
SANDIA REPORT

SAND2009-74012009-xxxx

Unlimited Release

Printed October 2009

Presto 4.14 User’s Guide

SIERRA Solid Mechanics Team

Computational Solid Mechanics and Structural Dynamics Department

Engineering Sciences Center

Prepared by

Sandia National Laboratories

Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,

a Lockheed Martin Company, for the United States Department of Energy’s

National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy

by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United

States Government. Neither the United States Government, nor any agency thereof, nor any

of their employees, nor any of their contractors, subcontractors, or their employees, make any

warranty, express or implied, or assume any legal liability or responsibility for the accuracy,

completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-

resent that its use would not infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,

does not necessarily constitute or imply its endorsement, recommendation, or favoring by the

United States Government, any agency thereof, or any of their contractors or subcontractors.

The views and opinions expressed herein do not necessarily state or reflect those of the United

States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best

available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401

Facsimile: (865) 576-5728

E-Mail: reports@adonis.osti.gov

Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce

National Technical Information Service

5285 Port Royal Rd

Springfield, VA 22161

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders@ntis.fedworld.gov

Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T
M

ENT OF EN

E
R

G
Y

•
 •
U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

SAND2009-7401-xxxx

Unlimited Release

Printed October 2009

Presto 4.14 User’s Guide

SIERRA Solid Mechanics Team

Computational Solid Mechanics and Structural Dynamics Department

Engineering Sciences Center

Sandia National Laboratories

Box 5800

Albuquerque, NM 87185-0380

Abstract

Presto is a Lagrangian, three-dimensional explicit, transient dynamics code that is used to analyze solids

subjected to large, suddenly applied loads. The code is designed for a parallel computing environment and

for problems with large deformations, nonlinear material behavior, and contact. Presto also has a versa-

tile element library that incorporates both continuum elements and structural elements. This user’s guide

describes the input for Presto that gives users access to all the current functionality in the code. The en-

vironment in which Presto is built allows it to be coupled with other engineering analysis codes. Using a

concept called scope, the input structure reflects the fact that Presto can be used in a coupled environment.

The user’s guide describes how scope is implemented from the outermost to the innermost scopes. Within

a given scope, the descriptions of input commands are grouped based on functionality of the code. For

example, all material input command lines are described in a chapter of the user’s guide for all the material

models that can be used in Presto.

3

Acknowledgments

This document is the result of the collective effort of a number of individuals. The current devel-

opment team responsible for Adagio and Presto, the SIERRA Solid Mechanics codes, includes

Nathan K. Crane, Jason D. Hales, Martin W. Heinstein, Alex Lindblad, David J. Littlewood,

Jakob T. Ostien, Kendall H. Pierson, Vicki L. Porter, Timothy R. Shelton, Gregory D. Sjaardema,

Benjamin W. Spencer, and Jesse D. Thomas. This document is written and maintained by this

team.

Outside the core development team, there are number of other individuals who have contributed to

this manual. Jeffery D. Gruda, Nicole L. Breivik, and Chi S. (David) Lo have provided valuable

input from the user community as Presto and Adagio Product Managers.

Many others have contributed to this document, either directly or by providing suggestions. These

include, but are not limited to Manoj K. Bhardwaj, James V. Cox, Arne S. Gullerud, Daniel C.

Hammerand, J. Richard Koteras, Rhonda K. Reindert, William M. Scherzinger, and Gerald W.

Wellman.

4

Contents

1 Introduction 31

1.1 Document Overview . 32

1.2 Overall Input Structure . 34

1.3 Conventions for Command Descriptions . 37

1.3.1 Key Words . 37

1.3.2 User-Specified Input . 37

1.3.3 Optional Input . 38

1.3.4 Default Values . 38

1.3.5 Multiple Options for Values . 38

1.3.6 Known Issues and Warnings . 39

1.4 Style Guidelines . 40

1.4.1 Comments . 40

1.4.2 Continuation Lines . 40

1.4.3 Case . 40

1.4.4 Commas and Tabs . 40

1.4.5 Blank Spaces . 41

1.4.6 General Format of the Command Lines 41

1.4.7 Delimiters . 42

1.4.8 Order of Commands . 42

1.4.9 Abbreviated END Specifications . 42

1.4.10 Indentation . 43

1.4.11 Including Files . 43

1.5 Naming Conventions Associated with the Exodus II Database 44

1.6 Major Scope Definitions for an Input File . 45

5

1.7 Input/Output Files . 46

1.8 Obtaining Support . 48

1.9 References . 49

2 General Commands 51

2.1 SIERRA Scope . 51

2.1.1 SIERRA Command Block . 51

2.1.2 Title . 52

2.1.3 Restart Control . 52

2.1.3.1 Restart Time . 53

2.1.3.2 Automatic Restart . 53

2.1.4 User Subroutine Identification . 53

2.1.5 Functions . 54

2.1.6 Axes, Directions, and Points . 59

2.1.7 Orientation . 60

2.2 Procedure and Region . 66

2.2.1 Procedure . 66

2.2.2 Time Control . 67

2.2.3 Region . 67

2.3 Use Finite Element Model . 69

2.4 Element Distortion Metrics . 70

2.5 Activation/Deactivation of Functionality . 72

3 Time Step Control in Presto 73

3.1 Procedure Time Control . 74

3.1.1 Command Blocks for Time Control and Time Stepping 76

3.1.2 Initial Time Step . 78

3.1.3 Time Step Scale Factor . 78

3.1.4 Time Step Increase Factor . 78

3.1.5 Step Interval . 78

3.1.6 Example . 79

3.2 Other Critical Time Step Methods . 81

3.2.1 Lanczos Method . 82

6

3.2.1.1 Lanczos Method with Constant Time Steps 83

3.2.1.2 Controls for Lanczos Method 86

3.2.1.3 Scale Factor for Lanczos Method 87

3.2.1.4 Accuracy of Eigenvalue Estimate 88

3.2.1.5 Lanczos Parameters Command Block 89

3.2.2 Power Method . 92

3.2.2.1 Power Method with Constant Time Steps 93

3.2.2.2 Controls for Power Method . 94

3.2.2.3 Scale Factor for Power Method 95

3.2.2.4 Accuracy of Eigenvalue Estimate 95

3.2.2.5 Power Method Parameters Command Block 96

3.2.3 Node-Based Method . 98

3.2.3.1 Node-Based Parameters Command Block 99

3.3 Mass Scaling . 100

3.3.1 What is Mass Scaling? . 100

3.3.2 Mass Scaling Command Block . 101

3.3.3 Node Set Commands . 102

3.3.3.1 Mass Scaling Commands . 102

3.3.3.2 Additional Commands . 103

3.4 Explicit Control Modes . 103

3.4.1 Control Modes Region . 104

3.4.1.1 Model Setup Commands . 105

3.4.1.2 Time Step Control Commands 106

3.4.1.3 Mass Scaling Commands . 107

3.4.1.4 Damping Commands . 108

3.4.1.5 Kinematic Boundary Condition Commands 108

3.4.1.6 Output Commands . 108

3.5 References . 110

4 Materials 111

4.1 General Material Commands . 115

4.1.1 Density Command . 115

4.1.2 Biot’s Coefficient Command . 115

7

4.1.3 Thermal Strain Behavior . 115

4.1.3.1 Defining Thermal Strains . 116

4.1.3.2 Activating Thermal Strains . 118

4.2 Model Specifications . 119

4.2.1 Elastic Model . 119

4.2.2 Elastic Fracture Model . 121

4.2.3 Elastic-Plastic Model . 123

4.2.4 Elastic-Plastic Power-Law Hardening Model 125

4.2.5 Ductile Fracture Model . 127

4.2.6 Multilinear EP Hardening Model . 129

4.2.7 Multilinear EP Hardening Model with Failure 131

4.2.8 Johnson-Cook Model . 134

4.2.9 BCJ Model . 136

4.2.10 Soil and Crushable Foam Model . 138

4.2.11 Foam Plasticity Model . 141

4.2.12 Elastic Three-Dimensional Orthotropic Model 144

4.2.13 Orthotropic Crush Model . 146

4.2.14 Orthotropic Rate Model . 149

4.2.15 Elastic Laminate Model . 152

4.2.16 Fiber Membrane Model . 155

4.2.17 Incompressible Solid Model . 158

4.2.18 Mooney-Rivlin Model . 161

4.2.19 NLVE 3D Orthotropic Model . 164

4.2.20 Stiff Elastic . 168

4.2.21 Swanson Model . 170

4.2.22 Viscoelastic Swanson Model . 173

4.3 Cohesive Zone Material Models . 177

4.3.1 Traction Decay . 177

4.3.2 Tvergaard Hutchinson . 178

4.3.3 Thouless Parmigiani . 180

4.4 References . 182

5 Elements 185

8

5.1 Finite Element Model . 186

5.1.1 Identification of Mesh File . 189

5.1.2 Alias . 189

5.1.3 Omit Block . 190

5.1.4 Component Separator Character . 190

5.1.5 Descriptors of Element Blocks . 191

5.1.5.1 Material Property . 193

5.1.5.2 Include All Blocks . 193

5.1.5.3 Remove Block . 193

5.1.5.4 Section . 194

5.1.5.5 Linear and Quadratic Bulk Viscosity 195

5.1.5.6 Hourglass Control . 195

5.1.5.7 Effective Moduli Model . 196

5.1.5.8 Element Numerical Formulation 197

5.1.5.9 Activation/Deactivation of Element Blocks by Time 198

5.2 Element Sections . 199

5.2.1 Solid Section . 199

5.2.2 Cohesive Section . 201

5.2.3 Shell Section . 202

5.2.4 Membrane Section . 207

5.2.5 Beam Section . 211

5.2.6 Truss Section . 216

5.2.7 Spring Section . 217

5.2.8 Damper Section . 218

5.2.9 Point Mass Section . 219

5.2.10 SPH Section . 221

5.2.11 Superelement Section . 225

5.2.11.1 Input Commands . 226

5.3 Element-like Functionality . 229

5.3.1 Rigid Body . 229

5.3.2 Torsional Spring Mechanism . 234

5.4 Mass Property Calculations . 238

9

5.4.1 Block Set Commands . 238

5.4.2 Structure Command . 239

5.5 Element Death . 240

5.5.1 Block Set Commands . 242

5.5.2 Criterion Commands . 242

5.5.2.1 Nodal Variable Death Criterion 243

5.5.2.2 Element Variable Death Criterion 243

5.5.2.3 Global Death Criterion . 245

5.5.2.4 Subroutine Death Criterion . 245

5.5.2.5 Material Death Criterion . 246

5.5.3 Evaluation Commands . 247

5.5.4 Miscellaneous Option Commands . 247

5.5.4.1 Summary Output Commands 247

5.5.4.2 Death on Inversion . 248

5.5.4.3 Death Steps . 248

5.5.4.4 Degenerate Mesh Repair . 248

5.5.4.5 Aggressive Contact Cleanup 249

5.5.4.6 Death Method . 249

5.5.4.7 Particle Conversion . 250

5.5.4.8 Active Periods . 250

5.5.5 Cohesive Zone Setup Commands . 251

5.5.6 Example . 251

5.5.7 Element Death Visualization . 252

5.6 Explicitly Computing Derived Quantities . 254

5.7 Mesh Rebalancing . 255

5.7.1 Rebalance . 255

5.7.1.1 Rebalance Command Lines . 256

5.7.1.2 Zoltan Command Line . 256

5.7.2 Zoltan Parameters . 258

5.8 Remeshing . 259

5.8.1 Remeshing Commands . 260

5.8.2 Remesh Block Set . 261

10

5.8.3 Adaptive Refinement . 262

5.8.3.1 Adaptive Refinement Control Commands 263

5.8.3.2 Tool Mesh Entity Commands 264

5.8.3.3 Activation Commands . 264

5.9 References . 265

6 Boundary Conditions and Initial Conditions 267

6.1 General Boundary Condition Concepts . 268

6.1.1 Mesh-Entity Assignment Commands . 268

6.1.2 Methods for Specifying Boundary Conditions 270

6.2 Initial Variable Assignment . 271

6.2.1 Mesh-Entity Set Commands . 272

6.2.2 Variable Identification Commands . 272

6.2.3 Specification Command . 273

6.2.4 External Mesh Database Commands . 273

6.2.5 User Subroutine Commands . 274

6.2.6 Additional Command . 275

6.3 Kinematic Boundary Conditions . 276

6.3.1 Fixed Displacement Components . 276

6.3.1.1 Node Set Commands . 276

6.3.1.2 Specification Commands . 277

6.3.1.3 Additional Commands . 277

6.3.2 Prescribed Displacement . 278

6.3.2.1 Node Set Commands . 279

6.3.2.2 Specification Commands . 279

6.3.2.3 User Subroutine Commands . 281

6.3.2.4 External Mesh Database Commands 281

6.3.2.5 Additional Commands . 282

6.3.3 Prescribed Velocity . 284

6.3.3.1 Node Set Commands . 285

6.3.3.2 Specification Commands . 285

6.3.3.3 User Subroutine Commands . 287

6.3.3.4 External Mesh Database Commands 287

11

6.3.3.5 Additional Commands . 288

6.3.4 Prescribed Acceleration . 289

6.3.4.1 Node Set Commands . 290

6.3.4.2 Specification Commands . 290

6.3.4.3 User Subroutine Commands . 291

6.3.4.4 External Mesh Database Commands 292

6.3.4.5 Additional Commands . 293

6.3.5 Fixed Rotation . 294

6.3.5.1 Node Set Commands . 294

6.3.5.2 Specification Commands . 295

6.3.5.3 Additional Commands . 295

6.3.6 Prescribed Rotation . 296

6.3.6.1 Node Set Commands . 297

6.3.6.2 Specification Commands . 297

6.3.6.3 User Subroutine Commands . 298

6.3.6.4 External Mesh Database Commands 299

6.3.6.5 Additional Commands . 300

6.3.7 Prescribed Rotational Velocity . 301

6.3.7.1 Node Set Commands . 302

6.3.7.2 Specification Commands . 302

6.3.7.3 User Subroutine Commands . 303

6.3.7.4 External Mesh Database Commands 304

6.3.7.5 Additional Commands . 305

6.3.8 Subroutine Usage for Kinematic Boundary Conditions 306

6.4 Initial Velocity Conditions . 307

6.4.1 Node Set Commands . 308

6.4.2 Direction Specification Commands . 308

6.4.3 Angular Velocity Specification Commands 309

6.4.4 User Subroutine Commands . 309

6.5 Force Boundary Conditions . 311

6.5.1 Pressure . 311

6.5.1.1 Surface Set Commands . 312

12

6.5.1.2 Specification Commands . 313

6.5.1.3 User Subroutine Commands . 313

6.5.1.4 External Pressure Sources . 314

6.5.1.5 Output Command . 315

6.5.1.6 Additional Commands . 315

6.5.2 Traction . 317

6.5.2.1 Surface Set Commands . 318

6.5.2.2 Specification Commands . 318

6.5.2.3 User Subroutine Commands . 319

6.5.2.4 Additional Commands . 320

6.5.3 Prescribed Force . 321

6.5.3.1 Node Set Commands . 322

6.5.3.2 Specification Commands . 322

6.5.3.3 User Subroutine Commands . 323

6.5.3.4 Additional Commands . 324

6.5.4 Prescribed Moment . 325

6.5.4.1 Node Set Commands . 326

6.5.4.2 Specification Commands . 326

6.5.4.3 User Subroutine Commands . 327

6.5.4.4 Additional Commands . 328

6.6 Gravity . 329

6.7 Prescribed Temperature . 331

6.7.1 Block Set Commands . 332

6.7.2 Specification Command . 332

6.7.3 User Subroutine Commands . 332

6.7.4 External Mesh Database Commands . 333

6.7.5 Additional Commands . 335

6.8 Pore Pressure . 336

6.8.1 Block Set Commands . 337

6.8.2 Specification Command . 337

6.8.3 User Subroutine Commands . 337

6.8.4 External Mesh Database Commands . 338

13

6.8.5 Coupled Analysis Commands . 339

6.8.6 Additional Commands . 339

6.9 Fluid Pressure . 340

6.9.1 Surface Set Commands . 341

6.9.2 Specification Commands . 341

6.9.3 Additional Commands . 342

6.10 Specialized Boundary Conditions . 343

6.10.1 Cavity Expansion . 343

6.10.2 Blast Pressure . 346

6.10.3 Silent Boundary . 348

6.10.4 Spot Weld . 349

6.10.5 Line Weld . 354

6.10.6 Viscous Damping . 357

6.10.6.1 Block Set Commands . 357

6.10.6.2 Viscous Damping Coefficient 358

6.10.6.3 Additional Command . 358

6.10.7 Volume Repulsion Old . 359

6.10.7.1 Block Set . 359

6.10.8 General Multi-Point Constraints . 361

6.10.8.1 Master/Slave Multi-Point Constraints 361

6.10.8.2 Tied Contact . 362

6.10.8.3 Tied Multi-Point Constraints 363

6.10.8.4 Resolve Multiple MPCs . 363

6.10.9 Submodel . 365

6.11 References . 366

7 Contact 367

7.1 Contact Definition Block . 373

7.2 Descriptions of Contact Surfaces . 379

7.2.1 Contact Surface Command Line . 381

7.2.2 Skin All Blocks . 381

7.2.3 Contact Surface Command Block . 382

7.2.4 Contact Node Set . 384

14

7.3 Analytic Contact Surfaces . 385

7.3.1 Plane . 385

7.3.2 Cylinder . 385

7.3.3 Sphere . 386

7.4 Update All Surfaces for Element Death . 388

7.5 Remove Initial Overlap . 389

7.6 Angle for Multiple Interactions . 391

7.7 Surface Normal Smoothing . 393

7.8 Eroded Face Treatment . 394

7.9 Shell Lofting . 395

7.10 Contact Output Variables . 398

7.11 Friction Models . 400

7.11.1 Frictionless Model . 400

7.11.2 Constant Friction Model . 400

7.11.3 Tied Model . 401

7.11.4 Spring Weld Model . 401

7.11.5 Surface Weld Model . 402

7.11.6 Area Weld Model . 403

7.11.7 Adhesion Model . 403

7.11.8 Cohesive Zone Model . 404

7.11.9 Junction Model . 405

7.11.10 Threaded Model . 406

7.11.11 PV_Dependent Model . 407

7.11.12 User Subroutine Friction Models . 408

7.12 Search Options . 410

7.12.1 Search Algorithms . 411

7.12.2 Search Tolerances . 412

7.12.3 Secondary Decomposition . 413

7.13 User Search Box . 415

7.13.1 Search Box Location . 415

7.13.2 Search Box Size . 416

7.14 Enforcement Options . 417

15

7.15 Default Values for Interactions . 419

7.15.1 Surface Identification . 420

7.15.2 Self-Contact and General Contact . 420

7.15.3 Friction Model . 421

7.15.4 Automatic Kinematic Partition . 421

7.15.5 Interaction Behavior . 422

7.15.6 Constraint Formulation . 423

7.16 Values for Specific Interactions . 424

7.16.1 Surface Identification . 424

7.16.2 Kinematic Partition . 426

7.16.3 Tolerances . 428

7.16.4 Friction Model . 428

7.16.5 Automatic Kinematic Partition . 428

7.16.6 Interaction Behavior . 429

7.16.7 Constraint Formulation . 429

7.17 Examples . 430

7.17.1 Example 1 . 430

7.17.2 Example 2 . 432

7.18 Dash Contact . 434

7.18.1 How Dash is Different from ACME . 434

7.18.2 Current Dash Usage Guidelines . 434

7.19 References . 439

8 Output 441

8.1 Parenthesis Syntax for Requesting Variables . 442

8.1.1 Example 1 . 442

8.1.2 Example 2 . 443

8.1.3 Other command blocks . 444

8.2 Results Output . 444

8.2.1 Exodus Results Output File . 445

8.2.1.1 Output Nodal Variables . 447

8.2.1.2 Output Node Set Variables . 448

8.2.1.3 Output Face Variables . 450

16

8.2.1.4 Output Element Variables . 452

8.2.1.5 Output Mesh Selection . 457

8.2.1.6 Component Separator Character 458

8.2.1.7 Output Global Variables . 458

8.2.1.8 Set Begin Time for Results Output 459

8.2.1.9 Adjust Interval for Time Steps 459

8.2.1.10 Output Interval Specified by Time Increment 459

8.2.1.11 Additional Times for Output 460

8.2.1.12 Output Interval Specified by Step Increment 460

8.2.1.13 Additional Steps for Output . 460

8.2.1.14 Set End Time for Results Output 460

8.2.1.15 Use Output Scheduler . 460

8.2.1.16 Write Results If System Error Encountered 461

8.2.2 User-Defined Output . 462

8.2.2.1 Mesh-Entity Set Commands . 464

8.2.2.2 Compute Global Result Command 464

8.2.2.3 User Subroutine Commands . 465

8.2.2.4 Copy Command . 467

8.2.2.5 Compute at Every Step Command 467

8.2.2.6 Additional Command . 468

8.3 History Output . 469

8.3.1 Output Variables . 471

8.3.1.1 Global Output Variables . 471

8.3.1.2 Mesh Entity Output Variables 472

8.3.1.3 Nearest Point Output Variables 473

8.3.2 Outputting History Data on a Node Set 474

8.3.3 Set Begin Time for History Output . 474

8.3.4 Adjust Interval for Time Steps . 475

8.3.5 Output Interval Specified by Time Increment 475

8.3.6 Additional Times for Output . 475

8.3.7 Output Interval Specified by Step Increment 475

8.3.8 Additional Steps for Output . 475

17

8.3.9 Set End Time for History Output . 476

8.3.10 Use Output Scheduler . 476

8.3.11 Write History If System Error Encountered 476

8.4 Heartbeat Output . 478

8.4.1 Output Variables . 480

8.4.1.1 Global Output Variables . 480

8.4.1.2 Mesh Entity Output Variables 481

8.4.1.3 Nearest Point Output Variables 482

8.4.2 Outputting Heartbeat Data on a Node Set 483

8.4.3 Set Begin Time for Heartbeat Output . 483

8.4.4 Adjust Interval for Time Steps . 484

8.4.5 Output Interval Specified by Time Increment 484

8.4.6 Additional Times for Output . 484

8.4.7 Output Interval Specified by Step Increment 484

8.4.8 Additional Steps for Output . 484

8.4.9 Set End Time for Heartbeat Output . 485

8.4.10 Use Output Scheduler . 485

8.4.11 Write Heartbeat On Signal . 485

8.4.12 Heartbeat Output Formatting Commands 486

8.4.12.1 CTH SpyHis output format . 486

8.4.12.2 Specify floating point precision 487

8.4.12.3 Specify Labeling of Heartbeat Data 487

8.4.12.4 Specify Existence of Legend for Heartbeat Data 487

8.4.12.5 Specify format of timestamp 488

8.4.13 Monitor Output Events . 488

8.5 Restart Data . 490

8.5.1 Restart Options . 491

8.5.1.1 Automatic Read and Write of Restart Files 492

8.5.1.2 User-Controlled Read and Write of Restart Files 495

8.5.1.3 Overwriting Restart Files . 498

8.5.1.4 Recovering from a Corrupted Restart 499

8.5.2 Overwrite Command in Restart . 500

18

8.5.3 Set Begin Time for Restart Writes . 500

8.5.4 Adjust Interval for Time Steps . 500

8.5.5 Restart Interval Specified by Time Increment 500

8.5.6 Additional Times for Restart . 501

8.5.7 Restart Interval Specified by Step Increment 501

8.5.8 Additional Steps for Restart . 501

8.5.9 Set End Time for Restart Writes . 501

8.5.10 Overlay Count . 501

8.5.11 Cycle Count . 502

8.5.12 Use Output Scheduler . 503

8.5.13 Write Restart If System Error Encountered 503

8.6 Output Scheduler . 505

8.6.1 Output Scheduler Command Block . 505

8.6.1.1 Set Begin Time for Output Scheduler 506

8.6.1.2 Adjust Interval for Time Steps 506

8.6.1.3 Output Interval Specified by Time Increment 506

8.6.1.4 Additional Times for Output 506

8.6.1.5 Output Interval Specified by Step Increment 506

8.6.1.6 Additional Steps for Output . 507

8.6.1.7 Set End Time for Output Scheduler 507

8.6.2 Example of Using the Output Scheduler 507

8.7 Registered Variables . 509

8.7.1 Global, Nodal, and Element Registered Variables 509

8.7.2 Registered Variables for Material Models 517

8.7.2.1 State Variable Output by Index for Strumento Solid Material Models517

8.7.2.2 State Variable Output for LAME Solid Material Models 517

8.7.2.3 State Variable Tables for Solid Material Models 518

8.7.2.4 Registered Variables for Shell/Membrane Material Models . . . 530

8.7.3 Registered Variables for Surface Models 532

8.7.3.1 State Variable Tables for Surface Models 532

8.8 References . 534

9 User Subroutines 535

19

9.1 User Subroutines: Programming . 539

9.1.1 Subroutine Interface . 540

9.1.2 Query Functions . 540

9.1.2.1 Parameter Query . 542

9.1.2.2 Function Data Query . 546

9.1.2.3 Time Query . 546

9.1.2.4 Field Variables . 546

9.1.2.5 Global Variables . 555

9.1.2.6 Topology Extraction . 559

9.1.3 Miscellaneous Query Functions . 565

9.2 User Subroutines: Command File . 567

9.2.1 Subroutine Identification . 567

9.2.2 User Subroutine Command Lines . 567

9.2.2.1 Type . 567

9.2.2.2 Debugging . 568

9.2.2.3 Parameters . 568

9.2.3 Time Step Initialization . 570

9.2.3.1 Mesh-Entity Set Commands . 570

9.2.3.2 User Subroutine Commands . 571

9.2.3.3 Additional Command . 572

9.2.4 User Variables . 573

9.3 User Subroutines: Compilation and Execution . 575

9.4 User Subroutines: Examples . 576

9.4.1 Pressure as a Function of Space and Time 576

9.4.2 Error Between a Computed and an Analytic Solution 579

9.4.3 Transform Output Stresses to a Cylindrical Coordinate System 583

9.5 User Subroutines: Library . 589

9.5.1 aupst_cyl_transform . 589

9.5.2 aupst_rec_transform . 590

9.5.3 copy_data . 591

9.5.4 trace . 592

A Example Problem 595

20

B Command Summary 605

C Consistent Units 665

Index 667

21

List of Figures

1.1 Input/output files . 46

2.1 Piecewise linear and piecewise constant functions 56

2.2 Adjacent shell elements with nonaligned local coordinate systems 61

2.3 Rectangular coordinate system . 62

2.4 Z-Rectangular coordinate system. 62

2.5 Cylindrical coordinate system. 63

2.6 Spherical coordinate system. 63

2.7 Rotation about 1 . 64

2.8 Examples of elements with varying nodal Jacobians 71

5.1 Association between command lines and command block. 194

5.2 Location of geometric plane of shell for various lofting factors. 205

5.3 Local rst coordinate system for a shell element. 205

5.4 Rotation of 30 degrees about the 1-axis (X ′-axis). 206

5.5 Integration points for rod and tube . 214

5.6 Integration points for bar and box. 215

5.7 Integration points for I-section. 215

5.8 Schematic for torsional spring. 235

5.9 Positive direction of rotation for torsional spring. 235

6.1 Force-displacement curve for spot weld normal force. 350

6.2 Force-displacement curve for spot weld tangential force. 350

6.3 Sign convention for spot weld normal displacements. 351

6.4 Sign convention for spot weld normal displacements with ignore initial offsets on. . 353

7.1 Two blocks at time step n before contact. 368

22

7.2 Two blocks at time step n + 1, after penetration. 368

7.3 Illustrations of multiple interactions at a node. 391

7.4 Example lofted geometries produced by shell lofting. 397

7.5 Illustration of normal and tangential tolerances. 413

7.6 Illustration of kinematic partition values. 427

7.7 Problem with two blocks coming into contact. 430

7.8 Problem with three blocks coming into contact. 432

9.1 Overview of components required to implement functionality. 538

A.1 Mesh for example problem. 595

A.2 Mesh with blue and green surfaces removed. 596

23

List of Tables

7.1 Nodal Variables for Output . 398

8.1 Derived Stress Output for Elements . 455

8.2 Derived Log Strain Output for Solid Elements . 456

8.3 Derived Stress Output for Shell Elements . 457

8.4 Derived Strain Output for Shell Elements . 457

8.5 Selection of Component Number . 466

8.6 Variables Registered on Nodes (Variable and Type) 510

8.7 Element Variables Registered for All Elements 510

8.8 Element Variables Registered for Solid Elements 511

8.9 Element Variables Registered for Membranes . 511

8.10 Nodal Variables Registered for Shells . 511

8.11 Element Variables Registered for Shells . 512

8.12 Element Variables Registered for Truss . 512

8.13 Element Variables Registered for Cohesive Elements 512

8.14 Element Variables Registered for Beam . 513

8.15 Element Variables Registered for Springs . 513

8.16 Global Registered Variables . 514

8.17 Nodal Variables Registered for Spot Welds . 515

8.18 Face Variables Registered for Blast Pressure boundary condition 516

8.19 State Variables for ELASTIC Model (Section 4.2.1) 518

8.20 State Variables for ELASTIC FRACTURE Model (Section 4.2.2) 518

8.21 State Variables for ELASTIC PLASTIC Model (Section 4.2.3) 519

8.22 State Variables for EP POWER HARD Model (Section 4.2.4) 519

8.23 State Variables for DUCTILE FRACTURE Model (Section 4.2.5) 519

24

8.24 State Variables for MULTILINEAR EP Model (Section 4.2.6) 520

8.25 State Variables for ML EP FAIL Model (Section 4.2.7) 520

8.26 State Variables for FOAM PLASTICITY Model (Section 4.2.11) 521

8.27 State Variables for HONEYCOMB Model . 521

8.28 State Variables for HYPERFOAM Model . 522

8.29 State Variables for JOHNSON COOK Model . 522

8.30 State Variables for LOW DENSITY FOAM Model 522

8.31 State Variables for MOONEY RIVLIN Model . 523

8.32 State Variables for NEO HOOKEAN Model . 523

8.33 State Variables for ORTHOTROPIC CRUSH Model (Section 4.2.13) 523

8.34 State Variables for ORTHOTROPIC RATE Model (Section 4.2.14) 523

8.35 State Variables for PIEZO Model . 524

8.36 State Variables for POWER LAW CREEP Model 524

8.37 State Variables for SHAPE MEMORY Model . 524

8.38 State Variables for SOIL FOAM Model (Section 4.2.10) 524

8.39 State Variables for SWANSON Model (Section 4.2.21) 525

8.40 State Variables for VISCOELASTIC SWANSON Model (Section 4.2.22) 526

8.41 State Variables for THERMO EP POWER Model 527

8.42 State Variables for THERMO EP POWER WELD Model 527

8.43 State Variables for UNIVERSAL POLYMER Model 528

8.44 State Variables for VISCOPLASTIC Model . 529

8.45 State Variables for Elastic-Plastic Model for Shells 530

8.46 State Variables for Elastic-Plastic Power-Law Hardening Model for Shells 530

8.47 State Variables for Multilinear Elastic-Plastic Hardening Model for Shells 530

8.48 State Variables for Multilinear Elastic-Plastic Hardening Model w/Failure for Shells 531

8.49 State Variables for TRACTION DECAY Surface Model 532

8.50 State Variables for TVERGAARD HUTCHINSON Surface Model 532

8.51 State Variables for THOULESS PARMIGIANI Surface Model 533

9.1 Subroutine Input Parameters . 540

9.2 Subroutine Output Parameters . 541

9.3 aupst_get_real_param Arguments . 543

9.4 aupst_get_integer_param Arguments . 544

25

9.5 aupst_get_string_param Arguments . 545

9.6 aupst_evaluate_function Arguments . 546

9.7 aupst_get_time Argument . 546

9.8 aupst_check_node_var Arguments . 548

9.9 aupst_check_elem_var Arguments . 549

9.10 aupst_get_node_var Arguments . 550

9.11 aupst_get_elem_var Arguments . 551

9.12 aupst_get_elem_var_offset Arguments . 552

9.13 aupst_put_node_var Arguments . 553

9.14 aupst_put_elem_var Arguments . 554

9.15 aupst_put_elem_var_offset Arguments . 555

9.16 aupst_check_global_var Arguments . 557

9.17 aupst_get_global_var Arguments . 557

9.18 aupst_put_global_var Arguments . 558

9.19 aupst_local_put_global_var Arguments . 559

9.20 Topologies Used by Presto . 560

9.21 aupst_get_elem_topology Arguments . 561

9.22 aupst_get_elem_nodes Arguments . 562

9.23 aupst_get_face_topology Arguments . 563

9.24 aupst_get_face_nodes Arguments . 564

9.25 aupst_get_one_elem_centroid Arguments . 565

9.26 aupst_get_point Arguments . 566

9.27 aupst_get_proc_num Arguments . 566

C.1 Consistent Unit Sets . 666

26

Presto 4.14 Release Notes

Following is a list of new features and syntax changes made to Presto since the 4.11 release.

Nodal Jacobian Metric

The nodal Jacobian ratio element distortion metric has been added. See Section 2.4.

Filename Metacharacters

When referring to an input, output, history, heartbeat, or restart file by name, the %B and %P

metacharacters can be used to represent the basename of the input file and number of processors,

respectively. See Sections 5.1.1, 8.2.1, 8.3, 8.4, and 8.5.1.

Hourglass Control

The default hourglass control for the strongly objective hexahedron has been reverted to be the

incremental formulation. See Section 5.2.1

Volume Derivatives for Void Elements

Void elements can now compute the first and second time derivatives of their volume for output in

addition to the volume itself. See Section 5.2.1.

LAME models for shells, beams, and trusses

The ability to use material models provided by the LAME library for shells, beams, and trusses

has been added, and these models are now used by default. See Sections 5.2.3, 5.2.5, and 5.2.6.

Drilling Stiffness for Quadrilateral Shells

The formulation for quadrilateral shell elements has been modified to include drilling stiffness.

This is off by default, but can be enabled to improve solution stability. See Section 5.2.3.

27

28

SPH Radius Calculation Options

The ability to compute the radius and density of SPH particles in the same way as Pronto has

been added. This option is selected using the DENSITY FORMULATION command line. See Sec-

tion 5.2.10.

Superelement Damping Matrix

The ability to specify the damping matrix for superelements has been added. Section 5.2.11.

Element to Particle Conversion

The capability to convert hex and shell elements to particles has been added. See Section 5.5.4.7.

Remeshing Commands

The MAX REMESH REBALANCE METRIC and MAX NUMBER ELEMENTS commands have been

added to control the behavior of remeshing. See Section 5.8.1.

Embedded Submodels

A capability to include an embedded submodel has been added. See Section 6.10.9.

Analytic Rigid Surfaces for Contact

Contact analytic planes may now be attached to rigid bodies. These planes translate and rotate

with the rigid body. See Section 7.3.1.

Lofted Shell Contact Options

The CONTACT SHELL THICKNESS and ALLOWABLE SHELL THICKNESS commands have been

added to allow contact to automatically pick lofted shell thicknesses that optimize the speed and

accuracy of the contact with lofted shells. See Section 7.9

Contact Output Variables with Dash

Output of contact variables is now enabled with the Dash contact algorithm. See Section 7.10

29

Secondary Decomposition Default Change

The secondary decomposition option for ACME contact is now inactive by default. It can still

optionally be activated. See Section 7.12.3.

User Defined Contact Search Box with Dash

The user may now define one or more search boxes to be used during the global contact search

with the USER SEARCH BOX command block. This is only available with Dash contact. See

Section 7.13.

Penalty Contact Option Removed

The option for penalty contact enforcement, which was specified using the ENFORCEMENT

ALGORITHM option, has been removed. See Section 7.14.

Node-Face Contact with Dash

Support for node-face contact has been added to the Dash contact algorithm. This can optionally

be enabled using the CONSTRAINT FORMULATION command. See Section 7.16.7.

Improved Sideset Contact with Dash

The capability for contact based on surfaces rather than blocks with the Dash contact algorithm

has been improved, although it is still preferred to use block on block contact. See Section 7.18.

Tied Contact with Dash

The handling of tied contact has been improved in the Dash contact algorithm. See Section 7.18.

Shell Contact with Dash

Support for shell contact in the Dash contact algorithm has been dramatically improved. In addition

to general improvements for shell contact in Dash, support for contact with lofted shells has been

added. See Section 7.18.

Lofted Sphere Contact with Dash

Support for the use of lofted speheres around particle elements has been added to the Dash contact

algorithm. See Section 7.18.

30

Contact Subcycling

The ability to perform subcycles for contact enforcement has been added to Dash contact. This

can be controlled using the MAX CONTACT SUB STEPS command. See Section 7.18.

New Derived Output Variable

The tranform_shell_strain derived output variable has been added. This provides a trans-

formation of the strain in shell elements from the local element coordinate system to the global

coordinate system. See Table 8.4.

Momentum and Energy Sum by Block

Sums of momentum and energy per block have been output as global varialbes. See Table 8.16.

Modified Spot Weld Variables

The names of the spot weld variables in Table 8.17 have been modified.

Chapter 1

Introduction

This document is a user’s guide for the code Presto. Presto is a three-dimensional transient dynam-

ics code with a versatile element library, nonlinear material models, large deformation capabilities,

and contact. It is built on the SIERRA Framework [1, 2]. SIERRA provides a data management

framework in a parallel computing environment that allows the addition of capabilities in a modular

fashion. Contact capabilities are parallel and scalable.

The Presto 4.14 User’s Guide provides information about the functionality in Presto and the com-

mand structure required to access this functionality in a user input file. This document is divided

into chapters based primarily on functionality. For example, the command structure related to the

use of various element types is grouped in one chapter; descriptions of material models are grouped

in another chapter.

The input and usage of Presto is similar to that of the code Adagio [3]. Adagio is a three-

dimensional quasi-static code with a versatile element library, nonlinear material models, large

deformation capabilities, and contact. Adagio, like Presto, is built on the SIERRA Framework [1].

Contact capabilities for Adagio are also parallel and scalable. A significant feature of Adagio is

that it offers a multilevel, nonlinear iterative solver.

Because of the similarities in input and usage between Presto and Adagio, the user’s guides for

the two codes are structured in the same manner and share common material. (Once you have

mastered the input structure for one code, it will be easy to master the syntax structure for the

other code.) To maintain the commonality between the two user’s guides, we have used a variety

of techniques. For example, references to Adagio may be found in the Presto user’s guide and vice

versa, and the chapter order across the two guides is the same.

On the other hand, each of the two user’s guides is expressly tailored to the features of the specific

code and documents the particular functionality for that code. For example, though both Presto and

Adagio have contact functionality, the content of the chapter on contact in the two guides differs.

Important references for both Adagio and Presto are given in the references section at the end of

this chapter. Adagio was preceded by the codes JAC and JAS3D; JAC is described in Reference 4;

JAS3D is described in Reference 5. Presto was preceded by the code Pronto3D. Pronto3D is

described in References 6 and 7. Some of the fundamental nonlinear technology used by both

Presto and Adagio are described in References 8, 9, and 10. Currently, both Presto and Adagio

31

32 CHAPTER 1. INTRODUCTION

use the Exodus II database and the XDMF database; Exodus II is more commonly used than

XDMF. (Other options may be added in the future.) The Exodus II database format is described in

Reference 11, and the XDMF database format is described in Reference 12. Important information

about contact is provided in the reference document for ACME [13]. ACME is a third-party library

for contact.

One of the key concepts for the command structure in the input file is a concept referred to as

scope. A detailed explanation of scope is provided in Section 1.2. Most of the command lines in

Chapter 2 are related to a certain scope rather than to some particular functionality.

1.1 Document Overview

This document describes how to create an input file for Presto. Highlights of the document contents

are as follows:

• Chapter 1 presents the overall structure of the input file, including conventions for the com-

mand descriptions, style guidelines for file preparation, and naming conventions for input

files that reference the Exodus II database [11]. The chapter also gives an example of the

general structure of an input file that employs the concept of scope.

• Chapter 2 explains some of the commands that are general to various applications based on

the SIERRA Framework. These commands let you define scopes, functions, and coordinate

systems, and they let you set up some of the main time control parameters (begin time, end

time, time blocks) for your analysis. (Time control and time step control are discussed in

more detail in Chapter 3.) Other capabilities documented in this chapter are available for

calculating element distortion and for activating and deactivating functionality at different

times throughout an analysis.

• Chapter 3 describes how to set the start time, end time, and time blocks for an analysis. This

chapter also discusses various options for controlling the critical time step in Presto.

• Chapter 4 describes material models that can be used in conjunction with the elements in

Presto and Adagio. Most of the material models have an interface that allows the models to

be used by the elements in both codes. Even though a material model can be used by both

codes, it may be that the use of the material model is better suited for one code rather than

for the other code. For example, a material model set up to characterize behavior over a long

time would be better suited for use in Adagio than in Presto. If a material model is better

suited for one of the two codes, this information will be noted for the material model. In some

cases, a material model may only be included in one of the two user’s guides. Chapter 4 also

discusses the application of temperature to a mesh and the computation of thermal strains

(isotropic and anisotropic).

• Chapter 5 lists the elements in Presto and Adagio and describes how to set up commands

to use the various options for the elements. Most elements can be used in either Presto or

Adagio. If an element is available in one code but not the other, this information will be noted

1.1. DOCUMENT OVERVIEW 33

for the element. In some cases, an element may only be included in one of the two user’s

guides. For example, Presto has a special element implementation referred to as smoothed

particle hydrodynamics (SPH). The Presto user’s guide contains a section on SPH, but the

Adagio user’s guide does not. Chapter 5 also includes descriptions of the commands for mass

property calculations, element death, and mesh rebalancing. Two “element-like" capabilities

are discussed in Chapter 5—torsional springs and rigid bodies. Although torsional springs

and rigid bodies exhibit element-like behavior, they are really implemented as boundary

conditions. From a user’s point of view, it is best to discuss the torsional-spring and rigid-

body capabilities with elements.

• Chapter 6 documents how to use kinematic boundary conditions, force boundary conditions,

initial conditions, and specialized boundary conditions.

• Chapter 7 discusses how to define interactions of contact surfaces.

• Chapter 8 details the various options for obtaining output.

• Chapter 9 provides an overview of the user subroutine functionality.

• Chapter A provides a sample input file from an analysis of 16 lead spheres being crushed

together inside a steel box. This problem emphasizes large deformation and contact.

• Chapter B gives all the permissible Presto input lines in their proper scope.

• The index allows you to find information about command blocks and command lines. In

general, single-level entries identify the page where the command syntax appears, with dis-

cussion following soon thereafter—on the same page or on a subsequent page. Page ranges

are not provided in this index. Some entries consist of two or more levels. Such entries are

typically based on context, including such information as the command blocks in which a

command line appears, the location of the discussion related to a particular command line,

and tips on usage. The PDF version of this document contains hyperlinked entries from the

page numbers listed in the index to the text in the body of the document.

Note that all references cited within the text of each chapter are listed at the end of the respective

chapters rather than in a separate references chapter. The reference sections in the chapters are not

necessarily edited so that they are specific to Adagio or Presto. Some chapters will have exactly

the same set of references (even if not all are cited for a particular user’s guide), and some chapters

will have the references tailored to the specific user’s guide.

34 CHAPTER 1. INTRODUCTION

1.2 Overall Input Structure

Presto is one of many mechanics codes built on the SIERRA Framework. The SIERRA Framework

provides the capability to perform multiphysics analyses by coupling together SIERRA codes ap-

propriate for the mechanics of interest. Input files may be set up for analyses using only Presto, or

they may be set up to couple Presto and one or more other SIERRA analysis codes. For example,

you might run Adagio to compute a stress state, and then use the results of this analysis as initial

conditions for a Presto analysis. For a multiphysics analysis using Presto and Adagio, the time-

step control, the mesh-related definitions, and the boundary conditions for both Presto and Adagio

will all be in the same input file. Therefore, the input for Presto reflects the fact that it could be

part of a multiphysics analysis. (Note that not all codes built on the SIERRA Framework can be

coupled. Consult with the authors of this document to learn about the codes that can be coupled

with Presto.)

To create files defining multiphysics analyses, the input files use a concept called “scope.” Scope is

used to group similar commands; a scope can be nested inside another scope. The broadest scope

in the input file is the SIERRA scope. The SIERRA scope contains information that can be shared

among different physics. Examples of physics information that can be shared are definitions of

functions and materials. Thus, in our above example of a coupled Presto/Adagio multiphysics

analysis, both Adagio and Presto could reference functions to define such things as time histories

for boundary conditions or stress-strain curves. Some of the functions could even be shared by

these two applications. Both Presto and Adagio could also share information about materials.

Within the SIERRA scope are two other important scopes: the procedure scope and the region

scope. The region is nested inside the procedure, and the procedure is nested inside the SIERRA

scope. The procedure scope controls the overall analysis from the start time to the end time; the

region scope controls a single time step. For a multiphysics analysis, the SIERRA scope could

contain several different procedures and several different regions.

Inside the procedure scope (but outside of the region scope) are commands that set the start time

and the end time for the analysis.

Inside the region scope for Presto are such things as definitions for boundary conditions and con-

tact. In a multiphysics analysis, there would be more than one region. In our Presto/Adagio

example, there would be both a Presto region and an Adagio region, each within its respective

procedures. The definitions for boundary conditions and contact and the mesh specification for

Presto would appear in the Presto region; the definitions for boundary conditions and contact and

the mesh specification for Adagio would appear in the Adagio region.

The input for Presto consists of command blocks and command lines. The command blocks define

a scope. These command blocks group command lines or other command blocks that share a

similar functionality. A command block will begin with an input line that has the word “begin”;

the command block will end with an input line that has the word “end”. The SIERRA scope, for

example, is defined by a command block that begins with an input line of the following form:

BEGIN SIERRA my_problem

The two character strings BEGIN and SIERRA are the key words for this command block. An input

line defining a command block or a command line will have one or more key words. The string

1.2. OVERALL INPUT STRUCTURE 35

my_problem is a user-specified name for this SIERRA scope. The SIERRA scope is terminated

by an input line of the following form:

END SIERRA my_problem

In the above input line, END and SIERRA are the key words to end this command block. The

SIERRA scope can also be terminated simply by using the following key word:

END

The above abbreviated command line will be discussed in more detail in later chapters. There are

similar input lines used to define the procedure and region scopes. Boundary conditions are another

example where a scope is defined. A particular instance of a boundary condition for a prescribed

displacement boundary condition is defined with a command block. The command block for the

boundary condition begins with an input line of the form:

BEGIN PRESCRIBED DISPLACEMENT

and ends with an input line of either of the following forms:

END PRESCRIBED DISPLACEMENT

END

Command lines appear within the command blocks. The command lines typically have the form

keyword = value, where value can be a real, an integer, or a string. In the previous example

of the prescribed displacement boundary condition, there would be command lines inside the com-

mand block that are used to set various values. For example, the boundary condition might apply

to all nodes in node set 10, in which case there would be a command line of the following form:

NODE SET = nodelist_10

If the prescribed displacement were to be applied along a given component direction, there would

be a command line of this form:

COMPONENT = X

The form above would specify that the prescribed displacement would be in the x-direction.

Finally, if the displacement magnitude is described by a time history function with the name

cosine_curve, there would be a command line of this form:

FUNCTION = cosine_curve

The command block for the boundary condition with the appropriate command lines would appear

as follows:

BEGIN PRESCRIBED DISPLACEMENT

NODE SET = nodelist_10

COMPONENT = X

FUNCTION = cosine_curve

END PRESCRIBED DISPLACEMENT

It is possible to have a command line with the same key words appearing in different scopes. For

example, we might have a command line identified by the word TYPE in two or more different

36 CHAPTER 1. INTRODUCTION

scopes. The command line would perform different functions based on the scope in which it

appeared, and the associated value could be different in the two locations.

The input lines are read by a parser that searches for recognizable key words. If the key words in an

input line are not in the list of key words used by Presto to describe command blocks and command

lines, the parser will generate an error. A set of key words defining a command line or command

block for Presto that is not in the correct scope will also cause a parser error. For example, the

key words STEP INTERVAL define a valid command line in the scope of the TIME CONTROL

command block. However, if this command line was to appear in the scope of one of the boundary

conditions, it would not be in the proper scope, and the parser would generate an error. Once the

parser has an input line with any recognizable key words in the proper scope, a method can be

called that will handle the input line.

There is an initial parsing phase that checks only the parser syntax. If the parser encounters a

command line it cannot parse within a certain scope, the parser will indicate it cannot recognize the

command line and will list the various command lines that can appear within that scope. The initial

parsing phase will catch errors such as the one described in the previous paragraph (a command

line in the wrong scope). It will also catch misspelled key words. The initial parsing does not

catch some other types of errors, however. If you have specified a value on a command line that is

out of a specified range for that command line, the initial parsing will not catch this error. If you

have some combination of command lines within a command block that is not allowed, the initial

parsing will not catch this error. These other errors are caught after the initial parsing phase and

are handled one error at a time.

1.3. CONVENTIONS FOR COMMAND DESCRIPTIONS 37

1.3 Conventions for Command Descriptions

The conventions below are used to describe the input commands for Presto. A number of the

individual command lines discussed in the text appear on several text lines. In the text of this

document, the continuation symbols that are used to continue lines in an actual input file (\#

and \$, Section 1.4.2) are not used for those instances where the description of the command

line appears on several text lines. The description of command lines will clearly indicate all the

key words, delimiters, and values that constitute a complete command line. As an example, the

DEFINE POINT command line (Section 2.1.6) is presented in the text as follows:

DEFINE POINT <string>point_name WITH COORDINATES

<real>value_1 <real>value_2 <real>value_3

If the DEFINE POINT command line were used as a command line in an input file and spread over

two input lines, it would appear, with actual values, as follows:

DEFINE POINT center WITH COORDINATES \#

10.0 144.0 296.0

In the above example, the \# symbol implies the first line is continued onto the second line.

1.3.1 Key Words

The key word or key words for a command are shown in uppercase letters. For actual input, you

can use all uppercase letters for the key words, all lowercase letters for the key words, or some

combination of uppercase and lowercase letters for the key words.

1.3.2 User-Specified Input

The input that you supply is typically shown in lowercase letters. (Occasionally, uppercase letters

may be used for user input for purposes of clarity or in examples.) The user-supplied input may be

a real number, an integer, a string, or a string list. For the command descriptions, a type appears

before the user input. The type (real, integer, string, string list) description is enclosed by angle

brackets, <>, and precedes the user-supplied input. For example:

<real>value

indicates that the quantity value is a real number. For the description of an input command, you

would see the following:

FUNCTION = <string>function_name

Your input would be

FUNCTION = my_name

if you have specified a function name called my_name.

Valid user input consists of the following:

38 CHAPTER 1. INTRODUCTION

<integer> Integer data is a single integer number.

<real> Real data is a single real number. It may be formatted

with the usual conventions, such as 1234.56

or 1.23456e+03.

<string> String data is a single string.

<string list> A string list consists of multiple strings separated

by white space, a comma, a tab, or white

space combined with a comma or a tab.

1.3.3 Optional Input

Anything in an input line that is enclosed by square brackets, [], represents optional input within

the line. Note, however, that this convention is not used to identify optional input lines. Any

command line that is optional (in its entirety) will be described as such within the text.

1.3.4 Default Values

A value enclosed by parentheses, (), appearing after the user input denotes the default value. For

example:

SCALE FACTOR = <real>scale_factor(1.0)

implies the default value for scale_factor is 1.0. Any value you specify will overwrite the

default.

For your actual input file, you may simply omit a command line if you want to use the default

value associated with the command line. For example, there is a TIME STEP SCALE FACTOR

command line used to set one of the time control parameters; the parameter for this command line

has a default value of 1.0. If you want to use the default value of 1.0 for this parameter, you do not

have to include the TIME STEP SCALE FACTOR command line in the TIME CONTROL command

block.

1.3.5 Multiple Options for Values

Quantities separated by the | symbol indicate that one and only one of the possible choices must

be selected. For example:

EXPANSION RADIUS = <string>SPHERICAL|CYLINDRICAL

implies that expansion radius must be defined as SPHERICAL or CYLINDRICAL. One of the values

must appear. This convention also applies to some of the command options within a begin/end

block. For example:

1.3. CONVENTIONS FOR COMMAND DESCRIPTIONS 39

SURFACE = <string>surface_name|

NODE SET = <string>nodelist_name

in a command block specifies that either a surface or a node set must be specified.

Quantities separated by the / symbol can appear in any combination, but any one quantity in the

sequence can appear only once. For example,

COMPONENTS = <string>X/Y/Z

implies that components can equal any combination of X, Y, and Z. Any value (X or Y or Z) can

appear at most once, and at least one value of X, Y, or Z must appear. Some examples of valid

expressions in this case are as follows:

COMPONENTS = Z

COMPONENTS = Z X

COMPONENTS = Y X Z

COMPONENTS = Z Y X

An example of an invalid expression would be the following:

COMPONENTS = Y Y Z

1.3.6 Known Issues and Warnings

Where there are known issues with the code, these are documented in the following manner:

Known Issue: A description of the known issue with the code would be provided

here.

Similarly, warnings regarding usage of code features that are not defective, but must be used with

care because of their nature, are documented as follows:

Warning: A description of the warning related to the usage of a code feature would

be provided here.

40 CHAPTER 1. INTRODUCTION

1.4 Style Guidelines

This section gives information that will affect the overall organization and appearance of your input

file. It also contains recommendations that will help you construct input files that are readable and

easy to proof.

1.4.1 Comments

A comment is anything between the # symbol or the $ symbol and the end-of-line. If the first

nonblank character in a line is a # or $, the entire line is a comment line. You can also place a #

or $ (preceded by a blank space) after the last character in an input line used to define a command

block or command line.

1.4.2 Continuation Lines

An input line can be continued by placing a \# pair of characters (or \$) at the end of the line. The

following line is then taken to be a continuation of the preceding line that was terminated by the

\# or \$. Note that everything after the line-continuation pair of characters is discarded, including

the end-of-line.

1.4.3 Case

Almost all the character strings in the input lines are case insensitive. For example, the BEGIN

SIERRA key words could appear as one of the following:

BEGIN SIERRA

begin sierra

Begin Sierra

You could specify a SIERRA command block with:

BEGIN SIERRA BEAM

and terminate the command block with this input line:

END SIERRA beam

Case is important only for file name specifications. If you have defined a restart file with uppercase

and lowercase letters and want to use this file for a restart, the file name you use to request this

restart file must exactly match the original definition you chose.

1.4.4 Commas and Tabs

Commas and tabs in input lines are ignored.

1.4. STYLE GUIDELINES 41

1.4.5 Blank Spaces

We highly recommend that everything be separated by blank spaces. For example, a command line

of the form

node set = nodelist_10

is recommended over the following forms:

node set= nodelist_10

node set =nodelist_10

Both of the above two lines are correct, but it is easier to check the first form (the equal sign

surrounded by blank space) in a large input file.

The parser will accept the following line:

BEGIN SIERRABEAM

However, it is harder to check this line for the correct spelling of the key words and the intended

SIERRA scope name than this line:

BEGIN SIERRA BEAM

It is possible to introduce hard-to-detect errors because of the way in which the blank spaces are

handled by the command parser. Suppose you type

begin definition for functions my_func

rather than the following correct form:

begin definition for function my_func

For the incorrect form of this command line (in which functions is used rather than function),

the parser will generate a string name of

s my_func

for the function name rather than the following expected name:

my_func

If you attempt to use a function named my_func, the parser will generate an error because the list

of function names will include s my_func but not my_func.

1.4.6 General Format of the Command Lines

In general, command lines have the following form:

keyword = value

This pattern is not always followed, but it describes the vast majority of the command lines.

42 CHAPTER 1. INTRODUCTION

1.4.7 Delimiters

The delimiter used throughout this document is “=” (the equal sign). Typically, but not always,

the = separates key words from input values in a command line. Consider the following command

line:

COMPONENTS = X

Here, the key word COMPONENTS is separated from its value, a string in this case, by the =. Some

command lines do allow for other delimiters. The use of these alternate delimiters is not consistent,

however, throughout the various command lines. (This lack of consistency has the potential for

introducing errors in this document as well as in your input.) The = provides a strong visual cue

for separating key words from values. By using the = as a delimiter, it is much easier to proof your

input file. It also makes it easier to do “cut and paste” operations. If you accidentally delete =, it is

much easier to detect than accidentally removing part of one of the other delimiters that could be

used.

1.4.8 Order of Commands

There are no requirements for ordering the commands. Both the input sequence:

BEGIN PRESCRIBED DISPLACEMENT

NODE SET = nodelist_10

COMPONENT = X

FUNCTION = cosine_curve

END PRESCRIBED DISPLACEMENT

and the input sequence:

BEGIN PRESCRIBED DISPLACEMENT

FUNCTION = cosine_curve

COMPONENT = X

NODE SET = nodelist_10

END PRESCRIBED DISPLACEMENT

are valid, and they produce the same result. Remember, that command lines and command blocks

must appear in the proper scope.

1.4.9 Abbreviated END Specifications

It is possible to terminate a command block without including the key word or key words that

identify the block. You could define a specific instance of the prescribed displacement boundary

condition with:

BEGIN PRESCRIBED DISPLACEMENT

1.4. STYLE GUIDELINES 43

and terminate it simply with:

END

as opposed to the following specification:

END PRESCRIBED DISPLACEMENT

Both the short termination (END only) and the long termination (END followed by identification, or

name, of the command block) are valid. It is recommended that the long termination be used for

any command block that becomes large. The RESULTS OUTPUT command block described in later

chapters can become fairly lengthy, so this is probably a good place to use the long termination. For

most boundary conditions, the command block will typically consist of five lines. In such cases,

the short termination can be used. Using the long termination for the larger command blocks will

make it easier to proof your input files. If you use the long termination, the text following the

END key word must exactly match the text following the BEGIN key word. You could not have

BEGIN PRESCRIBED DISPLACEMENT paired with an END PRESCRIBED DISPL to define the

beginning and ending of a command block.

1.4.10 Indentation

When constructing an input file, it is useful, but not required, to indent a scope that is nested inside

another scope. Command lines within a command block should also be indented in relation to

the lines defining the command block. This will make it easier to construct the input file with

everything in the correct scope and with all the command blocks in the correct structure.

1.4.11 Including Files

External text files containing input commands can be included at any point in the Presto input file

using the INCLUDEFILE command. This command can be used in any context in the input file. To

use this command, simply use the command INCLUDEFILE followed by the name of the file to be

included. For example, the command:

INCLUDEFILE displacement_history.i

would include the displacement_history.i as if the contents of that file were places in the

position that it is included in the input file. The included file is contained in the standard echo of

the input that is provided at the beginning of the log file.

44 CHAPTER 1. INTRODUCTION

1.5 Naming Conventions Associated with the Exodus II

Database

When the mesh file has an Exodus II format, there are three basic conventions that apply to user

input for various command lines. First, for a mesh file with the Exodus II format, the Exodus II

side set is referenced as a surface. In SIERRA, a surface consists of element faces plus all the

nodes and edges associated with these faces. A surface definition can be used not only to select

a group of faces but also to select a group of edges or a group of nodes that are associated with

those faces. In the case of boundary conditions, a surface definition can be used not only to apply

boundary conditions that typically use surface specifications (pressure) but also to apply boundary

conditions for what are referred to as nodal boundary conditions (fixed displacement components).

For nodal boundary conditions that use the surface specification, all the nodes associated with the

faces on a specific surface will have this boundary condition applied to them. The specification

for a surface identifier in the following chapters is surface_name. It typically has the form

surface_integerid, where integerid is the integer identifier for the surface. If the side set

identifier is 125, the value of surface_name would be surface_125. It is also possible to

generate an alias for the side set1 and use this for surface_name. If surface_125 is aliased

to outer_skin, then surface_name becomes outer_skin in the actual input line. It is also

possible to name a surface in some mesh generation programs and that name can be used in the

input file.

Second, for a mesh file with the Exodus II format, the Exodus II node set is still referenced as a

node set. A node set can be used only for cases where a group of nodes needs to be defined. The

specification for a node set identifier in the following chapters is nodelist_name. It typically

has the form nodelist_integerid, where integerid is the integer identifier for the node set.

If the node set number is 225, the value of nodelist_name would be nodelist_225. It is also

possible to generate an alias for the node set and use this for nodelist_name. If nodelist_225

is aliased to inner_skin, then nodelist_name becomes inner_skin in the actual input line.

It is also possible to name a nodelist in some mesh generation programs and that name can be used

in the input file.

Third, an element block is referenced as a block. The specification for an element block identifier

in the following chapters is block_name. It typically has the form block_integerid, where

integerid is the integer identifier for the block. If the element block number is 300, the value

of block_name would be block_300. It is also possible to generate an alias for the block and

use this for block_name. If block_300 is aliased to big_chunk, then block_name becomes

big_chunk in the actual input line. It is also possible to name an element block in some mesh

generation programs and that name can be used in the input file.

A group of elements can also be used to select other mesh entities. In SIERRA, a block consists of

elements plus all the faces, edges, and nodes associated with the elements. The block and surface

concepts are similar in that both have associated derived quantities. Chapters 6 and 7 show how

this concept of derived quantities is used in the input command structure.

1See the ALIAS command in Section 5.1.2

1.6. MAJOR SCOPE DEFINITIONS FOR AN INPUT FILE 45

1.6 Major Scope Definitions for an Input File

The typical input file will have the structure shown below. The major scopes—SIERRA, procedure,

and region—are delineated with input lines for command blocks. Comment lines are included that

indicate some of the key scopes that will appear within the major scopes. Note the indentation

used for this example.

BEGIN SIERRA <string>some_name

#

All command blocks and command lines in the SIERRA

scope appear here. The PROCEDURE PRESTO command

block is the beginning of the next scope.

#

function definitions

material descriptions

description of mesh file

#

BEGIN PROCEDURE PRESTO <string>procedure_name

#

time step control

#

BEGIN REGION PRESTO <string>region_name

#

All command blocks and command lines in the

region scope appear here

#

specification for output of result

specification for restart

boundary conditions

definition of contact

#

END [REGION PRESTO <string>region_name]

END [PROCEDURE PRESTO <string>procedure_name]

END [SIERRA <string>some_name]

46 CHAPTER 1. INTRODUCTION

1.7 Input/Output Files

The primary user input to Presto is the input file introduced in this chapter. Throughout this doc-

ument, we explain how to construct a valid input file. It is important to be aware that Presto also

processes a number of other types of input files and produces a variety of output files. These ad-

ditional files are also discussed in this document where applicable. Figure 1.1 presents a simple

schematic diagram of the various input and output files in Presto. Both Adagio and Presto use the

same file structure. Therefore, in Figure 1.1, we indicate that the code (graphically represented by

the central cylinder) can be either Presto or Adagio.

input
mesh
restart(in)
subroutine

results
history
restart(out)
log
output

Adagio
or

Presto

Figure 1.1: Input/output files

As shown in Figure 1.1, Presto uses the input file, mesh files, restart files, and user subroutine files.

The input file, which is required, is a set of valid Presto command lines. Another required input is

a mesh file, which provides a description of the finite element mesh for the object being analyzed.

Restart and user subroutine files are optional inputs. The restart functionality lets you break an

analysis from the start time to the termination time into a sequence of runs. The files generated

by the restart functionality contain a complete state description for a problem at various analysis

times, which we will refer to as restart times. You can restart Presto at any of these restart times

because the complete state description is known (see Chapter 8). The user subroutine files let you

build and incorporate specialized functionality into Presto (Chapter 9).

As also shown in Figure 1.1, Presto can generate a number of files. These include results files,

history files, restart files, a log file, and an output file. Typically, only the log file and the output

file are produced automatically. Generation of the other types of files is based on user settings in

the input file for the particular kinds of output desired. Results files provide the values of global

variables, element variables, and node variables at specified times (see Chapter 8). History files

will also provide values of global variables, element variables, and node variables at specified times

(see Chapter 8). History files are set up to provide a specific value at a specific node, for example,

whereas results files provide a nodal value for large subsets of nodes or, more typically, all nodes.

History files provide a much more limited set of information than results files. As noted above,

restart files can be generated at various analysis times. The log file contains a variety of information

1.7. INPUT/OUTPUT FILES 47

such as the Presto version number, a listing of the input file, initialization information, some model

information (mass, critical time steps for element blocks, etc.), and information at various time

steps. At every nth step, where n is user selected, the log file gives the current analysis time; the

current time step; the kinetic, internal, and external energies; the error in the energy; and computing

time information. You can monitor step information in the log file to gain information about how

your analysis is progressing. The output file contains error information.

48 CHAPTER 1. INTRODUCTION

1.8 Obtaining Support

Support for all SIERRA Mechanics codes, including Presto, can be obtained by contacting the

SIERRA Mechanics user support hotline by email at sierra-help@sandia.gov, or by telephone at

(505)845-1234.

mailto:sierra-help@sandia.gov

1.9. REFERENCES 49

1.9 References

1. Edwards, H. C., and J. R. Stewart. “SIERRA: A Software Environment for Developing

Complex Multi-Physics Applications.” In First MIT Conference on Computational Fluid

and Solid Mechanics, edited by K. J. Bathe, 1147–1150. Amsterdam: Elsevier, 2001.

2. Koteras, J. R., A. S. Gullerud, V. L. Porter, W. M. Scherzinger, and K. H. Brown. “PRESTO:

Impact Dynamics with Scalable Contact Using the SIERRA Framework.” In First MIT Con-

ference on Computational Fluid and Solid Mechanics, edited by K. J. Bathe, 294–296. Am-

sterdam: Elsevier, 2001.

3. Mitchell, J. A., A. S. Gullerud, W. M. Scherzinger, J. R. Koteras, and V. L. Porter. “ADAGIO:

Non-Linear Quasi-Static Structural Response Using the SIERRA Framework.” In First MIT

Conference on Computational Fluid and Solid Mechanics, edited by K. J. Bathe, 361–364.

Amsterdam: Elsevier, 2001.

4. Biffle, J. H. JAC – A Two-Dimensional Finite Element Computer Program for the Non-

Linear Quasi-Static Response of Solids with the Conjugate Gradient Method, SAND81-

0998. Albuquerque, NM: Sandia National Laboratories, April 1984.

5. Blanford, M. L., M. W. Heinstein, and S. W. Key. JAS3D – A Multi-Strategy Iterative Code

for Solid Mechanics Analysis Users’ Instructions, Release 2.0, Draft SAND report. Albu-

querque, NM: Sandia National Laboratories, September 2001.

6. Taylor, L. M. and D. P. Flanagan. Pronto3D: A Three-Dimensional Transient Solid Dynamics

Program, SAND87-1912. Albuquerque, NM: Sandia National Laboratories, March 1989.

7. Attaway, S. W., K. H. Brown, F. J. Mello, M. W. Heinstein, J. W. Swegle, J. A. Ratner, and

R. I. Zadoks. PRONTO3D User’s Instructions: A Transient Dynamic Code for Nonlinear

Structural Analysis, SAND98-1361. Albuquerque, NM: Sandia National Laboratories, June

1998.

8. Laursen, T. A., S. W. Attaway, and R. I. Zadoks. SEACAS Theory Manuals: Part I. Problem

Formulation in Nonlinear Solid Mechanics, SAND98-1760/1. Albuquerque, NM: Sandia

National Laboratories, August 1998.

9. Laursen, T. A., S. W. Attaway, and R. I. Zadoks. SEACAS Theory Manuals: Part II. Nonlin-

ear Continuum Mechanics, SAND98-1760/2. Albuquerque, NM: Sandia National Labora-

tories, September 1998.

10. Laursen, T. A., S. W. Attaway, and R. I. Zadoks. SEACAS Theory Manuals: Part III. Fi-

nite Element Analysis in Nonlinear Solid Mechanics, SAND98-1760/3. Albuquerque, NM:

Sandia National Laboratories, March 1999.

11. Schoof, L. A., and V. R. Yarberry. EXODUS II: A Finite Element Data Model, SAND92-

2137. Albuquerque, NM: Sandia National Laboratories, September 1994.

12. The eXtensible Data Model and Format (XDMF)

http://www.xdmf.org (accessed March 17, 2008).

50 CHAPTER 1. INTRODUCTION

13. Brown, K. H., R. M. Summers, M. W. Glass, A. S. Gullerud, M. W. Heinstein, and R. E.

Jones. ACME: Algorithms for Contact in a Multiphysics Environment, API Version, 1.0.

Albuquerque, NM: Sandia National Laboratories, October 2001.

Chapter 2

General Commands

The commands described in this section appear in the SIERRA or procedure scope or control some

general functionality in Presto.

2.1 SIERRA Scope

These commands are used to set up some of the fundamentals of the Presto input. The commands

are physics independent, or at least can be shared between physics. The commands lie in the

SIERRA scope, not in the procedure or region scope.

2.1.1 SIERRA Command Block

BEGIN SIERRA <string>name

#

All other command blocks and command lines

appear within the SIERRA scope defined by

begin/end sierra.

#

END [SIERRA <string>name]

All input commands must occur within a SIERRA command block. The syntax for beginning the

command block is:

BEGIN SIERRA <string>name

and for terminating the command block is as follows:

END [SIERRA <string>name]

In these input lines, name is a name for the SIERRA command block. All other commands for the

analysis must be within this command block structure. The name for the SIERRA command block

is often a descriptive name that identifies the analysis. The name is not currently used anywhere

else in the file and is completely arbitrary.

51

52 CHAPTER 2. GENERAL COMMANDS

2.1.2 Title

TITLE <string list>title

To permit a fuller description of the analysis, the input has a TITLE command line for the analysis,

where title is a text description of the analysis. The title is transferred to the results file.

2.1.3 Restart Control

The restart capability in Presto allows a user to run an analysis up to a certain time, stop the

analysis at this time, and then restart the analysis from this time. Restart can be used to break a

long-running analysis into several smaller runs so that the user can examine intermediate results

before proceeding with the next step. Restart can also be used in case of abnormal termination. If

a restart file has been written at various intervals throughout the analysis up to the point where the

abnormal termination has occurred, you can pick a restart time before the abnormal termination and

restart the problem from there. Thus, users do not have to go back to the beginning of the analysis,

but can continue the analysis at some time well into the analysis. With the restart capability, you

will generate a sequence of restart runs. Each run can have its own set of restart, results, and history

files.

When using the restart capability, you can reset a number of the parameters in the input file.

However, not all parameters can be reset. Users should exercise care in resetting parameters in the

input file for a restart. You will want to change parameters if you have encountered an abnormal

termination. You may want to change certain parameters, hourglass control for example, to see

whether you can prevent the abnormal termination and continue the analysis past the abnormal

termination time you had previously encountered.

