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Abstract

As scientific simulations scale to use petascale machines and beyond, the data volumes gen-
erated pose a dual problem. First, with increasing machine sizes, the careful tuning of IO
routines becomes more and more important to keep the time spent in IO acceptable. It is not
uncommon, for instance, to have 20% of an application’s runtime spent performing IO in a
‘tuned’ system. Careful management of the IO routines can move that to 5% or even less in
some cases. Second, the data volumes are so large, on the order of 10s to 100s of TB, that
trying to discover the scientifically valid contributions requires assistance at runtime to both
organize and annotate the data. Waiting for offline processing is not feasible due both to the
impact on the IO system and the time required. To reduce this load and improve the ability of
scientists to use the large amounts of data being produced, new techniques for data manage-
ment are required. First, there is a need for techniques for efficient movement of data from the
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compute space to storage. These techniques should understand the underlying system infras-
tructure and adapt to changing system conditions. Technologies include aggregation networks,
data staging nodes for a closer parity to the IO subsystem, and autonomic IO routines that can
detect system bottlenecks and choose different approaches, such as splitting the output into
multiple targets, staggering output processes. Such methods must be end-to-end, meaning that
even with properly managed asynchronous techniques, it is still essential to properly manage
the later synchronous interaction with the storage system to maintain acceptable performance.
Second, for the data being generated, annotations and other metadata must be incorporated to
help the scientist understand output data for the simulation run as a whole, to select data and
data features without concern for what files or other storage technologies were employed. All
of these features should be attained while maintaining a simple deployment for the science
code and eliminating the need for allocation of additional computational resources.
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Introduction

As compute partitions on supercomputers continue to scale, IO capacity has not, as evidenced,
for instance, by the growth of the ratio of compute to IO nodes on petascale machines. At the same
time, large scale science codes generate substantial data volumes. An example is the GTC plasma
fusion code running on 29,000 cores and generating 50+ TB of data over a 24 hour runtime.
Scaling a GTC run to 120,000 cores demands that 200+ TB of data will be moved in similar
timeframes. To keep large scale science productive, therefore, highly optimized IO approaches
are critical. Ensuring these techniques use as few additional compute resources as possible is also
critical. While the number of cores per node increases, memory sizes are not always keeping pace.
For example, in the latest upgrade for the XT5 Jaguar machine at ORNL, it moved from quad-
core to six-core processors without a memory upgrade. This trend along with machines like the
BlueGene/P with only 512 MB per core indicate working in a memory constrained environment is
important.

The feasibility of optimizing IO for large-scale codes is again demonstrated by the GTC code,
which spends only 4% of its runtime performing IO when running at these scales. This was attained
by carefully managing the IO process at a low level, using the ADIOS IO componentization system,
which provides a simple API while offering interchangable, highly optimized IO routines that can
be changed for each data grouping in the code by simply editing an entry in an external XML
configuration file. This enables the custom approaches necessary for achieving peak performance
for different data sizes, system architecture, and underlying parallel file system configurations.
Specifically, to achieve high performance IO, four techniques are essential. First, each parallel file
system has a particular mode of operation that works best. Lustre, with its single metadata server,
for instance, performs well when file open calls are serialized external to the metadata server.
Second, depending on the metadata server interactions and other storage related idiosynchracies, it
may be advantageous to split output into multiple files rather than a single, large file. This can lead
to orders of magnitude improvements in performance. Third, proper selection and management of
storage targets to avoid concurrent use by different files and processes can have a significant impact.
Fourth, as dynamic system conditions change, such as the load level on particular storage targets,
the storage mechanism must adapt to maintain performance. A single overloaded storage target
could extend overall IO duration by as much as a factor of 100. To attain high IO performance, then,
we must consider all of these issues or stated more generally, we must make it easy to dynamically
vary how IO is performed to accommodate these factors at a consistently high level.

To complicate matters further, a daunting task for end users is how to select ‘interesting’ data
from large output sets. Moving the data across even a high-speed network can take days. To mini-
mize data movement, automatically generated annotations called data characteristics are essential
for productive data use. For example, something as simple as storing the array minimum and max-
imum values can eliminate the need to scan entire data files just to find where a value reaches a
threshold. For example, in the Chimera supernova simulation, a scientist may be interested only in
data items where a temperature value exceeds 106 degrees for the first time.

Combining the management of IO to achieve excellent performance with the productivity needs
of scientists yields an interesting and challenging problem. Techniques employed for best IO per-
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formance, for instance, may not result in highest scientific productivity. For example, generating
600 files per output may be the best IO performance, but forcing the scientist to sort through these
600 files for each output looking for the particular data characteristic of interest is only marginally
better than scanning complete data sets. Therefore, an essential part of IO is the organization and
annotation of the data to better manage complexities in the downstream use of the output data. For
example, by maintaining a metadata layer collecting knowledge about the entire simulation run, it
becomes possible for a scientist to use such metadata to identify which data is interesting and then
proceed directly to the proper output file(s) containing the relevant data. Another example would
be to output multiple different organizations of the same data based on different downstream usage
needs. For such tasks, the scientist should not be burdened with selecting the proper file(s) and
searching manually through the generated data.

