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Abstract

This report summarizes existing statistical engines in VTK/Titan and presents both the serial
and parallel k-means statistics engines. It is a sequel to [PT08], [BPRT09], and [PT09] which
studied the parallel descriptive, correlative, multi-correlative, principal component analysis,
and contingency engines. The ease of use of the new parallel k-means engine is illustrated by
the means of C++ code snippets and algorithm verification is provided. This report justifies the
design of the statistics engines with parallel scalability in mind, and provides scalability and
speed-up analysis results for the k-means engine.
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1 Introduction

This report is a sequel to [PT08], [BPRT09], and [PT09] which focused on the parallel descriptive,
correlative, multi-correlative, principal component analysis, and contingency engines; please refer
to these references for a detailed presentation of these engines as well as an assessment of their
scalability and speed-up properties.

1.1 The Titan Informatics Toolkit

The Titan Informatics Toolkit is a collaborative effort between Sandia National Laboratories and
Kitware Inc. It represents a significant expansion of the Visualization ToolKit (VTK) to support
the ingestion, processing, and display of informatics data. By leveraging the VTK engine, Titan
provides a flexible, component based, pipeline architecture for the integration and deployment of
algorithms in the fields of intelligence, semantic graph and information analysis.

Figure 1. A theoretical application built with Titan.

A theoretical application built from Titan/VTK components is schematized in Figure 1. The flexi-
bility of the pipeline architecture allows effective utilization of the Titan components for different
problem domains. An actual implementation is OverView, a generalization of the ParaView sci-
entific visualization application to support the ingestion, processing, and display of informatics
data. The ParaView client-server architecture provides a mature framework for performing scal-
able analysis on distributed memory platforms, and OverView will use these capabilities to analyze
informatics problems that are too large for individual workstations.

The Titan project represents one of the first software development efforts to address the merging
of scientific visualization and information visualization on a substantive level. The VTK parallel
client-server layer will provide an excellent framework for doing scalable analysis on distributed
memory platforms.
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1.2 Statistics Functionality in Titan

A number of univariate, bivariate, and multivariate statistical tools have been implemented in Titan.
Each tool acts upon data stored in one or more tables; the first table serves as observations and
further tables serve as model data. Each row of the first table is an observation, while the form of
further tables depends on the type of statistical analysis. Each column of the first table is a variable.

1.2.1 Variables

A univariate statistics algorithm only uses information from a single column and, similarly, a
bivariate from 2 columns. Because an input table may have many more columns than an algorithm
can make use of, Titan must provide a way for users to denote columns of interest. Because it
may be more efficient to perform multiple analyses of the same type on different sets of columns
at once as opposed to one after another, Titan provides a way for users to make multiple analysis
requests of a single filter.

Table 1. A table of observations that might serve as input to a
statistics algorithm.

row A B C D E
1 0 1 0 1 1.03315
2 1 2 2 2 0.76363
3 0 3 4 6 0.49411
4 1 5 6 24 0.04492
5 0 7 8 120 0.58395
6 1 11 10 720 1.66202

As an example, consider Table 1. It has 6 observations of 5 variables. If the correlations between
A, B, and C, and also between B, C and D are desired, two requests, R1 and R2 must be made. The
first request R1 would have columns of interest {A,B,C} while R2 would have columns of interest
{B,C,D}. Calculating covariances for R1 and R2 in one pass is more efficient than computing each
separately since cov(B,B), cov(C,C), and cov(B,C) are required for both requests but need only
be computed once.

1.2.2 Phases

Each statistics algorithm performs its computations in a sequence of common phases, regardless
of the particular analysis being performed. These phases can be described as:

Learn: Calculate a “raw” statistical model from an input data set. By “raw”, we mean the minimal
representation of the desired model, that contains only primary statistics. For example, in
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the case of descriptive statistics: sample size, minimum, maximum, mean, and centered M2,
M3 and M4 aggregates (cf. [P0́8]). For Table 1 with a request R1 = {B}, these values are 6,
1, 11, 4.83̄, 68.83̄, 159.4̄, and 1759.8194̄, respectively.

