SANDIA REPORT

SAND2009-7401
Unlimited Release
Printed October 2009

Presto 4.14 User’s Guide

SIERRA Solid Mechanics Team
Computational Solid Mechanics and Structural Dynamics Department
Engineering Sciences Center

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering: http:/www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov

Online ordering: http:/www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

SAND2009-7401
Unlimited Release
Printed October 2009

Presto 4.14 User’s Guide

SIERRA Solid Mechanics Team
Computational Solid Mechanics and Structural Dynamics Department
Engineering Sciences Center
Sandia National Laboratories
Box 5800
Albuquerque, NM 87185-0380

Abstract

Presto is a Lagrangian, three-dimensional explicit, transient dynamics code that is used to analyze solids
subjected to large, suddenly applied loads. The code is designed for a parallel computing environment and
for problems with large deformations, nonlinear material behavior, and contact. Presto also has a versa-
tile element library that incorporates both continuum elements and structural elements. This user’s guide
describes the input for Presto that gives users access to all the current functionality in the code. The en-
vironment in which Presto is built allows it to be coupled with other engineering analysis codes. Using a
concept called scope, the input structure reflects the fact that Presto can be used in a coupled environment.
The user’s guide describes how scope is implemented from the outermost to the innermost scopes. Within
a given scope, the descriptions of input commands are grouped based on functionality of the code. For
example, all material input command lines are described in a chapter of the user’s guide for all the material
models that can be used in Presto.

Acknowledgments

This document is the result of the collective effort of a number of individuals. The current devel-
opment team responsible for Adagio and Presto, the SIERRA Solid Mechanics codes, includes
Nathan K. Crane, Jason D. Hales, Martin W. Heinstein, Alex Lindblad, David J. Littlewood,
Jakob T. Ostien, Kendall H. Pierson, Vicki L. Porter, Timothy R. Shelton, Gregory D. Sjaardema,
Benjamin W. Spencer, and Jesse D. Thomas. This document is written and maintained by this
team.

Outside the core development team, there are number of other individuals who have contributed to
this manual. Jeffery D. Gruda, Nicole L. Breivik, and Chi S. (David) Lo have provided valuable
input from the user community as Presto and Adagio Product Managers.

Many others have contributed to this document, either directly or by providing suggestions. These
include, but are not limited to Manoj K. Bhardwaj, James V. Cox, Arne S. Gullerud, Daniel C.
Hammerand, J. Richard Koteras, Rhonda K. Reindert, William M. Scherzinger, and Gerald W.
Wellman.

Contents

1 Introduction 31
1.1 Document OVErview o o v v it s e e e e 32
1.2 Overall Input Structure e 34
1.3 Conventions for Command Descriptions 37

1.3.1 KeyWords e 37
1.3.2 User-Specified Input 37
1.3.3 Optional Input 38
1.3.4 Default Values 38
1.3.5 Multiple Options for Values 38
1.3.6 Known Issues and Warnings 39
1.4 StyleGuidelines L 40
141 Comments 40
1.42 Continuation Lines L 40
143 Case. o e 40
144 CommasandTabs 40
1.45 BlankSpaces 41
1.4.6 General Format of the Command Lines 41
1.47 Delimiters L 42
148 Orderof Commands, 42
1.49 Abbreviated END Specifications 42
1.4.10 Indentation 43
1.4.11 IncludingFiles 43
1.5 Naming Conventions Associated with the Exodus II Database 44
1.6 Major Scope Definitions for an InputFile 45

5

1.7 Input/OutputFiles 46

1.8 Obtaining Support e e 48
1.9 References. e 49
General Commands 51
2.1 SIERRA Scope 51
2.1.1 SIERRA Command Block 51

2,12 Title 52

2.1.3 RestartControl 52
2.13.1 RestartTime 53

2.1.3.2 AutomaticRestart Lo 53

2.1.4 User Subroutine Identification 53

2.1.5 Functions 54

2.1.6 Axes, Directions, and Points o 59

2.1.7 Orientation e 60

2.2 Procedureand Region 66
22.1 Procedure 66

222 TimeControl 67

223 Region e 67

2.3 Use Finite Element Model, 69
2.4 Element Distortion Metrics L L L Lo 70
2.5 Activation/Deactivation of Functionality 72
Time Step Control in Presto 73
3.1 Procedure Time Control 74
3.1.1 Command Blocks for Time Control and Time Stepping 76

3.1.2 Imiial Time Step 78

3.1.3 Time Step Scale Factor 78

3.1.4 Time Step Increase Factor 78

3.1.5 SteplInterval 78

3.1.6 Example 79

3.2 Other Critical Time Step Methods 81
3.2.1 LanczosMethod 82

3.2.1.1 Lanczos Method with Constant Time Steps 83

3.2.1.2 Controls for Lanczos Method 86

3.2.1.3 Scale Factor for Lanczos Method 87

3.2.1.4 Accuracy of Eigenvalue Estimate 88

3.2.1.5 Lanczos Parameters Command Block 89

322 PowerMethod 92
3.2.2.1 Power Method with Constant Time Steps 93

3.2.2.2 Controls for Power Method 94

3.2.2.3 Scale Factor for Power Method 95

3.2.2.4 Accuracy of Eigenvalue Estimate 95

3.2.2.5 Power Method Parameters Command Block 96

323 Node-Based Method 98
3.23.1 Node-Based Parameters Command Block 99

3.3 MassScaling 100
3.3.1 Whatis Mass Scaling? 100

3.3.2 Mass Scaling Command Block 101

333 NodeSetCommands 102
3.3.3.1 Mass Scaling Commands 102

3.3.3.2 Additional Commands 103

34 ExplicitControl Modes 103
34.1 Control ModesRegion 104
34.1.1 Model Setup Commands 105

34.1.2 Time Step Control Commands 106

34.1.3 Mass Scaling Commands 107

34.14 Damping Commands 108

3.4.1.5 Kinematic Boundary Condition Commands 108

34.1.6 OutputCommands 108

35 References. 110
4 Materials 111
4.1 General Material Commands L 115
4.1.1 Density Command 115
4.1.2 Biot’s Coefficient Command 115

4.1.3 Thermal Strain Behavior 115

4.1.3.1 Defining Thermal Strains 116

4.13.2 Activating Thermal Strains 118

4.2 Model Specifications 119
42.1 ElasticModel e 119

4.2.2 Elastic Fracture Model 121

4.2.3 Elastic-Plastic Model L o 123

4.2.4 Elastic-Plastic Power-Law Hardening Model 125

4.2.5 Ductile Fracture Model oo 127

4.2.6 Multilinear EP HardeningModel 129

4.277 Multilinear EP Hardening Model with Failure 131

4.2.8 Johnson-Cook Model 134

429 BCIModel e 136
4.2.10 Soil and Crushable Foam Model 138
4.2.11 Foam Plasticity Model 141
4.2.12 Elastic Three-Dimensional Orthotropic Model 144
4.2.13 Orthotropic CrushModel 146
4.2.14 Orthotropic Rate Model 149
4.2.15 Elastic Laminate Model, 152
4.2.16 Fiber Membrane Model 155
4.2.17 Incompressible Solid Model 158
4.2.18 Mooney-RivlinModel o 161
4.2.19 NLVE 3D Orthotropic Model 164
4220 StffElastic 168
4221 SwansonModel 170
4.2.22 Viscoelastic SwansonModelo 173

4.3 Cohesive Zone Material Models oo 177
43.1 TractionDecay 177

4.3.2 Tvergaard Hutchinson 178

4.3.3 Thouless Parmigiani Lo 180

44 References. L 182
S Elements 185

5.1 Finite Element Model 186

5.1.1 Identificationof Mesh File 189
5.2 Alias ... 189
5.1.3 OmitBlock 190
5.1.4 Component Separator Character 190
5.1.5 Descriptors of Element Blocks 191
5.1.5.1 Material Property 193

