for the 

commands.   Ideally, large sequences of commands would be chained together and 

executed as a single command object, but the divide and conquer approach helps to make 

debugging sub-commands tractable. 

A VCR-line control interface provides an intuitive interface for pausing and playing and 

rewinding the robot behaviors. 
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Figure 2.3:  Automatically Generated User Interface for SmartCmds 
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3.0 Audio commands 

By the final year of the LDRD it became clear that full autonomy was not going to be 

achievable, and that a high level of operator intervention was still required to guide and 

direct robot systems.  Because our operations were directed to robot systems working 

outdoors over large areas and that likely operators would be foot soldiers,  it seemed 

natural to free up the operator from being chained to a desktop and let them command 

semi-autonomous behaviors in the field by using audio commands. 

To make this happen, an audio layer was implemented within the SmartCmd base class, 

called the smartSpeechRecognizer.  Because every command had an associated label to 

display on the button, we decided to reuse this label as a means to queue the command. 

The belief was that voice recognition had advanced to a point that we could quickly and 

reliably recognize phrases from a command set and initiate various robot operations. 

A key concept in the speech recognition is the definition of grammars.  A grammar 

defines which phrases (as strings) that the system is able to recognize. Grammars can be 

defined in sophisticated ways to form numerous recognizable phrases.  In addition, a 

callback function is invoked when a phrase is recognized.    Multiple grammars can be 

defined and active.  In this way, unique event handlers (e.g. callbacks) can be attached to 

each different grammar to achieve different behaviors.   

The smartSpeechRecognizer implements two grammars: A Command grammar which is 

built on-the-fly based on the SmartCmds in the system, and a Control grammar which is 

fixed.  The recognition logic implemented in the callback also tries to implement a valid 

state transition from various command states as shown in Figure 3.0.   These grammars 

are mutually exclusive in activation – only one is active at time – which one is controlled 

by the state machine shown below.  The Command grammar is always the initially active 

grammar.  
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Figure 3.0: Two-Stage Grammar For Speech Recognition 

The Grammar is defined by passing various string phrases to the grammar.  In addition, 

the smartSpeechGrammar is designed to have an option prefix phrase.  The default ones 

are “Command” for the Command grammar, and “Control” for the Control grammar. 

Control grammar phases are based on the familiar VCR controls: 

 Play 

 Pause 

 Rewind 

 Exit 

 Abort 

 

and are intimately associated with the state engine of the SmartCmds (Figure 2.1).  Exit 

and abort are commands to abort the command and begin listening for a new command. 

Control 

STOP 

RUN 

PAUS
E 

Command 

exit, abort 

exit, abort 

Command 

<cmd> 

exit, abort 

Rewind, play 

pause 
stop 

stop 
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3.1 Audio Example 

As an example of the implemented grammar, consider the following robot system 

commands. 

 “Move to start” 

 “scan left” 

 “scan right” 

 “box motion” 

 

Table 3.0 summarizes the phrases spoken by an operator, and then resulting behavior 

queued by the speech system based on its current state. 

Table 3.0  Speech Commands and Actions 

Spoken phrase Resulting Action Speech System state 

Move to start Nothing – prefix Command 
was left out 

Still listening for command 

Command Move to Start Move to Start begins to 
execute 

System now listens for 
Control command; in RUN 
state 

Control Pause Move to Start pauses System is now in PAUSE 
state 

Control Play Move to Start cmd resumes System is now in RUN state 

Control Abort Move to Start cmd aborted System is now listening for 
Command 

Control Pause Nothing – no recognition System is still listening for 
a Command 

 

One reason we use the prefix is it seems to increase the accuracy by providing a longer 

phrase for recognition.  Short, terse phrases seem to be more easily mistakenly 

recognized – and even totally different noises are sometimes recognized as these one-

word phrases.  But including the prefix has drastically cut down on these false positives. 
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3.2 Audio Feedback 

In addition to recognition, the SpeechSDK also supports speech synthesis.  Each 

recognized phrase is echoed to the user which gives the user confidence in what was 

recognized.  We can specify an echo phrase or rely on a default one for Commands.  For 

example, “Move to Box” might have a defined echo of “moving to box” or the default 

which prepends “executing” to the command (in this case: “executing move to box”).  

The recognition engine is actually turned off during this echo phase so that the echo is not 

in turn recognized.  With a headset this is unnecessary, but with speakers it can become a 

problem if recognition is on while this feedback occurs. 