The use of the restart capability involves commands in both the SIERRA scope and the region

scope. One of two restart command lines, RESTART or RESTART TIME, appears in the SIERRA

scope. A command block in the region scope, the RESTART DATA command block, specifies

restart file names and the frequency at which the restart files will be written. The RESTART DATA

command block is described in Section 8.5. This section gives a brief discussion of the command

lines that appear in the SIERRA scope. For a full discussion of all the command lines used for

restart, consult with Chapter 8. The use of some of the command lines in the RESTART DATA

command block depends on the command line, either RESTART or RESTART TIME, you select in

the SIERRA scope.

If you specify a time from a specific restart file for the restart, you will use the RESTART TIME

command line described in Section 2.1.3.1. If you select the automatic restart option, you will use

the RESTART command line described in Section 2.1.3.2. The command lines for both of these

methods are in the SIERRA scope. All other commands for restart are in the region scope in the

RESTART DATA command block.

For restarts specified with a restart time from a specific restart file, you will have to be concerned

about overwriting information in existing files. The issue of overwriting information is discussed

in Chapter 8. In general, you will want to have a restart file (or files in the case of parallel runs)

2.1. SIERRA SCOPE 53

for each run in a sequence of runs you create with the restart option. You will want to preserve

all restart files you have written prior to any given run in a sequence of restart runs. The easiest

way to preserve prior restart information is with the use of the RESTART command line. How you

preserve previous restart information is discussed in detail in Chapter 8.

The amount of data written at a restart time is quite large. The restart data written at a given time is

a complete description of the state for the problem at that time. The restart data includes not only

information such as displacement, velocity, and acceleration, but also information such as element

stresses and all the state variables for the material model associated with each element.

2.1.3.1 Restart Time

RESTART TIME = <real>restart_time

The RESTART TIME command line is used to specify a time from a specific restart file for the

restart run. This restart option will pick the restart time on the restart file that is closest to the user-

specified time on the RESTART TIME command line. If the user specifies a restart time greater

than the last time written to a restart file, then the last time written to the restart file is picked as the

restart time. Use of this command line can result in previous restart information being overwritten.

To prevent the overwriting of existing restart files, you can specify both an input restart file and

an output restart file (and rename the results and history files) for the various restarts. The use of

the RESTART TIME command line requires the user to be more active in the management of the

file names to prevent the overwriting of restart, results, and history files. The automatic restart

feature (e.g., the RESTART command line in Section 2.1.3.2) prevents the overwriting of restart,

results, and history files. Consult with Section 8.5 for a full discussion of implementing the restart

capability.

2.1.3.2 Automatic Restart

RESTART = AUTOMATIC

The RESTART command line automatically selects for restart the last restart time written to the

last restart file. The automatic restart feature lets the user restart runs with minimal changes to

the input file. The only quantity that must be changed to move from one restart to another is the

termination time. The RESTART command line manages the restart files so as not to write over

any previous restart files. It also manages the results and history files so as not to write over any

previous results or history files. Consult with Section 8.5 for a full discussion of implementing the

restart capability.

2.1.4 User Subroutine Identification

USER SUBROUTINE FILE = <string>file_name

54 CHAPTER 2. GENERAL COMMANDS

This command line is a part of a set of commands that are used to implement the user subroutine

functionality. The string file_name identifies the name of the file that contains the FORTRAN

code of one or more user subroutines.

To understand how this command line is used, see Chapter 9.

2.1.5 Functions

BEGIN DEFINITION FOR FUNCTION <string>function_name

TYPE = <string>CONSTANT|PIECEWISE LINEAR|PIECEWISE CONSTANT|

ANALYTIC

ABSCISSA = <string>abscissa_label

[scale = <real>abscissa_scale(1.0)]

[offset = <real>abscissa_offset(0.0)]

ORDINATE = <string>ordinate_label

[scale = <real>ordinate_scale(1.0)]

[offset = <real>ordinate_offset(0.0)]

X SCALE = <real>x_scale(1.0)

X OFFSET = <real>x_offset(0.0)

Y SCALE = <real>y_scale(1.0)

Y OFFSET = <real>y_offset(0.0)

BEGIN VALUES

<real>x_1 <real>y_1

<real>x_2 <real>y_2

...

<real>x_n <real>y_n

END [VALUES]

AT DISCONTINUITY EVALUATE TO <string>LEFT|RIGHT(LEFT)

EVALUATE EXPRESSION = <string>analytic_expression1;

analytic_expression2; ...

DEBUG = ON|OFF(OFF)

END [DEFINITION FOR FUNCTION <string>function_name]

A number of Presto features are driven by a user-defined description of the dependence of one

variable on another. For instance, the prescribed displacement boundary condition requires the

definition of a time-versus-displacement relation, and the thermal strain computations require the

definition of a thermal-strain-versus-temperature relation. SIERRA provides a general method of

defining these relations as functions using the DEFINITION FOR FUNCTION command block, as

shown above.

There is no limit to the number of functions that can be defined. All function definitions must

appear within the SIERRA scope.

A description of the various parts of the DEFINITION FOR FUNCTION command block follows:

• The string function_name is a user-selected name for the function that is unique to the

function definitions within the input file. This name is used to refer to this function in other

locations in the input file.

2.1. SIERRA SCOPE 55

• The TYPE command line has four options to define the type of function. The value of this

string can be CONSTANT, PIECEWISE LINEAR, PIECEWISE CONSTANT, or ANALYTIC.

• The ABSCISSA command line provides a descriptive label for the independent variable (x-

axis) with the string abscissa_label. This command line is optional. The user can op-

tionally add a scale factor and/or an offset which has the following effect: abscissascaled =
scale∗ (abscissa+offset).

• The ORDINATE command line provides a descriptive label for the dependent variable (y-

axis) with the string ordinate_label. This command line is optional. The user can also

optionally add a scale factor and/or an offset which has the following effect: ordinatescaled =
scale∗ (ordinate+offset).

• The X SCALE command line sets the scale factor value for the abscissa and has the same

effect as if the optional SCALE command were used in the ABSCISSA command line.

• The X OFFSET command line sets the offset value for the abscissa and has the same effect

as if the optional OFFSET command were used in the ABSCISSA command line.

• The Y SCALE command line sets the scale factor value for the ordinate and has the same

effect as if the optional SCALE command were used in the ORDINATE command line.

• The Y OFFSET command line sets the offset value for the ordinate and has the same effect

as if the optional OFFSET command were used in the ORDINATE command line.

• The DEBUG command line prints functions to the log file if they were scaled and/or offset.

This command line is optional. The generated function function name is the original function

name concatenated with _with_scale_and_offset_applied. The generated function

is a valid function and could be placed into the input file and used.

• The VALUES command block consists of the real value pairs (x_1,y_1) through (x_n, x_

n), which describe the function. This command block must be used if the value on the

TYPE command line is CONSTANT, PIECEWISE LINEAR, or PIECEWISE CONSTANT. For

a CONSTANT function, only one value is needed. For a PIECEWISE LINEAR or PIECEWISE

CONSTANT function, the values are (x, y) pairs of data that describe the function. The values

are nested inside the VALUES command block.

A PIECEWISE LINEAR function performs linear interpolations between the provided value

pairs; a PIECEWISE CONSTANT function is constant valued between provided value pairs.

Figure 2.1 (a) shows an example of a piecewise linear function, and Figure 2.1 (b) shows an

example of a piecewise constant function.

In the case of a PIECEWISE LINEAR or PIECEWISE CONSTANT function, for any abscissa

value passed to the function that is greater than the last abscissa value in the VALUES com-

mand block, the last ordinate value is used for the function value. For example, suppose a

piecewise linear function named my_func describes a time history for a pressure load where

the pressure increases from 0 to 50,000 psi from time 0.0 sec to time 1.0× 10−3 sec. The

last time specified in the function is 1.0× 10−3. Now, suppose our final analysis time is

56 CHAPTER 2. GENERAL COMMANDS

Figure 2.1: Piecewise linear and piecewise constant functions

2.0× 10−3 sec. Then, from the time 1.0× 10−3 to the time 2.0× 10−3, the value for this

function (my_func) will be 50,000 psi.

• For a piecewise constant function, a constant valued segment ends on the left hand side of an

abscissa value and a new constant value segment begins on the right hand side of the same

abscissa value. (This transition from one constant value to another is indicated by the dotted

line in Figure 2.1 (b).) When the value of the function is to be evaluated at a discontinuity,

where there two potential values for the ordinate, the default behavior is to use the ordinate

from the value pair that has the lower-valued abscissa, or in other words, to use the value on

the left hand side of the discontinuity. The AT DISCONTINUITY EVALUATE TO command

line can be used to override this default behavior at an abscissa with two ordinate values. The

command line can have a value of either LEFT or RIGHT. If LEFT (the default) is specified,

the ordinate value to the left of the abscissa is used; if RIGHT is specified, the ordinate value

to the right of the abscissa is used.

• The EVALUATE EXPRESSION command line consists of one or more user-supplied algebraic

expressions. This command line must be used if the value on the TYPE command line is

ANALYTIC. See the rules and options for composing algebraic expressions discussed below.

Importantly, a DEFINITION FOR FUNCTION command block cannot contain both a VALUES

command block and an EVALUATE EXPRESSION command line.

Rules and options for composing algebraic expressions. If you choose to use the EVALUATE

EXPRESSION command line, you will need to write the algebraic expressions. The algebraic

expressions are written using a C-like format. Each algebraic expression is terminated by a semi-

colon(;). The entire set of algebraic expressions, whether a single expression or several, is enclosed

in a single set of double quotes(" ").

An expression is evaluated with x as the independent variable. We first provide several simple

examples and then list the options available in the algebraic expressions.

Example: Return sin(x) as the value of the function.

2.1. SIERRA SCOPE 57

begin definition for function fred

type is analytic

evaluate expression is ‘‘sin(x);’’

end definition for function fred

In this example, the commented out table is equivalent to the evaluated expression:

begin definition for function pressure

type is analytic

evaluate expression is ‘‘x <= 0.0 ? 0.0 : (x < 0.5 ? x*200.0

: 100.0);’’

begin values

0.0 0.0

0.5 100.0

1.0 100.0

end values

end definition for function pressure

The following functionality is currently implemented for the expressions:

Operators

+ - * / == != > < >= <= ! & | && || ? :

Parentheses

()

Math functions

abs(x), absolute value of x

mod(x, y), modulus of x|y

ipart(x), integer part of x

fpart(x), fractional part of x

Power functions

pow(x, y), x to the y power

pow10(x), x to the 10 power

sqrt(x), square root of x

Trigonometric functions

acos(x), arccosine of x

asin(x), arcsine of x

atan(x), arctangent of x

58 CHAPTER 2. GENERAL COMMANDS

atan2(y, x), arctangent of y/x, signs of x and y

determine quadrant (see atan2 man page)

cos(x), cosine of x

cosh(x), hyperbolic cosine of x

sin(x), sine of x

sinh(x), hyperbolic sine of x

tan(x), tangent of x

tanh(x), hyperbolic tangent of x

Logarithm functions

log(x), natural logarithm of x

ln(x), natural logarithm of x

log10(x), the base 10 logarithm of x

exp(x), e to the x power

Rounding functions

ceil(x), smallest integral value not less than x

floor(x), largest integral value not greater than x

Random functions

rand(), random number between 0.0 and 1.0, not including 1.0

randomize(), random number between 0.0 and 1.0, not

including 1.0

srand(x), seeds the random number generator

Conversion functions

deg(x), converts radians to degrees

rad(x), converts degrees to radians

recttopolr(x, y), magnitude of vector x, y

recttopola(x, y), angle of vector x, y

poltorectx(r, theta), x coordinate of angle theta at

distance r

poltorecty(r, theta), y coordinate of angle theta at

distance r

Constants. There are two predefined constants that may be used in an expression. These two

constants are e and pi.

e = e = 2.7182818284...

pi = π = 3.1415926535...

2.1. SIERRA SCOPE 59

2.1.6 Axes, Directions, and Points

DEFINE POINT <string>point_name WITH COORDINATES

<real>value_1 <real>value_2 <real>value_3

DEFINE DIRECTION <string>direction_name WITH VECTOR

<real>value_1 <real>value_2 <real>value_3

DEFINE AXIS <string>axis_name WITH POINT

<string>point_1 POINT <string>point_2

DEFINE AXIS <string>axis_name WITH POINT

<string>point DIRECTION <string>direction

A number of Presto features require the definition of geometric entities. For instance, the pre-

scribed displacement boundary condition requires a direction definition, and the cylindrical veloc-

ity initial condition requires an axis definition. Currently, Presto input permits the definition of

points, directions, and axes. Definition of these geometric entities occurs in the SIERRA scope.

The DEFINE POINT command line is used to define a point:

DEFINE POINT <string>point_name WITH COORDINATES

<real>value_1 <real>value_2 <real>value_3

where

- The string point_name is a name for this point. This name must be unique to all other

points defined in the input file.

- The real values value_1, value_2, and value_3 are the x, y, and z coordinates of the

point.

The DEFINE DIRECTION command line is used to define a direction:

DEFINE DIRECTION <string>direction_name WITH VECTOR

<real>value_1 <real>value_2 <real>value_3

where

- The string direction_name is a name for this direction. This name must be unique to all

other directions defined in the input file.

- The real values value_1, value_2, and value_3 are the x, y, and z magnitudes of the

direction vector.

There are two command lines that can be used to define an axis. The first DEFINE AXIS command

line uses two points:

60 CHAPTER 2. GENERAL COMMANDS

DEFINE AXIS <string>axis_name WITH POINT

<string>point_1 POINT <string>point_2

where

- The string axis_name is a name for this axis. This name must be unique to all other axes

defined in the input file.

- The strings point_1 and point_2 are the names for two points defined in the input file via

a DEFINE POINT command line.

The second DEFINE AXIS command line uses a point and a direction:

DEFINE AXIS <string>axis_name WITH POINT

<string>point DIRECTION <string>direction

where

- The string axis_name is a name for this axis. This name must be unique to all other axes

defined in the input file.

- The string point is the name of a point defined in the input file via a DEFINE POINT

command line.

- The string direction is the name of a direction defined in the input file via a DEFINE

DIRECTION command line.

2.1.7 Orientation

BEGIN ORIENTATION <string>orientation_name

SYSTEM = <string>RECTANGULAR|Z RECTANGULAR|CYLINDRICAL|

SPHERICAL(RECTANGULAR)

#

POINT A = <real>global_ax <real>global_ay <real>global_az

POINT B = <real>global_bx <real>global_by <real>global_bz

#

ROTATION ABOUT <integer> 1|2|3(1) = <real>theta(0.0)

END [ORIENTATION <string>orientation_name]

The ORIENTATION command block is currently used in Presto to define a local coordinate system

for output of shell stresses. In the future, the ORIENTATION command block will be used with

other functionality in Presto.

A local coordinate system is defined at the particular location at which it is required. For example,

suppose we want to define a local coordinate system for a shell element. This local coordinate

2.1. SIERRA SCOPE 61

system will be used for output of stresses in the element. For shell elements, the centroid of the

element is where we want to define the local coordinates for output of stresses. When we use

orientation with a shell element, the centroid of the shell element becomes the particular location

at which we want to define a local coordinate system. (When we associate an orientation with a

block of shell elements, the orientation will generate a local coordinate system for each element in

the block.)

Figure 2.2: Adjacent shell elements with nonaligned local coordinate systems

To understand why we would want to specify the local coordinate system for shell elements, con-

sider the example of two adjacent shell elements, as shown in Figure 2.2. A common notation

system for a local coordinate system for a shell element defines the 1-axis as an axis lying in the

shell; the 1-axis passes through the centroid of the shell. The 3-axis is normal to the shell at the

centroid of the shell. The 2-axis is the cross-product of the 3-axis and 1-axis—3× 1. The orien-

tation of the 1-2-3 coordinate system for a shell element is determined by the connectivity for a

shell element and the geometric location of the nodes. In Figure 2.2, the default local coordinate

systems for the two elements do not align (the 1-axis in one element parallel to the 1-axis in the

other element, the 2-axis in one element parallel to the 2-axis in the other element).

In general, for a shell element mesh, there is no guarantee that the default local system for one

element will be reasonably aligned with its neighboring elements. The local coordinates for adja-

cent shell elements need to show a reasonable alignment to make it easier to interpret stress results,

especially for graphical representations. Take the case of a cylindrical object modeled with shell

elements. We might want the local 2-axis of each element to align with the cylindrical axis of the

cylinder. We would want the local 1-axis of each element to be tangent to the cylinder and normal

to the cylindrical axis. The ORIENTATION option gives us the ability to control the orientation for

the local coordinate system for each element and align each one of these local coordinate systems

so that it is easier to interpret stress information for shells.

The SYSTEM command line gives you several options for constructing a local coordinate sys-

tem. The options on this command line are RECTANGULAR, Z RECTANGULAR, CYLINDRICAL,

and SPHERICAL. The SYSTEM command line is optional. If you do not include a SYSTEM com-

mand line in the ORIENTATION command block, the default system is the RECTANGULAR system.

The ORIENTATION command actually generates two local coordinate systems. The first local

62 CHAPTER 2. GENERAL COMMANDS

system constructed at a particular location will always be a Cartesian system designated as X ′Y ′Z′.
How this system is constructed depends on the choice for the SYSTEM option. Regardless of what

system option you choose, the command lines POINT A and POINT B are required. The details of

constructing a local coordinate system for each of the different SYSTEM options is described below.

Figure 2.3: Rectangular coordinate system

• RECTANGULAR option: The command line POINT A defines a point a that lies on the X ′-
axis. The command line POINT B defines a point b that lies in the X ′Y ′-plane (Figure 2.3).

Let the coordinates of a define a vector ~A and the coordinates of b define a vector ~B. The

normalized value of ~A, ~A/ ‖ ~A ‖, defines a unit vector along the X ′-axis, which we denote as
~X ′. The normalized cross-product of ~A×~B is a unit vector defining the Z′-axis, which we

denote as ~Z′. We can obtain a unit vector along the Y ′-axis, ~Y ′, from a cross-product of ~Z′

and ~X ′. The three unit vectors ~X ′, ~Y ′, and ~Z′ give us our local coordinate system X ′Y ′Z′.

Figure 2.4: Z-Rectangular coordinate system.

• Z RECTANGULAR option: The command line POINT A defines a point a that lies on the Z′-
axis. The command line POINT B defines a point b that lies in the X ′Z′-plane (Figure 2.4).

Let the coordinates of a define a vector ~A and the coordinates of b define a vector ~B. The

2.1. SIERRA SCOPE 63

normalized value of ~A, ~A/ ‖ ~A ‖, defines a unit vector along the Z′-axis, which we denote as
~Z′. The normalized cross-product of ~A×~B is a unit vector defining the Y ′-axis, which we

denote as ~Y ′. We can obtain a unit vector along the X ′-axis, ~X ′, from a cross-product of ~Y ′

and ~Z′. The three unit vectors ~X ′, ~Y ′, and ~Z′ give us our local coordinate system X ′Y ′Z′.

Figure 2.5: Cylindrical coordinate system.

• CYLINDRICAL option: The point a defined by the command line POINT A and the point

b defined by the command line POINT B define a cylindrical axis (Figure 2.5). The local

coordinate system always has the Z′-axis parallel to this cylindrical axis and in the direction

from a to b. The vector ~Z′ is a unit vector defining the Z′-axis. The X ′-axis lies along a line

that is normal to the cylindrical axis and passes through the origin of our local coordinate

system. (e.g., if we are defining a local system for shell stress output, the origin of our local

system is the centroid of the element.) The vector ~X ′ is a unit vector defining the X ′-axis.

We can obtain the Y ′-axis from the cross-product of the ~Z′ and ~X ′ vectors. The three unit

vectors ~X ′, ~Y ′, and ~Z′ give us our local coordinate system X ′Y ′Z′.

Figure 2.6: Spherical coordinate system.

• SPHERICAL option: The point a, from the POINT A command line, defines the center of a

sphere. The point b, from the POINT B command line, defines a polar axis for the sphere.

64 CHAPTER 2. GENERAL COMMANDS

(See Figure 2.6.) The X ′-axis lies along a line passing through the origin of the sphere, point

a, and the origin of our local coordinate system. (e.g., if we are defining a local system for

shell stress output, the origin of our local system is the centroid of the element.) The vector
~X ′ is a unit vector defining the X ′-axis. A cross-product of the polar axis for the sphere and

the vector ~X ′ gives the ~Y ′ vector. The vector ~Y ′ is a unit vector defining the Y ′-axis. We can

obtain the Z′-axis from the cross-product of the ~X ′ and ~Y ′ vectors. The three unit vectors ~X ′,
~Y ′, and ~Z′ give us our local coordinate system X ′Y ′Z′.

The second local coordinate system constructed at a particular location is defined by use of the

ROTATION ABOUT command line. This second local coordinate system is always a Cartesian

system that is designated as X ′′Y ′′Z′′. The ROTATION ABOUT command line has the following

form:

ROTATION ABOUT 1|2|3(1) = <real>theta(0.0)

The second local coordinate system, X ′′Y ′′Z′′, is obtained by specifying some rotation, the theta

parameter, about an axis, which is specified with an integer value of 1, 2, or 3. (The 1, 2, and

3 notation used in this command line should not be confused with the axes of the 1-2-3 local

coordinate system. The 1 in this command line implies rotation about X ′, the 2 implies rotation

about Y ′, and the 3 implies rotation about Z′.) The parameter theta has units of degrees. The

manner in which the X ′′Y ′′Z′′ is generated is as follows:

• Rotation about the X ′-axis (ROTATION ABOUT 1): If the ROTATION ABOUT command line

uses a value of 1, then the X ′′Y ′′Z′′ coordinate system is obtained by a transformation that

rotates the X ′Y ′Z′ coordinate system by theta degrees about the X ′-axis. The local origin

for X ′′Y ′′Z′′ is the same as that for X ′Y ′Z′. For shell elements, the Y ′′-axis is projected onto

the shell element to form the local 1-axis for the shell element. The 3-axis is the normal to

the shell at the centroid. The 2-axis is the cross-product of the 3-axis and the 1-axis.

Figure 2.7: Rotation about 1

For this case, ROTATION ABOUT 1, of the ROTATION ABOUT command line, an example

is shown in Figure 2.7. After the rotation about the X ′-axis, the X ′ and X ′′ axes coincide.

Both the Y ′′ and Z′′ axes are rotated and both axes remain in the original Y ′Z′-plane. Similar

patterns exist for the cases of ROTATION ABOUT 2 and ROTATION ABOUT 3.

2.1. SIERRA SCOPE 65

• Rotation about the Y ′-axis (ROTATION ABOUT 2): If the ROTATION ABOUT command line

uses a value of 2, then the X ′′Y ′′Z′′ coordinate system is obtained by a transformation that

rotates the X ′Y ′Z′ coordinate system by theta degrees about the Y ′-axis. The local origin

for X ′′Y ′′Z′′ is the same as that for X ′Y ′Z′. For shell elements, the Z′′-axis is projected onto

the shell element to form the local 1-axis for the shell element. The 3-axis is the normal to

the shell at the centroid. The 2-axis is the cross-product of the 3-axis and the 1-axis.

• Rotation about the Z′-axis (ROTATION ABOUT 3): If the ROTATION ABOUT command line

uses a value of 3, then the X ′′Y ′′Z′′ coordinate system is obtained by a transformation that

rotates the X ′Y ′Z′ coordinate system by theta degrees about the Z′-axis. The local origin

for X ′′Y ′′Z′′ is the same as that for X ′Y ′Z′. For shell elements, the X ′′-axis is projected onto

the shell element to form the local 1-axis for the shell element. The 3-axis is the normal to

the shell at the centroid. The 2-axis is the cross-product of the 3-axis and the 1-axis.

If the ROTATION ABOUT command line is not included in the ORIENTATION command block, the

X ′′Y ′′Z′′ coordinate system is generated with a rotation about the X ′-axis of zero degree, e.g., the

ROTATION ABOUT command line defaults to a value of 1 with the value of the parameter theta

set to zero 0.0. The default values imply that the Y ′′-axis is projected on the shell element to

determine the local 1-axis.

66 CHAPTER 2. GENERAL COMMANDS

2.2 Procedure and Region

The Presto procedure scope is nested within the SIERRA scope, and the Presto region scope is

nested within the procedure scope (see Section 1.2 for more information about scope). To create

the scopes for the Presto procedure and Presto region, use the following commands:

BEGIN PRESTO PROCEDURE <string>presto_procedure_name

PRINT BANNER INTERVAL = <integer>print_banner_interval(MAX_INT)

#

TIME CONTROL command block

#

BEGIN PRESTO REGION <string>presto_region_name

#

command blocks and command lines that appear in the

region scope

#

END [PRESTO REGION <string>presto_region_name]

END [PRESTO PROCEDURE <string>presto_procedure_name]

The TIME CONTROL command block also appears within the PRESTO PROCEDURE command

block but outside of the PRESTO REGION command block. These three command blocks (pro-

cedure, time control, and region) are discussed below.

The PRINT BANNER INTERVAL line command sets the number of PRESTO output lines to print

before re-printing the column headings. The default value is set to the maximum allowed integer

value. This means that the banner will be printed to the log file one time by default.

Many command blocks and command lines fall within the region scope. These command blocks

and command lines are described in other sections of this document.

2.2.1 Procedure

The analysis time, from the initial time to the termination time, is controlled within the procedure

scope defined by the PRESTO PROCEDURE command block. The command block begins with an

input line of the form:

BEGIN PRESTO PROCEDURE <string>presto_procedure_name

and is terminated with an input line of the following form:

END [PRESTO PROCEDURE <string>presto_procedure_name]

The string presto_procedure_name is the name for the Presto procedure.

2.2. PROCEDURE AND REGION 67

2.2.2 Time Control

Within the procedure scope, there is a TIME CONTROL command block. This command block lets

the user set the initial time and the termination time for an analysis. This block also allows the user

to control the size of the time step.

Because Presto is an explicit, transient dynamics code, it must run at a time step that is less than the

critical time for the problem at any given instant. Typically, this global critical time step is based

on a critical time step estimate calculated for each element. With the TIME CONTROL command

block, the user can set an initial time step, scale the element-based time step estimate, and control

the growth of the element-based estimate for the critical time step.

In addition to the element-based method for estimating the critical time step, Presto offers other

methods for estimating the critical time step. One approach for estimating the critical time step

is to calculate the maximum eigenvalue for the model. There are two methods for calculating the

maximum eigenvalue: the Lanczos method and the power method. A second approach for estimat-

ing the critical time step is to use a node-based method. The command blocks for implementing

these various methods (maximum eigenvalue calculation and node-based) are in the region scope.

There is also a mass-scaling technique that will influence the magnitude of the critical time step. If

you use the mass-scaling technique, you must use the node-based method to obtain a critical time

step estimate.

The estimation of the time step is a key part of any Presto analysis. Time step determination

and control is discussed in detail in Chapter 3 of this document. The TIME CONTROL command

block with its associated command lines are described in detail in Chapter 3. Consult Chapter 3

to determine how to specify command lines associated with the TIME CONTROL command block

and how the TIME CONTROL command block fits into the overall scheme for time step control in

Presto. Also consult with Chapter 3 to learn about the other methods for estimating the critical

time step and the mass-scaling technique.

2.2.3 Region

Individual time steps are controlled within the region scope. The region scope is defined by a

PRESTO REGION command block that begins with an input line of the form

BEGIN PRESTO REGION <string>presto_region_name

and is terminated with an input line of the following form:

END [PRESTO REGION <string>presto_region_name]

The string presto_region_name is the name for the Presto region.

The region, as indicated previously, determines what happens at each time step. In the procedure,

we set the begin time and end time for the analysis. Time is incremented in the region. It is in the

region where we set information about what occurs at various time steps. The output of results,

for example, is set by command blocks in the region. If we want results output at certain times or

certain steps in the analysis, this information is set in command blocks in the region. The region

also contains command blocks for the boundary conditions. A boundary condition can have a

68 CHAPTER 2. GENERAL COMMANDS

time-varying component. The region determines the value of the component for the current time

step.

Two of the major types of command blocks, those for results output and boundary conditions, have

already been mentioned. Other major types of command blocks in the region are those for restart

control and contact. The region is also where the user selects the analysis model (finite element

mesh).

The region makes use of information in the procedure and the SIERRA scope. For example, the

specific element type used for an element block in the analysis model is defined in the SIERRA

scope. This information about the element type is collected into an analysis model. The region

then references this analysis model. As another example, the boundary condition command blocks

can reference a function. The function will be defined in the SIERRA scope.

2.3. USE FINITE ELEMENT MODEL 69

2.3 Use Finite Element Model

USE FINITE ELEMENT MODEL <string>model_name

The model specification occurs within the region scope. To specify the model (finite element

mesh), use this command line. The string model_name must match a name used in a FINITE

ELEMENT MODEL command block described in Section 5.1. If one of these command blocks uses

the name penetrator in the command-block line and this is the model we wish to use in the

region scope, then we would enter the command line as follows:

USE FINITE ELEMENT MODEL penetrator

70 CHAPTER 2. GENERAL COMMANDS

2.4 Element Distortion Metrics

Presto can compute a number of element distortion metrics useful for assessing the quality of the

solution as the mesh evolves over time. These metrics are computed as element variables, and

can be used for output or as criteria for element death, just like any other element variable. The

solution quality generally deteriorates as elements approach inversion, and if they do invert, the

analysis aborts. The distortion metrics measure how close an element is to inversion. For all

metrics a value of 1.0 is an ideal element and a value of 0.0 is a degenerate element. The following

distortion metrics are available:

• NODAL_JACOBIAN_RATIO is currently available only for 8 node hexahedra. This metric

evaluates the Jacobian function at each node of each element, and then computes the nodal

Jacobian ratio as the smallest nodal Jacobian divided by the largest nodal Jacobian. An

element having right angles between all adjacent edges has a nodal Jacobian ratio of 1.0.

A negative nodal Jacobian ratio indicates that the element is becoming either convex or

locally inverted. See Figure 2.8 for examples of quadrilateral elements with positive, zero,

and negative nodal Jacobian ratios. The element calculations on poorly shaped elements

(those with negative nodal Jacobian ratios) will generally be less accurate than those on well

shaped elements (those with positive nodal Jacobian ratios). In addition, contact surfaces

may become tangled and non-physical if elements start to invert.

• ASPECT_RATIO is available only for tetrahedral elements. A perfect equilateral tetrahedron

has an aspect ratio of 1.0. A degenerate zero-volume tetrahedron has an aspect ratio of zero.

An inverted tetrahedron has a negative aspect ratio. A very thin element can have a very

small aspect ratio.

• SOLID_ANGLE computes the minimum or maximum angle between edges of an element

as compared to optimal angles. The optimal solid angle for tetrahedra and triangles is 60

degrees; for hexahedra and quadrilaterals, it is 90 degrees. This error metric is 1.0 for an

element in which all angles are optimal. Severely distorted or twisted elements have values

of this metric near 0.0, and it is negative for inverted elements. This metric is 0 for degenerate

elements. The SOLID ANGLE metric functions with hex, tet, triangle, and quad elements.

• PERIMETER_RATIO measures the the ratio of the deformed perimeter of an element to the

undeformed perimeter of the element. This metric initially has a value of 1.0, and assumes

values either greater than or lower than 1 as the mesh deforms. The PERIMETER_RATIO

metric only works with triangle and quad elements.

• DIAGONAL_RATIO measures the the ratio of the deformed max diagonal of an element to

the undeformed max diagonal of the element. This metric initially has a value of 1.0, and

assumes values either greater than or lower than 1 as the mesh deforms. The DIAGONAL_

RATIO metric only works with hex and quad elements.

The results from any of these distortion metrics can be requested by specifying an ELEMENT

VARIABLES command line (Section 8.2.1.4) in the RESULTS OUTPUT command block (Sec-

tion 8.2.1) for each metric for which the results are of interest. For example, to request the

2.4. ELEMENT DISTORTION METRICS 71

a) Nodal Jacobian = 1.0

b)Nodal Jacobian = 0.0

c) Nodal Jacobian < 0.0

Figure 2.8: Examples of elements with varying nodal Jacobians

ASPECT_RATIO metric to be output as an element variable named aspect in the results output

file, the following line can be included in a RESULTS OUTPUT command block:

ELEMENT VARIABLES = ASPECT_RATIO as aspect

The distortion metrics can also be used for element death (Section 5.5). For example, to kill all

elements in which the value of the SOLID_ANGLE metric is less than 0.2, the following line can be

used in an ELEMENT DEATH command block:

CRITERION IS ELEMENT VALUE OF SOLID_ANGLE < 0.2

For more information about the use of element variables for element death, see Section 5.5.2.2.

72 CHAPTER 2. GENERAL COMMANDS

2.5 Activation/Deactivation of Functionality

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

The ACTIVE PERIODS or INACTIVE PERIODS command line can be used to activate or deacti-

vate functionality in the code at various points during an analysis. This functionality can include

such things as boundary conditions, element blocks, and user subroutines. Command blocks that

support this capability are documented accordingly in the sections of this manual where they are

described.

In the command line, the string list period_names is a list of the time periods defined in

TIME STEPPING BLOCK command blocks (see Section 3.1) during which the particular func-

tionality is considered to be active. Each such period_name must match a name used in a

TIME STEPPING BLOCK command block, e.g., time_block_name. Each defined time period

runs from that period’s start time to the next period’s start time.

Only one of ACTIVE PERIODS or INACTIVE PERIODS can be used in any given command block.

If the ACTIVE PERIODS command line is present, the functionality will be treated as active for

all of the named periods, and inactive for any time periods that are not listed. If the INACTIVE

PERIODS command line is present, the functionality will be treated as inactive for all of the named

periods and active for any period not listed. If neither of these command lines is present, by default

the functionality is active during all time periods.

Chapter 3

Time Step Control in Presto

This chapter discusses time control in Presto. We begin with a broad overview of time control in

Presto and then describe the options that are available to users for time control.

The user initiates time control in Presto by setting a start time and a termination time for an anal-

ysis. The analysis is typically carried out with a large number of time steps, with each time step

being much smaller than the analysis time. Because Presto is an explicit, transient dynamics code,

a time step must be less than some critical value. Presto has a number of methods for computing

an estimate for the critical time step. These methods are discussed in detail in this chapter.

The primary time control uses a TIME CONTROL command block that appears in the procedure

scope. Use of the TIME CONTROL command block gives the user, by default, access to an element-

based method for estimating the critical time step. The user can access three other methods for

estimating the critical time step by using specific command blocks that are placed in the region

scope. These other methods tend to give better (larger) estimates for the critical time step. In

addition, Presto has a technique for adjusting the time step that is known as mass scaling.

Section 3.1 describes the TIME CONTROL command block. In Section 3.2 we discuss the other

methods for estimating the critical time step. One approach for improving this estimate is to

compute the maximum eigenvalue for a problem. Two methods for computing the maximum

eigenvalue are available in Presto: the Lanczos method and the power method. Section 3.2.1 dis-

cusses the Lanczos method; Section 3.2.1.5 describes the command block required to implement

the Lanczos method. Section 3.2.2 discusses the power method; Section 3.2.2.5 describes the com-

mand block required to implement the power method. Another approach for improving the time

step estimate relies on a node-based estimate. Section 3.2.3 discusses the node-based method;

Section 3.2.3.1 describes the command block required to implement the node-based method. You

should read the introductory material for the maximum eigenvalue calculation methods and the

node-based method and understand this material thoroughly before you attempt to use these meth-

ods. Although these other methods give larger time step estimates than the element-based method,

they may not result in a net reduction of central processor unit (CPU) time for an analysis unless

they are used properly. In those sections dealing with these other methods, we discuss how to use

these methods in a cost-effective manner. Finally, in Section 3.2.3 we describe the technique of

mass scaling. Mass scaling is a much different approach for adjusting the time step when compared

73

74 CHAPTER 3. TIME STEP CONTROL IN PRESTO

to the methods (element-, node-, maximum eigenvalue-based) we have just been discussing. The

command block for mass scaling is in the region scope. Importantly, the mass-scaling technique

requires that the node-based method of estimating the critical time step also be used.

3.1 Procedure Time Control

As indicated previously, the primary time control in Presto uses a TIME CONTROL command block

in the procedure scope. The user sets the start time and the termination time for the analysis in

the TIME CONTROL command block. For reference purposes, the general layout of the command

block is as follows:

BEGIN TIME CONTROL

BEGIN TIME STEPPING BLOCK <string>time_block_name

START TIME = <real>start_time_value

BEGIN PARAMETERS FOR PRESTO REGION <string>region_name

INITIAL TIME STEP = <real>initial_time_step_value

TIME STEP SCALE FACTOR =

<real>time_step_scale_factor(1.0)

TIME STEP INCREASE FACTOR =

<real>time_step_increase_factor(1.1)

STEP INTERVAL = <integer>nsteps(100)

USER TIME STEP = <real>time_step

END [PARAMETERS FOR PRESTO REGION <string>region_name]

END [TIME STEPPING BLOCK <string>time_block_name]

Second TIME STEPPING BLOCK command block

would be placed here, as applicable.

#

Additional TIME STEPPING BLOCK command blocks

would be placed here, as applicable.

#

Last TIME STEPPING BLOCK command block

would be placed here, as applicable.

#

TERMINATION TIME = <real>termination_time

END [TIME CONTROL]

The analysis time, as demonstrated above, can be subdivided into a number of time blocks, i.e.,

TIME STEPPING BLOCK command blocks. If the total analysis time is from time 0 to time T and

there are three blocks, then the first block is defined from time 0 to time t1, the second block is

defined from time t1 to time t2, and the third block is defined from time t2 to time T . (The times t1
and t2 are set by the user.) If we sum all the times for each block, the sum will be T . The different

time periods defined by each block can be referenced so that we can turn certain functionality on or

off throughout an analysis. For example, we may want to have a certain boundary condition turned

off during our first time period and activated for the second time period. (Most analyses require

3.1. PROCEDURE TIME CONTROL 75

only one block.) Use the ACTIVE PERIODS or INACTIVE PERIODS command lines described in

Section 2.5 to activate and deactivate functionality during specific time blocks.

By default, Presto relies on the element-based critical time step estimate. At every time step, an

element-based calculation is performed to determine a critical time step. You have some control

over the actual time step that is used by employing one of two techniques. We discuss these two

techniques in the following paragraphs. The specific command lines for using these techniques are

described in Section 3.1.1.

With the first technique, you can set an initial time step that is smaller than the element-based

critical time step estimate. Presto will start the analysis by using your initial time step value instead

of the element-based critical time step estimate (as long as your value is less than the element-based

critical time step estimate). You can then control the rate at which the time step increases from your

initial value. This technique is employed by using the TIME STEP INCREASE FACTOR command

line as follows:

• If you set a time step increase factor equal to 1, then the initial value you specified will be

used throughout the analysis (provided that the initial time step is never smaller than the

element-based critical time step estimate throughout the computations).

• If you set a time step increase factor to some value greater than 1, the time step will grow

(from the initial value) at each time step until it reaches the value of the element-based

critical time step estimate. From then on, the element-based critical time step estimate will

essentially control the time step.

With the second technique, you can manipulate the element-based estimate with either a scale

factor or a time step increase factor. This technique is employed by using the TIME STEP SCALE

FACTOR command line or the TIME STEP INCREASE FACTOR command line as follows:

• The element-based estimate for the critical time step is usually smaller than some maximum

theoretical value for your model. It may therefore be possible to scale the element-based

critical time step estimate by some factor greater than 1. (Your scaled value must remain

below the theoretical maximum limit, however. We discuss ways to obtain a critical time

step close to the theoretical maximum in later sections of this chapter.)

• If there are stability problems with a particular problem, it may be necessary to scale the

element-based estimate with a factor less than 1.

• You can also control the rate at which the time step can increase for an analysis. By specify-

ing a time step increase factor, you can limit the increase in the size of the time step so that

it does not increase too rapidly from one step to the next. For certain problems, the element-

based critical time step estimate may increase rapidly from one step to the next. Limiting

the increase in the size of the time step may enable some problems to run in a more stable

fashion.

The USER TIME STEP command can be used to explicitly set the integration time step, overriding

the critical time step computed by any time step estimation methods. This command can be used

to force the analysis to integrate at any specified time step, even a super-critical one.

76 CHAPTER 3. TIME STEP CONTROL IN PRESTO

Warning: The TIME STEP SCALE FACTOR and USER TIME STEP commands

both provide the ability to force the code to take a time step larger than the stability

limit, and as such, should be used with caution. If the time step specified with either

of these commands is too large, the time integration will add energy to the system,

causing the analysis to go unstable and ultimately fail.

Now that we have presented an overview of the functionality in the TIME CONTROL command

block, we will discuss the actual command lines.

3.1.1 Command Blocks for Time Control and Time Stepping

BEGIN TIME CONTROL

BEGIN TIME STEPPING BLOCK <string>time_block_name

START TIME = <real>start_time_value

BEGIN PARAMETERS FOR PRESTO REGION <string>region_name

#

Time control parameters specific to PRESTO

are set in this command block.

#

END [PARAMETERS FOR PRESTO REGION <string>region_name]

END [TIME STEPPING BLOCK <string>time_block_name]

TERMINATION TIME = <real>termination_time

END [TIME CONTROL]

Presto time control resides in a TIME CONTROL command block. The command block begins with

an input line of the form

BEGIN TIME CONTROL

and terminates with an input line of the following form:

END [TIME CONTROL]

Within the TIME CONTROL command block, a number of TIME STEPPING BLOCK command

blocks can be defined. Each TIME STEPPING BLOCK command block contains the time at which

the time stepping starts and a number of parameters that set time-related values for the analy-

sis. Each TIME STEPPING BLOCK command block terminates at the start time of the following

command block. The start times for the TIME STEPPING BLOCK command blocks must be in

increasing order. Otherwise, an error will be generated by Presto. (The example in Section 3.1.6

shows the overall structure of the TIME CONTROL command block.)

In the above input lines, the values are as follows:

- The string time_block_name is a name for the TIME STEPPING BLOCK command block.

This name must be unique to each command block of this type. The string time_block_

name can be referenced in an ACTIVE PERIODS or INACTIVE PERIODS command line to

activate and deactivate functionality (see Section 2.5).

3.1. PROCEDURE TIME CONTROL 77

- The real value start_time_value is the start time for this TIME STEPPING BLOCK com-

mand block. Values set by the block apply from the start time for this block until the next

start time or the termination time.

- The string region_name is the name of the Presto region affected by the parameters (see

Section 2.2).

The termination time for the analysis is given by the following command line:

TERMINATION TIME = <real>termination_time

Here, termination_time is the time at which the analysis will stop. The TERMINATION TIME

command line appears inside the TIME CONTROL command block but outside of any TIME

STEPPING BLOCK command block.

The TERMINATION TIME command line can appear before the first TIME STEPPING BLOCK

command block or after the last TIME STEPPING BLOCK command block. Note that it is per-

missible to have TIME STEPPING BLOCK command blocks with start times after the termination

time; in this case, those command blocks that have start times after the termination time are not

executed. Only one TERMINATION TIME command line can appear in the TIME CONTROL com-

mand block. If more than one of these command lines appears, Presto gives an error.

Nested inside the TIME STEPPING BLOCK command block is a PARAMETERS FOR PRESTO

REGION command block containing parameters that control the time stepping.

BEGIN PARAMETERS FOR PRESTO REGION <string>region_name

INITIAL TIME STEP = <real>initial_time_step_value

TIME STEP SCALE FACTOR = <real>time_step_scale_factor(1.0)

TIME STEP INCREASE FACTOR =

<real>time_step_increase_factor(1.1)

STEP INTERVAL = <integer>nsteps(100)

END [PARAMETERS FOR PRESTO REGION <string>region_name]

These parameters are specific to a Presto analysis.

The command block begins with an input line of the form

BEGIN PARAMETERS FOR PRESTO REGION <string>region_name

and is terminated with an input line of the following form:

END [PARAMETERS FOR PRESTO REGION <string>region_name]

As noted previously, the string region_name is the name of the Presto region affected by the

parameters. The command lines nested inside the PARAMETERS FOR PRESTO REGION command

block are described next. It should be noted that certain of these command lines will be ignored

when either of the maximum-eigenvalue methods or the node-based method is used to estimate the

critical time step. The discussions of the command blocks associated with these methods indicate

whether or not these command lines are pertinent.

78 CHAPTER 3. TIME STEP CONTROL IN PRESTO

3.1.2 Initial Time Step

INITIAL TIME STEP = <real>initial_time_step_value

By default, Presto computes a critical time step for the analysis and uses this value as the initial

time step. To directly specify a different initial time step, use the INITIAL TIME STEP command

line, where initial_time_step_value is the size of the initial time step. This command line

is only valid if it is in the first TIME STEPPING BLOCK command block in the problem.

The value for the initial time step will overwrite the calculated value for the critical time step. If

you specify an initial time step that is larger than the critical time step, the time step is set to the

value of the calculated critical time step.

3.1.3 Time Step Scale Factor

TIME STEP SCALE FACTOR = <real>time_step_scale_factor(1.0)

During the element computations, Presto computes a minimum time step required for stability of

the computation (the critical time step). Using the TIME STEP SCALE FACTOR command line,

you can provide a scale factor to modify the critical time step. Note that a value greater than 1.0

for time_step_scale_factor will cause the time step to be greater than the computed critical

time step, and thus the problem may become unstable. By default, the scale factor is 1.0.

3.1.4 Time Step Increase Factor

TIME STEP INCREASE FACTOR =

<real>time_step_increase_factor(1.1)

During an analysis, the computed critical time step may change as elements deform, are killed,

and so forth. By using the TIME STEP INCREASE FACTOR command line, you can limit the

amount that the time step can increase between two adjacent time steps. The value time_step_

increase_factor is a factor that multiplies the previous time step. The current time step can be

no larger than the product of the previous time step and the scale factor.

Note that an increase factor less than 1.0 will cause the time step to continuously decrease. The

default value for this factor is 1.1, i.e., a time step cannot be more than 1.1 times the previous step.

3.1.5 Step Interval

STEP INTERVAL = <integer>nsteps(100)

Presto can output data about the current time step, the current internal and external energy, and the

kinetic energy throughout an analysis. The STEP INTERVAL command line controls the frequency

3.1. PROCEDURE TIME CONTROL 79

of this output, where nsteps is the number of time steps between output. The default value for

nsteps is 100.

The output at any given step (read from left to right) is

- step number,

- time,

- time step,

- global element identifier for element controlling time step

- kinetic energy,

- internal energy,

- external energy (work done on boundary),

- error in energy balance,

- hour glass energy

- cpu time, and

- wall clock time.

The time is at the current time, step n, and the time increment is the previous time step increment

from step n−1 to step n.

The error in the energy balance is computed from the following relation:

energy balance error = (kinetic energy + internal energy

- external energy) / external energy * 100

The above expression gives a percent error for the energy balance.

3.1.6 Example

The following is a simple example of a TIME CONTROL command block:

BEGIN TIME CONTROL

BEGIN TIME STEPPING BLOCK p1

START TIME = 0.0

BEGIN PARAMETERS FOR PRESTO REGION presto_region

INITIAL TIME STEP = 1.0e-6

STEP INTERVAL = 50

END

80 CHAPTER 3. TIME STEP CONTROL IN PRESTO

END

BEGIN TIME STEPPING BLOCK p2

START TIME = 0.5e-3

BEGIN PARAMETERS FOR PRESTO REGION presto_region

TIME STEP SCALE FACTOR = 0.9

TIME STEP INCREASE FACTOR = 1.5

STEP INTERVAL = 10

END

END

TERMINATION TIME = 1.0e-3

END

The first TIME STEPPING BLOCK, p1, begins at time 0.0, the initial start time, and terminates

at time 0.5 × 10−3. The second TIME STEPPING BLOCK, p2, begins at time 0.5× 10−3 and

terminates at time 1.0× 10−3, which is the time listed on the TERMINATION TIME command

line. The TIME STEPPING BLOCK names p1 and p2 can be referenced by the ACTIVE PERIODS

or INACTIVE PERIODS command lines as described in Section 2.5 to activate and deactivate

functionality.

3.2. OTHER CRITICAL TIME STEP METHODS 81

3.2 Other Critical Time Step Methods

Currently, there are four methods for calculating a critical time step for Presto. First, there is the

traditional element-based method. We know that, in general, the element-based time step in Presto

can give a fairly conservative estimate for the time step. Second, there is a node-based method for

giving a critical time step estimate. Depending on the problem, the node-based method may or may

not give an estimate for the critical time step that approaches the theoretical maximum value for

a particular model. Although the node-based method can give a larger critical time step estimate

than the element-based method, the node-based estimate may still be significantly lower than the

maximum theoretical time step for a problem. Finally, there are two methods that use an estimate

for the maximum eigenvalue to obtain an estimate for the critical time step. From the maximum

eigenvalue, it is possible to derive the theoretical maximum critical time step for a problem via the

formula

∆tcrit = 2.0/
√

θmax , (3.1)

where ∆tcrit is the critical time step and θmax is the maximum eigenvalue. The two methods em-

ployed in Presto to give an estimate for the maximum eigenvalue are the Lanczos method and the

power method. The Lanczos method can give an accurate estimate of the maximum eigenvalue for

a problem using a very small number of Lanczos vectors compared to the total number of degrees

of freedom in a problem. The power method uses a simple iterative process to obtain an estimate

for the maximum eigenvalue. The power method is not as powerful a mathematical technique

as the Lanczos method for obtaining a maximum eigenvalue estimate. However, it does present

another viable option for obtaining a maximum eigenvalue estimate for certain problems and has

therefore been included as another method for obtaining the maximum eigenvalue estimate.

The use of a critical time step from the node-based method or a method based on the maximum

eigenvalue estimate is desirable because the larger critical time steps produced by these methods

(compared to the element-based method) reduce CPU time. Both methods, however, are not cost

effective if they are called every time step to give a critical time step estimate. The cost of doing

one node-based estimate or one maximum eigenvalue estimate for the critical time step will not

offset the cost benefit of the increase to the critical time step (compared to the element-based time

step estimate) over a single time step. Hence, there must be some scheme for

• calling these methods only periodically throughout a calculation and

• maintaining a larger estimate (than the element-based estimate) for the critical time step in

between these calls

if we are to gain a net benefit from the increase in the critical time step these methods can produce.

If you want to use the maximum eigenvalue estimate for calculating the critical time step and

your problem has long periods with a relatively stable time step estimate, the Lanczos method for

calculating the maximum eigenvalue will be the preferred method to use. If you have a problem

for which the changes in the time step should be monitored more frequently, the power method

will be better suited for this problem than the Lanczos method. The preferred use for each of these

82 CHAPTER 3. TIME STEP CONTROL IN PRESTO

two different eigenvalue methods will become obvious as you read the background material for

these two methods in Section 3.2.1 and Section 3.2.2. Both the Lanczos method and the power

method require the use of a variety of control parameters. For some of these control parameters,

techniques have been devised to automatically calculate values for these parameters in what should

be a robust and reliable method for a wide range of problems. Other parameters are defaulted to

values that will optimize the use of a particular eigenvalue calculation method (Lanczos method or

power method) with the type of problems that best suit the method that is employed. The default

values for these control parameters may change as we gain more experience in using the Lanczos

method and the power method.

Detailed discussions of the Lanczos method, the power method, and the node-based method follow.

There are many similarities in the implementation of the Lanczos method and the power method.

3.2.1 Lanczos Method

The Lanczos method, as implemented in Presto, is outlined here so that certain aspects of it can be

referenced in subsequent parts of this chapter. In the following set of equations, KT is a tangent

stiffness matrix, M is the mass matrix, and r0 is an arbitrary starting vector.

Initialize

q0 = 0

β = ([r0]
T M−1r0)

1/2

q1 = r0/β1

p1 = M−1q1

for j = 1,n

r̄ j = KT p j

r̂ j = r̄ j −q j−1β j

α j = [q j]
T M−1r̂ j = [p j]

T r̂ j

r j = r̂ j −q jα j

p̂ j = M−1r j

β j+1 = ([r j]
T M−1r j)

1/2 = ([p̄ j]
T r j)

1/2

if enough vectors, terminate loop

q j+1 = r j/β j+1

p j+1 = p̄ j/β j+1

end

The details for this form of the Lanczos method are described in Reference 1. Notice that the

Lanczos method is an iterative method. If we use the Lanczos method in a code like Presto to

compute the maximum eigenvalue for a particular finite element model, the number of iterations

3.2. OTHER CRITICAL TIME STEP METHODS 83

required to give a good estimate for the maximum eigenvalue will depend on the size of the finite

element model (the number of nodes and elements), the types of elements in the model, and the

material types and material properties used in the model.

The maximum eigenvalue for a particular finite element model gives us the largest estimate we

can obtain for the critical time step. Hence, the time step estimate derived from the maximum

eigenvalue is our “best” estimate for the critical time step. The estimate for the critical time step

based on the maximum eigenvalue can be significantly larger than an element-based time step

estimate. However, computing the critical time step (for a given time step) with the Lanczos

method is more expensive than computing the critical time step with element-based calculations.

Over one time step, it is not possible to recoup the cost of the Lanczos calculations with the

increase in the size of the time step over the element-based estimate. Using the Lanczos method

for estimating the critical time step in an explicit, transient dynamics code requires a methodology

that effectively addresses the computational costs. The following sections outline a cost-effective

approach to using the Lanczos method in an explicit, transient dynamics code.

3.2.1.1 Lanczos Method with Constant Time Steps

To explain how to use the Lanczos method in a cost-efficient manner, we must first establish

the computational cost of using the Lanczos method. As indicated previously, computing the

maximum eigenvalue for a finite element model requires some number of iterations (each iteration

in the Lanczos method produces a Lanczos vector) to obtain a good estimate for the maximum

eigenvalue. The cost of an iteration (Lanczos vector) is approximately the cost of an internal force

calculation. Notice, in preceding equations for the Lanczos method, that the Lanczos method

requires the product of the tangent stiffness matrix KT with a vector p. In Presto, we do not

construct a tangent stiffness matrix. Instead, we simply provide the vector p for the internal force

calculations. The internal force calculations give us the desired matrix × vector product of KT p.

Over a given time step, the cost of an internal force calculation is the major computational cost.

(This assumes no contact. The addition of contact introduces another computationally expensive

process into a time step. For our initial discussion, we ignore the cost of contact.) In order to

use the Lanczos method to get a critical time step estimate, one has to call the Lanczos method

for some given time step. If the Lanczos method made n iterations to get a good estimate for the

maximum eigenvalue, then the overall cost of the time step would be approximately n + 1 times

the cost of the internal force calculation. The cost of the time step would be the n internal force

calculations for Lanczos and the actual internal force calculation to advance the time step. If n is

20 (a minimum for typical problems), the cost of the time step becomes 21 times the cost of the

internal force calculation. The critical time step estimate based on the maximum eigenvalue would

have to be at least 21 times greater than the element-based critical time step to recoup the cost of

the maximum eigenvalue calculation. A typical value for the critical time step estimate based on

the maximum value is more in the range of 1.1 to 2.0 times the element-based critical time step

estimate. Obviously, the Lanczos method is much too expensive to call at every time step for a

critical time step estimate.

To explain how the Lanczos method can effectively be used in an explicit, transient dynamics

code, we begin with a simple case study. In this case study, we compute the critical time step using

84 CHAPTER 3. TIME STEP CONTROL IN PRESTO

the Lanczos method at some time step and then assume that this critical time step value remains

constant for a subsequent number of time steps, nL. We only call the Lanczos method once during

the nL time steps. (In reality, the critical time step in an explicit, transient dynamics code like

Presto changes with each time step. We address this issue of the changing time step when we

present the details for using the Lanczos method in a cost-effective manner.) For this case study,

we also assume that the computational cost of an element-based estimate for the critical time step is

part of the cost of an internal force calculation. The cost of the element-based time step estimate is

a small part of the overall internal force calculations. Finally, for our initial discussion, we assume

no contact. We address the issue of contact further in the discussion.

Assume that the Lanczos method computes a global estimate for the critical time step of ∆tL, which

is the value to be used for nL time steps. At the end of the nL time steps, the analysis time for the

code has been incremented by an amount ∆T , which is computed simply as

∆T = nL∆tL . (3.2)

If the element-based estimate for the time step is ∆te and the number of time steps required to

increment the analysis time by ∆T is ne, then, for the element-based time step, we have

∆T = ne∆te . (3.3)

Because the Lanczos estimate for the critical time step is larger than the element-based estimate,

we know that ne > nL. Let us define the ratio r as

r = ∆tL/∆te = ne/nL . (3.4)

The ratio r is greater than 1.

Now that we have determined the relation between the number of steps required for a Lanczos-

based critical time step estimate versus the element-based critical time step estimate to achieve the

same analysis time increment, let us examine the computational costs for these two cases in terms

of CPU time. Designate the CPU cost for a time step as ∆tIF . If the number of Lanczos vectors

required to obtain the critical time step estimate is NL, then the total computational cost of the

Lanczos method and the nL time steps is

nL∆tIF +NL∆tIF . (3.5)

If we use the element-based method, the total computational cost is

ne∆tIF . (3.6)

Recall that we have chosen nL and ne so that we have the same analysis time increment ∆T even

though we have different critical time steps. Now, we must determine the point at which the

computational cost for the Lanczos-based critical time step calculations is the same as the cost for

the element-based critical time step calculations. This is simply the point at which

3.2. OTHER CRITICAL TIME STEP METHODS 85

ne∆tIF = nL∆tIF +NL∆tIF . (3.7)

If we rearrange the above equation to eliminate ∆tIF and make use of the ratio r, then we obtain

ne =
NL

1−1/r
. (3.8)

Consider the case of r = 1.25 and NL = 20. When nL = 80 and ne = 100, the above equations

show that the calculations with the Lanczos-based critical time step and the calculations with the

element-based time step give the same analysis time for the same computational expense. If we use

the Lanczos-based critical time step ∆tL for more than eighty iterations, then the Lanczos-based

approach becomes cost effective. Our above equations have established the "break-even" point

at which it becomes cost effective to use the Lanczos method to reduce computational costs by

overcoming the initial cost of the Lanczos calculations with the larger critical time step.

We can build on what we have done thus far to account for contact. Suppose that the computational

cost of contact over a time step is some multiple m of the computational cost of the internal force

calculation ∆tIF . Then the point at which the computational cost for the Lanczos-based calculations

is the same as the computational cost for the element-based calculations is

(1+m)nL∆tIF +NL∆tIF = (1+m)ne∆tIF . (3.9)

For the case with contact,

ne =
NL

(1+m)(1−1/r)
. (3.10)

Again, consider the case of r = 1.25 and NL = 20. Assume the computational cost of contact

calculations is the same as an internal force calculation (m = 1). For these values, the break-even

point is nL = 40 and ne = 50. The added computational cost of the contact calculations results in

reaching the break-even point with a smaller number of iterations when compared to the case with

no contact.

The above derivations let us calculate a break-even point based on our assumptions of a constant

critical time step. Considering that a typical analysis will run for tens of thousands of time steps,

something on the order of 100 steps represents a reasonable number of steps to recoup the cost of

the Lanczos calculations. Whether or not the cost of the Lanczos calculations can be recouped in

something on the order of 100 calculations depends heavily upon NL. If NL is sufficiently small,

we can recoup the cost of the Lanczos calculations in a reasonable number of steps.

Some computational studies indicate that NL is in an acceptable range for many problems. The

Lanczos method computes a good estimate for the maximum eigenvalue with a small number of

Lanczos vectors, NL, compared to the number of degrees of freedom in a problem. Some com-

ponent studies show that, for a problem with between 250,000 and 350,000 degrees of freedom,

one can obtain a good estimate for the maximum eigenvalue with only twenty Lanczos vectors. A

large-scale study of a model involving 1.7 million nodes (5.1 million degrees of freedom) showed

86 CHAPTER 3. TIME STEP CONTROL IN PRESTO

that only forty-five Lanczos vectors were required to obtain a good estimate of the maximum

eigenvalue. These examples demonstrate that the number of Lanczos vectors required for a good

maximum eigenvalue estimate is very small when compared to the number of degrees of freedom

for a problem. When NL is in the range of twenty to forty-five, Equations 3.7 and 3.10 show that,

with an increase in the time step on the order of 1.2 to 1.25, we can recoup the cost of the Lanczos

method in a reasonable number of time steps.

Now that we have determined we can recoup the cost of the Lanczos calculations in a reasonable

number of time steps, let us look at the issue of reusing a Lanczos-based estimate in some manner.

3.2.1.2 Controls for Lanczos Method

As indicated in the above discussion, the Lanczos method can be used in a cost-effective manner

in an explicit, transient dynamics code if a Lanczos calculation can be performed and the Lanczos-

based estimate for the critical time step can be reused in some way over a number of subsequent

time steps. This section presents an approach for reusing a Lanczos-based estimate over a number

of time steps so that we maintain a critical time step estimate that is close to the theoretical max-

imum value in between the calls to the Lanczos method. The approach discussed here makes use

of the element-based critical time step estimate at each time step.

We start our approach with a Lanczos calculation to determine the maximum eigenvalue. The

Lanczos method converges to the maximum eigenvalue from below, which means that the method

underestimates the maximum eigenvalue. Because the critical time step depends on the inverse of

the maximum eigenvalue, we overestimate the critical time step. It is necessary, therefore, to scale

back the critical time step estimate from the Lanczos method so that the calculations in the explicit

time-stepping scheme do not become unstable. Our approach for determining a scaled-back value

for the maximum critical time step makes use of the element-based time step estimate. Again, let

∆tL be the critical time step estimate from the Lanczos method and ∆te be the critical time step

estimate from the element-based calculations. The scaled-back estimate for the critical time step,

∆ts, is computed from the equation

∆ts = ∆te + fs(∆tL −∆te) , (3.11)

where fs is a scale factor. (A reasonable value for fs ranges from 0.9 to 0.95 for our problems.)

This value of fs puts ∆ts close to and slightly less than a theoretical maximum critical time step.

Once ∆ts is determined, the ratio

tr = ∆ts/∆te (3.12)

is computed. This ratio is then used to scale subsequent element-based estimates for the critical

time step. If ∆te(n) is the nth element-based critical time step after the time step where the Lanczos

calculations are performed, then the nth time step after the Lanczos calculations, ∆t(n), is simply

∆t(n) = tr∆te(n) . (3.13)

3.2. OTHER CRITICAL TIME STEP METHODS 87

The ratio tr is used until the next call to the Lanczos method. The next call to the Lanczos method

is controlled by one of two mechanisms. With the first mechanism, the user can set the frequency

with which the Lanczos method is called. The user can set a parameter so that the Lanczos method

is called only once every n time steps. This number remains fixed throughout an analysis. With

the second mechanism, the user can control when the Lanczos method is called based on changes

in the element-based critical time step. For this second mechanism, the change in the element-

based critical time step estimate is tracked. Suppose the element-based critical time step at the

time the Lanczos method was called is ∆te. At the nth step after the call to the Lanczos method, the

element-based critical time step is ∆te(n). If the value

∆tlim =
|∆te(n)−∆te|

∆te
(3.14)

is greater than some limit set by the user, then the Lanczos method will be called. If there is a small,

monotonic change in the element-based critical time step over a large number of time steps, this

second mechanism will result in the Lanczos method being called. Or if there is a large, monotonic

change in the element-based critical time step over a few time steps, the Lanczos method will also

be called.

These two mechanisms for calling the Lanczos method can be used together. For example, suppose

the second mechanism (the mechanism based on a change in the element-based time step) results

in a call to the Lanczos method. This resets the counter for the first mechanism (the mechanism

using a set number of time steps between calls to the Lanczos method).

This approach for reusing a Lanczos-based time step estimate has been implemented in Presto, and

it has been used for a number of studies. One of the component studies, as indicated previously,

used the same scale factor for nL = 1700 iterations. The break-even point for this problem is

ne = 45 time steps (not accounting for contact, which was a part of the component modeling). For

this particular problem, the extended use of the Lanczos estimate reduced the computational cost

to 56% of what it would have been with the element-based time step.

Not all problems will lend themselves to reusing one Lanczos-based estimate for thousands of

time steps. However, if it is possible to use the Lanczos-based estimate for two to three times the

number of time steps required to reach the break-even point, we begin to see a noticeable reduction

in the total number of time steps required for a problem.

3.2.1.3 Scale Factor for Lanczos Method

When the Lanczos method is called for a given time step, it must appear that the calculations are

using the constant tangent stiffness matrix KT for all iterations. As indicated previously, we use

the internal force calculations to generate the product KT p j (for the jth iteration) in the Lanczos

calculations. Any vector p j, as calculated by the Lanczos method, may be such that it represents

large-strain behavior and moves the internal force calculations into a nonlinear regime. It is nec-

essary to scale the p j vectors so that the internal force calculations are in a small-strain regime,

which makes it appear that we are working with a constant tangent stiffness matrix. The vectors p j

must be scaled so that they represent velocities associated with small strain. When properly scaled

88 CHAPTER 3. TIME STEP CONTROL IN PRESTO

vectors are sent to the internal force calculation, the internal force calculation effectively becomes

a matrix × vector product with a constant tangent stiffness matrix for all iterations during a given

call to the Lanczos method.

The scale factor for the p j vectors, which we will designate as vs f , must not be too small, as this

will create round-off problems and give a bad estimate for the critical time step. If the scale factor

is too large, we violate the above restriction of a constant tangent stiffness matrix.

There are two approaches for controlling the scale factor when the Lanczos method is used to

compute the maximum eigenvalue. These approaches are discussed in Section 3.2.1.5.

3.2.1.4 Accuracy of Eigenvalue Estimate

Every time a new Lanczos vector is computed, we obtain an additional eigenvalue for our model

and, in general, a better estimate for the maximum eigenvalue (and hence a better estimate for the

critical time step). The Lanczos method can compute a good value for the maximum eigenvalue

with a very small number of total computed eigenvalues compared to the number of degrees of

freedom in a problem. There are examples, as previously indicated, of problems with 250,000

to 350,000 degrees of freedom where we have obtained a good estimate of the critical time step

with twenty eigenvalues. In one problem with 5.1 million degrees of freedom, we obtained a good

estimate of the critical time step with forty-five eigenvalues.

A user could, in theory, determine a reasonable number of eigenvalues necessary for obtaining a

good estimate of the maximum eigenvalue based on the above information on model size and the

number of eigenvalues required for a good maximum eigenvalue estimate. The user could test the

validity of the choice of the number of eigenvalues by increasing the number of eigenvalues slightly

and comparing the maximum eigenvalue estimate obtained with the larger number of eigenvalues

to the original maximum eigenvalue estimate obtained with the smaller number of eigenvalues. If

the change in the two maximum eigenvalue estimates (larger versus smaller total number of eigen-

values) is small, then the original estimate for the number of eigenvalues is reasonably accurate.

As an alternative to directly specifying the number of eigenvalues to be computed, a convergence

tolerance could be set on the change in the magnitude of the maximum eigenvalue as additional

eigenvalues (Lanczos vectors) are computed. Let θmax_n be the maximum eigenvalue calculated

corresponding to n eigenvalues (Lanczos vectors), and let θmax_n+1 be the maximum eigenvalue

corresponding to n+1 eigenvalues (Lanczos vectors). The eigenvalues would be computed until

| θmax_n+1 −θmax_n |
θmax_n+1

(3.15)

is less than some tolerance. (We will now refer to the value of Equation (3.15) as the convergence

measure.) If we calculate the convergence measure for a sequence of maximum eigenvalues com-

puted by the Lanczos method, we will not necessarily see a monotonic decrease in the convergence

measure for all time. Typically, the convergence measure will initially show a monotonically de-

creasing value for an increasing n, and then the convergence measure will show a monotonically

increasing value for an increasing n. (The phase in which the convergence measure increases is

usually very small, on the order of one to two iterations.) After the phase in which the convergence

3.2. OTHER CRITICAL TIME STEP METHODS 89

measure monotonically increases, there is then a phase in which the convergence measure begins a

long (over many iterations) monotonic decrease. This behavior (decrease of the convergence mea-

sure, slight increase, then long monotonic decrease) is typical of Krylov methods, of which the

Lanczos method is one. Using the convergence measure to determine the number of eigenvalues

to be computed for a problem is a reasonable option, but some care must be taken in setting the

tolerance for the convergence measure.

Both of the techniques just discussed are offered as a way to set the maximum number of eigenval-

ues required to obtain an accurate eigenvalue estimate for a model. These techniques are discussed

further in Section 3.2.1.5.

3.2.1.5 Lanczos Parameters Command Block

BEGIN LANCZOS PARAMETERS <string>lanczos_name

STARTING VECTOR = <string>STRETCH_X|STRETCH_Y|STRETCH_Z|

ISOTHERMAL(ISOTHERMAL)

INCREASE OVER STEPS = <integer>incr_int(5)

NUMBER EIGENVALUES = <integer>num_eig(150)

EIGENVALUE CONVERGENCE TOLERANCE = <real>converge_tol(0.5e-3)

SMALL STRAIN = <real>small_strain(1.0e-3)

VECTOR SCALE = <real>vec_scale(1.0e-5)

SCALE FACTOR = <real>time_scale(0.9)

UPDATE ON TIME STEP CHANGE = <real>tstep_change(0.10)

UPDATE STEP INTERVAL = <integer>step_int(500)

END [LANCZOS PARAMETERS <string>lanczos_name]

If you use the Lanczos method to compute a critical time step, there should be only one

LANCZOS PARAMETERS command block, and it should appear in the region. If you have a

LANCZOS PARAMETERS command block, you should not specify a NODE BASED TIME STEP

PARAMETERS or a POWER METHODS PARAMETERS command block. If you use the Lanczos

method to compute the critical time step, the time step increase factor (default or user-specified)

will be used to control the increase in the time step estimate; the time step scale factor (default

or user-specified) will not be used. These factors are specified in the PARAMETERS FOR PRESTO

REGION portion of a TIME STEPPING BLOCK in the TIME CONTROL command block.

The Lanczos method requires some type of starting vector. This is determined by the STARTING

VECTOR command line. The various options available for this command line will generate a dis-

placement vector that stretches your model in the x-, y-, or z-direction, or in all three directions

(x, y, and z) at once. (STRETCH_X stretches the model in the x-direction, STRETCH_Y stretches

the model in the y-direction, STRETCH_Z stretches the model in the z-direction, and ISOTHERMAL

stretches the model in all three directions at once.) The displacement vector then serves as a basis

for generating the starting vector r0 in the initialization phase of the Lanczos method. The Lanczos

method appears to be fairly insensitive to the choice of a starting vector. The default starting vector

is the ISOTHERMAL option. You may encounter cases where the use of one of the other options for

a starting vector—STRETCH_X, STRETCH_Y, or STRETCH_Z—may result in a slight increase in

accuracy for the critical time step estimate for a given number of eigenvalues. These other options

90 CHAPTER 3. TIME STEP CONTROL IN PRESTO

(STRETCH_X, STRETCH_Y, and STRETCH_Z) are offered for these special cases.