To address these issues, this LDRD, in cooperation with researchers at Oak Ridge National
Laboratory and Sandia National Laboratory, supported research and development of a number
of new capabilities for scientific applications. First, we designed an adaptable IO layer, called
ADIOS. The ADIOS [20] API provides an IO abstraction nearly as simple as standard POSIX IO
while affording selection of which IO method to employ at runtime via a change to an external
XML configuration file. Intial performance evaluations [22] demonstrate the variability of the per-
formance for different IO methods at different scales and different data volumes. Second, some
intial work adapting the IO configuration to the file system [19] have demonstrated the ability to
achieve as much as 75% of peak IO performance by carefully managing interactions with the stor-
age system. The challenge this work introduces is an intermediate count of files based on the size
of the storage system rather than solely the process count or logical structure of the science code.
Third, the BP (Binary Packed) file format [21] enhances IO performance by offering data anno-
tation and automaic characterization with a minimal amount of coordination among the collective
processes performing IO at the same time.

This report is a compilation of the research and development activities supported by this LDRD
and various researchers at Georgia Institute of Technology and Oak Ridge National Laboratory.
Some of this text is copied verbatim from previous publications cited throughout the document.
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Motivation

Existing petascale applications and recent related work have all contributed to the need for this
work.

Applications

Consider the following two applications GTS and XGC. GTS is a particle in cell plasma fusion
physics code designed to scale from 64 to 100k cores using first principle techniques. XGC is
another plasma fusion physics code. These applications are selected both for their scalability and
the extreme output data volumes generated. They both also have rich offline workflow systems
attempting to use the generated data.

GTS

As a particle in cell code, GTS provides an opportunity to study the IO patterns and generalize
to other leadership class applications such as XGC and S3D. One particular challenge with GTS
on even the largest systems that is a generally more common problem on low memory systems
like the BlueGene/P, is the inability to allocate any memory for asynchronous data transfers. These
conditions require high performance, synchronous IO routines. GTS currently generates on the
order of 200 MB of data per process leaving no room for a buffer to stage asynchronous data
movement.

XGC

XGC has a different set of challenges. The data generated per process is smaller that GTS, but
the number of variables is large. With around 100 variables that need to be output, managing the
metadata for efficient access to those variables over the various timesteps they are output is nearly
2 orders of magnitude larger data.

Solution Approach

To provide a high performance IO system with annotation and data organization to aid scientist
productivity that can meet the requirements of the above two example applications, as well as pro-
viding both the scalability and flexibility required for future application deployments, we present
the concept of Extreme Scale Data Management.

Unlike traditional IO approaches, extreme scale data management will manage both the move-
ment of data and aid access through metadata creation and management. This can be conceptually
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partitioned into the following:

1. Generate Data

2. Annotate Data

3. Managed Data Movement

4. Managed Data Access

Generate Data

Scientific simulations generate massive quantities of data. While all of the data is not neces-
sary for offline analysis, more frequent output can yield unexpected scientific discoveries due to
the smaller set of changes between each output. By carefully managing the output based on the
underlying system characteristics, more consistent, higher performance IO will enable scientists to
better gauge how much data can be written how often.

Annotate Data

By incorporating meaningful annotations for the massive quantities of data generated, scientist
productivity can be assisted greatly. Rather than scanning all of the data to find interesting portions,
it is possible to evaluate the annotations to determine which portions deserve closer inspection. We
have demonstrated that simple data annotation can be performed ‘for free’ in the compute partition
with the cost of the operation being lost in the variability of the IO operations themselves.

Managed Data Movement

We use adaptable, autonomic techniques to move the data from the compute partition to storage
that can detect system problems and work around them ensuring continued high performance IO.
If sufficient time is available for IO, additional data organizations can be output to aid scientist
productivity. For example, proper decomposition into stripes based on the number of storage
targets and properly distributing the data based on how it is used can greatly increase the parallel
access performance for data.

Managed Data Access

With the output data set from the simulation run, we provide simple APIs and user interfaces for
seeing an overview of the simulation run and aiding in the selection of interesting portions of the
data. These APIs must be able to select data using abstract specifiers like a timestep and locations
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within a global array while the internal implementation is capable of navigating the metadata to
efficiently locate and retrieve the selected data no matter how the storage was originally performed.
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The Adaptable IO System (ADIOS)

The Adaptable IO System (ADIOS) [20] provides an API nearly as simple as standard Fortran
POSIX IO. An external XML configuration file describes the data and how to process it using
provided, highly tuned IO routines. More importantly, output can simultaneously use multiple
IO implementations, using the concept of ‘data grouping’ embedded into ADIOS. The idea is to
facilitate changing IO methods based on the IO patterns of different IO operations and to make it
possible to create “dummy” methods that can be trigger events for other systems like workflows.
Once the code has been changed to use ADIOS for IO, any of the various IO routines can be
selected just by changing the XML file. No source code changes are ever required.