5.1.5.2 Include AllBlocks 193

5.153 RemoveBlock oo 193

5.1.54 Section 194

5.1.5.5 Linear and Quadratic Bulk Viscosity 195

5.1.5.6 HourglassControl 195

5.1.5.7 Effective ModuliModel 196

5.1.5.8 Element Numerical Formulation 197

5.1.5.9 Activation/Deactivation of Element Blocks by Time 198

5.2 Element Sections e 199
5.2.1 Solid Section 199
5.22 Cohesive Section L 201
523 Shell Section 202
5.2.4 Membrane Section 207
525 BeamSection 211
5.2.6 TrussSectiono 216
5.277 Spring Section e 217
5.2.8 Damper Section. 218
529 PointMass Section Lo 219
5.2.10 SPH Section e 221
5.2.11 Superelement Section. 225
5.2.11.1 ImputCommands 226

5.3 Element-like Functionality, 229
53.1 RigidBody 229
5.3.2 Torsional Spring Mechanism 234
5.4 Mass Property Calculations 238

54.1 Block SetCommands e 238

5.4.2 Structure Command Lo 239

5.5 ElementDeath 240
5.5.1 BlockSetCommands. 242

5.5.2 Criterion Commands e 242
5.5.2.1 Nodal Variable Death Criterion 243

5.5.2.2 Element Variable Death Criterion 243

5.5.2.3 Global Death Criterion 245

5.5.2.4 Subroutine Death Criterion 245

5.5.2.5 Material Death Criterion 246

5.5.3 Evaluation Commands 247

5.5.4 Miscellaneous Option Commands 247
5.5.4.1 Summary Output Commands 247

5542 Deathonlnversion. 248

5543 DeathSteps e 248

5.54.4 Degenerate Mesh Repair 248

5.5.4.5 Aggressive Contact Cleanup 249

55.4.6 DeathMethod 249

5.5.47 Particle Conversion 250

5548 ActivePeriods o 250

5.5.5 Cohesive Zone Setup Commands 251

55,6 Example 251

5.5.7 Element Death Visualization 252

5.6 Explicitly Computing Derived Quantities 254
5.7 MeshRebalancing 255
5.7.1 Rebalance L 255
5.7.1.1 Rebalance Command Lines 256

5.7.1.2 Zoltan Command Line 256

5.7.2 Zoltan Parameters L 258

5.8 Remeshing L 259
5.8.1 Remeshing Commands 260

5.82 RemeshBlockSet 261

5.8.3 Adaptive Refinement L 262

5.8.3.1 Adaptive Refinement Control Commands 263

5.8.3.2 Tool Mesh Entity Commands 264

5.83.3 Activation Commands 264

5.9 References. 265
6 Boundary Conditions and Initial Conditions 267
6.1 General Boundary Condition Concepts 268
6.1.1 Mesh-Entity Assignment Commands 268

6.1.2 Methods for Specifying Boundary Conditions 270

6.2 Initial Variable Assignment 271
6.2.1 Mesh-Entity Set Commands 272

6.2.2 Variable Identification Commands 272

6.2.3 Specification Command oL 273

6.2.4 External Mesh Database Commands 273

6.2.5 User Subroutine Commands, 274

6.2.6 Additional Command oL L 275

6.3 Kinematic Boundary Conditions 276
6.3.1 Fixed Displacement Components 276
6.3.1.1 Node SetCommands 276

6.3.1.2 Specification Commands 277

6.3.1.3 Additional Commands 277

6.3.2 Prescribed Displacement Lo 278
6.3.2.1 Node Set Commands 279

6.3.2.2 Specification Commands 279

6.3.2.3 User Subroutine Commands 281

6.3.2.4 External Mesh Database Commands 281

6.3.2.5 Additional Commands 282

6.3.3 Prescribed Velocity 284
6.3.3.1 Node SetCommands 285

6.3.3.2 Specification Commands 285

6.3.3.3 User Subroutine Commands 287

6.3.3.4 External Mesh Database Commands 287

11

6.4

6.5

6.3.3.5 Additional Commands 288

6.3.4 Prescribed Acceleration L L Lo 289
6.3.4.1 NodeSetCommands 290
6.3.4.2 Specification Commands 290
6.3.4.3 User Subroutine Commands 291
6.3.4.4 External Mesh Database Commands 292
6.3.4.5 Additional Commands 293
6.3.5 FixedRotation 294
6.3.5.1 Node SetCommands 294
6.3.5.2 Specification Commands 295
6.3.5.3 Additional Commands 295
6.3.6 Prescribed Rotation L 296
6.3.6.1 Node SetCommands 297
6.3.6.2 Specification Commands 297
6.3.6.3 User Subroutine Commands 298
6.3.6.4 External Mesh Database Commands 299
6.3.6.5 Additional Commands 300
6.3.7 Prescribed Rotational Velocity 301
6.3.7.1 Node SetCommands 302
6.3.7.2 Specification Commands 302
6.3.7.3 User Subroutine Commands 303
6.3.7.4 External Mesh Database Commands 304
6.3.7.5 Additional Commands 305
6.3.8 Subroutine Usage for Kinematic Boundary Conditions 306
Initial Velocity Conditions 307
6.4.1 NodeSetCommands 308
6.4.2 Direction Specification Commands 308
6.4.3 Angular Velocity Specification Commands 309
6.4.4 User Subroutine Commands 309
Force Boundary Conditions 311
6.5.1 Pressure 311
6.5.1.1 Surface Set Commands 312

12

6.6
6.7

6.8

6.5.1.2 Specification Commands 313

6.5.1.3 User Subroutine Commands 313
6.5.1.4 External Pressure Sources 314
6.5.1.5 OutputCommand 315
6.5.1.6 Additional Commands L. 315
6.52 Traction e 317
6.5.2.1 Surface Set Commands 318
6.5.2.2 Specification Commands 318
6.5.2.3 User Subroutine Commands 319
6.5.2.4 Additional Commands 0oL 320
6.5.3 Prescribed Force 321
6.5.3.1 Node Set Commands 322
6.5.3.2 Specification Commands 322
6.5.3.3 User Subroutine Commands 323
6.5.3.4 Additional Commands 324
6.5.4 Prescribed Moment 325
6.5.4.1 NodeSetCommands 326
6.5.4.2 Specification Commands 326
6.5.4.3 User Subroutine Commands 327
6.5.4.4 Additional Commands oo 328
Gravity e e e e e 329
Prescribed Temperature L 331
6.7.1 Block SetCommands 332
6.7.2 Specification Commando 332
6.7.3 User Subroutine Commands 332
6.7.4 External Mesh Database Commands 333
6.7.5 Additional Commands oL oL 335
Pore Pressure 336
6.8.1 BlockSetCommands. 337
6.8.2 Specification Command 337
6.8.3 User Subroutine Commands 337
6.8.4 External Mesh Database Commands 338

13

6.8.5 Coupled Analysis Commands 339

6.8.6 Additional Commands o 339

6.9 FluidPressure L 340
6.9.1 Surface SetCommands Lo 341

6.9.2 Specification Commands L Lo 341

6.9.3 Additional Commandso L L 342

6.10 Specialized Boundary Conditions 343
6.10.1 Cavity Expansion e 343
6.10.2 BlastPressure 346
6.10.3 Silent Boundary 348
6.10.4 SpotWeld 349
6.10.5 LineWeld 354
6.10.6 ViscousDamping L L 357
6.10.6.1 Block Set Commands 357

6.10.6.2 Viscous Damping Coefficient 358

6.10.6.3 Additional Command L. 358

6.10.7 Volume RepulsionOId 359
6.10.7.1 BlockSet 359

6.10.8 General Multi-Point Constraints 361
6.10.8.1 Master/Slave Multi-Point Constraints 361

6.10.8.2 TiedContact 362

6.10.8.3 Tied Multi-Point Constraints 363

6.10.8.4 Resolve Multiple MPCs 363

6.10.9 Submodel L 365

6.11 References. 366
7 Contact 367
7.1 Contact Definition Block o oL 373
7.2 Descriptions of Contact Surfaces 379
7.2.1 Contact Surface Command Line 381