The INCREASE OVER STEPS command line determines how many steps, i.e., incr_int, are

used to transition from an element-based critical time step estimate to the Lanczos-based estimate

at the beginning of an analysis. The user may want to increase from the element-based estimate

to the Lanczos-based estimate over a number of time steps if the difference between these two

estimates is large. The value of incr_int for this command line defaults to 5.

As indicated in Section 3.2.1.4, some number of eigenvalues must be computed by the Lanczos

method to obtain a good estimate for the maximum eigenvalue for a given finite element model. As

one option, the user can simply specify the number of eigenvalues to be computed by the Lanczos

method by using the NUMBER EIGENVALUES command line. The default value for num_eig in

this command line is 150. As an alternative, the user can specify a tolerance on the convergence

measure defined in Equation (3.15). The tolerance is set with the EIGENVALUE CONVERGENCE

TOLERANCE command line. The default value for the convergence tolerance, converge_tol, is

0.5× 10−3. (This default value may change in the future as we gain more experience with the

Lanczos method.)

By default, the convergence measure (with the default value of 0.5 × 10−3) is used to deter-

mine the number of eigenvalues to be computed. If neither the EIGENVALUE CONVERGENCE

TOLERANCE command line nor the NUMBER EIGENVALUES command line appears in the

LANCZOS PARAMETERS command block, then the convergence measure will be used to deter-

mine the number of eigenvalues. If the EIGENVALUE CONVERGENCE TOLERANCE command line

appears in the command block with a specified tolerance other than the default value, then the num-

ber of eigenvalues computed will be determined by the convergence measure and the user-specified

tolerance. If the NUMBER EIGENVALUES command line appears in the LANCZOS PARAMETERS

command block, then the user-defined number of eigenvalues will be used to set the number of

eigenvalues computed by the Lanczos method.

The recommended technique for determining the number of eigenvalues is to use the con-

vergence measure option with the default tolerance. If you use this technique, neither the

NUMBER EIGENVALUES command line nor the EIGENVALUE CONVERGENCE TOLERANCE com-

mand line should be included in the LANCZOS PARAMETERS command block.

As indicated in Section 3.2.1.3, it is necessary to scale one of the vectors (with a scale factor vs f) in

the Lanczos calculations so that it appears we are always working with a constant tangent stiffness

each time we call the Lanczos method. There are two approaches for determining the scale factor.

With the first approach, the user can specify the value of a small strain for a particular model by

using the SMALL STRAIN command line. (As long as the internal force calculation inside the

Lanczos method is working with a vector that approximates small-strain behavior, it will appear

that we are working with a constant tangent stiffness inside the Lanczos method.) The value for vs f

is then computed based on your specification for what constitutes a small strain in the model. (The

default value for small_strain is 1.0× 10−3.) With the second approach for determining the

scale factor, the user can specify a value for vs f directly by using the VECTOR SCALE command

line. The default value for vs f , the vec_scale parameter in that command line, is 1.0×10−5. A

number of tests have established that this value for the scale factor, 1.0× 10−5, works well for a

range of models encountered at Sandia National Laboratories. If the user wants to use the option

of directly specifying the scale factor, it is possible to determine whether a particular scale factor

3.2. OTHER CRITICAL TIME STEP METHODS 91

is suitable for a particular problem. Take a scale factor vs f , plus values on either side of it, say,

0.9× vs f and 1.1× vs f . If all three of these scale factor values produce almost the same estimate

for the critical time step for a particular model, then the value for vs f meets the criterion for an

acceptable scale factor.

By default, the small-strain approach (with the default value of 1.0×10−3) is used to determine a

scale factor. If neither the SMALL STRAIN command line nor the VECTOR SCALE command line

appears in the LANCZOS PARAMETERS command block, then the small-strain value will be used

to calculate the scale factor. If the SMALL STRAIN command line appears in the command block

with any value other than the default value and the VECTOR SCALE command line does not appear

in the command block, then the vector scale will be determined by the user-specified value for

the small strain. If the VECTOR SCALE command line does appear in the LANCZOS PARAMETERS

command block, then the vector scale will be determined by the user-specified value for the vector

scale.

The recommended way of determining the scale factor is to use the small-strain approach with the

default small-strain value. If you follow this advice, neither the SMALL STRAIN command line nor

the VECTOR SCALE command line should be included in the LANCZOS PARAMETERS command

block.

As indicated previously, the scale factor must not be too small, as this will create round-off prob-

lems and give a bad estimate for the critical time step. If the scale factor is too large, we violate

the above restriction of a constant tangent stiffness matrix.

The SCALE FACTOR command line sets the factor fs in Equation (3.11). The value for fs, i.e.,

time_scale, is set to 0.9. More experience with the Lanczos method will help us determine

whether a slightly larger value of fs can be used as a default.

The UPDATE ON TIME STEP CHANGE command line sets the value for ∆tlim in Equation (3.14).

If the change in the element-based critical time step estimate as given by Equation (3.14) exceeds

the value for ∆tlim, then the Lanczos method is called for a new estimate for the critical time step.

The default value for ∆tlim, i.e., tstep_change, is 0.10.

The UPDATE STEP INTERVAL command line sets the number of step intervals at which the

Lanczos method is called. If step_int is set to 1000, the Lanczos method will be called ev-

ery one thousand steps to compute an estimate for the critical time step. (The default value

of step_int is 500.) This control mechanism interacts with the control established by the

UPDATE ON TIME STEP CHANGE command line. Suppose we have set step_int to 1000, and

we have computed 800 steps since the last call to the Lanczos method. If ∆tlim has been set to 0.15

and we exceed this value at step 800, then the change in the element-based time step will result in

the Lanczos method being called. The counter for keeping track of the number of step intervals

since the last Lanczos computation will be reset to zero. The next call to the Lanczos method will

occur again in one thousand steps, unless we again exceed the change in the element-based time

step.

92 CHAPTER 3. TIME STEP CONTROL IN PRESTO

3.2.2 Power Method

The power method is a simple iterative technique that gives an estimate for the maximum eigen-

value. Consider the following form of the eigenvalue problem, which is useful for our explicit

transient dynamics problem.

KT xi −θiMxi = 0 (3.16)

Reformulate the problem as

[M]−1KT xi −θixi = 0 . (3.17)

Denote the matrix product M−1KT as the matrix operator A. The eigenvalue problem is now

Axi −θixi = 0 . (3.18)

The maximum eigenvalue for the problem in Equation (3.18) can be computed with the following

iterative process:

for i = 1,n

xi = Axi−1

xi = xi/ ‖ xi ‖
θi = [xi]

T Axi

end

The value θi is the ith estimate for the maximum eigenvalue. As n increases, the power method

should yield a more accurate estimate for the maximum eigenvalue. So, just as with the Lanczos

method, the power method must iterate at some given time step to obtain an estimate for the

maximum eigenvalue at that time step. The details for the above form of the power method are

described in Reference 2.

Like the Lanczos method, the power method requires the use of an internal force calculation.

The power method, however, is somewhat simpler than the Lanczos method. The power method

requires that one vector and one scalar be computed. The Lanczos method requires the computation

of five vectors and two scalars. Further, the power method yields a direct estimate for the maximum

eigenvalue, whereas the Lanczos method requires that the maximum eigenvalue be extracted from

a tridiagonal matrix.

If the sequence of eigenvalues for an analysis problem is

| λ1 |>| λ2 |≥ · · · ≥| λn | , (3.19)

then the rate of convergence to the maximum eigenvalue depends on the ratio

| λ1 |
| λ2 |

. (3.20)

Depending on the magnitudes of | λ1 | and | λ2 |, the rate of convergence could be rather slow.

The power method, for a given problem, may not converge to as accurate an estimate for the

maximum eigenvalue as quickly as the Lanczos method. We should be careful, however, in how

3.2. OTHER CRITICAL TIME STEP METHODS 93

we interpret this convergence property for the power method. For many of our problems, we

probably have a large number of eigenvalues clustered just below the maximum eigenvalue. The

power method may give a reasonable estimate for the maximum eigenvalue in a relatively small

number of iterations. The power method may converge quickly to some eigenvalue estimate that

is just below the maximum eigenvalue. Convergence to the maximum eigenvalue, in terms of

accuracy to many digits, might then be very slow. However, one would still have an adequate

estimate for the maximum eigenvalue to set a value for the critical time step.

One of the advantages of the power method is that we can use the last value for xi from a previous

call to the power method as a starting vector for our current call to the power method and converge

quickly (for some problems) to an accurate estimate for the maximum eigenvalue. Consider the

following scenario. We make an initial call to the power method using some arbitrary x0 starting

vector. We obtain a good estimate for the maximum eigenvalue after n iterations. After some

number of time steps, we again call the power method and we use xn from the previous call to

the power method as our current starting vector. Because we are solving nonlinear problems, the

matrix operator, A , has most likely changed from the time when we made the initial call to the

power method. If the changes in the matrix operator are small, then xn should be an excellent

choice for the starting vector, and we should converge quickly to a good estimate for the maximum

eigenvalue. This behavior, quick convergence to a good eigenvalue estimate using a prior value

of xn as a starting vector, has been observed in some sample problems. We discuss this issue of

restarting the power method using a previous xn in more detail in Section 3.2.2.1.

Obtaining a cost-effective and user-friendly implementation of the power method requires address-

ing the same issues discussed above for an automated implementation of the Lanczos method.

First, we must determine some scheme to call the power method on an intermittent basis so that it

is cost effective. The control mechanism for calling the Lanczos method on an intermittent basis

can also be used for the power method. Second, the x vector must be scaled appropriately before

it is used in the internal force calculations. (For the Lanczos method, we must scale the vector p.)

Finally, we need to terminate the power method. A tolerance on the value in Equation (3.15) can

be set to terminate the method. (Setting a tolerance on Equation (3.15) is the same approach used

for the Lanczos method.)

3.2.2.1 Power Method with Constant Time Steps

The cost of making one iteration for the power method is approximately the cost of an internal

force calculation. As indicated previously, the cost of one iteration for the Lanczos method (the

calculation of a Lanczos vector) is also approximately the cost of an internal force calculation.

Therefore, the equations developed in Section 3.2.1.1 are also applicable for determining when the

power method can be used in a cost-effective manner. Recall that the equation

ne =
NL

1−1/r
(3.21)

in Section 3.2.1.1 gives the number of time steps for the break-even point at which it becomes cost

effective for the case of no contact to use the Lanczos method to reduce computational costs by

overcoming the initial cost of the Lanczos calculations with the larger critical time step. In the

94 CHAPTER 3. TIME STEP CONTROL IN PRESTO

above equation, NL is the number of Lanczos iterations, and r is the ratio of the Lanczos-based

critical time to the element-based time step estimate. This equation is directly applicable to the

power method because the cost of one iteration in the power method is similar to the cost of one

iteration in the Lanczos method. (The variable NL becomes the number of iterations for the power

method.)

Now let us return to the scenario in Section 3.2.2 where we look at restarting the power method

with the last value for xi from a previous call to the power method. We make an initial call to the

power method using some arbitrary x0 starting vector. We obtain a good estimate for the maxi-

mum eigenvalue after n iterations. Our estimate for the critical time step based on the maximum

eigenvalue gives us a value of 1.25 for r. After some number of time steps, we again call the power

method, and we use xn from the previous call to the power method as our current starting vector. In

our second call to the power method, the power method converges to a good estimate for the max-

imum eigenvalue in two iterations. The break-even point where we recoup the cost of the power

method (in our second call) is ten time steps. If the power method converges to a good estimate for

the maximum eigenvalue in three iterations, then the break-even point where we recoup the cost

of the power method (in our second call) is fifteen time steps. There are some problems where we

can obtain a good estimate for the maximum eigenvalue in two or three iterations when we use the

last value for xn from a previous call to the power method as our starting vector for the current call

to the power method. For the case where we can converge to a good estimate for the maximum

eigenvalue in two or three iterations, we can easily call the power method once every forty or fifty

time steps and use the power method to improve the time step estimate in a cost-effective manner.

Over a time span of forty or fifty time steps, matrix operator A, as defined in Equation (3.18) may

change by only a small amount for a large class of problems. If matrix operator A changes by a

small amount, then using the last value of xn from a previous call to the power method provides

an excellent starting vector and gives us quick convergence. This ability of the power method

to converge quickly by using previous information makes it a viable scheme for calculating the

maximum eigenvalue and producing a critical time step estimate.

For a problem with contact, the equations derived for the Lanczos method (with contact) in Sec-

tion 3.2.1.1 are also applicable to the power method. For the power method, as in the case of the

Lanczos method, the added computational cost of the contact calculations results in reaching a

break-even point with a smaller number of iterations when compared to a case where there is no

contact.

3.2.2.2 Controls for Power Method

Using the power method is similar to using the Lanczos method in that we must be able to perform

a power method calculation and reuse the power method estimate for the critical time step in some

way over a number of subsequent time steps. The approach for reusing a power method estimate

for the critical time step over a number of time steps is the same as the approach for reusing a

Lanczos-based estimate over a number of time steps as described in Section 3.2.1.2. The approach

discussed in Section 3.2.1.2 presents a way to reuse a maximum eigenvalue time step estimate

over a number of time steps so that we maintain a critical time step estimate that is close to the

theoretical maximum value in between the calls to the maximum eigenvalue calculations. The

3.2. OTHER CRITICAL TIME STEP METHODS 95

approach discussed in in Section 3.2.1.2 makes use of the element-based critical time step estimate

at each time step.

3.2.2.3 Scale Factor for Power Method

When the power method is called for a given time step, it must appear that the calculations are

using a constant matrix operator, A, for all iterations. The A operator is the product of the inverse

of the mass matrix M−1 and the tangent stiffness matrix KT for the problem. The mass matrix is a

constant. Therefore, we must assure that we are working with what is effectively a constant tangent

stiffness matrix for all iterations during a call to the power method. This is the same requirement

that we encounter in the Lanczos method (see Section 3.2.1.3). For the power method, we use

the internal force calculations to generate the product Axi by first computing the internal forces

using xi, which gives us the product KT xi, and then multiplying the internal force results by the

inverse of the mass matrix. Any vector xi, as calculated by the power method, may be such that it

represents large-strain behavior and moves the internal force calculations into a nonlinear regime.

It is necessary to scale the xi vectors so that the internal force calculations are in a small-strain

regime, which makes it appear that we are working with a constant tangent stiffness matrix. The

vectors xi must be scaled so that they represent velocities associated with small-strain calculations.

When properly scaled vectors are sent to the internal force calculation, the internal force calculation

becomes a matrix × vector product with a constant tangent stiffness matrix for all iterations during

a given call to the power method.

The scale factor for the xi vectors, which we will designate as vs f , must not be too small, as this

will create round-off problems and give a bad estimate for the critical time step. If the scale factor

is too large, we violate the above restriction of a constant tangent stiffness matrix.

There are two approaches for controlling the scale factor when the power method is used to com-

pute the maximum eigenvalue. These approaches are discussed in Section 3.2.2.5.

3.2.2.4 Accuracy of Eigenvalue Estimate

To use the power method efficiently, it is best not to specify a set number of iterations for every in-

stance when the power method is called. Instead, some tolerance should be set on the convergence

measure defined in Equation (3.15). The initial call to the power method may take a significant

number of iterations to produce a good estimate for the maximum eigenvalue. On subsequent calls

to the power method, the number of iterations to converge to a good estimate for the maximum

eigenvalue should be quite small when we use previous values of x as a starting vector.

For the power method, we rely on the convergence measure defined by Equation (3.15) to control

the number of iterations. The user can set an upper limit on the number of iterations for the power

method. Control of the number of iterations for the power method is discussed in more detail in

Section 3.2.2.5.

96 CHAPTER 3. TIME STEP CONTROL IN PRESTO

3.2.2.5 Power Method Parameters Command Block

BEGIN POWER METHOD PARAMETERS <string>powermethod_name

STARTING VECTOR = <string>STRETCH_X|STRETCH_Y|STRETCH_Z|

ISOTHERMAL(ISOTHERMAL)

INCREASE OVER STEPS = <integer>incr_int(5)

NUMBER ITERATIONS = <integer>num_iter(150)

EIGENVALUE CONVERGENCE TOLERANCE =

<real>converge_tol(0.5e-3)

SMALL STRAIN = <real>small_strain(1.0e-3)

VECTOR SCALE = <real>vec_scale(1.0e-5)

SCALE FACTOR = <real>time_scale(0.9)

UPDATE ON TIME STEP CHANGE = <real>tstep_change(0.10)

UPDATE STEP INTERVAL = <integer>step_int(50)

END [POWER METHOD PARAMETERS <string>powermethod_name]

If you use the power method to compute a critical time step, there should be only one POWER

METHOD PARAMETERS command block, and it should appear in the region. If you have a POWER

METHOD PARAMETERS command block, you should not specify a command block for the node-

based method or the Lanczos method. If you use the power method to compute the critical time

step, the time step increase factor (default or user-specified) set in the TIME CONTROL command

block will be used to control the increase in the time step estimate; the time step scale factor (default

or user-specified) set in the TIME CONTROL command block will not be used. These factors are

specified in the PARAMETERS FOR PRESTO REGION portion of a TIME STEPPING BLOCK in

the TIME CONTROL command block.

The power method requires some type of starting vector. This is determined by the STARTING

VECTOR command line. The various options available in this command line will generate a dis-

placement vector that stretches your model in the x-, y-, or z-direction, or in all three directions

(x, y, and z) at once. (STRETCH_X stretches the model in the x-direction, STRETCH_Y stretches

the model in the y-direction, STRETCH_Z stretches the model in the z-direction, and ISOTHERMAL

stretches the model in all three directions at once.) The displacement vector then serves as a basis

for generating the starting vector x0 in the initialization phase of the Lanczos method. The default

starting vector is the ISOTHERMAL option. You may encounter cases where use of one of the other

options for a starting vector—STRETCH_X, STRETCH_Y, or STRETCH_Z—may result in a slight

increase in accuracy for the critical time step estimate for a given number of iterations. These

other options (STRETCH_X, STRETCH_Y, and STRETCH_Z) are offered for these special cases.

The INCREASE OVER STEPS command line determines how many steps, incr_int, are used to

transition from an element-based critical time step estimate to the power method estimate at the

beginning of an analysis. The user may want to increase from the element-based estimate to the

power method estimate over a number of time steps if the difference between these two estimates

is large. The value of incr_int defaults to 5.

As indicated in Section 3.2.2.4, some number of iterations are required by the power method to

obtain a good estimate for the maximum eigenvalue for a given model. The number of iterations is

controlled by the tolerance set for the convergence measure given in Equation (3.15). The tolerance

3.2. OTHER CRITICAL TIME STEP METHODS 97

is set with the EIGENVALUE CONVERGENCE TOLERANCE command line. The default value for the

convergence tolerance, converge_tol is 0.5×10−3. (This default value may change in the future

as we gain more experience with the power method.)

The user can set an upper limit on the number of iterations for the power method by using the

NUMBER ITERATIONS command line. If the number of iterations in the power method exceeds

the value set by num_iter, then the power method is terminated. Otherwise, the iterative process

in the power method is terminated by the tolerance set on the convergence measure. The default

value for num_iter is 150.

As indicated in Section 3.2.2.3, it is necessary to scale the vectors xi (with a scale factor vs f) in

the power method calculations so that it appears we are always working with a constant tangent

stiffness each time we call the power method. There are two approaches for determining the scale

factor. With the first approach, the user can specify the value of a small strain for a particular model

by using the SMALL STRAIN command line. (As long as the internal force calculation inside the

power method is working with a vector that approximates small-strain behavior, it will appear that

we are working with a constant tangent stiffness inside the power method.) The value for vs f is

then computed based on your specification for what constitutes a small strain in the model. (The

default value for small_strain is 1.0× 10−3.) With the second approach for determining the

scale factor, the user can specify a value for vs f directly by using the VECTOR SCALE command

line. The default value for vs f , the vec_scale parameter in that command line, is 1.0×10−5. A

number of tests have established that this value for the scale factor, 1.0× 10−5, works well for a

range of models encountered at Sandia National Laboratories. If the user wants to use the option

of directly specifying the scale factor, it is possible to determine whether a particular scale factor

is suitable for a particular problem. Take a scale factor vs f , plus values on either side of it, say,

0.9× vs f and 1.1× vs f . If all three of these scale factor values produce almost the same estimate

for the critical time step for a particular model, then the value for vs f meets the criterion for an

acceptable scale factor.

By default, the small-strain approach (with the default value of 1.0×10−3) is used to determine a

scale factor. If neither the SMALL STRAIN command line nor the VECTOR SCALE command line

appears in the POWER METHOD PARAMETERS command block, then the default small-strain value

will be used to calculate the scale factor. If the SMALL STRAIN command appears in the command

block with any value other than the default value and the VECTOR SCALE command line does not

appear in the command block, then the vector scale will be determined by the user-specified value

for the small strain. If the VECTOR SCALE command line does appear in the POWER METHOD

PARAMETERS command block, then the vector scale will be determined by the user-specified value

for the vector scale.

The recommended way of determining the scale factor is to use the small-strain approach with

the default small-strain value. Thus, if you follow this advice, neither the SMALL STRAIN com-

mand line nor the VECTOR SCALE command line should be included in the POWER METHOD

PARAMETERS command block.

As indicated previously, the scale factor must not be too small, as this will create round-off prob-

lems and give a bad estimate for the critical time step. If the scale factor is too large, we violate

the above restriction of a constant tangent stiffness matrix.

98 CHAPTER 3. TIME STEP CONTROL IN PRESTO

The SCALE FACTOR command line sets the factor fs in Equation (3.11). The value for fs, i.e.,

time_scale is set to 0.9. More experience with the power method will help us determine whether

a slightly larger value of fs can be used as a default.

The UPDATE ON TIME STEP CHANGE command line sets the value for ∆tlim in Equation (3.14).

If the change in the element-based critical time step estimate as given by Equation (3.14) exceeds

the value for ∆tlim, then the power method is called for a new estimate for the critical time step.

The default value for ∆tlim, i.e., tstep_change, is 0.10.

The UPDATE STEP INTERVAL command line sets the number of step intervals at which the power

method is called. If step_int is set to 40, the power method will be called every forty steps to

compute an estimate for the critical time step. (The default value of step_int is 50.) This control

mechanism interacts with the control established by the UPDATE ON TIME STEP CHANGE com-

mand line. Suppose we have set step_int to 40, and we have computed thirty-five steps since

the last call to the power method. If ∆tlim has been set to 0.15 and we exceed this value at step 35,

then the change in the element-based time step will result in the power method being called. The

counter for keeping track of the number of step intervals since the last power method computation

will be reset to zero. The next call to the power method will then occur again in forty steps, unless

we again exceed the change in the element-based time step.

3.2.3 Node-Based Method

Now that we have developed schemes to make the Lanczos method and power method cost-

effective tools for estimation of the critical time step, let us examine the node-based scheme.

The node-based method in Presto will give an estimate for the critical time step that is greater than

or equal to the element-based estimate. It may or may not give an estimate for the time step that is

close to the maximum value associated with the maximum eigenvalue for the problem. In general,

we assume the node-based method will give us an estimate larger than the element-based estimate,

but not significantly larger.

If the node-based scheme is used to determine the critical time step for a block of uniform elements

(all the same material), then the estimate from the node-based method will be the same as that for

the element-based estimate. The node-based estimate begins to diverge from (become larger than)

the element-based estimate as the differences in aspect ratios of the elements attached to a node

become larger. We can assume, therefore, that if the stiffest part of our structure has a relatively

uniform mesh, the node-based method will not give a significantly larger estimate than the element-

based method.

The node-based method costs only a fraction of an internal force calculation. However, the node-

based method makes use of element time step estimates. Therefore, in order to do the node-based

method, one must also do the element-based method. The cost of the node-based method is in

addition to the element-based method. The modest increase in the critical step estimate from the

node-based method is unlikely to offset the added cost of the node-based method.

To make the node-based method cost-effective, we can use the same methodology that is employed

for the Lanczos method. Let tb be the estimate for the critical time step from the node-based

3.2. OTHER CRITICAL TIME STEP METHODS 99

method. We define the ratio of the node-based estimate to the element-based estimate as

tr =
∆tb

∆te
. (3.22)

This ratio is then used to scale subsequent element-based estimates for the critical time step. If

∆te(n) is the nth element-based critical time step after the time step where the node-based calcula-

tions are performed, then the nth time step after the node-based calculations, ∆t(n), is simply

∆t(n) = tr∆te(n) . (3.23)

The ratio tr is used until the next call to the node-based method. The next call to the node-based

method is controlled by one of two mechanisms described in the Lanczos discussion. The node-

based method is called after a set number of times or a significant change in the element-based

estimate for the critical time step.

3.2.3.1 Node-Based Parameters Command Block

BEGIN NODE BASED TIME STEP PARAMETERS <string>nbased_name

INCREMENT INTERVAL = <integer>incr_int(5)

STEP INTERVAL = <integer>step_int(1)

TIME STEP LIMIT = <real>step_lim(0.10)

END [NODE BASED TIME STEP PARAMETERS <string>nbased_name]

If you use the node-based method to compute a critical time step, there should be only one NODE

BASED TIME STEP PARAMETERS command block, and it should appear in the region. If you use

the node-based method to compute the critical time step, you should set the time step scale factor to

1.0 and the time step increase factor to a large number (5.0 is an acceptable value for the time step

increase factor). These factors are specified in the PARAMETERS FOR PRESTO REGION portion of

a TIME STEPPING BLOCK in the TIME CONTROL command block. If you have a NODE BASED

TIME STEP PARAMETERS command block, you should not specify a LANCZOS PARAMETERS

command block.

The INCREMENT INTERVAL command line determines how many steps, incr_int, are used

to transition from an element-based critical time step estimate to the node-based estimate at the

beginning of an analysis. The user may want to increase from the element-based estimate to the

node-based estimate over a number of time steps if the difference between these two estimates is

large. The value of incr_int defaults to 0 so the node based time step is used immediately at the

beginning of the analysis.

The STEP INTERVAL command line sets the number of step intervals at which the node-based

method is called. If step_int is set to 1000, the node-based method will be called every one

thousand steps to compute an estimate for the critical time step. (The default value of step_int

is 1.) Increasing the step interval can improve performance, but depending on the problem could

run the risk of sending the time step super-critical. This control mechanism interacts with the

100 CHAPTER 3. TIME STEP CONTROL IN PRESTO

control established by the TIME STEP LIMIT command line. Suppose we have set step_int to

1000, and we have computed 800 steps since the last call to the node-based method. If ∆tlim has

been set to 0.15 and we exceed this value at step 800, then the change in the element-based time

step will result in the node-based method being called. The counter for keeping track of the number

of step intervals since the last node-based computation will be reset to zero. The next call to the

node-based method will occur again in one thousand steps, unless we again exceed the change in

the element-based time step.

The TIME STEP LIMIT command line sets the value for ∆tlim in Equation (3.14). If the change

in the element-based critical time step estimate as given by Equation (3.14) exceeds the value for

∆tlim, then the node-based method is called for a new estimate for the critical time step. The default

value for ∆tlim, i.e., step_lim, is 0.10.

3.3 Mass Scaling

3.3.1 What is Mass Scaling?

Mass scaling allows for arbitrarily increasing the mass of certain nodes in order to increase the

global estimate for the critical time step. The nodes where the mass is increased must be associated

with those elements that have the minimum time step. By increasing the mass at any node for an

element, we have effectively raised the critical time step estimate for that element.

Note that mass scaling does not adjust the value for the density used in the element calculations.

Mass scaling only adjusts the mass at the nodes. The net effect of the mass scaling makes it appear,

however, as if we have modified the density of selected elements (even though no adjustment has

been made to element densities).

Warning: Use of mass scaling will introduce error into your analysis. The amount

of error incurred is unbounded and can be unpredictable. It is entirely up to the

analyst to decide whether mass scaling can be used in a way that does not distort

the results of interest.

Mass scaling can be useful in a number of circumstances, as listed below. However, in all of these

circumstances, error will be introduced into the calculations. The user must be extremely careful

not to introduce excessive error.

• Quasi-static or rigid-body motion: If the model or part of a model is undergoing what is

basically quasi-static or rigid-body motion, then adding mass may have little effect on the

end result.

• Disparate sizes in element geometry: A model may contain elements for some portion of

the model that are much smaller than the majority of elements in the rest of the model. For

example, a model might include screws or gears that are modeled in detail. The elements for

the screw threads or gear teeth could be much smaller than elements in other portions of the

3.3. MASS SCALING 101

model. If the dynamics of these parts modeled with small elements (compared to the rest of

the mesh) are relatively unimportant, adding mass to them might not affect the quantities of

interest.

• Increasing time step for “unimportant" sections of the mesh: For some problems, you may

not want part of the mesh to control the time step. Consider a car-crash problem in which

the bumper is the first part to strike an object. The crumpling of the bumper could greatly

reduce the time step in some elements of the bumper, and these elements would control the

time step for the problem. At a later time in the analysis, the effect of the bumper on the

overall crash dynamics may not be significant. Mass scaling could be applied to ensure that

this now noncritical part (the bumper) is no longer controlling the global time step.

3.3.2 Mass Scaling Command Block

BEGIN MASS SCALING

#

node set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list> nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

TARGET TIME STEP = <real>target_time_step

ALLOWABLE MASS INCREASE RATIO = <real>mass_increase_ratio

#

additional command

ACTIVE PERIODS = <string list>periods

INACTIVE PERIODS = <string list>periods

END MASS SCALING

The MASS SCALING command block controls mass scaling for a specified set of nodes. This

command block contains one or more command lines to specify the node set. It also contains

two command lines that determine how the actual mass scaling will be applied to the nodes in the

node set. In addition to the command lines in the two command groups, there are two additional

command lines: ACTIVE PERIODS and INACTIVE PERIODS. These command lines are used to

activate or deactivate the mass scaling for specified time periods.

Multiple MASS SCALING command blocks can exist to apply different criteria to different portions

of the mesh at different times. For any given set of MASS SCALING command blocks, mass will

only be added to a node if doing so will allow increasing the global time step. The amount of

artificial mass added to a node will vary in time as the mesh deforms and moves. The added mass

computation is redone every time the nodal-based time step estimate is recomputed.

102 CHAPTER 3. TIME STEP CONTROL IN PRESTO

NOTE: Mass scaling must be used in conjunction with the node-based time step estimation method.

Consult with the preceding sections for a description of the node-based method for estimating the

critical time step.

Following are descriptions of the different command groups:

3.3.3 Node Set Commands

The node set commands portion of the MASS SCALING command block specifies the nodes

associated with the boundary condition. This portion of the command block can include some

combination of the following lines:

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list> nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators for constructing a

set of nodes. See Section 6.1.1 for more information about the use of these command lines for

creating a set of nodes for mass scaling. There must be at least one NODE SET, SURFACE, BLOCK,

or INCLUDE ALL BLOCKS command line in the command block.

3.3.3.1 Mass Scaling Commands

The MASS SCALING command block may contain either a

TARGET TIME STEP = <real>target_time_step

command line or an

ALLOWABLE MASS INCREASE RATIO = <real>mass_increase_ratio

command line, or both of these command lines can appear in the input block.

The TARGET TIME STEP command lines sets the maximum time step for a set of nodes. The pa-

rameter target_time_step is the maximum time step for all the nodes specified in the command

block.

The ALLOWABLE MASS INCREASE RATIO command line sets an upper limit on the mass scaling

at a node. The value specified for mass_increase_ratio limits the ratio of the mass at a node, as

set by mass scaling, to the original mass at the node. (The original mass of the node is determined

only by the element contributions.) This ratio must be a factor greater than or equal to 1. If ms is

the scaled mass at a node and m0 is the original mass at the node due only to element contributions,

then the ratio ms ÷m0 will not exceed the value of mass_increase_ratio.

3.4. EXPLICIT CONTROL MODES 103

Mass scaling will add mass to nodes until the target time step is reached, the mass added to some

node reaches the allowable mass increase ratio, or the current set of nodes no longer controls the

global analysis time step.

The amount of mass added due to mass scaling is stored in the nodal variable mass_scaling_

added_mass. This variable can be output and post-processed to determine how much mass is

being added at a given time. See Section 8.2.1 regarding the output of nodal variables to a results

file.

3.3.3.2 Additional Commands

The ACTIVE PERIODS or INACTIVE PERIODS command lines can optionally appear in the MASS

SCALING command block:

ACTIVE PERIODS = <string list>periods

INACTIVE PERIODS = <string list>periods

These command lines determine when mass scaling is active. See Section 2.5 for more information

about these command lines.

3.4 Explicit Control Modes

Presto provides an algorithm known as "explicit control modes" that uses a coarse mesh overlaying

the actual problem mesh, referred to as the reference mesh. The name "control modes" comes

from the implicit multigrid solution algorithm in Adagio with that name. The explicit control

modes algorithm uses the coarse and reference meshes together to enable a potentially significant

increase in the critical time step in explicit dynamic calculations. Reference 3 provides an in-depth

discussion of this algorithm.

Warning: Explicit Control Modes is a new and experimental analysis technique.

While it has been shown to be an extremely useful technique on some problems, it

has not undergone rigorous testing. It also does not interoperate with some features,

such as rigid bodies.

In the explicit dynamic algorithm, the nodal accelerations are computed by dividing the residual

(external force minus internal force) by the nodal mass. In the explicit control modes algorithm,

the reference mesh residual is mapped to the coarse mesh, and accelerations are computed on the

coarse mesh. These accelerations are then interpolated back to the reference mesh. The portion of

the residual with higher frequency content that cannot be represented by the basis functions of the

coarse mesh is left on the reference mesh, and is used to compute an acceleration that is added to

the acceleration that is interpolated from the coarse mesh.

By computing the acceleration on the coarse mesh, the explicit control modes algorithm allows for

the critical time step to be computed based on the size of the coarse mesh rather than the size of

104 CHAPTER 3. TIME STEP CONTROL IN PRESTO

the reference mesh. A critical time step is estimated based on the coarse mesh, and mass scaling

is applied to the high frequency component of the acceleration that is computed on the reference

mesh. While some error is introduced due to this mass scaling, this error only applies to the high

frequency part of the response, which is often well beyond the frequency range of interest. This is

in contrast to traditional mass scaling, which affects the full spectrum of structural response.

The choice of the degree of refinement in the coarse and reference meshes has a large influence on

the effectiveness of the explicit control modes algorithm. The reference mesh should be created

to give a discretization that is appropriate to capture the geometry of the problem with sufficient

refinement to adequately represent gradients in the discretized solution. The coarse mesh should

completely overlay the reference mesh, and it should be coarser than the reference mesh at every

location in the model. All coarse elements need not contain elements in the reference mesh, so it is

possible to use a coarse mesh that extends significantly beyond the domain of the reference mesh.

To maximize solution efficiency by increasing the critical time step, the coarse mesh should be

significantly coarser than the reference mesh. The code user has the freedom to create a coarse

mesh that gives an acceptable critical time step without using an excessively crude discretization.

It is important to remember that the reference mesh controls the spatial discretization, while the

coarse mesh controls the temporal discretization of the model.

To use explicit control modes, the user should set up the reference mesh file and the input file as

usual, except that the following additional items must be provided:

• A coarse mesh must be generated, as discussed above. The coarse mesh must be in a separate

file from the reference mesh, which is the real model.

• A second FINITE ELEMENT MODEL command block must be provided in addition to the

standard definition for the reference finite element model in the input file. This command

block is set up exactly as it normally would be (see Section 5.1), except that the mesh file

referenced is the coarse mesh instead of the reference mesh. Although the coarse mesh does

not use any material models, each block in the coarse mesh must still be assigned a material

model.

• A CONTROL MODES REGION command block must appear alongside the standard PRESTO

REGION command block within the PRESTO PROCEDURE command block. The presence of

the CONTROL MODES REGION command block instructs Presto to use the explicit control

modes algorithm. The CONTROL MODES REGION command block is documented in Sec-

tion 3.4.1. It contains the same commands used within the standard PRESTO REGION com-

mand block, except that the commands in the CONTROL MODES REGION command block

are used to control the control modes algorithm and the boundary conditions on the coarse

mesh.

3.4.1 Control Modes Region

BEGIN CONTROL MODES REGION

#

model setup

3.4. EXPLICIT CONTROL MODES 105

USE FINITE ELEMENT MODEL <string>model_name

CONTROL BLOCKS [WITH <string>coarse_block] =

<string list>control_blocks

#

time step control

TIME STEP RATIO SCALING = <real>cm_time_scale(1.0)

TIME STEP RATIO FUNCTION = <string>cm_time_func

LANCZOS TIME STEP INTERVAL = <integer>lanczos_interval

POWER METHOD TIME STEP INTERVAL = <integer>pm_interval

#

mass scaling

HIGH FREQUENCY MASS SCALING = <real>cm_mass_scale(1.0)

#

stiffness damping

HIGH FREQUENCY STIFFNESS DAMPING COEFFICIENT =

<real>cm_stiff_damp(0.0)

#

kinematic boundary condition commands

BEGIN FIXED DISPLACEMENT

#

Parameters for fixed displacement

#

END [FIXED DISPLACEMENT]

#

output commands

BEGIN RESULTS OUTPUT <string> results_name

#

Parameters for results output

#

END RESULTS OUTPUT <string> results_name

END [CONTROL MODES REGION]

The CONTROL MODES REGION command block controls the behavior of the control modes

algorithm, and is placed alongside a standard PRESTO REGION command block within the

PRESTO PROCEDURE scope. With the exception of the CONTROL BLOCKS command line, all the

commands that can be used in this block are standard commands that appear in the Presto region.

These commands have the same meaning in either context; they simply apply to the coarse mesh

or to the reference mesh, depending on the region block in which they appear. Sections 3.4.1.1

through 3.4.1.3 describe the components of the CONTROL MODES REGION command block.

3.4.1.1 Model Setup Commands

USE FINITE ELEMENT MODEL <string>model_name

CONTROL BLOCKS [WITH <string>coarse_block] =

<string list>control_blocks

The command lines listed above must appear in the CONTROL MODES REGION command block if

106 CHAPTER 3. TIME STEP CONTROL IN PRESTO

explicit control modes is used. The USE FINITE ELEMENT MODEL command line should refer-

ence the finite element model for the coarse mesh. This command line is used in the same way that

the command line is used for the reference mesh (see Section 2.3).

The CONTROL BLOCKS command line provides a list of blocks in the reference mesh that will be

controlled by the coarse mesh. The block names are listed using the standard method of referencing

mesh entities (see Section 1.5). For example, the block with an ID of 1 would be listed as block_1

in this command. Multiple CONTROL BLOCKS command lines may be used.

The CONTROL BLOCKS command line does not require the coarse blocks used to control the fine

blocks to be listed. In the following example, blocks 10 and 11 are controlled by the coarse mesh,

but the element blocks in the coarse mesh that control those blocks are not listed:

CONTROL BLOCKS = block_10 block_11

If the CONTROL BLOCKS command line is used in this manner, the search for fine nodes con-

tained within coarse elements will be conducted for all elements in the coarse mesh. The

coarse block used to control a given set of fine blocks can optionally be specified by using the

CONTROL BLOCKS WITH coarse_block variant of the command. For example, the command:

CONTROL BLOCKS WITH block_1 = block_10 block_11

would use block 1 on the coarse mesh to control blocks 10 and 11 on the fine mesh. This variant of

the command is necessary when the coarse blocks overlap. It removes any ambiguity about which

coarse elements control which fine nodes. This is particularly useful for contact problems where

the fine block on one side of an interface should be controlled by one block, and the fine block on

the other side of the interface should be controlled by a different block. Only one coarse block can

be listed in a given instance of this command, so if there are multiple coarse blocks, they must be

listed in separate commands.

3.4.1.2 Time Step Control Commands

TIME STEP RATIO SCALING = <real>cm_time_scale(1.0)

TIME STEP RATIO FUNCTION = <string>cm_time_func

LANCZOS TIME STEP INTERVAL = <integer>lanczos_interval

POWER METHOD TIME STEP INTERVAL = <integer>pm_interval

The control modes algorithm computes a node-based time step for the coarse mesh at each time

step, and uses this as the default time step. This time step is typically much larger than the critical

time step for the fine mesh.

The TIME STEP RATIO SCALING and TIME STEP RATIO FUNCTION command lines allow

the user to control the time step used with explicit control modes. The TIME STEP RATIO

SCALING command is used to specify a scale factor cm_time_scale, which has a default value of

1.0. The TIME STEP RATIO FUNCTION command is used to specify a function cm_time_func

that is used to control the scale factor as a function of time. At any given time, a scale factor, fts,

is computed by multiplying cm_time_scale by the current value of the function. Both of these

commands are optional and one can be used without the other.

3.4. EXPLICIT CONTROL MODES 107

The time step ∆t, is computed as a function of fts, as well as of the time step of the fine mesh, ∆t f

and the time step of the coarse mesh, ∆tc.

∆t = ∆t f + fts(∆tc −∆t f) (3.24)

Thus, if the scale factor is zero, the time step of the fine mesh is used, and if it is one, the time step

of the coarse mesh is used.

The nodal time step estimator for the coarse mesh typically works well on problems where the fine

mesh overlaid by the coarse mesh is essentially isotropic. In cases where it is not, such as when

there are significant voids covered by the coarse mesh, the nodal time step can be non-conservative,

resulting in stability problems. The time step control command lines described above can be used

to manually scale down the time step in such scenarios.

Alternatively, the Lanczos or power method global time step estimators can be applied to the

coarse mesh to give an improved estimate of the stability limit. These are invoked using the

LANCZOS TIME STEP INTERVAL or POWER METHOD TIME STEP INTERVAL command lines,

respectively. Only one of these command lines can be used at a time, and both commands specify

an interval at which the global time step estimate is calculated. When the global time step estimate

is calculated, a ratio of the global estimate to the nodal estimate is calculated, and this ratio is used

to scale the nodal estimate in subsequent time steps in which the global estimate is not computed.

Experience has shown that the time step predicted by the global time step estimators is typically

slightly higher than the actual stability limit. For this reason, it is recommended that a scale factor

of 0.9 be used in conjunction with these estimators. This can be set using the TIME STEP SCALE

FACTOR command line in the TIME CONTROL block as described in Section 3.1.

Known Issue: The Lanczos and power method time step estimators can not yet be

used with problems that have contact, rigid bodies, blocks in the fine mesh that are

not controlled by the coarse mesh, or coarse elements that contain no fine nodes.

3.4.1.3 Mass Scaling Commands

HIGH FREQUENCY MASS SCALING = <real>cm_mass_scale(1.0)

The HIGH FREQUENCY MASS SCALING command line allows the user to control the mass scaling

applied to the high frequency component of the response. The mass scaling factor required to stably

integrate the high frequency response at the time step being used is computed at every node on the

fine mesh. The parameter cm_mass_scale that can optionally be supplied with this command line

is applied as a multiplier to that mass scaling. If that mass scaling (multiplied by cm_mass_scale)

is greater than 1.0, then the scaled mass is used at that node. If not, the original nodal mass is used.

It may be useful for some models to use this command line to set cm_mass_scale to a value

greater than 1.0 to stabilize the high frequency response. Experience has shown, however, that this

is rarely needed, so it is recommended that this command line not be used in most cases.

108 CHAPTER 3. TIME STEP CONTROL IN PRESTO

3.4.1.4 Damping Commands

HIGH FREQUENCY STIFFNESS DAMPING COEFFICIENT =

<real>cm_stiff_damp(0.0)

The HIGH FREQUENCY STIFFNESS DAMPING COEFFICIENT command is used to apply

stiffness-proportional damping on the high frequency portion of the response in explicit control

modes. This may help reduce high frequency noise in problems that have abrupt loading such

as that caused by contact. The default value of cm_stiff_damp is 0.0. The value specified for

cm_stiff_damp can be between 0 and 1. It is recommended that small values (around 0.001) be

specified if this option is used.

3.4.1.5 Kinematic Boundary Condition Commands

BEGIN FIXED DISPLACEMENT

#

Parameters for fixed displacement

#

END FIXED DISPLACEMENT

All types of kinematic boundary conditions can be applied to the coarse mesh. This is done by

inserting a kinematic boundary condition command block in the CONTROL MODES REGION com-

mand block. The mesh entity (node set, surface, or block) to which the boundary condition is

applied must exist on the coarse mesh.

This capability is potentially useful to ensure better enforcement of kinematic boundary conditions

on the fine mesh by applying the same type of boundary condition on the portion of the coarse

mesh that overlays the portion of the fine mesh to which boundary conditions are applied. For

example, if there is a node set on the fine mesh that has a fixed displacement boundary condition, a

node set can be created on the coarse mesh that covers the same physical domain. The same fixed

displacement boundary condition could then be applied to the coarse mesh.

Although the capability to enforce boundary conditions on the coarse mesh is provided, it is not

necessary to do so. It is also often very difficult to create a node set on the coarse mesh that

matches the discretization of the node set on the fine mesh. Users are advised to initially prescribe

kinematic boundary conditions only on the fine mesh and only prescribe boundary conditions on

the coarse if the initial results appear questionable.

3.4.1.6 Output Commands

BEGIN RESULTS OUTPUT <string> results_name

#

Parameters for results output

#

END RESULTS OUTPUT <string> results_name

3.4. EXPLICIT CONTROL MODES 109

Variables can be output from the coarse mesh just as they can from the fine mesh with explicit

control modes. Because the actual results of interest for the model all reside on the fine mesh, it is

typically not necessary to output results on the coarse mesh, but this can be helpful for debugging

purposes.

The syntax for the results output for the coarse mesh is identical to that used for output from the fine

mesh, and is documented in Section 8.2. The only thing that differentiates the RESULTS OUTPUT

command block for the coarse mesh from that of the fine mesh is that the results output block

for the coarse mesh is put in the CONTROL MODES REGION command block instead of in the

PRESTO REGION command block. The output files for the coarse and fine mesh must be different

from each other, so different output file names must be used within the output blocks for the coarse

and fine meshes.

One of the most useful variables to output from the coarse mesh is the nodal timestep. This

variable is similar in nature to the element timestep, which exists on the fine mesh, but is a

nodal rather than an element variable, and exists on the coarse mesh. It reports the critical time

step calculated for each node on the coarse mesh. If the coarse time step is higher than expected,

the output from nodal_time_step can be examined to see which region of the coarse mesh is

controlling the time step.

Central difference time integration is performed on the coarse mesh in addition to the fine mesh, so

the displacement, velocity, and acceleration variables can be requested for visualization

on the coarse mesh.

110 CHAPTER 3. TIME STEP CONTROL IN PRESTO

3.5 References

1. Hughes, T. J. R. The Finite Element Method:Linear Static and Dynamic Finite Element Anal-

ysis. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987.

2. Golub, G. H., and C. F. Van Loan Matrix Computations, Third Edition. Baltimore, MD: The

John Hopkins University Press, 1996.

3. Spencer, B. W., M. W. Heinstein, J. D. Hales, K. H. Pierson and J. R. Overfelt. Multi-Length

Scale Algorithms for Failure Modeling in Solid Mechanics, SAND2008-6499. Albuquerque,

NM: Sandia National Laboratories, October 2008.

Chapter 4

Materials

This chapter describes material models that can be used in conjunction with the elements in Presto

and Adagio. Most of the material models have an interface that allows them to be used by the

elements in both codes. Even though a material model can be used by both codes, usage of the

model may be better suited for the type of problems solved by one code rather than the type of

problems solved by the other code. For example, a material model that was built to characterize

behavior over a long time would be better suited for use in Adagio than in Presto. If a particular

material model is better suited for one code rather than the other, this usage information is provided

in the description of that model.

The material models described in this chapter are, in general, applicable to solid elements. The

structural elements, such as shells and beams, have a much more limited set of material models.

You should consult with Chapter 5, which discusses the element library, to determine what material

models are available for the various elements. The introduction to Chapter 5 summarizes all the

element types in Presto and Adagio. For each element type, a list of available material models is

provided.

When using the nonlinear material models, you may want to output state variables that are associ-

ated with these models. See Section 8.7.2 to learn how to output the state variables for the various

nonlinear material models.

Most material models for solid elements are available in two libraries. The newer library is the

LAME library [12], but it is not the default. The line command to activate the LAME material

library for a particular section is described in Section 5.2.1.

General Model Form. PROPERTY SPECIFICATION FOR MATERIAL command blocks appear

in the SIERRA scope in the general form shown below.

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

#

Command lines and command blocks for material

models appear in this scope.

#

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

111

112 CHAPTER 4. MATERIALS

PROPERTY SPECIFICATION FOR MATERIAL command blocks are physics independent in the

sense that the information in them can be shared by more than one application. For example, some

of the PROPERTY SPECIFICATION FOR MATERIAL command blocks contain density informa-

tion that can be shared among several applications.

The command block begins with an input line of the form:

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

and is terminated with an input line of the following form:

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Here, the string mat_name is a user-specified name for the command block. This name is typically

descriptive of the material being modeled, e.g., aluminum_t6061.

Within a PROPERTY SPECIFICATION FOR MATERIAL command block, there will be other com-

mand blocks and possibly other general material command lines that are used to describe particular

material models. The general material command lines, if present, are listed first, followed by one

or more material-model command blocks. The general material command lines may be used to

specify the density of the material, the Biot’s coefficient, and the application of temperatures and

thermal strains to two- or three-dimensional elements. Each material-model command block fol-

lows the naming convention of PARAMETERS FOR MODEL model_name, where model_name

identifies a particular material model, such as elastic, elastic-plastic, or orthotropic crush. Each

such command block contains all the parameters needed to describe a particular material model.

As noted above, more than one material-model command block can appear within a

PROPERTY SPECIFICATION FOR MATERIAL command block. Suppose we have a PROPERTY

SPECIFICATION FOR MATERIAL command block called steel. It would be possible to

have two material-model command blocks within this command block. One of the material-

model command blocks would provide an elastic model for steel; the other material-model

command block would provide an elastic-plastic model for steel. The general form of a

PROPERTY SPECIFICATION FOR MATERIAL command block would be as follows:

113

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

#

General material command lines

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_coefficient_value

#

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL <string>model_name1

#

Parameters for material model model_name1

END PARAMETERS FOR MODEL <string>model_name1

#

BEGIN PARAMETERS FOR MODEL <string> model_name2

#

Parameters for material model model_name2

END PARAMETERS FOR MODEL <string> model_name2

#

Additional model command blocks if required

#

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

In the above general form for a PROPERTY SPECIFICATION FOR MATERIAL command block,

the string model_name1 could be ELASTIC and the string model_name2 could be ORTHOTROPIC

CRUSH. Typically, however, only one material model would be desired for a given block,

and the PROPERTY SPECIFICATION FOR MATERIAL command block would have only one

PARAMETERS FOR MODEL command block. A particular material model may only appear once

within a given PROPERTY SPECIFICATION FOR MATERIAL command block.

Although multiple material models can be defined for one material within a PROPERTY

SPECIFICATION FOR MATERIAL command block, only one material model is actually used for

a given element block during an analysis. The ability to define multiple constitutive models for one

material is provided as a convenience to enable the user to easily switch between models. The ma-

terial name and the model name are both referenced when material models are assigned to element

blocks within the FINITE ELEMENT MODEL command block, which is described in Section 5.1.

This chapter is organized to correspond to the general form presented for the PROPERTY

SPECIFICATION FOR MATERIAL command block. Section 4.1 discusses the DENSITY com-

mand line, the BIOTS COEFFICIENT command line, and the command lines used for thermal

strains, and also explains how temperatures and thermal strains are applied. Section 4.2 describes

each of the material models that are shared by Presto and Adagio. References applicable for both

114 CHAPTER 4. MATERIALS

Presto and Adagio are listed in Section 4.4.

As indicated in the introductory material, not all the material models available are applicable to all

the element types. As one example, there is a one-dimensional elastic material model that is used

for a truss element but is not applicable to solid elements such as hexahedra or tetrahedra. For this

particular example, the specific material-model usage is hidden from the user. If the user specifies

a linear elastic material model for a truss, the one-dimensional elastic material model is used. If

the user specifies a linear elastic material model for a hexahedron, a full three-dimensional elastic

material model is used. As another example, the energy-dependent material models available

in Presto cannot be used for a one-dimensional element such as a truss. The energy-dependent

material models can only be used for solid elements such as hexahedra and tetrahedra. (Chapter 5

indicates what material models are available for which element models.)

For each material model, the parameters needed to describe that model are listed in the section

pertinent to that particular model. Solid models with elastic constants require only two elastic

constants. These two constants are then used to generate all the elastic constants for the model.

For example, if the user specifies Young’s modulus and Poisson’s ratio, then the shear modulus,

bulk modulus, and lambda are calculated. If the shear modulus and lambda are specified, then

Young’s modulus, Poisson’s ratio, and the bulk modulus are calculated.

The various nonlinear material models have state variables. See Section 8.7.2 to learn how to

output the state variables for the nonlinear material models.

Note that only brief descriptions of the material models are presented in this chapter. For a detailed

description of the various material models, you will need to consult a variety of references. Specific

references are identified for most of the material models shared by Presto and Adagio.

4.1. GENERAL MATERIAL COMMANDS 115

4.1 General Material Commands

A PROPERTY SPECIFICATION FOR MATERIAL command block for a particular material may

include additional command lines that are applicable to all the material models specified within

the command block. These command lines related to density, to Biot’s coefficient, and to thermal

strain behavior are discussed, respectively, in Section 4.1.1, Section 4.1.2, and Section 4.1.3.

4.1.1 Density Command

DENSITY = <real>density_value

This command line specifies the density of the material described in a PROPERTY

SPECIFICATION FOR MATERIAL command block. The units of the input parameter density_

value are specified as mass per unit volume.

As previously explained, a PROPERTY SPECIFICATION FOR MATERIAL command block can

contain one or more PARAMETERS FOR MODEL command blocks. The specified density_value

for the material will be used with all of the models described in these PARAMETERS FOR MODEL

command blocks.

4.1.2 Biot’s Coefficient Command

BIOTS COEFFICIENT = <real>biots_value

This command line specifies the Biot’s coefficient of the material. Biot’s coefficient is used with

the pore pressure capability. See Section 6.8 for more information on pore pressure. If not given,

the value defaults to 1.0. This parameter is unitless.

As previously explained, a PROPERTY SPECIFICATION FOR MATERIAL command block can

contain one or more PARAMETERS FOR MODEL command blocks. The specified biots_value

for the material will be used with all of the models described in these PARAMETERS FOR MODEL

command blocks.

4.1.3 Thermal Strain Behavior

Isotropic and orthotropic thermal strains may be defined for use by material models listed in a

PROPERTY SPECIFICATION FOR MATERIAL command block. Section 4.1.3.1 describes the

command lines that are used to define the thermal strain behavior. These command lines must be

used in conjunction with other command blocks outside of a PROPERTY SPECIFICATION FOR

MATERIAL command block for the calculations of thermal strains to be activated. Section 4.1.3.2

explains the process for activating thermal strains.

116 CHAPTER 4. MATERIALS

4.1.3.1 Defining Thermal Strains

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

A PROPERTY SPECIFICATION FOR MATERIAL command block may include command lines

that define thermal strain behavior. It is possible to specify either an isotropic thermal-strain field

using the command line THERMAL STRAIN FUNCTION or an orthotropic thermal-strain field us-

ing the command lines THERMAL STRAIN X FUNCTION, THERMAL STRAIN Y FUNCTION, and

THERMAL STRAIN Z FUNCTION. For any of these command lines, the user supplies a thermal

strain function (via a DEFINITION FOR FUNCTION command block), which defines the thermal

strain as a function of temperature. The computed thermal strain is then subtracted from the strain

passed to the material model.

A thermal strain can be applied to any two-dimensional or three-dimensional element, regardless

of material type. For a three-dimensional element such as a hexahedron or tetrahedron, the ther-

mal strains are applied to the strain in the global XY Z coordinate system. For the isotropic case,

the thermal strains are the same in the X-direction, the Y -direction, and the Z-direction. For the

anisotropic case, the thermal strains can be different in each of the three global directions—X , Y ,

and Z. For a two-dimensional element, shell or membrane, the thermal strain corresponding to the

THERMAL STRAIN X FUNCTION command line is applied to the strain in the shell (or membrane)

r-direction. (Reference Section 5.2.3 for a discussion of the shell rst coordinate system.) The ther-

mal strain corresponding to the THERMAL STRAIN Y FUNCTION command line is applied to the

strain in the shell (or membrane) s-direction. For two-dimensional elements, the current implemen-

tation of orthotropic thermal strains is limited, for practical purposes, to special cases—flat sheets

of uniform shell elements lying in one of the global planes, e.g., XY , Y Z, or ZX . The current or-

thotropic thermal-strain capability has limited use for shells and membranes in the current release

of the code. Tying the orthotropic thermal-strain functionality to the shell orientation functionality

(Section 5.2.3) in the future will provide much more useful orthotropic thermal-strain functionality

for two-dimensional elements.

If an isotropic thermal-strain field is to be applied, the THERMAL STRAIN FUNCTION command

line is placed in the PROPERTY SPECIFICATION FOR MATERIAL command block, outside of

the specifications of any material models in the block. Such placement is necessary because

the isotropic thermal strain is a general material property, not a property that is specific to any

particular constitutive model, such as ELASTIC or ELASTIC-PLASTIC. The input value of

thermal_strain_function is the name of the function that defines thermal strain as a function

of temperature for the material model described in this particular PROPERTY SPECIFICATION

FOR MATERIAL command block. The function is defined within the SIERRA scope using a

DEFINITION FOR FUNCTION command block. For more information on how to set the input

to compute thermal strains and how to apply temperatures, see Section 4.1.3.2.

4.1. GENERAL MATERIAL COMMANDS 117

The specification of an orthotropic thermal-strain field requires that all three of the

THERMAL STRAIN X FUNCTION, THERMAL STRAIN Y FUNCTION, and THERMAL STRAIN Z

FUNCTION command lines be placed in the PROPERTY SPECIFICATION FOR MATERIAL com-

mand block. All three command lines must be provided, even when there is no thermal strain

in one or more directions. The values of thermal_strain_x_function, thermal_strain_

y_function, and thermal_strain_z_function are the names of the functions for thermal

strains in the X-direction, the Y -direction, and the Z-direction, respectively. These functions are de-

fined within the SIERRA scope using DEFINITION FOR FUNCTION command blocks. To specify

that there should be no thermal strain in a given direction, use a function that always evaluates to

zero for that direction.

The THERMAL STRAIN FUNCTION command line and the THERMAL STRAIN X FUNCTION,

THERMAL STRAIN Y FUNCTION, and THERMAL STRAIN Z FUNCTION command lines are not

used for several of the material models, as discussed in Section 4.1.3.2. Note that specification of a

thermal strain is identified in the descriptions of the material models in Section 4.2 by the notation

“ thermal strain option”.

118 CHAPTER 4. MATERIALS

4.1.3.2 Activating Thermal Strains

Presto has the capability to compute thermal strains on three-dimensional continuum and two-

dimensional (shell, membrane) elements. Three things are required to activate thermal strains:

• First, one or more thermal strain functions (strain as a function of temperature) must be

defined. Each thermal strain function is defined with a DEFINITION FOR FUNCTION com-

mand block. (This function is the standard function definition that appears in the SIERRA

scope.) The thermal strain function gives the total thermal strain associated with a given

temperature. It is the change in thermal strain with the change in temperature that gives rise

to thermal stresses in a body.

• Second, the material models used by blocks that experience thermal strain must have their

thermal strain behavior defined. The command lines for defining isotropic and orthotropic

thermal strain are described in Section 4.1.3.1. Materials with isotropic thermal strain use the

THERMAL STRAIN FUNCTION command line, while those with orthotropic thermal strain

must define thermal strain in all three directions using the THERMAL STRAIN X FUNCTION,

THERMAL STRAIN Y FUNCTION, and THERMAL STRAIN Z FUNCTION command lines.

These inputs can be used with all material models with the exception of the following: elas-

tic three-dimensional orthotropic, elastic laminate, Mooney-Rivlin, NLVE three-dimensional

orthotropic, Swanson, and viscoelastic Swanson. These models require their own model-

specific inputs to define thermal strain and must not use these standard commands. Informa-

tion for defining thermal strains is provided in the individual descriptions of these models in

Section 4.2.

• Third, a temperature field must be applied to the affected blocks. The command block to

specify the application of temperatures is PRESCRIBED TEMPERATURE, which is imple-

mented as a standard boundary condition. A description of the PRESCRIBED TEMPERATURE

command block is given in Section 6.7.

Whenever a temperature field is applied, the temperature is prescribed at the nodes, but thermal

strain is computed based on element temperature. Element temperatures are obtained by averaging

the temperatures of the nodes connected to a given element. Thermal strains are applied in rate

form, so the thermal strain in an element is relative to the thermal strain at the initial tempera-

ture. Thus, the initial temperature is the stress-free temperature. If desired, a different stress-free

temperature can be used by prescribing the initial temperature with the INITIAL CONDITION

command block as described in Section 6.2.

4.2. MODEL SPECIFICATIONS 119

4.2 Model Specifications

This section contains descriptions of the material models that are shared by Presto and Adagio.

4.2.1 Elastic Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL ELASTIC

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

END [PARAMETERS FOR MODEL ELASTIC]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

An elastic material model is used to describe simple linear elastic behavior of materials. This

model is generally valid for small deformations.

For an elastic material, an elastic command block starts with the input line:

BEGIN PARAMETERS FOR MODEL ELASTIC

and terminates with an input line of the following form:

END [PARAMETERS FOR MODEL ELASTIC]

In the above command blocks:

- The density of the material is defined with the DENSITY command line.

- The Biot’s coefficient of the material is defined with the BIOTS COEFFICIENT command

line.

120 CHAPTER 4. MATERIALS

- The thermal strain option is used to define thermal strains. See Section 4.1.3.1 and

Section 4.1.3.2 for further information on defining and activating thermal strains.

- Only two of the following elastic constants are required:

• Young’s modulus is defined with the YOUNGS MODULUS command line.

• Poisson’s ratio is defined with the POISSONS RATIO command line.

• The bulk modulus is defined with the BULK MODULUS command line.

• The shear modulus is defined with the SHEAR MODULUS command line.

• Lambda is defined with the LAMBDA command line.

Output variables available for this model are listed in Table 8.19. For information about the elastic

model, consult Reference 1.

4.2. MODEL SPECIFICATIONS 121

4.2.2 Elastic Fracture Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL ELASTIC_FRACTURE

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

MAX STRESS = <real>max_stress

CRITICAL STRAIN = <real>critical_strain

END [PARAMETERS FOR MODEL ELASTIC_FRACTURE]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

An elastic fracture material is a simple failure model that is based on linear elastic behavior. The

model uses a maximum-principal-stress failure criterion. The stress decays isotropically based on

the component of strain parallel to the maximum principal stress. The value of the component of

strain over which the stress is decayed to zero is a user-defined parameter for the model. This strain

parameter can be adjusted so that failure is mesh independent.

For an elastic fracture material, an elastic fracture command block starts with the input line:

BEGIN PARAMETERS FOR MODEL ELASTIC_FRACTURE

and terminates with an input line of the following form:

END [PARAMETERS FOR MODEL ELASTIC_FRACTURE]

In the above command blocks:

- The density of the material is defined with the DENSITY command line.

- The Biot’s coefficient of the material is defined with the BIOTS COEFFICIENT command

line.

122 CHAPTER 4. MATERIALS

- The thermal strain option is used to define thermal strains. See Section 4.1.3.1 and

Section 4.1.3.2 for further information on defining and activating thermal strains.

- Only two of the following elastic constants are required:

• Young’s modulus is defined with the YOUNGS MODULUS command line.

• Poisson’s ratio is defined with the POISSONS RATIO command line.

• The bulk modulus is defined with the BULK MODULUS command line.

• The shear modulus is defined with the SHEAR MODULUS command line.

• Lambda is defined with the LAMBDA command line.

- The maximum principal stress at which failure occurs is defined with the MAX STRESS com-

mand line.

- The component of strain over which the stress decays to zero is defined with the CRITICAL

STRAIN command line. This component of strain is aligned with the maximum-principal-

stress direction at failure.

Output variables available for this model are listed in Table 8.20.

4.2. MODEL SPECIFICATIONS 123

4.2.3 Elastic-Plastic Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL ELASTIC_PLASTIC

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

YIELD STRESS = <real>yield_stress

HARDENING MODULUS = <real>hardening_modulus

BETA = <real>beta_parameter(1.0)

END [PARAMETERS FOR MODEL ELASTIC_PLASTIC]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The elastic-plastic linear hardening models are used to model materials, typically metals, that

undergoing plastic deformation at finite strains. Linear hardening generally refers to the shape of a

uniaxial stress-strain curve where the stress increases linearly with the plastic, or permanent, strain.

In a three-dimensional framework, hardening is the law that governs how the yield surface grows

in stress space. If the yield surface grows uniformly in stress space, the hardening is referred to as

isotropic hardening. When BETA is 1.0, we have only isotropic hardening.

Because the linear hardening model is relatively simple to integrate, the model also has the ability

to define a yield surface that not only grows, or hardens, but also moves in stress space. This

ability is known as kinematic hardening. When BETA is 0.0, we have only kinematic hardening.

The elastic-plastic linear hardening model allows for isotropic hardening, kinematic hardening, or

a combination of the two.

For an elastic-plastic material, an elastic-plastic command block starts with the input line:

BEGIN PARAMETERS FOR MODEL ELASTIC_PLASTIC

and terminates with an input line of the following form:

END [PARAMETERS FOR MODEL ELASTIC_PLASTIC]

124 CHAPTER 4. MATERIALS

In the above command blocks:

- The density of the material is defined with the DENSITY command line.

- The Biot’s coefficient of the material is defined with the BIOTS COEFFICIENT command

line.

- The thermal strain option is used to define thermal strains. See Section 4.1.3.1 and

Section 4.1.3.2 for further information on defining and activating thermal strains.

- Only two of the following elastic constants are required:

• Young’s modulus is defined with the YOUNGS MODULUS command line.

• Poisson’s ratio is defined with the POISSONS RATIO command line.

• The bulk modulus is defined with the BULK MODULUS command line.

• The shear modulus is defined with the SHEAR MODULUS command line.

• Lambda is defined with the LAMBDA command line.

- The yield stress is defined with the YIELD STRESS command line.

- The hardening modulus is defined with the HARDENING MODULUS command line.

- The beta parameter is defined with the BETA command line.

Output variables available for this model are listed in Table 8.21. For information about the elastic-

plastic model, consult Reference 1.

4.2. MODEL SPECIFICATIONS 125

4.2.4 Elastic-Plastic Power-Law Hardening Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL EP_POWER_HARD

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

YIELD STRESS = <real>yield_stress

HARDENING CONSTANT = <real>hardening_constant

HARDENING EXPONENT = <real>hardening_exponent

LUDERS STRAIN = <real>luders_strain

END [PARAMETERS FOR MODEL EP_POWER_HARD]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

A power-law hardening model for elastic-plastic materials is used for modeling metal plasticity up

to finite strains. The power-law hardening model, as opposed to the linear hardening model, has

a power law fit for the uniaxial stress-strain curve that has the stress increase as the plastic strain

raised to some power. The power-law hardening model also has the ability to model materials that

exhibit Luder’s strains after yield. Due to the more complicated yield behavior, the power-law

hardening model can only be used with isotropic hardening.

For an elastic-plastic power-law hardening material, an elastic-plastic power-law hardening com-

mand block starts with the input line:

BEGIN PARAMETERS FOR MODEL EP_POWER_HARD

and terminates with an input line of the following form:

END [PARAMETERS FOR MODEL EP_POWER_HARD]

In the above command blocks:

126 CHAPTER 4. MATERIALS

- The density of the material is defined with the DENSITY command line.

- The Biot’s coefficient of the material is defined with the BIOTS COEFFICIENT command

line.

- The thermal strain option is used to define thermal strains. See Section 4.1.3.1 and

Section 4.1.3.2 for further information on specifying and applying thermal strains and tem-

peratures.

- Only two of the following elastic constants are required:

• Young’s modulus is defined with the YOUNGS MODULUS command line.

• Poisson’s ratio is defined with the POISSONS RATIO command line.

• The bulk modulus is defined with the BULK MODULUS command line.

• The shear modulus is defined with the SHEAR MODULUS command line.

• Lambda is defined with the LAMBDA command line.

- The yield stress is defined with the YIELD STRESS command line.

- The hardening constant is defined with the HARDENING CONSTANT command line.

- The hardening exponent is defined with the HARDENING EXPONENT command line.

- The Luder’s strain is defined with the LUDERS STRAIN command line.

Output variables available for this model are listed in Table 8.22. For information about the elastic-

plastic power-law hardening model, consult Reference 1.

4.2. MODEL SPECIFICATIONS 127

4.2.5 Ductile Fracture Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL DUCTILE_FRACTURE

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

YIELD STRESS = <real>yield_stress

HARDENING CONSTANT = <real>hardening_constant

HARDENING EXPONENT = <real>hardening_exponent

LUDERS STRAIN <real>luders_strain

CRITICAL TEARING PARAMETER = <real>crit_tearing

CRITICAL CRACK OPENING STRAIN = <real>crit_crack

END [PARAMETERS FOR MODEL DUCTILE_FRACTURE]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

This model is identical to the elastic-plastic power-law hardening model with the addition of a

failure criterion and a post-failure isotropic decay of the stress to zero within the constitutive model.

The point at which failure occurs is defined by a critical tearing parameter. The critical tearing

parameter tp is related to the plastic strain at failure ε f by the evolution integral

tp =
∫ ε f

0
〈 2σmax

3(σmax −σm)
〉

4

dεp . (4.1)

In Equation (4.1), σmax is the maximum principal stress, and σm is the mean stress. The quantity

in the angle brackets, the expression

2σmax

3(σmax −σm)
, (4.2)

is nonzero only if it evaluates to a positive value. This quantity is set to zero if it has a negative

value.

128 CHAPTER 4. MATERIALS

The stress decays isotropically based on the component of strain parallel to the maximum principal

stress. The value of the component of strain over which the stress is decayed to zero is a user-

defined parameter for the model. This strain parameter can be adjusted so that failure is mesh

independent.

For an elastic-plastic power-law hardening material with failure, the command block starts with

the input line:

BEGIN PARAMETERS FOR MODEL DUCTILE_FRACTURE

and terminates with an input line of the following form:

END [PARAMETERS FOR MODEL DUCTILE_FRACTURE]

In the above command blocks:

- The density of the material is defined with the DENSITY command line.

- The Biot’s coefficient of the material is defined with the BIOTS COEFFICIENT command

line.

- The thermal strain option is used to define thermal strains. See Section 4.1.3.1 and

Section 4.1.3.2 for further information on defining and activating thermal strains and tem-

peratures.