The basic design of the ADIOS API was inspired by GTC fusion code [18] and the Chimera
supernova code CHIMERA, both developed at Oak Ridge National Laboratory. Over the life of
the GTC fusion code, the IO approach has changed eight times, each motivated by a change of
platform or a need for more data annotation. Specialized routines have had to be added for each
in situ visualization system employed. Each time one of these changes occurred, the base code
had to be reevaluated to ensure that it was both operating properly and generating the proper data
in the output. These evaluations cost days to weeks of time for the developers and thousands
of hours of compute time with no science output. Through a system like ADIOS, the user can
quickly test the various IO method available and select one that gives the best combination of
performance and required features. The GTC code required the ADIOS API to support a variety
of different outputs with varying frequency and sizes while Chimera required support for writing
a large number of variables with variable reporting/formatting requirements. We have further
demonstrated the generality of ADIOS by integrating successfully with XGC0, XGC1, FLASH,
GTS, and S3D with at most, only minor tweaks of the system required.

Based on GTC and Chimera, we extracted these five main requirements.

• Multiple, independently controlled IO settings - Each gross IO operation needs to be inde-
pendently configurable from others within the same code. For example, the output strategy
for diagnostic messages should be different from restarts.

• Data items must be optional - Variables that are members of a data grouping need to po-
tentially be strictly optional to account for different output behavior for different processes
within a group. For example, if the main process in a group writes header information and
the other participating processes do not, the system should be able to handle it properly.

• Array sizes are dynamic - The sizes of arrays need to be specified at runtime, particularly at
the moment the IO is performed. The key insight here is not just that the values need to be
provided at runtime, but we need a way to do this that is both consistent with the standard
IO API as well as not impacting the actual data written.

• Reused buffers must be handled properly - It is important to support constructed output
values in shared buffers. This means that we need to accommodate both copying stack
temporary values when they are given to us as well as being able to handle the source code
reusing a buffer to construct a second output artifact in an effort to save memory.
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Figure 1. ADIOS Architecture.

• Buffer space for IO is strictly limited - The scientific codes have strict limits on how much
memory they are willing to allow IO to use for buffering. For example, it might be stated
that IO can use 100 MB or just 90% of free memory at a particular point in the code once
all of the arrays have been allocated. Respecting this memory statement like a contract is
critical to acceptance by the community.

The ADIOS API addresses these five requirements while providing an API nearly as simple as
POSIX IO, fast IO, and transparent low-impact integration of auxiliary tools like workflow and in
situ visualization. At a high level, ADIOS structurally looks like Figure 1.

The four parts each provide key benefits.

1. ADIOS API - The core ADIOS API calls that are used in the scientific codes.

2. Common services - Internal services for encoding/decoding, buffering and other shared op-
erations are available for use by any of the transport methods.
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3. Transport methods - Perform the data operations and auxillary integrations. For example,
MPI-IO, POSIX IO, and Kepler or Visit integration.

4. External metadata XML file - Controls how these layers interact

The key success of ADIOS is the simple API and supporting XML configuration file. This
separation affords us the opportunity to keep the API in the source code simple and consistent while
placing annotation and configuration information in the associated XML file. To deliver on the fast
IO, we provide transport methods implemented and tested by experts so that high performance IO
is easily achieved. Finally, to achieve the transparent selection of IO methods, we have a standard
transport method interface for cleanly integrating new IO methods and manipulations as part of the
library. Through these features, we achieve our three goals: 1) An API almost as simple as POSIX
IO, 2) Fast IO, and 3) Changes in data use require no source code changes. Highlights of the
supporting XML configuration file, simple API, and the transparent IO selection will be addressed
below in more detail.

XML Format

Since the XML controls how everything else works, we will discuss it first. The XML docu-
ment provides a key break between the simulation source code and the IO mechanisms and down-
stream processing being employed. By defining the data types externally, we have an additional
documentation source as well as a way to easily validate the write calls compared with the read
calls without having to decipher the data reorganization or selection code that may be interspersed
with the write calls.

One nice feature of the XML name attributes is that they are just strings. The only restrictions
for their content are that if the item is to be used in a dataset dimension, it must not contain a
comma and must contain at least one non-numeric character. This is useful for putting expressions
as various array dimensions elements.

The main elements of the XML file format are of the format <element-name attr1 attr2 ...>.
For example, the description below is structured like the XML document in Figure 2:

Elements:

• adios-group - a container for a group of variables that should be treated as a single IO oper-
ation (such as a restart or diagnostics data set).

• global-bounds - [optional] specifies the global space and offsets within that space for the
enclosed var elements. Also specifies M ×N-style operations through the coordination-
communicator and/or coordination-var (more details below).