Derive: Calculate a “full” statistical model from a raw model. By “full”, we mean the complete
representation of the desired model, that contains both primary and derived statistics. For
example, in the case of descriptive statistics, the following derived statistics are calculated
from the raw model: unbiased variance estimator, standard deviation, and two estimators (g
and G) for both skewness and kurtosis. For Table 1 with a request R1 = {B}, these additional
values are 13.76̄, 3.7103, 0.520253, 0.936456, �1.4524, and �1.73616 respectively.

Assess: Given a statistical model – from the same or another data set – mark each datum of a
given data set. For example, in the case of descriptive statistics, each datum is marked with
its relative deviation with respect to the model mean and standard deviation (this amounts
to the one-dimensional Mahalanobis distance). Table 1 shows this distance for R1 = {B} in
column E.

Figure 2. An example utilization of Titan’s statistics algorithms
in OverView.

An example of the utilization of Titan’s statistical tools in OverView is illustrated in Figure 2;
specifically, the descriptive, correlative, and order statistics classes are used in conjunction with
various table views and plots. With the exception of contingency statistics which can be performed
on any type (nominal, cardinal, or ordinal) of variables, all currently implemented algorithms
require cardinal or ordinal variables as inputs.

At the time of writing, the following algorithms are available in Titan:

1. Univariate statistics:
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(a) Descriptive statistics:

Learn: calculate minimum, maximum, mean, and centered M2, M3 and M4 aggre-
gates;

Derive: calculate unbiased variance estimator, standard deviation, skewness (12 and
G1 estimators), kurtosis (g2 and G2 estimators);

Assess: mark with relative deviations (one-dimensional Mahlanobis distance).

(b) Order statistics:

Learn: calculate histogram;
Derive: calculate arbitrary quartiles, such as “5-point” statistics (quartiles) for box

plots, deciles, percentiles, etc.;
Assess: mark with quartile index.

2. Bivariate statistics:

(a) Correlative statistics:

Learn: calculate minima, maxima, means, and centered M2 aggregates;
Derive: calculate unbiased variance and covariance estimators, Pearson correlation co-

efficient, and linear regressions (both ways);
Assess: mark with squared two-dimensional Mahlanobis distance.

(b) Contingency statistics:

Learn: calculate contingency table;
Derive: calculate joint, conditional, and marginal probabilities, as well as information

entropies;
Assess: mark with joint and conditional PDF values, as well as pointwise mutual in-

formations.

3. Multivariate statistics:

These filters all accept multiple requests Ri, each of which is a set of ni variables upon which
simultaneous statistics should be computed.

(a) Multi-Correlative statistics:

Learn: calculate means and pairwise centered M2 aggregates;
Derive: calculate the upper triangular portion of the symmetric ni×ni covariance ma-

trix and its (lower) Cholesky decomposition;
Assess: mark with squared multi-dimensional Mahlanobis distance.

(b) PCA statistics:

Learn: identical to the multi-correlative filter;
Derive: everything the multi-correlative filter provides, plus the ni eigenvalues and

eigenvectors of the covariance matrix;
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Assess: perform a change of basis to the principal components (eigenvectors), op-
tionally projecting to the first mi components, where mi ≤ ni is either some user-
specified value or is determined by the fraction of maximal eigenvalues whose sum
is above a user-specified threshold. This results in mi additional columns of data
for each request Ri.

(c) k-means statistics:

Learn: compute optimized set(s) of cluster centers from initial set(s) of cluster centers.
In the default case, the initial set comprises the first k observations. However, the
user can specify one or more sets of cluster centers (with possibly differing num-
bers of clusters in each set) via an optional input table, in which case an optimized
set of cluster centers is computed for each of the input sets.