Feedback turned out to be critical in establishing a rapport with the operator.  Without 

audio feedback queues, the operator would be confused as to the state of the robot.  Did it 

understand the command?  Was if finished with a command? 
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4.0 Broadcast Communications 

Another technology required for implementing cooperative autonomy among multiple 

robots is a robust communication framework.  The communication layer must keep each 

robot informed of what others are doing, what sensors are reading, and the current desired 

and actual command state of each subtask in the system.  In our architecture, all of this 

data is transmitted to a base station computer that orchestrates the underlying behaviors 

of the distributed system. 

Our previous communication framework was based on point-to-point TCP and UDP 

sockets.  A single workcell defining all of the robots and all of the data that needed to be 

transmitted was defined and channels were setup up between each computation pair.  

This worked well for a single base station and a single robot, but as more and more 

subsystems were added, it became more unwieldy. 

We had also investigated numerous other communication frameworks:  SPREAD 

(http://spread.org/) , Remote Procedure Calls (RPC), JAUS (http://www.openjaus.com), 

etc. and found them all to be lacking for one reason or another.  Spread, for instance 

lacked efficiency due to its dual transmission of data over UDP and TCP.  RPC required 

recompiles of each target system whenever a new communication object was required, 

and JAUS added significant overhead and would force us to use a limited robot 

vocabulary. 

The requirements for communications were as follows:   

 The communication architecture would need to pass data freely between any 

combination of SMART and Umbra subsystems.   

 Data passing should be passed with minimal latency 

 The overhead associated with information passing should be minimal. 

 Information must transfer between processes running on the same CPU and 

between processes running on different CPUs. 

http://spread.org/
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 Rapidly changing data should be transmitted within a guaranteed minimum time 

step. 

 Static data should still be transmitted periodically in case remote systems missed 

an earlier transmission. 

The eventual implementation of our communication is called smartBroadcast and 

utilizes UDP Broadcasts over sockets.  The UDP Broadcast allows multiple targets to 

receive data at once without any additional overhead.  A blackboard framework is 

used for logging data that needs to be transmitted to a target. Only the most recent 

data is sent.  Data is backed in binary with coded host and processor id, data type, and 

a two-byte cyclic-redundancy-check (CRC).  To improve efficiency, name 

synchronization packets are used to associate multi-character data names with 

efficient register numbers.  The data is passed at high rates with only the register 

numbers rather than the descriptive names. 
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5.0 Robot Platform Development 

At the initiation of the project we had two robot platforms available:  the meter sized 

RATLER vehicle known as HAGAR (Fig 5.1), and the mobile manipulator arm known 

as Turing (Fig 5.2).  Hagar provided cross-country mobility, power, and suitable size for 

mounting sensors and scanners.  The Turing system had an existing SMART based open-

control architecture and a highly capable arm with installed camera PTU systems.    

Unfortunately, neither platform was ready for autonomous operations.  Hagar had been 

running a MSDOS era computing stack and a substandard GPS system.  It used an 

Analog 2.4 GHz video radio, and a simple serial radio for command and control.  The 

prior developers of Hagar had either retired or had left Sandia. 

Turing on the other hand used a tether to hook back to the base station, and had neither 

GPS, nor obstacle avoidance safety sensors.  The wrist/grasping closure of the Turing 

gripper was also not position-servo controlled, which meant we would have to 

accomplish wrist closure control via visual servoing.  

 
Figure 5.1: HAGAR at Take Your Sons & Daughters to Work Day ‘08 
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Figure 5.2: Turing Robot at Take Your Sons & Daughters to Work Day ‘08 

 

Under the LDRD we were able to upgrade Hagar to make a viable system for research at 

the robot vehicle range.  New SMART modules for the compass (TCM2), Tilt sensor 

(XBOX_TILT), and high-precision GPS (NOVATEL_OEM4) were added to the base 

Hagar system (Fig 5.3).  A Kalman-Filter based motion estimator module 

(POS_KALMAN) was developed to provide continuous inertial reference frames 

estimates for Hagar based off of compass data, velocity commands and GPS updates.  

With differential corrections, Hagar is now able to achieve positioning accuracies within 

a few centimeters.  Furthermore, a remote “Xbox” interface was added to the Hagar 

platform so it could be easily moved and setup at different sites. 

 

 
Figure 5.3:  New Modules Developed For Navigation Robot 
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With the upgrades provided by this LDRD, Hagar has made numerous public showing 

and demonstrations:  The X-Prize ‟07,  American Nuclear Society Conference „08,  

Family Day „09, etc.   