• var - a variable that is either an array or a primitive data type, depending on the attributes
provided.
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<adios-config>
<adios-group name>
<global-bounds dimensions offset

coordination-communicator
coordination-var>

<var name path type
dimensions write copy-on-write/>

</global-bounds>
<mesh type time-varying>
...
</mesh>
<attribute name path value/>
</adios-group>
<transport group method base-path

priority iterations>
parameters</transport>

<buffer size-MB free-memory-percentage
allocate-time/>

</adios-config>

Figure 2. ADIOS configuration document.

• mesh - [optional] a mesh description for the data compatible with the VTK data requirements.

• attribute - attributes attached to a var or var path.

• transport - mapping a writing method to a data type including any initialization parameters.

• buffer - internal buffer sizing and creation time. Used only once.

Attributes:

• path - HDF-5-style path for the element or path to the HDF-5 group or data item to which
this attribute is attached.

• dimensions - a comma separated list of numbers and/or names that correspond to integer var
elements to determine the size of this item

• write - [optional] if it is set to “no”, then this is an informational element not to be written
intended for either grouping or dataset dimension usage

• method - a string indicating a transport method to use with the associated adios-group.
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• group - corresponds to an adios-group specified earlier in the file.

M×N communication is implicit in the XML file through the use of the global-bounds. If the
global-bounds element is specified, then we have the ability to coordinate either on the compute
nodes using the coordination-communicator or downstream using the coordination-var. Which
communication mechanism (e.g., MPI or OpenMP) is used to coordinate is left up to the transport
method implementer and potentially selected by the parameters provided in the ‘transport’ element
in the XML file. For example, if the MPI synchronous IO method is employed for a particular IO
group, it uses MPI to coordinate a group write or even an MPI collective write. Alternatively, a
different transport method could use OpenMP. We define that the communicator ‘passed in’ must
make sense to the transport method selected and that the ordering of processes is assumed to be
in rank order for that communicator. Similarly, if the coordination-var is provided as well, an
asynchronous IO method may choose to send the data downstream annotated with these attributes
so that an another process can reassemble the data according to these parameters.

Changing IO Without Changing Source

The transport element provides the hook between the adios-group and the transport methods.
Simply by changing the method attribute of this element, a different transport method will be
employed. If more than one transport element is provided for a given group, they will be invoked in
the order specified. This neatly gives triggering opportunities for workflows. To trigger a workflow
once the analysis data set has been written to disk, make two element entries for the analysis adios-
group. The first indicates how to write to disk and the second will perform the trigger for the
workflow system. No recompilation, relinking, or any other code changes are required for any of
these changes to the XML file.

ADIOS API

Since scientific codes are written in both Fortran and C-style languages, we developed and
tested ADIOS from the beginning to have both a Fortran and a C interface. The calls look nearly
identical between the two APIs and only differ in the use of pointers in C. The details of these calls
will be discussed in more details in Appendix ??. The API itself has two groups of operations. First
are the setup/cleanup/main loop calls and second are those for performing actual IO operations.

Setup/Cleanup/Main Loop

This portion of the API focuses on calls used in generally a single location within the code.
These are also calls with global considerations.

adios_init ("config.xml")
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...
// do main loop
adios_begin_calculation ()
// do non-communication work
adios_end_calculation ()
...
// perform restart write
...
// do communication work
adios_end_iteration ()
! end loop
...
adios_finalize (myproc_id)

Adios init and adios finalize perform the expected sorts of one-time initialization and cleanup
operations. The myproc id parameter to adios finalize affords the opportunity to customize what
should happen when shutting down each transport method based on which process is ending. For
example, if an external server needs to be shutdown, only process 0 should send the kill command.

Adios begin calculation and adios end calculation provide an optional mechanism by which
the scientific code can indicate when asynchronous methods should focus their communication
efforts since the network should be nearly silent. Outside of these times, the code is deemed to
be likely communicating heavily. Any attempt to write during those times will likely negatively im-
pacting both the asynchronous IO performance and the interprocess messaging. Adios end iteration
provides a pacing indicator. Based on the entry in the XML file, this will tell the transport method
how much ‘time’ has elapsed so far in this transfer.

IO Operation

Each IO operation is based around some data collection, referred to as a data ‘group’, opening
a storage name using that group, writing or reading, and then calling close. Since our system
focuses on supporting both asynchronous and synchronous operations, the semantics for these
calls assume stricter requirements. For example, a supplied buffer is expected to be valid until
after the associated adios close call returns.

adios_open (&group_handle, "restart.01",
,‘‘w’’, MPI_COMM_WORLD)

adios_group_size (&group_handle, size, &total_size)
...
adios_write (group_handle, "zion", zion)
...
adios_write (group_handle, "mzeta", mzeta)
...
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adios_close (group_handle)

Adios group size provides a mechanism by which the size of a process’s output is specified
so that a proactive spacing of process output in the file can take place. Ultimately, this should
be optional defaulting to buffering locally and then deciding on offsets based on exactly what is
written by the processes. Adios open, adios write, and adios close all work as expected. The third
parameter is a mode (r/w/a) with the last being an optional communicator the transport method(s)
should be able to understand. The string second parameter to adios write specifies which var in the
XML the provided data represents. One special note is that adios close is considered a ‘commit’
operation. Once it returns, all provided buffers are considered reusable, or in the case of reading,
populated.