Derive: calculate the global and local rankings amongst the sets of clusters computed
in the learn phase. The global ranking is the determined by the error amongst all
new cluster centers, while the local rankings are computed amongst clusters sets
with the same number of clusters. The total error is also reported;

Assess: mark wth closest cluster id and associated distance for each set of cluster cen-
ters.

1.3 Input and Output Ports

The statistics algorithms have by default 3 input ports and 3 output ports as follows:

Input Port 0: This port is identified as vtkStatisticsAlgorithm::INPUT DATA and is used for
learn data.

Input Port 1: This port is identified as vtkStatisticsAlgorithm::LEARN PARAMETERS and is
used for learn parameters (initial guesses, etc.).

Input Port 2: This port is identified as vtkStatisticsAlgorithm::INPUT MODEL and is used
for a priori models.

Output Port 0: This port is identified as vtkStatisticsAlgorithm::OUTPUT DATA and mirrors
the input data, plus optional assessment columns.

Output Port 1: This port is identified as vtkStatisticsAlgorithm::OUTPUT MODEL and con-
taints any generated model.

Output Port 2: This port is identified as vtkStatisticsAlgorithm::ASSESSMENT and is cur-
rently not used by any of the statistics algorithms.

By default, the input and output ports are all of type vtkTable. There are several exceptions to
this default setting, as follows:
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• vtkContingencyStatistics,

• vtkKMeansStatistics,

• vtkMultiCorrelativeStatistics, and

• vtkPCAStatistics.

Instead, those use vtkMultiBlockDataSet for both the vtkStatisticsAlgorithm::INPUT MODEL
port and the vtkStatisticsAlgorithm::OUTPUT MODEL port. Moreover, vtkPCAStatistics
has a fourth input port that is used to provide normalization values.

In the following sections, we present implementation details on the serial and parallel versions of
the k-means statistics algorithm, provide a basic user manual thereof, provide verification results,
and examine the scalability of the parallel implementation.
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2 Serial k-Means Statistics

In this section, we present a brief refresher on the serial k-means clustering algorithm, along with
usage details for our implementation.

2.1 General k-Means Clustering Algorithm

The term cluster analysis is used to describe a series of unsupervised learning algorithms that
partition objects into groups according to a measure of association. With k a positive integer, k-
means clustering [Mac67] is one such algorithm that classifies objects into k clusters by minimizing
some distance metric between the data and the corresponding cluster centers.

The general algorithm consists of the following steps:

1. Choose the number of clusters, k.

2. Determine k initial cluster centers.

3. Assign each data observation to the nearest cluster center.

4. Recompute the new cluster centers.

5. Repeat the steps 3 and 4 until a prescribed convergence criterion is met (either the maximum
number of iterations is reached or the number of cluster assignment changes reaches some
minimum value).

This straightforward k-means clustering algorithm is easy to implement; note, however, that it is
a heuristic algorithm and therefore that convergence is not guaranteed. Aside from this intrinsic
limitation, its main disadvantage is that the value of k must be pre-determined and its results are
heavily reliant on the initial cluster centers used. Relatively recent work [ZHD+01, DH04] has
proven that the continuous solutions of the discrete k-means clustering membership indicators
are the data projections on the principal eigenvectors of the associated covariance matrix. This
is equivalent to showing that the cluster centroids are given by spectral expansion of the data
covariance matrix truncated at k−1 terms.

Another consideration that should be noted when considering k-means clustering, is that it requires
that the data being processed has some notion of a mean, which is used to compute the new cluster
centers. When data does not have a computable mean, an alternate apporach is to use the k-medoids
algorithm [Bis06] which uses data observations as cluster centers.
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2.2 Implementation Details

2.2.1 Distance Functors and data types

The code can handle a wide variety of data types as it operates on vtkAbstractArrays and is
not limited to vtkDataArrays. A default distance functor that computes the sum of the squares
of the Euclidean distance between two objects is provided. The default distance functor can be
overridden to use alternative distance metrics.