Updates to free Turing from its tether were planned, but were put on hold as we focused 

on software activities.   
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6.0 3D Scanning 

Three-dimensional scanning had always been viewed as a critical part of autonomous 

assembly in unstructured environments.  For manipulation, objects need to be grasped, 

candidate grasp points on objects need to be identified, and object poses need to be 

accurately measured.   Even when manipulating known objects with given a priori grasp 

points (such as the brick targets), the objects need to be matched to existing data sets and 

positioned in space.   

Range scanning provides two benefits over vision based systems.  The scans provide a 

rich set of points for correlating to known models to, and it can define areas of collision 

free space in which a robot can move.   We had hoped that commercially available 

portable scanning technology had evolved to a point to be useable.  What we learned was 

that scanners each had their own idiosyncrasies, and that substantial algorithm work was 

still needed to make the leap from sensor scans to robot action. 

6.1 The Canesta Scanner 

The Canesta DP300B (Fig 6.1) was the first candidate sensor.  It provided distance scans 

at 4 Hz over a 40 degree cone and with a 200x200 pixel array.  It was affordable ($7K)  

and suitably compact to be deployed by a mobile robot. 

We developed an Umbra module to interface to the sensor and display the data. For fine 

assembly we hoped to first generate background scans, and then as new objects were 

added or deleted from the scene planned on looking at the differences of the scan data 

and fit our set of known objects to the data scan.  Figure 6.1 shows the scanner data of a 

brick object within the Umbra environment using the Canesta. 
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Figure 6.1 Canesta DP300B Scanner and Umbra Scan Data 

 

6.2 Problems with scanner data. 

As we worked more with the data we realized that our goal of localizing objects with 1.5 

centimeters and orienting objects with 5 degrees would be difficult to achieve.  There 

were a number of anomalies with the data.  Flat surfaces, especially corners, would be 

distorted.  Objects would have aliased appearances so an object at 6 meters of distance 

may appear at three meters of distance.  Surfaces with poor incidence angles with respect 

to the scanner would give misleading data.   Some of these effects are shown in Fig. 6.2.   

 
Figure 6.2: Anomalies in Canesta Scan Data. 

 

Traffic cone (edge smeared) 

Brick (edge offset) 

Wall to floor (corner warped) 
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Ultimately the number of issues in the data made it difficult for algorithms to 

automatically fit known objects to the scan data with a high-level of confidence.  After 

the first year‟s efforts in scanning, we decided to drop scanning as a primary activity for 

the LDRD and decided to rely entirely on vision based approaches for recognizing 

objects and placing them in the robot scene.   

 

6.3 Scanning Revisited: Using The MESA SR4000. 

Despite our early frustrations with converting scan data to accurate models for robot 

interaction in the first year, we considered the type of data available from an imager as a 

critical for successful robot operations in unstructured worlds.  When we became aware 

of a new, more capable imager we decided to reinvestigate 3D imaging in the third year. 

 

 

Figure 6.3 MESA SR4000 and a Stairway Scan 

The MESA SR4000 imager (Fig 6.3) is a 5cm cube that meets many of our requirements.  

It is eye-safe, it has a high-speed USB interface with a 30 Hz update and a 176x144 array 

of points , it has double the range of the Canesta (7 meters vs. 3 meters), and is more 

reliable and has far less noise than the Canesta. 
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As with the Canesta, we developed an interface into our Umbra environment that would 

allow us to visualize and process the data clouds.  A sample scan is shown in Figure 6.3. 

6.4 Using Marching Cubes to Build Surface Models. 

One of the limitations of our first year‟s work in scanning is that we didn‟t address how 

to combine multiple scans.  With a scanner having only a 40 degree field of view, it is 

critical to be able to constantly merge new scans with old.  Ideally as data is accumulated 

a comprehensive map of the environment is obtained.  With a better scanner in hand, we 

decided to attack the problem of combining data into a single surface model. 

A variety of methods have been suggested for merging scans.  Two major classes are 

merging surfaces (Turk and Levoy, 94) and volumetric methods (Curless and Levoy, 96).  

After a review of the voluminous literature, a volumetric approach based on marching 

cubes  (Lorenson and Cline, 87) was chosen for this work.  Marching cubes software is 

available from a number of sources including “experimental” software that is highly 

parallelized and uses the large number of simple processors available on modern graphics 

cards.  As a result of various constraints, the marching-cubes algorithm available in the 

Visualization Toolkit (http://www.vtk.org) was chosen because it was available, robust, 

and documented.   