Common Services

In an effort to make writing a transport method as simple as possible, we have created a few
shared services. As the first two services we have full encoding and decoding support for our
binary format and rudimentary buffer management. One of the future research goals of ADIOS
is to extend support for more common services including feedback mechanisms that can change
the what, how, and how often IO is performed in a running code. For example, if an analysis
routine discovers some important features in one area of the data, it could indicate to write only
that portion of the data and to write it more often.

Transport Methods

We have partnered with experts on each IO method we have at this time. For example, we have
a synchronous MPI-IO method based on work done by and verified by Steve Hodson at ORNL,
a collective MPI-IO method developed by Wei-keng Liao at Northwestern, a POSIX IO method
developed by Jay Lofstead with recommendations for performance enhancements by Wei-keng
Liao, DataTap [10] asynchronous IO by Hasan Abbasi at Georgia Tech, and a NULL method for
no output, which is useful for benchmarking the performance of the code without any or selec-
tively less IO. A basic parallel HDF-5 and serial NetCDF methods are currently available. For
visualization transport methods, we have an initial pass at a VTK interface into Visit and a custom
sockets connection into an OpenGL based renderer. We have under development an asynchronous
MPI-IO method by Steve Hodson and have planned a parallel netCDF method based on existing
tools we have written to convert our default data encoding into this format.
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The BP File Format

With current and next generation high performance machines, the probability is high that one of
many nodes performing data output fails to complete that action. While the loss of that node’s data
may be acceptable to the scientific application, the failure of all nodes to complete their output due
to a single node’s problems or worse, the corruption of past output when writing to the same file, is
not. Instead, data output should be implemented to be robust to failures, adopting principles from
other areas of Computer Science (e.g., consider the Google file system [9]). In response to these
needs, we have implemented the BP file format1 as part of ADIOS, the adaptable IO system [20].
Analogous to proxy processes in other systems, the idea of the BP ‘proxy’ data format is to act as an
intermediate data format used during data output and initial processing (e.g., the aforementioned
lightweight data characterization). We call BP an intermediate format because typically, converters
will be applied to BP files so that subsequent data analysis and storage can leverage the extensive
tool chains existing for popular formats like HDF-5 and NetCDF.

The BP file format implementation is designed to maximize parallel output performance while
also containing sufficient information to (later) validate data consistency. Our delayed consistency
model implies synchronization only at the start and end of each IO operation. As a result, per
node variations in process performance and/or in messaging delays experienced by consistency
operations are avoided. The actual delay incurred corresponds to the longest total IO time for
any single process rather than the sum of the longest times for any process for each step in the
entire IO action. Further, by not exposing the actual calls made to the science code, end users can
freely choose between using a fully consistent parallel API (e.g., during code development) vs.
our delayed consistency methods (e.g., during high end production runs). Similarly, users can first
employ MPI-IO or POSIX IO and then convert from the BP format to either HDF-5 or NetCDF, as
needed. All such choices simply entail changing one entry in the ADIOS XML configuration file.

Our principal motivation for associating lightweight data characterization with output actions
is to improve scientists’ productivity, which is being reduced by the need to move across wide area
links the ever larger datasets produced by petascale codes. Data characterization affords them with
the opportunity to quickly inspect output data, to assess whether such movements are important
before performing them. We term such actions data characterization because they can be user-
specified and need not be complete, thereby avoiding the known high overheads of data indexing
like that used by FastBit and PyTables. Further, entries for data characterization are made default
parts of the BP intermediate file format, much like ‘attributes’ in other systems [6], so that end users
need not be concerned with format changes or updates when data characterizations are changed.

As our primary research examples have all been write intensive science codes, we have focused
our initial work at delivering the best possible write performance while still affording good read
performance. We collect sufficient information during the write operations to enable good per-
forming read operations, but we have not spent any time optimizing this portion of the code. Initial
tests for restart-style reading of the BP format has shown that performance for data per process of

1The BP name derives from the “binary packed” format, a purely log-based format that was originally used by
ADIOS.
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greater than a few 10s of KB yields the same or better performance, even for non-integer multiples
of processes reading the data. Additional testing for analysis-style read operations is ongoing.

The BP file format was specifically designed to support delayed consistency, lightweight data
characterization, and resilience. The basic file layout is shown in Figure 3.

Figure 3. BP File Layout

Each process writes its own output into a process group slot. These slots are variably sized
based on the amount of data required by each process. Included in each process output are the data
characteristics for the variables. For performance, we are investigating the advantages of padding
these slots to file system whole stripe sizes. These and other size adjustments are possible and
centrally managed during the file open process. This flexibility will be required to get the best
possible performance from an underlying transport and file system.