- Only two of the following elastic constants are required:

• Young’s modulus is defined with the YOUNGS MODULUS command line.

• Poisson’s ratio is defined with the POISSONS RATIO command line.

• The bulk modulus is defined with the BULK MODULUS command line.

• The shear modulus is defined with the SHEAR MODULUS command line.

• Lambda is defined with the LAMBDA command line.

- The yield stress is defined with the YIELD STRESS command line.

- The hardening constant is defined with the HARDENING CONSTANT command line.

- The hardening exponent is defined with the HARDENING EXPONENT command line.

- The Luder’s strain is defined with the LUDERS STRAIN command line.

- The critical tearing parameter is defined with the CRITICAL TEARING PARAMETER com-

mand line.

- The component of strain over which the stress decays to zero is defined with the CRITICAL

CRACK OPENING STRAIN command line. This component of strain is aligned with the

maximum-principal-stress direction at failure.

Output variables available for this model are listed in Table 8.23. For information about the ductile

fracture material model, consult Reference 1.

4.2. MODEL SPECIFICATIONS 129

4.2.6 Multilinear Elastic-Plastic Hardening Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL MULTILINEAR_EP

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

YIELD STRESS = <real>yield_stress

BETA = <real>beta_parameter(1.0)

HARDENING FUNCTION = <real>hardening_function_name

YOUNGS MODULUS FUNCTION = <real>ym_function_name

POISSONS RATIO FUNCTION = <real>pr_function_name

YIELD STRESS FUNCTION = <real>yield_stress_function_name

END [PARAMETERS FOR MODEL MULTILINEAR_EP]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

This model is similar to the power-law hardening model except that the hardening behavior is

described with a piecewise-linear curve as opposed to a power law.

For a multi-linear elastic-plastic hardening material, the command block starts with the input line:

BEGIN PARAMETERS FOR MODEL MULTILINEAR_EP

and terminates with an input line of the following form:

END [PARAMETERS FOR MODEL MULTILINEAR_EP]

In the above command blocks:

- The density of the material is defined with the DENSITY command line.

130 CHAPTER 4. MATERIALS

- The Biot’s coefficient of the material is defined with the BIOTS COEFFICIENT command

line.

- The thermal strain option is used to define thermal strains. See Section 4.1.3.1 and

Section 4.1.3.2 for further information on defining and activating thermal strains.

- Only two of the following elastic constants are required:

• Young’s modulus is defined with the YOUNGS MODULUS command line.

• Poisson’s ratio is defined with the POISSONS RATIO command line.

• The bulk modulus is defined with the BULK MODULUS command line.

• The shear modulus is defined with the SHEAR MODULUS command line.

• Lambda is defined with the LAMBDA command line.

- The yield stress is defined with the YIELD STRESS command line.

- The beta parameter is defined with the BETA command line.

- The HARDENING FUNCTION command line references the name of a function defined in

a DEFINITION FOR FUNCTION command line in the SIERRA scope that describes the

hardening behavior of the material as a stress versus equivalent plastic strain. This curve is

expressed as the additional increment of stress over the yield stress versus equivalent plastic

strain, thus the first point on the curve should be (0.0, 0.0).

- The YOUNGS MODULUS FUNCTION command line references the name of a function defined

in a DEFINITION FOR FUNCTION command line in the SIERRA scope that describes a

scale factor on Young’s modulus as a function of temperature.

- The POISSONS RATIO FUNCTION command line references the name of a function defined

in a DEFINITION FOR FUNCTION command line in the SIERRA scope that describes a

scale factor on Poisson’s ratio as a function of temperature.

- The YIELD STRESS FUNCTION command line references the name of a function defined in

a DEFINITION FOR FUNCTION command line in the SIERRA scope that describes a scale

factor on the yield stress as a function of temperature.

Output variables available for this model are listed in Table 8.24.

4.2. MODEL SPECIFICATIONS 131

4.2.7 Multilinear Elastic-Plastic Hardening Model with Failure

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL ML_EP_FAIL

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

YIELD STRESS = <real>yield_stress

BETA = <real>beta_parameter(1.0)

HARDENING FUNCTION = <real>hardening_function_name

YOUNGS MODULUS FUNCTION = <real>ym_function_name

POISSONS RATIO FUNCTION = <real>pr_function_name

YIELD STRESS FUNCTION = <real>yield_stress_function_name

CRITICAL TEARING PARAMETER = <real>crit_tearing

CRITICAL CRACK OPENING STRAIN = <real>crit_crack

END [PARAMETERS FOR MODEL ML_EP_FAIL]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

This model is similar to the power-law hardening model except that the hardening behavior is

described with a piecewise-linear curve as opposed to a power law. This model incorporates a

failure criterion and a post-failure isotropic decay of the stress to zero within the constitutive model.

The point at which failure occurs is defined by a critical tearing parameter. The critical tearing

parameter tp is related to the plastic strain at failure ε f by the evolution integral:

tp =
∫ ε f

0
〈 2σmax

3(σmax −σm)
〉

4

dεp . (4.3)

In Equation (4.3), σmax is the maximum principal stress, and σm is the mean stress. The quantity

in the angle brackets, the expression

2σmax

3(σmax −σm)
, (4.4)

132 CHAPTER 4. MATERIALS

is nonzero only if it evaluates to a positive value. This quantity is set to zero if it has a negative

value.

The stress decays isotropically based on the component of strain parallel to the maximum principal

stress. The value of the component of strain over which the stress is decayed to zero is a user-

defined parameter for the model. This strain parameter can be adjusted so that failure is mesh

independent.

For a multi-linear elastic-plastic hardening material with failure, the command block starts with

the input line

BEGIN PARAMETERS FOR MODEL ML_EP_FAIL

and terminates with an input line of the following form:

END [PARAMETERS FOR MODEL ML_EP_FAIL]

In the above command blocks:

- The density of the material is defined with the DENSITY command line.

- The Biot’s coefficient of the material is defined with the BIOTS COEFFICIENT command

line.

- The thermal strain option is used to define thermal strains. See Section 4.1.3.1 and

Section 4.1.3.2 for further information on defining and activating thermal strains.

- Only two of the following elastic constants are required:

• Young’s modulus is defined with the YOUNGS MODULUS command line.

• Poisson’s ratio is defined with the POISSONS RATIO command line.

• The bulk modulus is defined with the BULK MODULUS command line.

• The shear modulus is defined with the SHEAR MODULUS command line.

• Lambda is defined with the LAMBDA command line.

- The yield stress is defined with the YIELD STRESS command line.

- The beta parameter is defined with the BETA command line.

- The HARDENING FUNCTION command line references the name of a function defined in

a DEFINITION FOR FUNCTION command line in the SIERRA scope that describes the

hardening behavior of the material as a stress versus equivalent plastic strain. This curve is

expressed as the additional increment of stress over the yield stress versus equivalent plastic

strain, thus the first point on the curve should be (0.0, 0.0).

4.2. MODEL SPECIFICATIONS 133

- The YOUNGS MODULUS FUNCTION command line references the name of a function defined

in a DEFINITION FOR FUNCTION command line in the SIERRA scope that describes a

scale factor on Young’s modulus as a function of temperature.

- The POISSONS RATIO FUNCTION command line references the name of a function defined

in a DEFINITION FOR FUNCTION command line in the SIERRA scope that describes a

scale factor on Poisson’s ratio as a function of temperature.

- The YIELD STRESS FUNCTION command line references the name of a function defined in

a DEFINITION FOR FUNCTION command line in the SIERRA scope that describes a scale

factor on the yield stress as a function of temperature.

- The critical tearing parameter is defined with the CRITICAL TEARING PARAMETER com-

mand line.

- The component of strain over which the stress decays to zero is defined with the CRITICAL

CRACK OPENING STRAIN command line. This component of strain is aligned with the

maximum-principal-stress direction at failure.

Output variables available for this model are listed in Table 8.25.

134 CHAPTER 4. MATERIALS

4.2.8 Johnson-Cook Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL JOHNSON_COOK

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

YIELD STRESS = <real>yield_stress

HARDENING CONSTANT = <real>hardening_constant

HARDENING EXPONENT = <real>hardening_exponent

RHOCV = <real>rho_cv

RATE CONSTANT = <real>rate_constant

THERMAL EXPONENT = <real>thermal_exponent

REFERENCE TEMPERATURE = <real>reference_temperature

MELT TEMPERATURE = <real>melt_temperature

END [PARAMETERS FOR MODEL JOHNSON_COOK]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The Johnson-Cook model is used to model materials, typically metals, that undergoing plastic

deformation at finite strains.

BEGIN PARAMETERS FOR MODEL JOHNSON_COOK

and terminates with an input line of the following form:

END [PARAMETERS FOR MODEL JOHNSON_COOK]

In the above command blocks:

- The density of the material is defined with the DENSITY command line.

4.2. MODEL SPECIFICATIONS 135

- The Biot’s coefficient of the material is defined with the BIOTS COEFFICIENT command

line.

- The thermal strain option is used to define thermal strains. See Section 4.1.3.1 and

Section 4.1.3.2 for further information on defining and activating thermal strains.

- Only two of the following elastic constants are required:

• Young’s modulus is defined with the YOUNGS MODULUS command line.

• Poisson’s ratio is defined with the POISSONS RATIO command line.

• The bulk modulus is defined with the BULK MODULUS command line.

• The shear modulus is defined with the SHEAR MODULUS command line.

• Lambda is defined with the LAMBDA command line.

- The yield stress is defined with the YIELD STRESS command line.

- The hardening constant is defined with the HARDENING CONSTANT command line.

- The hardening exponent is defined with the HARDENING EXPONENT command line.

- The rhocv is defined with the RHOCV command line.

- The thermal exponent is defined with the THERMAL EXPONENT command line.

- The reference temperature is defined with the REFERENCE TEMPERATURE command line.

- The melt temperature is defined with the MELT TEMPERATURE command line.

For information about the Johnson-Cook material model, consult Reference 17.

136 CHAPTER 4. MATERIALS

4.2.9 BCJ Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL BCJ

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

C1 = <real>c1

C2 = <real>c2

C3 = <real>c3

C4 = <real>c4

C5 = <real>c5

C6 = <real>c6

C7 = <real>c7

C8 = <real>c8

C9 = <real>c9

C10 = <real>c10

C11 = <real>c11

C12 = <real>c12

C13 = <real>c13

C14 = <real>c14

C15 = <real>c15

C16 = <real>c16

C17 = <real>c17

C18 = <real>c18

C19 = <real>c19

C20 = <real>c20

DAMAGE EXPONENT = <real>damage_exponent

INITIAL ALPHA_XX = <real>alpha_xx

INITIAL ALPHA_YY = <real>alpha_yy

INITIAL ALPHA_ZZ = <real>alpha_zz

INITIAL ALPHA_XY = <real>alpha_xy

4.2. MODEL SPECIFICATIONS 137

INITIAL ALPHA_YZ = <real>alpha_yz

INITIAL ALPHA_XZ = <real>alpha_xz

INITIAL KAPPA = <real>initial_kappa

INITIAL DAMAGE = <real>initial_damage

YOUNGS MODULUS FUNCTION = <string>ym_function_name

POISSONS RATIO FUNCTION = <string>pr_function_name

SPECIFIC HEAT = <real>specific_heat

THETA OPT = <integer>theta_opt

FACTOR = <real>factor

RHO = <real>rho

TEMP0 = <real>temp0

END [PARAMETERS FOR MODEL BCJ]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The BCJ plasticity model is a state-variable model for describing the finite deformation behavior of

metals. It uses a multiplicative decomposition of the deformation gradient into elastic, volumetric

plastic, and deviatoric parts. The model considers the natural configuration defined by this decom-

position and its associated thermodynamics. The model incorporates strain rate and temperature

sensitivity, as well as damage, through a yield-surface approach in which state variables follow a

hardening-minus-recovery format.

Because the BCJ model has such an extensive list of parameters, we will not present the usual

synopsis of parameter names with command lines. As with most other material models, the

thermal strain option is used to define thermal strains. See Section 4.1.3.1 and Sec-

tion 4.1.3.2 for further information on defining and activating thermal strains. In addition, only

two of the five elastic constants are required. The user should consult References 2, 3, and 4

for a description of the various parameters. Note that the parameters for the SPECIFIC HEAT,

THETA OPT, FACTOR, RHO, and TEMP0 command lines are used to accommodate changes to the

model for heat generation due to plastic dissipation. For coupled solid/thermal calculations, the

plastic dissipation rate is stored as a state variable and passed to a thermal code as a heat source

term. For uncoupled calculations, temperature is stored as a state variable, and temperature in-

creases due to plastic dissipation are calculated within the material model.

If temperature is provided from an external source, theta_opt is set to 0. If the temperature is

calculated by the BCJ model, theta_opt is set to 1.

138 CHAPTER 4. MATERIALS

4.2.10 Soil and Crushable Foam Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL SOIL_FOAM

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

A0 = <real>const_coeff_yieldsurf

A1 = <real>lin_coeff_yieldsurf

A2 = <real>quad_coeff_yieldsurf

PRESSURE CUTOFF = <real>pressure_cutoff

PRESSURE FUNCTION = <string>function_press_volstrain

END [PARAMETERS FOR MODEL SOIL_FOAM]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The soil and crushable foam model is a plasticity model that can be used for modeling soil or

crushable foam. Given the right input, the model is a Drucker-Prager model.

For the soil and crushable foam model, the yield surface is a surface of revolution about the hy-

drostat in principal stress space. A planar end cap is assumed for the yield surface so that the yield

surface is closed. The yield stress σyd is specified as a polynomial in pressure p. The yield stress

is given as:

σyd = a0 +a1 p+a2 p2 , (4.5)

where p is positive in compression. The determination of the yield stress from Equation (4.5)

places severe restrictions on the admissible values of a0, a1, and a2. There are three valid cases for

the yield surface. In the first case, there is an elastic–perfectly plastic deviatoric response, and the

yield surface is a cylinder oriented along the hydrostat in principal stress space. In this case, a0 is

positive, and a1 and a2 are zero. In the second case, the yield surface is conical. A conical yield

surface is obtained by setting a2 to zero and using appropriate values for a0 and a1. In the third

case, the yield surface has a parabolic shape. For the parabolic yield surface, all three coefficients

4.2. MODEL SPECIFICATIONS 139

in Equation (4.5) are nonzero. The coefficients are checked to determine that a valid negative

tensile-failure pressure can be derived based on the specified coefficients.

For the case of the cylindrical yield surface (e.g., a0 > 0 and a1 = a2 = 0), there is no tensile-failure

pressure. For the other two cases, the computed tensile-failure pressure may be too low. To handle

the situations where there is no tensile-failure pressure or the tensile-failure pressure is too low,

a pressure cutoff can be defined. If a pressure cutoff is defined, the tensile-failure pressure is the

larger of the computed tensile-failure pressure and the defined cutoff pressure.

The plasticity theories for the volumetric and deviatoric parts of the material response are com-

pletely uncoupled. The volumetric response is computed first. The mean pressure p is assumed to

be positive in compression, and a yield function φp is written for the volumetric response as:

φp = p− fp (εV) , (4.6)

where fp (εV) defines the volumetric stress-strain curve for the pressure. The yield function φp

determines the motion of the end cap along the hydrostat.

For a soil and crushable foam material, a soil and crushable foam command block starts with the

input line:

BEGIN PARAMETERS FOR MODEL SOIL_FOAM

and terminates with an input line of the following form:

END [PARAMETERS FOR MODEL SOIL_FOAM]

In the above command blocks:

- The density of the material is defined with the DENSITY command line.

- The Biot’s coefficient of the material is defined with the BIOTS COEFFICIENT command

line.

- The thermal strain option is used to define thermal strains. See Section 4.1.3.1 and

Section 4.1.3.2 for further information on defining and activating thermal strains.

- Only two of the following elastic constants are required:

• Young’s modulus is defined with the YOUNGS MODULUS command line.

• Poisson’s ratio is defined with the POISSONS RATIO command line.

• The bulk modulus is defined with the BULK MODULUS command line.

• The shear modulus is defined with the SHEAR MODULUS command line.

• Lambda is defined with the LAMBDA command line.

- The constant in the equation for the yield surface is defined with the A0 command line.

140 CHAPTER 4. MATERIALS

- The coefficient for the linear term in the equation for the yield surface is defined with the A1

command line.

- The coefficient for the quadratic term in the equation for the yield surface is defined with the

A2 command line.

- The user-defined tensile-failure pressure is defined with the PRESSURE CUTOFF command

line.

- The pressure as a function of volumetric strain is defined with the function named on the

PRESSURE FUNCTION command line.

For information about the soil and crushable foam model, consult with the Pronto3d document

listed as Reference 5. The soil and crushable foam model is the same as the soil and crushable foam

model in Pronto3d. The Pronto3d model is based on a material model developed by Krieg [6]. The

Krieg version of the soil and crushable foam model was later modified by Swenson and Taylor [7].

The soil and crushable foam model developed by Swenson and Taylor is the model in Pronto3d

and is also the shared model for Presto and Adagio.

Output variables available for this model are listed in Table 8.38.

4.2. MODEL SPECIFICATIONS 141

4.2.11 Foam Plasticity Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL FOAM_PLASTICITY

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

PHI = <real>phi

SHEAR STRENGTH = <real>shear_strength

SHEAR HARDENING = <real>shear_hardening

SHEAR EXPONENT = <real>shear_exponent

HYDRO STRENGTH = <real>hydro_strength

HYDRO HARDENING = <real>hydro_hardening

HYDRO EXPONENT = <real>hydro_exponent

BETA = <real>beta

END [PARAMETERS FOR MODEL FOAM_PLASTICITY]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The foam plasticity model was developed to describe the response of porous elastic-plastic ma-

terials like closed-cell polyurethane foam to large deformation. Like solid metals, these foams

can exhibit significant plastic deviatoric strains (permanent shape changes). Unlike metals, these

foams can also exhibit significant plastic volume strains (permanent volume changes). The foam

plasticity model is characterized by an initial yield surface that is an ellipsoid about the hydrostat.

When foams are compressed, they typically exhibit an initial elastic regime followed by a plateau

regime in which the stress needed to compress the foam remains nearly constant. At some point

in the compression process, the densification regime is reached, and the stress needed to compress

the foam further begins to rapidly increase.

The foam plasticity model can be used to describe the response of metal foams and many closed-

cell polymeric foams (including polyurethane, polystyrene bead, etc.) subjected to large deforma-

tion. This model is not appropriate for flexible foams that return to their undeformed shape after

loads are removed.

142 CHAPTER 4. MATERIALS

For a foam plasticity material, a foam plasticity command block starts with the input line:

BEGIN PARAMETERS FOR MODEL FOAM_PLASTICITY

and terminates with an input line of the following form:

END [PARAMETERS FOR MODEL FOAM_PLASTICITY]

In the above command blocks:

- The density of the material is defined with the DENSITY command line.

- The Biot’s coefficient of the material is defined with the BIOTS COEFFICIENT command

line.

- The thermal strain option is used to define thermal strains. See Section 4.1.3.1 and

Section 4.1.3.2 for further information on defining and activating thermal strains.

- Only two of the following elastic constants are required:

• Young’s modulus is defined with the YOUNGS MODULUS command line.

• Poisson’s ratio is defined with the POISSONS RATIO command line.

• The bulk modulus is defined with the BULK MODULUS command line.

• The shear modulus is defined with the SHEAR MODULUS command line.

• Lambda is defined with the LAMBDA command line.

- The initial volume fraction of solid material in the foam, ϕ , is defined with the PHI command

line. For example, solid polyurethane weighs 75 pounds per cubic foot (pcf); uncompressed

10 pcf polyurethane foam would have a ϕ of 0.133 = 10
/

75.

- The shear (deviatoric) strength of uncompressed foam is defined with the SHEAR STRENGTH

command line.

- The shear hardening modulus for the foam is defined with the SHEAR HARDENING command

line.

- The shear hardening exponent is defined with the SHEAR EXPONENT command line.

The deviatoric strength is given by (SHEAR STRENGTH) + (SHEAR HARDENING) *
PHI**(SHEAR EXPONENT).

- The hydrostatic (volumetric) strength of the uncompressed foam is defined with the HYDRO

STRENGTH command line.

- The hydrodynamic hardening modulus is defined with the HYDRO HARDENING command

line.

4.2. MODEL SPECIFICATIONS 143

- The hydrodynamic hardening exponent is defined with the HYDRO EXPONENT command

line. The hydrostatic strength is given by (HYDRO STRENGTH) + (HYDRO HARDENING) *
PHI**(HYDRO EXPONENT).

- The prescription for nonassociated flow, β , is defined with the BETA command line. When

β = 0.0, the flow direction is given by the normal to the yield surface (associated flow).

When β = 1.0, the flow direction is given by the stress tensor. Values between 0.0 and 0.95

are recommended.

Output variables available for this model are listed in Table 8.26.

144 CHAPTER 4. MATERIALS

4.2.12 Elastic Three-Dimensional Orthotropic Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

BEGIN PARAMETERS FOR MODEL ELASTIC_3D_ORTHOTROPIC

YOUNGS MODULUS AA = <real>Eaa_value

YOUNGS MODULUS BB = <real>Ebb_value

YOUNGS MODULUS CC = <real>Ecc_value

POISSONS RATIO AB = <real>NUab_value

POISSONS RATIO BC = <real>NUbc_value

POISSONS RATIO CA = <real>NUca_value

SHEAR MODULUS AB = <real>Gab_value

SHEAR MODULUS BC = <real>Gbc_value

SHEAR MODULUS CA = <real>Gca_value

COORDINATE SYSTEM = <string>coordinate_system_name

DIRECTION FOR ROTATION = <real>1|2|3

ALPHA = <real>alpha_in_degrees

SECOND DIRECTION FOR ROTATION = <real>1|2|3

SECOND ALPHA = <real>second_alpha_in_degrees

THERMAL STRAIN AA FUNCTION = <string>ethaa_function_name

THERMAL STRAIN BB FUNCTION = <string>ethbb_function_name

THERMAL STRAIN CC FUNCTION = <string>ethcc_function_name

END [PARAMETERS FOR MODEL ELASTIC_3D_ORTHOTROPIC]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The elastic three-dimensional orthotropic model describes the linear elastic response of an or-

thotropic material where the orientation of the principal material directions can be arbitrary. These

principal axes are here denoted as A, B, and C. Thermal strains are also given along the principal

material axes. The specification of these material axes is accomplished by selecting a user-defined

coordinate system that can then be rotated twice about one of its current axes to give the final

desired directions.

For an elastic three-dimensional orthotropic model, the command block starts with the input line:

BEGIN PARAMETERS FOR MODEL ELASTIC_3D_ORTHOTROPIC

and terminates with an input line of the following form:

END [PARAMETERS FOR MODEL ELASTIC_3D_ORTHOTROPIC]

In the above command blocks:

- The density of the material is defined with the DENSITY command line.

- The Biot’s coefficient of the material is defined with the BIOTS COEFFICIENT command

line.

4.2. MODEL SPECIFICATIONS 145

- The Youngs moduli corresponding to the principal material axes A, B, and C are given by

the YOUNGS MODULUS AA, YOUNGS MODULUS BB, and YOUNGS MODULUS CC command

lines.

- The Poisson’s ratio defining the BB normal strain when the material is subjected only to AA

normal stress is given by the POISSONS RATIO AB command line.

- The Poisson’s ratio defining the CC normal strain when the material is subjected only to BB

normal stress is given by the POISSONS RATIO BC command line.

- The Poisson’s ratio defining the AA normal strain when the material is subjected only to CC

normal stress is given by the POISSONS RATIO CA command line.

- The shear moduli for shear in the AB, BC, and CA planes are given by the SHEAR MODULUS

AB, SHEAR MODULUS BC, and SHEAR MODULUS CA command lines, respectively.

- The specification of the principal material directions begins with the selection of a user-

specified coordinate system given by the COORDINATE SYSTEM command line. This initial

coordinate system can then be rotated twice to give the final material directions.

- The rotation of the initial coordinate system is defined using the DIRECTION FOR

ROTATION and ALPHA command lines. The axis for rotation of the initial coordinate system

is specified by the DIRECTION FOR ROTATION command line, while the angle of rotation

is given by the ALPHA command line. This gives an intermediate specification of the material

directions.

- The rotation of the intermediate coordinate system is defined using the SECOND DIRECTION

FOR ROTATION and SECOND ALPHA command lines. The axis for rotation of the intermedi-

ate coordinate system is specified by the SECOND DIRECTION FOR ROTATION command

line, while the angle of rotation is given by the SECOND ALPHA command line. The resulting

coordinate system gives the final specification of the material directions.

- The thermal strain functions for normal thermal strains along the principal material

directions are given by the THERMAL STRAIN AA FUNCTION, THERMAL STRAIN BB

FUNCTION, and THERMAL STRAIN CC FUNCTION command lines.

See Reference 8 for more information about the elastic three-dimensional orthotropic model.

146 CHAPTER 4. MATERIALS

4.2.13 Orthotropic Crush Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL ORTHOTROPIC_CRUSH

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

YIELD STRESS = <real>yield_stress

EX = <real>modulus_x

EY = <real>modulus_y

EZ = <real>modulus_z

GXY = <real>shear_modulus_xy

GYZ = <real>shear_modulus_yz

GZX = <real>shear_modulus_zx

VMIN = <real>min_crush_volume

CRUSH XX = <string>stress_volume_xx_function_name

CRUSH YY = <string>stress_volume_yy_function_name

CRUSH ZZ = <string>stress_volume_zz_function_name

CRUSH XY = <string>shear_stress_volume_xy_function_name

CRUSH YZ = <string>shear_stress_volume_yz_function_name

CRUSH ZX = <string>shear_stress_volume_zx_function_name

END [PARAMETERS FOR MODEL ORTHOTROPIC_CRUSH]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The orthotropic crush model is an empirically based constitutive relation that is useful for modeling

materials like metallic honeycomb and wood. This particular implementation follows the formu-

lation of the metallic honeycomb model in DYNA3D [9]. The orthotropic crush model divides

material behavior into three phases:

• orthotropic elastic,

• volumetric crush (partially compacted), and

4.2. MODEL SPECIFICATIONS 147

• elastic–perfectly plastic (fully compacted).

For an orthotropic crush material, an orthotropic crush command block starts with the input line:

BEGIN PARAMETERS FOR MODEL ORTHOTROPIC_CRUSH

and terminates with an input line of the following form:

END [PARAMETERS FOR MODEL ORTHOTROPIC_CRUSH]

In the above command blocks:

- The uncompacted density of the material is defined with the DENSITY command line.

- The thermal strain option is used to define thermal strains. See Section 4.1.3.1 and

Section 4.1.3.2 for further information on defining and activating thermal strains.

- Only two of the following elastic constants are required:

• Young’s modulus for the fully compacted state is defined with the YOUNGS MODULUS

command line. This is the elastic–perfectly plastic value of Young’s modulus.

• Poisson’s ratio for the fully compacted state is defined with the POISSONS RATIO

command line. This is the elastic–perfectly plastic value of Poisson’s ratio.

• The bulk modulus is defined with the BULK MODULUS command line.

• The shear modulus is defined with the SHEAR MODULUS command line.

• Lambda is defined with the LAMBDA command line.

- The yield stress for the fully compacted state is defined with the YIELD STRESS command

line. This is the elastic–perfectly plastic value of the yield stress.

- The initial directional modulus Exx is defined with the EX command line.

- The initial directional modulus Eyy is defined with the EY command line.

- The initial directional modulus Ezz is defined with the EZ command line.

- The initial directional shear modulus Gxy is defined with the GXY command line.

- The initial directional shear modulus Gyz is defined with the GYZ command line.

- The initial directional shear modulus Gzx is defined with the GZX command line.

- The minimum crush volume as a fraction of the original volume is defined with the VMIN

command line.

- The directional stress σxx as a function of the volume crush is defined by the function refer-

enced in the CRUSH XX command line.

148 CHAPTER 4. MATERIALS

- The directional stress σyy as a function of the volume crush is defined by the function refer-

enced in the CRUSH YY command line.

- The directional stress σzz as a function of the volume crush is defined by the function refer-

enced in the CRUSH ZZ command line.

- The directional stress σxy as a function of the volume crush is defined by the function refer-

enced in the CRUSH XY command line.

- The directional stress σyz as a function of the volume crush is defined by the function refer-

enced in the CRUSH YZ command line.

- The directional stress σzx as a function of the volume crush is defined by the function refer-

enced in the CRUSH ZX command line.

Note that several of the command lines in this command block (those beginning with CRUSH)

reference functions. These functions must be defined in the SIERRA scope. Output variables

available for this model are listed in Table 8.33. For information about the orthotropic crush

model, consult Reference 9.

4.2. MODEL SPECIFICATIONS 149

4.2.14 Orthotropic Rate Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL ORTHOTROPIC_RATE

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

YIELD STRESS = <real>yield_stress

MODULUS TTTT = <real>modulus_tttt

MODULUS TTLL = <real>modulus_ttll

MODULUS TTWW = <real>modulus_ttww

MODULUS LLLL = <real>modulus_llll

MODULUS LLWW = <real>modulus_llww

MODULUS WWWW = <real>modulus_wwww

MODULUS TLTL = <real>modulus_tltl

MODULUS LWLW = <real>modulus_lwlw

MODULUS WTWT = <real>modulus_wtwt

TX = <real>tx

TY = <real>ty

TZ = <real>tz

LX = <real>lx

LY = <real>ly

LZ = <real>lz

MODULUS FUNCTION = <string>modulus_function_name

RATE FUNCTION = <string>rate_function_name

T FUNCTION = <string>t_function_name

L FUNCTION = <string>l_function_name

W FUNCTION = <string>w_function_name

TL FUNCTION = <string>tl_function_name

LW FUNCTION = <string>lw_function_name

WT FUNCTION = <string>wt_function_name

END [PARAMETERS FOR MODEL ORTHOTROPIC_RATE]

150 CHAPTER 4. MATERIALS

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The orthotropic rate model extends the functionality of the orthotropic crush constitutive model

described in Section 4.2.13. The orthotropic rate model has been developed to describe the behav-

ior of an aluminum honeycomb subjected to large deformation. The orthotropic rate model, like

the original orthotropic crush model, has six independent yield functions that evolve with volume

strain. Unlike the orthotropic crush model, the orthotropic rate model has yield functions that also

depend on strain rate. The orthotropic rate model also uses an orthotropic elasticity tensor with

nine elastic moduli in place of the orthotropic elasticity tensor with six elastic moduli used in the

orthotropic crush model. A honeycomb orientation capability is included with the orthotropic rate

model that allows users to prescribe initial honeycomb orientations that are not aligned with the

original global coordinate system.

For an orthotropic rate material, an orthotropic rate command block starts with the input line:

BEGIN PARAMETERS FOR MODEL ORTHOTROPIC_RATE

and terminates with an input line of the following form:

END [PARAMETERS FOR MODEL ORTHOTROPIC_RATE]

In the above command blocks:

- The density of the material is defined with the DENSITY command line.

- The Biot’s coefficient of the material is defined with the BIOTS COEFFICIENT command

line.

- The thermal strain option is used to define thermal strains. See Section 4.1.3.1 and

Section 4.1.3.2 for further information on defining and activating thermal strains.

- In the following list of elastic constants, only the elastic modulus (Young’s modulus) is

required for this model. If two elastic constants are supplied, the elastic constants will be

completed. However, only the elastic modulus is used in this model.

• Young’s modulus for the fully compacted honeycomb is defined with the YOUNGS

MODULUS command line.

• Poisson’s ratio for the fully compacted state is defined with the POISSONS RATIO

command line.

• The bulk modulus for the fully compacted state is defined with the BULK MODULUS

command line.

• The shear modulus for the fully compacted state is defined with the SHEAR MODULUS

command line.

• Lambda for the fully compacted state is defined with the LAMBDA command line.

4.2. MODEL SPECIFICATIONS 151

- The yield stress for the fully compacted honeycomb is defined with the YIELD STRESS

command line.

- The nine elastic moduli for the orthotropic uncompacted honeycomb are defined with

the MODULUS TTT, MODULUS TTLL, MODULUS TTWW, MODULUS LLLL, MODULUS LLWW,

MODULUS WWWW, MODULUS TLTL, MODULUS LWLW, and MODULUS WTWT command lines.

The T-direction is usually associated with the generator axis for the honeycomb. The L-

direction is in the ribbon plane (plane defined by flat sheets used in reinforced honeycomb)

and orthogonal to the generator axis. The W-direction is perpendicular to the ribbon plane.

- The components of a vector defining the T-direction of the honeycomb are defined by the

TX, TY, and TZ command lines. The values of tx, ty, and tz are components of a vector

in the global coordinate system that define the orientation of the honeycomb’s T-direction

(generator axis).

- The components of a vector defining the L-direction of the honeycomb are defined by the

LX, LY, and LZ command lines. The values of lx, ly, and lz are components of a vector

in the global coordinate system that define the orientation of the honeycomb’s L-direction.

Caution: The vectors T and L must be orthogonal.

- The function describing the variation in moduli with compaction is given by the MODULUS

FUNCTION command line. The moduli vary continuously from their initial orthotropic values

to isotropic values when full compaction is obtained.

- The function describing the change in strength with strain rate is given by the RATE

FUNCTION command line. Note that all strengths are scaled with the multiplier obtained

from this function.

- The function describing the T-normal strength of the honeycomb as a function of compaction

is given by the T FUNCTION command line.

- The function describing the L-normal strength of the honeycomb as a function of compaction

is given by the L FUNCTION command line.

- The function describing the W-normal strength of the honeycomb as a function of com-

paction is given by the W FUNCTION command line.

- The function describing the TL-normal strength of the honeycomb as a function of com-

paction is given by the TL FUNCTION command line.

- The function describing the LW-normal strength of the honeycomb as a function of com-

paction is given by the LW FUNCTION command line.

- The function describing the WT-normal strength of the honeycomb as a function of com-

paction is given by the WT FUNCTION command line.

Note that several of the command lines in this command block reference functions. These functions

must be defined in the SIERRA scope. Output variables available for this model are listed in

Table 8.34.

152 CHAPTER 4. MATERIALS

4.2.15 Elastic Laminate Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

#

BEGIN PARAMETERS FOR MODEL ELASTIC_LAMINATE

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

A11 = <real>a11_value

A12 = <real>a12_value

A16 = <real>a16_value

A22 = <real>a22_value

A26 = <real>a26_value

A66 = <real>a66_value

A44 = <real>a44_value

A45 = <real>a45_value

A55 = <real>a55_value

B11 = <real>b11_value

B12 = <real>b12_value

B16 = <real>b16_value

B22 = <real>b22_value

B26 = <real>b26_value

B66 = <real>b66_value

D11 = <real>d11_value

D12 = <real>d12_value

D16 = <real>d16_value

D22 = <real>d22_value

D26 = <real>d26_value

D66 = <real>d66_value

COORDINATE SYSTEM = <string>coord_sys_name

DIRECTION FOR ROTATION = 1|2|3

ALPHA = <real>alpha_value_in_degrees

THETA = <real>theta_value_in_degrees

NTH11 FUNCTION = <string>nth11_function_name

NTH22 FUNCTION = <string>nth22_function_name

NTH12 FUNCTION = <string>nth12_function_name

MTH11 FUNCTION = <string>mth11_function_name

MTH22 FUNCTION = <string>mth22_function_name

MTH12 FUNCTION = <string>mth12_function_name

END [PARAMETERS FOR MODEL ELASTIC_LAMINATE]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The elastic laminate model can be used to describe the overall linear elastic response of layered

shells. The response of each layer is pre-integrated through the thickness under an assumed vari-

4.2. MODEL SPECIFICATIONS 153

ation of strain through the thickness. That is, the user inputs laminate stiffness matrices directly,

and the overall response is calculated appropriately. This model allows the user to input laminate

stiffness matrices that are consistent with a state of generalized plane stress for each layer. Each

layer can be orthotropic with a unique orientation. This model is primarily intended for captur-

ing the response of fiber-reinforced laminated composites. The user inputs the laminate stiffness

matrices calculated with respect to a chosen coordinate system and then specifies this coordinate

system’s definition relative to the global coordinate system. Thermal stresses are handled via the

input of thermal-force and thermal-force-couple resultants for the laminate as a whole. At present,

the user cannot get layer stresses out from this material model. However, the overall section-force

and force-couple resultants can be computed from available output. The details of this model are

described in References 10 and 11.

For elastic laminate materials, the elastic laminate command block begins with the input line:

BEGIN PARAMETERS FOR MODEL ELASTIC_LAMINATE

and terminates with an input line of the following form:

END [PARAMETERS FOR MODEL ELASTIC_LAMINATE]

In the above command blocks:

- The density of the material is defined with the DENSITY command line.

- Two of the five elastic constants must be defined with the YOUNGS MODULUS, POISSONS

RATIO, SHEAR MODULUS, BULK MODULUS, or LAMBDA commands

- The elastic constants are unrelated to the laminate stiffness matrix. They are used along with

the shell section thickness (defined in the shell section command block, see section 5.2.3) to

calculate drilling and hourglass stiffnesses. Otherwise these values have no physical signifi-

cance in the elastic laminate material model.

- The extensional stiffnesses are defined with the Ai j command lines, where the values of i j

are 11, 12, 16, 22, 26, 66, 44, 45, and 55.

- The coupling stiffnesses are defined with the Bi j command lines, where the values of i j are

11, 12, 16, 22, 26, and 66.

- The bending stiffnesses are defined with the Di j command lines, where the values of i j are

11, 12, 16, 22, 26, and 66.

- The initial laminate coordinate system is defined with the COORDINATE SYSTEM command

line.

- The rotation of the initial laminate coordinate system is defined with the DIRECTION FOR

ROTATION and ALPHA command lines. The axis of initial laminate coordinate system is

specified by the DIRECTION FOR ROTATION command line, while the angle of rotation

is given by the ALPHA command line. This produces an intermediate laminate coordinate

system that is then projected onto the surface of each shell element.

154 CHAPTER 4. MATERIALS

- The projected intermediate laminate coordinate system is rotated about the element normal

by angle theta, which is specified by the THETA command line.

- The thermal-force resultants are defined by functions that are referenced on the NTH11

FUNCTION, NTH22 FUNCTION, and NTH12 FUNCTION command lines.

- The thermal-force-couple resultants are defined by functions that are referenced on the

MTH11 FUNCTION, MTH22 FUNCTION, and MTH12 FUNCTION command lines.

4.2. MODEL SPECIFICATIONS 155

4.2.16 Fiber Membrane Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL FIBER_MEMBRANE

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

CORD DENSITY = <real>cord_density

CORD DIAMETER = <real>cord_diameter

MATRIX DENSITY = <real>matrix_density

TENSILE TEST FUNCTION = <string>test_function_name

PERCENT CONTINUUM = <real>percent_continuum

EPL = <real>epl

AXIS X = <real>axis_x

AXIS Y = <real>axis_y

AXIS Z = <real>axis_z

MODEL = <string>RECTANGULAR

STIFFNESS SCALE = <real>stiffness_scale

REFERENCE STRAIN = <real>reference_strain

END [PARAMETERS FOR MODEL FIBER_MEMBRANE]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The fiber membrane model is used for modeling membranes that are reinforced with unidirectional

fibers. Through the use of a non-zero PERCENT CONTINUUM, a background isotropic material

response can also be incorporated and is added in a manner such that the response in the fiber

direction is unchanged. The fiber membrane model can be used in both Presto and Adagio. When

the fiber membrane model is used in Adagio, the model can be used with or without the control-

stiffness option in Adagio’s multilevel solver. The control-stiffness option is implemented via the

CONTROL STIFFNESS command block and is discussed in Chapter 3 of the Adagio user’s guide.

If the control-stiffness option is activated in Adagio, the response in the fiber direction is softened

by lowering the fiber response. In all cases, the final material behavior that is used for equilibrium

corresponds to the real material response. When the fiber membrane model is used in Presto, the

fiber scaling, which is controlled by the STIFFNESS SCALE command line, is ignored.

156 CHAPTER 4. MATERIALS

For a fiber membrane material, a fiber membrane command block starts with the input line:

BEGIN PARAMETERS FOR MODEL FIBER_MEMBRANE

and terminates with an input line of the following form:

END [PARAMETERS FOR MODEL FIBER_MEMBRANE]

In the above command blocks, the following definitions are applicable. Usage requirements are

identified both in this list of definitions and in the discussion that follows the list.

- The density of the material is defined with the DENSITY command line. This command

line should be included, but its value will be recomputed (and hence replaced) if the CORD

DENSITY, CORD DIAMETER, and MATRIX DENSITY command lines are specified.

- The thermal strain option is used to define thermal strains. See Section 4.1.3.1 and

Section 4.1.3.2 for further information on defining and activating thermal strains.

- Only two of the following elastic constants are required. These are used to compute values

for the elastic preconditioner only.

• Young’s modulus is defined with the YOUNGS MODULUS command line.

• Poisson’s ratio is defined with the POISSONS RATIO command line.

• The bulk modulus is defined with the BULK MODULUS command line.

• The shear modulus is defined with the SHEAR MODULUS command line.

• Lambda is defined with the LAMBDA command line.

- The density of the fibers is defined by the CORD DENSITY command line. This command

line is optional. See the usage discussion below.

- The diameter of the fibers is defined by the CORD DIAMETER command line. This command

line is optional. See the usage discussion below.

- The density of the matrix is defined by the MATRIX DENSITY command line. This command

line is optional. See the usage discussion below.

- The TENSILE TEST FUNCTION command line references the name of a function defined

in a DEFINITION FOR FUNCTION command line in the SIERRA scope that describes the

fiber force versus strain data. This command line must be included.

- The fractional fiber stiffness to use in defining the background isotropic response is given by

the PERCENT CONTINUUM command line. This command line must be included.

- The number of fibers per unit length is defined by the EPL command line. This command

line must be included.

4.2. MODEL SPECIFICATIONS 157

- The components of the vector defining the initial fiber direction is given by the AXIS X,

AXIS Y, and AXIS Z command lines. These command lines must be included. See the

usage discussion below.

- The coordinate system for specifying the fiber orientation is given by the MODEL command

line. Only the option RECTANGULAR is available in this release. This command line must be

included. See the usage discussion below.

- The fiber scaling is specified by the STIFFNESS SCALE command line. If the control-

stiffness option is used in Adagio, this command line must be included. When the fiber

membrane model is used in Presto, this command line is ignored.

- The reference strain is defined with the REFERENCE STRAIN command line. This command

line is optional for Adagio and is not used in Presto. If the control-stiffness option is used in

Adagio, this command line may be included. See the usage discussion below.

Certain command lines in the PARAMETERS FOR MODEL FIBER_MEMBRANE command block

also have interdependencies or other factors that may impact their usage in Presto and Adagio,

as discussed below.

The CORD DENSITY, CORD DIAMETER, and MATRIX DENSITY command lines are optional.

When included, these three command lines are used for computation of the correct density cor-

responding to the fibers, the number of fibers per unit length, and the chosen matrix. When these

three command lines are not included, the density is taken as that specified by the DENSITY com-

mand line.

The AXIS X, AXIS Y, and AXIS Z command lines must be specified if the value for the MODEL

command line is RECTANGULAR. Currently, these axis-related command lines must be specified.

Specifying a reference strain (via the REFERENCE STRAIN command line) implies the use of

strains for measuring part of the control-stiffness material constraint violation in Adagio. If this

command line is not present, the material constraint violation is determined by comparing the

change in the scaled fiber force over the current model problem.

158 CHAPTER 4. MATERIALS

4.2.17 Incompressible Solid Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL INCOMPRESSIBLE_SOLID

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

BULK MODULUS = <real>bulk_modulus

SHEAR MODULUS = <real>shear_modulus

LAMBDA = <real>lambda

K SCALING = <real>k_scaling

2G SCALING = <real>2g_scaling

TARGET E = <real>target_e

MAX POISSONS RATIO = <real>max_poissons_ratio

REFERENCE STRAIN = <real>reference_strain

SCALING FUNCTION = <string>scaling_function_name

END [PARAMETERS FOR MODEL INCOMPRESSIBLE_SOLID]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The incompressible solid model is a variation of the elastic model and can be used in both Presto

and Adagio. In Adagio, the incompressible solid model is used with the control-stiffness option in

the multilevel solver. The control-stiffness option is implemented via the CONTROL STIFFNESS

command block and is discussed in Chapter 3 of the Adagio user’s guide. The model is used to

model nearly incompressible materials where Poisson’s ratio, ν , ≈ 0.5. In the course of solving

a series of model problems in Adagio, the material response from this model incorporates scaling

the bulk and/or shear behaviors to yield a material response that is more amenable to solution using

Adagio’s conjugate gradient solver. The final material behavior that is calculated corresponds to

the actual moduli that are specified. When this model is used in Presto, the material scalings are

ignored, and the model behaves like a linear elastic model.

For an incompressible solid material, an incompressible solid command block starts with the input

line:

BEGIN PARAMETERS FOR MODEL INCOMPRESSIBLE_SOLID

and terminates with an input line of the following form:

4.2. MODEL SPECIFICATIONS 159

END [PARAMETERS FOR MODEL INCOMPRESSIBLE_SOLID]

In the above command blocks, the following definitions are applicable. Usage requirements are

identified both in this list of definitions and in the discussion that follows the list.

- The density of the material is defined with the DENSITY command line.

- The Biot’s coefficient of the material is defined with the BIOTS COEFFICIENT command

line.

- The thermal strain option is used to define thermal strains. See Section 4.1.3.1 and

Section 4.1.3.2 for further information on defining and activating thermal strains.

- Only two of the following elastic constants are required to define the unscaled material re-

sponse:

• Young’s modulus is defined with the YOUNGS MODULUS command line.

• Poisson’s ratio is defined with the POISSONS RATIO command line.

• The bulk modulus is defined with the BULK MODULUS command line.

• The shear modulus is defined with the SHEAR MODULUS command line.

• Lambda is defined with the LAMBDA command line.

- The following material-scaling command lines are used only in Adagio:

• The nominal bulk scaling is defined with the K SCALING command line. This com-

mand line is optional. See the usage discussion below.

• The nominal shear scaling is defined with the 2G SCALING command line. This com-

mand line is optional. See the usage discussion below.

• The target Young’s modulus is defined with the TARGET E command line. This com-

mand line is optional. See the usage discussion below.

• The maximum Poisson’s ratio is defined with the MAX POISSONS RATIO command

line. This command line is optional. See the usage discussion below.

• The reference strain is defined with the REFERENCE STRAIN command line. This

command line is optional. See the usage discussion below.

• The SCALING FUNCTION command line references the name of a function defined in

a DEFINITION FOR FUNCTION command line in the SIERRA scope that describes

the time dependent scaling to be applied. This command line is optional. See the usage

discussion below.

As noted previously, only two of the elastic constants are required to define the unscaled material

response. This requirement applies to use of the incompressible solid model in Presto and in

Adagio. Further, all the material-scaling command lines are only used in Adagio.

Several options exist for defining the bulk and/or shear scalings that can be used with the multilevel

solver in Adagio.

160 CHAPTER 4. MATERIALS

- Option 1: You can provide the scalings directly by including both of the K SCALING and

2G SCALING command lines or either of them. When both command lines are input, the

user-specified values for their parameters will be used. If only the K SCALING command

line is input, the bulk scaling is as specified in the k_scaling parameter, and the value of

the shear scaling parameter, 2g_scaling, is set to 1.0. On the other hand, if only the 2G

SCALING command line is input, then the shear scaling is as specified in the 2g_scaling

parameter, but the value of the bulk-scaling parameter, k_scaling, is not set to 1.0. Instead,

the bulk scaling is determined by computing a scaled bulk modulus from the scaled shear

modulus and a (scaled) Poisson’s ratio of 0.3. Then, the bulk scaling is determined simply

as the ratio of the scaled bulk modulus to the actual bulk modulus.

- Option 2: You can specify either or both of the TARGET E and MAX POISSONS RATIO

command lines to define the scalings. If only the TARGET E command line is included,

the bulk and shear scalings are computed by first finding scaled moduli using the value of

the target_e parameter along with a (scaled) Poisson’s ratio of 0.3. The bulk and shear

scalings are then determined as the ratio of the appropriate scaled to unscaled modulus. If

only the MAX POISSONS RATIO command line is included, the shear scaling is set to 1.0,

and the bulk scaling is computed by first calculating a scaled bulk modulus from the actual

shear modulus and the value of the max_poissons_ratio parameter. The bulk scaling is

then calculated simply as the ratio of the scaled bulk modulus to the actual bulk modulus.

If both the TARGET E and MAX POISSONS RATIO command lines are included, the bulk

scaling (and shear scaling) is determined from the ratio of the bulk scaled modulus (and shear

scaled modulus) computed using the values of the target_e and max_poissons_ratio

parameters to the unscaled bulk (and shear) modulus.

- Option 3: You can choose not to include any of the K SCALING, 2G SCALING, TARGET E,

and MAX POISSONS RATIO command lines. In such case, the shear scaling is set to 1.0,

and the bulk scaling is computed as the ratio of the scaled bulk modulus coming from the

real shear modulus and a (scaled) Poisson’s ratio of 0.3 to the actual bulk modulus.

The function referenced by the value of the parameter scaling_function_name in the SCALING

FUNCTION command line can be used to modify the bulk and shear scalings in solution time. The

actual scalings used are computed by taking the scalings specified by the parameter values in the

K SCALING, 2G SCALING, TARGET E, and MAX POISSONS RATIO command lines and simply

multiplying them by the function value at the specified solution time. If the SCALING FUNCTION

command line is not included, the bulk and shear scalings are fixed in time.

The REFERENCE STRAIN command line supplies a value for the reference strain that is used to

create a normalized material constraint violation based on strains. Specifying a reference strain

implies the use of strains for measuring the material constraint violation (or part of the control-

stiffness error in Adagio). Otherwise, the material constraint violation is determined by using the

change in the scaled stress response over the current model problem.

4.2. MODEL SPECIFICATIONS 161

4.2.18 Mooney-Rivlin Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

BEGIN PARAMETERS FOR MODEL MOONEY_RIVLIN

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

BULK MODULUS = <real>bulk_modulus

SHEAR MODULUS = <real>shear_modulus

LAMBDA = <real>lambda

C10 = <real>c10

C01 = <real>c01

C10 FUNCTION = <string>c10_function_name

C01 FUNCTION = <string>c01_function_name

BULK FUNCTION = <string>bulk_function_name

THERMAL EXPANSION FUNCTION = <string>eth_function_name

TARGET E = <real>target_e

TARGET E FUNCTION = <string>etar_function_name

MAX POISSONS RATIO = <real>max_poissons_ratio(0.5)

REFERENCE STRAIN = <real>reference_strain

END [PARAMETERS FOR MODEL MOONEY_RIVLIN]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Mooney-Rivlin is a hyperelastic model that is used to model rubber. The Mooney-Rivlin model

incorporates temperature-dependent material moduli and can be used in both Presto and Ada-

gio. When the model is used in Adagio, it can be used with or without the control-stiffness op-

tion in Adagio’s multilevel solver. The control-stiffness option is implemented via the CONTROL

STIFFNESS command block and is discussed in Chapter 3 of the Adagio user’s guide. The model

is used to model nearly incompressible materials where Poisson’s ratio, ν , ≈ 0.5. In the course

of solving a series of model problems in Adagio, the material response from this model incorpo-

rates scaling the bulk and/or shear behaviors to yield a material response that is more amenable to

solution using Adagio’s conjugate gradient solver. The final material behavior that is calculated

corresponds to the actual moduli that are specified. When this model is used in Presto, the material

scalings are ignored.

For a Mooney-Rivlin material, a Mooney-Rivlin command block starts with the input line:

BEGIN PARAMETERS FOR MODEL MOONEY_RIVLIN

and terminates an input line of the following form:

END [PARAMETERS FOR MODEL MOONEY_RIVLIN]

In the above command blocks:

162 CHAPTER 4. MATERIALS

- The density of the material is defined with the DENSITY command line.

- The Biot’s coefficient of the material is defined with the BIOTS COEFFICIENT command

line.

- Only two of the following elastic constants are required to define the unscaled bulk behavior:

• Young’s modulus is defined with the YOUNGS MODULUS command line.

• Poisson’s ratio is defined with the POISSONS RATIO command line.

• The bulk modulus is defined with the BULK MODULUS command line.

• The shear modulus is defined with the SHEAR MODULUS command line.

• Lambda is defined with the LAMBDA command line.

- The nominal value for C10 is defined with the C10 command line. This command line is

required. See the usage discussion below.

- The nominal value for C01 is defined with the C01 command line. This command line is

required. See the usage discussion below.

- The C10 FUNCTION command line references the name of a function defined in a

DEFINITION FOR FUNCTION command line in the SIERRA scope that describes the tem-

perature dependence of the C10 material parameter. This command line is optional. If it

is not present, there is no temperature dependence in the C10 parameter. See the usage

discussion below.

- The C01 FUNCTION command line references the name of a function defined in a

DEFINITION FOR FUNCTION command line in the SIERRA scope that describes the tem-

perature dependence of the C01 material parameter. This command line is optional. If it

is not present, there is no temperature dependence in the C01 parameter. See the usage

discussion below.

- The BULK FUNCTION command line references the name of a function defined in a

DEFINITION FOR FUNCTION command line in the SIERRA scope that describes the tem-

perature dependence of the bulk modulus. This command line is optional. If it is not present,

there is no temperature dependence in the bulk modulus. See the usage discussion below.

- The THERMAL EXPANSION FUNCTION command line references the name of a function de-

fined in a DEFINITION FOR FUNCTION command line in the SIERRA scope that describes

the linear thermal expansion as function of temperature. This command line is optional. If it

is not present, there is no thermal expansion. See the usage discussion below.

- The following material-scaling command lines are used only in Adagio:

• The target Young’s modulus is defined with the TARGET E command line. This com-

mand line is optional. See the usage discussion below.

4.2. MODEL SPECIFICATIONS 163

• The TARGET E FUNCTION command line references the name of a function defined

in a DEFINITION FOR FUNCTION command line in the SIERRA scope that describes

the time variation of the target Young’s modulus. This command line is optional. If it

is not present, there is no time dependence in the Target E parameter. See the usage

discussion below.

• The maximum Poisson’s ratio is defined with the MAX POISSONS RATIO command

line. This command line is optional and will default to 0.5 if not specified. See the

usage discussion below.

• The reference strain is defined with the REFERENCE STRAIN command line. This

command line is optional. See the usage discussion below.

As noted previously, only two of the elastic constants are required to define the unscaled bulk

behavior. Together, the values for C10 and C01 determine the shear behavior, and thus the C10

and C01 command lines must be included in this model.

The command lines for functions that specify the temperature dependence of C10, C01, and

bulk modulus are optional, e.g., the C10 FUNCTION, C01 FUNCTION and BULK FUNCTION

command lines. If these command lines are not included, their corresponding material param-

eters are taken to be independent of temperature. Mooney-Rivlin, like other material models,

allows for the specification of thermal strain behavior within the material model itself, via the

THERMAL EXPANSION FUNCTION command line. This command line, like the other “function-

type” command lines in this model requires that a function associated with the name be defined in

the SIERRA scope.

The bulk and shear scalings that can be used with the multilevel solver in Adagio are specified via

a combination of the TARGET E, TARGET E FUNCTION, and MAX POISSONS RATIO command

lines. If the TARGET E command line is not included (and the MAX POISSONS RATIO command

line is included), the shear scaling is set to 1.0, and the bulk scaling is determined from the ratio of

the scaled bulk modulus to its unscaled value, where the scaled bulk modulus is computed using the

value of the max_poissons_ratio parameter along with the unscaled initial shear modulus that

is determined from the value of the parameters specified in the C10 and C01 command lines. On the

other hand, if both the TARGET E command line and the MAX POISSONS RATIO command line

are included, bulk and shear scaling values are computed using scaled moduli that are calculated

from the target_e and max_poissons_ratio parameter values.

Including the TARGET E FUNCTION command line allows time-dependent bulk and shear scaling

to be used. If this command line is not specified, the bulk and shear scalings remain constant

in solution time. If the command line is specified, the target Young’s modulus that is used for

computing the scaled moduli is multiplied by the function value.

The REFERENCE STRAIN command line supplies a value for the reference strain used to create

a normalized material constraint violation that is based on strains. Specifying a reference strain

implies the use of strains for measuring the material constraint violation (or part of the control-

stiffness error in Adagio). Otherwise, the material constraint violation is determined using the

change in the scaled stress response over the current model problem.

Brief documentation on the theoretical basis for the Mooney-Rivlin model is given in Reference 12.

164 CHAPTER 4. MATERIALS

4.2.19 NLVE 3D Orthotropic Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

BEGIN PARAMETERS FOR MODEL NLVE_3D_ORTHOTROPIC

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

COORDINATE SYSTEM = <string>coordinate_system_name

DIRECTION FOR ROTATION = <real>1|2|3

ALPHA = <real>alpha_in_degrees

SECOND DIRECTION FOR ROTATION = <real>1|2|3

SECOND ALPHA = <real>second_alpha_in_degrees

FICTITIOUS LOGA FUNCTION = <string>fict_loga_function_name

FICTITIOUS LOGA SCALE FACTOR = <real>fict_loga_scale_factor

In each of the five ‘‘PRONY’’ command lines and in

the RELAX TIME command line, the value of i can be from

1 through 30

1PSI PRONY <integer>i = <real>psi1_i

2PSI PRONY <integer>i = <real>psi2_i

3PSI PRONY <integer>i = <real>psi3_i

4PSI PRONY <integer>i = <real>psi4_i

5PSI PRONY <integer>i = <real>psi5_i

RELAX TIME <integer>i = <real>tau_i

REFERENCE TEMP = <real>tref

REFERENCE DENSITY = <real>rhoref

WLF C1 = <real>wlf_c1

WLF C2 = <real>wlf_c2

B SHIFT CONSTANT = <real>b_shift

SHIFT REF VALUE = <real>shift_ref

WWBETA 1PSI = <real>wwb_1psi

WWTAU 1PSI = <real>wwt_1psi

WWBETA 2PSI = <real>wwb_2psi

WWTAU 2PSI = <real>wwt_2psi

WWBETA 3PSI = <real>wwb_3psi

WWTAU 3PSI = <real>wwt_3psi

WWBETA 4PSI = <real>wwb_4psi

WWTAU 4PSI = <real>wwt_4psi

WWBETA 5PSI = <real>wwb_5psi

WWTAU 5PSI = <real>wwt_5psi

DOUBLE INTEG FACTOR = <real>dble_int_fac

REF RUBBERY HCAPACITY = <real>hcapr

REF GLASSY HCAPACITY = <real>hcapg

4.2. MODEL SPECIFICATIONS 165

GLASS TRANSITION TEM = <real>tg

REF GLASSY C11 = <real>c11g

REF RUBBERY C11 = <real>c11r

REF GLASSY C22 = <real>c22g

REF RUBBERY C22 = <real>c22r

REF GLASSY C33 = <real>c33g

REF RUBBERY C33 = <real>c33r

REF GLASSY C12 = <real>c12g

REF RUBBERY C12 = <real>c12r

REF GLASSY C13 = <real>c13g

REF RUBBERY C13 = <real>c13r

REF GLASSY C23 = <real>c23g

REF RUBBERY C23 = <real>c23r

REF GLASSY C44 = <real>c44g

REF RUBBERY C44 = <real>c44r

REF GLASSY C55 = <real>c55g

REF RUBBERY C55 = <real>c55r

REF GLASSY C66 = <real>c66g

REF RUBBERY C66 = <real>c66r

REF GLASSY CTE1 = <real>cte1g

REF RUBBERY CTE1 = <real>cte1r

REF GLASSY CTE2 = <real>cte2g

REF RUBBERY CTE2 = <real>cte2r

REF GLASSY CTE3 = <real>cte3g

REF RUBBERY CTE3 = <real>cte3r

LINEAR VISCO TEST = <real>lvt

T DERIV GLASSY C11 = <real>dc11gdT

T DERIV RUBBERY C11 = <real>dc11rdT

T DERIV GLASSY C22 = <real>dc22gdT

T DERIV RUBBERY C22 = <real>dc22rdT

T DERIV GLASSY C33 = <real>dc33gdT

T DERIV RUBBERY C33 = <real>dc33rdT

T DERIV GLASSY C12 = <real>dc12gdT

T DERIV RUBBERY C12 = <real>dc12rdT

T DERIV GLASSY C13 = <real>dc13gdT

T DERIV RUBBERY C13 = <real>dc13rdT

T DERIV GLASSY C23 = <real>dc23gdT

T DERIV RUBBERY C23 = <real>dc23rdT

T DERIV GLASSY C44 = <real>dc44gdT

T DERIV RUBBERY C44 = <real>dc44rdT

T DERIV GLASSY C55 = <real>dc55gdT

T DERIV RUBBERY C55 = <real>dc55rdT

T DERIV GLASSY C66 = <real>dc66gdT

T DERIV RUBBERY C66 = <real>dc66rdT

T DERIV GLASSY CTE1 = <real>dcte1gdT

T DERIV RUBBERY CTE1 = <real>dcte1rdT

T DERIV GLASSY CTE2 = <real>dcte2gdT

166 CHAPTER 4. MATERIALS

T DERIV RUBBERY CTE2 = <real>dcte2rdT

T DERIV GLASSY CTE3 = <real>dcte3gdT

T DERIV RUBBERY CTE3 = <real>dcte3rdT

T DERIV GLASSY HCAPACITY = <real>dhcapgdT

T DERIV RUBBERY HCAPACITY = <real>dhcaprdT

REF PSIC = <real>psic_ref

T DERIV PSIC = <real>dpsicdT

T 2DERIV PSIC = <real>d2psicdT2

PSI EQ 2T = <real>psitt

PSI EQ 3T = <real>psittt

PSI EQ 4T = <real>psitttt

PSI EQ XX 11 = <real>psiXX11

PSI EQ XX 22 = <real>psiXX22

PSI EQ XX 33 = <real>psiXX33

PSI EQ XX 12 = <real>psiXX12

PSI EQ XX 13 = <real>psiXX13

PSI EQ XX 23 = <real>psiXX23

PSI EQ XX 44 = <real>psiXX44

PSI EQ XX 55 = <real>psiXX55

PSI EQ XX 66 = <real>psiXX66

PSI EQ XXT 11 = <real>psiXXT11

PSI EQ XXT 22 = <real>psiXXT22

PSI EQ XXT 33 = <real>psiXXT33

PSI EQ XXT 12 = <real>psiXXT12

PSI EQ XXT 13 = <real>psiXXT13

PSI EQ XXT 23 = <real>psiXXT23

PSI EQ XXT 44 = <real>psiXXT44

PSI EQ XXT 55 = <real>psiXXT55

PSI EQ XXT 66 = <real>psiXXT66

PSI EQ XT 1 = <real>psiXT1

PSI EQ XT 2 = <real>psiXT2

PSI EQ XT 3 = <real>psiXT3

PSI EQ XTT 1 = <real>psiXTT1

PSI EQ XTT 2 = <real>psiXTT2

PSI EQ XTT 3 = <real>psiXTT3

REF PSIA 11 = <real>psiA11

REF PSIA 22 = <real>psiA22

REF PSIA 33 = <real>psiA33

REF PSIA 12 = <real>psiA12

REF PSIA 13 = <real>psiA13

REF PSIA 23 = <real>psiA23

REF PSIA 44 = <real>psiA44

REF PSIA 55 = <real>psiA55

REF PSIA 66 = <real>psiA66

T DERIV PSIA 11 = <real>dpsiA11dT

T DERIV PSIA 22 = <real>dpsiA22dT

T DERIV PSIA 33 = <real>dpsiA33dT

4.2. MODEL SPECIFICATIONS 167

T DERIV PSIA 12 = <real>dpsiA12dT

T DERIV PSIA 13 = <real>dpsiA13dT

T DERIV PSIA 23 = <real>dpsiA23dT

T DERIV PSIA 44 = <real>dpsiA44dT

T DERIV PSIA 55 = <real>dpsiA55dT

T DERIV PSIA 66 = <real>dpsiA66dT

REF PSIB 1 = <real>psiB1

REF PSIB 2 = <real>psiB2

REF PSIB 3 = <real>psiB3

T DERIV PSIB 1 = <real>dpsiB1dT

T DERIV PSIB 2 = <real>dpsiB2dT

T DERIV PSIB 3 = <real>dpsiB3dT

PSI POT TT = <real>psipotTT

PSI POT TTT = <real>psipotTTT

PSI POT TTTT = <real>psipotTTTT

PSI POT XT 1 = <real>psipotXT1

PSI POT XT 2 = <real>psipotXT2

PSI POT XT 3 = <real>psipotXT3

PSI POT XTT 1 = <real>psipotXTT1

PSI POT XTT 2 = <real>psipotXTT2

PSI POT XTT 3 = <real>psipotXTT3

PSI POT XXT 11 = <real>psipotXXT11

PSI POT XXT 22 = <real>psipotXXT22

PSI POT XXT 33 = <real>psipotXXT33

PSI POT XXT 12 = <real>psipotXXT12

PSI POT XXT 13 = <real>psipotXXT13

PSI POT XXT 23 = <real>psipotXXT23

PSI POT XXT 44 = <real>psipotXXT44

PSI POT XXT 55 = <real>psipotXXT55

PSI POT XXT 66 = <real>psipotXXT66

END [PARAMETERS FOR MODEL NLVE_3D_ORTHOTROPIC]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The NLVE three-dimensional orthotropic model is a nonlinear viscoelastic orthotropic continuum

model that describes the behavior of fiber-reinforced polymer-matrix composites. In addition to

being able to model the linear elastic and linear viscoelastic behaviors of such composites, it also

can capture both “weak” and “strong” nonlinear viscoelastic effects such as stress dependence of

the creep compliance and viscoelastic yielding. This model can be used in both Presto and Adagio.

Because the NLVE model is still under active development and also because it has an extensive list

of command lines, we have not followed the typical approach in documenting this model.

168 CHAPTER 4. MATERIALS

4.2.20 Stiff Elastic

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL STIFF_ELASTIC

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

BULK MODULUS = <real>bulk_modulus

SHEAR MODULUS = <real>shear_modulus

LAMBDA = <real>lambda

SCALE FACTOR = <real>scale_factor

REFERENCE STRAIN = <real>reference_strain

END [PARAMETERS FOR MODEL STIFF_ELASTIC]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The stiff elastic model is a variation of the isotropic elastic model. The stiff elastic model can be

used in both Presto and Adagio. When the model is used in Adagio, it is typically used with the

control-stiffness option in Adagio’s multilevel solver. The control-stiffness option is implemented

via the CONTROL STIFFNESS command block and is discussed in Chapter 3 of the Adagio user’s

guide. The stiff elastic model is used to lower the stiffness of the bulk and shear behaviors of

relatively stiff materials to yield a material response more amenable to solution using Adagio’s

conjugate gradient solver. The final material behavior that is calculated corresponds to the actual

moduli that are specified. When this model is used in Presto, the material scalings are ignored.

For a stiff elastic material, a stiff elastic command block starts with the input line:

BEGIN PARAMETERS FOR MODEL STIFF_ELASTIC

and terminates with an input line of the following form:

END [PARAMETERS FOR MODEL STIFF_ELASTIC]

In the above command blocks:

4.2. MODEL SPECIFICATIONS 169

- The density of the material is defined with the DENSITY command line.

- The Biot’s coefficient of the material is defined with the BIOTS COEFFICIENT command

line.

- The thermal strain option is used to define thermal strains. See Section 4.1.3.1 and

Section 4.1.3.2 for further information on defining and activating thermal strains.

- Only two of the following elastic constants are required to define the unscaled material re-

sponse:

• Young’s modulus is defined with the YOUNGS MODULUS command line.

• Poisson’s ratio is defined with the POISSONS RATIO command line.

• The bulk modulus is defined with the BULK MODULUS command line.

• The shear modulus is defined with the SHEAR MODULUS command line.

• Lambda is defined with the LAMBDA command line.

- The following command lines are used only in Adagio:

• The material scaling is defined with the SCALE FACTOR command line.

• The reference strain is defined with the REFERENCE STRAIN command line.

As noted previously, only two of the elastic constants are required to define the unscaled material

response.

The scaled bulk and shear moduli are computed using a Young’s modulus scaled by the value given

by the SCALE FACTOR line command.

The REFERENCE STRAIN command line supplies a value for the reference strain used to create

a normalized material constraint violation that is based on strains. Specifying a reference strain

implies the use of strains for measuring the material constraint violation (or part of the control-

stiffness error in Adagio). Otherwise, the material constraint violation is determined using the

change in the scaled stress response over the current model problem.

170 CHAPTER 4. MATERIALS

4.2.21 Swanson Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

BEGIN PARAMETERS FOR MODEL SWANSON

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

BULK MODULUS = <real>bulk_modulus

SHEAR MODULUS = <real>shear_modulus

LAMBDA = <real>lambda

A1 = <real>a1

P1 = <real>p1

B1 = <real>b1

Q1 = <real>q1

C1 = <real>c1

R1 = <real>r1

CUT OFF STRAIN = <real>ecut

THERMAL EXPANSION FUNCTION = <string>eth_function_name

TARGET E = <real>target_e

TARGET E FUNCTION = <string>etar_function_name

MAX POISSONS RATIO = <real>max_poissons_ratio(0.5)

REFERENCE STRAIN = <real>reference_strain

END [PARAMETERS FOR MODEL SWANSON]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The Swanson model is a hyperelastic model that is used to model rubber. The Swanson model

can be used in both Presto and Adagio. When the model is used in Adagio, it can be used with

or without the control-stiffness option in Adagio’s multilevel solver for nearly incompressible

materials where Poisson’s ratio, ν , ≈ 0.5. The control-stiffness option is implemented via the

CONTROL STIFFNESS command block and is discussed in Chapter 3 of the Adagio user’s guide.

In the course of solving a series of model problems in Adagio, the material response from this

model incorporates scaling the bulk and/or shear behaviors to yield a material response that is

more amenable to solution using Adagio’s conjugate gradient solver. The final material behavior

that is calculated corresponds to the actual moduli that are specified. When this model is used in

Presto, the material scalings are ignored.

For a Swanson material, a Swanson command block starts with the input line:

BEGIN PARAMETERS FOR MODEL SWANSON

and terminates an input line of the following form:

END [PARAMETERS FOR MODEL SWANSON]

In the above command blocks:

4.2. MODEL SPECIFICATIONS 171

- The density of the material is defined with the DENSITY command line.

- The Biot’s coefficient of the material is defined with the BIOTS COEFFICIENT command

line.

- Only two of the following elastic constants are required to define the unscaled bulk behavior:

• Young’s modulus is defined with the YOUNGS MODULUS command line.

• Poisson’s ratio is defined with the POISSONS RATIO command line.