An office (Fig 6.4) was scanned using the MESA imager.  The scanner was placed near 

the center of the room on a tripod and rotated horizontally in 0.5 radian increments for a 

total of 13 horizontal scans.  The scanner was located at three different heights, 0.63 

meters, 1.14 meters, and 1.42 meters  above the floor to get better vertical coverage of the 

room.  At each scan location, three scans were taken to provide more data which is useful 

in the averaging process inherent in all approaches for merging scans.  A total of 117 

scans were taken containing almost 3 million points (Fig. 6.5 & 6.6).  Some surfaces may 

be invisible to the scanner because they are “dark” and reflect very little IR light.  The 

black cases of Dell computers, and LCD monitors are almost invisible to the SR 4000 

scanner. 

 

 

http://www.vtk.org/
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Figure 6.4: One corner of a sample office. 

 

Figure 6.5:  A series of scans to be merged for the office. 
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Figure 6.6: Overhead view of data set of complete office scan. 

 
Figure 6.7: The resulting merged scan using Marching Cubes. 
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Figure 6.7 shows the resulting merged scan using the Marching Cubes algorithm. The 

segments of rough surfaces should be smooth, such as the lower vertical surfaces of the 

desk and the right half of the closed space-saver door, result from error in positioning the 

scans relative to each other.   

This investigation was intended as exploratory, however, the computational time required 

to complete the building of the 3D model is important as it indicates future directions for 

further work.  The scan data must be loaded, filtered for noise and other artifacts, and 

stored in a voxel object before the marching-cubes algorithm can be used to extract the 

surfaces of the 3D model.  On a Dell Dimension 670 PC, the time required to sequentially 

load, filter, and store the data (117 scans containing 3 million points) was 370 seconds.  

The time used to extract the 3D surfaces, including a variety of filters to remove various 

artifacts like tiny, unconnected triangle patches, was 39 seconds.  Little work was done in 

optimizing portions of the software where a lot of time is consumed; major speedups may 

be possible after a careful rewrite.  Parallelizing this software is possible and would 

reduce the task time roughly in proportion to the number of CPU's available   Some 

experimental software uses the processors on the graphics card (up to 240 processors per 

card!) for the marching cubes calculations and claim to have several hertz performance 

rates (http://nvision.sourceforge.net/). 

6.5 Scanning Conclusions 

Although 3D range scanning will in the future play a critical role for robot systems in 

unstructured environments, we barely scratched the surface in terms of generating the 

data needed for robot assembly.  Two different sensor systems were successfully 

integrated into the Umbra framework.   We deployed our own segmentation and 

difference algorithms, and integrated a conventional marching cubes algorithm for 

combining multiple scans.  Data was successfully reduced from 3 million points to 

surfaces with thousands of polygons.   

http://nvision.sourceforge.net/
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The scanning data was substantially simplified using Marching cubes, but not to a point 

where it could be used by an autonomous robot planning system.  A robot system needs a 

world model database that can be queried, ideally consisting of known objects, and 

convex polygon hulls for unknown objects.   The generated data set needs to be able to 

quickly generate answers to simple questions. What is the nearest distance to a surface?  

Is an object in the scanner view a known object that needs to be manipulated, or is it just 

clutter that needs to be avoided?  In order for the data generated from the combined scans 

to be useful for robotic assembly operations, the data needs to be iteratively matched to 

expected and known objects and differenced out from the data set, and it needs to happen 

in real-time.  In this area we grossly underestimated the level of work required to achieve 

success.   
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7.0 Feature Tracking and Object Recognition  

The scanning approach described in the previous section was never intended to be the 

sole approach for building robot compatible models.  Our teleoperated robots are all 

outfitted with cameras, and human operators are able to achieve incredibly dexterous 

operations solely from visual feedback.  If an operator can make sense of a live visual 

camera feed, we might expect our autonomous systems to as well. For this reason, 

computer vision approaches have been pursued throughout this LDRD.  In this section we 

discuss a large number of techniques and tools that were developed over the last three 

years. 

7.1 First-Year Efforts: Canny Detectors & Hough Transforms 

In the first year of the LDRD we decided to assess what conventional approaches would 

be able to do for us.  The initial question was, could a vision system identify, track and 

monitor traffic cones under adverse conditions and in real-time on conventional PC 

hardware?  These conditions included:  large amounts of foreground and background 

clutter, occlusion of objects, partial views of cones, and highly variant lighting 

conditions. 

Our initial approach was to use a color filter to emphasize objects matching the hue of the 

cones.  Conventional Canny edge detectors were then used to determine line features.  