2.2.2 Initial Cluster Centers

The initial cluster centers used by the algorithm can be specified by the user via a vtkTable on
port vtkStatisticsAlgorithm::LEARN PARAMETERS. Because the desired value of k is often not
known in advance and the results of the algorithm are dependent on the initial cluster centers, we
provide a mechanism for the user to test multiple runs or sets of cluster centers within a single
call to the Learn phase. The first column of the vtkStatisticsAlgorithm::LEARN PARAMETERS
table identifies the number of clusters k in the particular run, while the remaining columns are a
subset of the columns contained in the table on port vtkStatisticsAlgorithm::INPUT DATA.
We require that all user specified clusters be of the same dimension n and consequently, that the
vtkStatisticsAlgorithm::LEARN PARAMETERS table have n + 1 columns. Due to this restric-
tion, only one request can be processed for each call to the Learn phase and subsequent requests are
silently ignored (recall that the requests identify the variables that are to be used when performing
the computations).

When the user does not supply an initial set of clusters, then the first DefaultNumberOfClusters
input data observations are used as initial cluster centers and a single run is performed.

2.2.3 Engine Output

The output of the Learn and Derive phases are the first and second vtkTables respectively in the
vtkMultiBlockDatSet that is output on port vtkStatisticsAlgorithm::OUTPUT MODEL. The
vtkTable output for the the Learn phase contains a row for each cluster center in each run that
includes the following column entries:

Run ID: A unique ID specifying the run number.

K: Number of clusters in the run.

Iterations: Number of iterations prior to termination of the run.

Error: Sum of squared Euclidean distances from each observation in the cluster to the cluster
center. Alternative metrics can be used by overriding the distance functor.
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Cardinality: Number of elements in cluster.

Cluster center: The optimized cluster center coordinates are actually a series of column entries,
one per variable requested by the user.

The vtkTable output for the Derive phase contains a row for each run that includes the following
column entries:

Run ID: A unique ID specifying the run number.

K: Number of clusters in the run.

Iterations: Number of iterations prior to termination of the run.

Total Error: Sum of squared Euclidean distance from each observation to its nearest cluster cen-
ter. Alternative metrics can be used by overriding the distance functor.

Local Rank: Ranking within runs with the same number of clusters (the run with the smallest
error is ranked 1).

Global Rank: Ranking within all runs (the run with the smallest error is ranked 1).

Using the cluster centers from the first vtkTable of the vtkMultiBlockDataSet provided on
port vtkStatisticsAlgorithm::INPUT MODEL (i.e. the output of the Learn phase), the As-
sess phase outputs a vtkTable on vtkStatisticsAlgorithm::OUTPUT DATA that contains the
closest cluster center and associated distance for each run appended to the vtkTable input on
vtkStatisitcsAlgorithm::INPUT DATA.

15



3 Parallel Statistics Classes

3.1 Implementation Details

The purpose of building a full statistical model in two phases is parallel computational efficiency.
In our approach, inter-processor communication and updates are performed only for primary statis-
tics. The calculations to obtain derived statistics from primary statistics are typically fast and sim-
ple and need only be calculated once, without communication, upon completion of all parallel
updates of primary variables. Data to be assessed is assumed to be distributed in parallel across
all processes participating in the computation, thus no communication is required as each process
assesses its own resident data.

Therefore, in the parallel versions of the statistical engines, inter-processor communication is re-
quired only for the Learn phase, while both Derive and Assess are executed in an embarrassingly
parallel fashion due to data parallelism. This design is consistent with the data parallelism method-
ology used to enable parallelism within VTK, most notably in ParaView. Because the focus of this
report is on the parallel speed-up properties of statistics engines, we will not report on the Derive
or Assess phases, as these are executed independently from each other, on a separate process for
each part of the data partition. However, because the Derive phase provides the derived quantities
to which one is naturally accustomed (e.g., variance as opposed to M2 aggregate), the numerical
results reported here are those that are yielded by the consecutive application of the Learn and then
Derive phases.