722 Skin AllBlocks 381

7.2.3 Contact Surface Command Block 382

724 ContactNode Set 384

7.3 Analytic Contact Surfaces 385

7.3.1 Plane 385
7.32 Cylinder 385
7.3.3 Sphere 386
7.4 Update All Surfaces for Element Death 388
7.5 Removelnitial Overlap L 389
7.6 Angle for Multiple Interactions L L 391
7.7 Surface Normal Smoothing oL 393
7.8 Eroded Face Treatment 394
7.9 Shell Lofting e 395
7.10 Contact Output Variables 398
7.11 Friction Models 400
7.11.1 Frictionless Model 400
7.11.2 Constant Friction Model 400
7.11.3 TiedModel 401
7.11.4 SpringWeldModel 401
7.11.5 Surface Weld Model o 402
7.11.6 AreaWeldModel 403
7.11.7 AdhesionModel 403
7.11.8 Cohesive Zone Model 404
7.11.9 JunctionModelo 405
7.11.10 Threaded Model 406
7.11.11 PV_Dependent Model 407
7.11.12 User Subroutine Friction Models 408
7.12 Search Options e 410
7.12.1 Search Algorithms 411
7.12.2 Search Tolerances 412
7.12.3 Secondary Decomposition L L Lo 413
7.13 User SearchBox 415
7.13.1 Search Box Location 415
7.13.2 Search Box Size 416
7.14 Enforcement Options e e 417

7.15 Default Values for Interactions 419
7.15.1 Surface Identification Lo 420
7.15.2 Self-Contact and General Contact 420
7.15.3 Friction Model 421
7.15.4 Automatic Kinematic Partition oL 421
7.15.5 Interaction Behavior oo 422
7.15.6 Constraint Formulation 0 0oL 423

7.16 Values for Specific Interactions 424
7.16.1 Surface Identificationo 424
7.16.2 Kinematic Partition Lo 426
7.16.3 Tolerances 428
7.16.4 Friction Model 428
7.16.5 Automatic Kinematic Partitiono, 428
7.16.6 Interaction Behavior L Lo 429
7.16.7 Constraint Formulation L. 429

77 Examples e e e e e 430
7.07.1 Example 1o 430
7.17.2 Example2 e 432

7.18 Dash Contact e 434
7.18.1 How Dash is Different from ACME 434
7.18.2 Current Dash Usage Guidelines 434

7.19 References. e 439

Output 441

8.1 Parenthesis Syntax for Requesting Variables 442
8.1.1 Example 1 e 442
8.1.2 Example2 443
8.1.3 Othercommandblocks 444

8.2 ResultsOutput 444
8.2.1 Exodus Results OutputFile 445

8.2.1.1 Output Nodal Variables 447
8.2.1.2 Output Node Set Variables 448
8.2.1.3 Output Face Variables 450

16

8.2.1.4 Output Element Variables 452

8.2.1.5 Output Mesh Selection 457

8.2.1.6 Component Separator Character 458

8.2.1.7 Output Global Variables 458

8.2.1.8 Set Begin Time for Results Output 459

8.2.1.9 Adjust Interval for Time Steps 459
8.2.1.10 Output Interval Specified by Time Increment 459
8.2.1.11 Additional Times for Output 460
8.2.1.12 Output Interval Specified by Step Increment 460
8.2.1.13 Additional Steps for Output 460
8.2.1.14 Set End Time for Results Output 460
8.2.1.15 Use Output Scheduler 460
8.2.1.16 Write Results If System Error Encountered 461

8.2.2 User-Defined Output 462
8.2.2.1 Mesh-Entity Set Commands 464

8.2.2.2 Compute Global Result Command 464

8.2.2.3 User Subroutine Commands 465

8224 CopyCommand 467

8.2.2.5 Compute at Every Step Command 467

8.2.2.6 Additional Command 468

8.3 History Output e 469
8.3.1 Output Variables 471
8.3.1.1 Global Output Variables 471

8.3.1.2 Mesh Entity Output Variables 472

8.3.1.3 Nearest Point Output Variables 473

8.3.2 Outputting History DataonaNode Set 474
8.3.3 Set Begin Time for History Output 474
8.3.4 Adjust Interval for Time Steps L. 475
8.3.5 Output Interval Specified by Time Increment 475
8.3.6 Additional Times for Output 475
8.3.7 Output Interval Specified by Step Increment 475
8.3.8 Additional Steps for Output 475

8.4

8.5

8.3.9 Set End Time for History Output 476

8.3.10 Use Output Scheduler 476
8.3.11 Write History If System Error Encountered 476
Heartbeat Output 478
8.4.1 Output Variables 480
8.4.1.1 Global Output Variables 480
8.4.1.2 Mesh Entity Output Variables 481
8.4.1.3 Nearest Point Output Variables 482
8.4.2 Outputting Heartbeat DataonaNode Set 483
8.4.3 Set Begin Time for Heartbeat Output 483
8.4.4 Adjust Interval for Time Steps 484
8.4.5 Output Interval Specified by Time Increment 484
8.4.6 Additional Times for Output 484
8.4.7 Output Interval Specified by Step Increment 484
8.4.8 Additional Steps for Output L. 484
8.4.9 Set End Time for Heartbeat Output 485
8.4.10 Use Output Scheduler 485
8.4.11 Write Heartbeat On Signal 485
8.4.12 Heartbeat Output Formatting Commands 486
8.4.12.1 CTH SpyHis output format 486
8.4.12.2 Specify floating point precision 487
8.4.12.3 Specify Labeling of Heartbeat Data 487
8.4.12.4 Specify Existence of Legend for Heartbeat Data 487
8.4.12.5 Specify format of timestamp L. 488
8.4.13 Monitor OutputEvents 488
Restart Data o 490
8.5.1 Restart Options 491
8.5.1.1 Automatic Read and Write of Restart Files 492
8.5.1.2 User-Controlled Read and Write of Restart Files 495
8.5.1.3 Overwriting Restart Files 498
8.5.1.4 Recovering from a Corrupted Restart 499
8.5.2 Overwrite Command in Restart 500

18

8.5.3 Set Begin Time for Restart Writes 500

8.5.4 Adjust Interval for Time Steps, 500

8.5.5 Restart Interval Specified by Time Increment 500

8.5.6 Additional Times for Restart 501

8.5.7 Restart Interval Specified by Step Increment 501

8.5.8 Additional Steps for Restart L L. 501

8.5.9 Set End Time for Restart Writes 501

8.5.10 Overlay Count e 501

85.11 CycleCount e 502

8.5.12 Use Output Scheduler 503

8.5.13 Write Restart If System Error Encountered 503

8.6 OutputScheduler 505

8.6.1 Output Scheduler Command Block 505

8.6.1.1 Set Begin Time for Output Scheduler 506

8.6.1.2 Adjust Interval for Time Steps 506

8.6.1.3 Output Interval Specified by Time Increment 506

8.6.1.4 Additional Times for Output 506

8.6.1.5 Output Interval Specified by Step Increment 506

8.6.1.6 Additional Steps for Output 507

8.6.1.7 Set End Time for Output Scheduler 507

8.6.2 Example of Using the Output Scheduler 507

8.7 Registered Variables L L 509

8.7.1 Global, Nodal, and Element Registered Variables 509

8.7.2 Registered Variables for Material Models 517
8.7.2.1 State Variable Output by Index for Strumento Solid Material Models517

8.7.2.2 State Variable Output for LAME Solid Material Models 517

8.7.2.3 State Variable Tables for Solid Material Models 518

8.7.2.4 Registered Variables for Shell/Membrane Material Models . . . 530

8.7.3 Registered Variables for Surface Models 532

8.7.3.1 State Variable Tables for Surface Models 532

8.8 References. L 534

9 User Subroutines 535

19

9.1 User Subroutines: Programming 539

9.1.1 Subroutine Interface o 540

9.1.2 Query Functions 540
9.1.2.1 Parameter Query 542

9.1.2.2 FunctionDataQuery 546

9.1.23 TimeQuery 546

9.1.24 Field Variables L. 546

9.1.25 Global Variables o oL 555

9.1.2.6 Topology Extraction 559

9.1.3 Miscellaneous Query Functions 565

9.2 User Subroutines: Command File 567
9.2.1 Subroutine Identificationo 567

9.2.2 User Subroutine Command Lines 567
9221 Type e 567

9222 Debugging L 568

9.22.3 Parameters L 568

9.2.3 Time Step Initialization 570
9.2.3.1 Mesh-Entity Set Commands 570

9.23.2 User Subroutine Commands 571

9.23.3 Additional Command 572

9.2.4 User Variables 573

9.3 User Subroutines: Compilation and Execution 575
9.4 User Subroutines: Examples oL 576
9.4.1 Pressure as a Function of Spaceand Time 576