Finally these line features were searched to find candidate polygons.  When this proved 

to be unsuccessful, we developed a new approach using a line-detector on a Hough 

transform of the gradient of the filtered image.  This was first tested in the lab (Fig 7.1) 

and looked promising for fielding. 
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Figure. 7.1  Hough Transform Approach to Cone Detection 

 
Figure 7.2 Hagar automatically moving to Cones on Feb 2008. 

In early February of 2008 we were to a point where we could test the cone finding 

algorithm on board the Hagar robot.  We used the current estimate of the cone‟s position 

relative to the robot‟s base to drive the robot.  The goal was for the robot to simply find 

cones and approach them. 

The system was partially successful.  Cones were recognized and the robot did approach 

them.  But real world testing made the lack of robustness of this approach all too 
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apparent.  This conventional computer vision approach did not maintain any state 

information.  Every camera image it received it would reprocess, rediscover edges, and 

make a new estimate of a cone‟s position.  There was no model evolution and there was 

no confidence metric for the data.  With the camera placed on a jerky skid-steer vehicle 

the image quality was degraded by noise, and even with a ninety percent cone detection 

accuracy the robot would rapidly start chasing phantom estimates.  Furthermore, without 

maintaining state, there was no means to keep track of multiple cones in the field of view. 

Clearly a new approach was needed. 

7.2 Polygon Snakes 

Real-time vision systems in unstructured environments needs to be fast (processing 30 Hz 

640x480 pixel images at frame rate), they need to handle variable lighting changes and 

shadows, they need to identify features that can be associated with objects (i.e., good 

features to track), they need to be robust to noisy images, and they need to maintain state, 

i.e., an object tracked in one frame needs to correspond to the same object in the next 

frame. 

Statistical pressure snakes (Shaub & Smith, 2003) or Active Contours is a computer 

vision technique that achieves many of these objectives.  The algorithm grows or shrinks 

a contour based on a computed energy function.  The energy function pushes out nodes 

when they lie inside an image region, and the line energy pulls the contour in.  It is robust 

to noise, it tracks targets, and gives a sense of an object by wrapping it in a closed 

contour.  State is maintained from image frame to image frame.  By emphasizing hue 

over grey scale variations, it is possible to obtain good performance in-spite of variations 

in external lighting and shadows. 

The conventional snake (or active contour) algorithm still has a number of issues, 

however.  As a target image changes in the image size, the number of nodes on the snake 

would change.  Sharp corners, which are normally considered excellent tracking features, 

are rounded when using a conventional pressure snake. 
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We decided we could do better, and developed a new algorithm, called “Polygon Snakes” 

that would accurately track objects with feature corners. 

Figure 7.3 illustrates the classical snake, and Figure 7.4 shows our polygon snake 

algorithm. 

 
Figure 7.3.  Classical Snake Algorithm. 
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Figure 7.4:  New Polygon Snake Algorithm 

The process of converting video data to object models is shown below.  First a target area 

of interest is identified from the original video (Fig 7.5). 
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Figure 7.5: Target Blocks 

Then a Snake is seeded based on the color blob (Fig 7.6). 

 
Figure 7.6:  Initial Snake Seed 

The snake then grows till it reaches the contour segment as shown in Figure 7.7.  This 

happens in fractions of a second, but is broken into steps here to illustrate the snake in 

operation. 
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Figure 7.7:  Evolving Snake 

And finally it settles on a final contour (Fig 7.8). 

 
Figure 7.8:  Snake Settled on Contour 

The polygon snake approach overcame many of the limitations of the line detection 

systems.  It maintains state.  It tracks critical feature points.  It is robust to noisy signals. 

7.3 Identifying Polygons. 

One of the advantages of using polygons as features of interest to recognize is that they 

are easy to identify and they maintain their functional shape under perspective distortion.  

In general, perspective distortion will cause large variations in the amount of corner 

angles (e.g., a rectangle may look like a diamond under a perspective transformation), but 

because straight lines map into straight lines under perspective transformation, it also 

follows that the convexity condition (i.e., is the corner angle positive or negative) is also 

invariant under perspective distortion. 

By using polygons with unique patterns of inner and outer corners it is possible to 

uniquely mark and identify objects.  In our code we associated target polygons with a 

binary encoding of their corners (i.e., a one for every corner that is convex, zero if 

concave), and looked for polygon snakes that mapped within the set of possible 

permutations.  Figure 7.9 gives a sample set of polygons and the binary coding associated 

with the patterns. 
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Figure 7.9: Polygon Identification and Matching. 