The three index sections are stored at the end for ease of expansion during append operations.
Their manipulation is currently managed by the root process of the group performing IO. The
overhead of these indices is acceptably small even for a large number of processes. For example,
for 100,000 processes and a large number variables and attributes in all process groups, such as
1000, the total index size will be on the order of 10 MB. Given the total size of the data from an
output operation of this size, 10 MB constitutes little more than a rounding error. Since these are
at the end of the file, we reserve the last 28 bytes of the file for offset locations and for version and
endian-ness flags.

Delayed consistency is achieved by having each process write independently with sufficient
information to later validate that the consistency was not violated. While the replication of this
data may not seem desirable, consider the ramifications of a three orders of magnitude performance
penalty for instead, maintaining a single copy or consider the potential that the single copy being
corrupted renders the entire output useless. We have measured the overhead per process to be on
the order of a few hundred bytes for a few dozen variables. This cost, we believe, is well worth the
time savings and greater resilience to failure.

Data characteristics are replicated into the indices stored at the end of the file. As mentioned
above, the location of the index is stored at a known offset from the end of the file, thereby making
it easy to seek to the index. Since the index is internally complete and consistent, it can be separated
out and queried to determine if the associated data contains the desired features.

The BP format addresses resilience in two ways. First, once the initial coordination to deter-
mine file offsets is complete, each process can output its entire data independently and close the
local connection to the file. This will commit the local data to storage, which constitutes some
level of safety. Afterwards, ADIOS gathers all of the index data for each single output to the root
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process of the output operation, merges it together, and writes it to the end of the file as a footer.
This merging operation is strictly appending various linked lists together making it efficient to
perform. Second, the replicated metadata from each process in the footer gives a list of offsets to
where each process group was written. Should this fail, it is possible to linearly search the file and
determine where each process group begins and ends.
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Evaluation

To evaluate, we need to examine each of our three goals: 1) an API almost as simple as POSIX
IO, 2) fast IO, and 3) changing IO without changing source.

Simple API

Standard POSIX IO calls consist of open, write, and close. ADIOS nearly achieves the same
simplicity with the sole addition of the adios group size call. This one addition provides a pre-
dictive maximum size a process will write making it possible to offset each process to a non-
overlapping portion of the file without requiring later coordination. The write calls are slightly
more complex in that they require a var name as well as a buffer. Note that since we have de-
scribed the types fully in the XML, we need not specify a buffer size directly. If we need to specify
the bounds, we will make additional write calls to add the sizing information so that ADIOS can
properly figure out how large the buffer should be. We found no way to simplify this API further
except at the cost of functionality or complexity. All efforts have focused on keeping this API
as simple as possible with descriptive, clear annotation in the XML as the preferred method for
altering the behavior of the write calls.

To simplify things further, it is possible to use code generated by preprocessing he XML to
replace all of the adios group size, adios write, and adios read calls automatically. This further
insulates the end user from having to deal with the complexities of their code by solely working
within the XML file for all of their data description and output needs. In order to update what data
is part of a group, change the XML and recompile and the code will be updated automatically.
We realize that this cannot handle all of the ways that data is written, but we believe it handles
a sufficiently large percentage that most of the exception cases will be restructured to fit the new
model rather than having to write the calls manually.

Fast IO

The main performance evaluations were performed using the GTC fusion code. We also have
some preliminary results with Chimera as well as GTS. For us, the time that matters is how long
the code runs for a given amount of work. We judge our IO performance by running the code
without IO and with IO comparing the total runtime difference. We use that and the data volume
generated to determine our IO performance.

GTC Performance

To evaluate the system, we have run regular tests with GTC at ORNL just before the machine
was partially shutdown for an upgrade. The system is a Cray XT4, dual core AMD x64 chips with
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2 GB of RAM per core and around 40-45 GB/sec peak IO bandwidth to a dedicated Lustre parallel
file system. Our tests showed a consistent average aggregate write performance of 20 GB/sec for a
128 node job [28]. See Figure 4.

Figure 4. GTC on Jaguar with ADIOS

A second evaluation was performed on the ewok system at ORNL. This is an Infiniband cluster
of 81 nodes of dual core AMD x64 chips, 2 GB of RAM per core, and about 3 GB/sec peak IO
bandwidth to a Lustre file system shared with several other clusters. Two sets of 5 runs for GTC on
128 cores were performed. Each run generated 23 restart outputs for a total of 74.5 GB. The first set
was configured to generate output using the MPI synchronous transport method while the second
set was configured to generate no output using the NULL method. We were able to demonstrate
an average 0.46 GB/sec performance. Given the ability to login to various nodes on the machine
directly and the shared storage system, there is a large variability in the performance. Two of our
runs with IO were faster than one without IO.
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Chimera Performance

The Chimera integration demonstrated that ADIOS can operate well with a much larger num-
ber of elements, the various array dimension variants, and it provided us with an impetus to de-
velop a clean reading API. This reading API differs from the writing one in that instead of calling
adios write () for each data item, adios read () is called. On adios close (), the provided buffers are
populated normally. While the reading API is implemented and tested, not all of the ADIOS fea-
tures have been optimized to work well with reading yet. Initial performance results for Chimera
have been favorable. Without any tuning of parameters and just using stock ADIOS IO creating
the same number of files with all of the annotation, we were able to reduce the wall clock runtime
by 6.5%. More extensive testing is ongoing.