• The bulk modulus is defined with the BULK MODULUS command line.

• The shear modulus is defined with the SHEAR MODULUS command line.

• Lambda is defined with the LAMBDA command line.

- The following command lines are required:

• The material constant A1 is defined with the A1 command line.

• The material constant P1 is defined with the P1 command line.

• The material constant B1 is defined with the B1 command line.

• The material constant Q1 is defined with the Q1 command line.

• The material constant C1 is defined with the C1 command line.

• The material constant R1 is defined with the R1 command line.

• The small-strain value used for computing the initial shear modulus is defined with the

CUT OFF STRAIN command line.

- The THERMAL EXPANSION FUNCTION command line references the name of a function de-

fined in a DEFINITION FOR FUNCTION command line in the SIERRA scope that describes

the linear thermal expansion as function of temperature. This command line is optional. If it

is not present, there is no thermal expansion. See the usage discussion below.

- The following material-scaling command lines are used only in Adagio:

• The target Young’s modulus is defined with the TARGET E command line. This com-

mand line is optional. See the usage discussion below.

• The TARGET E FUNCTION command line references the name of a function defined

in a DEFINITION FOR FUNCTION command line in the SIERRA scope that describes

the time variation of the target Young’s modulus. This command line is optional. If it

is not present, there is no time dependence in the Target E parameter. See the usage

discussion below.

• The maximum Poisson’s ratio is defined with the MAX POISSONS RATIO command

line. This command line is optional and will default to 0.5 if not specified. See the

usage discussion below.

• The reference strain is defined with the REFERENCE STRAIN command line. This

command line is optional. See the usage discussion below.

172 CHAPTER 4. MATERIALS

As noted previously, only two of the elastic constants are required to define the unscaled bulk

behavior. Together, the values for parameters in the A1, P1, B1, Q1, C1, and R1 command lines

define the unscaled shear behavior, so these command lines must be present. The initial unscaled

shear modulus is determined from those parameter values along with the value of the parameter in

the CUT OFF STRAIN command line, so this command line must also be present.

The Swanson model, like a few of the material models, allows for the specification of thermal strain

behavior within the material model itself, via the THERMAL EXPANSION FUNCTION command

line. This command line, like the other “function-type” command lines in this model, requires that

a function associated with the name be defined in the SIERRA scope.

The bulk and shear scalings that can be used with the multilevel solver in Adagio are specified via

a combination of the TARGET E, TARGET E FUNCTION, and MAX POISSONS RATIO command

lines. If the TARGET E command line is not included (and the MAX POISSONS RATIO command

line is included), the shear scaling is set to 1.0, and the bulk scaling is determined from the ra-

tio of the scaled bulk modulus to its unscaled value, where the scaled bulk modulus is computed

using the value of the max_poissons_ratio parameter along with the unscaled shear modulus.

On the other hand, if both the TARGET E command line and the MAX POISSONS RATIO are in-

cluded, bulk and shear scaling values are computed using scaled moduli that are calculated from

the target_e and max_poissons_ratio parameter values.

Including the TARGET E FUNCTION command line allows time-dependent bulk and shear scaling

to be used. If this command line is not specified, the bulk and shear scalings remain constant

in solution time. If the command line is specified, the target Young’s modulus that is used for

computing the scaled moduli is multiplied by the function value.

The REFERENCE STRAIN command line supplies a value for the reference strain used to create

a normalized material constraint violation that is based on strains. Specifying a reference strain

implies the use of strains for measuring the material constraint violation (or part of the control-

stiffness error in Adagio). Otherwise, the material constraint violation is determined using the

change in the scaled stress response over the current model problem.

Output variables available for this model are listed in Table 8.39. Brief documentation on the

theoretical basis for the Swanson model is given in Reference 12.

4.2. MODEL SPECIFICATIONS 173

4.2.22 Viscoelastic Swanson Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

BEGIN PARAMETERS FOR MODEL VISCOELASTIC_SWANSON

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

BULK MODULUS = <real>bulk_modulus

SHEAR MODULUS = <real>shear_modulus

LAMBDA = <real>lambda

A1 = <real>a1

P1 = <real>p1

B1 = <real>b1

Q1 = <real>q1

C1 = <real>c1

R1 = <real>r1

CUT OFF STRAIN = <real>ecut

THERMAL EXPANSION FUNCTION = <string>eth_function_name

PRONY SHEAR INFINITY = <real>ginf

PRONY SHEAR 1 = <real>g1

PRONY SHEAR 2 = <real>g2

PRONY SHEAR 3 = <real>g3

PRONY SHEAR 4 = <real>g4

PRONY SHEAR 5 = <real>g5

PRONY SHEAR 6 = <real>g6

PRONY SHEAR 7 = <real>g7

PRONY SHEAR 8 = <real>g8

PRONY SHEAR 9 = <real>g9

PRONY SHEAR 10 = <real>g10

SHEAR RELAX TIME 1 = <real>tau1

SHEAR RELAX TIME 2 = <real>tau2

SHEAR RELAX TIME 3 = <real>tau3

SHEAR RELAX TIME 4 = <real>tau4

SHEAR RELAX TIME 5 = <real>tau5

SHEAR RELAX TIME 6 = <real>tau6

SHEAR RELAX TIME 7 = <real>tau7

SHEAR RELAX TIME 8 = <real>tau8

SHEAR RELAX TIME 9 = <real>tau9

SHEAR RELAX TIME 10 = <real>tau10

WLF COEF C1 = <real>wlf_c1

WLF COEF C2 = <real>wlf_c2

WLF TREF = <real>wlf_tref

NUMERICAL SHIFT FUNCTION = <string>ns_function_name

TARGET E = <real>target_e

TARGET E FUNCTION = <string>etar_function_name

174 CHAPTER 4. MATERIALS

MAX POISSONS RATIO = <real>max_poissons_ratio(0.5)

REFERENCE STRAIN = <real>reference_strain

END [PARAMETERS FOR MODEL VISCOELASTIC_SWANSON]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The viscoelastic Swanson model is a finite strain viscoelastic model that has an initial elastic

response that matches the Swanson material model. The bulk response is elastic, while the shear

response is viscoelastic. This model is commonly employed in simulating the response of rubber

materials. The viscoelastic Swanson model can be used in both Presto and Adagio. When the

model is used in Adagio, it can be used with or without the control-stiffness option in Adagio’s

multilevel solver for nearly incompressible materials where Poisson’s ratio, ν , ≈ 0.5. The control-

stiffness option is implemented via the CONTROL STIFFNESS command block and is discussed

in Chapter 3 of the Adagio user’s guide. In the course of solving a series of model problems in

Adagio, the material response from this model incorporates scaling the bulk and/or shear behaviors

to yield a material response that is more amenable to solution using Adagio’s conjugate gradient

solver. The final material behavior that is calculated corresponds to the actual moduli that are

specified. When this model is used in Presto, the material scalings are ignored.

For a viscoelastic Swanson material, a viscoelastic Swanson command block starts with the input

line:

BEGIN PARAMETERS FOR MODEL VISCOELASTIC_SWANSON

and terminates with an input line of the following form:

END [PARAMETERS FOR MODEL VISCOELASTIC_SWANSON]

In the above command blocks:

- The density of the material is defined with the DENSITY command line.

- The Biot’s coefficient of the material is defined with the BIOTS COEFFICIENT command

line.

- Only two of the following elastic constants are required to define the unscaled bulk behavior:

• Young’s modulus is defined with the YOUNGS MODULUS command line.

• Poisson’s ratio is defined with the POISSONS RATIO command line.

• The bulk modulus is defined with the BULK MODULUS command line.

• The shear modulus is defined with the SHEAR MODULUS command line.

• Lambda is defined with the LAMBDA command line.

- The following command lines are required:

4.2. MODEL SPECIFICATIONS 175

• The material constant A1 is defined with the A1 command line.

• The material constant P1 is defined with the P1 command line.

• The material constant B1 is defined with the B1 command line.

• The material constant Q1 is defined with the Q1 command line.

• The material constant C1 is defined with the C1 command line.

• The material constant R1 is defined with the R1 command line.

• The small-strain value used for computing the glassy shear modulus is defined with the

CUT OFF STRAIN command line.

- The THERMAL EXPANSION FUNCTION command line references the name of a function de-

fined in a DEFINITION FOR FUNCTION command line in the SIERRA scope that describes

the linear thermal expansion as function of temperature. This command line is optional. If it

is not present, there is no thermal expansion. See the usage discussion below.

- PRONY SHEAR INFINITY command line. This command line is required.

- The normalized relaxation spectra coefficients are specified with the PRONY SHEAR I com-

mand lines, where the value of I varies sequentially from 1 to 10. These command lines are

optional.

- The normalized relaxation spectra time constants are specified with the SHEAR RELAX

TIME I command lines, where the value of I varies sequentially from 1 to 10. These com-

mand lines are optional.

- WLF COEF C1 command line. This command line is required.

- WLF COEF C2 command line. This command line is required.

- WLF TREF command line. This command line is required.

- NUMERICAL SHIFT FUNCTION command line. This command line is optional.

- The following material-scaling command lines are used only in Adagio:

• The target Young’s modulus is defined with the TARGET E command line. This com-

mand line is required. See the usage discussion below.

- The TARGET E FUNCTION command line references the name of a function defined

in a DEFINITION FOR FUNCTION command line in the SIERRA scope that describes

the time variation of the target Young’s modulus. This command line is optional. If it

is not present, there is no time dependence in the Target E parameter. See the usage

discussion below.

- The maximum Poisson’s ratio is defined with the MAX POISSONS RATIO command

line. This command line is optional and will default to 0.5 if not specified. See the

usage discussion below.

176 CHAPTER 4. MATERIALS

- The reference strain is defined with the REFERENCE STRAIN command line. This

command line is required. See the usage discussion below.

As noted previously, only two of the elastic constants are required to define the unscaled bulk be-

havior. Together, the values for parameters in the A1, P1, B1, Q1, C1, and R1 command lines define

the unscaled glassy shear behavior, so these command lines must be present. The unscaled glassy

shear modulus is determined from those parameter values along with the value of the parameter in

the CUT OFF STRAIN command line, so this command line must also be present.

The viscoelastic Swanson model, like a few of the material models, allows for the specifica-

tion of thermal strain behavior within the material model itself, via the THERMAL EXPANSION

FUNCTION command line. This command line, like the other “function-type” command lines in

this model requires that a function associated with the name be defined in the SIERRA scope.

The bulk and shear scalings that can be used with the multilevel solver in Adagio are specified via

a combination of the TARGET E, TARGET E FUNCTION, and MAX POISSONS RATIO command

lines. If the TARGET E command line is not included (and the MAX POISSONS RATIO command

line is included), the shear scaling is set to 1.0, and the bulk scaling is determined from the ratio of

the scaled bulk modulus to its unscaled value, where the scaled bulk modulus is computed using

the value of the max_poissons_ratio parameter along with the unscaled shear modulus. On the

other hand, if both the TARGET E command line and the MAX POISSONS RATIO command line

are included, bulk and shear scaling values are computed using scaled moduli that are calculated

from the target_e and max_poissons_ratio parameter values.

Including the TARGET E FUNCTION command line allows time-dependent bulk and shear scaling

to be used. If this command line is not specified, the bulk and shear scalings remain constant

in solution time. If the command line is specified, the target Young’s modulus that is used for

computing the scaled moduli is multiplied by the function value.

The REFERENCE STRAIN command line supplies a value for the reference strain used to create

a normalized material constraint violation that is based on strains. Specifying a reference strain

implies the use of strains for measuring the material constraint violation (or part of the control-

stiffness error in Adagio). Otherwise, the material constraint violation is determined using the

change in the scaled stress response over the current model problem.

Output variables available for this model are listed in Table 8.40. Brief documentation on the

theoretical basis for the viscoelastic Swanson model is given in References 12, 13, 14, and 15.

4.3. COHESIVE ZONE MATERIAL MODELS 177

4.3 Cohesive Zone Material Models

Several material models are available for use with cohesive zone elements, and are described in

this section.

Traction separation models used for cohesive surface elements are input within BEGIN PROPERTY

SPECIFICATION FOR MATERIAL blocks in the same manner as continuum models. Although

density is not a property used by cohesive zone elements, because of their specification within this

block, all of these models currently require a density to be provided as part of their input.

4.3.1 Traction Decay

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

#

DENSITY = <real>density_value

#

BEGIN PARAMETERS FOR MODEL TRACTION_DECAY

NORMAL DECAY LENGTH = <real>

TANGENTIAL DECAY LENGTH = <real>

END [PARAMETERS FOR MODEL TRACTION_DECAY]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The Traction Decay cohesive model is a simple model that get initialized with a traction upon

activation or insertion of the cohesive element, and decays that traction to zero over specified

values of normal and tangential separation. This model is only valid to use in conjunction with

dynamic cohesive zone activation through MPC deactivation or dynamic insertion of cohesive

surface elements.

For a Traction Decay surface model, a Traction Decay command block starts with the input line:

BEGIN PARAMETERS FOR MODEL TRACTION_DECAY

and terminates an input line of the following form:

END [PARAMETERS FOR MODEL TRACTION_DECAY]

In the above command block:

- The density of the material is defined with the DENSITY command line. Although this is not

used in the model, it is currently a required input parameter.

- The separation length over which the normal traction decays to zero is set by the NORMAL

DECAY LENGTH command line.

- The separation length over which the tangential traction decays to zero is set by the

TANGENTIAL DECAY LENGTH command line.

178 CHAPTER 4. MATERIALS

4.3.2 Tvergaard Hutchinson

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

#

DENSITY = <real>density_value

#

BEGIN PARAMETERS FOR MODEL TVERGAARD_HUTCHINSON

INIT TRACTION METHOD = IGNORE|ADD (IGNORE)

LAMBDA_1 = <real>

LAMBDA_2 = <real>

NORMAL LENGTH SCALE = <real>

TANGENTIAL LENGTH SCALE = <real>

PEAK TRACTION = <real>

PENETRATION STIFFNESS MULTIPLIER = <real>

NORMAL INITIAL TRACTION DECAY LENGTH = <real>

TANGENTIAL INITIAL TRACTION DECAY LENGTH = <real>

USE ELASTIC UNLOADING = NO|YES (YES)

END [PARAMETERS FOR MODEL TVERGAARD_HUTCHINSON]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The Tvergaard Hutchinson cohesive model combines the normal and tangential separation into

a single normalized separation and calculates a traction per unit length based on this value. This

model then calculates normal and tangential traction based on the ratio of the normal and tangential

length scales.

For a Tvergaard Hutchinson surface model, a Tvergaard Hutchinson command block starts with

the input line:

BEGIN PARAMETERS FOR MODEL TVERGAARD_HUTCHINSON

and terminates an input line of the following form:

END [PARAMETERS FOR MODEL TVERGAARD_HUTCHINSON]

In the above command blocks:

- The density of the material is defined with the DENSITY command line. Although this is not

used in the model, it is currently a required input parameter.

- For dynamically activated or dynamically inserted cohesive surface elements, an initial trac-

tion can be added to the calculated traction based on element properties specified in the

ELEMENT DEATH block and is set via the INIT TRACTION METHOD. The default behavior

is to ignore any initial tractions and let the traction-separation law dictate the behavior.

- LAMBDA_1 indicates the normalized separation at which the traction response flattens with

an additional increase in separation.

- LAMBDA_2 indicates the normalized separation at which the traction begins to degrade with

an additional increase in separation.

4.3. COHESIVE ZONE MATERIAL MODELS 179

- The separation at which failure occurs in the normal direction is prescribed using the NORMAL

LENGTH SCALE command.

- The maximum traction is specified through the PEAK TRACTION command.

- NORMAL INITIAL TRACTION DECAY LENGTH and TANGENTIAL INITIAL TRACTION

DECAY LENGTH specify the length over which the initial traction will decay to zero in the

normal and tangential direction respectively if the cohesive elements are initialized dur-

ing element death. This decay length is independent of the NORMAL LENGTH SCALE and

TANGENTIAL LENGTH SCALE specified for the calculated traction.

- The separation at which failure occurs in the tangential direction is prescribed using the

TANGENTIAL LENGTH SCALE command.

- To help prevent interpenetration of the cohesive faces, use the PENETRATION STIFFNESS

MULTIPLIER command to artificially increase the normal traction when penetration occurs.

WARNING: cohesive elements are not well equipped to handle compression. This is an

ad-hoc method to handle contact.

- Set the USE ELASTIC UNLOADING command to YES to force this model to unload elasti-

cally.

180 CHAPTER 4. MATERIALS

4.3.3 Thouless Parmigiani

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BEGIN PARAMETERS FOR MODEL TVERGAARD_HUTCHINSON

INIT TRACTION METHOD = IGNORE|ADD (IGNORE)

LAMBDA_1_N = <real>

LAMBDA_1_T = <real>

LAMBDA_2_N = <real>

LAMBDA_2_T = <real>

NORMAL LENGTH SCALE = <real>

PEAK NORMAL TRACTION = <real>

TANGENTIAL LENGTH SCALE = <real>

PEAK Tangential TRACTION = <real>

PENETRATION STIFFNESS MULTIPLIER = <real>

USE ELASTIC UNLOADING = NO|YES (YES)

END [PARAMETERS FOR MODEL TVERGAARD_HUTCHINSON]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The Thouless Parmigiani model support mixed-mode fracture more accurately than the Tvergaard

Hutchinson model by separating the normal and tangential components, allowing one to fail inde-

pendently of the other. Failure of this model is dependent on the energy release of both normal

and tangential components. The shape of the traction-separation curve for this model is hardening,

followed by a plateau, followed by softening.

For a Thouless Parmigiani surface model, a Thouless Parmigiani command block starts with the

input line:

BEGIN PARAMETERS FOR MODEL THOULESS_PARMIGIANI

and terminates an input line of the following form:

END [PARAMETERS FOR MODEL THOULESS_PARMIGIANI]

In the above command block:

- The density of the material is defined with the DENSITY command line. Although this is not

used in the model, it is currently a required input parameter.

- For dynamically activated or dynamically inserted cohesive surface elements, an initial trac-

tion can be added to the calculated traction based on element properties specified in the

ELEMENT DEATH block and is set via the INIT TRACTION METHOD. The default behavior

is to ignore any initial tractions and let the traction-separation law dictate the behavior.

- LAMBDA_1_N indicates the normalized normal separation at which the traction response flat-

tens with an additional increase in separation.

- LAMBDA_1_T indicates the normalized tangential separation at which the traction response

flattens with an additional increase in separation.

4.3. COHESIVE ZONE MATERIAL MODELS 181

- LAMBDA_2_N indicates the normalized normal separation at which the traction begins to

decrease with an additional increase in separation.

- LAMBDA_2_T indicates the normalized tangential separation at which the traction begins to

decrease with an additional increase in separation.

- The separation at which failure occurs in the normal direction is prescribed using the NORMAL

LENGTH SCALE command.

- The maximum normal traction is specified through the PEAK NORMAL TRACTION com-

mand.

- The separation at which failure occurs in the tangential direction is prescribed using the

TANGENTIAL LENGTH SCALE command.

- The maximum tangential traction is specified through the PEAK TANGENTIAL TRACTION

command.

- To help prevent interpenetration of the cohesive faces, use the PENETRATION STIFFNESS

MULTIPLIER command to artificially increase the normal traction when penetration occurs.

WARNING: cohesive elements are not well equipped to handle compression. This is an

ad-hoc method to handle contact.

- Set the USE ELASTIC UNLOADING command to YES to force this model to unload elasti-

cally.

182 CHAPTER 4. MATERIALS

4.4 References

1. Stone, C. M. SANTOS – A Two-Dimensional Finite Element Program for the Quasistatic,

Large Deformation, Inelastic Response of Solids, SAND90-0543. Albuquerque, NM: Sandia

National Laboratories, 1996.

2. Bammann, D. J., M. L. Chiesa, and G. C. Johnson. “Modelling Large Deformation and

Failure in Manufacturing Processes.” In Proceedings of the 19th International Congress

of Theoretical and Applied Mechanics, edited by T. Tatsumi, E. Watanabe, and T. Kambe,

359–376. Amsterdam: Elsevier Science Publishers, 1997.

3. Bammann, D. J., M. L. Chiesa, M. F. Horstemeyer, and L. E. Weingarten. “Failure in Ductile

Materials Using Finite Element Methods.” In Structural Crashworthiness and Failure, edited

by N. Jones and T. Wierzbicki, 1–53. London: Elsevier Applied Science, 1993.

4. Bammann, D. J. “Modeling Temperature and Strain Dependent Large Deformations in Met-

als.” Applied Mechanics Reviews 43, no. 5 (1990): S312–319.

5. Taylor, L. M., and D. P. Flanagan. Pronto3D: A Three-Dimensional Transient Solid Dy-

namics Program, SAND87-1912. Albuquerque, NM: Sandia National Laboratories, March

1989.

6. Krieg, R. D. A Simple Constitutive Description for Cellular Concrete, SAND SC-DR-72-

0883. Albuquerque, NM: Sandia National Laboratories, 1978.

7. Swenson, D. V., and L. M. Taylor. “A Finite Element Model for the Analysis of Tailored

Pulse Stimulation of Boreholes.” International Journal for Numerical and Analytical Meth-

ods in Geomechanics 7 (1983): 469–484.

8. Green, A. E., and W. Zerna. Theoretical Elasticity, 2nd Edition. Oxford: Clarendon Press,

1968.

9. Whirley, R. G., B. E. Engelmann, and J. O. Halquist. DYNA3D Users Manual. Livermore,

CA: Lawrence Livermore Laboratory, 1991.

10. Hammerand, D. C. Laminated Composites Modeling in ADAGIO/PRESTO, SAND2004-

2143. Albuquerque, NM: Sandia National Laboratories, 2004.

11. Hammerand, D. C. Critical Time Step for a Bilinear Laminated Composite Mindlin Shell

Element, SAND2004-2487. Albuquerque, NM: Sandia National Laboratories, 2004.

12. Scherzinger, W. M., and D. C. Hammerand. Constitutive Models in LAME, SAND2007-

5873. Albuquerque, NM: Sandia National Laboratories, September 2007.

13. HKS. ABAQUS Version 6.6, Theory Manual. Providence, RI: Hibbitt, Karlsson and

Sorensen, 2006.

14. Hammerand, D. C. “ABAQUS Style Finite Strain Viscoelasticity in Adagio.” Memo. Albu-

querque, NM: Sandia National Laboratories, March 2003.

4.4. REFERENCES 183

15. Hammerand, D. C. “Finite Strain Viscoelasticity in Adagio and ABAQUS.” Memo. Albu-

querque, NM: Sandia National Laboratories, July 2003.

16. Swegle, J. W. SIERRA: PRESTO Theory Documentation: Energy Dependent Materials Ver-

sion 1.0. Albuquerque, NM: Sandia National Laboratories, October 2001.

17. Johnson, G. R., and Cook, W. H. “A constitutive model and data for metals subjected to

large strains, high strain rates and high temperatures” Proc. 7th. Int. Symp. on Ballistics,

The Hague, The Netherlands (1983): 541–547.

184 CHAPTER 4. MATERIALS

Chapter 5

Elements

This chapter explains how material, geometric, and other properties are associated with the various

element blocks in a mesh file. A mesh file contains, for the most part, only topological information

about elements. For example, there may be a group of elements in the mesh file that consists of

four nodes defining a planar facet in three-dimensional space. Whether or not these elements are

used as shells or membranes in our actual model of an object is determined by command lines in

the input file. The specifics of a material type associated with these four node facets are also set in

the input file.

Most elements can be used in either Presto or Adagio. If an element is available in one code but not

the other, this information will be noted for the element. There is a special element implementation

in Presto referred to as smoothed particle hydrodynamics(SPH). There is a section for SPH in the

Presto manual but not in the Adagio manual. This chapter also includes descriptions of the com-

mands for mass property calculations, element death, and mesh rebalancing. Two “element-like"

capabilities are discussed in Chapter 5—torsional springs and rigid bodies. Although torsional

springs and rigid bodies exhibit element-like behavior, they are really implemented as boundary

conditions. From a user viewpoint, it is best to discuss the torsional-spring and rigid-body capa-

bilities with elements.

Highlights of chapter contents follow. Section 5.1 discusses the FINITE ELEMENT MODEL com-

mand block, which provides the description of a mesh that will be associated with the elements.

Section 5.2 presents the section command blocks that are used to define the different element

sections.

Next are descriptions of command blocks that exhibit element-like functionality. Section 5.3.1

explains the use of rigid bodies. Section 5.3.2 describes how to implement a torsional spring

mechanism in Presto. Section 5.4 describes the MASS PROPERTIES command block, which lets

the user compute the total mass of the model or the mass of subparts of the model once the element

blocks are completely defined in terms of geometry and material. Section 5.5 details the ELEMENT

DEATH command block, which lets the user delete (kill) elements based on various criteria during

an analysis. A command block for derived quantities that are to be used with transfers or error

estimation is discussed in Section 5.6. Finally, Section 5.7 presents various options for partitioning

a mesh for parallel runs with Presto. The partitioning scheme can greatly influence the run time for

185

186 CHAPTER 5. ELEMENTS

a particular analysis. The command block for selecting a partitioning scheme is REBALANCE. The

REBALANCE references a ZOLTAN PARAMETERS command block. The ZOLTAN PARAMETERS

command block sets various parameters that control the partitioning.

Most of the command blocks and command lines described next appear within the SIERRA scope.

There are some exceptions, and these exceptions are noted.

5.1 Finite Element Model

BEGIN FINITE ELEMENT MODEL <string>mesh_descriptor

DATABASE NAME = <string>mesh_file_name

DATABASE TYPE = <string>database_type(exodusII)

ALIAS <string>mesh_identifier AS <string>user_name

OMIT BLOCK <string>block_list

COMPONENT SEPARATOR CHARACTER = <string>separator

BEGIN PARAMETERS FOR BLOCK [<string list>block_names]

#

Command lines that define attributes for

a particular element block appear in this

command block.

#

END [PARAMETERS FOR BLOCK <string list>block_names]

END [FINITE ELEMENT MODEL <string>mesh_descriptor]

The input file must point to a mesh file that is to be used for an analysis. The name of the mesh

file appears within a FINITE ELEMENT MODEL command block, which appears in the SIERRA

scope. In this command block, you will identify the particular mesh file that describes your

model. Also within this command block, there will be one or more PARAMETERS FOR BLOCK

command blocks. (All the PARAMETERS FOR BLOCK command blocks are embedded in the

FINITE ELEMENT MODEL command block.) Within the PARAMETERS FOR BLOCK command

block, you will set a material type and model, a section, and various other parameters for the

element block. The concept of “section” is explained in Section 5.1.5.

The current element library is as follows:

- Eight-node, uniform-gradient hexahedron: Both a midpoint-increment formulation [1] and

a strongly objective formulation are implemented [2]. These elements can be used with any

of the material models described in Chapter 4.

- Eight-node, selective-deviatoric hexahedron: Only a strongly objective formulation is pro-

vided. This element can be used with any of the material models described in Chapter 4.

- Four-node tetrahedron: There is now the regular element formulation for the four-node tetra-

hedron and a node-based formulation for the four-node tetrahedron. For the regular element

formulation, only a strongly objective formulation is implemented. The concept of a node-

based four-node tetrahedron is described in Reference 3. The regular four-node tetrahedron

5.1. FINITE ELEMENT MODEL 187

can be used with any of the material models described in Chapter 4. The node-based tetra-

hedron can be used with any of the material models described in Chapter 4.

- Eight-node tetrahedron: This tetrahedral element has nodes at the four vertices and nodes on

the four faces. The eight-node tetrahedron has only a strongly objective formulation [4]. The

eight-node tetrahedron uses a mean quadrature formulation even though it has the additional

nodes. This element can be used with any of the material models described in Chapter 4.

- Ten-node tetrahedron: Only a strongly objective formulation is implemented. This element

can be used with any of the material models described in Chapter 4.

- Four-node, quadrilateral, uniform-gradient membrane: Both a midpoint-increment formula-

tion and a strongly objective formulation are implemented. This element is derived from the

Key-Hoff shell formulation [5]. The strongly objective formulation has not been extensively

tested, and it is recommended that the midpoint-increment formulation, which is the default,

be used for this element type. These elements can be used with any of the following material

models described in Chapter 4:

– Elastic

– Elastic-plastic

– Elastic-plastic power-law hardening

– Multilinear elastic-plastic hardening (no failure)

- Three-node, triangular shell: This shell uses the same formulation as the three-node triangu-

lar shell in Pronto [1]. A midpoint-increment formulation is implemented. This element can

be used with any of the following material models described in Chapter 4:

– Elastic

– Elastic-plastic

– Elastic-plastic power-law hardening

– Multilinear elastic-plastic hardening without failure

– Multilinear elastic-plastic hardening with failure

- Four-node, quadrilateral shell: This shell uses the Key-Hoff formulation [5]. Both a

midpoint-increment formulation and a strongly objective formulation are implemented. The

strongly objective formulation has not been extensively tested, and it is recommended that

the midpoint-increment formulation, which is the default, be used for this element type.

These elements can be used with any of the following material models described in Chap-

ter 4:

– Elastic

– Elastic-plastic

– Elastic-plastic power-law hardening

– Multilinear elastic-plastic hardening without failure

188 CHAPTER 5. ELEMENTS

– Multilinear elastic-plastic hardening with failure

- Four-node, quadrilateral, selective-deviatoric membrane: Only a midpoint-increment for-

mulation is implemented. These elements can be used with any of the following material

models described in Chapter 4:

– Elastic

– Elastic-plastic

– Elastic-plastic power-law hardening

– Multilinear elastic-plastic hardening (no failure)

- Two-node beam: The beam element is a uniform result model. Strains and stresses are com-

puted only at the midpoint of the element. These midpoint values determine the forces and

moments for the beam. The beam element is based on an incremental kinematic formulation

that is accurate for large strains and rotations (e.g. this element exactly agrees with a loga-

rithmic strain formulation under large strain axial loading). Thinning of the cross section is

taken into account through a constant volume assumption. There are five different sections

currently implemented for the beam: rod, tube, bar, box, and I. This element can be used

with any of the following material models described in Chapter 4:

– Elastic

– Elastic-plastic

- Two-node truss: The two-node truss element carries only a uniform axial stress. Currently,

there is a linear-elastic material model for the truss element.

- Two-node spring: The two-node spring element computes a uniaxial resistance force based

on a non-linear force-engineering strain function. This element can handle preloads, mass

per unit length, resetting of the initial length after preload and any arbitrary loading function.

- Two-node damper: (Code Usage: Presto only) The two-node damping element computes a

damping force based on the relative velocity of the two nodes along the axis of the element.

This element uses only a damping parameter for a material property.

- Point mass: The point mass element allows the user to put a specified mass and/or rotational

inertia at a node. This element requires input for density, but does not make use of any other

material properties.

- Smoothed particle hydrodynamics (SPH) elements: These are one-dimensional elements.

These elements can be used with any of the material models described in Chapter 4.

The command block to describe a mesh file begins with

BEGIN FINITE ELEMENT MODEL <string>mesh_descriptor

and is terminated with:

END [FINITE ELEMENT MODEL <string>mesh_descriptor]

5.1. FINITE ELEMENT MODEL 189

where mesh_descriptor is a user-selected name for the mesh. In this section, we will first

discuss the command lines within the scope of the FINITE ELEMENT MODEL command block

but outside the scope of the PARAMETERS FOR BLOCK command block. We will then discuss the

PARAMETERS FOR BLOCK command block and the associated command lines for this particular

block.

5.1.1 Identification of Mesh File

Nested within the FINITE ELEMENT MODEL command block are two command lines (DATABASE

NAME and DATABASE TYPE) that give the mesh name and define the type for the mesh file, respec-

tively. The command line

DATABASE NAME = <string>mesh_file_name

gives the name of the mesh file with the string mesh_file_name. If the current mesh file is in the

default directory and is named job.g, then this command line would appear as:

DATABASE NAME = job.g

If the mesh file is in some other directory, the command line would have to show the path to that

directory. For parallel runs, the string mesh_file_name is the base name for the spread of parallel

mesh files. For example, for a four-processor run, the actual mesh files associated with a base name

of job.g would be job.g.4.0, job.g.4.1, job.g.4.2, and job.g.4.3. The database name

on the command line would be job.g.

Two metacharacters can appear in the name of the mesh file. If the %P character is found in the

name, it will be replaced with the number processors being used for the run. For example, if you are

running on 1024 processors and use the name mesh-%P/job.g, then the name would be expanded

to mesh-1024/job.g and the actual mesh files would be mesh-1024/job.g.1024.0000 to

mesh-1024/job.g.1024.1023. The other recognized metacharacter is %B which is replaced

with the base name of the input file containing the input commands. For example, if the commands

are in the file my_analysis_run.i and the mesh database name is specified as %B.g, then the

mesh would be read from the file my_analysis_run.g.

If the mesh file does not use the Exodus II format, you must specify the format for the mesh file

using the command line:

DATABASE TYPE = <string>database_type(exodusII)

Currently, only the Exodus II database format is supported by Presto and Adagio for mesh input.

Other options may be added in the future.

5.1.2 Alias

It is possible to associate a user-defined name with some mesh entity. The mesh entity names

for Exodus II entities are typically the concatenation of the entity type (for example, “block”,

“nodelist”, or “surface”), an underscore (“_”), and the entity id. This generated name can be

aliased to a more descriptive name by using the ALIAS command line:

190 CHAPTER 5. ELEMENTS

ALIAS <string>mesh_identifier AS <string>user_name

This alias can then be used in other locations in the input file in place of the Exodus II name.

Examples of this association are as follows:

Alias block_1 as Case

Alias block_10 as Fin

Alias block_12 as Nose

Alias surface_1 as Nose_Case_Interface

Alias surface_2 as OuterBoundary

The above examples use the Exodus II naming convention described in Section 1.5.

5.1.3 Omit Block

If the finite element mesh contains element blocks that should be omitted from the finite element

analysis, the OMIT BLOCK line command is used.

OMIT BLOCK <string>block_list

The element blocks listed in the command are removed from the model. Any nodesets or surfaces

only existing on nodes or elements in the omitted element blocks are also omitted. Note that if this

command is used in a parallel analysis, it is possible for the resulting model to become unbalanced

if, for example, the omitted element blocks make up a large portion of the elements on one or more

processors. In this case, the mesh can be rebalanced using the REBALANCE command described in

Section 5.7.1.

Examples of omitting element blocks are:

Omit Block block_1 block_2

Omit Block block_10

5.1.4 Component Separator Character

A variable defined on the mesh database can be used as an initial condition, or a prescribed tem-

perature with the READ VARIABLE command. If the variable is a vector or a tensor, then the

base name of the variable will be separated from the suffixes with a separator character. The de-

fault separator character is an underscore, but it can be changed with the COMPONENT SEPARATOR

CHARACTER command.

COMPONENT SEPARATOR CHARACTER = <string>character|NONE

For example, the variable displacement can have the suffixes x, y, etc. By default, the base name

is separated from the suffixes with an underscore character so that we have displacement_x,

displacement_y, etc. in the mesh file. The underscore can be replaced as the default separator

5.1. FINITE ELEMENT MODEL 191

by using the above command line. If the data used the period as the separator, then the command

would be

COMPONENT SEPARATOR CHARACTER = .

For the displacement example the components would then appear in the mesh file as

displacement.x, displacement.y, etc.

The separator can be eliminated with an empty string or NONE.

5.1.5 Descriptors of Element Blocks

BEGIN PARAMETERS FOR BLOCK [<string list>block_names]

MATERIAL <string>material_name

SOLID MECHANICS USE MODEL <string>model_name

INCLUDE ALL BLOCKS

REMOVE BLOCK = <string list>block_names

SECTION = <string>section_id

LINEAR BULK VISCOSITY =

<real>linear_bulk_viscosity_value(0.06)

QUADRATIC BULK VISCOSITY =

<real>quad_bulk_viscosity_value(1.20)

HOURGLASS STIFFNESS =

<real>hour_glass_stiff_value(solid = 0.05,

shell/membrane = 0.0)

HOURGLASS VISCOSITY =

<real>hour_glass_visc_value(solid = 0.0,

shell/membrane = 0.0)

MEMBRANE HOURGLASS STIFFNESS =

<real>memb_hour_glass_stiff_value(0.0)

MEMBRANE HOURGLASS VISCOSITY =

<real>memb_hour_glass_visc_value(0.0)

BENDING HOURGLASS STIFFNESS =

<real>bend_hour_glass_stiff_value(0.0)

BENDING HOURGLASS VISCOSITY =

<real>bend_hour_glass_visc_value(0.0)

TRANSVERSE SHEAR HOURGLASS STIFFNESS =

<real>tshr_hour_glass_stiff_value(0.0)

TRANSVERSE SHEAR HOURGLASS VISCOSITY =

<real>tshr_hour_glass_visc_value(0.0)

EFFECTIVE MODULI MODEL = <string>PRESTO|PRONTO|CURRENT|

ELASTIC(PRONTO)

ELEMENT NUMERICAL FORMULATION = <string>OLD|NEW(OLD)

ACTIVE FOR PROCEDURE <string>proc_name DURING PERIODS

<string list>period_names

INACTIVE FOR PROCEDURE <string>proc_name DURING PERIODS

<string list>period_names

END [PARAMETERS FOR BLOCK <string list>block_names]

192 CHAPTER 5. ELEMENTS

The finite element model consists of one or more element blocks. Associated with an element

block or group of element blocks will be a PARAMETERS FOR BLOCK command block, which is

also referred to in this document as an element-block command block. The basic information about

the element blocks (number of elements, topology, connectivity, etc.) is contained in a mesh file.

Specific attributes for an element block must be specified in the input file. If for example, a block of

eight-node hexahedra is to use the selective-deviatoric versus mean-quadrature formulation, then

the selective-deviatoric formulation must be specified in the input file. The element library is listed

at the beginning of Section 5.1.

The element-block command block begins with the input line

BEGIN PARAMETERS FOR BLOCK [<string list>block_names]

and is terminated with the input line:

END [PARAMETERS FOR BLOCK <string list>block_names]

Here block_names is a list of element blocks assigned to the element-block command block.

Such a list must be included on the BEGIN PARAMETERS FOR BLOCK input line if the INCLUDE

ALL BLOCKS line command is not used. If the format for the mesh file is Exodus II, the typical

form of a block_name is block_integerID, where integerID is the integer identifier for the

block. If the element block is 280, the value of block_name would be block_280. It is also

possible to generate an alias identifier for the element block and use this for the block_name. If

block_280 is aliased to AL6061, then block_name becomes AL6061.

All the element blocks listed on the PARAMETERS FOR BLOCK command line (or all the element

blocks included using the line commands INCLUDE ALL BLOCKS and REMOVE BLOCK) will have

the same mechanics properties. The mechanics properties are set by use of the various command

lines. One of the key command lines, i.e., MATERIAL, will let you associate a material with the

elements in the block. Another key command line is the SECTION command line. This command

line lets you differentiate between elements with the same topology but different formulations. For

example, assume that the topology of the elements in a block is a four-node quadrilateral. With the

SECTION command line you can specify whether the element block will be used as a membrane

or a shell. The SECTION command line also lets you assign a variety of parameters to an element,

depending on the element formulation.

It is important to state here that the SECTION command line only specifies an identifier that

maps to a section command block that is defined by the user. There are currently several

kinds of section command blocks for the different elements: SOLID SECTION, COHESIVE

SECTION, SHELL SECTION, MEMBRANE SECTION, BEAM SECTION, TRUSS SECTION, SPRING

SECTION, DAMPER SECTION, POINT MASS SECTION, and SPH SECTION. It is within a section

command block that the formulation-specific entities related to a particular element are specified.

If no SECTION command line is present in an element-block command block, the code assumes

the element block is a block of eight-node hexahedra using mean quadrature and the midpoint-

increment formulation.

All the command lines that can be used for the element-block command block are described in

Section 5.1.5.1 through Section 5.1.5.9.

5.1. FINITE ELEMENT MODEL 193

5.1.5.1 Material Property

MATERIAL <string>material_name

SOLID MECHANICS USE MODEL <string>model_name

The material property specification for an element block is done by using the above two command

lines. The property specification references both a PROPERTY SPECIFICATION FOR MATERIAL

command block and a material-model command block, which has the general form PARAMETERS

FOR MODEL model_name. These command blocks are described in Chapter 4. The PROPERTY

SPECIFICATION FOR MATERIAL command block contains all the parameters needed to define

a material, and is associated with an element block (PARAMETERS FOR BLOCK command block)

by use of the MATERIAL command line. Some of the material parameters inside the property

specification are grouped on the basis of material models. A material-model command block is

associated with an element block by use of the SOLID MECHANICS USE MODEL command line.

Consider the following example. Suppose there is a PROPERTY SPECIFICATION FOR

MATERIAL command block with a material_name of steel. Embedded within this command

block for steel is a material-model command block for an elastic model of steel and an elastic-

plastic model of steel. Suppose that for the current element block we would like to use the material

steel with the elastic model. Then the element-block command block would contain the input lines:

MATERIAL steel

SOLID MECHANICS USE MODEL elastic

If, on the other hand, we would like to use the material steel with the elastic-plastic model, the

element-block command block would contain the input lines:

MATERIAL steel

SOLID MECHANICS USE MODEL elastic_plastic

The user should remember that not all material types can be used with all element types.

5.1.5.2 Include All Blocks

The INCLUDE ALL BLOCKS line command is used to associate all element blocks with the same

element parameters (which minimizes input).

INCLUDE ALL BLOCKS

5.1.5.3 Remove Block

The REMOVE BLOCK command line allows you to delete blocks from the set specified in the

PARAMETERS FOR BLOCK command block or INCLUDE ALL BLOCKS command line(s) through

the string list block_names.

REMOVE BLOCK <string>block_list

194 CHAPTER 5. ELEMENTS

5.1.5.4 Section

SECTION = <string>section_id

The section specification for an element-block command block is done by using the above com-

mand line. The section_id is a string associated with a section command block. The various

section command blocks are described in Section 5.2.

Suppose you wanted the current element-block command block to use the membrane formulation.

You would define a MEMBRANE SECTION command block with some name, such as membrane_

rubber. Inside the current element-block command block you would have the command line:

SECTION = membrane_rubber

The thickness of the membrane would be described in the MEMBRANE SECTION command block

and then associated with the current element-block command block.

There can be only one SECTION command line in an element-block command block. Each

element-block command block within the model description can reference a unique section com-

mand block, or several element-block command blocks can reference the same section command

block. For example, in Figure 5.1, the section named membrane_rubber appears in two dif-

ferent PARAMETERS FOR MODEL command blocks, but there is only one specification for their

associated MEMBRANE SECTION command block. When several element-block command blocks

reference the same section, the input file is less verbose, and it is easier to maintain the input file.

Figure 5.1: Association between SECTION command lines and a section command block.

5.1. FINITE ELEMENT MODEL 195

5.1.5.5 Linear and Quadratic Bulk Viscosity

LINEAR BULK VISCOSITY =

<real>linear_bulk_viscosity_value(0.06)

QUADRATIC BULK VISCOSITY =

<real>quad_bulk_viscosity_value(1.20)

The linear and quadratic bulk viscosity are set with these two command lines. Consult the docu-

mentation for the elements [6] for a description of the bulk viscosity parameters.

5.1.5.6 Hourglass Control

HOURGLASS STIFFNESS = <real>hour_glass_stiff_value(solid

= 0.05, shell/membrane = 0.0)

HOURGLASS VISCOSITY = <real>hour_glass_visc_value(solid

= 0.0, shell/membrane = 0.0)

MEMBRANE HOURGLASS STIFFNESS =

<real>memb_hour_glass_stiff_value(0.0)

MEMBRANE HOURGLASS VISCOSITY =

<real>memb_glass_visc_value(0.0)

BENDING HOURGLASS STIFFNESS =

<real>bend_hour_glass_stiff_value(0.0)

BENDING HOURGLASS VISCOSITY =

<real>bend_glass_visc_value(0.0)

TRANSVERSE SHEAR HOURGLASS STIFFNESS =

<real>tshr_hour_glass_stiff_value(0.0)

TRANSVERSE SHEAR HOURGLASS VISCOSITY =

<real>tshr_glass_visc_value(0.0)

These command lines set the hourglass control parameters for elements that use hourglass control.

Currently, the included elements are the eight-node, uniform-gradient hexahedral elements; the

eight-node and ten-node tetrahedral elements; and the four-node membrane and shell elements.

Consult the element documentation [6] for a description of the hourglass parameters.

Hourglass stiffness and viscosity parameters for hexahedral and tetrahedral elements are set using

the HOURGLASS STIFFNESS and HOURGLASS VISCOSITY commands, respectively. If either of

these commands are used for shell elements, they set the hourglass stiffness or viscosity for all

three modes (membrane, bending, and transverse shear).

Hourglass parameters for the membrane, bending, and transverse shear modes can be set indi-

vidually for shell elements. The membrane hourglass stiffness and viscosity can be set with

the MEMBRANE HOURGLASS STIFFNESS and MEMBRANE HOURGLASS VISCOSITY commands.

These membrane hourglass commands can also be used with membrane elements. The bend-

ing hourglass stiffness and viscosity are set with the BENDING HOURGLASS STIFFNESS and

BENDING HOURGLASS VISCOSITY commands, and transverse shear hourglass stiffness and vis-

cosity are set with the TRANSVERSE SHEAR HOURGLASS STIFFNESS and TRANSVERSE SHEAR

196 CHAPTER 5. ELEMENTS

HOURGLASS VISCOSITY commands. All of these commands will override either the default val-

ues and any value set in the generic HOURGLASS STIFFNESS and/or HOURGLASS VISCOSITY

commands for the particular mode that is specified.

The hourglass stiffness parameter defaults to 0.05 for solids using hourglass control; it defaults to

0.0 for shell and membrane elements. A reasonable user defined hourglass stiffness (if needed)

for shells and membranes is 0.005 (approximately an order of magnitude lower than for solid ele-

ments). The hourglass viscosity parameter defaults to 0.0 for all elements currently using hourglass

control.

The hourglass stiffness is the same as the dilatational hourglass parameter, and the hourglass vis-

cosity is the same as the deviatoric hourglass parameter.

The computation of the hourglass parameters can be strongly affected by the method that computes

the effective moduli. The command line in Section 5.1.5.7 selects the method for computing the

effective moduli.

5.1.5.7 Effective Moduli Model

EFFECTIVE MODULI MODEL =

<string>PRESTO|PRONTO|CURRENT|ELASTIC(PRONTO)

The hourglass force computations require a measure of the material moduli to ensure appropriate

scaling of the hourglass forces. For elastic, isotropic material models, the moduli are constant

throughout the analysis. However, for nonlinear materials, the moduli are typically computed nu-

merically from the stresses. For models with softening regimes or that approach perfect plasticity,

the moduli may be difficult to define, and the way in which they are computed may adversely

affect the analysis. Through the EFFECTIVE MODULI MODEL command line, Presto provides

several methods for the computation of these effective moduli:

• PRESTO: This method includes a number of techniques for returning reasonable moduli for

softening and perfectly plastic materials. The effective moduli that this approach produces

are stiffer than those computed by the PRONTO approach.

• PRONTO: This method is the default and is identical to the method of computing effective

moduli present in the Pronto3D code. It is similar to the PRESTO approach but generally

produces moduli that are softer than the PRESTO approach.

• CURRENT: This method computes the effective moduli without any extra handling of neg-

ative or near-zero moduli cases. It generally provides the softest response but is also less

stable.

• ELASTIC: This method simply uses the initial elastic moduli for the entire analysis. It is the

most robust but also the most stiff, and may produce an overly stiff global response.

The EFFECTIVE MODULI MODEL command line should be used with caution because it can

strongly affect the analysis results.

5.1. FINITE ELEMENT MODEL 197

5.1.5.8 Element Numerical Formulation

ELEMENT NUMERICAL FORMULATION = <string>OLD|NEW(OLD)

For calculation of the critical time step, it is necessary to determine a characteristic length for

each element. In one dimension, the correct characteristic element length is obviously the distance

between the two nodes of the element. In higher dimensions, this length is usually taken to be the

minimum distance between any of the nodes in the element. However, some finite element codes,

primarily those based on Pronto3D [1], use as a characteristic length an eigenvalue estimate based

on work by Flanagan and Belytschko [7]. That characteristic length provides a stable time step,

but in many cases is far more conservative than the minimum distance between nodes. For a cubic

element with side length equal to 1, and thus also surface area of each face and volume equal to

1, the minimum distance between nodes is 1. However, the eigenvalue estimate is 1
/√

3, which

is only 58% of the minimum distance. As the length of the element is increased in one direction

while keeping surfaces in the lateral direction squares of area 1, the eigenvalue estimate asymptotes

to 1
/√

2 for very long elements. If the length is decreased, the eigenvalue estimate asymptotes to

the minimum distance between nodes for very thin elements. In this case, the eigenvalue estimate

is always more conservative than the minimum distance between nodes. However, consider an

element whose cross section in one direction is not a square but a trapezoid with one side length

much greater than the other. Assume the large side length is 1 and the other side length is arbitrarily

small, ε . In this case, the minimum distance between nodes becomes ε , creating a very small and

inefficient time step. However, the eigenvalue estimate is related to the length across the middle of

the trapezoid, which for the conditions stated is 1/2. Since both distances provide stable time steps,

and one or the other can be much larger in various circumstances, the most efficient calculation is

obtained by using the maximum of the two lengths, either the eigenvalue estimate or the minimum

distance between nodes, to determine the time step.

By using the maximum of the lengths, the computed critical time step should be at the edge of in-

stability, and the TIME STEP SCALE FACTOR command line should be used to provide a margin

of safety. In this case the scale factor for the time step should not be greater than 0.9, and in some

cases it may have to be reduced further. Thus, although the maximum of the lengths provides a

time step that is closer to the critical value and provides better accuracy and efficiency, you may

need to specify a smaller-than-expected scale factor for stability. For this reason, the choice of

which approach to use is left to the user and is determined by the command line:

ELEMENT NUMERICAL FORMULATION = <string>OLD|NEW(OLD)

If the input parameter is OLD, only the eigenvalue estimate is used; NEW means that the maximum

of the two lengths is used. The default is OLD so that users will have to specifically choose the new

approach and be aware of the scale factor for the time step.

The ELEMENT NUMERICAL FORMULATION command line is applicable to both the energy-

dependent and purely mechanical material models. If this command line is applied to blocks using

energy-dependent materials, only the determination of the characteristic length is affected. If this

command line is applied to an element block with a purely mechanical model and the OLD option

is used, the Pronto3D-based artificial viscosity, time step, and eigenvalue estimate will be used

in the element calculations. If, however, the NEW option is used, the artificial viscosity and time

198 CHAPTER 5. ELEMENTS

step will be computed from equations associated with the energy-dependent models. You should

consult Reference 8 for further details about the critical time-step calculations and the use of this

command line.

5.1.5.9 Activation/Deactivation of Element Blocks by Time

ACTIVE FOR PROCEDURE <string>proc_name DURING PERIODS

<string list>period_names

INACTIVE FOR PROCEDURE <string>proc_name DURING PERIODS

<string list>period_names

This command line permits the activation and deactivation of element blocks by time period. The

time periods are defined in the TIME STEPPING BLOCK command block (Section 3.1.1) within a

specific procedure named in a PRESTO PROCEDURE command block (Section 2.2.1).

The ACTIVE FOR PROCEDURE or INACTIVE FOR PROCEDURE command lines can optionally be

used to deactivate element blocks for a portion of the analysis. If the ACTIVE FOR PROCEDURE

command is used, the element block is active for all periods listed for the named procedure, and is

deactivated for all time periods that are absent from the list. If the INACTIVE FOR PROCEDURE

command is used, the element block is deactivated for all periods listed for the named procedure.

The element block is active for all time periods that are absent from the list. If neither command

line is used, by default the block is active during all time periods. This command line controls the

activation and deactivation of all elements in a block. Alternatively, individual elements can be

deactivated with the ELEMENT DEATH command block (see Section 5.5).

5.2. ELEMENT SECTIONS 199

5.2 Element Sections

Element sections are defined by section command blocks. There are currently nine different types

of section command blocks. The section command blocks appear in the SIERRA scope, at the

same level as the FINITE ELEMENT MODEL command block. In general, a section command

block has the following form:

BEGIN section_type SECTION <string>section_name

command lines dependent on section type

END [section_type SECTION <string>section_name]

Currently, section_type can be SOLID, SHELL, MEMBRANE, BEAM, TRUSS, SPRING, DAMPER,

POINT MASS, or SPH. These various section types are identified as individual section command

blocks and are described below. The corresponding section_name parameter in each of these

command blocks, e.g., truss_section_name in the TRUSS SECTION command block, is se-

lected by the user. The method used to associate these names with individual SECTION command

lines in PARAMETERS FOR BLOCK command blocks is discussed in Section 5.1.5.4.

5.2.1 Solid Section

BEGIN SOLID SECTION <string>solid_section_name

FORMULATION = <string>MEAN_QUADRATURE|

SELECTIVE_DEVIATORIC|VOID(MEAN_QUADRATURE)

DEVIATORIC PARAMETER = <real>deviatoric_param

STRAIN INCREMENTATION = <string>MIDPOINT_INCREMENT|

STRONGLY_OBJECTIVE|NODE_BASED(MIDPOINT_INCREMENT)

NODE BASED ALPHA FACTOR = <real>bulk_stress_weight(0.01)

NODE BASED BETA FACTOR = <real>shear stress_weight(0.35)

HOURGLASS FORMULATION = <string>TOTAL|INCREMENTAL(INCREMENTAL)

RIGID BODY = <string>rigid_body_name

USE LAME|STRUMENTO(LAME)

The SOLID SECTION command block is used to specify the properties for solid elements (hexa-

hedra and tetrahedra). This command block is to be referenced by an element block made up of

solid elements. The two types of solid-element topologies currently supported are hexahedra and

tetrahedra. The parameter solid_section_name is user-defined and is referenced by a SECTION

command line in a PARAMETERS FOR BLOCK command block.

The FORMULATION command line specifies whether the element will use a single-point integration

rule (mean quadrature), use a selective-deviatoric rule, or act as a void element. The selective-

deviatoric integration rule is a higher-order integration scheme, which is discussed below.

If the user wishes to use the selective-deviatoric rule, the DEVIATORIC PARAMETER command

line must also appear in the SOLID SECTION command block. The selective-deviatoric param-

eter, deviatoric_param, which is valid from 0.0 to 1.0, indicates how much of the deviatoric

200 CHAPTER 5. ELEMENTS

response should be taken from a uniform-gradient integration and how much should be taken from

a full integration of the element. A value of 0.0 will give a pure uniform-gradient response with

no hourglass control. Thus, this value is of little practical use. A value of 1.0 will give a fully

integrated deviatoric response. Although any value between 0.0 and 1.0 is perfectly valid, lower

values are generally preferred.

The selective-deviatoric elements, when used with a value greater than 0.0, provide hourglass

control without artificial hourglass parameters.

The VOID formulation is valid for 8-node hexahedral and 4-node tetrahedral element blocks. Void

elements only compute volume. They do not contribute internal forces to the model. The mate-

rial model and density associated with void elements are ignored. The volume and the first and

second derivatives of the volume for each element are stored in the element variables volume,

volume_first_derivative, and volume_second_derivative. The volume derivatives are

computed using least squares fits of the volume history, which is stored for the previous five time

steps.

In addition to the per-element volume and derivatives, the total volume and derivatives of that total

volume for all elements in each void element block are written to the results file as global variables.

The names for these variables are voidvol_blockID, voidvol_first_deriv_blockID, and

voidvol_second_deriv_blockID. In these global variable names, blockID is the ID of the

block. For example, the void volume for block 8 would be stored in voidvol_8.

Some of the solid elements support different strain-incrementation formulations. See the element

summary at the beginning of Section 5.1 to determine which strain-incrementation formulations

are available for which elements. The STRAIN INCREMENTATION command line lets you specify

a midpoint-increment strain formulation (MIDPOINT_INCREMENT), a strongly objective strain for-

mulation (STRONGLY_OBJECTIVE), or a node-based formulation (NODE_BASED) for some of the

elements. Consult the element documentation [2,6] for a description of these strain formulations.

The node-based formulation can only be used with four-node tetrahedral elements. If your element-

block command block (i.e., a PARAMETERS FOR BLOCK command block) has a SECTION com-

mand line that references a SOLID SECTION command block that uses:

STRAIN INCREMENTATION = NODE_BASED

then the element block must be a block of four-node tetrahedral elements.

The node-based formulation lets you calculate a solution that is some mixture of an element-based

formulation (information from the center of an element) and a node-based formulation (informa-

tion at a node that is based on all elements attached to the node). The node-based tetrahedron

allows the user to model with four-node tetrahedral elements and avoid the main problems with

regular tetrahedral elements. Regular tetrahedral elements are much too stiff and can produce very

inaccurate results.

You can adjust the mixture of node-based versus element-based information incorporated into

your solution with the NODE BASED ALPHA FACTOR and NODE BASED BETA FACTOR com-

mand lines. These two lines apply only if you have selected the NODE BASED option on

the STRAIN INCREMENTATION command line. The value for bulk_stress_weight on the

NODE BASED ALPHA FACTOR command line sets the element bulk stress weighting factor, while

5.2. ELEMENT SECTIONS 201

the value for shear_stress_weight on the NODE BASED BETA FACTOR command line sets

the element shear stress weighting factor. You should consult Reference 3 to better understand

the use of these weighting factors. If both of these factors are set to 0.0, you will be using a

strictly node-based formulation. If both of these factors are set to 1.0, you will be using a strictly

element-based formulation.

The HOURGLASS FORMULATION command is used to switch between total and incremental forms

of hourglass control. This option can only be used with eight-noded uniform-gradient hexa-

hedral elements using strongly objective strain incrementation (STRAIN INCREMENTATION =

STRONGLY_OBJECTIVE). One of the following two arguments can be used with this command:

TOTAL or INCREMENTAL. The total formulation performs stiffness hourglass force updates based

on the rotation tensor from the polar decomposition of the total deformation gradient. The in-

cremental formulation is the default and performs stiffness hourglass force updates based on the

hourglass velocities and the incremental rotation tensor. The viscous hourglass forces and the hour-

glass parameters are unchanged by this command. Consult the element documentation [6] for a

description of the hourglass forces and the incremental hourglass formulation.

You can indicate that elements using this section should be rigid by including the RIGID BODY

command line. The RIGID BODY command line specifies an identifier that maps to a rigid body

command block. Consult with Section 5.3.1 for a full discussion of how to create rigid bodies.

You can request that the material model that will be used with this solid section come from the

legacy Strumento material model library by using the USE STRUMENTO line command. LAME is

the default material model library for all solid sections [9] but can be explicitly requested with the

USE LAME line command. The versions of the material models in the Strumento library will be

removed in a future release of Presto, so it is advised to switch to the LAME versions as soon as

possible.

5.2.2 Cohesive Section

BEGIN COHESIVE SECTION <string>cohesive_section_name

NUMBER OF INTEGRATION POINTS = <integer>num_int_points(1)

END [COHESIVE SECTION <string>cohesive_section_name]

The COHESIVE SECTION command block is used to specify the properties for cohesive zone

elements (quadrilateral and triangular). The name of this block (given by cohesive_section_

name) is referenced by the element block for cohesive elements. If the option for adaptive insertion

of cohesive zone elements is used, the name of this block is referenced by the COHESIVE SECTION

command defined in Section 5.5.5.

NUMBER OF INTEGRATION POINTS = <integer>num_int_points(1)

The default number of integration points for a cohesive element is one. However, it should be

noted that with a single integration point, spurious hour-glass like modes can be introduced to the

deformation of the cohesive element. Currently, the quadrilateral cohesive element supports one

and four integration points while the triangular cohesive element supports one and three integration

points.

202 CHAPTER 5. ELEMENTS

5.2.3 Shell Section

BEGIN SHELL SECTION <string>shell_section_name

THICKNESS = <real>shell_thickness

THICKNESS MESH VARIABLE =

<string>THICKNESS|<string>var_name

THICKNESS TIME STEP = <real>time_value

THICKNESS SCALE FACTOR = <real>thick_scale_factor(1.0)

INTEGRATION RULE = TRAPEZOID|GAUSS|LOBATTO|SIMPSONS|

USER(TRAPEZOID)

NUMBER OF INTEGRATION POINTS = <integer>num_int_points(5)

BEGIN USER INTEGRATION RULE

<real>location_1 <real>weight_1

<real>location_2 <real>weight_2

.

.

<real>location_n <real>weight_n

END [USER INTEGRATION RULE]

LOFTING FACTOR = <real>lofting_factor(0.5)

ORIENTATION = <string>orientation_name

DRILLING STIFFNESS FACTOR = <real>stiffness_factor(0.0)

RIGID BODY = <string>rigid_body_name

USE LAME|STRUMENTO(LAME)

END [SHELL SECTION <string>shell_section_name]

The SHELL SECTION command block is used to specify the properties for a shell element. If this

command block is referenced in an element block of three-dimensional, four-node elements, the

elements in the block will be treated as shell elements. The parameter, shell_section_name,

is user-defined and is referenced by a SECTION command line in a PARAMETERS FOR BLOCK

command block.

Either a THICKNESS command line or a THICKNESS MESH VARIABLE command line must ap-

pear in the SHELL SECTION command block.

If a shell element block references a SHELL SECTION command block with the command line:

THICKNESS = <real>shell_thickness

then all the membrane elements in the block will have their thickness initialized to the value

shell_thickness.

Presto can also initialize the thickness using an attribute defined on elements in the mesh file.

Meshing programs such as PATRAN and CUBIT typically set the element thickness as an at-

tribute on the elements. If the elements have one and only one attribute defined on the mesh, the

THICKNESS MESH VARIABLE command line should be specified as:

THICKNESS MESH VARIABLE = THICKNESS

which causes the thickness of the element to be initialized to the value of the attribute for that

element. If there are zero attributes or more than one attribute, the thickness variable will not be

5.2. ELEMENT SECTIONS 203

automatically defined, and the command will fail.

The thickness may also be initialized by any other field present on the input mesh. To specify a

field other than the single-element attribute, use this form of the THICKNESS MESH VARIABLE

command line:

THICKNESS MESH VARIABLE = <string>var_name

Here, the string var_name is the name of the initializing field.

The input mesh may have values defined at more than one point in time. To choose the point in

time in the mesh file that the variable should be read, use the command line:

THICKNESS TIME STEP = <real>time_value

The default time point in the mesh file at which the variable is read is 0.0.

Once the thickness of a shell element is initialized by using either the THICKNESS command line

or the THICKNESS MESH VARIABLE command line, this initial thickness value can then be scaled

using the scale-factor command line:

THICKNESS SCALE FACTOR = <real>thick_scale_factor

If the initial thickness of the shell is 0.15 inch, and the value for thick_scale_factor is 0.5,

then the scaled thickness of the membrane will be 0.075.

The thickness mesh variable specification may be coupled with the THICKNESS SCALE FACTOR

command line. In this case, the thickness mesh variable is scaled by the specified factor.

For shell elements, the user can select from a number of integration rules, including a user-defined

integration option. The integration rule is selected with the command line:

INTEGRATION RULE = <string>TRAPEZOID|GAUSS|LOBATTO|SIMPSONS|

USER(TRAPEZOID)

Consult the element documentation [6] for a description of different integration schemes for shell

elements.

The default integration scheme is TRAPEZOID with five integration points through the thickness.

The number of integration points for TRAPEZOID can be set to any number greater than one by

using the following command line:

NUMBER OF INTEGRATION POINTS = <integer>num_int_points(5)

The SIMPSONS, GAUSS, and LOBATTO integration schemes in the INTEGRATION RULE command

line all default to five integration points. The number of integration points for these three schemes

can be reset by using the NUMBER OF INTEGRATION POINTS command line. There are limita-

tions on the number of integration points for some of these integration rules. The SIMPSONS rule

can be set to any number greater than one, the GAUSS scheme can be set to one through seven in-

tegration points, and the LOBATTO integration scheme can be set to two through seven integration

points.

In addition to these standard integration schemes, you may also define an integration scheme by

using the USER INTEGRATION RULE command block.

204 CHAPTER 5. ELEMENTS

BEGIN USER INTEGRATION RULE

<real>location_1 <real>weight_1

<real>location_2 <real>weight_2

.

.

<real>location_n <real>weight_n

END [USER INTEGRATION RULE]

You may NOT specify both a standard integration scheme and a user scheme. If the USER option

is specified in the INTEGRATION RULE command line, a set of integration locations with associ-

ated weight factors must be specified. This is done with tabular input command lines inside the

USER INTEGRATION RULE command block. The number of command lines inside this command

block should match the number of integration points specified in the NUMBER OF INTEGRATION

POINTS command line. For example, suppose we wish to use a user-defined scheme with three

integration points. The NUMBER OF INTEGRATION POINTS command line should specify three

(3) integration points and the number of command lines inside the USER INTEGRATION RULE

command block should be three (to give three locations and three weight factors).

For the user-defined rule, the integration point locations should fall between –1 and +1, and the

weights should sum to 1.0.

The command line

LOFTING FACTOR = <real>lofting_factor(0.5)

allows the user to shift the location of the mid-surface of a shell element relative to the geometric

location of the shell element. By default, the geometric location of a shell element in a mesh

represents the mid-surface of the shell. If a shell has a thickness of 0.2 inch, the top surface of the

shell is 0.1 inch above the geometric surface defined by the shell element, and the bottom surface

of the shell is 0.1 inch below the geometric surface defined by the shell element. (The top surface

of the shell is the surface with a positive element normal; the bottom surface of the shell is the

surface with a negative element normal.)

Figure 5.2 shows an edge-on view of shell elements with a thickness of t and the location of the

geometric plane in relation to the shell surfaces for three different values of the lofting factor—0.0,

0.5, and 1.0. If you want to have the geometric surface defined by the shell correspond to the top

surface of the shell element, set the lofting factor to 0.0. If you want to have the geometric surface

defined by the shell correspond to the bottom surface of the shell element, set the lofting factor to

1.0. The geometric surface is midway between the top and bottom surfaces for a lofting factor of

0.5. Note that the default for this factor is 0.5.

Suppose that the lofting factor is set to 1.0 and the thickness of the shell is 0.2 inch. Let us

measure distances to the shell surfaces (top and bottom) by measuring along the positive element

normal. The top surface of the shell will be located at a distance of 0.2 inch from the geometric

shell surface, and the bottom surface of the shell will be located at a distance of 0.0 inch from the

geometric shell surface.

Both the shell mechanics and contact use shell lofting. See Section 7.2 for a discussion of lofting

surfaces for shells and contact. Lofting factors greater than 1.0 or less than 0.0 are allowed, but are

5.2. ELEMENT SECTIONS 205

Figure 5.2: Location of geometric plane of shell for various lofting factors.

not recommended. In these cases the reference plane of the shell lies outside of the shell itself. It

is recommended that shell lofting values other than 0.5 not being used if the shell is thick. If the

shell is thicker than its in-plane width, the shell lofting algorithms may become unstable.

The ORIENTATION command line lets you select a coordinate system for output of stresses. The

ORIENTATION option makes use of an embedded coordinate system rst associated with each shell

element. The rst coordinate system for a shell element is shown in Figure 5.3. The r-axis extends

from the center of the shell to the midpoint of the side of the shell defined by nodes 1 and 2. The

t-axis is located at the center of the shell and is normal to the surface of the shell at the center point.

The s-axis is the cross-product of the t-axis and the r-axis. The rst-axes form a local coordinate

system at the center of the shell; this local coordinate system moves with the shell element as the

element deforms.

Figure 5.3: Local rst coordinate system for a shell element.

206 CHAPTER 5. ELEMENTS

The ORIENTATION command line in the SHELL SECTION command block references an

ORIENTATION command block that appears in the SIERRA scope. As described in Chapter 2

of this document, the ORIENTATION command block can be used to define a local coordinate sys-

tem X ′′Y ′′Z′′ at the center of a shell element. In the original shell configuration (time 0), one of the

axes—X ′′, Y ′′, or Z′′—is projected onto the plane of the shell element. The angle between this pro-

jected axis of the X ′′Y ′′Z′′ coordinate system and the r-axis is used to establish the transformation

for the stresses. We will illustrate this with an example.

Suppose that in our ORIENTATION command block we have specified a rotation of 30 degrees

about the 1-axis (X ′-axis). The command line for this rotation in the ORIENTATION command

block would be:

ROTATION ABOUT 1 = 30

For this case, we project the Y ′′-axis onto the plane of the shell (Figure 5.4). The angle between

this projection and the r-axis establishes a transformation for the in-plane stresses of the shell (the

stresses in the center of the shell lying in the plane of the shell). What will be output as the in-plane

stress σ
ip
xx will be in the Y ′′-direction; what will be output as the in-plane stress σ

ip
yy will be in the

Z′′-direction. The in-plane stress σ
ip
xy is a shear stress in the Y ′′Z′′-plane. The X ′′Y ′′Z′′ coordinate

system maintains the same relative position in regard to the rst coordinate system. This means that

the X ′′Y ′′Z′′ coordinate system is a local coordinate system that moves with the shell element as

the element deforms.

Figure 5.4: Rotation of 30 degrees about the 1-axis (X ′-axis).

The following permutations for output of the in-plane stresses occur depending on the axis (1, 2,

or 3) specified in the ROTATION ABOUT command line:

• Rotation about the 1-axis (X ′-axis): The in-plane stress σ
ip
xx will be in the Y ′′-direction; the

in-plane stress σ
ip
yy will be in the Z′′-direction. The in-plane stress σ

ip
xy is a shear stress in the

Y ′′Z′′-plane.

5.2. ELEMENT SECTIONS 207

• Rotation about the 2-axis (Y ′-axis): The in-plane stress σ
ip
xx will be in the Z′′-direction; the

in-plane stress σ
ip
yy will be in the X ′′-direction. The in-plane stress σ

ip
xy is a shear stress in the

Z′′X ′′-plane.

• Rotation about the 3-axis (Z′-axis): The in-plane stress σ
ip
xx will be in the X ′′-direction; the

in-plane stress σ
ip
yy will be in the Y ′′-direction. The in-plane stress σ

ip
xy is a shear stress in the

X ′′Y ′′-plane.

The command line

DRILLING STIFFNESS FACTOR = <real>stiffness_factor

adds stiffness in the drilling degrees of freedom to quadrilateral shells. Drilling degrees of freedom

are rotational degrees of freedom in the direction orthogonal to the plane of the shell at each node.

The formulation used for the quadrilateral shells has no rotational stiffness in this direction. This

can lead to spurious zero-energy modes of deformation similar in nature to hourglass deformation.

This makes obtaining a solution difficult in quasistatic problems and can result in singularities

when using the full tangent preconditioner.