9.4.2 Error Between a Computed and an Analytic Solution 579

9.4.3 Transform Output Stresses to a Cylindrical Coordinate System 583

9.5 User Subroutines: Library 589
9.5.1 aupst_cyl_transform L 589

9.5.2 aupst_rec_transform L L 590

053 copy_data 591

054 trace. e 592

A Example Problem 595

20

B Command Summary 605
C Consistent Units 665

Index 667

21

List of Figures

1.1

2.1
22
2.3
2.4
2.5
2.6
2.7
2.8

5.1
5.2
53
54
5.5
5.6
5.7
5.8
59

6.1
6.2
6.3
6.4

7.1

Input/output files 46
Piecewise linear and piecewise constant functions 56
Adjacent shell elements with nonaligned local coordinate systems 61
Rectangular coordinate system L Lo 62
Z-Rectangular coordinate system. Lo 62
Cylindrical coordinate system. 63
Spherical coordinate system. 63
Rotationabout 1 64
Examples of elements with varying nodal Jacobians 71
Association between command lines and command block. 194
Location of geometric plane of shell for various lofting factors. 205
Local rst coordinate system for a shell element. 205
Rotation of 30 degrees about the 1-axis (X-axis). 206
Integration points forrodand tube oL Lo 214
Integration points forbarand box. oL oo 215
Integration points for I-section. Lo o 215
Schematic for torsional spring. L L Lo 235
Positive direction of rotation for torsional spring. 235
Force-displacement curve for spot weld normal force. 350
Force-displacement curve for spot weld tangential force. 350
Sign convention for spot weld normal displacements. 351
Sign convention for spot weld normal displacements with ignore initial offsets on. . 353

Two blocks at time step n before contact. 368

22

7.2
7.3
7.4
7.5
7.6
7.7
7.8

9.1

Al
A2

Two blocks at time step n + 1, after penetration. 368

[llustrations of multiple interactions atanode. 391
Example lofted geometries produced by shell lofting. 397
[lustration of normal and tangential tolerances. 413
[llustration of kinematic partition values. 427
Problem with two blocks coming intocontact. 430
Problem with three blocks coming into contact. 432
Overview of components required to implement functionality. 538
Mesh for example problem.o Lo 595
Mesh with blue and green surfacesremoved. 596

23

List of Tables

7.1

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20
8.21
8.22
8.23

Nodal Variables for Output 398
Derived Stress Output for Elements 455
Derived Log Strain Output for Solid Elements 456
Derived Stress Output for Shell Elements 457
Derived Strain Output for Shell Elements 457
Selection of Component Number 466
Variables Registered on Nodes (Variable and Type) 510
Element Variables Registered for All Elements 510
Element Variables Registered for Solid Elements 511
Element Variables Registered for Membranes 511
Nodal Variables Registered for Shells 511
Element Variables Registered for Shells 512
Element Variables Registered for Truss 512
Element Variables Registered for Cohesive Elements 512
Element Variables Registered forBeam 513
Element Variables Registered for Springs 513
Global Registered Variables 514
Nodal Variables Registered for Spot Welds, 515
Face Variables Registered for Blast Pressure boundary condition 516
State Variables for ELASTIC Model (Section4.2.1) 518
State Variables for ELASTIC FRACTURE Model (Section4.2.2) 518
State Variables for ELASTIC PLASTIC Model (Section4.2.3) 519
State Variables for EP POWER HARD Model (Section4.2.4) 519
State Variables for DUCTILE FRACTURE Model (Section4.2.5) 519

24

8.24
8.25
8.26
8.27
8.28
8.29
8.30
8.31
8.32
8.33
8.34
8.35
8.36
8.37
8.38
8.39
8.40
8.41
8.42
8.43
8.44
8.45
8.46
8.47
8.48
8.49
8.50
8.51

9.1
9.2
9.3
94

State Variables for MULTILINEAR EP Model (Section4.2.6) 520

State Variables for ML EP FAIL Model (Section4.2.7) 520
State Variables for FOAM PLASTICITY Model (Section4.2.11) 521
State Variables for HONEYCOMB Model 521
State Variables for HYPERFOAM Model 522
State Variables for JOHNSON COOK Model 522
State Variables for LOW DENSITY FOAM Model 522
State Variables for MOONEY RIVLIN Model 523
State Variables for NEO HOOKEAN Model 523
State Variables for ORTHOTROPIC CRUSH Model (Section 4.2.13) 523
State Variables for ORTHOTROPIC RATE Model (Section 4.2.14) 523
State Variables for PIEZOModel 524
State Variables for POWER LAW CREEPModel 524
State Variables for SHAPE MEMORY Model 524
State Variables for SOIL FOAM Model (Section4.2.10) 524
State Variables for SWANSON Model (Section4.2.21) 525
State Variables for VISCOELASTIC SWANSON Model (Section 4.2.22) 526
State Variables for THERMO EP POWER Model 527
State Variables for THERMO EP POWER WELD Model 527
State Variables for UNIVERSAL POLYMER Model 528
State Variables for VISCOPLASTIC Model 529
State Variables for Elastic-Plastic Model for Shells 530
State Variables for Elastic-Plastic Power-Law Hardening Model for Shells 530
State Variables for Multilinear Elastic-Plastic Hardening Model for Shells 530
State Variables for Multilinear Elastic-Plastic Hardening Model w/Failure for Shells 531
State Variables for TRACTION DECAY Surface Model 532
State Variables for TVERGAARD HUTCHINSON Surface Model 532
State Variables for THOULESS PARMIGIANI Surface Model 533
Subroutine Input Parameters L oL 540
Subroutine Output Parameters, 541
aupst_get_real_param Arguments e 543
aupst_get_integer_param Argumentso e e 544

9.5

9.6

9.7

9.8

9.9

9.10
9.11
9.12
9.13
9.14
9.15
9.16
9.17
9.18
9.19
9.20
9.21
9.22
9.23
9.24
9.25
9.26
9.27

C.1

aupst_get_string_param Arguments e e e e e e e 545
aupst_evaluate_function Arguments 546
aupst_get_time Argument L. e 546
aupst_check_node_var Arguments Lo 548
aupst_check_elem_var Arguments L Lo 549
aupst_get_node_var Argumentsol e e e e 550
aupst_get_elem_var Argumentso 551
aupst_get_elem_var_offset Arguments 552
aupst_put_node_var Arguments e 553
aupst_put_elem_var Arguments Lo 554
aupst_put_elem_var_offset Arguments 555
aupst_check_global_var Arguments 557
aupst_get_global_var Arguments L L Lo 557
aupst_put_global_var Arguments Lo 558
aupst_local_put_global_var Arguments 559
Topologies Used by Presto, 560
aupst_get_elem_topology Arguments 561
aupst_get_elem_nodes Arguments 562
aupst_get_face_topology Argumentso e 563
aupst_get_face_nodes Argumentso 564
aupst_get_one_elem_centroid Argumentso 565
aupst_get_point Arguments e e e e 566
aupst_get_proc_num Arguments e e e 566
Consistent Unit Sets o e 666

26

Presto 4.14 Release Notes

Following is a list of new features and syntax changes made to Presto since the 4.11 release.

Nodal Jacobian Metric

The nodal Jacobian ratio element distortion metric has been added. See Section 2.4.

Filename Metacharacters
When referring to an input, output, history, heartbeat, or restart file by name, the $B and %P

metacharacters can be used to represent the basename of the input file and number of processors,
respectively. See Sections 5.1.1, 8.2.1, 8.3, 8.4, and 8.5.1.

Hourglass Control

The default hourglass control for the strongly objective hexahedron has been reverted to be the
incremental formulation. See Section 5.2.1

Volume Derivatives for Void Elements

Void elements can now compute the first and second time derivatives of their volume for output in
addition to the volume itself. See Section 5.2.1.

LAME models for shells, beams, and trusses

The ability to use material models provided by the LAME library for shells, beams, and trusses
has been added, and these models are now used by default. See Sections 5.2.3,5.2.5, and 5.2.6.

Drilling Stiffness for Quadrilateral Shells

The formulation for quadrilateral shell elements has been modified to include drilling stiffness.
This is off by default, but can be enabled to improve solution stability. See Section 5.2.3.

27

28

SPH Radius Calculation Options

The ability to compute the radius and density of SPH particles in the same way as Pronto has
been added. This option is selected using the DENSITY FORMULATION command line. See Sec-
tion 5.2.10.