At this point (November 2009) of the development of scalable statistics algorithms in Titan, the
following 6 parallel classes are implemented:

1. vtkPDescriptiveStatistics;

2. vtkPCorrelativeStatistics;

3. vtkPMultiCorrelativeStatistics;

4. vtkPPCAStatistics;

5. vtkPContingencyStatistics;

6. vtkPKMeansStatistics.

Each of these parallel algorithms is implemented as a subclass of the respective serial version of
the algorithm and contains a vtkMultiProcessController to handle inter-processor commu-
nication. Within each of the parallel statistics classes, the Learn phase is the only phase whose
behavior is changed (by reimplementing its virtual method or by reimplementing virtual methods
that are called by the Learn phase) due to the data parallelism inherent in the Derive and Assess
phases. The Learn phase of the parallel algorithms performs two primary tasks:
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1. Calculate statistics on local data by executing the Learn code of the superclass.

2. If parallel updates are needed (i.e. the number of processes is greater than 1), perform
necessary data gathering and aggregation of local statistics into global statistics.

The descriptive, correlative and multi-correlative statistics algorithms perform the aggregation nec-
essary for the statistics which they are computing using the arbitrary-order update and covariance
update formulas presented in [P0́8]. Because the PCA statistics class derives from the multi-
correlative statistics algorithm and inherits its Learn phase, a static method is defined within the
parallel multi-correlative statistics algorithm to gather all necessary statistics, cf. [BPRT09] for
details. As explained in the aforementioned references, all those parallel classes exhibit optimal
parallel speed-up properties. Similarly, the contingency statistics class derives from the bivariate
statistics class and implements its own aggregation mechanism for the Learn phase. However,
unlike the other statistics algorithms which rely on statistical moments (descriptive, correlative,
multi-correlative, PCA, and k-means), this aggregation operation is, in general, not embarrassingly
parallel and, therefore, optimal parallel scale-up is not observed when this class is not used outside
of its intended domain of applicability, as explained in [PT09].

3.2 Usage

It is fairly easy to use the serial statistics classes of Titan; it is not much harder to use their parallel
versions. All that is required is a parallel build of Titan and a version of MPI installed on your
system.

For example, Listing 1 demonstrates how to calculate k-means statistics, in parallel, on each col-
umn of an input set inData of type vtkTable* with an associated set of input parameters and no
subsequent data assessment. It is assumed here the input data table has at least 3 columns.

In Listing 1, requests for columns of interest are specified by calling SetColumnStatus() multiple
times to identify the variables to be used, followed by a call to RequestSelectedColumns(). The
k-means statistics classes are currently the only statistics classes limited to one request per call to
the Learn phase, with additional requests being silently ignored. It is important to note that these
requests only identify the variables used when performing k-means clustering, they do not impact
the number of runs (i.e. the number of sets of clusters) that are computed during a particular
call to Learn. The number of sets of runs is inferred from the vtkTable that is input in the
vtkStatistics::LEARN PARAMETERS port. When no table is provided the number of runs is 1
and the first k data points are used as initial cluster centers.

All multivariate algorithms specify requests using a number of calls to SetColumnStatus() fol-
lowed by a call to RequestSelectedColumns(), and most multivariate algorithms allow for mul-
tiple requests. Consider the example from §1.2.1 and Table 1 where 2 requests are mentioned:
{A,B,C} and {B,C,D}. The code snippet in Listing 2 shows how to queue these requests for
a vtkPPCAStatistcs object. Note that SetColumnStatus() should be called to turn off any
previously-selected columns that are no longer of interest.

17

http://www.sandia.gov/Titan/
http://www.sandia.gov/Titan/


Bivariate and unvariate algorithms have slightly different usage patterns. Bivariate algorithms call
AddColumnPair() and univariate algorithms call AddColumn() for each set of requests.

The examples thus far assume that you have already prepared an MPI communicator, loaded a
dataset into the inData object, and are running in a parallel environment. It is outside the scope of
this report to discuss I/O issues, and in particular how a vtkTable can be created and filled with
the values of the variables of interest. See VTK’s online documentation for details [vtk].