The stiffness_factor should be chosen as a quantity small enough to add enough stiffness

to allow the solve to be successful without unduly affecting the solution. The default value for

stiffness_factor is 0. If singularities are encountered in the solution or hourglass-like defor-

mation is observed in the drilling degrees of freedom, it is recommend to try using a small amount

of drilling stiffness. A suggested trial value for stiffness_factor is 1.0e-4.

You can indicate that elements using this section should be rigid by including the RIGID BODY

command line. The RIGID BODY command line specifies an indenter that maps to a rigid body

command block. Consult with Section 5.3.1 for a full discussion of how to create rigid bodies.

You can request that the material model that will be used with this shell section come from the

Strumento material model library by using the USE STRUMENTO line command. LAME is the

default material model library for all shell sections [9], but can be explicitly requested with the

USE LAME line command. The versions of the material models in the Strumento library will be

removed in a future release of Presto, so it is advised to switch to the LAME versions as soon as

possible.

5.2.4 Membrane Section

BEGIN MEMBRANE SECTION <string>membrane_section_name

THICKNESS = <real>mem_thickness

THICKNESS MESH VARIABLE =

<string>THICKNESS|<string>var_name

THICKNESS TIME STEP = <real>time_value

THICKNESS SCALE FACTOR = <real>thick_scale_factor(1.0)

FORMULATION = <string>MEAN_QUADRATURE|

SELECTIVE_DEVIATORIC(MEAN_QUADRATURE)

DEVIATORIC PARAMETER = <real>deviatoric_param

LOFTING FACTOR = <real>lofting_factor(0.5)

208 CHAPTER 5. ELEMENTS

RIGID BODY = <string>rigid_body_name

END [MEMBRANE SECTION <string>membrane_section_name]

The MEMBRANE SECTION command block is used to specify the properties for a membrane el-

ement. If a section defined by this command block is referenced in the parameters for a block

of four-noded elements, the elements in that block will be treated as membranes. The parameter

membrane_section_name is user-defined and is referenced by a SECTION command line in a

PARAMETERS FOR BLOCK command block.

Either a THICKNESS command line or a THICKNESS MESH VARIABLE command line must ap-

pear in the MEMBRANE SECTION command block.

If a membrane element block references a MEMBRANE SECTION command block with the com-

mand line:

THICKNESS = <real>mem_thickness

then all the membrane elements in the block will have their thickness initialized to the value mem_

thickness.

Presto can also initialize the thickness using an attribute defined on elements in the mesh file.

Meshing programs such as PATRAN and CUBIT typically set the element thickness as an at-

tribute on the elements. If the elements have one and only one attribute defined on the mesh, the

THICKNESS MESH VARIABLE command line should be specified as:

THICKNESS MESH VARIABLE = THICKNESS

which causes the thickness of the element to be initialized to the value of the attribute for that

element. If there are zero attributes or more than one attribute, the thickness variable will not be

automatically defined, and the command will fail.

The thickness may also be initialized by any other field present on the input mesh. To specify a

field other than the single-element attribute, use this form of the THICKNESS MESH VARIABLE

command line:

THICKNESS MESH VARIABLE = <string>var_name

where the string var_name is the name of the initializing field.

The input mesh may have values defined at more than one point in time. To choose the point in

time in the mesh file that the variable should be read, use the command line:

THICKNESS TIME STEP = <real>time_value

The default time point in the mesh file at which the variable is read is 0.0.

Once the thickness of a membrane element is initialized by using either the THICKNESS command

line or the THICKNESS MESH VARIABLE command line, this initial thickness value can then be

scaled by using the scale-factor command line:

THICKNESS SCALE FACTOR = <real>thick_scale_factor

If the initial thickness of the membrane is 0.15 inch, and the value for thick_scale_factor is

0.5, then the scaled thickness of the membrane will be 0.075.

5.2. ELEMENT SECTIONS 209

The FORMULATION command line specifies whether the element will use a single-point integration

rule (mean quadrature) or a selective-deviatoric integration rule:

FORMULATION = <string>MEAN_QUADRATURE|SELECTIVE_DEVIATORIC

(MEAN_QUADRATURE)

The selective-deviatoric rule is a higher-order integration scheme, which is discussed below.

If the user wishes to use the selective-deviatoric rule, the DEVIATORIC PARAMETER command

line must also appear in the MEMBRANE SECTION command block:

DEVIATORIC PARAMETER = <real>deviatoric_param

The selective-deviatoric parameter, deviatoric_param, which is valid from 0.0 to 1.0, indicates

how much of the deviatoric response should be taken from a uniform-gradient integration and

how much should be taken from a full integration of the element. A value of 0.0 will give a pure

uniform-gradient response with no hourglass control. Thus, this value is of little practical use. A

value of 1.0 will give a fully integrated deviatoric response. Although any value between 0.0 and

1.0 is perfectly valid, lower values are generally preferred.

The selective-deviatoric elements, when used with a parameter greater than 0.0, provide hourglass

control without artificial hourglass parameters.

The command line

LOFTING FACTOR = <real>lofting_factor(0.5)

allows the user to shift the location of the mid-surface of a membrane element relative to the

geometric location of the membrane element. By default, the geometric location of a membrane

element in a mesh represents the mid-surface of the membrane. If a membrane has a thickness

of 0.2 inch, the top surface of the membrane is 0.1 inch above the geometric surface defined by

the membrane element, and the bottom surface of the membrane is 0.1 inch below the geometric

surface defined by the membrane element. (The top surface of the membrane is the surface with a

positive element normal; the bottom surface of the membrane is the surface with a negative element

normal.)

Figure 5.2, which shows lofting for shells, is also applicable to membranes. For membranes,

Figure 5.2 represents an edge-on view of membrane elements with a thickness of t and the location

of the geometric plane in relation to the membrane surfaces for three different values of the lofting

factor—0.0, 0.5, and 1.0. If you want to have the geometric surface defined by the membrane

correspond to the top surface of the membrane element, set the lofting factor to 1.0. If you want

to have the geometric surface defined by the membrane correspond to the bottom surface of the

membrane element, set the lofting factor to 0.0. The geometric surface is midway between the top

and bottom surfaces for a lofting factor of 0.5. Note that the default for this factor is 0.5.

Suppose that the lofting factor is set to 1.0 and the thickness of the membrane is 0.2 inch. Let

us measure distances to the membrane surfaces (top and bottom) by measuring along the positive

element normal. The top surface of the membrane will be located at a distance of 0.0 inch from the

geometric membrane surface, and the bottom surface of the membrane will be located at a distance

of –0.2 inch from the geometric membrane surface.

210 CHAPTER 5. ELEMENTS

Both the membrane mechanics and contact use membrane lofting. See Section 7.2 for a discussion

of lofting surfaces for membranes and contact.

You can indicate that elements using this section should be rigid by including the RIGID BODY

command line. The RIGID BODY command line specifies an indenter that maps to a rigid body

command block. Consult with Section 5.3.1 for a full discussion of how to create rigid bodies.

5.2. ELEMENT SECTIONS 211

5.2.5 Beam Section

BEGIN BEAM SECTION <string>beam_section_name

SECTION = <string>ROD|TUBE|BAR|BOX|I

WIDTH = <real>section_width

WIDTH VARIABLE = <string>width_var

HEIGHT = <real>section_width

HEIGHT VARIABLE= <string>height_var

WALL THICKNESS = <real>wall_thickness

WALL THICKNESS VARIABLE = <string>wall_thickness_var

FLANGE THICKNESS = <real>flange_thickness

FLANGE THICKNESS VARIABLE = <string>flange_thickness_var

T AXIS = <real>tx <real>ty <real>tz

T AXIS VARIABLE = <string>t_axis_var

REFERENCE AXIS = <string>CENTER|RIGHT|

TOP|LEFT|BOTTOM(CENTER)

AXIS OFFSET = <real>s_offset <real>t_offset

AXIS OFFSET VARIABLE = <string>axis_offset_var

USE LAME|STRUMENTO(LAME)

END [BEAM SECTION <string>beam_section_name]

The BEAM SECTION command block is used to specify the properties for a beam element. If this

command block is referenced in an element block of three-dimensional, two-node elements, the

elements in the block will be treated as beam elements. The parameter, beam_section_name,

is user-defined and is referenced by a SECTION command line in a PARAMETERS FOR BLOCK

command block.

Five different cross sections can be specified for the beam—ROD, TUBE, BAR, BOX, and I—via

use of the SECTION command line. Each section requires a specific set of command lines for

a complete geometric description. The command lines related to section geometry are WIDTH,

HEIGHT, WALL THICKNESS, and FLANGE THICKNESS. We present a summary of the geometric

parameter command lines required for each section as a quick reference.

• If the section is ROD, the following geometry command lines are required:

WIDTH or WIDTH VARIABLE

HEIGHT or HEIGHT VARIABLE

• If the section is TUBE, the following geometry command lines are required:

WIDTH or WIDTH VARIABLE

HEIGHT or HEIGHT VARIABLE

WALL THICKNESS or WALL THICKNESS VARIABLE

• If the section is BAR, the following geometry command lines are required:

WIDTH or WIDTH VARIABLE

HEIGHT or HEIGHT VARIABLE

212 CHAPTER 5. ELEMENTS

• If the section is BOX, the following geometry command lines are required:

WIDTH or WIDTH VARIABLE

HEIGHT or HEIGHT VARIABLE

WALL THICKNESS or WALL THICKNESS VARIABLE

• If the section is I, the following geometry command lines are required:

WIDTH or WIDTH VARIABLE

HEIGHT or HEIGHT VARIABLE

WALL THICKNESS or WALL THICKNESS VARIABLE

FLANGE THICKNESS or FLANGE THICKNESS VARIABLE

Most of the sections require the T AXIS or T AXIS VARIABLE command line. If the beam has a

circular or tube cross section, and the width of the beam exactly equals the height, then the T_AXIS

need not be specified. If the T_AXIS is not specified for one of these circularly symmetric cross

sections the code will arbitrarily pick a t axis at each beam that is perpendicular to the the beam.

The REFERENCE AXIS, AXIS OFFSET, and AXIS OFFSET VARIABLE command lines are op-

tional.

Beam section parameters can be specified as constant for all beams in the section with com-

mands such as WIDTH or T AXIS. Alternatively a set of beam parameters that vary from ele-

ment to element can be specified with variants of these commands with VARIABLE at the end,

such as WIDTH VARIABLE or T AXIS VARIABLE. When the VARIABLE variants of commands

are used, the command specifies the name of an attribute field on the input mesh that contains

the parameter. For WIDTH VARIABLE, HEIGHT VARIABLE, WALL THICKNESS VARIABLE, and

FLANGE THICKNESS VARIABLE, the field should contain one entry per element. For AXIS

OFFSET VARIABLE the field should contain two entries per element. For T AXIS VARIABLE

the field should contain three entries per element.

Before presenting details about the various sections, we will discuss the local coordinate system

for the beam. (The geometric properties are related to this local coordinate system.) For the beam,

it is necessary to specify a local Cartesian coordinate system, which will be designated as r, s, and

t. The r-axis lies along the length of the beam and passes through the centroid of the beam. The

t-axis is specified by the user as a vector in the global coordinate system. The s-axis is computed

from the cross product of the t-axis and the r-axis. The t-axis is then recomputed as the cross

product of the r-axis and the s-axis to ensure that the t-axis is orthogonal to the r-axis. These local

direction vectors are all normalized, so the user-input vectors do not have to be unit vectors.

If we want the initial position of the t-axis to be parallel to the global Z-axis, then we would use

the command line:

T AXIS = 0 0 1

If we wanted the initial position of the t-axis to be parallel to a vector (0.5, 0.8660, 0) in the global

coordinate system, then we would use the command line:

T AXIS = 0.5 0.8660 0.0

5.2. ELEMENT SECTIONS 213

The t-axis will change position as the beam deforms (rotates about the r-axis). This change in

position is tracked internally by the computations for the beam element. The HEIGHT for the beam

cross section is in the direction of the t-axis, and the WIDTH of the beam cross section is in the

direction of the s-axis.

Now that the local coordinate system for the beam has been defined, we can describe the definition

of each section.

• The ROD section is a solid elliptical section. The diameter along the height is specified by

the HEIGHT command line, and the diameter along the width is specified by the WIDTH

command line.

• The TUBE section is a hollow elliptical section. The diameter along the height is specified by

the HEIGHT command line, and the diameter along the width is specified by the WIDTH com-

mand line. The wall thickness for the tube is specified by the WALL THICKNESS command

line.

• The BAR section is a solid rectangular section. The height is specified by the HEIGHT com-

mand line, and the width is specified by the WIDTH command line.

• The BOX section is a hollow rectangular section. The height is specified by the HEIGHT

command line, and the width is specified by the WIDTH command line. The wall thickness

for the box is specified by the WALL THICKNESS command line.

• The I section is the standard I-section associated with a beam. The height of the I-section

is given by the HEIGHT command line, and the width of the flanges is given by the WIDTH

command line. The thickness of the vertical member is given by the WALL THICKNESS

command line, and the thickness of the flanges is given by the FLANGE THICKNESS com-

mand line.

By default, the r-axis coincides with the geometric centerline of the beam. The geometric center-

line of the beam is defined by the location of the two nodes defining the beam connectivity. It is

possible to offset the local r-axis, s-axis, and t-axis from the geometric centerline of the beam. To

do this, one can use either the REFERENCE AXIS command line or the AXIS OFFSET command

line, but not both.

The REFERENCE AXIS command line has the options CENTER, TOP, RIGHT, BOTTOM, and LEFT.

The CENTER option is the default, which means that the r-axis coincides with the geometric cen-

terline of the beam. If the TOP option is used, the r-axis is moved in the direction of the original

t-axis by a positive distance HEIGHT/2 from the centroid so that it passes through the top of the

beam section (top being defined in the direction of the positive t-axis). If the RIGHT option is used,

the r-axis is moved in the direction of the original s-axis by a positive distance WIDTH/2 so that it

passes through the right side of the beam section (the section being viewed in the direction of the

negative r-axis). If the BOTTOM option is used, the r-axis is moved in the direction of the original

t-axis by a distance HEIGHT/2 so that it passes through the bottom of the beam section (bottom

being defined in the direction of the negative t-axis). If the LEFT option is used, the r-axis is moved

in the direction of the original s-axis by a negative distance WIDTH/2 so that it passes through the

214 CHAPTER 5. ELEMENTS

left side of the beam section (the section being viewed in the direction of the negative r-axis). For

all options, the s-axis and the t-axis remain parallel to their original positions before the translation

of the r-axis.

The AXIS OFFSET command line allows the user to offset the local coordinate system from the

geometric centerline by an arbitrary distance. The first parameter on the command line moves the

r-axis a distance s_offset from the centroid of the section along the original s-axis. The second

parameter on the command line moves the r-axis a distance t_offset from the centroid of the

section along the original t-axis. The s-axis and t-axis remain parallel to their original positions

before the translation of the r-axis.

Strains and stresses are computed at the midpoint of the beam. The integration of the stresses over

the cross section at the midpoint is used to compute the internal forces in the beam. Each beam

section has its own integration scheme. The integration scheme for each of the sections is shown

in Figure 5.5 through Figure 5.7. The numbers in these figures show the relative location of the

integration points in regard to the centroid of the section and the s-axis and the t-axis.

Figure 5.5: Integration points for rod and tube

At each integration point, there is an axial strain (with a corresponding axial stress) and an in-

plane (in the plane of the cross section) shear strain (with a corresponding shear stress). The user

can output this stress and strain information by using the RESULTS OUTPUT commands described

in Chapter 8. The registered variable that will let users access the strain at the beam integration

points is beam_strain_inc, and the registered variable that will let users access the stress at the

beam integration points is stress. If the user requests output for the beam strain, 32 values are

given for the strain. The first value (designated in the output as 01) is the axial strain at the first

integration point, the second value (designated in the output as 02) is the shear strain at the first

integration point, etc. The odd values for the strain output (01, 03, 05, etc.) are the axial strains at

the integration points. The even values of the strain output (02, 04, 06, etc.) are the shear strains

at the integration points. For the case where there are only nine integration points (the rod), only

5.2. ELEMENT SECTIONS 215

Figure 5.6: Integration points for bar and box.

Figure 5.7: Integration points for I-section.

the first 18 values for strain have any meaning for the section (the values 19 through 32 are zero).

For the I-section, only the first 30 of the strain values have meaning since this section only has 15

integration points. For all other sections, all 32 values have meaning. Output of stress is slightly

different than the output of strain because the stress is stored as a symmetric tensor that contains

six components, although four of these components are never used. The axial stress at the first

integration point is designated by stress_xx_01 and the shear stress at the first integration point

is stress_xy_01. The other four components, stress_yy_01, stress_zz_01, stress_yz_

01 and stress_xz_01, are unused and are set to zero. The stresses at other integration points are

named stress_xx_NN and stress_xy_NN, where NN is a number from 01 to 16.

216 CHAPTER 5. ELEMENTS

As as alternative for the stress output, you may use the registered variables beam_stress_axial

and beam_stress_shear. The variable beam_stress_axial contains only the axial stresses.

The first value associated with beam_stress_axial (designated as 01) corresponds to the axial

stress at integration point 1, the second value associated with beam_stress_axial (designated as

02) corresponds to the axial stress at integration point 2, and so on. The variable beam_stress_

shear contains only shear stresses. The correlation between numbering the values for beam_

stress_shear (01, 02, . . .) and the integration points is the same as for beam_stress_axial.

It is possible to access mean values for the internal forces at the midpoint of the beam. The axial

force at the midpoint of the beam is obtained by referencing the registered variable beam_axial_

force. The transverse forces at the midpoint of the beam in the s-direction and the t-direction

are obtained by referencing beam_transverse_force_s and beam_transverse_force_t,

respectively. The torsion at the midpoint of the beam (the moment about the r-axis), is obtained

by referencing beam_moment_r. The moments about the s-axis and the t-axis are obtained by

referencing beam_moment_s and beam_moment_t, respectively.

You can request that the material model that will be used with this beam section come from the

Strumento material model library with the USE STRUMENTO line command. LAME is the default

material model library for all beam sections [9] but can be explicitly requested by using the USE

LAME line command. The versions of the material models in the Strumento library will be removed

in a future release of Presto, so it is advised to switch to the LAME versions as soon as possible.

5.2.6 Truss Section

BEGIN TRUSS SECTION <string>truss_section_name

AREA = <real>cross_sectional_area

INITIAL LOAD = <real>initial_load

PERIOD = <real>period

RIGID BODY = <string>rigid_body_name

USE LAME|STRUMENTO(LAME)

END [TRUSS SECTION <string>truss_section_name]

The TRUSS SECTION command block is used to specify the properties for a truss element. If this

command block is referenced in an element block of three-dimensional, two-node elements, the

elements in the block will be treated as truss elements. The parameter, truss_section_name,

is user-defined and is referenced by a SECTION command line in a PARAMETERS FOR BLOCK

command block.

The cross-sectional area for truss elements is specified by the AREA command line. The value

cross_sectional_area is the cross-sectional area of the truss members in the element block.

The truss can be given some initial load over some given time period. The magnitude of the load is

specified by the INITIAL LOAD command line. If the load is compressive, the sign on the value

initial_load should be negative; if the load is tensile, the sign on the value initial_value

should be positive. The period is specified by the PERIOD command line.

The initial load is applied over some period by specifying the axial strain rate in the truss, ε̇ , over

some period p. At some given time t, the strain rate is

5.2. ELEMENT SECTIONS 217

ε̇ =
ap

2

[

1− cos
(

πt
/

p
)]

, (5.1)

where

a =
2Fi

EAp
. (5.2)

In Equation (5.2), Fi is the initial load, E is the modulus of elasticity for the truss, and A is the area

of the truss. Over the period p, the total strain increment generates the desired initial load in the

truss.

During the initial load period, the time increments should be reasonably small so that the integra-

tion of ε̇ over the period is accurate. The period should be set long enough so that if the model was

held in a steady state after time p, there would only be a small amount of oscillation in the load in

the truss.

When doing an analysis, you may not want to activate certain boundary conditions until after

the prestressing is done. During the prestressing, time-independent boundary conditions such as

fixed displacement will most likely be turned on. Time-dependent boundary conditions such as

prescribed acceleration or prescribed force will most likely be activated after the prestressing is

complete.

You can indicate that elements using this section should be rigid by including the RIGID BODY

command line. The RIGID BODY command line specifies an indenter that maps to a rigid body

command block. Consult with Section 5.3.1 for a full discussion of how to create rigid bodies.

It should be noted that the axial stress, which is the only stress component for a truss element, is

output as a symmetric tensor with six components to be compatible with the notion of volumetric

stress. Because of this, for every truss element, six values of stress are stored and output, but

only the fist value is ever used. The axial stress is therefore output as stress_xx and the other

five stress components, stress_yy, stress_zz, stress_xy, stress_yz, stress_zx are all

unused and set to zero.

You can request that the material model that will be used with this truss section come from the

Strumento material model library with the USE STRUMENTO line command. LAME is the default

material model library for all truss sections [9] but can be explicitly requested with the USE LAME

line command. The versions of the material models in the Strumento library will be removed in a

future release of Presto, so it is advised to switch to the LAME versions as soon as possible.

5.2.7 Spring Section

BEGIN SPRING SECTION <string>spring_section_name

FORCE STRAIN FUNCTION = <string>force_strain_function

DEFAULT STIFFNESS <real>default_stiffness

PRELOAD = <real>preload_value

PRELOAD DURATION = <real>preload_duration

RESET INITIAL LENGTH AFTER PRELOAD = <string>NO|YES

218 CHAPTER 5. ELEMENTS

MASS PER UNIT LENGTH = <real>mass_per_unit_length

END [SPRING SECTION <string>spring_section_name]

The SPRING SECTION command block is used to specify the properties for a spring element. If

this command block is referenced in an element block of three-dimensional, two node elements, the

elements in the block will be treated as spring elements. The parameter, spring_section_name,

is user-defined and is referenced by a SECTION command line in a PARAMETERS FOR BLOCK

command block.

The spring behavior is governed by the force-engineering strain function which is specified by the

FORCE STRAIN FUNCTION command line. The force generated by the spring element is based

on the evaluation of the user specified force_strain_function, which has units of F vs dL/L0

with the current engineering strain of the spring, dL/L0. This allows the force-strain function to

be length independent.

The DEFAULT STIFFNESS command block specifies the spring stiffness used during the first time

step and during preload. In all other situations the spring stiffness is based on the slope of the force-

strain function evaluated at the previous timestep and the current timestep. The unit of default_

stiffness is force.

To specify a preload on the spring both the PRELOAD and PRELOAD DURATION command line

must be specified. The PRELOAD command line specifies the magnitude of the preload force,

while the PRELOAD DURATION command line specifies how long the preload application should

take, in seconds.

An optional preload input, RESET INITIAL LENGTH AFTER PRELOAD, is used when the user

would like the initial length of the spring to reset to the displaced length after the preload has

occurred. If this command line is not specified, or is set to NO, the initial length of the spring is the

undeformed length as calculated from the input mesh.

Springs can optionally have mass through the MASS PER UNIT LENGTH command line. However,

this input parameter is required if the spring elements are not individual two-node elements, but

rather a string of spring elements, where the inter-spring nodes are only connected to the two

adjacent springs. It should be noted, if the mass per unit length is not specified there is no critical

timestep calculated for the spring elements.

5.2.8 Damper Section

BEGIN DAMPER SECTION <string>damper_section_name

AREA = <real>damper_cross_sectional_area

END [DAMPER SECTION <string>damper_section_name]

The DAMPER SECTION command block is used to specify the properties for a damper element. If

this command block is referenced in an element block of three-dimensional, two-node elements,

the elements in the block will be treated as damper elements. The parameter, damper_section_

name, is user-defined and is referenced by a SECTION command line in a PARAMETERS FOR

BLOCK command block.

5.2. ELEMENT SECTIONS 219

The cross-sectional area for damper elements is specified by the DAMPER AREA command line.

The value damper_cross_sectional_area is the cross-sectional area of the dampers in the

element block.

The damper area is used only to generate mass associated with the damper element. The mass

is the density for the damper element multiplied by the original volume of the element (original

length multiplied by the damper area).

The force generated by the damper element depends on the relative velocity along the current

direction vector for the damper element. If n is a unit normal pointing in the direction from node

1 to node 2, if v1 and v2 are the velocity vectors at nodes 1 and 2, respectively, then the force

generated by the damper element is

Fd = ηn · (v2 − v1) , (5.3)

where η is the damping parameter. Currently, the damping parameter must be specified by using

an elastic material model for the damper element. The value for Young’s modulus in the elastic

material model is used for the damping parameter η .

5.2.9 Point Mass Section

BEGIN POINT MASS SECTION <string>pointmass_section_name

VOLUME = <real>volume

MASS = <real>mass

IXX = <real>Ixx

IYY = <real>Iyy

IZZ = <real>Izz

IXY = <real>Ixy

IXZ = <real>Ixz

IYZ = <real>Iyz

RIGID BODY = <string>rigid_body_name

MASS VARIABLE = <string>mass_variable_name

INERTIA VARIABLE = <string>inertia_variable_name

OFFSET VARIABLE = <string>offset_variable_name

ATTRIBUTES VARIABLE NAME = <string>attrib_variable_name

END [POINT MASS SECTION <string>pointmass_section_name]

A point mass element is simply a mass at a node, which can be a convenient modeling tool in

certain instances. The user can create an element block with one or more point masses. A point

mass is a sphere element attached to a single node. A point mass will have its mass added to the

mass at the connected node. (Other mass at the node will be derived from mass due to elements

attached to the node.) The mass at a node due to a point mass is treated like any other mass

at a node derived from an element. The mass due to point mass will be included in body force

calculations and kinetic energy calculations, for example.

Point masses are a convenient modeling tool to be used in conjunction with rigid bodies. An

element block including one or more point masses can be included like any other element block in

220 CHAPTER 5. ELEMENTS

a collection of element blocks used to define a rigid body. The element block of point masses can

be used to adjust the total mass and inertia properties for the rigid body. (The point mass element

does not have to be used only in conjunction with rigid bodies. One can place a point mass at a

node associated with solid or structural elements.)

If you have an element block in which the connectivity for each element is only one node, then

you may use this element block as a collection of point masses. This command block would have

the following form:

BEGIN PARAMETERS FOR BLOCK <string>block_id

MATERIAL = <string>material_name

SOLID MECHANICS USE MODEL <string> material_model_name

SECTION = <string>point_mass_section_name

END PARAMETERS FOR BLOCK <string>block_id

The element block associated with the point mass must reference a material command block just

like any other element block. If the point mass section specifies a volume, then the product of

the density specified in the material block and the volume specified in the section block is used to

calculate the element mass.

The VOLUME command specifies the volume of a point mass element. The mass of the element is

then found by multiplying that volume by the material model density.

The MASS command explicitly specifies the mass.

The IXX, IYY, IZZ, IXY, IXZ, IYZ commands are used to explicitly define the symmetric inertia

tensor entries for the point mass. Note that currently, the trace of the inertial tensor is added to the

nodal rotational mass and the rest of the inertia tensor entries are ignored.

The OFFSET is used to define the offset of the mass with respect to the connected node. Currently

the offset effects only the rotational properties of the point mass. The rotational mass of the point

mass is increased by mass times offset distance squared.

The MASS VARIABLE specifies that the mass of the point mass elements is to be read from the

input mesh file from the variable with the specified name (use the name ”attribute” to read the

mass from the mesh block attributes.)

The INERTIA VARIABLE specifies that the inertia tensor of the point mass elements is to be read

from the input mesh file from the variable with the specified name (use the name ”attribute” to

read the inertia tensor from the mesh block attributes.) When this command is used, the mesh file

variable should contain six entries per element, ordered as follows: Ixx, Iyy, Izz, Ixy, Ixy, Iyz.

The OFFSET VARIABLE specifies that the offset vector of the point mass elements is to be read

from the input mesh file from the variable with the specified name (use the name ”attribute” to

read the offset vector from the mesh block attributes.) When this command is used, the mesh file

variable should contain three entries per element, ordered as follows: Offset_x, Offset_y, Offset_z.

The ATTRIBUTES VARIABLE NAME specifies that all properties of the point mass element are to

be read from the input mesh file of the variable with the specified name (use the name ”attribute”

to read from the mesh block attributes.) When this command is used, the mesh file variable should

5.2. ELEMENT SECTIONS 221

contain ten entries per element, ordered as follows: Mass, Ixx, Iyy, Izz, Ixy, Ixy, Iyz, Offset_x,

Offset_y, Offset_z.

Multiple ways are provided to specify the raw attributes of mass, inertia and offset for the point

mass element. The user must be careful to only use one of these ways to define each property.

Using multiple ways to define the mass will result in errors or warnings because of ambiguities.

If you have access to the SEACAS codes from Sandia National Laboratories, you may use the

codes in this library to generate element blocks with point mass elements. See Reference 11 for

an overview of the SEACAS codes. By using various SEACAS codes, you can easily generate

an element block with one or more point masses. For each point mass in the element block, you

should create an eight-node hexahedral element that is centered at the point where you want the

point mass located. The hexahedron can have arbitrary dimensions, but it is best to work with

a unit cube. Suppose you wanted a point mass at (13.5, 27.0, 3.1415). You could create a unit

hexahedron (1 by 1 by 1) centered on (13.5, 27.0, 3.1415). The SEACAS program SPHGEN3D

will convert the hexahedron to a zero-dimensional element in three-dimensional space located at

the center of the hexahedron. For our specific example, the program SPHGEN3D would create a

zero-dimensional element, basically an element consisting of a single node, at (13.5, 27.0, 3.1415).

You can indicate that elements using this section should be rigid by including the RIGID BODY

command line. The RIGID BODY command line specifies an indenter that maps to a rigid body

command block. Consult with Section 5.3.1 for a full discussion of how to create rigid bodies.

5.2.10 SPH Section

BEGIN SPH SECTION <string>sph_section_name

RADIUS MESH VARIABLE = <string>var_name|<string>attribute|

SPHERE INITIAL RADIUS = <real>rad

RADIUS MESH VARIABLE TIME STEP = <string>time

PROBLEM DIMENSION = <integer>1|2|3(3)

CONSTANT SPHERE RADIUS

FINAL RADIUS MULTIPLICATION FACTOR = <real>factor(1.0)

FORMULATION = <string>GPA|MASS_PARTICLE|SPH(SPH)

MONAGHAN EPSILON = <real>monaghan_epsilon(0.0)

MONAGHAN N = <real>monaghan_n(0.0)

SPH ALPHAQ PARAMETER = <real>alpha(1.0)

SPH BETAQ PARAMETER = <real>beta(2.0)

DENSITY FORMULATION = <string>MATERIAL|KERNEL(MATERIAL)

USE LAME|STRUMENTO(LAME)

END [SPH SECTION <string>sph_section_name]

SPH (smoothed particle hydrodynamics) is useful for modeling fluids or for modeling materials

that undergo extremely large distortions. One must be careful when using SPH for modeling. SPH

tends to exhibit both accuracy and stability problems, particularly in tension. An SPH particle in-

teracts with other nearest-neighbor SPH particles based on radius properties of all the elements in-

volved; SPH particles react with other elements, such as tetrahedra, hexahedra, and shells, through

contact. You should consult Reference 10 regarding the theoretical background for SPH.

222 CHAPTER 5. ELEMENTS

You can define contact interaction between the particles in an SPH element block and other element

types. In order to do this, you must use the CONTACT NODE SET option described in Section 7.2.4.

All of the particles in the SPH element block must be included in a node set if you use the CONTACT

NODE SET option.

The SPH section should only be associated with elements with the SPHERE topology. Sphere

elements are point elements that are connected to only a single node.

All of the particles contained in an SPH element block must be given some initial radius. There

are two options for setting the initial radius for each particle. First, each particle can be given the

same radius. To set the radius for each particle in an element block to the same value, use the

SPHERE INITIAL RADIUS command line. The parameter rad on this command line sets the

radius for all the SPH particles in the element block.

Alternatively, the radius for each particle can be read from a mesh file. The radii can be read from

a variable on the mesh file from attributes associated with the element block. If you want to read

some variable from the mesh file for the radii, then you would use:

RADIUS MESH VARIABLE = sph_radius

where sph_radius is the variable name on the mesh file. If you want to use the variable associated

with a specific time on the mesh file, you should use the RADIUS MESH VARIABLE TIME STEP

command line to select the specific time. If you want to read the attributes associated with the

particles, then you should insert the command line

RADIUS MESH VARIABLE = attribute

(as shown) into the SPH SECTION command block. Pronto3d [1] only offers the attribute option.

To compare Presto and Pronto3d results, you should use the attribute option.

If the attribute option is used, each particle should have two attributes defined per element. The first

attribute is the particle radius, and the second attribute is the particle volume. The most common

way to generate an SPH mesh is to first generate a solid element mesh and then use the utility

’sphgen3d’ to convert the solid elements into sphere elements. Sphgen3d will convert each solid

element into a sphere and place it at the source element centroid. In the output mesh file generated

by sphgen3d The radius attribute of the element blocks will be proportional to the source element

size and the volume attribute will be the volume of the source element.

The FINAL RADIUS MULTIPLICATION FACTOR command may be used to increase or decrease

the initial particle radii. The factor specified will scale the particle radii input with either a constant

or a mesh file attribute.

After the radii are initialized, you may determine whether the radii are to remain constant or are to

change throughout the analysis. The CONSTANT SPHERE RADIUS command line is an optional

command line that prevents the sphere radius from changing over the course of the calculation. By

default, the sphere radii will expand or contract based on the changing density in the elements to

satisfy the relation that element mass (a constant) equals element volume times element density. If

the CONSTANT SPHERE RADIUS command line appears, then the radii for all particles will remain

constant.

5.2. ELEMENT SECTIONS 223

The DENSITY FORMULATION command controls the method used to update the density, and thus

particle radii, during the analysis. The default MATERIAL option uses the material density and

nodal mass to compute a volume for each particle at a given time. The radius is then computed as

the cube root of that volume. The alternative KERNEL option computes the current density for each

particle using the mass of that particle and the SPH kernel density function. The KERNEL option

may be necessary when large expansions of particles are expected (such as when modeling large

density changes in gases). The MATERIAL option generally changes particle densities, and thus

radii, less than the KERNEL option, so is appropriate for analyses that do not have large density

fluctuations.

You can request that the material model that will be used with this SPH section come from the

Strumento material model library with the USE STRUMENTO line command. LAME is the default

material model library for all sph sections [9] but can be explicitly requested by using the USE

LAME line command. The versions of the material models in the Strumento library will be removed

in a future release of Presto, so it is advised to switch to the LAME versions as soon as possible.

An analysis problem using SPH may be inherently one-, two-, or three-dimensional. You may

indicate whether or not there is some inherent dimensionality in the problem by using the

PROBLEM DIMENSION command line. The possible value for this command line is 1 (one-

dimensional), 2 (two-dimensional), or 3 (three-dimensional). The default value is 3 for three-

dimensional. The internal SPH kernel functions are modified depending on the value set on

the PROBLEM DIMENSION command line. If, for example, your problem is inherently two-

dimensional in nature, you may get more accurate results by specifying the dimension for your

problem as 2 (as opposed to 1 or 3).

The FORMULATION command defines the SPH formulation to use, and has the following options:

- SPH, general smoothed particle hydrodynamics.

- GPA, Generalized particle algorithm (See separate GPA documentation.)

- MASS_PARTICLE, Particles only have mass, and no stiffness. Particles do not interact with

each other in any way.

The MONAGHAN EPSILON and MONAGHAN N commands set the Monaghan viscosity coefficients.

Monaghan viscosity may allow the SPH algorithm to behave better, particularly in tension. Stan-

dard values to use are 0.2 for epsilon and 4 for n. See (Reference 14) for more information on the

usage of these parameters.

The SPH ALPHAQ PARAMETER and SPH BETAQ PARAMETER commands control the sph viscos-

ity terms. Larger values lead to more viscosity. Alpha is associated with a viscosity parameter

that is proportional to the dilatational modulus of the material. Betaq is associated with a viscosity

parameter that is proportional to the change in material density over a time step.

Utility Commands. In addition to the SPH-related command lines just described (which appear in

the SPH SECTION command block) there are two other SPH-related command lines:

SPH SYMMETRY PLANE <string>+X|+Y|+Z|-X|-Y|-Z

224 CHAPTER 5. ELEMENTS

<real>position_on_axis(0.0)

SPH DECOUPLE STRAINS: <string>material1 <string>material2

If either one or both of these command lines are used, they should be placed directly into the

SIERRA scope. (All other SPH-related command lines must be nested within the SPH SECTION

command block; the SPH SECTION command block, like all other section command blocks, is in

the SIERRA scope.) The symmetry conditions are applied to all SPH element blocks.

The SPH SYMMETRY PLANE command line may be used to reduce model sizes by specifying

symmetry planes and modeling only a portion of the model. Due to the nonlocal nature of SPH

element integration, symmetry planes cannot be defined with boundary conditions alone; these

planes must be explicitly defined. A plane is defined by an outward normal vector aligned with

one of the axes (+X, +Y, +Z, -X, -Y, -Z) and some point on the axis, which represents a point in

the plane. Suppose for example, the outward normal to the plane of symmetry is in the negative

Y -direction (-Y) and the plane of symmetry passes through the y-axis at y = +2.56. Then the

definition for the symmetry plane would be:

SPH SYMMETRY PLANE -Y +2.56

The SPH DECOUPLE STRAINS command line prevents two dissimilar materials from directly in-

teracting. Generally, the material properties at a particle are the average of the material properties

from nearby particles. If particles with very dissimilar material properties are interacting, this inter-

action can create problems. The SPH DECOUPLE STRAINS command line ensures that particles

with very dissimilar material properties do not directly interact by material-property averaging, but

instead just interact with a contact-like interaction. The two material types that are not to interact

are specified by the parameters material1 and material2. These parameters will appear as

material names on a PROPERTY SPECIFICATION FOR MATERIAL command block.

Display. For purposes of visualizing the element stresses, it may be necessary to copy these ele-

ment variables into nodal variables. This can easily be done by defining a USER VARIABLE com-

mand block (Section 9.2.4) in conjunction with a USER OUTPUT command block (Section 8.2.2).

Once the nodal variable is defined, it can be output in a RESULTS OUTPUT command block (Sec-

tion 8.2.1). An example is provided below. The SPH element blocks for the problem are element

blocks 20, 21, and 22. All other element blocks are non-SPH elements.

- In the SIERRA scope:

BEGIN USER VARIABLE nodal_stress

TYPE = NODE SYM_TENSOR LENGTH = 1

END

- In the region scope:

BEGIN USER OUTPUT

BLOCK = block_20 block_21 block_22

COPY ELEMENT VARIABLE stress TO NODAL VARIABLE

5.2. ELEMENT SECTIONS 225

nodal_stress

END

BEGIN RESULTS OUTPUT output_presto

DATABASE NAME = sph.e

DATABASE TYPE = exodusII

AT TIME 0.0 INCREMENT = 1.0e-04

NODAL VARIABLES = nodal_stress

END RESULTS OUTPUT output_presto

5.2.11 Superelement Section

BEGIN SUPERELEMENT SECTION <string>section_name

BEGIN MAP

<integer>node_index_1 <integer>component_index_1

<integer>node_index_2 <integer>component_index_2

...

<integer>node_index_n <integer>component_index_n

END

BEGIN STIFFNESS MATRIX

<real>k_1_1 <real>k_1_2 ... <real>k_1_n

<real>k_2_1 <real>k_2_2 ... <real>k_2_n

...

<real>k_n_1 <real>k_n_2 ... <real>k_n_n

END

BEGIN DAMPING MATRIX

<real>c_1_1 <real>c_1_2 ... <real>c_1_n

<real>c_2_1 <real>c_2_2 ... <real>c_2_n

...

<real>c_n_1 <real>c_n_2 ... <real>c_n_n

END

BEGIN MASS MATRIX

<real>m_1_1 <real>m_1_2 ... <real>m_1_n

<real>m_2_1 <real>m_2_2 ... <real>m_2_n

...

<real>m_n_1 <real>m_n_2 ... <real>m_n_n

END

FILE = <string>netcdf_file_name

END [SUPERELEMENT SECTION <string>section_name]

A superelement allows definition of an element with a user defined stiffness, damping, and mass

matrix. The superelement stiffness is linear and remains constant in time.

The superelement must be represented by an element in the mesh file. A block of elements used to

define a superelement must contain exactly one finite element. The finite element that represents

the superelement may have any topology. The topology may either be a valid geometric topology

226 CHAPTER 5. ELEMENTS

(hex, rod, tet, etc.) or may be be an arbitrary topology as defined in the input mesh file. The nodes

of a superelement can be shared with other elements, or can be attached only to the superelement.

In addition, the superelement can have additional internal degrees of freedom that are not present

in the mesh file. If output values are desired on a node, that node must be present in the input mesh

file.

Superelement nodes have all the same variables as regular nodes (mass, displacement, velocity,

etc.) Only the element time step is defined as an output variable on the superelement itself.

5.2.11.1 Input Commands

BEGIN MAP

The MAP command block defines the mapping from nodal degrees of freedom to the local degrees

of freedom in the stiffness and mass matrix for the superelement. The map should contain N pairs

of integers, where N is the number of nodes in the superelement. The first integer of each pair is

the index of the node in the superelement in the range 0 . . .N. The second integer is the component

in the range 0 . . .6.

A node index of 0 is a special value and marks the degree of freedom that is internal to the superele-

ment. A superelement may have any number of internal degrees of freedom. Internal degrees of

freedom are created internal to the code do not correspond to any nodes actually present in the

mesh. A node index greater than zero represents that node index in the element. For example if

the superelement was represented by an eight node hex element then node indexes could vary from

one to eight and would match the first through eighth nodes in the hex element.

If an internal degree of freedom is used, the component index should be set to 0 along with the node

index. If a regular node is used, components 1, 2, and 3 correspond to the X, Y, and Z translational

degrees of freedom. Components 4, 5, and 6 correspond to the X, Y, and Z rotational degrees of

freedom.

The following is an example superelement definition for a three degree of freedom truss element

lying along the x-axis. The superelement is defined in the mesh file using a two node rod element.

Degrees of freedom 1 and 3 are mapped to x degrees of freedom of the end nodes of the rod

element. Degree of freedom 2 is internal to the superelement.

BEGIN SUPERELEMENT SECTION truss_x3

BEGIN MAP

1 1

0 0

2 1

END

BEGIN STIFFNESS MATRIX

100 -100 0

-100 200 -100

0 -100 100

END

BEGIN DAMPING MATRIX

5.2. ELEMENT SECTIONS 227

1 -1 0

-1 2 -1

0 -1 1

END

BEGIN MASS MATRIX

0.25 0.00 0.00

0.00 0.50 0.00

0.00 0.00 0.025

END

END [SUPERELEMENT SECTION <string>section_name]

BEGIN STIFFNESS MATRIX

The STIFFNESS MATRIX command block defines the NxN stiffness matrix for the superelement.

The number of rows and columns in the stiffness matrix must be the same as the number of rows

in the MAP command block. The stiffness matrix should be symmetric. If the input matrix is not

symmetric, it will be made symmetric by Ksym = 0.5 ∗ (Kinput + KT
input). To guarantee stability

for explicit dynamics and solution convergence for implicit statics/dynamics, the stiffness matrix

should be positive definite.

BEGIN DAMPING MATRIX

The DAMPING MATRIX command block defines the NxN damping matrix for the superelement.

The number of rows and columns in the damping matrix must be the same as the number of rows

in the MAP command block. The damping matrix should generally be symmetric. This command

block is optional. If a damping matrix is not defined, no damping will be used by default.

BEGIN MASS MATRIX

The MASS MATRIX command block defines the NxN mass matrix for the superelement. The mass

matrix must have the same dimensions as the stiffness matrix. The mass matrix need not be sym-

metric, however to guarantee stability for explicit dynamics and solution convergence for implicit

statics/dynamics the mass matrix should be positive definite.

FILE = <string>netcdf_file_name

As an alternative to defining stiffness and mass matrices in the input file, the stiffness and mass

matrices may be imported from a NetCDF file. External codes (such as Salinas) are able to

compress larger models into superelements and output the matrices in the NetCDF format. The

netcdf_file_name defines the path to the file that contains the mass, damping, and stiffness

matrix definitions. All superelement matrices should be defined either in the input deck or in the

NetCDF file. The damping matrix is optional, so if it is not defined in the NetCDF file, no damping

will be used by default. The connectivity map needs to be specified in the input file in either case.

In the netcdf file the stiffness matrix must be named Ḱr,́ the mass matrix Ḿr,́ and the damping

matrix Ćr’.́

228 CHAPTER 5. ELEMENTS

Known Issue: Superelements are not compatible with several modeling capabil-

ities. They cannot be used with element death. They cannot be used with node-

based, power method, or Lanczos critical time step estimation methods. They are

also not compatible with some preconditioners (such as FETI) for implicit solu-

tions.

5.3. ELEMENT-LIKE FUNCTIONALITY 229

5.3 Element-like Functionality

This section describes functionality in Presto that resembles the previously described elements

to some extent. This functionality is not really implemented using the element structure in

Presto, however. The functionality described in this section—rigid bodies and the torsional spring

mechanism—is specified through command blocks that appear in the SIERRA scope and Presto

region, respectively.

5.3.1 Rigid Body

BEGIN RIGID BODY <string>rb_name

MASS = <real>mass

MASS LOCATION = <real>CGx <real>CGy <real>CGz

INERTIA = <real>Ixx <real>Iyy <real>Izz <real>Ixy

<real>Iyz <real>Izx

POINT INERTIA = <real>Ixx <real>Iyy <real>Izz <real>Ixy

<real>Iyz <real>Izx

MAGNITUDE = <real>magnitude_of_velocity

DIRECTION = <string>direction_definition

ANGULAR VELOCITY = <real>omega

CYLINDRICAL AXIS = <string>axis_definition

INCLUDE NODES IN <string>surface_name

[if <string>field_name <|<=|=|>=|> <real>value]

END [RIGID BODY <string>rb_name]

A rigid body can consist of any combination of elements—solid elements, structural elements,

and point masses—except SPH elements. All nodes associated with a rigid body maintain their

same relative position to each other as determined at time 0 when there is no deformation of the

body. This means that the elements associated with the rigid body do not deform over time. These

elements are free to move (rotate and translate) through space, but they cannot deform. Element

blocks that are part of a rigid body can adjoin deformable element blocks. For any rigid body

consisting of several element blocks, the element blocks defining the rigid body do not have to be

contiguous. You may have more than one rigid body in a model.

Presto creates a new node for each rigid body in the analysis. The new nodes are true nodes in

that they are associated with solution fields such as displacement, velocity, and rotational velocity.

These nodes will appear in a results file along with other nodes. The global node number given

to the new nodes is simply the total number of nodes in the mesh plus one, repeated for each new

rigid body node.

If you construct a model where all the element blocks compose a rigid body, you will need to set

an initial time in the TIME CONTROL command block (Section 3.1.1). Include the line:

INITIAL TIME STEP = 1.0e-6

If an element block is declared to be a part of a rigid body, the internal force calculations are not

called for the elements in that block. Part of the internal force calculation for an element is an

230 CHAPTER 5. ELEMENTS

element time-step estimate. If all elements are in a rigid body, the element time-step computations

are not performed, and there is no estimate for a global time step. You must supply an initial time

step only if all the elements are part of a rigid body. If some elements are in a rigid body, but

others are not, then you will automatically obtain a valid time step estimate for the problem. If you

must set an initial time step for your problem because all elements are in a rigid body, then you

should not override the default value of 1.0 for the time step scale factor (see Section 3.1.1). The

time step you set for this particular case (all elements in a rigid body) must remain constant. The

value of 1.0×10−6 should work well for most problems. Do not use an initial time step larger than

1.0×10−6 as this could cause loss of accuracy in the solution of the problem.

To construct the rigid body, you will need to use the above command block, which appears in the

SIERRA scope, plus the RIGID BODY command line that appears in the various SECTION com-

mand blocks described in this chapter. Suppose, for example, rigidbody_1 consists of element

blocks 100, 110, and 280. The PARAMETERS FOR BLOCK command blocks for element blocks

100, 110, and 280 must all contain a SECTION command line. In each case, the Section referred to

must contain a line such as:

RIGID BODY = rigidbody_1

Once you have declared an element block or some collection of element blocks to be a rigid body

and created a rigid body name (through the Section chosen), that rigid body name must appear

as the name in a RIGID BODY command block. In our example, we must have a RIGID BODY

command block with the value for rb_name set to rigidbody_1. Therefore, at a minimum, you

must have a command block in the SIERRA scope with the form

BEGIN RIGID BODY rigidbody_1

END RIGID BODY rigidbody_1

for our example.

The RIGID BODY command block has several different command lines, composing essentially

four groups of commands. One group consists of the MASS, MASS LOCATION, POINT INERTIA,

and INERTIA command lines, a second group consists of the paired MAGNITUDE and DIRECTION

command lines, a third group consists of the paired ANGULAR VELOCITY and CYLINDRICAL

AXIS command lines, and a final group consists of the INCLUDE NODES IN command line. Each

of the groups is optional. You can combine any of these groups in the command block, or you

could have a command block that contains none of the command lines, whereupon you would only

supply the value for rb_name in the block.

Input to the MASS command line consists of a single real number that defines the total mass of the

rigid body. If this line command is not present, the mass of the rigid body will be computed using

the elements in the rigid body and their densities.

The MASS LOCATION command line requires three real numbers. Using this line command will

specify the center of mass for the rigid body. If this line command is not present, the center of

mass will be calculated.

Input to the INERTIA command line also consists of six real numbers. If present, this command

line will set the inertia for the rigid body. If it is not present, moments and products of inertia are

computed for the rigid body based on the location of the center of mass of the rigid body and the

5.3. ELEMENT-LIKE FUNCTIONALITY 231

element masses for all the elements associated with the rigid body.

Input to the POINT INERTIA command line consists of six real numbers that define moments

(Ixx, Iyy, Izz) and products (Ixy, Iyx, Izx) of inertia to be added to the inertia tensor of the

rigid body. This modified inertia tensor (rather than the inertia tensor based solely on element

mass) is then used to calculate the motion of the rigid body.

If the rigid body has an initial velocity in some direction, this should be specified with the

MAGNITUDE and DIRECTION command lines. The MAGNITUDE command line gives the magnitude

of the initial velocity applied to the center of mass of the rigid body, and the DIRECTION command

line gives a defined direction for the initial velocity for the center of mass. All blocks associated

with the rigid body should be given the same initial velocity by using an INITIAL VELOCITY

command block. (The information in the RIGID BODY command block is only applied to the

center of mass of the rigid body.)

If the rigid body has an initial rotation about some axis, this should be specified with the ANGULAR

VELOCITY and CYLINDRICAL AXIS command lines. The ANGULAR VELOCITY command line

gives the initial velocity of the center of mass of the rigid body due to an angular velocity about

some defined axis given on the CYLINDRICAL AXIS command line. All blocks associated with

the rigid body should be given the same initial angular velocity by using an INITIAL VELOCITY

command block. (The information in the RIGID BODY command block is only applied to the

center of mass of the rigid body.)

The INCLUDE NODES IN command line allows a rigid body to include nodes of a surface or block

of the mesh. Optionally, the nodes in the surface or block will be included in the rigid body only

if the value of a field on the nodes meets a given criterion. For example, consider the rigid body

block below.

begin rigid body rigid1

include nodes in block_1

include nodes in surface_3 if height = -1.0

end

Rigid body rigid1 will include all nodes in block_1 and those nodes on surface_3 whose value of

the height field are equal to -1.0. The optional field (height, in this case) must be a field known

in the analysis. This field may therefore be one read in from restart, be a native field initialized

upon startup, or be an initialized user-defined field. Since the entire set of nodes in block_1 will

be in the rigid body, block_1 will not compute internal forcesor contribute to the critical time step

calculation.

Presto automatically outputs quantities such as displacement for the center of mass of the rigid

body. The name assigned to a rigid body will be used to construct registered variable names that

give the quantities. This lets you identify the output associated with a rigid body based on the

name you assigned for the rigid body.

Immediately before the results file is written, the accelerations for nodes associated with a rigid

body are updated to reflect the accelerations due to the rigid-body constraints. This ensures that

the accelerations sent to the results output are correct for a given time.

232 CHAPTER 5. ELEMENTS

In summary, if you use a rigid body in an analysis, you will do one or more of the following steps:

- Create a rigid body using one or more element blocks (except SPH element blocks). A

RIGID BODY command line must appear in the SECTION command block used in the

PARAMETERS FOR BLOCK command block for any element block associated with a rigid

body.

- Include point mass element blocks with the rigid body if appropriate. To include point mass

element blocks in a rigid body, a RIGID BODY command line must appear in the SECTION

command block used in the PARAMETERS FOR BLOCK command block for those point mass

element blocks.

- Include a RIGID BODY command block in the SIERRA scope.

- Associate an initial velocity or initial rotation about an axis with the rigid body, if appro-

priate. If any of the blocks associated with a rigid body have been given an initial velocity

or initial rotation, the rigid body must have the same specification for the initial velocity or

initial rotation.

- Output center-of-mass information for the rigid body.

The above steps involve a number of different command blocks. To demonstrate how to fully

implement a rigid body, we will provide a specific example that exercises the various options

available to a user.

Let us assume that we want to create a rigid body named part_a consisting of three element

blocks. Two of the element blocks, element block 100 and element block 535, are eight-node

hexahedra; one of the element blocks, element block 600, consists of only point masses. The

RIGID BODY command block, SECTION command block, and the element blocks we want to

associate with the rigid body will be as follows:

begin solid section hex_section

rigid body = part_a

end

begin point mass section pm_section

rigid body = part_a

volume = 0.1

end

begin parameters for block block_100

material steel

solid mechanics model use elastic

section = hex_section

end

begin parameters for block block_535

material = aluminum

solid mechanics model use elastic

5.3. ELEMENT-LIKE FUNCTIONALITY 233

section = hex_section

end

begin parameters for block block_600

material = mass_for_pointmass

solid mechanics model use elastic

section = pm_section

end

To adjust the moments and products of inertia computed by Presto for the rigid body part_a, we

included the POINT INERTIA command line in the above section command block for the rigid

body.

Now that we have defined the rigid body, we will examine how to specify an initial angular velocity

about an axis for the rigid body and how to output information at the center of mass for the rigid

body. The center of mass of the rigid body is some computed point associated with the body. It

may or may not be at or near any node in the body.

Suppose we want to have the rigid body spin at 600 radians/sec about an axis parallel to the x-axis

and passing through a point at (0, 10, 20). We would define this axis using the following set of

DEFINE command lines:

define direction parallel_to_x with vector 2.0 0.0 0.0

define point off_axis with coordinates 0.0 10.0 20.0

define axis body_axis with point off_axis

direction parallel to x

The blocks in the rigid body will be given an initial angular velocity of 600 radians/sec about the

above axis if we use the following command block for initial angular velocity:

begin initial velocity

block = block_100 block_535 block_600

cylindrical axis = body_axis

angular velocity = 600

end initial velocity

The RIGID BODY command block must be given the same specification for an initial angular

velocity. The angular velocity specification in the RIGID BODY command block is applied to the

center of mass of the rigid body to make sure its initial motion is consistent with the initial motion

of all the nodes in the rigid body as defined by the INITIAL VELOCITY command block. Our

RIGID BODY command block (in the region) will appear as follows:

begin rigid body part_a

cylindrical axis = body_axis

angular velocity = 600

end rigid body part_a

234 CHAPTER 5. ELEMENTS

Presto automatically generates and outputs global data associated with the rigid body (e.g. dis-

placement and quaternion). The displacement of the rigid body named part_a will be written to

the results file with the name DISPLX_PART_A.

If you have more than one rigid body in your model, you will be able to keep track of the center-

of-mass information based on the rigid body name you give to each rigid body.

5.3.2 Torsional Spring Mechanism

BEGIN TORSIONAL SPRING MECHANISM <string>spring_name

NODE SETS = <string>nodelist_int1 <string>nodelist_int2

<string>nodelist_int3 <string>nodelist_int4

TORSIONAL STIFFNESS = <real>stiffness

INITIAL TORQUE = <real>init_load

PERIOD = <real>time_period

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [TORSIONAL SPRING MECHANISM <string>spring_name]

This feature was originally implemented to model a torsional spring wrapped around a fixed pin.

One end of the pin is fixed to a base, and one end of the spring is attached to this base. There

is an arm on the other end of the pin, and this arm can rotate around the pin. The second end of

the spring is attached to this arm. The spring resists motion of the arm. Any similar mechanism

can be modeled with the torsional spring. Although the torsional spring is element-like in its

overall behavior, its implementation within the code structure is different from the other elements

described in Chapter 5. The torsional spring does not make use of a section, and its command

block (TORSIONAL SPRING MECHANISM) should appear in the region scope. A schematic for

the torsional spring mechanism is shown in Figure 5.8.

The mechanism consists of two nodes that represent the axis of a torsional spring. Node 0 is at the

base of the torsional spring, and node 1 is at the top of the torsional spring. A third node, reference

node 0, defines an arm extending from the axis of the torsional spring to some attachment point

near the base of the spring. A fourth node, reference node 1, defines an arm extending from the axis

of the torsional spring to some attachment point near the top of the spring. The rotation of the two

arms relative to each other as measured along the axis of the torsional spring represents the angular

deformation of the spring and determines the moment in the spring. The moment in the spring is

translated into external forces at the two attachment points, reference node 0 and reference node 1.

In the TORSIONAL SPRING MECHANISM command block, the string spring_name is defined by

the user. Via the NODE SETS command line, the mechanism is defined with four node sets, and

each node set has a single node. The first set (nodelist_int1) defines node 0 in Figure 5.8;

node 0 is the origin of a local coordinate system for the torsional spring mechanism. The second

node set (nodelist_int2) defines node 1 in Figure 5.8; node 0 and node 1 define the axis of

the torsional spring mechanism. The third node set (nodelist_int3) defines reference node 0;

reference node 0 is an attachment point for the spring associated with node 0. The fourth node

set (node_int4) defines reference node 1; reference node 1 is an attachment point for the spring

5.3. ELEMENT-LIKE FUNCTIONALITY 235

Figure 5.8: Schematic for torsional spring.

associated with node 1.

The nodes defining the spring mechanism are used to set up a local coordinate system (x′, y′, z′).
The (z′-axis runs along the axis of the spring from node 0 to node 1. The x′-axis extends from the

axis of the spring and passes through reference node 0. If we are looking down the axis of the

spring in the negative z′-direction, a positive rotation of the arm defined by node 1 and reference

node 1 is in the counterclockwise direction. This is shown in Figure 5.9.

Figure 5.9: Positive direction of rotation for torsional spring.

The torque, T , in the spring is simply

236 CHAPTER 5. ELEMENTS

T = Kθ , (5.4)

where K is the torsional stiffness and θ is the rotation of the top arm relative to the bottom arm

as measured along the axis of the spring. In the TORSIONAL STIFFNESS command line, K is

specified by the real value stiffness.

The torque in the spring is converted to external forces with components in the global coordinate

system XYZ. These external forces depend on the torque and the length of the spring arms. The

length of the spring arms is automatically calculated.

You can apply an initial torque with the real value init_load in the INITIAL TORQUE command

line. The maximum value of the torque is reached in the time specified by the real value time_

period in the PERIOD command line.

The initial torque is applied over some period by specifying the angular rate of deformation in the

torsional spring, θ̇ , over some period p. At some given time t, the angular rate of deformation is

θ̇ =
ap

2

[

1− cos
(

πt
/

p
)]

, (5.5)

where

a =
2Ti

K p
. (5.6)

In Equation (5.6), Ti is the initial torque. Over the period p, the total strain increment generates the

desired initial load in the truss.

During the initial load period, the time increments should be reasonably small so that the integra-

tion of θ̇ over the period is accurate. The period should be set long enough so that if the model was

held in a steady state after time p, there would be only a small amount of oscillation in the load in

the torsional spring.

When doing an analysis, you may not want to activate certain boundary conditions until after

the prestressing is done. During the prestressing, time-independent boundary conditions such as

fixed displacement will most likely be turned on. Time-dependent boundary conditions such as

prescribed acceleration or prescribed force will most likely be activated after the prestressing is

complete.

You can output the torque in the spring, the total rotation, and the last angle between the arms. The

name specified on the command block is used to construct parameters for the mechanism. Suppose

the input line is:

begin torsional spring mechanism lower_spring

where lower_spring is a user-specified name. The code will automatically generate the param-

eters TS_lower_spring_MOMENT, TS_lower_spring_ROTATION, and TS_lower_spring_

LAST_ANGLE. These variables can then be output in a results file. For example, one could use

global variables = TS_lower_spring_MOMENT as ts_lspring_m

5.3. ELEMENT-LIKE FUNCTIONALITY 237

global variables = TS_lower_spring_ROTATION as ts_lspring_r

global variables = TS_lower_spring_LAST_ANGLE as

ts_lspring_la

in the RESULTS OUTPUT command block. If several torsional spring mechanisms appear in one

model, you can generate unique names to keep track of the parameters associated with each spring.

See Section 8.2 for further information about results output.

The ACTIVE PERIODS and INACTIVE PERIODS command lines determine when the torsional

spring is active. See Section 2.5 for more information about these command lines. Although the

active periods option is available in the TORSIONAL SPRING command block, use of this option

to turn the torsional spring off and on repeatedly is not recommended. Turning the torsional spring

off and on repeatedly may lead to erroneous behavior in the spring model.

238 CHAPTER 5. ELEMENTS

5.4 Mass Property Calculations

BEGIN MASS PROPERTIES

#

block set commands

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE BLOCK = <string list>block_names

#

structure command

STRUCTURE NAME = <string>structure_name

END [MASS PROPERTIES]

Presto automatically gives mass property information for the total model, which consists of all the

element blocks. (The mass for the total model, for example, is the total mass of all the element

blocks.) Presto also automatically gives mass property information for each element block.

In addition to the mass property information that is generated, Presto gives you the option of

defining a structure that represents some combination of element blocks and then of calculating the

mass properties for this particular structure. If you wish to define a structure that is a combination

of some group of element blocks, you must use the MASS PROPERTIES command block. This

command block appears in the region scope.

For the total model, each element block, and any user-defined structure, Presto reports the mass

and the center of mass in the global coordinate system. It also reports the moments and products

of inertia, as computed in the global coordinate system about the center of mass.

The MASS PROPERTIES command block contains two groups of commands—block set and struc-

ture. Each of these groups is basically independent of the other. Following are descriptions of the

two command groups.

5.4.1 Block Set Commands

The block set commands portion of the MASS PROPERTIES command block defines a set of

blocks for which mass properties are being requested, and can include some combination of the

following command lines:

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators for constructing

a set of blocks. See Section 6.1.1 for more information about the use of these command lines

for creating a set of blocks used by the command block. There must be at least one BLOCK or

INCLUDE ALL BLOCKS command line in the command block.

5.4. MASS PROPERTY CALCULATIONS 239

The REMOVE BLOCK command line allows you to delete blocks from the set specified in the BLOCK

and/or INCLUDE ALL BLOCKS command line(s) through the string list block_names. Typically,

you would use the REMOVE BLOCK command line with the INCLUDE ALL BLOCKS command

line. If you want to include all but a few of the element blocks, a combination of the REMOVE

BLOCK command line and INCLUDE ALL BLOCKS should minimize input information.

Suppose that only one element block, block_300, is specified on the BLOCK command line. Then

only the mass properties for that block will be calculated. If several element blocks are specified

on the BLOCK command line, then that collection of blocks will be treated as one entity, and the

mass properties for that single entity will be calculated. Thus, for example, if two element blocks,

say, block_150 and block_210, are specified on the BLOCK command line, the total mass for

the two element blocks will be reported as the total mass property.

5.4.2 Structure Command

The output for the mass properties will be identified by the command line:

STRUCTURE NAME = <string>structure_name

where the string structure_name is a user-defined name for the structure.

240 CHAPTER 5. ELEMENTS

5.5 Element Death

BEGIN ELEMENT DEATH <string>death_name

#

block set commands

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE BLOCK = <string list>block_names

#

criterion commands

CRITERION IS AVG|MAX|MIN NODAL VALUE OF

<string>var_name <|<=|=|>=|> <real>tolerance

CRITERION IS ELEMENT VALUE OF

<string>var_name <|<=|=|>=|> <real>tolerance [KILL WHEN

<integer>num_intg INTEGRATION POINTS REMAIN]

CRITERION IS GLOBAL VALUE OF

<string>var_name <|<=|=|>=|> <real>tolerance

ELEMENT BLOCK SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

MATERIAL CRITERION

= <string list>material_model_names [KILL WHEN

<integer>num_intg INTEGRATION POINTS REMAIN]

#

evaluation commands

CHECK STEP INTERVAL = <integer>num_steps

CHECK TIME INTERVAL = <real>delta_t

DEATH START TIME = <real>time

#

miscellaneous option commands

SUMMARY OUTPUT STEP INTERVAL = <integer>output_step_interval

SUMMARY OUTPUT TIME INTERVAL = <real>output_time_interval

DEATH ON INVERSION = OFF|ON(OFF)

DEATH STEPS = <integer>death_steps(1)

FORCE VALID ACME CONNECTIVITY

AGGRESSIVE CONTACT CLEANUP = <string>OFF|ON(OFF)

DEATH METHOD = <string>DEACTIVATE ELEMENT|DEACTIVATE NODAL MPCS|

DISCONNECT ELEMENT|INSERT COHESIVE ZONES(DEACTIVATE ELEMENT)

CONVERT ELEMENTS TO PARTICLES WITH SECTION =

<string>section_name

[MATERIAL <string>material_name <string>material_model]

ACTIVE PERIODS = <string list>period_names

5.5. ELEMENT DEATH 241

INACTIVE PERIODS = <string list>period_names

#

cohesive zone setup commands

COHESIVE SECTION = <string>sect_name

COHESIVE MATERIAL = <string>mat_name

COHESIVE MODEL = <string>model_name

COHESIVE ZONE INITIALIZATION METHOD = <string>NONE|

ELEMENT STRESS AVG(NONE)

END [ELEMENT DEATH <string>death_name]

The ELEMENT DEATH command block is used to remove elements from an analysis. For example,

the command block can be used to remove elements that have fractured, that are no longer impor-

tant to the analysis results, or that are nearing inversion. This command block is located within the

PRESTO REGION scope. The name of the command block, death_name, is user-defined and can

be referenced in other commands to update boundary or contact conditions based on the death of

elements creating new exposed surfaces.

Any element in an element block or element blocks selected in the ELEMENT DEATH command

block is removed (killed) when one of the criteria specified in the ELEMENT DEATH command

block is satisfied by that element. When an element dies, it is removed permanently. Any number

of ELEMENT DEATH command blocks may exist within a region.

When an element is killed, the contribution of that element’s mass to the attached nodal mass is

removed from the attached nodes. If all of the elements attached to a node are killed, the mass for

the node and all associated nodal quantities will be set to zero. If all of the elements in a region are

killed, the analysis will terminate.

Elements may be killed based off of any internal variable, derived variable, material state variable,

or user defined variable. Note that user-defined variables for triggering element death should be

used with care. There are timing and parallel issues regarding the use of a user-defined variable

with element death. User subroutines may work for element death in some situations where one

might want to reference a user variable.

The quantity used in an element death criterion statement should have only a single value at each

integration point. For example, the following command:

criterion is element value of stress(xx) > 10.0

is unambiguous and valid. However this command:

criterion is element value of stress > 10.0

is ambiguous, and will result in an error. Stress is a 3x3 tensor and there is no rational way to

compare that tensor to the scalar value 10. If a variable is defined on multiple integration points,

the criterion will be triggered if the value is exceeded at any of the integration points. If the

command:

242 CHAPTER 5. ELEMENTS

criterion is element value of stress(xx,:) > 10.0

were used with shells with five integration points, the shells would be killed if the value of

stress(xx) at any of the five integration points exceeded 10.

The ELEMENT DEATH command block contains five groups of commands—block set, criteria,

evaluation, miscellaneous, and cohesive zone setup. The command block must contain commands

from the block set and criteria groups. Command lines from the evaluation and miscellaneous

groups are optional, as are the cohesive zone commands.

Following are descriptions of the different command groups, an example of using the ELEMENT

DEATH command block, and some concluding remarks related to element death visualization.

5.5.1 Block Set Commands

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE BLOCK = <string list>block_names

The block set commands portion of the ELEMENT DEATH command block defines a set of

blocks for selecting the elements to be referenced. These command lines, taken collectively, con-

stitute a set of Boolean operators for constructing a set of blocks, as described in Section 6.1.1.

Element death must apply to a group of elements. There are two commands for selecting the

elements to be referenced: BLOCK and INCLUDE ALL BLOCKS. In the BLOCK command line, you

can list a series of blocks through the string list block_names. This command line may also be

repeated multiple times. The INCLUDE ALL BLOCKS command line adds all the element blocks

present in the region to the current element death definition. There must be at least one BLOCK or

INCLUDE ALL BLOCKS command line in the ELEMENT DEATH command block.

The REMOVE BLOCK command line allows you to delete blocks from the set specified in the BLOCK

and/or INCLUDE ALL BLOCKS command line(s) through the string list block_names. Typically,

you will use the REMOVE BLOCK command line with the INCLUDE ALL BLOCKS command line.

If you want to include all but a few of the element blocks, a combination of the REMOVE BLOCK

command line and INCLUDE ALL BLOCKS command line should minimize input information.

5.5.2 Criterion Commands

Any combination of death criteria (CRITERION IS NODAL, CRITERION IS ELEMENT,

CRITERION IS GLOBAL, ELEMENT BLOCK SUBROUTINE, MATERIAL CRITERION) can be

specified within a single ELEMENT DEATH command block. However, only one user subroutine

criterion may appear in a set of criteria command lines. If multiple death criteria are specified for

a given element, it will be killed when the first of those criteria are met. In other words, element

death with multiple criteria is an OR condition rather than an AND condition.

A problem with a material that has both a tension cutoff and a compression cutoff would be an

example for which you would want to use element death with multiple criteria. You would use one

5.5. ELEMENT DEATH 243

criterion to set failure in tension and another criterion to set failure in compression. If either the

tension cutoff value, as set by the tension criterion, or the compression cutoff value, as set by the

compression criterion, was exceeded for an element, the element would be killed.

As another example, you might have a problem that uses a nodal criterion and a user subroutine

criterion. For this second example, you are precluded from using another subroutine criterion

because you already have one. You could add some combination of nodal, element, global, or ma-

terial criteria to the existing nodal and subroutine criteria, but you could not add another subroutine

criterion.