Superelement Damping Matrix

The ability to specify the damping matrix for superelements has been added. Section 5.2.11.

Element to Particle Conversion

The capability to convert hex and shell elements to particles has been added. See Section 5.5.4.7.

Remeshing Commands

The MAX REMESH REBALANCE METRIC and MAX NUMBER ELEMENTS commands have been
added to control the behavior of remeshing. See Section 5.8.1.

Embedded Submodels

A capability to include an embedded submodel has been added. See Section 6.10.9.

Analytic Rigid Surfaces for Contact

Contact analytic planes may now be attached to rigid bodies. These planes translate and rotate
with the rigid body. See Section 7.3.1.

Lofted Shell Contact Options

The CONTACT SHELL THICKNESS and ALLOWABLE SHELL THICKNESS commands have been
added to allow contact to automatically pick lofted shell thicknesses that optimize the speed and
accuracy of the contact with lofted shells. See Section 7.9

Contact Qutput Variables with Dash

Output of contact variables is now enabled with the Dash contact algorithm. See Section 7.10

29

Secondary Decomposition Default Change

The secondary decomposition option for ACME contact is now inactive by default. It can still
optionally be activated. See Section 7.12.3.

User Defined Contact Search Box with Dash
The user may now define one or more search boxes to be used during the global contact search

with the USER SEARCH BOX command block. This is only available with Dash contact. See
Section 7.13.

Penalty Contact Option Removed

The option for penalty contact enforcement, which was specified using the ENFORCEMENT
ALGORITHM option, has been removed. See Section 7.14.

Node-Face Contact with Dash

Support for node-face contact has been added to the Dash contact algorithm. This can optionally
be enabled using the CONSTRAINT FORMULATION command. See Section 7.16.7.

Improved Sideset Contact with Dash

The capability for contact based on surfaces rather than blocks with the Dash contact algorithm
has been improved, although it is still preferred to use block on block contact. See Section 7.18.

Tied Contact with Dash

The handling of tied contact has been improved in the Dash contact algorithm. See Section 7.18.

Shell Contact with Dash
Support for shell contact in the Dash contact algorithm has been dramatically improved. In addition

to general improvements for shell contact in Dash, support for contact with lofted shells has been
added. See Section 7.18.

Lofted Sphere Contact with Dash

Support for the use of lofted speheres around particle elements has been added to the Dash contact
algorithm. See Section 7.18.

30

Contact Subcycling

The ability to perform subcycles for contact enforcement has been added to Dash contact. This
can be controlled using the MAX CONTACT SUB STEPS command. See Section 7.18.

New Derived Output Variable
The tranform_shell_strain derived output variable has been added. This provides a trans-

formation of the strain in shell elements from the local element coordinate system to the global
coordinate system. See Table 8.4.

Momentum and Energy Sum by Block

Sums of momentum and energy per block have been output as global varialbes. See Table 8.16.

Modified Spot Weld Variables

The names of the spot weld variables in Table 8.17 have been modified.

Chapter 1

Introduction

This document is a user’s guide for the code Presto. Presto is a three-dimensional transient dynam-
ics code with a versatile element library, nonlinear material models, large deformation capabilities,
and contact. It is built on the SIERRA Framework [1, 2]. SIERRA provides a data management
framework in a parallel computing environment that allows the addition of capabilities in a modular
fashion. Contact capabilities are parallel and scalable.

The Presto 4.14 User’s Guide provides information about the functionality in Presto and the com-
mand structure required to access this functionality in a user input file. This document is divided
into chapters based primarily on functionality. For example, the command structure related to the
use of various element types is grouped in one chapter; descriptions of material models are grouped
in another chapter.

The input and usage of Presto is similar to that of the code Adagio [3]. Adagio is a three-
dimensional quasi-static code with a versatile element library, nonlinear material models, large
deformation capabilities, and contact. Adagio, like Presto, is built on the SIERRA Framework [1].
Contact capabilities for Adagio are also parallel and scalable. A significant feature of Adagio is
that it offers a multilevel, nonlinear iterative solver.

Because of the similarities in input and usage between Presto and Adagio, the user’s guides for
the two codes are structured in the same manner and share common material. (Once you have
mastered the input structure for one code, it will be easy to master the syntax structure for the
other code.) To maintain the commonality between the two user’s guides, we have used a variety
of techniques. For example, references to Adagio may be found in the Presto user’s guide and vice
versa, and the chapter order across the two guides is the same.

On the other hand, each of the two user’s guides is expressly tailored to the features of the specific
code and documents the particular functionality for that code. For example, though both Presto and
Adagio have contact functionality, the content of the chapter on contact in the two guides differs.

Important references for both Adagio and Presto are given in the references section at the end of
this chapter. Adagio was preceded by the codes JAC and JAS3D; JAC is described in Reference 4;
JAS3D is described in Reference 5. Presto was preceded by the code Pronto3D. Pronto3D is
described in References 6 and 7. Some of the fundamental nonlinear technology used by both
Presto and Adagio are described in References 8, 9, and 10. Currently, both Presto and Adagio

31

32 CHAPTER 1. INTRODUCTION

use the Exodus II database and the XDMF database; Exodus II is more commonly used than
XDME. (Other options may be added in the future.) The Exodus II database format is described in
Reference 11, and the XDMF database format is described in Reference 12. Important information
about contact is provided in the reference document for ACME [13]. ACME is a third-party library
for contact.

One of the key concepts for the command structure in the input file is a concept referred to as
scope. A detailed explanation of scope is provided in Section 1.2. Most of the command lines in
Chapter 2 are related to a certain scope rather than to some particular functionality.

1.1 Document Overview

This document describes how to create an input file for Presto. Highlights of the document contents
are as follows:

e Chapter 1 presents the overall structure of the input file, including conventions for the com-
mand descriptions, style guidelines for file preparation, and naming conventions for input
files that reference the Exodus II database [11]. The chapter also gives an example of the
general structure of an input file that employs the concept of scope.

e Chapter 2 explains some of the commands that are general to various applications based on
the SIERRA Framework. These commands let you define scopes, functions, and coordinate
systems, and they let you set up some of the main time control parameters (begin time, end
time, time blocks) for your analysis. (Time control and time step control are discussed in
more detail in Chapter 3.) Other capabilities documented in this chapter are available for
calculating element distortion and for activating and deactivating functionality at different
times throughout an analysis.

e Chapter 3 describes how to set the start time, end time, and time blocks for an analysis. This
chapter also discusses various options for controlling the critical time step in Presto.

e Chapter 4 describes material models that can be used in conjunction with the elements in
Presto and Adagio. Most of the material models have an interface that allows the models to
be used by the elements in both codes. Even though a material model can be used by both
codes, it may be that the use of the material model is better suited for one code rather than
for the other code. For example, a material model set up to characterize behavior over a long
time would be better suited for use in Adagio than in Presto. If a material model is better
suited for one of the two codes, this information will be noted for the material model. In some
cases, a material model may only be included in one of the two user’s guides. Chapter 4 also
discusses the application of temperature to a mesh and the computation of thermal strains
(isotropic and anisotropic).

e Chapter 5 lists the elements in Presto and Adagio and describes how to set up commands
to use the various options for the elements. Most elements can be used in either Presto or
Adagio. If an element is available in one code but not the other, this information will be noted

1.1. DOCUMENT OVERVIEW 33

for the element. In some cases, an element may only be included in one of the two user’s
guides. For example, Presto has a special element implementation referred to as smoothed
particle hydrodynamics (SPH). The Presto user’s guide contains a section on SPH, but the
Adagio user’s guide does not. Chapter 5 also includes descriptions of the commands for mass
property calculations, element death, and mesh rebalancing. Two “element-like" capabilities
are discussed in Chapter 5—torsional springs and rigid bodies. Although torsional springs
and rigid bodies exhibit element-like behavior, they are really implemented as boundary
conditions. From a user’s point of view, it is best to discuss the torsional-spring and rigid-
body capabilities with elements.

e Chapter 6 documents how to use kinematic boundary conditions, force boundary conditions,
initial conditions, and specialized boundary conditions.

e Chapter 7 discusses how to define interactions of contact surfaces.
e Chapter 8 details the various options for obtaining output.
e Chapter 9 provides an overview of the user subroutine functionality.

e Chapter A provides a sample input file from an analysis of 16 lead spheres being crushed
together inside a steel box. This problem emphasizes large deformation and contact.

e Chapter B gives all the permissible Presto input lines in their proper scope.

e The index allows you to find information about command blocks and command lines. In
general, single-level entries identify the page where the command syntax appears, with dis-
cussion following soon thereafter—on the same page or on a subsequent page. Page ranges
are not provided in this index. Some entries consist of two or more levels. Such entries are
typically based on context, including such information as the command blocks in which a
command line appears, the location of the discussion related to a particular command line,
and tips on usage. The PDF version of this document contains hyperlinked entries from the
page numbers listed in the index to the text in the body of the document.