In the code example from Listing 1, the vtkMultiProcessController object passed to Foo() is
used to determine the set of processes (which may be a subset of a larger job) among which input
data is distributed. VTK uses subroutines of this form to execute code across many processes. In
Listing 3 we demonstrate that, to prepare a parallel controller to execute Foo() in parallel using
MPI, one must first (e.g. in the main routine) create a vtkMPIController and pass it the address of
Foo(). Note that, when using MPI, the number of processes is determined by the external program
which launches the application.
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void Foo( vtkMultiProcessController* controller, void* arg )
{
// Use the specified controller on all parallel filters by default:
vtkMultiProcessController::SetGlobalController( controller );

// Assume the input dataset is passed to us and
// assume that it has at least 3 columns
vtkTable* inData = static_cast<vtkTable*>( arg->inData );

// Assume the input dataset is passed to us and
// assume that it has at least 3 columns
vtkTable* inLearnParameters = static_cast<vtkTable*>( arg->inInitClusters );

// Create parallel k-means statistics class
vtkPKMeansStatistics* pks = vtkPKMeansStatistics::New();

// Set input data ports
pks->SetInput( vtkStatisticsAlgorithm::INPUT_DATA, inData );
pks->SetInput( vtkStatisticsAlgorithm::LEARN_PARAMETERS, inLearnParameters );

// The first and third columns from inData are used to perform clustering
pks->SetColumnStatus( inData->GetColumnName[0], 1 );
pks->SetColumnStatus( inData->GetColumnName[2], 1 );
pks->RequestSelectedColumns();

// Calculate statistics with Learn and Derive phases only
pks->SetLearn( true );
pks->SetDerive( true );
pks->SetAssess( false );
pks->Update();

}

Listing 1: A subroutine – that should be run in parallel – for calculating k-means statistics.
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vtkPPCAStatistics* pps = vtkPKMeansStatistics::New();

// Turn on columns of interest
pps->SetColumnStatus( "A", 1 );
pps->SetColumnStatus( "B", 1 );
pps->SetColumnStatus( "C", 1 );
pps->RequestSelectedColumns();

// Columns A, B, and C are still selected, so first we turn off
// column A so it will not appear in the next request.
pps->SetColumnStatus( "A", 0 );
pps->SetColumnStatus( "D", 1 );
pps->RequestSelectedColumns();

Listing 2: An example of requesting multiple multi-variate analyses.

struct StatisticsArgs
{
vtkTable* inData;
vtkTable* inInitClusters;

};

StatisticsArgs* args;

vtkMPIController* controller = vtkMPIController::New();
controller->Initialize( &argc, &argv );

// Execute the function named Foo on all processes
controller->SetSingleMethod( Foo, &args );
controller->SingleMethodExecute();

// Clean up
controller->Finalize();
controller->Delete();

Listing 3: A snippet of code to show how to execute a subroutine (Foo()) in parallel. In reality,
inData and inInitClusters would be prepared in parallel by Foo() but is assumed to be pre-
populated here to simplify the example.
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4 Results

The parallel runs have been executed on Sandia National Laboratories’ catalyst computational
cluster, which comprises 120 dual 3.06GHz Pentium Xeon compute nodes with 2GB of memory
each. This cluster has a Gigabit Ethernet user network for job launch, I/O to storage, and user
interaction with jobs, and a 4X Infiniband fabric high-speed network using a Voltaire 9288 Infini-
Band switch. Its operating system has a Linux 2.6.17.11 kernel, and its batch scheduling system
is the TORQUE resource manager [tor].

Whether the requested processes are distributed to one or two to a node is left to the scheduler to
decide. On our system, the default behavior is to utilize the smallest number of nodes and thus to
use two processes per node.