5.5.2.1 Nodal Variable Death Criterion

CRITERION IS AVG|MAX|MIN NODAL VALUE OF

<string>var_name <|<=|=|>=|> <real>tolerance

Any nodal variable may be used by an element death criterion. The input parameters are described

as follows:

- Nodal variables are present on the nodes of an element, and these nodal values must be

reduced to a single element value for use by the criterion. The available types of reduction

are AVG, which takes the average of the nodal values; MAX, which takes the maximum of the

nodal values; and MIN, which takes the minimum of the nodal values.

- The string var_name gives the name of the registered variable. See Section 8.7 for a listing

of the registered variables. Parenthesis syntax may be used in the variable name for selection

specific variable components or integration points, see Section 8.1.

- The specified variable, with an optional component specification if the variable has com-

ponents, may be compared to a given tolerance with one of five operators. The operator is

specified with the appropriate symbol for less than (<) less than or equal to (<=), equal to

(=), greater than or equal to (>=), or greater than (>) The given tolerance is specified with

the real value tolerance.

5.5.2.2 Element Variable Death Criterion

CRITERION IS ELEMENT VALUE OF

<string>var_name[(<integer>component_num)]

<|<=|=|>=|> <real>tolerance |

<string>derived_quantity[(<integer>int_num)]

<|<=|=|>=|> <real>tolerance [KILL WHEN <integer>num_intg

INTEGRATION POINTS REMAIN]

Any element variable may be used by an element death criterion. An element variable is present

on the element itself, so no reduction is required, which is why the first line in the format of the

above command line differs from that of the nodal criterion command line in Section 5.5.2.1.

244 CHAPTER 5. ELEMENTS

For a criterion using an element variable, the variable name, component or integration point num-

ber, and tolerance can be specified in the same manner as defined for the nodal criterion command

line.

Element state variables can also be used as criteria for element death. The syntax used to specify

the variable name differs depending on the type of material model used.

- For Strumento solid material models, the variable name is called out as:

state_material_name(index)

where material_name is the name of the material model, e.g. elastic_plastic, and

index is the index in the state variable array of the particular state variable to be used for

the death criterion. For example, the command:

criterion = element value of state_elastic_plastic(1) > 0.9

uses the value of the first state variable for the elastic_plastic material, which is the equivalent

plastic strain.

- For LAME solid material models, the variable name is called out directly by name.

- For shell material models, the variable name is called out directly by name. By default the

element will be killed if the criteria is met at any integration point. Parenthesis syntax 8.1

may be used to kill based on the state of a specified integration point. For example:

criterion = element value of crack_opening_strain(2) > 0.01

would use the value of the state variable crack_opening_strain at the second shell inte-

gration point through the shell thickness as the criterion for element death.

Refer to Section 8.7.2 for tables with listings of state variables for the various material models.

Derived quantities can also be used for element death. For example the following command:

criterion = element value of von_mises > 1.0e+05

will cause elements to be killed any of the integration points reach a critical value of von_mises.

Alternatively, the command:

criterion = element value of von_mises(3) > 1.0e+05

is used to kill an element if a specific integration point reaches the critical value of von_mises.

If the optional KILL WHEN num_intg INTEGRATION POINTS REMAIN portion of the com-

mand line is specified, the element will not die until there are num_intg integration points re-

maining. For example, for shells with five integration points, the following command:

criterion is element value of stress(xx,:) > 10.0 kill when 2 integration

points remain

will check the xx component of stress at each integration point, and when 3 of those 5 integration

points exceed that criterion, leaving 2 integration points that have not reached the criterion, the

element will die.

5.5. ELEMENT DEATH 245

5.5.2.3 Global Death Criterion

CRITERION IS GLOBAL VALUE OF

<string>var_name[(<integer>component_num)]

<|<=|=|>=|> <real>tolerance

Any global variable may be used in an element death criterion. Once the global criterion is reached,

all elements specified in the ELEMENT DEATH command block are killed. The variable name,

component number, and tolerance can be specified in the same manner as defined for the nodal or

element criterion command line.

The input parameters are described as follows:

- The string var_name gives the name of the global variable. See Section 8.7 for a listing of

the global variables.

- Parenthesis syntax may be used in the variable name to specify specific components of the

variable, see 8.1

- The specified variable, with an optional component specification if the variable has com-

ponents, may be compared to a given tolerance with one of five operators. The operator is

specified with the appropriate symbol for less than (<), less than or equal to (<=), equal to

(=), greater than or equal to (>=), or greater than (>). The given tolerance is specified with

the real value tolerance.

5.5.2.4 Subroutine Death Criterion

ELEMENT BLOCK SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

A death criterion can be specified via a user-defined subroutine (see Chapter 9), which is in-

voked by the ELEMENT BLOCK SUBROUTINE command line. The string subroutine_name is

the name of a FORTRAN subroutine that is written by the user. The user-defined subroutine for

element death must be an element subroutine signature (see Section 9.2.2). The element subrou-

tine will return an output values array and a flag array of one flag per element (see Table 9.2 in

Chapter 9). The output values array is ignored. Death is determined by the flag return value. For

user-defined subroutines, a flag return value of –1 indicates that the element should die. A flag

return value greater than or equal to 0 indicates that the element should remain alive.

Following the ELEMENT BLOCK SUBROUTINE command line are other command lines that

may be used to implement the user subroutine option. These command lines are described

246 CHAPTER 5. ELEMENTS

in Section 9.2.2 and consist of SUBROUTINE DEBUGGING OFF, SUBROUTINE DEBUGGING

ON, SUBROUTINE REAL PARAMETER, SUBROUTINE INTEGER PARAMETER, and SUBROUTINE

STRING PARAMETER. Examples of using these command lines are provided throughout Section 9.

5.5.2.5 Material Death Criterion

MATERIAL CRITERION = <string list>material_model_names [KILL WHEN

<integer>num_intg INTEGRATION POINTS REMAIN]

Some material models have a failure criterion. When this failure criterion is satisfied within an

element, the element has fractured or disintegrated. The material models reduce the stress in

these fractured or disintegrated elements to zero. The MATERIAL CRITERION command line can

be used to remove these fractured or disintegrated elements from an analysis. Removal of the

fractured elements can speed computations, enhance visualization, and prevent spurious inversion

of these elements that may stop the analysis.

The material models currently supported for use with the MATERIAL CRITERION command line

are:

- ELASTIC_FRACTURE (Solid only, see Section 4.2.2)

- DUCTILE_FRACTURE (Solid only, see Section 4.2.5)

- ML_EP_FAIL (Solid and Shell, see Section 4.2.7)

Element death will kill an element based on a material criterion when the material model indicates

that the element is failed and can carry no more load. For a single integration point element, this

occurs when the one integration point in the element fails. For elements with multiple integration

points, the default behavior is for the element to be killed when all but one of the integration points

has failed. This behavior is the default because for multi-integration point elements, particularly

shells, if there is only a single integration point left, the element is severely under-integrated. The

final integration point will generally not attract more load and will never fail. This default behavior

can be changed by using the optional KILL WHEN num_intg INTEGRATION POINTS REMAIN

command. In this command, num_intg specifies the number of remaining integration points when

the element is to be killed.

Suppose you have an element block named part1_ss304 that references a material named

SS304. This material, SS304, uses the DUCTILE_FRACTURE material model (see Section 4.2.5).

You also have an element block named ring5_al6061 that references a material named al6061.

This material, al6061, uses the ML_EP_FAIL material model (see Section 4.2.7). If you have an

ELEMENT DEATH command block with the command line:

BLOCK = part1_ss304 ring5_al6061

and the command line:

MATERIAL CRITERION = DUCTILE_FRACTURE ML_EP_FAIL

5.5. ELEMENT DEATH 247

then any element in part1_ss304 that fails according to the material model DUCTILE_FRACTURE

(in material SS304) and any element in ring5_al6061 that fails according to the material model

ML_EP_FAIL (in material al6061) will be killed by element death.

5.5.3 Evaluation Commands

CHECK STEP INTERVAL = <integer>num_steps

CHECK TIME INTERVAL = <real>delta_t

DEATH START TIME = <real>time

Evaluation of element death criteria may be time consuming. Additionally, reconstruction of con-

tact or other boundary conditions after element death can be very time consuming. For these

reasons, three command lines are available for determining the frequency at which element death

is evaluated. The default is to evaluate element death at every time step. You can limit the number

of times at which the element death evaluation is done by using the following commands.

- The CHECK STEP INTERVAL command line instructs element death to evaluate the element

death criteria only every num_steps time steps.

- The CHECK TIME INTERVAL command line instructs element death to evaluate the element

death criteria only every delta_t time units.

- The DEATH START TIME command line instructs element death not to evaluate death crite-

ria before a user-specified time, as given by the real value time.

You may use both the CHECK STEP INTERVAL and CHECK TIME INTERVAL command lines

in a command block. Evaluations for element death will be made at both the time and step intervals

if both of these command lines are included.

All three of the above command lines—CHECK STEP INTERVAL, CHECK TIME INTERVAL, and

DEATH START TIME—are optional command lines.

5.5.4 Miscellaneous Option Commands

The command lines listed below need not be present in the ELEMENT DEATH command block

unless the conditions addressed by each call for their inclusion.

5.5.4.1 Summary Output Commands

At the end of a run, a summary of all element death blocks is output to the log file. The SUMMARY

OUTPUT STEP INTERVAL or SUMMARY OUTPUT STEP INTERVAL commands can be used to

request that the summary be output to the log file at regular intervals during the run. The SUMMARY

OUTPUT TIME INTERVAL command results in the summary being printed every output_step_

248 CHAPTER 5. ELEMENTS

interval steps, while the SUMMARY OUTPUT TIME INTERVAL results in the summary being

printed once every output_time_interval time units. These two commands can be supplied

individually, together or not at all. If neither are used, the summary is printed only at the end of

execution.

It should be noted that this command applies to all element death blocks. If these commands

appear in multiple element death blocks, the values specified in the last instance of each of these

commands prevails.

5.5.4.2 Death on Inversion

DEATH ON INVERSION = ON|OFF(OFF)

If the DEATH ON INVERSION command line is on, any element that inverts will be killed. This

command currently only works for uniform gradient 8-noded hex elements 4, 8, and 10 noded tet

elements, and 4 noded shells.

5.5.4.3 Death Steps

DEATH STEPS = <integer>death_steps(1)

If the DEATH STEPS command line is used and the value for death_steps is set to some value

greater than 1, the stress in a killed element will not be set to 0 until the prescribed number of steps

has occurred. The stress in the killed element will decrease (if it is positive) to 0 in a linear fashion

over the prescribed number of steps; the stress in the killed element will increase (if it is negative)

to 0 over the prescribed number of steps. If the stress in a killed element is set to 0 over a single

time step, the resulting change in stress can sometimes cause instabilities due to the sudden release

of energy. However, elimination of the stress over an excessive number of load steps can make it

appear as if the element is present long after it has been killed. The default number of steps, as

provided in the integer value death_steps, is 1.

The value you select for death_steps will depend on your analysis. A small number such as 3

or 5 may be sufficient to prevent instabilities for most cases. However, in some cases it may be

necessary to use a value for death_steps of 10 or larger. The loads, material models, and model

complexity in your analysis will impact the value of death_steps.

5.5.4.4 Degenerate Mesh Repair

FORCE VALID ACME CONNECTIVITY

If the FORCE VALID ACME CONNECTIVITY command line is present, degenerate mesh occur-

rences will be repaired. Element death has the possibility of creating degenerate mesh occurrences

that will not be accepted by the ACME (see Reference 12) contact algorithms used by Presto. For

example, if two continuum elements are connected only by an edge, ACME will not accept the

5.5. ELEMENT DEATH 249

mesh as a valid mesh. For this degenerate mesh occurrence (continuum elements connected only

at an edge), the degeneracy is repaired by deleting all elements attached to the offending edge if

we have turned on this repair option.

The option to repair degenerate mesh occurrences is on by default if there is a CONTACT

DEFINITION command block that includes the command line:

UPDATE ALL SURFACES FOR ELEMENT DEATH = 0N

See Section 7.4 for a full description of the UPDATE ALL SURFACES FOR ELEMENT DEATH

command line.

If you do not have a CONTACT DEFINITION command block and want to repair degenerate mesh

occurrences for whatever purposes, you should include the FORCE VALID ACME CONNECTIVITY

command line.

5.5.4.5 Aggressive Contact Cleanup

AGGRESSIVE CONTACT CLEANUP = <string>OFF|ON(OFF)

The AGGRESSIVE CONTACT CLEANUP command line enables the use of element death in an at-

tempt to guarantee a valid contact mesh. Certain complex meshes with extensive element death

can be problematic for the contact algorithms on some mesh decompositions. This command al-

lows element death to query the contact algorithm and then remove any elements that the contact

algorithm flags as having the potential to cause contact to fail.

5.5.4.6 Death Method

DEATH METHOD = <string>DEACTIVATE ELEMENT|DEACTIVATE NODAL MPCS|

DISCONNECT ELEMENT|INSERT COHESIVE ZONES(DEACTIVATE ELEMENT)

The DEATH METHOD command specifies what happens when an element meets the death crite-

rion. The following strings can be used as arguments to this command: DEACTIVATE ELEMENT,

DEACTIVATE NODAL MPCS, DISCONNECT ELEMENT, and INSERT COHESIVE ZONES. The be-

havior controlled by these options is described below.

• With the default option, DEACTIVATE ELEMENT, the element is deactivated, effectively re-

moving it from the mesh.

• The DEACTIVATE NODAL MPCS option removes the nodes of a killed element from any

multi-point constraints. This only has an effect if the element has nodes that are in multi-

point constraints. The multi-point constraint deactivation option can be used to break an

element away from the mesh, allowing it to move independently. It can also be used to

activate cohesive zones.

• The DISCONNECT ELEMENT option disconnects the element from the mesh, allowing the

element to move independently. The disconnected element will no longer share any nodes

250 CHAPTER 5. ELEMENTS

with neighboring elements, and will only interact with the remainder of the mesh through

contact.

• The INSERT COHESIVE ZONE option disconnects the element from the mesh and places

a cohesive zone between the element and each face-adjacent neighbor. If this option is

used, the commands COHESIVE SECTION, COHESIVE MATERIAL, and COHESIVE MODEL

must be used to define the type of cohesive zone to be inserted, and are documented in

Section 5.5.5.

5.5.4.7 Particle Conversion

Presto provides the option to convert elements to particles when they are killed, rather than simply

removing them from the mesh. This option is activated by using the CONVERT ELEMENTS TO

PARTICLES WITH SECTION command line in the ELEMENT DEATH command block. Particle

conversion can be useful when elements become too highly deformed to be represented by solid

elements. These highly deformed solid elements can be removed from the mesh, but the mass

associated with those elements can be retained in the model in the form of particles.

The name of a defined section block must be provided as section_name with this command to

control the properties of the created particles. Particles may be created that use the SPH or mass

particle formulation. The material properties of the created particles may be optionally prescribed

by providing the name and model for a defined material in material_name and material_

model. By default, the particle uses the material model of the solid element from which it has

been converted, and retains its material state variables during conversion. If a new material type is

specified for conversion, all material state information will be lost as the element is converted to a

particle.

Particle conversion works with most element types including hexahedra, tetrahedra, and shells.

The converted particle is placed at the centroid of the removed element. The mass of the particle

equals the mass of the converted element. The radius of the converted particle is computed to allow

the particle to fit inside the void space left by removal of the solid element. If no particle can fit

in that space, no particle is created. The velocity of the converted particle is set to the average

velocity of the source element’s nodes.

5.5.4.8 Active Periods

The following command lines can optionally be used in the ELEMENT DEATH command block:

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

These command lines determine when element death is active. See Section 2.5 for more informa-

tion about these optional command lines.

5.5. ELEMENT DEATH 251

5.5.5 Cohesive Zone Setup Commands

The commands listed here are all related to adaptive insertion or activation of cohesive zones by

element death.

COHESIVE SECTION = <string>sect_name

COHESIVE MATERIAL = <string>mat_name

COHESIVE MODEL = <string>model_name

COHESIVE ZONE INITIALIZATION METHOD = <string>NONE|

ELEMENT STRESS AVG(NONE)

The first three of these commands are only applicable to adaptive insertion of cohesive elements

by element death. They are used together to fully define the properties of the elements that are

adaptively inserted.

The COHESIVE SECTION command is used to specify the name of a section used to define the

section properties of the cohesive zone elements to be adaptively inserted. See Section 5.2.2 for a

description of cohesive sections.

The COHESIVE MATERIAL command is used to specify the name of the material model to be

used for the newly-created cohesive elements. This material model name is the user-provide name

for the cohesive zone material provided by the parameter mat_name in the BEGIN PROPERTY

SPECIFICATION FOR MATERIAL mat_name command block. The material models available

for cohesive zones are documented in Section 4.3.

The COHESIVE MODEL command is used to select the material model to be used for the newly-

created cohesive elements. This references the name of the material model model_name defined

in a BEGIN PARAMETERS FOR MODEL model_name block. The material models available for

cohesive zones are documented in Section 4.3.

The COHESIVE ZONE INITIALIZATION METHOD command controls the initialization of cohe-

sive zones that are either dynamically inserted or activated through element death. This command

should only be used if there are cohesive zones between elements and all nodes of those ele-

ments are initially attached together via multi-point constraints, or the INSERT COHESIVE ZONES

death method is being used. When element death is used to deactivate the constraints or

insert a cohesive element (with the DEATH METHOD = DEACTIVATE NODAL MPCS option or

DEATH METHOD = INSERT COHESIVE ZONES option), the exposed cohesive zone can be given

an initial state. The options are to either do nothing (NONE) or to initialize the tractions in the

cohesive element based on the stresses in the two elements on either side of the cohesive zone

(ELEMENT STRESS AVG). How the cohesive zone uses the initial traction will depend on the

cohesive surface material model used.

5.5.6 Example

The following example provides instructions to kill elements in block_1when they leave a bound-

ing box. This type of element death can be useful in an analysis where some peripheral parts,

252 CHAPTER 5. ELEMENTS

because of fracture, separate and fly away from a central body, this central body being our part

of interest. In this case, these peripheral parts no longer impact the solution. The instructions

in this ELEMENT DEATH command block will cause the parts to be killed, thus speeding up the

computation.

begin element death out_of_bounds

block = block_1

check x coordinates

criterion is avg nodal value of coordinates(1) >= 10

criterion is avg nodal value of coordinates(1) <= -10

check y coordinates

criterion is avg nodal value of coordinates(2) >= 10

criterion is avg nodal value of coordinates(2) <= -10

check z coordinates

criterion is avg nodal value of coordinates(3) >= 10

criterion is avg nodal value of coordinates(3) <= -10

end element death out_of_bounds

5.5.7 Element Death Visualization

When an element dies, information about this element will still be sent, along with information for

all other elements, to the Exodus II results file. (Chapter 8 describes the output of element variables

to the results file.) The death status of the elements may be output to the results file by requesting

element variable output for the element variable DEATH_STATUS. Including the command line

ELEMENT VARIABLES = DEATH_STATUS as death_var

in a RESULTS OUTPUT command block (Chapter 8) will output this element variable with the

name death_var in the results file.

The convention for DEATH_STATUS is as follows: An element with a value of 1.0 for DEATH_

STATUS is a living element. An element with a value of 0.0 for DEATH_STATUS is a dead element.

A value less than 0.0 indicates that the element was killed due to a code related issue (e.g. an

unsupported geometry issue related to ACME). A value between 1.0 and 0.0 indicates an element

in the process of dying. A dying element has its material stress scaled down over a number of

time steps. The current scaling factor for an element is given by DEATH_STATUS. Whether or

not an element can have a value for DEATH_STATUS other than 0.0 or 1.0 will depend on whether

or not you have used the DEATH STEPS option in the ELEMENT DEATH command block. If the

number of steps over which death occurs is greater than 1, then DEATH_STATUS can be some value

between 0.0 and 1.0.

If DEATH_STATUS is written to a results file, and the results file is used in a visualization program

to examine the mesh for the model, it is possible to use DEATH_STATUS to exclude killed elements

from any view of the model. A subset of the mesh showing just the living elements can be created

by visualizing only those elements for which DEATH_STATUS = 1.0. The procedure for visualizing

results in this way varies for different postprocessing tools.

When an analysis is using element death the log file contains a table of marker values that will

5.5. ELEMENT DEATH 253

be applied to dead elements. The marker values allow determining which elements where killed

and by which criterion. The marker variables are stored in the element variable KILLED_BY_

CRITERION and are available for output on the mesh results file. Additionally, a global count of

how many elements were killed by each criterion is printed at the end of the run log file.

254 CHAPTER 5. ELEMENTS

5.6 Explicitly Computing Derived Quantities

BEGIN DERIVED OUTPUT

COMPUTE AND STORE VARIABLE =

<string>derived_quantity_name

END DERIVED OUTPUT

The above command block is used to explicitly compute and store a derived quantity into an in-

ternal field. This is useful if the field is needed by an outside capability such as a transfer or error

estimation.

For example, to use a derived stress quantity in a transfer, you must use a DERIVED OUTPUT

command block. To transfer the von Mises stress norm, you would use the following command

block:

BEGIN DERIVED OUTPUT

COMPUTE AND STORE VARIABLE = von_mises

END DERIVED OUTPUT

Consult Table 8.1 for a complete listing of derived stress quantities, Table 8.4 for a complete listing

of derived strain quantities, and Table 8.2 for a complete listing of derived log strain quantities.

5.7. MESH REBALANCING 255

5.7 Mesh Rebalancing

Mesh rebalancing is a feature in Presto that may improve the efficiency of an analysis. Two com-

mand blocks can be used to control mesh rebalancing: REBALANCE and ZOLTAN PARAMETERS.

The REBALANCE command block is required; the ZOLTAN PARAMETERS command block is op-

tional. Sections 5.7.1 and 5.7.2 describe these command blocks.

5.7.1 Rebalance

BEGIN REBALANCE

ELEMENT GROUPING TYPE = SPLIT SPH AND STANDARD ELEMENTS|

UNIFORM UNIFIED(SPLIT SPH AND STANDARD ELEMENTS)

INITIAL REBALANCE = ON|OFF(OFF)

PERIODIC REBALANCE = ON|OFF|AUTO(OFF)

REBALANCE STEP INTERVAL = <integer>step_interval

LOAD RATIO THRESHOLD = <real>load_ratio

COMMUNICATION RATIO THRESHOLD = <real>communication_ratio

ZOLTAN PARAMETERS = <string>parameter_name

END [REBALANCE]

Initial decomposition of a mesh for parallel runs with Presto is done by a utility called loadbal.

The initial decomposition provided by loadbal may not provide a decomposition for good-to-

optimal parallel performance of Presto under certain circumstances. Therefore, Presto supports a

simple mesh-rebalancing capability that can be used to improve the parallel performance of some

problems. When mesh rebalancing is invoked, the parallel decomposition is changed, and elements

are moved among the processors to balance the computational load and minimize the processor-

to-processor communication. Mesh rebalancing may be useful in the following circumstances:

• The mesh decomposition produced by loadbal for SPH meshes is nearly always poor. It is

recommended that an initial mesh rebalance be done for all SPH problems.

• If a problem experiences very large deformations, periodic rebalancing may be helpful. In

contact or SPH problems, communication is performed between physically nearby contact

surfaces or SPH particles. To maintain optimum performance, it is helpful to have neigh-

boring particles located on the same processors. Periodic mesh rebalancing can ensure that

neighboring entities tend to remain on the same processor during large mesh deformations.

The REBALANCE command block is placed in the Presto region scope. The mesh rebalancing in

Presto uses a mesh balancing library called Zoltan (Reference 13). Zoltan performs the actual

rebalancing. By default, Presto creates a Zoltan object with a default set of parameters. How-

ever, a Zoltan object with a customized set of parameters can be created and referenced from the

REBALANCE command block.

256 CHAPTER 5. ELEMENTS

5.7.1.1 Rebalance Command Lines

ELEMENT GROUPING TYPE = SPLIT SPH AND STANDARD ELEMENTS|

UNIFORM UNIFIED(SPLIT SPH AND STANDARD ELEMENTS)

INITIAL REBALANCE = on|off (off)

PERIODIC REBALANCE = on|off|auto (off)

REBALANCE STEP INTERVAL = <integer>step_interval

LOAD RATIO THRESHOLD = <real>load_ratio

COMMUNICATION RATIO THRESHOLD = <real>ratio

The above command lines control how and when the rebalancing is done.

The ELEMENT GROUPING TYPE command line specifies how the elements are grouped for re-

balancing. If set to SPLIT SPH AND STANDARD ELEMENTS, which is the default behavior, this

command causes SPH and standard elements to be split into separate groups. If it is set to the

UNIFORM UNIFIED option, all elements can be grouped together.

The INITIAL REBALANCE command line is used to rebalance the mesh at time zero before any

calculations occur. This option should be used if the initial mesh decomposition passed to Presto

is poor.

If the PERIODIC REBALANCE COMMAND option is set to on, the mesh will be rebalanced every

step_interval steps, where step_interval is the parameter specified by the REBALANCE

STEP INTERVAL command line. If the option is auto, the mesh will be rebalanced every step_

interval steps, when the communication ratio reaches a critical value, or when the load ratio

reaches a critical value.

The communication ratio, currently defined only for SPH problems, is a measure of how much

communication is required in the current mesh decomposition versus an estimate of the amount

of communication with an optimal decomposition. Mesh rebalancing is expensive, so rebalancing

should be done rarely. The COMMUNICATION RATIO THRESHOLD command line is used to spec-

ify the value of the communication ratio that triggers a rebalance. Setting this to a value between

1.25 and 1.5 is usually optimal.

The load ratio is the ratio of the current load (maximum number of elements on a processor divided

by the average number of elements per processor) to that immediately after the previous rebalance.

The LOAD RATIO THRESHOLD command specifies that a rebalance should occur when the load

ratio exceeds the specified threshold. A specified value of 1.5 would trigger a rebalance when the

load ratio is 50% higher than the previous rebalance (or initial decomposition, if no rebalances

have yet occurred).

5.7.1.2 Zoltan Command Line

The command line

ZOLTAN PARAMETERS = <string>parameter_name

references a ZOLTAN PARAMETERS command block named parameter_name. Various param-

eters for Zoltan can be set in the ZOLTAN PARAMETERS command block. If you do not use the

5.7. MESH REBALANCING 257

ZOLTAN PARAMETERS command line, a default set of parameters is used. The default parameter

command block is shown as follows:

BEGIN ZOLTAN PARAMETERS

LOAD BALANCING METHOD = recursive coordinate bisection

string parameter

OVER ALLOCATE MEMORY = 1.5 # real parameter

REUSE CUTS = true # string parameter

ALGORITHM DEBUG LEVEL = 0 # integer parameter

CHECK GEOMETRY = true # string parameter

ZOLTAN DEBUG LEVEL = 0 # integer parameter

END ZOLTAN PARAMETERS

See Section 5.7.2 for a discussion of the ZOLTAN PARAMETERS command block. Section 5.7.2

lists the command lines that can be used to set Zoltan parameters.

258 CHAPTER 5. ELEMENTS

5.7.2 Zoltan Parameters

BEGIN ZOLTAN PARAMETERS

LOAD BALANCING METHOD = <string>recursive coordinate bisection|

recursive inertial bisection|hilbert space filling curve|

octree

DETERMINISTIC DECOMPOSITION = <string>false|true

IMBALANCE TOLERANCE = <real>imb_tol

OVER ALLOCATE MEMORY = <real>over_all_mem

REUSE CUTS = <string>false|true

ALGORITHM DEBUG LEVEL = <integer>alg_level

0<=(alg_level)<=3

CHECK GEOMETRY = <string>false|true

KEEP CUTS = <string>false|true

LOCK RCB DIRECTIONS = <string>false|true

SET RCB DIRECTIONS = <string>do not order cuts|xyz|xzy|

yzx|yxz|zxy|zyx

RECTILINEAR RCB BLOCKS = <string>false|true

RENUMBER PARTITIONS = <string>false|true

OCTREE DIMENSION = <integer>oct_dimension

OCTREE METHOD = <string>morton indexing|grey code|hilbert

OCTREE MIN OBJECTS = <integer>min_obj # 1<=(min_obj)

OCTREE MAX OBJECTS = <integer>max_obj # 1<=(max_obj)

ZOLTAN DEBUG LEVEL = <integer>zoltan_level

0<=(zoltan_level)<=10

DEBUG PROCESSOR NUMBER = <integer>proc # 1<=proc

TIMER = <string> wall|cpu

DEBUG MEMORY = <integer>dbg_mem # 0<=(dbg_mem)<=3

END [ZOLTAN PARAMETERS]

The ZOLTAN PARAMETERS command block is used to set parameters for Zoltan (see Refer-

ence 13), a program that can be used for mesh rebalancing in Presto. The ZOLTAN PARAMETERS

command block is used in association with the REBALANCE command block. A REBALANCE com-

mand block may reference a ZOLTAN PARAMETERS command block via the name, parameter_

name, for the parameter command block. Reference Section 5.7.1 regarding the use of the

ZOLTAN PARAMETERS command block for mesh rebalancing in Presto.

Setting the parameters for Zoltan involves some understanding of how Zoltan works. Consult with

Reference 13 for a discussion of the parameters that can be set by the various command lines in the

ZOLTAN PARAMETERS command block. Note that some of the command lines in this command

block have comments that provide additional information about the parameters. The “#” symbol

precedes a comment.

In the above command block, = and IS are the allowed delimiters, which is different from the

usual Presto convention of =, IS, and ARE. Note that the ZOLTAN PARAMETERS command block

should be specified in the SIERRA scope when it is referenced from the ZOLTAN PARAMETERS

command line in the REBALANCE command block. When the default set of parameters is used for

a Zoltan object, the ZOLTAN PARAMETERS command block need not be included in the input file.

5.8. REMESHING 259

5.8 Remeshing

BEGIN REMESH

MAX REMESH STEP INTERVAL = <integer>step_interval (Infinity)

MAX REMESH TIME INTERVAL = <real>time_interval (Infinity)

NEW MESH MAX EDGE LENGTH RATIO = <real>new_max_ratio (1.25)

NEW MESH MIN EDGE LENGTH RATIO = <real>new_min_ratio (0.25)

NEW MESH MIN SHAPE = <real>new_shape (0.125)

REMESH AT MAX EDGE LENGTH RATIO = <real>max_cutoff_ratio

(new_mesh_max_edge_length_ratio*1.75)

REMESH AT MIN EDGE LENGTH RATIO = <real>min_cutoff_ratio

(new_mesh_min_edge_length_ratio*0.25)

REMESH AT SHAPE = <real>cutoff_shape (0.025)

CONTACT CLEANUP = AUTO|OFF|ON (AUTO)

DEBUG OUTPUT LEVEL = <integer>level (0)

MAX REMESH REBALANCE METRIC = <integer>rebalance_metric (1.25)

MAX NUMBER ELEMENTS = <integer>max_num_elem (500000)

BEGIN REMESH BLOCK SET

#

Parameters for remesh block set

#

END [REMESH BLOCK SET]

BEGIN ADAPTIVE REFINEMENT

#

Parameters for adaptive refinement

#

END [ADAPTIVE REFINEMENT]

END [REMESH]

The REMESH command block, which is used within the region scope, sets parameters for remeshing

a portion of the mesh. Remeshing involves removing badly shaped elements and inserting new

elements of better quality that occupy the same volume. Depending on the degree to which the

original elements are deformed, the new elements may occupy slightly more or slightly less volume

than the original mesh. If regions of the mesh cannot be meshed with well-shaped elements having

reasonable time steps, they may be removed entirely, potentially changing the topology. Examples

of such regions include exterior slivers or very thin parts.

Remeshing is used exclusively with node-based tetrahedrons. Whenever possible, remeshing

avoids moving, deleting or adding nodes. The node-based tetrahedron stores both material and

kinematic state information at the nodes and thus avoids many of the state advection problems as-

sociated with remeshing. However, some amount of state advection or non-conservation of energy,

momentum, and mass may occur during remeshing.

In addition to remeshing locations with badly shaped elements, remeshing can be used to adap-

tively refine a mesh. Adaptive refinement may applied to an initially uniform mesh to produce

260 CHAPTER 5. ELEMENTS

one with a large number of elements in a region of interest and a coarse mesh elsewhere. Mesh

refinement is fully conforming and works by altering the nodal characteristic edge lengths in an

adapted mesh. The remeshing algorithm attempts to make the new mesh density consistent with

the adapted characteristic edge lengths. Mesh adaptation happens only during remesh steps. Spec-

ifying a remesh step or a remesh time interval may be used to trigger adaptive refinement even if

no large element deformation is taking place.

5.8.1 Remeshing Commands

The following commands control how and when remeshing is performed:

MAX REMESH STEP INTERVAL = <integer>step_interval (Infinity)

MAX REMESH TIME INTERVAL = <real>time_interval (Infinity)

NEW MESH MAX EDGE LENGTH RATIO = <real>new_max_ratio (1.25)

NEW MESH MIN EDGE LENGTH RATIO = <real>new_min_ratio (0.25)

NEW MESH MIN SHAPE = <real>new_shape (0.125)

REMESH AT MAX EDGE LENGTH RATIO = <real>max_cutoff_ratio

(new_mesh_max_edge_length_ratio*1.75)

REMESH AT MIN EDGE LENGTH RATIO = <real>min_cutoff_ratio

(new_mesh_min_edge_length_ratio*0.25)

REMESH AT SHAPE = <real>cutoff_shape (0.025)

CONTACT CLEANUP = AUTO|OFF|ON (AUTO)

DEBUG OUTPUT LEVEL = <integer>level (0)

MAX REMESH REBALANCE METRIC = <integer>rebalance_metric (1.25)

MAX NUMBER ELEMENTS = <integer> max_num_elems (500000)

The MAX REMESH STEP INTERVAL command defines the maximum number of simulation time

steps that can pass between remeshing steps. Note that if any value of MAX REMESH STEP

INTERVAL is specified, the code will perform a remesh step during initialization. This is useful for

doing an initial mesh adaptation.

The MAX REMESH TIME INTERVAL command defines the maximum simulation time that can

pass between remeshing steps.

The NEW MESH MAX EDGE LENGTH RATIO, NEW MESH MIN EDGE LENGTH RATIO, and NEW

MESH MIN SHAPE commands specify target values for maximum edge length ratio, minimum

edge length ratio, and minimum mesh shape in the new mesh. These metrics are described be-

low in the definitions of the REMESH AT MAX EDGE LENGTH RATIO, REMESH AT MIN EDGE

LENGTH RATIO, and REMESH AT SHAPE commands, respectively. It is recommended that the

thresholds for triggering remeshing be at least a factor of four smaller than the new mesh values to

prevent excessive remeshing calls.

The REMESH AT MAX EDGE LENGTH RATIO command specifies a threshold edge length ratio at

which remeshing is triggered. The ratio is determined as the ratio of the longest edge connected to

a given node to the characteristic initial mesh edge length associated with that node. Edge lengths

that become large may no longer be able to represent required geometric details or accurately

5.8. REMESHING 261

compute contact. The remeshing algorithm attempts to maintain edge lengths at roughly their

original lengths, which may vary significantly across the mesh.

The REMESH AT MIN EDGE LENGTH RATIO command is similar to the REMESH AT MAX EDGE

LENGTH RATIO command. This command triggers remeshing when the ratio of the shortest edge

connected to a given node to the characteristic initial mesh edge length associated with that node

falls below the specified threshold value. If edge lengths become too small, the mesh may have an

excessively small time step or too many elements.

The REMESH AT SHAPE command defines the critical shape at which refinement is triggered. The

element shape metric is based on a minimum tetrahedron face angle. The optimum tetrahedron has

four equilateral faces and angles between those faces of approximately 50 degrees. A degenerate

or inverted tetrahedron has a minimum face angle less than or equal to zero degrees. The element

shape provides a measure of how close an element is to becoming degenerate or inverted.

The CONTACT CLEANUP command determines whether contact-related algorithms are run follow-

ing remeshing. Remeshing near areas of contact may result in violations of contact constraints due

to changes in element topology. Reapplying contact algorithms following remeshing ensures that

contact requirements are maintained.

The DEBUG OUTPUT LEVEL command controls the amount of remeshing-related output printed

to the the log file and terminal output. If this is set to zero, no output occurs, while larger numbers

result in larger amounts of output. Output many include:

• Step-by-step values of metrics that trigger remeshing.

• The number of elements changed in a remesh step.

• Mass, energy, and momentum conservation balances during remeshing.

The MAX REMESH REBALANCE METRIC command line is used to control when the load rebalanc-

ing algorithm is called. During remeshing, the number of elements per processor can become out

of balance, causing the parallel analyses to slow down. The specified rebalance_metric is a

threshold for the ratio of the maximum number of elements on any processor to the average number

of elements per processor. After each remeshing is performed, if that ratio exceeds the specified

rebalance_metric, the rebalancing algorithm is called. The default value for this parameter is

1.25.

The MAX NUMBER ELEMENTS command line is used to set the maximum number of elements per

processor that may be created during a remeshing analysis. If this value is exceeded, a warning is

issued and no further remeshing is done. The default value for this parameter is 500000.

5.8.2 Remesh Block Set

BEGIN REMESH BLOCK SET

BLOCK = <string list>block_names

REMOVE BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

262 CHAPTER 5. ELEMENTS

END [REMESH BLOCK SET]

The BEGIN REMESH BLOCK SET command block, used in the scope of the REMESH command

block, defines the element block or set of blocks that the given remesh command block applies to.

The elements in the element block will be checked against the shape criteria and may be affected

by remeshing. Note that it is currently assumed that all elements to be remeshed are part of a single

material. Remeshing of equivalenced mesh blocks is not well supported.

These command lines, taken collectively, constitute a set of Boolean operators for constructing

a set of blocks. See Section 6.1.1 for more information about the use of these command lines

for creating a set of blocks used by the command block. There must be at least one BLOCK or

INCLUDE ALL BLOCKS command line in the command block.

The REMOVE BLOCK command line allows you to delete blocks from the set specified in the BLOCK

and/or INCLUDE ALL BLOCKS command line(s) through the string list block_names. Typically,

you would use the REMOVE BLOCK command line with the INCLUDE ALL BLOCKS command

line. If you want to include all but a few of the element blocks, a combination of the REMOVE

BLOCK command line and INCLUDE ALL BLOCKS should minimize input information.

5.8.3 Adaptive Refinement

BEGIN ADAPTIVE REFINEMENT

#

adaptive refinement control commands

ADAPT TYPE = NODE_PROXIMITY|POINT_PROXIMITY|SHARP_EDGE_PROXIMITY

RADIUS = <real>radius

ADAPT SHARP ANGLE = <real>angle (45)

ADAPT SMOOTH ANGLE = <real>angle (10)

GEOMETRIC POINT COORDINATES = <real>x <real>y <real>z

ADAPT SIZE RATIO = <real>ratio (2.0)

#

tool mesh entity commands

NODE SET = <string list>nodelist_names

REMOVE NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

REMOVE SURFACE = <string list>surface_names

BLOCK = <string list>block_names

REMOVE BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

#

activation commands

ACTIVE PERIODS = <string>period_names

INACTIVE PERIODS = <string>period_names

END [ADAPTIVE REFINEMENT]

The ADAPTIVE REFINEMENT command block, used in the context of the REMESH command

block, contains commands related to adaptive refinement. Adaptive refinement can be useful when

5.8. REMESHING 263

the desired level of refinement in a region of the mesh is unknown when the mesh is created, or

when a refinement region should move during the analysis. For example, complex physics may

occur near moving contact boundaries. Adaptive refinement can be used to produce a fine mesh

only near these boundaries and then have that refined region move with the contact boundaries as

they move.

5.8.3.1 Adaptive Refinement Control Commands

The following commands used within the ADAPTIVE REFINEMENT command block control the

adaptive refinement algorithm:

ADAPT TYPE = NODE_PROXIMITY|POINT_PROXIMITY|SHARP_EDGE_PROXIMITY

RADIUS = <real>radius

ADAPT SHARP ANGLE = <real>angle (45)

ADAPT SMOOTH ANGLE = <real>angle (10)

GEOMETRIC POINT COORDINATES = <real>x <real>y <real>z

ADAPT SIZE RATIO = <real>ratio (2.0)

The ADAPT TYPE command specifies the type of refinement. Currently three options exist:

• The NODE_PROXIMITY option refines areas of the remesh blocks that are near nodes of the

tool blocks.

• The SHARP_EDGE_PROXIMITY option refines areas of the remesh blocks that are near exte-

rior sharp edges of tool blocks. This command is specialized to refine regions for contact.

To correctly represent contacting geometries, small elements are often required to allow ma-

terial flow around sharp intruding edges.

• The POINT_PROXIMITY option refines all nodes near a defined point in space.

The RADIUS command defines the minimum distance from a node to a given tool object in the

remesh block for that node to be considered for refinement. For example, if the refinement type is

POINT_PROXIMITY, each node within a distance of RADIUS to the defined point will be refined.

If refinement type is NODE_PROXIMITY, each node within a distance of RADIUS to any node in

the tool block will be refined. Nodes that are closer to the refinement point have more refinement

applied to them than nodes that are farther away. Thus, refinement grades the mesh smoothly from

fine to coarse elements over the distance RADIUS.

The ADAPT SHARP ANGLE and ADAPT SMOOTH ANGLE commands are used only with the

SHARP_EDGE_PROXIMITY refinement type and define edge sharpness thresholds for full, partial,

and no mesh refinement. Edges with angles sharper (smaller) than SHARP ANGLE trigger full mesh

refinement. Edges with angles smoother (larger) than ADAPT SMOOTH ANGLE do not trigger mesh

refinement. Edges with angles that fall between these two angles trigger a reduced level of mesh

refinement. These two commands define a transition zone over which the level of mesh refinement

varies smoothly from full refinement to zero refinement.

264 CHAPTER 5. ELEMENTS

The GEOMETRIC POINT COORDINATES command is used only with the POINT_PROXIMITY re-

finement type. This command defines the spatial location of the refinement tool point. This com-

mand may be used multiple times to define multiple refinement points.

The ADAPT SIZE RATIO command defines the degree of refinement applied. The default value

of 2.0 specifies that the mesh density should be doubled. A value less than one specifies that the

mesh should be coarsened.

5.8.3.2 Tool Mesh Entity Commands

The NODE_PROXIMITY and SHARP_EDGE_PROXIMITY types of adaptive refinement are based

on proximity to tool mesh objects, which are collections of nodes or edges. For example, in a

simulation of a sheet metal forming process, the punch tool may be defined as a tool mesh object,

thus triggering adaptive refinement in the sheet metal that is in proximity to the punch tool.

These tool objects do not refine the body to be refined, but define objects that will trigger refinement

if they are in the proximity of the body to be refined. The following commands are used within the

ADAPTIVE REFINEMENT command block to define tool entities:

NODE SET = <string list>nodelist_names

REMOVE NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

REMOVE SURFACE = <string list>surface_names

BLOCK = <string list>block_names

REMOVE BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

These commands are a set of Boolean operators for constructing a set of mesh entities. See Sec-

tion 6.1.1 for more information about the use of these command lines. Multiple types of these

commands can be used together to form a set of nodes or edges.

It is important to note that for the NODE_PROXIMITY adaptivity type, any type of mesh entity can

be used. A set of nodes is formed from those contained in all node sets, surfaces, and blocks

listed. For the SHARP_EDGE_PROXIMITY adaptivity type, however, only blocks and surfaces may

be used. That adaptivity type requires information about element edges that is not available from

node sets.

5.8.3.3 Activation Commands

Adaptive refinement, if used, is by default active throughout an analysis. If desired, it can option-

ally be activated or deactivated during select time periods using the following commands in the

ADAPTIVE REFINEMENT command block:

ACTIVE PERIODS = <string>period_names

INACTIVE PERIODS = <string>period_names

See Section 2.5 for more information regarding these commands.

5.9. REFERENCES 265

5.9 References

1. Taylor, L. M., and D. P. Flanagan. Pronto3D: A Three-Dimensional Transient Solid Dy-

namics Program, SAND87-1912. Albuquerque, NM: Sandia National Laboratories, March

1989.

2. Rashid, M. M. “Incremental Kinematics for Finite Element Applications.” International

Journal for Numerical Methods in Engineering 36 (1993): 3937–3956.

3. Dohrman, C. R., M. W. Heinstein, J. Jung, S. W. Key, and W. R. Witkowski. “Node-Based

Uniform Strain Elements for Three-Node Triangular and Four-Node Tetrahedral Meshes.”

International Journal for Numerical Methods in Engineering 47 (2000): 1549–1568.

4. Key, S. W., M. W. Heinstein, C. M. Stone, F. J. Mello, M. L. Blanford, and K. G. Budge.

“A Suitable Low-Order, Tetrahedral Finite Element for Solids.” International Journal for

Numerical Methods in Engineering 44 (1999) 1785–1805.

5. Key, S. W., and C. C. Hoff. “An Improved Constant Membrane and Bending Stress Shell

Element for Explicit Transient Dynamics.” Computer Methods in Applied Mechanics and

Engineering 124, no. 1–2 (1995): 33–47.

6. Laursen, T. A., S. W. Attaway, and R. I. Zadoks. SEACAS Theory Manuals: Part III. Fi-

nite Element Analysis in Nonlinear Solid Mechanics, SAND98-1760/3. Albuquerque, NM:

Sandia National Laboratories, 1999.

7. Flanagan, D. P., and T. Belytschko. “A Uniform Strain Hexahedron and Quadrilateral with

Orthogonal Hourglass Control.” International Journal for Numerical Methods in Engineer-

ing 17 (1981): 679–706.

8. Swegle, J. W. SIERRA: PRESTO Theory Documentation: Energy Dependent Materials Ver-

sion 1.0. Albuquerque, NM: Sandia National Laboratories, October 2001.

9. Scherzinger, W. M., and D. C. Hammerand. Constitutive Models in LAME, SAND2007-

5873. Albuquerque, NM: Sandia National Laboratories, September 2007.

10. Swegle, J. W., S. W. Attaway, M. W. Heinstein, F. J. Mello, and D. L. Hicks. An Analysis

of Smoothed Particle Hydrodynamics, SAND93-2513. Albuquerque, NM: Sandia National

Laboratories, March 1994.

11. Sjaardema, G. D. Overview of the Sandia National Laboratories Engineering Analysis Code

Access System, SAND92-2292. Albuquerque, NM: Sandia National Laboratories, January

1993.

http://jal.sandia.gov/SEACAS/Documentation/SEACAS_Overview.pdf.

12. Brown, K. H., R. M. Summers, M. W. Glass, A. S. Gullerud, M. W. Heinstein, and R. E.

Jones. ACME: Algorithms for Contact in a Multiphysics Environment, API Version, 2.2,

SAND2004-5486. Albuquerque, NM: Sandia National Laboratories, October 2001.

http://jal.sandia.gov/SEACAS/Documentation/SEACAS_Overview.pdf

266 CHAPTER 5. ELEMENTS

13. Sandia National Laboratories. “Zoltan: Data-Management Services for Parallel Applica-

tions.” http://www.cs.sandia.gov/zoltan/ (accessed March 17, 2008).

14. Monaghan, J. “SPH without a tensile instability.” Journal of Computational Physics 12,

(2000): 622

http://www.cs.sandia.gov/zoltan/

Chapter 6

Boundary Conditions and Initial Conditions

Presto offers a variety of options for defining boundary and initial conditions. Typically, boundary

and initial conditions are defined on some subset of mesh entities (node, element face, element)

defining a model. Presto offers a flexible means to define subsets of mesh entities. Section 6.1.1

describes commands that will let you define some subset of a mesh entity using a collection of

commands that constitute a set of Boolean operators.

The remaining parts of this chapter discuss the following functionality:

- Section 6.2 presents methods for setting the initial values of registered variables in Presto.

Presto has the flexibility to set a complex initial state for some variable such as nodal velocity

or element stress.

- Kinematic boundary conditions typical of those you would expect in a solid mechanics code

(fixed displacement, prescribed acceleration, etc.) are options in Presto and described in Sec-

tion 6.3. Most of these boundary conditions let you specify a time history using a function,

a user subroutine, or by reading values from a mesh file.

- Section 6.4 documents a number of initial velocity options available in Presto.

- Force boundary conditions typical of those you would expect in a solid mechanics code

(prescribed force, traction, etc.) are options in Presto and described in Section 6.5. Most

of these force boundary conditions let you specify a time history using a function or a user

subroutine.

- Section 6.6 discusses the gravity load option. A gravity load is a body force boundary

condition.

- Section 6.7 details a number of options available for describing a temperature field in Presto.

- Section 6.8 details the options available for describing a pore pressure field.

- Section 6.10 describes a number of specialized boundary conditions.

267

268 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

6.1 General Boundary Condition Concepts

There are general principles that apply to all of the available types of boundary conditions. To

apply a boundary condition, a set of mesh entities and the magnitude and/or direction in which it is

to be applied must be specified. Presto provides several methods for both specifying the set of mesh

entities and for prescribing how the boundary condition is to be applied. The general concepts on

how this is done are applicable to all of the boundary condition types, and are described in the

following sections.

6.1.1 Mesh-Entity Assignment Commands

A number of standard command lines exist to define a set of mesh entities (node, element face,

element) associated with some type of mechanics. (Mechanics can be a boundary condition, an

initial condition, or a gravity load.) All these command lines exist within the command blocks for

the various mechanics, which in turn exist within the region scope. These command lines, taken

collectively, constitute a set of Boolean operators for constructing sets of mesh entities.

The first set of command lines we will consider is as follows:

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

In the above command lines, the string list nodelist_names is used to represent one or more

node sets as discussed in Section 1.5. A node set is referenced as nodelist_id, where id is some

integer. For example, suppose you have three node lists in your model: 10, 23, and 105. If you

want to combine all these node lists so that they form one set of nodes for, say, your boundary

condition or initial condition, then you would use the command line:

NODE SET = nodelist_10 nodelist_23 nodelist_105

This convention applies as well to any surface-related command line that uses the string list

surface_names or any block-related command line that uses the string list block_names.

The NODE SET command line associates a set of nodes with a mechanics. A mechanics may

be applied to multiple node sets by putting multiple node set names on the command line or by

repeating the command line multiple times.

The SURFACE command line associates a set of element faces with a mechanics. A mechanics

may be applied to multiple surfaces by putting multiple surface names on the command line or

by repeating the command line multiple times. The SURFACE command line can also be used

to associate a set of nodes with a mechanics. For example, suppose we wish to use the fixed

displacement kinematic boundary condition. Although this is a nodal boundary condition (the

condition is applied to individual nodes), a SURFACE command line can be used to establish the

set of nodes. If the command line

6.1. GENERAL BOUNDARY CONDITION CONCEPTS 269

SURFACE = surface_101

appears in a fixed displacement boundary condition, then all the nodes associated with surface 101

will be associated with the boundary condition.

The BLOCK command line associates a set of elements with a mechanics. A mechanics may be

applied to multiple blocks by putting multiple block names on the command line or by repeating

the command line multiple times. The BLOCK command line can also be used to associate a set of

nodes with a mechanics. For example, suppose we wish to use the fixed displacement kinematic

boundary condition as in the previous example. If the command line

BLOCK = block_50

appears in a fixed displacement kinematic boundary condition, then all the nodes associated with

block 50 will be associated with the boundary condition.

The INCLUDE ALL BLOCKS command line associates all blocks with a mechanics. This will apply

the mechanics to all nodes and elements in the model.

The block-related command lines associated with contact will generate surfaces. The block com-

mand lines associated with boundary conditions, initial conditions, and gravity will NOT generate

surfaces.

Any combination of the above command lines can be used to create a union of mesh entities.

Suppose, for example, that the command lines

NODE SET = nodelist_2

SURFACE = surface_3

appear in a FIXED DISPLACEMENT command block for a kinematic boundary condition. The set

of nodes associated with the boundary condition will be the union of the set of nodes associated

with surface 3 and the set of nodes associated with node set 2.

When a union of mesh entities is created by using two or more of the above command lines, a

mesh entity may appear in more than one topological entity—node set, surface, block. However,

the mechanics is applied to the mesh entity only once. For example, node 67 may be a part of

nodelist 2 and surface 3. Including both nodelist 2 and surface 3 into a mechanics will only apply

the mechanics to node 67 once.

The set of mesh entities associated with a mechanics can be edited (mesh entities can be deleted

from the set) by using the following command lines:

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

The REMOVE NODE SET command line deletes a set of nodes from the node set associated with a

mechanics.

270 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

The REMOVE SURFACE command line deletes a set of element faces from the set of element faces

associated with a mechanics. It will remove a set of nodes associated with the surface from the set

of nodes associated with the mechanics.

The REMOVE BLOCK command line deletes a set of elements from the set of elements associated

with a mechanics. It will remove a set of nodes associated with the block from the node set

associated with the mechanics.

6.1.2 Methods for Specifying Boundary Conditions

There are three main methods which can be used to prescribe most types of boundary conditions

available in Presto.

• The boundary condition can be prescribed using commands in the input file. These com-

mands are categorized as “specification commands” in this document. Depending on the

type of the boundary condition, it is be necessary to prescribe its direction and/or magnitude.

Boundary conditions can be specified this way when a set of mesh entities is to experience a

similar condition with a time variation that can be expressed by a function. One of the fol-

lowing commands is used to specify the direction of the boundary condition: COMPONENT,

DIRECTION, CYLINDRICAL AXIS, or RADIAL AXIS. The magnitude is defined using one

of MAGNITUDE, FUNCTION or ANGULAR VELOCITY. These commands are used in various

combinations depending on the type of the boundary condition. The details of how to use

them are provided in the descriptions of the various boundary condition types.

• If the nature of the boundary condition is such its variation in time and space can not be

described easily by the combination of a function and a direction, it may be necessary to

use a user-defined subroutine. User subroutines provide a very general capability to define

how kinematic or force boundary conditions are applied. The use of user-defined subroutines

does increase the complexity of defining the model, however. The user must write and debug

the subroutine and compile and link it in with Presto. Because of the added complexity, user

subroutines should only be used if the needed capability is not provided by the other methods

of prescribing boundary conditions.

• For some types of boundary conditions, the values of the field to be prescribed can be read

in from an existing output database. This is often used as a method to transfer results from

one analysis code to another. One of the common uses for this capability is to compute

temperatures using a thermal code, and then transfer the temperature fields to Presto to study

combined mechanical and thermal effects. This capability can be used either to read in initial

values or to read in a series of values that vary over time.

In the following sections describing specific types of boundary conditions, the commands are

grouped according to these three categories.

6.2. INITIAL VARIABLE ASSIGNMENT 271

6.2 Initial Variable Assignment

BEGIN INITIAL CONDITION

#

mesh-entity set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

variable identification commands

INITIALIZE VARIABLE NAME = <string>var_name

VARIABLE TYPE = NODE|EDGE|FACE|ELEMENT|GLOBAL

#

specification command

MAGNITUDE = <real list>initial_values

#

external database commands

READ VARIABLE = <string>var_name

COPY VARIABLE = <string>var_name [FROM MODEL <string>model_name]

TIME = <real>time

#

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name |

SURFACE SUBROUTINE = <string>subroutine_name |

ELEMENT BLOCK SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

additional command

SCALE FACTOR = <real>scale_factor(1.0)

END [INITIAL CONDITION]

Presto supports a general initialization procedure for setting the value of any variable. This proce-

dure can be used to set material state variables, shell thickness, initial stress, etc. There is minimal

checking in Presto, however, to ensure that the changes made yield a consistent system. There is

also no guarantee that the changes will not be overwritten or misinterpreted by some other internal

routine depending on what variable is being changed. Thus, caution is advised when using this

capability.

272 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

The INITIAL CONDITION command block, which appears in the region scope, is used to select

a method and set values for initializing a variable. The command block specifies the initial value

of a global variable or a variable associated with a set of mesh entities, i.e., nodes, edges, faces, or

elements. The user has three options for setting initial values: with a constant magnitude, with an

input mesh variable, or by a user subroutine. Only one of these three options can be specified in

the command block.

The command block contains five groups of commands—mesh-entity set, variable identification,

magnitude, input mesh variable, and user subroutine. In addition to the command lines in the five

groups, there is one additional command line: SCALE FACTOR. Following are descriptions of the

different command groups and the SCALE FACTOR command line.

6.2.1 Mesh-Entity Set Commands

The mesh-entity set commands portion of the INITIAL CONDITION command block spec-

ifies the nodes, element faces, or elements associated with the variable to be initialized. This

portion of the command block can include some combination of the following command lines:

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators for constructing a

set of nodes, element faces, or elements. See Section 6.1.1 for more information about the use of

these command lines for mesh entities. There must be at least one NODE SET, SURFACE, BLOCK,

or INCLUDE ALL BLOCKS command line in the command block.

6.2.2 Variable Identification Commands

Any variable used in the INITIAL CONDITION command block must exist in Presto. The variable

can be any currently registered variable in Presto or any user-defined variable created with the

USER VARIABLE command block (see Section 9.2.4).

There are two command lines that identify the variable:

INITIALIZE VARIABLE NAME = <string>var_name

VARIABLE TYPE = [NODE|EDGE|FACE|ELEMENT|GLOBAL]

The INITIALIZE VARIABLE NAME command line gives the name of the variable for which initial

values are being assigned. As mentioned, the string var_name must be some variable known to

Presto; it cannot be an arbitrary user-selected name.

6.2. INITIAL VARIABLE ASSIGNMENT 273

The VARIABLE TYPE command line provides additional information about the variable being ini-

tialized. The options NODE, EDGE, FACE, ELEMENT, and GLOBAL on the command line indicate

whether the variable is, respectively, a nodal, edge, face, element, or global quantity. One of these

options must appear in the VARIABLE TYPE command line.

Both of these command lines are required regardless of the option selected to set values for the

variable.

6.2.3 Specification Command

If the constant magnitude command is used, one or more initial values are specified directly in the

command block. This is done using the following command line:

MAGNITUDE = <real list>initial_values

The initial_values specified on the MAGNITUDE command line will set the values for the

variable given by var_name in the INITIALIZE VARIABLE NAME command line. The number

of values is dependent on the type of the variable specified in the INITIALIZE VARIABLE NAME

command line. For example, if the user wanted to initialize the velocity at a set of nodes, three

quantities would have to be specified since the velocity at a node is a vector quantity. If the user

wanted to initialize the stress tensor for a set of uniform-gradient, eight-node hexahedral elements,

six quantities would have to be specified since the stress tensor for this element type is described

with six values.

6.2.4 External Mesh Database Commands

If the external database option is used, the initial values for a variable are read from an external

mesh database. As an example, suppose the mesh file contains a set of element temperatures.

These temperature values (which can vary for each element) can be used to initialize a temperature

value associated with each element.

The values are read from a finite element model defined via the FINITE ELEMENT MODEL com-

mand block described in Section 5.1. The finite element model can either be the model used by

the region for its mesh definition as specified with the USE FINITE ELEMENT MODEL command

(see Section 2.3), or it can be a different (but compatible) model. The following command lines

control the use of an external mesh database to prescribe initial conditions:

READ VARIABLE = <string>var_name

COPY VARIABLE = <string>var_name [FROM MODEL <string>model_name]

TIME = <real>time

The READ VARIABLE = <string>var_name command is used to read the variable from the

region’s finite element mesh database. The var_name string specifies the name of the vari-

able as it appears on the mesh database. The number of values associated with the variable

274 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

in the mesh file must be the same number associated with the variable name specified in the

INITIALIZE VARIABLE NAME command line. For example, if the variable specified by the

INITIALIZE VARIABLE NAME has a single value, then the variable specified in the mesh file

must also have a single value.

If the analysis will cause topology modifications due to the use of load balancing, remeshing, or

other techniques that can result in nodes and/or elements being moved among processors, then

the COPY VARIABLE command should be used. This command specifies that the variable named

var_name will be used to specify the initial conditions. The FROM MODEL <string>model_

name portion of the command is optional. If it is specified, the results are read from the mesh

database named model_name. Otherwise, the region’s finite element mesh database will be used

as the model.

The primary difference between the behavior of the COPY VARIABLE command and the READ

VARIABLE command is that the copy command handles topology modifications caused by load

balancing and remeshing, which can move nodes and elements to different processors. The

COPY VARIABLE command will correctly match the nodes from the external database to the cor-

responding nodes in the analysis and communicate the data between processors if needed. Note

that the nodes in the two finite element models must match spatially, but they can be distributed on

different processors.

The variable name used on the mesh file can be arbitrary. The name can be identical to or different

from the registered variable name specified on the INITIALIZE VARIABLE NAME command line.

The field to be read may be specified at an arbitrary number of different times on the mesh file. The

default behavior is to use the value of the variable at the initial time in the analysis to prescribe the

initial condition. The time history is interpolated as needed for an initial analysis time that does not

correspond exactly to a time on the mesh file. The TIME command line can optionally be used to

select a specific time to initialize a variable. If the specified time on the TIME command line does

not correspond exactly to a time on the mesh file, the data on the mesh file will be interpolated as

needed.

6.2.5 User Subroutine Commands

If the user subroutine option is used, the initial values will be calculated by a subroutine that is

written by the user explicitly for this purpose. The subroutine will be called by Presto at the

appropriate time to perform the calculations.

Following are the command lines related to the user subroutine option:

NODE SET SUBROUTINE = <string>subroutine_name |

SURFACE SUBROUTINE = <string>subroutine_name |

ELEMENT BLOCK SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

6.2. INITIAL VARIABLE ASSIGNMENT 275

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

Only one of the first three command lines listed above can be specified in the command block.

The particular command line selected depends on the mesh-entity type of the variable being ini-

tialized. For example, variables associated with nodes would be initialized if you are using the

NODE SET SUBROUTINE command line, variables associated with faces if you are using the

SURFACE SUBROUTINE command line, and variables associated with elements if you are using

the ELEMENT BLOCK SUBROUTINE command line. The string subroutine_name is the name

of a FORTRAN subroutine that is written by the user.

Following the selected subroutine command line are other command lines that may be used to

implement the user subroutine option. These command lines are described in Section 9.2.2 and

consist of SUBROUTINE DEBUGGING OFF, SUBROUTINE DEBUGGING ON, SUBROUTINE REAL

PARAMETER, SUBROUTINE INTEGER PARAMETER, and SUBROUTINE STRING PARAMETER.

Examples of using these command lines are provided throughout Chapter 9.

The application of user subroutines for variable initialization is essentially the same as the ap-

plication of user subroutines in general. See Section 6.3.8 and Chapter 9 for more details on

implementing the user subroutine option.

When the user subroutine option is used for variable initialization, the user subroutine is called only

once. Also, when a user subroutine is being used, the returned value is the new (initial) variable

value at each mesh entity, and the flags array is ignored.

6.2.6 Additional Command

This command line provides an additional option for the INITIAL CONDITION command block:

SCALE FACTOR = <real>scale_factor(1.0)

Any initial value can be scaled by use of the SCALE FACTOR command line. An initial value

generated by any one of the three initial-value-setting options in this command block (i.e., constant

magnitude, input mesh, or user subroutine) will be scaled by the real value scale_factor.

276 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

6.3 Kinematic Boundary Conditions

The various kinematic boundary conditions available in Presto are described in this section. The

kinematic boundary conditions are nested inside the region scope.

6.3.1 Fixed Displacement Components

BEGIN FIXED DISPLACEMENT

#

node set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

specification commands

COMPONENT = <string>X/Y/Z | COMPONENTS = <string>X/Y/Z

#

additional commands

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [FIXED DISPLACEMENT]

The FIXED DISPLACEMENT command block fixes displacement components (X, Y, Z, or some

combination thereof) for a set of nodes. This command block contains two groups of commands—

node set and component. Each of these command groups is basically independent of the other.

In addition to the command lines in the two command groups, there are two additional command

lines: ACTIVE PERIODS and INACTIVE PERIODS. These are used to activate or deactivate this

kinematic boundary condition for certain time periods. Following are descriptions of the different

command groups.

6.3.1.1 Node Set Commands

The node set commands portion of the FIXED DISPLACEMENT command block specifies the

nodes associated with the boundary condition. This portion of the command block can include

some combination of the following command lines:

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

6.3. KINEMATIC BOUNDARY CONDITIONS 277

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators for constructing a

set of nodes. See Section 6.1.1 for more information about the use of these command lines for

creating a set of nodes used by the boundary condition. There must be at least one NODE SET,

SURFACE, BLOCK, or INCLUDE ALL BLOCKS command line in the command block.

6.3.1.2 Specification Commands

There are two component specification commands available in the FIXED DISPLACEMENT com-

mand block:

COMPONENT = X/Y/Z | COMPONENTS = X/Y/Z

The displacement components that are to be fixed can be specified with either the COMPONENT

command line or the COMPONENTS command line. There can be only one COMPONENT command

line or one COMPONENTS command line in the command block. The user can specify any combi-

nation of the components to be fixed, as in X, Z, X Z, Y X, etc.

6.3.1.3 Additional Commands

The ACTIVE PERIODS and INACTIVE PERIODS command lines can optionally appear in the

FIXED DISPLACEMENT command block:

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

These command lines determine when the boundary condition is active. See Section 2.5 for more

information about these optional command lines.

278 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

6.3.2 Prescribed Displacement

BEGIN PRESCRIBED DISPLACEMENT

#

node set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

specification commands

DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z |

CYLINDRICAL AXIS = <string>defined_axis |

RADIAL AXIS = <string>defined_axis

FUNCTION = <string>function_name

#

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

external database commands

READ VARIABLE = <string>var_name

COPY VARIABLE = <string>var_name [FROM MODEL <string>model_name]

TIME = <real>time

#

additional commands

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [PRESCRIBED DISPLACEMENT]

The PRESCRIBED DISPLACEMENT command block prescribes a displacement field for a given

set of nodes. The displacement field associates a vector giving the magnitude and direction of the

displacement with each node in the set of nodes. The displacement field may vary over time and

space. If the displacement field has only a time-varying magnitude and uses one of four methods

for setting direction, the specification commands in the above command block can be used to

specify the displacement field. If the displacement field is more complex, a user subroutine is

6.3. KINEMATIC BOUNDARY CONDITIONS 279

used to specify the displacement field. The displacement field can also be read from an external

mesh database. In a given boundary condition command block, commands from only one of

the command groups (specification commands, user subroutine commands, or external database

commands) may be used.

The PRESCRIBED DISPLACEMENT command block contains four groups of commands—node

set, function, user subroutine, and external database. Each of these command groups is basically

independent of the others. In addition to the command lines in the four command groups, there are

three additional command lines: SCALE FACTOR, ACTIVE PERIODS, and INACTIVE PERIODS.

The SCALE FACTOR command line can be used in conjunction with the specification commands

the user subroutine commands, or the external database command. The ACTIVE PERIODS and

INACTIVE PERIODS command lines are used to activate or deactivate this kinematic boundary

condition for certain time periods. Following are descriptions of the different command groups

and the SCALE FACTOR and ACTIVE PERIODS command lines.

6.3.2.1 Node Set Commands

The node set commands portion of the PRESCRIBED DISPLACEMENT command block defines

a set of nodes associated with the prescribed displacement field and can include some combination

of the following command lines:

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators for constructing a

set of nodes. See Section 6.1.1 for more information about the use of these command lines for

creating a set of nodes used by the boundary condition. There must be at least one NODE SET,

SURFACE, BLOCK, or INCLUDE ALL BLOCKS command line in the command block.

6.3.2.2 Specification Commands

If the specification commands are used, the displacement vector at any given time is the same for

all nodes in the node set associated with the particular PRESCRIBED DISPLACEMENT command

block.

Following are the command lines used to specify the prescribed displacement with a direction and

a function:

DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z |

280 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

CYLINDRICAL AXIS = <string>defined_axis |

RADIAL AXIS = <string>defined_axis

FUNCTION = <string>function_name

The displacement can be specified along an arbitrary user-defined direction, along a component

direction (X, Y, or Z), along the azimuthal direction in a cylindrical coordinate system (defined

in reference to an axis), or along a radial direction (defined in reference to an axis). Only one

of these options (i.e., command lines) is allowed. The displacement is prescribed only in the

specified direction. A prescribed displacement boundary condition does not influence the motion

in directions orthogonal to the prescribed direction.

- The DIRECTION command line is used to prescribe displacement in an arbitrary user-defined

direction. The name in the string defined_direction is a reference to a direction, which

is defined using the DEFINE DIRECTION command block within the SIERRA scope.

- The COMPONENT command line is used to specify that the prescribed displacement vector

lies along one of the component directions. The COMPONENT command line is a shortcut

to an internally defined direction vector; for example, component x corresponds to using

direction vector (1, 0, 0).

- The CYLINDRICAL AXIS command line is used to specify that the prescribed displacement

is to be applied in the azimuthal direction of a cylindrical coordinate system. The string

defined_axis refers to the name of the axis of the cylindrical coordinate system, and

which is defined via a DEFINE AXIS command block in the SIERRA scope. The displace-

ment is prescribed as a rotation in radians about the axis. Nodes with this type of boundary

condition are free to move in the radial and height directions in the cylindrical coordinate

system. Restraints can be placed on the nodeset in those directions if desired by applying sep-

arate kinematic boundary conditions that contain RADIAL AXIS or DIRECTION commands

that refer to the same axis. Note that this type of boundary condition is not a rotational

boundary condition; it only affects translational degrees of freedom.

Known Issue: If a prescribed displacement with the CYLINDRICAL AXIS

option is applied to nodes that fall on the axis, it will have no effect. Separate

boundary conditions should be applied to those nodes to fix them in the plane

normal to the axis.

- The RADIAL AXIS command line requires an axis definition that appears in the SIERRA

scope. The string defined_axis uses an axis_name that is defined in the SIERRA scope

(via a DEFINE AXIS command line). For this option, a radial line is drawn from a node to

the radial axis. The prescribed displacement vector lies along this radial line from the node

to the radial axis.

The magnitude of the displacement is specified by the FUNCTION command line. This references a

function_name (defined in the SIERRA scope using a DEFINITION FOR FUNCTION command

block) that specifies the magnitude of the displacement vector as a function of time. The magnitude

can be scaled by use of the SCALE FACTOR command line described in Section 6.3.2.5.

6.3. KINEMATIC BOUNDARY CONDITIONS 281

6.3.2.3 User Subroutine Commands

If the user subroutine option is used, the displacement vector may vary spatially at any given time

for each of the nodes in the node set associated with the particular PRESCRIBED DISPLACEMENT

command block. The user subroutine option allows for a more complex description of the dis-

placement field than do the specification commands, but the user subroutine option also requires

that you write a user subroutine to implement this capability. The user subroutine will be used to

define a displacement direction and a magnitude for every node to which the boundary condition

will be applied. The subroutine will be called by Presto at the appropriate time to generate the

displacement field.

Following are the command lines related to the user subroutine option:

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

The user subroutine option is invoked by using the NODE SET SUBROUTINE command line. The

string subroutine_name is the name of a FORTRAN subroutine that is written by the user.