Note that all references cited within the text of each chapter are listed at the end of the respective
chapters rather than in a separate references chapter. The reference sections in the chapters are not
necessarily edited so that they are specific to Adagio or Presto. Some chapters will have exactly
the same set of references (even if not all are cited for a particular user’s guide), and some chapters
will have the references tailored to the specific user’s guide.

34 CHAPTER 1. INTRODUCTION

1.2 Overall Input Structure

Presto is one of many mechanics codes built on the SIERRA Framework. The SIERRA Framework
provides the capability to perform multiphysics analyses by coupling together SIERRA codes ap-
propriate for the mechanics of interest. Input files may be set up for analyses using only Presto, or
they may be set up to couple Presto and one or more other SIERRA analysis codes. For example,
you might run Adagio to compute a stress state, and then use the results of this analysis as initial
conditions for a Presto analysis. For a multiphysics analysis using Presto and Adagio, the time-
step control, the mesh-related definitions, and the boundary conditions for both Presto and Adagio
will all be in the same input file. Therefore, the input for Presto reflects the fact that it could be
part of a multiphysics analysis. (Note that not all codes built on the SIERRA Framework can be
coupled. Consult with the authors of this document to learn about the codes that can be coupled
with Presto.)

To create files defining multiphysics analyses, the input files use a concept called “scope.” Scope is
used to group similar commands; a scope can be nested inside another scope. The broadest scope
in the input file is the SIERRA scope. The SIERRA scope contains information that can be shared
among different physics. Examples of physics information that can be shared are definitions of
functions and materials. Thus, in our above example of a coupled Presto/Adagio multiphysics
analysis, both Adagio and Presto could reference functions to define such things as time histories
for boundary conditions or stress-strain curves. Some of the functions could even be shared by
these two applications. Both Presto and Adagio could also share information about materials.

Within the SIERRA scope are two other important scopes: the procedure scope and the region
scope. The region is nested inside the procedure, and the procedure is nested inside the SIERRA
scope. The procedure scope controls the overall analysis from the start time to the end time; the
region scope controls a single time step. For a multiphysics analysis, the SIERRA scope could
contain several different procedures and several different regions.

Inside the procedure scope (but outside of the region scope) are commands that set the start time
and the end time for the analysis.

Inside the region scope for Presto are such things as definitions for boundary conditions and con-
tact. In a multiphysics analysis, there would be more than one region. In our Presto/Adagio
example, there would be both a Presto region and an Adagio region, each within its respective
procedures. The definitions for boundary conditions and contact and the mesh specification for
Presto would appear in the Presto region; the definitions for boundary conditions and contact and
the mesh specification for Adagio would appear in the Adagio region.

The input for Presto consists of command blocks and command lines. The command blocks define
a scope. These command blocks group command lines or other command blocks that share a
similar functionality. A command block will begin with an input line that has the word “begin”;
the command block will end with an input line that has the word “end”. The SIERRA scope, for
example, is defined by a command block that begins with an input line of the following form:

BEGIN SIERRA my_problem

The two character strings BEGIN and STERRA are the key words for this command block. An input
line defining a command block or a command line will have one or more key words. The string

1.2. OVERALL INPUT STRUCTURE 35

my_problem is a user-specified name for this SIERRA scope. The SIERRA scope is terminated
by an input line of the following form:

END SIERRA my_problem

In the above input line, END and STIERRA are the key words to end this command block. The
SIERRA scope can also be terminated simply by using the following key word:

END

The above abbreviated command line will be discussed in more detail in later chapters. There are
similar input lines used to define the procedure and region scopes. Boundary conditions are another
example where a scope is defined. A particular instance of a boundary condition for a prescribed
displacement boundary condition is defined with a command block. The command block for the
boundary condition begins with an input line of the form:

BEGIN PRESCRIBED DISPLACEMENT

and ends with an input line of either of the following forms:
END PRESCRIBED DISPLACEMENT
END

Command lines appear within the command blocks. The command lines typically have the form
keyword = value, where value can be a real, an integer, or a string. In the previous example
of the prescribed displacement boundary condition, there would be command lines inside the com-
mand block that are used to set various values. For example, the boundary condition might apply
to all nodes in node set 10, in which case there would be a command line of the following form:

NODE SET = nodelist 10

If the prescribed displacement were to be applied along a given component direction, there would
be a command line of this form:

COMPONENT = X

The form above would specify that the prescribed displacement would be in the x-direction.
Finally, if the displacement magnitude is described by a time history function with the name
cosine_curve, there would be a command line of this form:

FUNCTION = cosine_curve

The command block for the boundary condition with the appropriate command lines would appear
as follows:

BEGIN PRESCRIBED DISPLACEMENT
NODE SET = nodelist_10
COMPONENT = X
FUNCTION = cosine_curve

END PRESCRIBED DISPLACEMENT

It is possible to have a command line with the same key words appearing in different scopes. For
example, we might have a command line identified by the word TYPE in two or more different

36 CHAPTER 1. INTRODUCTION

scopes. The command line would perform different functions based on the scope in which it
appeared, and the associated value could be different in the two locations.

The input lines are read by a parser that searches for recognizable key words. If the key words in an
input line are not in the list of key words used by Presto to describe command blocks and command
lines, the parser will generate an error. A set of key words defining a command line or command
block for Presto that is not in the correct scope will also cause a parser error. For example, the
key words STEP INTERVAL define a valid command line in the scope of the TIME CONTROL
command block. However, if this command line was to appear in the scope of one of the boundary
conditions, it would not be in the proper scope, and the parser would generate an error. Once the
parser has an input line with any recognizable key words in the proper scope, a method can be
called that will handle the input line.

There is an initial parsing phase that checks only the parser syntax. If the parser encounters a
command line it cannot parse within a certain scope, the parser will indicate it cannot recognize the
command line and will list the various command lines that can appear within that scope. The initial
parsing phase will catch errors such as the one described in the previous paragraph (a command
line in the wrong scope). It will also catch misspelled key words. The initial parsing does not
catch some other types of errors, however. If you have specified a value on a command line that is
out of a specified range for that command line, the initial parsing will not catch this error. If you
have some combination of command lines within a command block that is not allowed, the initial
parsing will not catch this error. These other errors are caught after the initial parsing phase and
are handled one error at a time.

1.3. CONVENTIONS FOR COMMAND DESCRIPTIONS 37

1.3 Conventions for Command Descriptions

The conventions below are used to describe the input commands for Presto. A number of the
individual command lines discussed in the text appear on several text lines. In the text of this
document, the continuation symbols that are used to continue lines in an actual input file (\#
and \$, Section 1.4.2) are not used for those instances where the description of the command
line appears on several text lines. The description of command lines will clearly indicate all the
key words, delimiters, and values that constitute a complete command line. As an example, the
DEFINE POINT command line (Section 2.1.6) is presented in the text as follows:

DEFINE POINT <string>point_name WITH COORDINATES
<real>value_1 <real>value_2 <real>value_3

If the DEFINE POINT command line were used as a command line in an input file and spread over
two input lines, it would appear, with actual values, as follows:

DEFINE POINT center WITH COORDINATES \#
10.0 144.0 296.0

In the above example, the \ # symbol implies the first line is continued onto the second line.

1.3.1 Key Words

The key word or key words for a command are shown in uppercase letters. For actual input, you
can use all uppercase letters for the key words, all lowercase letters for the key words, or some
combination of uppercase and lowercase letters for the key words.