4.1 Algorithm Scalability

In order to assess speed-up independently of the load-balancing scheme, a series of (pseudo-)
randomly-generated samples is used. Specifically, input tables are created at run time by generat-
ing 6 separate samples from 6 independent pseudo-random variables, each drawn from 8 different
Gaussian distributions with unit standard deviation, distribution number i having mean 7i. The
result is a 6−dimensional data set consisting of eight different clusters. Since our objective is
to assess the scalability of the parallel statistics engines only, equally-sized slabs of data are cre-
ated by each process in order to work with perfectly load-balanced cases. For the same reason,
the amount of time needed to create the input data table is excluded from the analysis. In this
test, vtkPKMeansStatistics, with Learn, Derive, and Assess modes on, is executed on the six
columns and the corresponding wall clock time is reported.

4.1.1 Relative Speed-Up

Given a problem of size N (as measured in our case by sample size), the wall clock time measured
to complete the work with p processes is denoted TN(p). Then, relative speed-up with p processes
is

SN(p) =
TN(1)
TN(p)

.

We achieve near optimal (linear) speedup with p processes when SN(p) = p and, therefore, relative
speed-up results for SN(p) may be visually inspected by plotting SN(p) versus the number of
processes: optimal speed-up is revealed by a line, the angle bisector of the first quadrant. The
values of p were chosen to be increasing powers of 2, for convenience only, and making use of
other values did not modify speed-up results. The results obtained on catalyst are provided in
Tables 2 and plotted in Figure 3. The heuristic nature of the k-means algorithm makes it difficult to
predict the time required for a particular input data set. However, because the k-means algorithm
performs iterative passes through the data until a convergence criterion is met, it is particularly
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Table 2. Relative speed-up (at constant total work), with a total
sample size of N = 1000000.

N/p p seconds SN(p) seconds SN(p)
uninitialized uninitialized initialized initialized

1,000,000 1 2044.1 1.0 542.4 1.0
500,000 2 1033.6 2.0 273.1 2.0
250,000 4 528.2 3.9 136.7 4.0
125,000 8 263.2 7.8 69.0 7.9
62,500 16 120.2 17.0 35.6 15.2
31,250 32 68.8 29.7 17.4 31.2
15,625 64 31.2 65.5 9.3 58.3

amenable to a data parallel implementation. As can be seen, the measured relative speed-up is
optimal (within ±5% fluctuations attributable to OS jitter and such). It should be noted that in
some instances the uninitialized runs appear to scale super-linearly. This can be attributed to the
uninitialized runs terminating early at a locally optimal solution.

4.1.2 Rate of Computation Scalability

Table 3. Rate of computation scalability (at constant load per
process).

N(p) p seconds R(p) seconds R(p)
uninitialized uninitialized initialized initialized

250,000 1 503.5 1.0 133.3 1.0
500,000 2 513.0 2.0 133.9 2.0
1,000,000 4 492.5 4.1 137.2 3.9
2,000,000 8 526.9 7.7 139.7 7.6
4,000,000 16 495.4 16.3 141.7 15.1
8,000,000 32 514.5 31.3 142.7 29.9
16,000,000 64 574.4 56.1 141.8 60.2

22



initial clusters provided

2

4

8

16

32

64

1 2 4 8 16 32 64

Sp
ee

du
p,

S
N

(p
)

Number of Processors, p

theoretical optimal speedup
random initialization

1

Figure 3. Relative speed-up at constant total work with a total
data size of N = 1,000,000.

The rate of computation is defined as

r(p) =
N(p)

TN(p)(p)
,

where N(p), the sample size, now varies with the number of processes p. We then measure its
scalability by normalizing it with respect to the rate of computation obtained with a single process,
as follows:

R(p) =
r(p)
r(1)

=
N(p)TN(1)(1)
N(1)TN(p)(p)

,

In particular, if the sample size is made to vary in proportion to the number of processes, i.e., if
N(p) = pN(1), then

R(p) =
pTN(1)(1)
TpN(1)(p)

=
pTN(1)(1)
pTN(1)(p)

=
TN(1)(1)
TN(1)(p)

,

and thus, optimal (linear) scalability is also attained with p processes when R(p) = p. Note that
without linear dependency between N and p, the latter equality no longer implies optimal scala-
bility. Hence, under the above assumptions, scalability can also be visually inspected, with a plot
of R(p) versus the number of processes, where optimal scalability is also indicated by the angle
bisector of the first quadrant.