 

By marking objects with polygon patterns having non-repeating encoding (such as the 

Chevron pattern), it became trivial to identify known objects with any orientation.  These 

patterns were applied to the sides of the target bricks to allow automated recognition.  

7.4 Rapid Image Segmentation 

In prior implementations of the Snake algorithm a full 24-bit color image was used and a 

match quality function was applied just within a small neighborhood of the contour.  The 

image function used a complex mapping of RGB space into HSV (Hue-Saturation-Value) 

space in order to detect match conditions for pixels that emphasized hue over saturation 

and value, and required 10 floating point operations per measurement.   

Figure 7.9: Polygon Identification and Matching.
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This approach had limitations.  Defining the delta neighborhoods to get good match/no-

match segmentation was a hit-or-miss process.  For images with lots of snakes or long 

contours the excessive floating point computation could get burdensome, and most 

importantly, this approach did nothing to help with seeding new snakes.  For a PTU 

system that is scanning, the ability to recognize potential regions for growing a snake was 

critical.   

To overcome these issues we developed two new image processing modules within the 

Umbra framework.  The first module, the imageBlobber, coverts a 24-bit RGB image into 

a palletized color image.  This is done using a table lookup function that is extremely fast.  

 
Figure 7.10: Image Output from imageBlobber 

The trick is in segmenting the image color cube into palette regions that provide the 

appropriate matches.  Color regions are defined using a 10-sided convex polyhedra in 

RGB space which can be generated by simple inequalities.   To define a color match 

region, the developer aims the camera at a color feature to be monitored and takes 

samples under various lighting conditions by clicking on matching pixels in a sampled 

image.  The convex hull of all of the match samples is used to define the color region.  

Once the color tables are defined, live video can be plugged into the module, and a much 
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simpler palletized color view is generated as an output using the resulting table lookups.  

(See Fig 7.10)  

In addition to isolating regions of the desired color, the imageBlobber also deploys a 

rapid contiguous region growing algorithm, which provides as an output the centroid, 

size, and maximal extents of each color blob. 

7.5 Autonomous Model Building 

The Snake algorithm, combined with the imageBlobber gave excellent feature points for 

object tracking, and helped us achieve our objective of object recognition and alignment 

with centimeter accuracy.  By combining these visual process techniques with the 

command sequences, we were able to “automate” the recognition and model building of a 

wall of bricks. 

Figure 7.11 shows the process.   
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Figure 7.11  Automated Model Building of a Brick Wall 
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7.6 Issues with Polygon Tracking 

The polygon snakes and image segmentation techniques developed within the second 

year were a big improvement over the first year‟s efforts.  When used together, they were 

able to successfully scan, identify, and localize objects with known features with high 

precision and minimal computational overhead.  They were not entirely without problems 

however. 

A primary issue was that noise in the image and/or image distortion could cause a 

polygon to have more feature corners detected then actually existed.   A sharp corner 

might be slightly rounded, or a long linear edge may split into two nearly co-linear 

segments.  This would cause the simple matching techniques to fail.  Furthermore, if the 

camera or vehicle was moving, then interlacing in the video feed and motion blur could 

greatly disrupt the input signal.  Certainly the polygon representation could still be used 

to seed a rapid correlation match search, but this was far less efficient. 

Occlusion was also a problem.  If only a partial segment of a polygon was visible then the 

algorithm would fail to correctly identify the polygon feature.  This problem could be 

mitigated by using zoom controls and centering on the color features before growing 

snakes, but this was time consuming. 

Finally, color blending would affect the accuracy of the corner point measurements.  

Within a camera CCD, the colors on the border of a region have their perceived color 

altered by the colors of their neighboring pixels.  This would make a color region always 

appear slightly smaller than its actual size, which would induce fitting errors.  By 

zooming in to the target before growing a snake, this effect could also be minimized, but 

this was also time consuming. 

In summary, although the approach worked for recognizing and localizing objects with 

know color regions, small errors were accumulating, and the resulting system robustness 

was less than desired.  
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7.7 Color Grid Pattern Matching 

In the third year of the LDRD, we developed yet another approach for object marking and 

tracking that overcame the shortcomings of the polygon snakes.  The output of the 

imageBlobber module was highly immune to the two problems plaguing the snake 

algorithm:  image disruption due to motion, and color blending. 

The imageBlobber directly and rapidly generates both a visual output of palletized color 

but also a list of each color blob, along with its centroid, size in pixels, and maximal 

values in UV coordinates.  The centroid of a color blob is relatively immune to color 

blending and the disruptive effects of motion blur and vertical scan interlacing. 