1.3.2 User-Specified Input

The input that you supply is typically shown in lowercase letters. (Occasionally, uppercase letters
may be used for user input for purposes of clarity or in examples.) The user-supplied input may be
a real number, an integer, a string, or a string list. For the command descriptions, a type appears
before the user input. The type (real, integer, string, string list) description is enclosed by angle
brackets, <>, and precedes the user-supplied input. For example:

<real>value

indicates that the quantity value is a real number. For the description of an input command, you
would see the following:

FUNCTION = <string>function_name
Your input would be
FUNCTION = my_name
if you have specified a function name called my_name.

Valid user input consists of the following:

38 CHAPTER 1. INTRODUCTION

<integer> Integer data is a single integer number.

<real> Real data is a single real number. It may be formatted
with the usual conventions, such as 1234.56
orl.23456e+03.

<string> String data is a single string.

<string list> A string list consists of multiple strings separated
by white space, a comma, a tab, or white
space combined with a comma or a tab.

1.3.3 Optional Input

Anything in an input line that is enclosed by square brackets, [], represents optional input within
the line. Note, however, that this convention is not used to identify optional input lines. Any
command line that is optional (in its entirety) will be described as such within the text.

1.3.4 Default Values

A value enclosed by parentheses, (), appearing after the user input denotes the default value. For
example:

SCALE FACTOR = <real>scale_factor(1.0)

implies the default value for scale_factor is 1.0. Any value you specify will overwrite the
default.

For your actual input file, you may simply omit a command line if you want to use the default
value associated with the command line. For example, there is a TIME STEP SCALE FACTOR
command line used to set one of the time control parameters; the parameter for this command line
has a default value of 1.0. If you want to use the default value of 1.0 for this parameter, you do not
have to include the TIME STEP SCALE FACTOR command line in the TIME CONTROL command
block.

1.3.5 Multiple Options for Values

Quantities separated by the | symbol indicate that one and only one of the possible choices must
be selected. For example:

EXPANSION RADIUS = <string>SPHERICAL|CYLINDRICAL

implies that expansion radius must be defined as SPHERICAL or CYLINDRICAL. One of the values
must appear. This convention also applies to some of the command options within a begin/end
block. For example:

1.3. CONVENTIONS FOR COMMAND DESCRIPTIONS 39

SURFACE = <string>surface_name|
NODE SET = <string>nodelist_name

in a command block specifies that either a surface or a node set must be specified.

Quantities separated by the / symbol can appear in any combination, but any one quantity in the
sequence can appear only once. For example,

COMPONENTS = <string>X/Y/Z

implies that components can equal any combination of X, Y, and Z. Any value (X or Y or Z) can
appear at most once, and at least one value of X, Y, or Z must appear. Some examples of valid
expressions in this case are as follows:

COMPONENTS = Z
COMPONENTS = zZ X
COMPONENTS = Y X Z
COMPONENTS = Z Y X
An example of an invalid expression would be the following:

COMPONENTS = Y Y Z

1.3.6 Known Issues and Warnings

Where there are known issues with the code, these are documented in the following manner:

Known Issue: A description of the known issue with the code would be provided
l : s here.

Similarly, warnings regarding usage of code features that are not defective, but must be used with
care because of their nature, are documented as follows:

Warning: A description of the warning related to the usage of a code feature would
be provided here.

40 CHAPTER 1. INTRODUCTION

1.4 Style Guidelines

This section gives information that will affect the overall organization and appearance of your input
file. It also contains recommendations that will help you construct input files that are readable and
easy to proof.

1.4.1 Comments

A comment is anything between the # symbol or the $ symbol and the end-of-line. If the first
nonblank character in a line is a # or $, the entire line is a comment line. You can also place a #
or $ (preceded by a blank space) after the last character in an input line used to define a command
block or command line.

1.4.2 Continuation Lines

An input line can be continued by placing a \ # pair of characters (or \ $) at the end of the line. The
following line is then taken to be a continuation of the preceding line that was terminated by the
\# or \ $. Note that everything after the line-continuation pair of characters is discarded, including
the end-of-line.

1.4.3 Case

Almost all the character strings in the input lines are case insensitive. For example, the BEGIN
STIERRA key words could appear as one of the following:

BEGIN SIERRA
begin sierra
Begin Sierra

You could specify a STERRA command block with:
BEGIN SIERRA BEAM

and terminate the command block with this input line:
END SIERRA beam

Case is important only for file name specifications. If you have defined a restart file with uppercase
and lowercase letters and want to use this file for a restart, the file name you use to request this
restart file must exactly match the original definition you chose.

1.4.4 Commas and Tabs

Commas and tabs in input lines are ignored.

1.4. STYLE GUIDELINES 41

1.4.5 Blank Spaces

We highly recommend that everything be separated by blank spaces. For example, a command line
of the form

node set = nodelist_10

is recommended over the following forms:
node set= nodelist_10
node set =nodelist_10

Both of the above two lines are correct, but it is easier to check the first form (the equal sign
surrounded by blank space) in a large input file.

The parser will accept the following line:
BEGIN SIERRABEAM

However, it is harder to check this line for the correct spelling of the key words and the intended
SIERRA scope name than this line:

BEGIN SIERRA BEAM

It is possible to introduce hard-to-detect errors because of the way in which the blank spaces are
handled by the command parser. Suppose you type

begin definition for functions my_func
rather than the following correct form:
begin definition for function my_func

For the incorrect form of this command line (in which functions is used rather than function),
the parser will generate a string name of

s my_func
for the function name rather than the following expected name:
my_func

If you attempt to use a function named my_ func, the parser will generate an error because the list
of function names will include s my_ func but not my_ func.

1.4.6 General Format of the Command Lines

In general, command lines have the following form:
keyword = value

This pattern is not always followed, but it describes the vast majority of the command lines.

42 CHAPTER 1. INTRODUCTION

1.4.7 Delimiters

The delimiter used throughout this document is “=" (the equal sign). Typically, but not always,
the = separates key words from input values in a command line. Consider the following command
line:

COMPONENTS = X

Here, the key word COMPONENTS is separated from its value, a string in this case, by the =. Some
command lines do allow for other delimiters. The use of these alternate delimiters is not consistent,
however, throughout the various command lines. (This lack of consistency has the potential for
introducing errors in this document as well as in your input.) The = provides a strong visual cue
for separating key words from values. By using the = as a delimiter, it is much easier to proof your
input file. It also makes it easier to do “cut and paste” operations. If you accidentally delete =, it is
much easier to detect than accidentally removing part of one of the other delimiters that could be
used.

1.4.8 Order of Commands

There are no requirements for ordering the commands. Both the input sequence:

BEGIN PRESCRIBED DISPLACEMENT
NODE SET = nodelist_ 10
COMPONENT = X
FUNCTION = cosine_curve

END PRESCRIBED DISPLACEMENT

and the input sequence:

BEGIN PRESCRIBED DISPLACEMENT
FUNCTION = cosine_curve
COMPONENT = X
NODE SET = nodelist_10

END PRESCRIBED DISPLACEMENT

are valid, and they produce the same result. Remember, that command lines and command blocks
must appear in the proper scope.

1.4.9 Abbreviated END Specifications

It is possible to terminate a command block without including the key word or key words that
identify the block. You could define a specific instance of the prescribed displacement boundary
condition with:

BEGIN PRESCRIBED DISPLACEMENT

1.4. STYLE GUIDELINES 43

and terminate it simply with:
END

as opposed to the following specification:
END PRESCRIBED DISPLACEMENT

Both the short termination (END only) and the long termination (END followed by identification, or
name, of the command block) are valid. It is recommended that the long termination be used for
any command block that becomes large. The RESULTS OUTPUT command block described in later
chapters can become fairly lengthy, so this is probably a good place to use the long termination. For
most boundary conditions, the command block will typically consist of five lines. In such cases,
the short termination can be used. Using the long termination for the larger command blocks will
make it easier to proof your input files. If you use the long termination, the text following the
END key word must exactly match the text following the BEGIN key word. You could not have
BEGIN PRESCRIBED DISPLACEMENT paired with an END PRESCRIBED DISPL to define the
beginning and ending of a command block.

1.4.10 Indentation

When constructing an input file, it is useful, but not required, to indent a scope that is nested inside
another scope. Command lines within a command block should also be indented in relation to
the lines defining the command block. This will make it easier to construct the input file with
everything in the correct scope and with all the command blocks in the correct structure.