In order to assess rate of computation scalability (at constant work per process), a series of in-
creasingly large samples was generated. Each sample consisted of 6 variables, each with np
observations, with p ∈ {1,2,4,8,16,32,64} denoting the number of processes and n = 250000
denoting the number of sample points per process. Note that the scheduler is left to decide whether
one or two cores per node are occupied by the p processes. Forcing all cluster nodes to utilize
either exactly one, or exactly two of their cores did not result in a measurable difference. Corre-
sponding wall clock times measured on catalyst are given in Table 3 and plotted in Figure 4.
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Figure 4. Rate of computation scalability at constant work per
process of N(p)/p = 250,000.

These clearly exhibit optimal scalability (again within ±5% fluctuations attributable to OS jitter
and such), thus experimentally verifying the embarrassingly parallel nature of these algorithms. As
with the speed-up results, it should be noted that in some instances the uninitialized runs appear
to scale super-linearly. Again, this can be attributed to the uninitialized runs terminating early at a
locally optimal solution.
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4.2 Algorithm Correctness

In order to assess algorithm correctness, we make use of the same type of test cases as § 4.1,
except that only 5 Gaussian distributions are utilized, and that they are only 2-dimensional so that
the numerical results obtained by the vtkPKMeansStatistics class can be visually inspected.
Also, the mean of distribution number i is decreased from 7i to 6i.

Relatively large input sets are used (n = 100,000), in order to mitigate the risk of statistical bias due
to insufficient sampling. We compare the results obtained with the Learn mode of the statistical
engines to the known 5 cluster centers used to generate the input. This comparison is done by
simple visual inspection of the numerical results: Figure 5 (a), (b), and (c) show the results of
the Learn mode of the k-means statistics engine for k = 4, 5, and 6 respectively. The runs that
generated these images were not provided with initial cluster centers as input, and thus the engine
initialized the cluster centers to the first k observations of the input data for each run. As such, all
cluster centers were initialized to observations drawn from the 2-dimensional distribution centered
at the origin.

Figures (d), (e), and (f) also show the results of the Learn mode of the k-means engine for k = 4, 5,
and 6 respectively, but with initial cluster centers chosen using outside knowledge to illustrate the
difference in results when “good” initial centers are available – the initial centers are observations
drawn from the distributions used to generate the input dataset but each center is an observation
from a different distribution. Together these images highlight and confirm the fact that the k-means
algorithm does not converge to an optimally global solution and is sensitive to initial input values.
However, the algorithm is particularly powerful when a priori knowledge of the input data can be
leveraged.
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(a) (d)

(b) (e)

(c) (f)

Figure 5. Results of the Learn mode of the k-means engine for
k = 4 (top), 5 (middle), and 6 (bottom). On the left, no initial
cluster centers were provided, whereas on the right, each initial
guess was an observation drawn from a different distribution used
to generate the training data.
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[BPRT09] J. Bennett, P. Pébay, D. Roe, and D. Thompson. Scalable multi-correlative statistics
and principal component analysis with Titan. Sandia Report SAND2009-1687, Sandia
National Laboratories, March 2009.

[DH04] Chris H. Q. Ding and Xiaofeng He. K-means clustering via principal component anal-
ysis. In Carla E. Brodley, editor, ICML, volume 69 of ACM International Conference
Proceeding Series. ACM, 2004.

[Mac67] J. MacQueen. Some methods for classification and analysis of multivariate observa-
tions. In L. M. LeCam and J. Neyman, editors, Proc. of the 5th Berkeley Symp. on
Mathematics Statistics and Probability, 1967.
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