GTS Performance

We did complete one set of test runs with the GTS fusion code on the Jaguar system at Oak
Ridge National Laboratory. We used 1024 cores writing 64 files per restart to the attached Lustre
system and yielded 13 GB/s aggregate performance across all of the restarts written.

Changing IO Without Changing Source

By editing the method entry of the XML file, the IO routine selected when the code runs will
be changed. An important concept of this worth repeating is that multiple method entries can be
set for each adios-group within the XML file specifying multiple outputs for a single data group.
These will be performed in the order specified transparent to each other and to the scientific code.
For example, if the analysis data should be written using MPI-IO to disk and then be picked up for
processing by a workflow system, adding a transport method that triggers the workflow system as
a second method entry for the analysis data group will cause the data to be written to disk and then
the workflow system will be notified. Note that the success of this approach would depend on the
data being written using a synchronous IO routine. To this end, we have created two visualization
transport methods. The first was tested with Visit through a VTK API interface and the second to
a custom OpenGL renderer using a socket connection.

Delayed Consistency and Abstracted API

We evaluate the Chimera supernova code with weak scaling using both the native HDF-5 calls
used in that code vs. our ADIOS calls for POSIX, for independent MPI-IO, and for collective MPI-
IO. Results appear in Figure 5. The two most important items to notice in the graph are (1) that the
parallel HDF-5 calls no longer scale linearly beyond 2,048 processes and (2) that the performance
difference for 16K processes is three orders of magnitudes when compared with POSIX IO. We
note that these runs use parallel HDF-5 tuned to use independent MPI-IO as the transport and all
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recommended performance options are enabled, based on the recommendations by IO experts at
ORNL.

Figure 5. Chimera Weak Scaling

A detailed profile of the HDF-5 vs. ADIOS calls is attained for a 512 process run. The tables
below are the total time spent in all processes on each operation. Three key differences are apparent
in Tables 1 and 2. First, ADIOS does a cascaded MPI Open call. The real cost of the open
operation is the sum of the MPI File open and the MPI File recv. Even combined, they are less
than the parallel open performed by HDF-5. The second and more striking is the number of writes
and the time spent performing them. The third and most important for our delayed consistency
argument is the MPI Bcast calls to enforce consistency. ADIOS performance is improved by its
ability to alter how the open operation is performed, buffering the write commands to perform
larger, less frequent calls, and not requiring the broadcasts for consistency checking.

Briefly, the conversion time for a BP file generated from an 8192 process run into an HDF-5
format is only 117 seconds.

The performance impact of collecting the data characteristics during the IO process depends
on the number of arrays and the number of elements. The calculation of the characteristics is
embarassingly parallel and takes only a few seconds at most for as much as 512M elements.
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Table 1. Parallel HDF-5

Parallel HDF-5
Function # of calls Total Time (sec)
write 144065 33109.67
MPI Bcast 314800 12259.30
MPI File open 2560 325.17
H5P, H5D, etc. – 8.71
other – 60

Table 2. ADIOS Independent MPI-IO

ADIOS Independent MPI-IO
Function # of calls Total Time (sec)
write 2560 2218.28
MPI File open 2560 95.80
MPI Recv 2555 24.68
other – 65
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Related Work

There has been significant prior research into studying improvements to the data movement
and annotation. The work can be divided into five areas. First are the transport level efforts. Be-
fore the 100s of terraflops era, the performance of IO was successfully managed either through
POSIX style 1-file-per-process approaches, MPI-IO [13] independent or collective access. At ex-
treme scale, the overhead of coordinating the collective IO calls degrades rather than increases
performance [33]. The number of files generated with the 1-file-per-process approach becomes
unmanageable. Even using MPI-IO independent access to a single file can be limited based on
the file system [5]. To manage the synchronous time impact of writing, systems like DataTap [2]
shift to using asynchronous IO, but face scheduling issues to avoid impacting the existing commu-
nication phases of the host application. This approach and other data staging efforts [25] require
additional resources and break the direct connection between the end of an IO phase in the host
application and the actual writing of data to disk. The communication interference issues have
been successfully addressed [1] through several scheduling techniques affording the introduction
of services into this output stream or in a staging area. While this approach is attractive, it is not
appropriate for all applications. The introduction of risk of losing the output between the time
when the application “completes” the IO and the data is flushed to disk may be unacceptable or the
additional resources required to perform the staging work may not be available. In these cases, a
synchronous approach is required. Furthermore, the asychronous writing and staging approaches
do not address reading data.