We decided to take advantage of this, by generating calibration targets that contained 

random color dot patterns arranged on a grid.  A new module, the imageColorGrid 

module took the output of the imageBlobber, and searched for regular grid patterns in the 

data. These grid subsets could then be compared to stored grid patterns to find a unique 

match. Although the imageBlobber didn‟t have the tracking features directly that we 

needed for motion servoing, the imageColorGrid pattern did. 

The random colored grid patterns had other advantages.  There were no partial occlusion 

issues.  Only a small subset of the grid was needed for unique identification of the grid.  

This made the grid a great target for calibrating zoom camera systems.  The same grid 

could be used for a large number of zoom settings. 

Figure 7.12 shows the color grid matching technique being applied within an office 

setting. 
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Figure 7.12: Matching and Tracking Color Grid Patterns 

7.8 Image Processing Conclusions. 

The polygon snakes, image segmentation techniques, and color grid approaches are all 

important steps in obtaining good robust recognition of known objects using vision.  The 

polygon snake approach, itself, has deemed suitably unique to justify a patent application.  

(Submitted to US Patent Office,  pending as of Sept. 17, 2009).   The color grid approach 

has become a major feature of camera and robot calibration, and helps support on-going 

work in visual targeting.  

The remaining processing algorithms have been incorporated into a copywritten Umbra  

add-on package called imageApps.  The complete set of image processing modules 

developed by this LDRD are listed in Table 7.1 below.   

Unfortunately, the image processing algorithms developed so far still fall short of the 

requirements needed for autonomous robot assembly.  If known targets are viewed from 

poor angles they won‟t be recognized.  Large changes in lighting conditions can still 

disrupt the algorithms.  The approach deployed searches for matches to known objects 

with distinctive markings, but is still unable to assess the unknown. 
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Table: 7.1 Umbra Modules For Image Processing. 

Command Name Description 

imageAverage Performs a moving average of last N frames 

imageBlobber Converts RGB color to pallette color to isolate colors of interest.  

Peforms blob region growing on the result. 

imageBlobPicker Tracks given color-in-color combination, and provides input for 

camera tracking. 

imageColorGrid Takes output from imageBlobber, and searches for exact matches to 

a color grid pattern used for camera calibration.  

imageCrop Simple Region-of-Interest reduction of an image. 

imageDifference Takes two images as an input and computes their difference 

imageHalve Simple down sample of an image 

imageSegmentation Original version of imageBlobber.  It uses a less-efficient Hue-

Saturation distance to determine region membership. 

imageSnake Implements the polygonSnake algorithm.  Takes palette color image 

from imageBlobber module and grows and tracks snake objects. 

imageSnakePicker Tracks outputs of the imageSnake module and isolates snakes that 

match a desired goal object. 

imageUVMonitor Tracks the delta changes in U and V values for a tracked grid object. 
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8.0 Conclusions 

The Autonomous Assembly LDRD set out to demonstrate robot assembly operations in 

unstructured environments, and failed to achieve its final objective.  No robot ever 

assembled a brick wall as initially intended, nor did one get particularly close. Along this 

path of shattered dreams, however, there were a number of successes.   

There were significant advances in visual processing for live video in unstructured 

environments.  The polygon snake approach provided tracking, accuracy and object 

recognition. A patent for polygon snakes has been filed.   The imageBlobber provides 

rapid image segmentation, the color dot grid tracking provides a robust means for 

calibrating and tracking. A new library of image processing code (imageApps) has been 

copy written and is now a package available within the Umbra framework. 

A command and control structure has been developed that enables sophisticated 

autonomous scripting.  Commands can be declared and defined simply by parsing an 

XML file.  Higher level commands can then be chained together from simpler commands 

to create ever more advanced behaviors.  Voice-direction has been investigated as a 

means to direct outdoor mobile robots, and provides another means to interact with robot 

systems. 

A communications framework was developed that enabled complex interactions between 

multiple targets.  This framework has greatly simplified how distributed robots 

communicate and how advanced systems can be built.  It has already been used to 

support multiple projects at the robot vehicle range. 

All of these software technology components have been copy written and added to our 

code base as registered intellectual property.  These tools have already helped to advance 

current projects and has helped to attract new funding for visual targeting and advanced 

telemanipulation. 
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Scanning code has been developed, and two different commercial scanners have been 

thoroughly investigated.  Limitations of these scanning technologies have been identified, 

and software interfaces have been developed that can process the data. 