1.4.11 Including Files

External text files containing input commands can be included at any point in the Presto input file
using the INCLUDEFILE command. This command can be used in any context in the input file. To
use this command, simply use the command INCLUDEFILE followed by the name of the file to be
included. For example, the command:

INCLUDEFILE displacement_history.i

would include the displacement_history.i as if the contents of that file were places in the
position that it is included in the input file. The included file is contained in the standard echo of
the input that is provided at the beginning of the log file.

44 CHAPTER 1. INTRODUCTION

1.5 Naming Conventions Associated with the Exodus II
Database

When the mesh file has an Exodus II format, there are three basic conventions that apply to user
input for various command lines. First, for a mesh file with the Exodus II format, the Exodus II
side set is referenced as a surface. In SIERRA, a surface consists of element faces plus all the
nodes and edges associated with these faces. A surface definition can be used not only to select
a group of faces but also to select a group of edges or a group of nodes that are associated with
those faces. In the case of boundary conditions, a surface definition can be used not only to apply
boundary conditions that typically use surface specifications (pressure) but also to apply boundary
conditions for what are referred to as nodal boundary conditions (fixed displacement components).
For nodal boundary conditions that use the surface specification, all the nodes associated with the
faces on a specific surface will have this boundary condition applied to them. The specification
for a surface identifier in the following chapters is surface_name. It typically has the form
surface_integerid, where integerid is the integer identifier for the surface. If the side set
identifier is 125, the value of surface_name would be surface_125. It is also possible to
generate an alias for the side set! and use this for surface_name. If surface_125 is aliased
to outer_skin, then surface_name becomes outer_skin in the actual input line. It is also
possible to name a surface in some mesh generation programs and that name can be used in the
input file.

Second, for a mesh file with the Exodus II format, the Exodus II node set is still referenced as a
node set. A node set can be used only for cases where a group of nodes needs to be defined. The
specification for a node set identifier in the following chapters is nodelist_name. It typically
has the form nodelist_integerid, where integerid is the integer identifier for the node set.
If the node set number is 225, the value of nodelist name would be nodelist_225. Itis also
possible to generate an alias for the node set and use this for nodelist_name. If nodelist_225
is aliased to inner_skin, then nodelist_name becomes inner_skin in the actual input line.
It is also possible to name a nodelist in some mesh generation programs and that name can be used
in the input file.

Third, an element block is referenced as a block. The specification for an element block identifier
in the following chapters is block_name. It typically has the form block_integerid, where
integerid is the integer identifier for the block. If the element block number is 300, the value
of block_name would be block_300. It is also possible to generate an alias for the block and
use this for block_name. If block_300 is aliased to big_chunk, then block_name becomes
big_chunk in the actual input line. It is also possible to name an element block in some mesh
generation programs and that name can be used in the input file.

A group of elements can also be used to select other mesh entities. In SIERRA, a block consists of
elements plus all the faces, edges, and nodes associated with the elements. The block and surface
concepts are similar in that both have associated derived quantities. Chapters 6 and 7 show how
this concept of derived quantities is used in the input command structure.

ISee the ALTAS command in Section 5.1.2

1.6. MAJOR SCOPE DEFINITIONS FOR AN INPUT FILE 45

1.6 Major Scope Definitions for an Input File

The typical input file will have the structure shown below. The major scopes—SIERRA, procedure,
and region—are delineated with input lines for command blocks. Comment lines are included that
indicate some of the key scopes that will appear within the major scopes. Note the indentation
used for this example.

BEGIN SIERRA <string>some_name

#
A1l command blocks and command lines in the SIERRA
scope appear here. The PROCEDURE PRESTO command
block is the beginning of the next scope.
#
function definitions
material descriptions
description of mesh file
#
BEGIN PROCEDURE PRESTO <string>procedure_name

#

time step control

#

BEGIN REGION PRESTO <string>region_name

#

All command blocks and command lines in the
region scope appear here

#
#
#
specification for output of result

specification for restart

boundary conditions

definition of contact

#

END [REGION PRESTO <string>region_name]
END [PROCEDURE PRESTO <string>procedure_name]

END [SIERRA <string>some_name]

46 CHAPTER 1. INTRODUCTION

1.7 Input/Output Files

The primary user input to Presto is the input file introduced in this chapter. Throughout this doc-
ument, we explain how to construct a valid input file. It is important to be aware that Presto also
processes a number of other types of input files and produces a variety of output files. These ad-
ditional files are also discussed in this document where applicable. Figure 1.1 presents a simple
schematic diagram of the various input and output files in Presto. Both Adagio and Presto use the
same file structure. Therefore, in Figure 1.1, we indicate that the code (graphically represented by
the central cylinder) can be either Presto or Adagio.

input ——»

mesh —» results

Adagio
restart(in) —» or
Presto | —* restart(out)

—» history

subroutine —»
—» log

—» output

<

Figure 1.1: Input/output files

As shown in Figure 1.1, Presto uses the input file, mesh files, restart files, and user subroutine files.
The input file, which is required, is a set of valid Presto command lines. Another required input is
a mesh file, which provides a description of the finite element mesh for the object being analyzed.
Restart and user subroutine files are optional inputs. The restart functionality lets you break an
analysis from the start time to the termination time into a sequence of runs. The files generated
by the restart functionality contain a complete state description for a problem at various analysis
times, which we will refer to as restart times. You can restart Presto at any of these restart times
because the complete state description is known (see Chapter 8). The user subroutine files let you
build and incorporate specialized functionality into Presto (Chapter 9).

As also shown in Figure 1.1, Presto can generate a number of files. These include results files,
history files, restart files, a log file, and an output file. Typically, only the log file and the output
file are produced automatically. Generation of the other types of files is based on user settings in
the input file for the particular kinds of output desired. Results files provide the values of global
variables, element variables, and node variables at specified times (see Chapter 8). History files
will also provide values of global variables, element variables, and node variables at specified times
(see Chapter 8). History files are set up to provide a specific value at a specific node, for example,
whereas results files provide a nodal value for large subsets of nodes or, more typically, all nodes.
History files provide a much more limited set of information than results files. As noted above,
restart files can be generated at various analysis times. The log file contains a variety of information

1.7. INPUT/OUTPUT FILES 47

such as the Presto version number, a listing of the input file, initialization information, some model
information (mass, critical time steps for element blocks, etc.), and information at various time
steps. At every nth step, where n is user selected, the log file gives the current analysis time; the
current time step; the kinetic, internal, and external energies; the error in the energy; and computing
time information. You can monitor step information in the log file to gain information about how
your analysis is progressing. The output file contains error information.

48 CHAPTER 1. INTRODUCTION

1.8 Obtaining Support

Support for all SIERRA Mechanics codes, including Presto, can be obtained by contacting the
SIERRA Mechanics user support hotline by email at sierra-help@sandia.gov, or by telephone at
(505)845-1234.

mailto:sierra-help@sandia.gov

1.9. REFERENCES 49

1.9 References

10.

11.

12.

. Edwards, H. C., and J. R. Stewart. “SIERRA: A Software Environment for Developing

Complex Multi-Physics Applications.” In First MIT Conference on Computational Fluid
and Solid Mechanics, edited by K. J. Bathe, 1147-1150. Amsterdam: Elsevier, 2001.

Koteras, J. R., A. S. Gullerud, V. L. Porter, W. M. Scherzinger, and K. H. Brown. “PRESTO:
Impact Dynamics with Scalable Contact Using the SIERRA Framework.” In First MIT Con-
ference on Computational Fluid and Solid Mechanics, edited by K. J. Bathe, 294-296. Am-
sterdam: Elsevier, 2001.

. Mitchell, J. A., A. S. Gullerud, W. M. Scherzinger, J. R. Koteras, and V. L. Porter. “ADAGIO:

Non-Linear Quasi-Static Structural Response Using the SIERRA Framework.” In First MIT
Conference on Computational Fluid and Solid Mechanics, edited by K. J. Bathe, 361-364.
Amsterdam: Elsevier, 2001.

. Biffle, J. H. JAC — A Two-Dimensional Finite Element Computer Program for the Non-

Linear Quasi-Static Response of Solids with the Conjugate Gradient Method, SANDS§I-
0998. Albuquerque, NM: Sandia National Laboratories, April 1984.

. Blanfo