Delayed consistency has previously been studied for file systems. For example, the Lightweight
File Systems [26] project at Sandia Labs has stripped down POSIX semantics to a core of authen-
tication and authorization affording layering of other semantics, like consistency, on an as-needed
basis. Other file systems like the Serverless File System [3] have distributed metadata weakening
the immediate consistency across the entire network of machines. NFS [24] relies on write-back
local caches limiting the globally consistent view of the file system to the last synchronization
operation. Our work considers the use of delayed consistency within single, large-scale files, the
intent being to ‘fix them up’ whenever possible without inhibiting the performance of the petascale
application.

The two most successful file-formatting efforts are NetCDF [23] and HDF-5 [11]. NetCDF is
attractive for writing large, contiguous arrays and related scalar values in a single-level heirarchy.
HDF-5 extends this notion by incorporating a block-based approach for storing data, a multi-level
heirarchy, and the ability to attach attributes to any data item or hierarchy level. Likely, these
efforts are successful because they provide a standard API to handle the IO and the ability to
read the data back on various different platforms. To extend the ability of these APIs to perform
well at larger scale, parallel versions of these APIs were developed [11, 17]. Additionally, they
can be configured to take advantage of different transports as a compile-time option. The BP file
format [21] was developed to scale beyond the levels capable by HDF-5 and NetCDF by reducing
the coordiation required during the output. While this sacrifices consistency at runtime, it can still
be validated offline. Once code has been validated to generate consistent output, paying the cost
of validating the consistency during every output is excessive overhead that should be avoided, if
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possible.

The third area of related work is related to the file systems. The standard POSIX semantics
offered by systems like NFS [24], Lustre [5], and gpfs [29] works well for maintaining a level
of consistency and safety for files. While these approaches work well for typical interactive use,
it does not necessarily handle parallel access well. For example, metadata operations can be a
bottleneck [12]. Managing metadata effectively can be done while maintaining POSIX seman-
tics as demonstrated in Ceph [31]. However, those semantics are not always required for storage
operations. By removing all but the most essential services, a custom file system can give ex-
cellent performance since it does not pay the performance penalties of any services that are not
required [26]. While this works well, it would still require customizations similar to the proposed
work so that it can adapt to different application requirements. In that sense, this work builds on the
insights gained from the custom file system research while moving the changes into the application
layer to achieve greater customization to the application characteristics on a variety of systems.

A different approach for the file system performance has been investigated in relation to Quality
of Service (QoS) on shared systems. AQuA [32] provides adaptive control of storage bandwidth
in a shared environment. While it can provide guarantees about performance, it requires the ability
to proportionally allocate bandwidth to various users. We seek to provide an approach that does
not throttle the performance of any particular application when available bandwidth is available.
Instead, we shift the workload to less busy areas of the storage system.

The fourth area of related work is related to data management. The Storage Resource Manage-
ment (SRM) [30] project manages storage allocation, streaming data between sites, and enforcing
secure interfaces to the storage systems. This nicely manages to use of a generated data set from
where it was generated to where it is needed, but it does not annotate the data in any way that
assists the user with data selection or analysis avoiding unnecessary data movement. The Oak
Ridge National Laboratory Dashboard [8] inspects data files and generates structural views of the
data sets and even integrates SRM data management. It does not, however, take advantage of or
introduce any data annotation to aid in data selection. At best, the user can see at a glance which
timesteps are available for each variable generated. Some early work has been done on scientific
databases [27], but it has not been addressed with the complexities the extreme levels of parallelism
in use today and in the near future.

The last area deals primarily with data streaming systems. There has been a lot of work with
managing the data transmission to work around bottlenecks and to annotate and select meaningful
data from the stream. Many of these [15, 7, 4] use a centralized site for applying selection or
annotation operations. More scalable solutions, for example [16, 14], use in-network aggregation
and distributed deployment of analysis routines. Others push the data selection operations to the
source [6] to reduce the data volumes. While some aspects of these systems are very relevant, they
have not been applied to HPC environments. The DataTap system mentioned above is one system
seeking to directly bring these innovations into the HPC realm.
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Conclusions

This LDRD contributed to the development of key technologies that have potential to impact a
broad set of HPC applications across the DOE complex. In particular, the ADIOS API has proven
to be both simple to use and effective at improving overall IO performance, and reducing perfor-
mance variability for a number of HPC applications. Performance evaluations demonstrate the
ability to achieve as much as 75% of peak IO performance by carefully managing interactions with
the storage system. The BP file format [21] also enhances IO performance by offering data anno-
tation and automaic characterization with a minimal amount of coordination among the collective
processes performing IO at the same time.

Ongoing and future work will look at how to isolate and address the synchronous IO bottle-
necks in API and file system characteristics for extreme scale machines by introducing autonomic
IO routines that adapt to changing system conditions, providing annotation and technical mecha-
nisms through which data can be organized during output to aid analysis performance, and through
the use of new tools and techniques for reading and managing the adapted output file(s) enabling a
focus on simulation run (or runs) rather than file(s).

The broader impact of this work is to reduce the time spent creating IO routines for science
codes while still achieving a high percentage of peak IO performance. By managing the entire
output as a single entity, it will make scientists more productive when using these extreme scale
machines.
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