Demonstrations for X-Prize shows, Family Day, multiple technical conferences, and the 

Border commission were given and were well received.   Finally, we now have a series of 

permanent demonstrations showing autonomous components. 

Work continues, and will likely continue for decades to come, in the area of providing 

autonomy for mobile robot systems.  This LDRD helped develop many of the tools that 

can and will be deployed in future systems.  
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Appendix A:  Glossary of Terms Used 

Autonomous Navigation 
 Point-to-point vehicle traversals without human intervention. 
Canesta 
 A manufacturer of 3D Range imagers using time-of-flight pulses of infrared 

light. 
CCD 
 Charge-Coupled Device.  A common technology used for capturing a 

digital image, i.e., a CCD camera. 
Color Spaces  
 Digital representations of color, e.g., RGB or HSV. 
FOV 
 Field-of-View.  A measurement in degrees of the viewing angle of a 

camera.   
GUI 
 Graphical User Interface – A user interface on a computer that an operator 

interacts with using a pointing device such as a mouse or touchscreen. 
HAGAR 
 High Agility Ground Assessment Robot – A Sandia developed version of 

the RATLER dual –body platform. 
HSV 
 Hue-Saturation-Value.  A representation of color used for digital imagery.. 
IncrTcl 
 A object oriented extension of Tcl.  It expands the standard behavior of Tcl 

in much the same way that C++ extends the C programming language. 
IED 
 Improvised Explosive Device – a makeshift bomb. 
JAUS 
 Joint Architecture for Unmanned Systems a communications framework 

developed by the U.S. Dept of Defense for controlling unmanned robot 
systems. 

  
Inertial Measurement Unit (IMU) 
 a device which typically measures rates that describe changes of the six 

degrees of freedom (3 rotation, 3 translation) of a moving entity with 
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respect to a local level (inertial) system.  Integration of these 
measurements can produce position and attitude. 

Kalman-Filter 
 A Bayesian Estimate filter that uses a prediction-correction stage for 

estimating robot position and orientation from multiple noisy sensor 
readings. 

GHz Analog Radio 
 Giga-Hertz radio.  Typically used for transmitting NTSC video.  Old analog 

radios suffered from multi-path and signal noise. 
GPS 
 Global-Positioning System. 
MSDOS 
 Microsoft Disk Operating System.  An early operating system. 
Novatel 
 A vendor of GPS units with high accuracy. 
PTU 
 Pan-Tilt Unit.  A typical two-stage control unit for moving a camera head. 
RATLERTM 
 Remote All- Terrain Lunar Explorer Robot.  A multi-purpose research dual-

body robot developed by Sandia’s Robotics Group. 
(http://www.sandia.gov/isrc/sadrat.html) 

RGB 
 Red-Green-Blue.  A representation of color used for digital imagery. 
  
RPC 
 Remote Procedure Call -- A interprocess communication protocal that 

allows a computers in a network to initiate routines on another computer. 
SMART 
 Sandia’s Modular Architecture for Robotics and Teleoperation.  A modular 

control framework for building telerobotics control systems. 
(http://www.sandia.gov/isrc/SMART.html) 

SmartBroadcast 
 A software package developed in this project that enables multiple 

computing elements to transfer information in real-time utilizing broadcast 
UDP. 

SmartCmd 
 An abstract software entity developed in this project that encapsulates the 

essence of a execution element. 
Spread 
 An open source toolkit for high-performance messaging. 

(http://www.spread.org) 

http://www.sandia.gov/isrc/sadrat.html
http://www.sandia.gov/isrc/SMART.html
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TCP 
 Transmission Control Protocol.  A core internet protocol of the internet. 
Tcl 
 Tool Command Language.  A general scripting language similar to python.  

(http://www.tcl.tk). 
Teleoperation 
 The operation of a remotely located robot system via operator input 

devices such as joysticks and spaceballs. 
Turing 
 A 6-DOF mobile research robot on a skid-steer base with a gripper and 

calibrated cameras. 
UDP 
 User Datagram Protocol.  A core internet protocol of the internet.  Uses 

minimal handshaking compared to TCP.. 
Umbra 
 A Sandia developed framework for software development. 

(http://www.sandia.gov/isrc/UMBRA.html) 
voxel  
 A volume element similar to a pixel, but representing a 3-dimensional 

element. 
XML 
 Extensible Markup Language is a set of rules for encoding documents 

electronically. 
  

 

http://www.tcl.tk/
http://www.sandia.gov/isrc/UMBRA.html
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