Following the NODE SET SUBROUTINE command line are other command lines that may be used

to implement the user subroutine option. These command lines are described in Section 9.2.2 and

consist of SUBROUTINE DEBUGGING OFF, SUBROUTINE DEBUGGING ON, SUBROUTINE REAL

PARAMETER, SUBROUTINE INTEGER PARAMETER, and SUBROUTINE STRING PARAMETER.

Examples of using these command lines are provided throughout Chapter 9.

The magnitude set in the user subroutine can be scaled by use of the SCALE FACTOR command

line, as described in Section 6.3.2.5.

See Section 6.3.8 and Chapter 9 for more details on implementing the user subroutine option.

6.3.2.4 External Mesh Database Commands

If the external database option is used, the displacement vector (or specified components of the

vector) is read from an external mesh database. The displacements are read from a finite element

model defined via the FINITE ELEMENT MODEL command block described in Section 5.1. The

finite element model can either be the model used by the region for its mesh definition as specified

with the USE FINITE ELEMENT MODEL command (see Section 2.3), or it can be a different (but

compatible) model. The following command lines control the use of an external mesh database to

prescribe the displacement:

READ VARIABLE = <string>var_name

282 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

COPY VARIABLE = <string>var_name [FROM MODEL <string>model_name]

TIME = <real>time

The READ VARIABLE = <string>var_name command is used to read the displacement vector

from the region’s finite element mesh database. The var_name string specifies the name of the

variable as it appears on the mesh database.

If the analysis will cause topology modifications due to the use of load balancing, remeshing, or

other techniques that can result in nodes and/or elements being moved among processors, then

the COPY VARIABLE command should be used. This command specifies that the variable named

var_name will be used to specify the displacement. The FROM MODEL <string>model_name

portion of the command is optional. If it is specified, the results are read from the mesh database

named model_name. Otherwise, the region’s finite element mesh database will be used as the

model.

The primary difference between the behavior of the COPY VARIABLE command and the READ

VARIABLE command is that the copy command handles topology modifications caused by load

balancing and remeshing, which can move nodes and elements to different processors. The

COPY VARIABLE command will correctly match the nodes from the external database to the cor-

responding nodes in the analysis and communicate the data between processors if needed. Note

that the nodes in the two finite element models must match spatially, but they can be distributed on

different processors.

The field to be read may be specified at an arbitrary number of different times on the mesh file.

The default behavior is for the time history of the variable read from the file to be used to prescribe

the boundary condition. The time history is interpolated as needed for analysis times that do not

correspond exactly to times on the mesh file. The TIME command line can optionally be used

to specify that the boundary condition be constant over time, based on the value of the variable

read from the file at the specified time. If the specified time on the TIME command line does not

correspond exactly to a time on the mesh file, the data on the mesh file will be interpolated as

needed.

6.3.2.5 Additional Commands

These command lines in the PRESCRIBED DISPLACEMENT command block provide additional

options for the boundary condition:

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

The SCALE FACTOR command line is used to apply an additional scaling factor, which is constant

in both time and space, to all vector magnitude values of the field defined by the specification

commands or the user subroutine. For example, if the magnitude of the displacement in a time

history function is given as 1.5 from time 1.0 to time 2.0 and the scale factor is 0.5, then the

6.3. KINEMATIC BOUNDARY CONDITIONS 283

magnitude of the displacement from time 1.0 to 2.0 is 0.75. The default value for the scale factor

is 1.0.

The ACTIVE PERIODS and INACTIVE PERIODS command lines determine when the boundary

condition is active. See Section 2.5 for more information about these command lines.

284 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

6.3.3 Prescribed Velocity

BEGIN PRESCRIBED VELOCITY

#

node set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

specification commands

DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z |

CYLINDRICAL AXIS = <string>defined_axis |

RADIAL AXIS = <string>defined_axis

FUNCTION = <string>function_name

#

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

external database commands

READ VARIABLE = <string>var_name

COPY VARIABLE = <string>var_name [FROM MODEL <string>model_name]

TIME = <real>time

#

additional commands

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [PRESCRIBED VELOCITY]

The PRESCRIBED VELOCITY command block prescribes a velocity field for a given set of nodes.

The velocity field associates a vector giving the magnitude and direction of the velocity with each

node in the node set. The velocity field may vary over time and space. If the velocity field has only

a time-varying magnitude and uses one of four methods for setting direction, the specification com-

mands in the above command block can be used to specify the velocity field. If the velocity field is

more complex, a user subroutine is used to specify the velocity field. The velocity field can also be

6.3. KINEMATIC BOUNDARY CONDITIONS 285

read from an external mesh database. In a given boundary condition command block, commands

from only one of the command groups (specification commands, user subroutine commands, or

external database commands) may be used.

The PRESCRIBED VELOCITY command block contains four groups of commands—node set,

function, user subroutine, and external database. Each of these command groups is basically inde-

pendent of the others. In addition to the command lines in the four command groups, there are three

additional command lines: SCALE FACTOR, ACTIVE PERIODS, and INACTIVE PERIODS. The

SCALE FACTOR command line can be used in conjunction with either the specification commands

or the user subroutine commands. The ACTIVE PERIODS and INACTIVE PERIODS command

lines are used to activate or deactivate this kinematic boundary condition for certain time periods.

Following are descriptions of the different command groups.

6.3.3.1 Node Set Commands

The node set commands portion of the PRESCRIBED VELOCITY command block defines a set

of nodes associated with the prescribed velocity field and can include some combination of the

following command lines:

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators for constructing a

set of nodes. See Section 6.1.1 for more information about the use of these command lines for

creating a set of nodes used by the boundary condition. There must be at least one NODE SET,

SURFACE, BLOCK, or INCLUDE ALL BLOCKS command line in the command block.

6.3.3.2 Specification Commands

If the specification commands are used, the velocity vector at any given time is the same for all

nodes in the node set associated with the particular PRESCRIBED VELOCITY command block.

Following are the command lines used to specify the prescribed velocity with a direction and a

function:

DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z |

CYLINDRICAL AXIS = <string>defined_axis |

RADIAL AXIS = <string>defined_axis

FUNCTION = <string>function_name

286 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

The velocity can be specified along an arbitrary user-defined direction, along a component direction

(X, Y, or Z), along the azimuthal direction in a cylindrical coordinate system (defined in reference

to an axis), or along a radial direction (defined in reference to an axis). Only one of these options

(i.e., command lines) is allowed. The velocity is prescribed only in the specified direction. A

prescribed velocity boundary condition does not influence the motion in directions orthogonal to

the prescribed direction.

- The DIRECTION command line is used to prescribe velocity in an arbitrary user-defined

direction. The name in the string defined_direction is a reference to a direction, which

is defined using the DEFINE DIRECTION command block within the SIERRA scope.

- The COMPONENT command line is used to specify that the prescribed velocity vector lies

along one of the component directions. The COMPONENT command line is a shortcut to an

internally defined direction vector; for example, component x corresponds to using direction

vector (1, 0, 0).

- The CYLINDRICAL AXIS command line is used to specify that the prescribed velocity is

to be applied in the azimuthal direction of a cylindrical coordinate system. The string

defined_axis refers to the name of the axis of the cylindrical coordinate system, and

which is defined via a DEFINE AXIS command block in the SIERRA scope. The velocity

is prescribed as a rotation in radians about the axis. Nodes with this type of boundary condi-

tion are free to move in the radial and height directions in the cylindrical coordinate system.

Restraints can be placed on the nodeset in those directions if desired by applying separate

kinematic boundary conditions that contain RADIAL AXIS or DIRECTION commands that

refer to the same axis. Note that this type of boundary condition is not a rotational boundary

condition; it only affects translational degrees of freedom.

Known Issue: If a prescribed velocity with the CYLINDRICAL AXIS op-

tion is applied to nodes that fall on the axis, it will have no effect. Separate

boundary conditions should be applied to those nodes to fix them in the plane

normal to the axis.

- The RADIAL AXIS command line requires an axis definition that appears in the SIERRA

scope. The string defined_axis uses an axis_name that is defined in the SIERRA scope

(via a DEFINE AXIS command line). For this option, a radial line is drawn from a node to

the radial axis. The velocity vector lies along this radial line from the node to the radial axis.

The magnitude of the velocity is specified by the FUNCTION command line. This references a

function_name (defined in the SIERRA scope using a DEFINITION FOR FUNCTION command

block) that specifies the magnitude of the velocity vector as a function of time. The magnitude can

be scaled by use of the SCALE FACTOR command line described in Section 6.3.3.5.

6.3. KINEMATIC BOUNDARY CONDITIONS 287

6.3.3.3 User Subroutine Commands

If the user subroutine option is used, the velocity vector may vary spatially at any given time for

each of the nodes in the node set associated with the particular PRESCRIBED VELOCITY command

block. The user subroutine option allows for a more complex description of the velocity field than

do the specification commands, but the user subroutine option also requires that you write a user

subroutine to implement this capability. The user subroutine will be used to define a velocity

direction and a magnitude for every node to which the boundary condition will be applied. The

subroutine will be called by Presto at the appropriate time to generate the velocity field.

Following are the command lines related to the user subroutine option:

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

The user subroutine option is invoked by using the NODE SET SUBROUTINE command line. The

string subroutine_name is the name of a FORTRAN subroutine that is written by the user.

Following the NODE SET SUBROUTINE command line are other command lines that may be used

to implement the user subroutine option. These command lines are described in Section 9.2.2 and

consist of SUBROUTINE DEBUGGING OFF, SUBROUTINE DEBUGGING ON, SUBROUTINE REAL

PARAMETER, SUBROUTINE INTEGER PARAMETER, and SUBROUTINE STRING PARAMETER.

Examples of using these command lines are provided throughout Chapter 9.

The magnitude set in the user subroutine can be scaled by use of the SCALE FACTOR command

line, as described in Section 6.3.3.5.

6.3.3.4 External Mesh Database Commands

If the external database option is used, the velocity vector (or specified components of the vector)

is read from an external mesh database. The velocities are read from a finite element model defined

via the FINITE ELEMENT MODEL command block described in Section 5.1. The finite element

model can either be the model used by the region for its mesh definition as specified with the USE

FINITE ELEMENT MODEL command (see Section 2.3), or it can be a different (but compatible)

model. The following command lines control the use of an external mesh database to prescribe the

velocity:

READ VARIABLE = <string>var_name

COPY VARIABLE = <string>var_name [FROM MODEL <string>model_name]

TIME = <real>time

288 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

The READ VARIABLE = <string>var_name command is used to read the velocity vector from

the region’s finite element mesh database. The var_name string specifies the name of the variable

as it appears on the mesh database.

If the analysis will cause topology modifications due to the use of load balancing, remeshing, or

other techniques that can result in nodes and/or elements being moved among processors, then the

COPY VARIABLE command should be used. This command specifies that the variable named var_

name will be used to specify the velocity. The FROM MODEL <string>model_name portion of

the command is optional. If it is specified, the results are read from the mesh database named

model_name. Otherwise, the region’s finite element mesh database will be used as the model.

The primary difference between the behavior of the COPY VARIABLE command and the READ

VARIABLE command is that the copy command handles topology modifications caused by load

balancing and remeshing, which can move nodes and elements to different processors. The

COPY VARIABLE command will correctly match the nodes from the external database to the cor-

responding nodes in the analysis and communicate the data between processors if needed. Note

that the nodes in the two finite element models must match spatially, but they can be distributed on

different processors.

The field to be read may be specified at an arbitrary number of different times on the mesh file.

The default behavior is for the time history of the variable read from the file to be used to prescribe

the boundary condition. The time history is interpolated as needed for analysis times that do not

correspond exactly to times on the mesh file. The TIME command line can optionally be used

to specify that the boundary condition be constant over time, based on the value of the variable

read from the file at the specified time. If the specified time on the TIME command line does not

correspond exactly to a time on the mesh file, the data on the mesh file will be interpolated as

needed.

6.3.3.5 Additional Commands

These command lines in the PRESCRIBED VELOCITY command block provide additional options

for the boundary condition:

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

The SCALE FACTOR command line is used to apply an additional scaling factor, which is constant

in both time and space, to all vector magnitude values of the field defined by the specification

commands or the user subroutine. For example, if the magnitude of the velocity in a time history

function is given as 1.5 from time 1.0 to time 2.0 and the scale factor is 0.5, then the magnitude of

the velocity from time 1.0 to 2.0 is 0.75. The default value for the scale factor is 1.0.

The ACTIVE PERIODS and INACTIVE PERIODS command lines determine when the boundary

condition is active. See Section 2.5 for more information about these command lines.

6.3. KINEMATIC BOUNDARY CONDITIONS 289

6.3.4 Prescribed Acceleration

BEGIN PRESCRIBED ACCELERATION

#

node set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

specification commands

DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z

FUNCTION = <string>function_name

#

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

external database commands

READ VARIABLE = <string>var_name

COPY VARIABLE = <string>var_name [FROM MODEL <string>model_name]

TIME = <real>time

#

additional commands

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [PRESCRIBED ACCELERATION]

The PRESCRIBED ACCELERATION command block prescribes an acceleration field for a given

set of nodes. The acceleration field associates a vector giving the magnitude and direction of

the acceleration with each node in the node set. The acceleration field may vary over time and

space. If the acceleration field has only a time-varying component, the specification commands in

the above command block can be used to specify the acceleration field. If the acceleration field

has both time-varying and spatially varying components, a user subroutine is used to specify the

acceleration field. The acceleration field can also be read from an external mesh database. In

a given boundary condition command block, commands from only one of the command groups

290 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

(specification commands, user subroutine commands, or external database commands) may be

used.

The PRESCRIBED ACCELERATION command block contains four groups of commands—node

set, function, user subroutine, and external database. Each of these command groups is basically

independent of the others. In addition to the command lines in the four command groups, there are

three additional command lines: SCALE FACTOR, ACTIVE PERIODS, and INACTIVE PERIODS.

The SCALE FACTOR command line can be used in conjunction with either the specification com-

mands or the user subroutine commands. The ACTIVE PERIODS and INACTIVE PERIODS com-

mand lines are used to activate or deactivate this kinematic boundary condition for certain time

periods. Following are descriptions of the different command groups.

6.3.4.1 Node Set Commands

The node set commands portion of the PRESCRIBED ACCELERATION command block defines

a set of nodes associated with the prescribed acceleration field and can include some combination

of the following command lines:

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators for constructing a

set of nodes. See Section 6.1.1 for more information about the use of these command lines for

creating a set of nodes used by the boundary condition. There must be at least one NODE SET,

SURFACE, BLOCK, or INCLUDE ALL BLOCKS command line in the command block.

6.3.4.2 Specification Commands

If the specification commands are used, the acceleration vector at any given time is the same for

all nodes in the node set associated with the particular PRESCRIBED ACCELERATION command

block. The direction of the acceleration vector is constant for all time; the magnitude of the accel-

eration vector may vary with time, however.

Following are the command lines used to specify the prescribed acceleration with a direction and

a function:

DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z

FUNCTION = <string>function_name

6.3. KINEMATIC BOUNDARY CONDITIONS 291

The acceleration can be specified either along an arbitrary user-defined direction or along a com-

ponent direction (X, Y, or Z), but not both. The acceleration is prescribed only in the specified

direction. A prescribed acceleration boundary condition does not influence the motion in direc-

tions orthogonal to the prescribed direction.

- The DIRECTION command line is used to prescribe acceleration in an arbitrary user-defined

direction. The name in the string defined_direction is a reference to a direction, which

is defined using the DEFINE DIRECTION command block within the SIERRA scope.

- The COMPONENT command line is used to specify that the prescribed acceleration vector lies

along one of the component directions. The COMPONENT command line is a shortcut to an

internally defined direction vector; for example, component x corresponds to using direction

vector (1, 0, 0).

The magnitude of the acceleration is specified by the FUNCTION command line. This references a

function_name (defined in the SIERRA scope using a DEFINITION FOR FUNCTION command

block) that specifies the magnitude of the acceleration vector as a function of time. The magnitude

can be scaled by use of the SCALE FACTOR command line described in Section 6.3.4.5.

6.3.4.3 User Subroutine Commands

If the user subroutine option is used, the acceleration vector may vary spatially at any given time

for each of the nodes in the node set associated with the particular PRESCRIBED ACCELERATION

command block. The user subroutine option allows for a more complex description of the accel-

eration field than do the specification commands, but the user subroutine option also requires that

you write a user subroutine to implement this capability. The user subroutine will be used to define

an acceleration direction and a magnitude for every node to which the boundary condition will be

applied. The subroutine will be called by Presto at the appropriate time to generate the acceleration

field.

Following are the command lines related to the user subroutine option:

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

The user subroutine option is invoked by using the NODE SET SUBROUTINE command line. The

string subroutine_name is the name of a FORTRAN subroutine that is written by the user.

Following the NODE SET SUBROUTINE command line are other command lines that may be used

to implement the user subroutine option. These command lines are described in Section 9.2.2 and

292 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

consist of SUBROUTINE DEBUGGING OFF, SUBROUTINE DEBUGGING ON, SUBROUTINE REAL

PARAMETER, SUBROUTINE INTEGER PARAMETER, and SUBROUTINE STRING PARAMETER.

Examples of using these command lines are provided throughout Chapter 9.

The magnitude set in the user subroutine can be scaled by use of the SCALE FACTOR command

line, as described in Section 6.3.4.5.

See Section 6.3.8 and Chapter 9 for more details on implementing the user subroutine option.

6.3.4.4 External Mesh Database Commands

If the external database option is used, the acceleration vector (or specified components of the

vector) is read from an external mesh database. The accelerations are read from a finite element

model defined via the FINITE ELEMENT MODEL command block described in Section 5.1. The

finite element model can either be the model used by the region for its mesh definition as specified

with the USE FINITE ELEMENT MODEL command (see Section 2.3), or it can be a different (but

compatible) model. The following command lines control the use of an external mesh database to

prescribe the acceleration:

READ VARIABLE = <string>var_name

COPY VARIABLE = <string>var_name [FROM MODEL <string>model_name]

TIME = <real>time

The READ VARIABLE = <string>var_name command is used to read the acceleration vector

from the region’s finite element mesh database. The var_name string specifies the name of the

variable as it appears on the mesh database.

If the analysis will cause topology modifications due to the use of load balancing, remeshing, or

other techniques that can result in nodes and/or elements being moved among processors, then

the COPY VARIABLE command should be used. This command specifies that the variable named

var_name will be used to specify the acceleration. The FROM MODEL <string>model_name

portion of the command is optional. If it is specified, the results are read from the mesh database

named model_name. Otherwise, the region’s finite element mesh database will be used as the

model.

The primary difference between the behavior of the COPY VARIABLE command and the READ

VARIABLE command is that the copy command handles topology modifications caused by load

balancing and remeshing, which can move nodes and elements to different processors. The

COPY VARIABLE command will correctly match the nodes from the external database to the cor-

responding nodes in the analysis and communicate the data between processors if needed. Note

that the nodes in the two finite element models must match spatially, but they can be distributed on

different processors.

The field to be read may be specified at an arbitrary number of different times on the mesh file.

The default behavior is for the time history of the variable read from the file to be used to prescribe

the boundary condition. The time history is interpolated as needed for analysis times that do not

correspond exactly to times on the mesh file. The TIME command line can optionally be used

6.3. KINEMATIC BOUNDARY CONDITIONS 293

to specify that the boundary condition be constant over time, based on the value of the variable

read from the file at the specified time. If the specified time on the TIME command line does not

correspond exactly to a time on the mesh file, the data on the mesh file will be interpolated as

needed.

6.3.4.5 Additional Commands

These command lines in the PRESCRIBED ACCELERATION command block provide additional

options for the boundary condition:

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

The SCALE FACTOR command line is used to apply an additional scaling factor, which is constant

in both time and space, to all vector magnitude values of the field defined by the specification

commands or the user subroutine. For example, if the magnitude of the acceleration in a time

history function is given as 1.5 from time 1.0 to time 2.0 and the scale factor is 0.5, then the

magnitude of the acceleration from time 1.0 to 2.0 is 0.75. The default value for the scale factor is

1.0.

The ACTIVE PERIODS and INACTIVE PERIODS command lines determine when the boundary

condition is active. See Section 2.5 for more information about these command lines.

294 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

6.3.5 Fixed Rotation

BEGIN FIXED ROTATION

#

node set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

specification commands

COMPONENT = <string>X/Y/Z | COMPONENTS = <string>X/Y/Z

#

additional commands

ACTIVE PERIODS = <string list>periods_names

INACTIVE PERIODS = <string list>periods_names

END [FIXED ROTATION]

The FIXED ROTATION command block fixes rotation about direction components (X, Y, Z, or

some combination thereof) for a set of nodes. This command block contains two groups of

commands—node set and component. Each of these command groups is basically independent

of the other. In addition to the command lines in the two command groups, there are additional

command lines: ACTIVE PERIODS and INACTIVE PERIODS. These command lines are used to

activate or deactivate this kinematic boundary condition for certain time periods. Following are

descriptions of the different command groups.

6.3.5.1 Node Set Commands

The node set commands portion of the command block specifies the nodes associated with the

boundary condition. This portion of the command block can include some combination of the

following command lines:

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators for constructing a

set of nodes. See Section 6.1.1 for more information about the use of these command lines for

6.3. KINEMATIC BOUNDARY CONDITIONS 295

creating a set of nodes used by the boundary condition. There must be at least one NODE SET,

SURFACE, BLOCK, or INCLUDE ALL BLOCKS command line in the command block.

6.3.5.2 Specification Commands

There are two component specification commands available in the FIXED ROTATION command

block:

COMPONENT = X/Y/Z | COMPONENTS = X/Y/Z

The rotation components that are to be fixed can be specified with either the COMPONENT command

line or the COMPONENTS command line. There can be only one COMPONENT command line or one

COMPONENTS command line in the command block. The user can specify any combination of the

components to be fixed, as in X, Z, X Z, Y X, etc.

6.3.5.3 Additional Commands

The ACTIVE PERIODS and INACTIVE PERIODS command lines can optionally appear in the

FIXED ROTATION command block:

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

This command line determines when the boundary condition is active. See Section 2.5 for more

information about this optional command line.

296 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

6.3.6 Prescribed Rotation

BEGIN PRESCRIBED ROTATION

#

node set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

specification commands

DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z

FUNCTION = <string>function_name

#

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

external database commands

READ VARIABLE = <string>var_name

COPY VARIABLE = <string>var_name [FROM MODEL

<string>model_name]

TIME = <real>time

#

additional commands

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [PRESCRIBED ROTATION]

The PRESCRIBED ROTATION command block prescribes the rotation about an axis for a given set

of nodes. The rotation field associates a vector giving the magnitude and direction of the rotation

with each node in the node set. The rotation field may vary over time and space. If the rotation field

has only a time-varying component, the specification commands in the above command block can

be used to specify the rotation field. If the rotation field has both time-varying and spatially varying

components, a user subroutine is used to specify the rotation field. The rotation field can also be

read from an external mesh database. In a given boundary condition command block, commands

6.3. KINEMATIC BOUNDARY CONDITIONS 297

from only one of the command groups (specification commands, user subroutine commands, or

external database commands) may be used.

The PRESCRIBED ROTATION command block contains four groups of commands—node set,

function, user subroutine, and external database. Each of these command groups is basically inde-

pendent of the others. In addition to the command lines in the four command groups, there are three

additional command lines: SCALE FACTOR, ACTIVE PERIODS, and INACTIVE PERIODS. The

SCALE FACTOR command line can be used in conjunction with either the specification commands

or the user subroutine commands. The ACTIVE PERIODS and INACTIVE PERIODS command

lines are used to activate or deactivate this kinematic boundary condition for certain time periods.

Following are descriptions of the different command groups.

6.3.6.1 Node Set Commands

The node set commands portion of the PRESCRIBED ROTATION command block defines a set

of nodes associated with the prescribed rotation field and can include some combination of the

following command lines:

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators for constructing a

set of nodes. See Section 6.1.1 for more information about the use of these command lines for

creating a set of nodes used by the boundary condition. There must be at least one NODE SET,

SURFACE, BLOCK, or INCLUDE ALL BLOCKS command line in the command block.

6.3.6.2 Specification Commands

If the specification commands are used, the rotation vector at any given time is the same for all

nodes in the node set associated with the particular PRESCRIBED ROTATION command block.

The direction of the rotation vector is constant for all time; the magnitude of the rotation vector

may vary with time, however.

Following are the command lines used to specify the prescribed rotation with a direction and a

function:

DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z

FUNCTION = <string>function_name

298 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

The rotation can be specified either along an arbitrary user-defined direction or along a component

direction (X, Y, or Z), but not both. The rotation is prescribed only in the specified direction. A

prescribed rotation boundary condition does not influence the rotation in directions orthogonal to

the prescribed direction.

- The DIRECTION command line is used to prescribe rotation in an arbitrary user-defined

direction. The name in the string defined_direction is a reference to a direction, which

is defined using the DEFINE DIRECTION command block within the SIERRA scope.

- The COMPONENT command line is used to specify that the prescribed rotation vector lies

along one of the component directions. The COMPONENT command line is a shortcut to an

internally defined direction vector; for example, component x corresponds to using direction

vector (1, 0, 0).

The magnitude of the rotation is specified by the FUNCTION command line. This references a

function_name (defined in the SIERRA scope in a DEFINITION FOR FUNCTION command

block) that specifies the magnitude of the rotation vector as a function of time. The magnitude can

be scaled by use of the SCALE FACTOR command line described in Section 6.3.6.5.

The magnitude of the rotation, as specified by the product of the function and the scale factor, has

units of radians per second.

6.3.6.3 User Subroutine Commands

If the user subroutine option is used, the rotation vector may vary spatially at any given time for

each of the nodes in the node set associated with the particular PRESCRIBED ROTATION command

block. The user subroutine option allows for a more complex description of the rotation field than

do the specification commands, but the user subroutine option also requires that you write a user

subroutine to implement this capability. The user subroutine will be used to define a rotation

direction and a magnitude for every node to which the boundary condition will be applied. The

subroutine will be called by Presto at the appropriate time to generate the rotation field.

Following are the command lines related to the user subroutine option:

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

The user subroutine option is invoked by using the NODE SET SUBROUTINE command line. The

string subroutine_name is the name of a FORTRAN subroutine that is written by the user.

6.3. KINEMATIC BOUNDARY CONDITIONS 299

Following the NODE SET SUBROUTINE command line are other command lines that may be used

to implement the user subroutine option. These command lines are described in Section 9.2.2 and

consist of SUBROUTINE DEBUGGING OFF, SUBROUTINE DEBUGGING ON, SUBROUTINE REAL

PARAMETER, SUBROUTINE INTEGER PARAMETER, and SUBROUTINE STRING PARAMETER.

Examples of using these command lines are provided throughout Chapter 9.

The magnitude set in the user subroutine can be scaled by use of the SCALE FACTOR command

line, as described in Section 6.3.6.5.

See Section 6.3.8 and Chapter 9 for more details on implementing the user subroutine option.

6.3.6.4 External Mesh Database Commands

If the external database option is used, the rotation vector (or specified components of the vector)

is read from an external mesh database. The rotations are read from a finite element model defined

via the FINITE ELEMENT MODEL command block described in Section 5.1. The finite element

model can either be the model used by the region for its mesh definition as specified with the USE

FINITE ELEMENT MODEL command (see Section 2.3), or it can be a different (but compatible)

model. The following command lines control the use of an external mesh database to prescribe the

rotation:

READ VARIABLE = <string>mesh_var_name

COPY VARIABLE = <string>var_name [FROM MODEL <string>model_name]

TIME = <real>time

The READ VARIABLE = <string>var_name command is used to read the rotation vector from

the region’s finite element mesh database. The var_name string specifies the name of the variable

as it appears on the mesh database.

If the analysis will cause topology modifications due to the use of load balancing, remeshing, or

other techniques that can result in nodes and/or elements being moved among processors, then the

COPY VARIABLE command should be used. This command specifies that the variable named var_

name will be used to specify the rotation. The FROM MODEL <string>model_name portion of

the command is optional. If it is specified, the results are read from the mesh database named

model_name. Otherwise, the region’s finite element mesh database will be used as the model.

The primary difference between the behavior of the COPY VARIABLE command and the READ

VARIABLE command is that the copy command handles topology modifications caused by load

balancing and remeshing, which can move nodes and elements to different processors. The

COPY VARIABLE command will correctly match the nodes from the external database to the cor-

responding nodes in the analysis and communicate the data between processors if needed. Note

that the nodes in the two finite element models must match spatially, but they can be distributed on

different processors.

The field to be read may be specified at an arbitrary number of different times on the mesh file.

The default behavior is for the time history of the variable read from the file to be used to prescribe

the boundary condition. The time history is interpolated as needed for analysis times that do not

300 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

correspond exactly to times on the mesh file. The TIME command line can optionally be used

to specify that the boundary condition be constant over time, based on the value of the variable

read from the file at the specified time. If the specified time on the TIME command line does not

correspond exactly to a time on the mesh file, the data on the mesh file will be interpolated as

needed.

6.3.6.5 Additional Commands

These command lines in the PRESCRIBED ROTATION command block provide additional options

for the boundary condition:

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

The SCALE FACTOR command line is used to apply an additional scaling factor, which is constant

in both time and space, to all vector magnitude values of the field defined by the specification

commands or the user subroutine. For example, if the magnitude of the rotation in a time history

function is given as 1.5 from time 1.0 to time 2.0 and the scale factor is 0.5, then the magnitude of

the rotation from time 1.0 to 2.0 is 0.75. The default value for the scale factor is 1.0.

The ACTIVE PERIODS and INACTIVE PERIODS command lines determine when the boundary

condition is active. See Section 2.5 for more information about these command lines.

6.3. KINEMATIC BOUNDARY CONDITIONS 301

6.3.7 Prescribed Rotational Velocity

BEGIN PRESCRIBED ROTATIONAL VELOCITY

#

node set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

specification commands

DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z

FUNCTION = <string>function_name

#

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

external database commands

READ VARIABLE = <string>variable_name

COPY VARIABLE = <string>variable_name [FROM MODEL

<string>model_name]

TIME = <real>time

#

additional commands

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [PRESCRIBED ROTATIONAL VELOCITY]

The PRESCRIBED ROTATIONAL VELOCITY command block prescribes the rotational velocity

about an axis for a given set of nodes. The rotational velocity field associates a vector giving the

magnitude and direction of the rotational velocity with each node in the node set. The rotational

velocity field may vary over time and space. If the rotational velocity field has only a time-varying

component, the specification commands in the above command block can be used to specify the

rotational velocity field. If the rotational velocity field has both time-varying and spatially varying

components, a user subroutine is used to specify the rotational velocity field. The rotational veloc-

302 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

ity field can also be read from an external mesh database. In a given boundary condition command

block, commands from only one of the command groups (specification commands, user subroutine

commands, or external database commands) may be used.

The PRESCRIBED ROTATIONAL VELOCITY command block contains four groups of

commands—node set, function, user subroutine, and external database. Each of these com-

mand groups is basically independent of the others. In addition to the command lines in the four

command groups, there are three additional command lines: SCALE FACTOR, ACTIVE PERIODS,

and INACTIVE PERIODS. The SCALE FACTOR command line can be used in conjunction with

either the specification commands or the user subroutine commands. The ACTIVE PERIODS and

INACTIVE PERIODS command lines are used to activate or deactivate this kinematic boundary

condition for certain time periods. Following are descriptions of the different command groups.

6.3.7.1 Node Set Commands

The node set commands portion of the PRESCRIBED ROTATIONAL VELOCITY command

block defines a set of nodes associated with the prescribed rotational velocity field and can in-

clude some combination of the following command lines:

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators for constructing a

set of nodes. See Section 6.1.1 for more information about the use of these command lines for

creating a set of nodes used by the boundary condition. There must be at least one NODE SET,

SURFACE, BLOCK, or INCLUDE ALL BLOCKS command line in the command block.

6.3.7.2 Specification Commands

If the specification commands are used, the rotational velocity vector at any given time is the same

for all nodes in the node set associated with the particular PRESCRIBED ROTATIONAL VELOCITY

command block. The direction of the rotational velocity vector is constant for all time; the magni-

tude of the rotational velocity vector may vary with time, however.

Following are the command lines used to specify the prescribed rotational velocity with a direction

and a function:

DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z

FUNCTION = <string>function_name

6.3. KINEMATIC BOUNDARY CONDITIONS 303

The rotational velocity can be specified either along an arbitrary user-defined direction or along

a component direction (X, Y, or Z), but not both. The rotational velocity is prescribed only in

the specified direction. A prescribed rotational velocity boundary condition does not influence the

rotational velocity in directions orthogonal to the prescribed direction.

- The DIRECTION command line is used to prescribe rotational velocity in an arbitrary user-

defined direction. The name in the string defined_direction is a reference to a direction,

which is defined using the DEFINE DIRECTION command block within the SIERRA scope.

- The COMPONENT command line is used to specify that the prescribed rotational velocity

vector lies along one of the component directions. The COMPONENT command line is a

shortcut to an internally defined direction vector; for example, component x corresponds to

using direction vector (1, 0, 0).

The magnitude of the rotational velocity is specified by the FUNCTION command line. This ref-

erences a function_name (defined in the SIERRA scope in a DEFINITION FOR FUNCTION

command block) that specifies the magnitude of the rotational velocity vector as a function of

time. The magnitude can be scaled by use of the SCALE FACTOR command line described in

Section 6.3.7.5.

The magnitude of the rotational velocity, as specified by the product of the function and the scale

factor, has units of radians per second.

6.3.7.3 User Subroutine Commands

If the user subroutine option is used, the rotational velocity vector may vary spatially at any

given time for each of the nodes in the node set associated with the particular PRESCRIBED

ROTATIONAL VELOCITY command block. The user subroutine option allows for a more com-

plex description of the rotational velocity field than do the specification commands, but the user

subroutine option also requires that you write a user subroutine to implement this capability. The

user subroutine will be used to define a rotational velocity direction and a magnitude for every

node to which the boundary condition will be applied. The subroutine will be called by Presto at

the appropriate time to generate the rotational velocity field.

Following are the command lines related to the user subroutine option:

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

304 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

The user subroutine option is invoked by using the NODE SET SUBROUTINE command line. The

string subroutine_name is the name of a FORTRAN subroutine that is written by the user.

Following the NODE SET SUBROUTINE command line are other command lines that may be used

to implement the user subroutine option. These command lines are described in Section 9.2.2 and

consist of SUBROUTINE DEBUGGING OFF, SUBROUTINE DEBUGGING ON, SUBROUTINE REAL

PARAMETER, SUBROUTINE INTEGER PARAMETER, and SUBROUTINE STRING PARAMETER.

Examples of using these command lines are provided throughout Chapter 9.

The magnitude set in the user subroutine can be scaled by use of the SCALE FACTOR command

line, as described in Section 6.3.7.5.

See Section 6.3.8 and Chapter 9 for more details on implementing the user subroutine option.

6.3.7.4 External Mesh Database Commands

If the external database option is used, the rotational velocity vector (or specified components

of the vector) is read from an external mesh database. The rotational velocities are read from

a finite element model defined via the FINITE ELEMENT MODEL command block described in

Section 5.1. The finite element model can either be the model used by the region for its mesh

definition as specified with the USE FINITE ELEMENT MODEL command (see Section 2.3), or it

can be a different (but compatible) model. The following command lines control the use of an

external mesh database to prescribe the rotational velocity:

READ VARIABLE = <string>mesh_var_name

COPY VARIABLE = <string>var_name [FROM MODEL <string>model_name]

TIME = <real>time

The READ VARIABLE = <string>var_name command is used to read the rotational velocity

vector from the region’s finite element mesh database. The var_name string specifies the name of

the variable as it appears on the mesh database.

If the analysis will cause topology modifications due to the use of load balancing, remeshing, or

other techniques that can result in nodes and/or elements being moved among processors, then

the COPY VARIABLE command should be used. This command specifies that the variable named

var_name will be used to specify the rotational velocity. The FROM MODEL <string>model_

name portion of the command is optional. If it is specified, the results are read from the mesh

database named model_name. Otherwise, the region’s finite element mesh database will be used

as the model.

The primary difference between the behavior of the COPY VARIABLE command and the READ

VARIABLE command is that the copy command handles topology modifications caused by load

balancing and remeshing, which can move nodes and elements to different processors. The

COPY VARIABLE command will correctly match the nodes from the external database to the cor-

responding nodes in the analysis and communicate the data between processors if needed. Note

that the nodes in the two finite element models must match spatially, but they can be distributed on

different processors.

6.3. KINEMATIC BOUNDARY CONDITIONS 305

The field to be read may be specified at an arbitrary number of different times on the mesh file.

The default behavior is for the time history of the variable read from the file to be used to prescribe

the boundary condition. The time history is interpolated as needed for analysis times that do not

correspond exactly to times on the mesh file. The TIME command line can optionally be used

to specify that the boundary condition be constant over time, based on the value of the variable

read from the file at the specified time. If the specified time on the TIME command line does not

correspond exactly to a time on the mesh file, the data on the mesh file will be interpolated as

needed.

6.3.7.5 Additional Commands

These command lines in the PRESCRIBED ROTATIONAL VELOCITY command block provide ad-

ditional options for the boundary condition:

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

The SCALE FACTOR command line is used to apply an additional scaling factor, which is constant

in both time and space, to all vector magnitude values of the field defined by the specification

commands or the user subroutine. For example, if the magnitude of the rotational velocity in a

time history function is given as 1.5 from time 1.0 to time 2.0 and the scale factor is 0.5, then the

magnitude of the rotational velocity from time 1.0 to 2.0 is 0.75. The default value for the scale

factor is 1.0.

The ACTIVE PERIODS and INACTIVE PERIODS command lines determine when the boundary

condition is active. See Section 2.5 for more information about these command lines.

306 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

6.3.8 Subroutine Usage for Kinematic Boundary Conditions

The prescribed kinematic boundary conditions may be defined by a user subroutine. All these

conditions use a node set subroutine. See Chapter 9 for an in-depth discussion of user subroutines.

The kinematic boundary conditions will be applied to nodes. The subroutine that you write will

have to return six output values per node and one output flag per node. The usage of the output

values depends on the returned flag value for a node, as follows:

• If the flag value is negative, no constraint will be applied to the node.

• If the flag value is equal to zero, the constraint will be absolute. All components of the

boundary condition will be specified. For example, suppose you have written a user sub-

routine to be called from a prescribed displacement subroutine. The prescribed displace-

ments are to be passed through an array output_values. For a given node inode, the

output_values array would have the following values:

output_values(1,inode) = displacement in x at inode

output_values(2,inode) = displacement in y at inode

output_values(3,inode) = displacement in z at inode

output_values(4,inode) = not used

output_values(5,inode) = not used

output_values(6,inode) = not used

• If the flag value is equal to one, the constraint will be a specified amount in a given direction.

For example, suppose you have written a user subroutine to be called from a prescribed

displacement subroutine. The prescribed displacements are to be passed through an array

output_values. For a given node inode, the output_values array would have the

following values:

output_values(1,inode) = magnitude of displacement

output(values(2,inode) = not used

output_values(3,inode) = not used

output_values(4,inode) = x component of direction vector

output_values(5,inode) = y component of direction vector

output_values(6,inode) = z component of direction vector

The direction in which the constraint will act is given by output_values 4 through 6 for inode.

The magnitude of the displacement in the specified direction is given by output_values 1 at

inode. To compute the constraint, Presto first normalizes the direction vector. Next, Presto multi-

plies the normalized direction vector by the magnitude of the displacement and applies the resultant

constraint vector.

Displacements or velocities orthogonal to the prescribed direction will not be constrained. (This is

true regardless of whether or not one uses a user subroutine for the prescribed kinematic boundary

conditions.) Take the case of a prescribed displacement condition. The displacement orthogonal

to a prescribed direction of motion depends on the internal and external forces orthogonal to the

prescribed direction. Displacement orthogonal to the prescribed direction may or may not be zero.

6.4. INITIAL VELOCITY CONDITIONS 307

6.4 Initial Velocity Conditions

BEGIN INITIAL VELOCITY

#

node set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

direction specification commands

COMPONENT = <string>X|Y|Z |

DIRECTION = <string>defined_direction

MAGNITUDE = <real>magnitude_of_velocity

#

angular velocity specification commands

CYLINDRICAL AXIS = <string>defined_axis

ANGULAR VELOCITY = <real>angular_velocity

#

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

END [INITIAL VELOCITY]

The INITIAL VELOCITY command block specifies an initial velocity field for a set of nodes.

There are two simple options for specifying the initial velocity field: by direction and by angular

velocity. The user subroutine option available is also available to specify an initial velocity. You

may use only one of the available options—direction specification, angular velocity specification,

or user subroutine.

The INITIAL VELOCITY command block contains four groups of commands—node set, direction

specification, angular velocity specification, and user subroutine. Command lines associated with

the node set commands must appear. As mentioned, command lines associated with one of the

options must also appear. Following are descriptions of the different command groups.

308 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

6.4.1 Node Set Commands

The node set commands portion of the INITIAL VELOCITY command block defines a set of

nodes associated with the initial velocity field and can include some combination of the following

command lines:

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators for constructing a

set of nodes. See Section 6.1.1 for more information about the use of these command lines for

creating a set of nodes used by the boundary condition. There must be at least one NODE SET,

SURFACE, BLOCK, or INCLUDE ALL BLOCKS command line in the command block.

6.4.2 Direction Specification Commands

If the direction specification commands are used, the initial velocity is applied along a defined

direction with a specific magnitude. Following are the command lines for the direction option:

COMPONENT = <string>X|Y|Z |

DIRECTION = <string>defined_direction

MAGNITUDE = <real>magnitude_of_velocity

The initial velocity can be specified either along an arbitrary user-defined direction or along a

component direction (X, Y, or Z), but not both. The velocity is prescribed only in the specified

direction. A prescribed velocity boundary condition does not influence the movement in directions

orthogonal to the prescribed direction.

- The DIRECTION command line is used to prescribe initial velocity in an arbitrary user-

defined direction. The name in the string defined_direction is a reference to a direction,

which is defined using the DEFINE DIRECTION command block within the SIERRA scope.

- The COMPONENT command line is used to specify that the initial velocity vector lies along

one of the component directions. The COMPONENT command line is a shortcut to an in-

ternally defined direction vector; for example, component x corresponds to using direction

vector (1, 0, 0).

The magnitude of the initial velocity is given by the MAGNITUDE command line with the real value

magnitude_of_velocity.

Either the COMPONENT command line or the DIRECTION command line must be specified with the

MAGNITUDE command line if you use the direction specification commands.

6.4. INITIAL VELOCITY CONDITIONS 309

6.4.3 Angular Velocity Specification Commands

If the angular velocity specification commands are used, the initial velocity is applied as an initial

angular velocity about some axis. Following are the command lines for angular velocity specifica-

tion:

CYLINDRICAL AXIS = <string>defined_axis

ANGULAR VELOCITY = <real>angular_velocity

The axis about which the body is initially rotating is given by the CYLINDRICAL AXIS command

line. The string defined_axis uses an axis_name that is defined in the SIERRA scope (via a

DEFINE AXIS command line).

The magnitude of the angular velocity about this axis is specified by the ANGULAR VELOCITY

command line with the real value angular_velocity. This value is specified in units of radians

per unit of time. Typically, the value for the angular velocity will be radians per second.

Both the CYLINDRICAL AXIS command line and the ANGULAR VELOCITY command line are

required if you use the angular velocity specification commands.

6.4.4 User Subroutine Commands

If the user subroutine option is used, the initial velocity vector may vary spatially at any given

time for each of the nodes in the node set associated with the particular INITIAL CONDITION

command block. The user subroutine option allows for a more complex description of the initial

velocity field than do the direction and angular-velocity options, but the user subroutine option also

requires that you write a user subroutine to implement this capability. The user subroutine will be

used to define a velocity direction and a magnitude for every node to which the initial velocity

field will be applied. The subroutine will be called by Presto at the appropriate time to generate

the initial velocity field.

Following are the command lines related to the user subroutine option:

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

The user subroutine option is invoked by using the NODE SET SUBROUTINE command line. The

string subroutine_name is the name of a FORTRAN subroutine that is written by the user.

Following the NODE SET SUBROUTINE command line are other command lines that may be used

to implement the user subroutine option. These command lines are described in Section 9.2.2 and

310 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

consist of SUBROUTINE DEBUGGING OFF, SUBROUTINE DEBUGGING ON, SUBROUTINE REAL

PARAMETER, SUBROUTINE INTEGER PARAMETER, and SUBROUTINE STRING PARAMETER.

Examples of using these command lines are provided throughout Chapter 9.

See Section 6.3.8 and Chapter 9 for more details on implementing the user subroutine option.

6.5. FORCE BOUNDARY CONDITIONS 311

6.5 Force Boundary Conditions

A variety of force boundary conditions are available in Presto. This section describes these bound-

ary conditions.

6.5.1 Pressure

BEGIN PRESSURE

#

surface set commands

SURFACE = <string list>surface_names

REMOVE SURFACE = <string list>surface_names

#

specification command

FUNCTION = <string>function_name

#

user subroutine commands

SURFACE SUBROUTINE = <string>subroutine_name |

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

external pressure sources

READ VARIABLE = <string>variable_name

OBJECT TYPE = <string>NODE|FACE(NODE)

TIME = <real>time

FIELD VARIABLE = <string>field_variable

#

output external forces from pressure

EXTERNAL FORCE CONTRIBUTION OUTPUT NAME =

<string>variable_name

#

additional commands

USE DEATH = <string>death_name

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [PRESSURE]

The PRESSURE command block applies a pressure to each face in the associated surfaces. The

pressure field can either be constant over the faces and vary in time, or it can be determined by

312 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

a user subroutine. If the pressure field is constant over the faces and has only a time-varying

component, the function command in the above command block can be used to specify the pressure

field. If the pressure field has both time-varying and spatially varying components, user subroutine

commands are used to specify the pressure field. The pressure field may also be obtained from

a mesh file or from another SIERRA code through a transfer operator. You can use only one of

these four options—function, user subroutine, mesh file, transfer from another code—to specify

the pressure field.

Currently, the PRESSURE command block can be used for surfaces that have faces derived from

solid elements (eight-node hexahedra, four-node tetrahedra, eight-node tetrahedra, etc.), mem-

branes, and shells.

A pressure boundary condition generates nodal forces that are summed into the external force

vector that is used to calculate the motion of a body. The external force vector contains the con-

tribution from all forces acting on the body. There is an option in the PRESSURE command block

to save information about the contribution to the external force vector due only to pressure loads.

This option does not change the magnitude or time history of the pressure load (regardless of how

they are defined), but merely stores information in a user-accessible variable.

The PRESSURE command block contains five groups of commands—surface set, function, user

subroutine, external pressure, and output external forces. Each of these command groups is ba-

sically independent of the others. In addition to the command lines in the five command groups,

there are three additional command lines: USE DEATH, SCALE FACTOR and ACTIVE PERIODS.

The USE DEATH command line links the pressure boundary condition to an element death defini-

tion so that the underlying surface geometry is updated as elements are killed. The SCALE FACTOR

command line can be used in conjunction with either the function command or the user subroutine

commands. The ACTIVE PERIODS and INACTIVE PERIODS command lines are used to activate

or deactivate this force boundary condition for certain time periods. Following are descriptions of

the different command groups.

6.5.1.1 Surface Set Commands

The surface set commands portion of the PRESSURE command block defines a set of surfaces

associated with the pressure field and can include some combination of the following command

lines:

SURFACE = <string list>surface_names

REMOVE SURFACE = <string list>surface_names

In the SURFACE command line, you can list a series of surfaces through the string list surface_

names. There must be at least one SURFACE command line in the command block. The

REMOVE SURFACE command line allows you to delete surfaces from the set specified in the

SURFACE command line(s) through the string list surface_names. See Section 6.1.1 for more in-

formation about the use of these command lines for creating a set of surfaces used by the boundary

condition.

6.5. FORCE BOUNDARY CONDITIONS 313

6.5.1.2 Specification Commands

If the function command is used, the pressure vector at any given time is the same for all surfaces

associated with the particular PRESSURE command block. The direction of the pressure vector is

constant for all time; the magnitude of the pressure vector may vary with time, however.

Following is the command line used to specify the pressure with a function:

FUNCTION = <string>function_name

The pressure is applied in the opposite direction to the outward normals of the faces that define

the surfaces. The magnitude of the pressure is specified by the FUNCTION command line. This

references a function_name (defined in the SIERRA scope in a DEFINITION FOR FUNCTION

command block) that specifies the magnitude of the pressure vector as a function of time. The

magnitude can be scaled by use of the SCALE FACTOR command line described in Section 6.5.1.6.

6.5.1.3 User Subroutine Commands

If the user subroutine option is used, the pressure may vary spatially at any given time for each of

the surfaces associated with the particular PRESSURE command block. The user subroutine option

allows for a more complex description of the pressure field than does the function command, but the

user subroutine option also requires that you write a user subroutine to implement this capability.

The user subroutine will be used to define a pressure for every face to which the boundary condition

will be applied. The subroutine will be called by Presto at the appropriate time to generate the

pressure field.

Following are the command lines related to the user subroutine option:

SURFACE SUBROUTINE = <string>subroutine_name |

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

The user subroutine option is invoked by using the SURFACE SUBROUTINE command line or the

NODE SET subroutine command line. The string subroutine_name in both command lines is

the name of a FORTRAN subroutine that is written by the user. The particular command line

selected depends on the mesh-entity type for which the pressure field is being calculated. Asso-

ciating pressure values with faces would require the use of a SURFACE SUBROUTINE command

line. Associating pressure values with nodes would require the use of a NODE SET SUBROUTINE

command line.

314 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

Following the selected subroutine command line are other command lines that may be used to

implement the user subroutine option. These command lines are described in Section 9.2.2 and

consist of SUBROUTINE DEBUGGING OFF, SUBROUTINE DEBUGGING ON, SUBROUTINE REAL

PARAMETER, SUBROUTINE INTEGER PARAMETER, and SUBROUTINE STRING PARAMETER.

Examples of using these command lines are provided throughout Chapter 9.

The magnitude set in the user subroutine can be scaled by use of the SCALE FACTOR command

line, as described in Section 6.5.1.6.

Usage requirements. Following are the usage requirements for the two types of subroutines:

• The surface subroutine operates on a group of faces. The subroutine that you write will

return one output value per face. Suppose you write a user subroutine that returns the pres-

sure information through an array output_value. The value output_value(1,iface)

corresponds to the average pressure on face iface. The values of the flags array are not

used.

• The node set subroutine that you write will return one value per node. Suppose you write

a user subroutine that returns the pressure information through an array output_value.

The return value output_value(1,inode) is the pressure at the node inode. The total

pressure on the each face is found by integrating the pressures at the nodes. The values of

the flags array are not used.

See Chapter 9 for more details on implementing the user subroutine option.

6.5.1.4 External Pressure Sources

Pressure may be obtained from two different external sources. The first option for obtaining pres-

sure from an external source uses a mesh file. The commands for obtaining pressure information

from a mesh file are as follows:

READ VARIABLE = <string>variable_name

OBJECT TYPE = <string>NODE|FACE(NODE)

TIME = <real>time

The READ VARIABLE command line specifies the name of the variable on the mesh file,

variable_name, that is used to prescribe the pressure field. The OBJECT TYPE command line

specifies whether the pressure field on the mesh file is specified for nodes (the mesh object type

is NODE) or for faces (the mesh object type is FACE). If the OBJECT TYPE command line is not

present, it is assumed that the variable is for nodes. If the TIME command line is present, only

the pressure field information at a given time, as set by the time parameter, is read from the mesh

file. If the TIME command line is not present, the pressure field information for all times is read.

Pressure field information will then be interpolated as necessary during an analysis.

The second option for obtaining pressure from and external sources relies on the transfer of infor-

mation from another SIERRA code. The command for obtaining pressure information by transfer

from another code is:

6.5. FORCE BOUNDARY CONDITIONS 315

FIELD VARIABLE = <string>variable_name

Here variable_name is the name of the registered variable where pressure information is to

be stored. The pressure information will be transferred into this registered variable from another

SIERRA code via a transfer operator.

6.5.1.5 Output Command

This command line lets the user create a variable that stores information about the contribution to

the external force vector at a node arising solely from a pressure:

EXTERNAL FORCE CONTRIBUTION OUTPUT NAME =

<string>variable_name

If the above command line appears in a PRESSURE command block, then there will be a vari-

able created with whatever name the user specifies for variable_name. The variable defines a

three-dimensional vector at each node associated with this particular command block. The three-

dimensional vector at each node represents the external force due solely to the pressure on the

elements attached to that node. For example, if one of the nodes associated with this particu-

lar command block has four elements attached to it and each element has a pressure load, then

the external force contribution at the node would be summed from the pressure load for all four

elements.

Once this variable for the external force contribution from a pressure load is specified, it may be

used like any other registered nodal variable. The user can, for example, specify the variable as a

nodal variable to be output in a RESULTS OUTPUT command block. Or the user can reference the

variable in a user subroutine.

6.5.1.6 Additional Commands

These command lines in the PRESSURE command block provide additional options for the bound-

ary condition:

USE DEATH = <string>death_name

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

The USE DEATH command line links the pressure boundary condition to an element death defini-

tion. The string death_name must match a name used in an ELEMENT DEATH command block.

When elements are killed by the named element death definition, the pressure boundary condition

will be applied to the newly exposed faces.

The SCALE FACTOR command line is used to apply an additional scaling factor, which is constant

in both time and space, to all vector magnitude values of the field defined by the function command

316 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

or the user subroutine. For example, if the magnitude of the pressure in a time history function is

given as 1.5 from time 1.0 to time 2.0 and the scale factor is 0.5, then the magnitude of the pressure

from time 1.0 to 2.0 is 0.75. The default value for the scale factor is 1.0.

The ACTIVE PERIODS and INACTIVE PERIODS command lines determine when the boundary

condition is active. See Section 2.5 for more information about these command lines.

6.5. FORCE BOUNDARY CONDITIONS 317

6.5.2 Traction

BEGIN TRACTION

#

surface set commands

SURFACE = <string list>surface_names

REMOVE SURFACE = <string list>surface_names

#

specification commands

DIRECTION = <string>direction_name

FUNCTION = <string>function_name

#

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

additional commands

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [TRACTION]

The TRACTION command block applies a traction to each face in the associated surfaces. The

traction has units of force per unit area. (A traction, unlike a pressure, may not necessarily be in

the direction of the normal to the face to which it is applied.) The given traction is integrated over

the surface area of a face.

The traction field can be determined by a SIERRA function or a user subroutine. If the traction

field is constant over the faces and has only a time-varying component, the specification commands

in the above command block can be used to specify the traction field. If the traction field has both

time-varying and spatially varying components, a user subroutine is used to specify the traction

field.

The traction field can only be controlled by one method. Accordingly, a TRACTION command

block can only contain one of the options: function or user subroutine.

Currently, the TRACTION command block can be used for surfaces that have faces derived from

solid elements (eight-node hexahedra, four-node tetrahedra, eight-node tetrahedra, etc.), mem-

branes, and shells.

The TRACTION command block contains three groups of commands—surface set and user sub-

routine. Each of these command groups is basically independent of the others. In addition

to the command lines in the four command groups, there are three additional command lines:

318 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

SCALE FACTOR, ACTIVE PERIODS, and INACTIVE PERIODS. The SCALE FACTOR command

line can be used in conjunction with the specification commands or the user subroutine option.

The ACTIVE PERIODS and INACTIVE PERIODS command lines are used to activate or deac-

tivate this force boundary condition for certain time periods. Following are descriptions of the

different command groups.

6.5.2.1 Surface Set Commands

The surface set commands portion of the TRACTION command block defines a set of surfaces

associated with the traction field and can include some combination of the following command

lines:

SURFACE = <string list>surface_names

REMOVE SURFACE = <string list>surface_names

In the SURFACE command line, you can list a series of surfaces through the string list surface_

names. There must be at least one SURFACE command line in the command block. The

REMOVE SURFACE command line allows you to delete surfaces from the set specified in the

SURFACE command line(s) through the string list surface_names. See Section 6.1.1 for more in-

formation about the use of these command lines for creating a set of surfaces used by the boundary

condition.

6.5.2.2 Specification Commands

If the specification commands are used, the traction vector at any given time is the same for all

surfaces associated with the particular TRACTION command block. The direction of the traction

vector is constant for all time; the magnitude of the traction vector may vary with time, however.

Following are the command lines used to specify the traction with a direction and a function:

DIRECTION = <string>defined_direction

FUNCTION = <string>function_name

The traction is specified in an arbitrary user-defined direction, and is defined using the DIRECTION

command line. The name in the string defined_direction is a reference to a direction, which

is defined using the DEFINE DIRECTION command block within the SIERRA scope.

The magnitude of the traction is specified by the FUNCTION command line. This references a

function_name (defined in the SIERRA scope in a DEFINITION FOR FUNCTION command

block) that specifies the magnitude of the traction vector as a function of time. The magnitude can

be scaled by use of the SCALE FACTOR command line described in Section 6.5.2.4.

6.5. FORCE BOUNDARY CONDITIONS 319

6.5.2.3 User Subroutine Commands

If the user subroutine option is used, the traction vector may vary spatially at any given time for

each of the surfaces associated with the particular TRACTION command block. The user subroutine

option allows for a more complex description of the traction field than does the function option,

but the user subroutine option also requires that you write a user subroutine to implement this

capability. The user subroutine will be used to define a traction for every face to which the bound-

ary condition will be applied. The subroutine will be called by Presto at the appropriate time to

generate the traction field.

Following is the command line related to the user subroutine option:

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

The user subroutine option is invoked by using the NODE SET subroutine command line. The

string subroutine_name is the name of a FORTRAN subroutine that is written by the user.

Associating traction values with nodes requires the use of a NODE SET SUBROUTINE command

line.

Following the NODE SET SUBROUTINE command line are other command lines that may be used

to implement the user subroutine option. These command lines are described in Section 9.2.2 and

consist of SUBROUTINE DEBUGGING OFF, SUBROUTINE DEBUGGING ON, SUBROUTINE REAL

PARAMETER, SUBROUTINE INTEGER PARAMETER, and SUBROUTINE STRING PARAMETER.

Examples of using these command lines are provided throughout Chapter 9.

The magnitude set in the user subroutine can be scaled by use of the SCALE FACTOR command

line, as described in Section 6.5.2.4.

Usage requirements for the node set subroutine. The node set subroutine that you write will

return six values per node. Suppose you have written a user subroutine that passes the output

values through an array output_values. For a given node inode, the output_values array

would have the following values:

output_values(1,inode) = magnitude of traction

output(values(2,inode) = not used

output_values(3,inode) = not used

output_values(4,inode) = x component of direction vector

output_values(5,inode) = y component of direction vector

output_values(6,inode) = z component of direction vector

320 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

The direction in which the traction will act is given by components 4 through 6 of output_values

for inode. The magnitude of the traction in the specified direction is given by component 1 of

output_values at inode. The total force on each node is found by integrating the local nodal

tractions using the associated directions, which are normalized by Prestoover the face areas. The

values of the flags array are not used.

See Chapter 9 for more details on implementing the user subroutine option.

6.5.2.4 Additional Commands

These command lines in the TRACTION command block provide additional options for the bound-

ary condition:

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

The SCALE FACTOR command line is used to apply an additional scaling factor, which is constant

in both time and space, to all vector magnitude values of the field defined by the specification

commands or the user subroutine. For example, if the magnitude of the traction in a time history

function is given as 1.5 from time 1.0 to time 2.0 and the scale factor is 0.5, then the magnitude of

the traction from time 1.0 to 2.0 is 0.75. The default value for the scale factor is 1.0.

The ACTIVE PERIODS and INACTIVE PERIODS command lines determine when the boundary

condition is active. See Section 2.5 for more information about these command lines.

6.5. FORCE BOUNDARY CONDITIONS 321

6.5.3 Prescribed Force

BEGIN PRESCRIBED FORCE

#

node set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

specification commands

DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z

FUNCTION = <string>function_name

#

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

additional commands

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [PRESCRIBED FORCE]

The PRESCRIBED FORCE command block prescribes a force field for a given set of nodes. The

force field associates a vector giving the magnitude and direction of the force with each node

in the node set. The force field may vary over time and space. If the force field has only a

time-varying component, the specification commands in the above command block can be used to

specify the force field. If the force field has both time-varying and spatially varying components,

a user subroutine is used to specify the force field. In a given boundary condition command block,

commands from only one of the command groups (specification commands or user subroutine

commands) may be used.

The PRESCRIBED FORCE command block contains three groups of commands—node set, func-

tion, and user subroutine. Each of these command groups is basically independent of the others. In

addition to the command lines in the three command groups, there are three additional command

lines: SCALE FACTOR, ACTIVE PERIODS, and INACTIVE PERIODS. The SCALE FACTOR com-

322 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

mand line can be used in conjunction with either the specification commands or the user subroutine

commands. The ACTIVE PERIODS and INACTIVE PERIODS command lines are used to activate

or deactivate this force boundary condition for certain time periods. Following are descriptions of

the different command groups.

6.5.3.1 Node Set Commands

The node set commands portion of the PRESCRIBED FORCE command block defines a set of

nodes associated with the prescribed force field and can include some combination of the following

command lines:

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators for constructing a

set of nodes. See Section 6.1.1 for more information about the use of these command lines for

creating a set of nodes used by the boundary condition. There must be at least one NODE SET,

SURFACE, BLOCK, or INCLUDE ALL BLOCKS command line in the command block.

6.5.3.2 Specification Commands

If the specification commands are used, the force vector at any given time is the same for all nodes

in the node set associated with the particular PRESCRIBED FORCE command block. The direction

of the force vector is constant for all time; the magnitude of the force vector may vary with time,

however.

Following are the command lines used to specify the prescribe force with a direction and a function:

DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z

FUNCTION = <string>function_name

The force can be specified either along an arbitrary user-defined direction or along a component

direction (X, Y, or Z), but not both.

- The DIRECTION command line is used to prescribe force in an arbitrary user-defined direc-

tion. The name in the string defined_direction is a reference to a direction, which is

defined using the DEFINE DIRECTION command block within the SIERRA scope.

6.5. FORCE BOUNDARY CONDITIONS 323

- The COMPONENT command line is used to specify that the force vector lies along one of the

component directions. The COMPONENT command line is a shortcut to an internally defined

direction vector; for example, component x corresponds to using direction vector (1, 0, 0).

The magnitude of the force is specified by the FUNCTION command line. This references a

function_name (defined in the SIERRA scope in a DEFINITION FOR FUNCTION command

block) that specifies the magnitude of the force vector as a function of time. The magnitude can be

scaled by use of the SCALE FACTOR command line described in Section 6.5.3.4.

The force is applied only in the prescribed direction, and is not applied in any direction orthogonal

to that direction.

6.5.3.3 User Subroutine Commands

If the user subroutine option is used, the force vector may vary spatially at any given time for each

of the nodes in the node set associated with the particular PRESCRIBED FORCE command block.

The user subroutine option allows for a more complex description of the force field than does

the function option, but the user subroutine option also requires that you write a user subroutine

to implement this capability. The user subroutine will be used to define a force direction and a

magnitude for every node to which the boundary condition will be applied. The subroutine will be

called by Presto at the appropriate time to generate the force field.

Following are the command lines related to the user subroutine option:

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

The user subroutine option is invoked by using the NODE SET SUBROUTINE command line. The

string subroutine_name is the name of a FORTRAN subroutine that is written by the user.

Following the NODE SET SUBROUTINE command line are other command lines that may be used

to implement the user subroutine option. These command lines are described in Section 9.2.2 and

consist of SUBROUTINE DEBUGGING OFF, SUBROUTINE DEBUGGING ON, SUBROUTINE REAL

PARAMETER, SUBROUTINE INTEGER PARAMETER, and SUBROUTINE STRING PARAMETER.

Examples of using these command lines are provided throughout Chapter 9.

The magnitude set in the user subroutine can be scaled by use of the SCALE FACTOR command

line, as described in Section 6.5.3.4.

Usage requirements for the node set subroutine. The subroutine that you write will return three

output values per node. Suppose you write a user subroutine that passes the output values through

324 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

an array output_values. For a given node inode, the output_values array would have the

following values:

output_values(1,inode) = x component of force at inode

output_values(2,inode) = y component of force at inode

output_values(3,inode) = z component of force at inode

The three components of the force vector are given in output_values 1 through 3. The values

of the flags array are ignored.

See Chapter 9 for more details on implementing the user subroutine option.

6.5.3.4 Additional Commands

These command lines in the PRESCRIBED FORCE command block provide additional options for

the boundary condition:

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

The SCALE FACTOR command line is used to apply an additional scaling factor, which is constant

in both time and space, to all vector magnitude values of the field defined by the specification

commands or the user subroutine. For example, if the magnitude of the force in a time history

function is given as 1.5 from time 1.0 to time 2.0 and the scale factor is 0.5, then the magnitude of

the force from time 1.0 to 2.0 is 0.75. The default value for the scale factor is 1.0.

The ACTIVE PERIODS and INACTIVE PERIODS command lines determine when the boundary

condition is active. See Section 2.5 for more information about these command lines.

6.5. FORCE BOUNDARY CONDITIONS 325

6.5.4 Prescribed Moment

BEGIN PRESCRIBED MOMENT

#

node set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

specification commands

DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z

FUNCTION = <string>function_name

#

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

additional commands

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [PRESCRIBED MOMENT]

The PRESCRIBED MOMENT command block prescribes a moment field for a given set of nodes.

Moments can only be defined for nodes attached to beam or shell elements. The moment field

associates a vector giving the magnitude and direction of the moment with each node in the node

set. If the moment field has only a time-varying component, the specification commands in the

above command block can be used to specify the moment field. If the moment field has both time-

varying and spatially varying components, a user subroutine option is used to specify the moment

field. In a given boundary condition command block, commands from only one of the command

groups (specification commands or user subroutine commands) may be used.

The PRESCRIBED MOMENT command block contains three groups of commands—node set, func-

tion, and user subroutine. Each of these command groups is basically independent of the others.

In addition to the command lines in the four command groups, there are three additional command

lines: SCALE FACTOR, ACTIVE PERIODS, and INACTIVE PERIODS. The SCALE FACTOR com-

326 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

mand line can be used in conjunction with either the specification commands or the user subroutine

commands. The ACTIVE PERIODS and INACTIVE PERIODS command lines are used to activate

or deactivate this force boundary condition for certain time periods. Following are descriptions of

the different command groups.

6.5.4.1 Node Set Commands

The node set commands portion of the PRESCRIBED MOMENT command block defines a set

of nodes associated with the prescribed moment field and can include some combination of the

following command lines:

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators for constructing a

set of nodes. See Section 6.1.1 for more information about the use of these command lines for

creating a set of nodes used by the boundary condition. There must be at least one NODE SET,

SURFACE, BLOCK, or INCLUDE ALL BLOCKS command line in the command block.

6.5.4.2 Specification Commands

If the specification commands are used, the moment vector at any given time is the same for all

nodes in the node set associated with the particular PRESCRIBED MOMENT command block. The

direction of the moment vector is constant for all time; the magnitude of the moment vector may

vary with time, however.

Following are the command lines used to specify the prescribed moment with a function and a

direction:

DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z

FUNCTION = <string>function_name

The moment can be specified either along an arbitrary user-defined direction or along a component

direction (X, Y, or Z), but not both.

- The DIRECTION command line is used to prescribe the moment in an arbitrary user-defined

direction. The name in the string defined_direction is a reference to a direction, which

is defined using the DEFINE DIRECTION command block within the SIERRA scope.

6.5. FORCE BOUNDARY CONDITIONS 327

- The COMPONENT command line is used to specify that the moment vector lies along one

of the component directions. The COMPONENT command line is a shortcut to an internally

defined direction vector; for example, component x corresponds to using direction vector (1,

0, 0).

The magnitude of the moment is specified by the FUNCTION command line. This references a

function_name (defined in the SIERRA scope in a DEFINITION FOR FUNCTION command

block) that specifies the magnitude of the moment vector as a function of time. The magnitude can

be scaled by use of the SCALE FACTOR command line described in Section 6.5.4.4.

The moment is applied only in the prescribed direction, and is not applied in any direction orthog-

onal to that direction.

6.5.4.3 User Subroutine Commands

If the user subroutine option is used, the moment vector may vary spatially at any given time for

each of the nodes in the node set associated with the particular PRESCRIBED MOMENT command

block. The user subroutine option allows for a more complex description of the moment field

than do specification commands, but the user subroutine option also requires that you write a user

subroutine to implement this capability. The user subroutine will be used to define a moment

direction and a magnitude for every node to which the boundary condition will be applied. The

subroutine will be called by Presto at the appropriate time to generate the moment field.

Following are the command lines related to the user subroutine option:

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

The user subroutine option is invoked by using the NODE SET SUBROUTINE command line. The

string subroutine_name is the name of a FORTRAN subroutine that is written by the user.

Following the NODE SET SUBROUTINE command line are other command lines that may be used

to implement the user subroutine option. These command lines are described in Section 9.2.2 and

consist of SUBROUTINE DEBUGGING OFF, SUBROUTINE DEBUGGING ON, SUBROUTINE REAL

PARAMETER, SUBROUTINE INTEGER PARAMETER, and SUBROUTINE STRING PARAMETER.

Examples of using these command lines are provided throughout Chapter 9.

The magnitude set in the user subroutine can be scaled by use of the SCALE FACTOR command

line, as described in Section 6.5.4.4.

Usage requirements for the node set subroutine. The subroutine that you write will return three

output values per node. Suppose you write a user subroutine that passes the output values through

328 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

an array output_values. For a given node inode, the output_values array would have the

following values:

output_values(1,inode) = moment about x-direction at inode

output_values(2,inode) = moment about y-direction at inode

output_values(3,inode) = moment about z-direction at inode

The three components of the moment vector are given in output_values 1 through 3. The values

of the flags array are ignored.

See Chapter 9 for more details on implementing the user subroutine option.

6.5.4.4 Additional Commands

These command lines in the PRESCRIBED MOMENT command block provide additional options

for the boundary condition:

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

The SCALE FACTOR command line is used to apply an additional scaling factor, which is constant

in both time and space, to all vector magnitude values of the field defined by the specification

commands or the user subroutine. For example, if the magnitude of the moment in a time history

function is given as 1.5 from time 1.0 to time 2.0 and the scale factor is 0.5, then the magnitude of

the moment from time 1.0 to 2.0 is 0.75. The default value for the scale factor is 1.0.

The ACTIVE PERIODS and INACTIVE PERIODS command lines determine when the boundary

condition is active. See Section 2.5 for more information about these command lines.

6.6. GRAVITY 329

6.6 Gravity

BEGIN GRAVITY

#

node set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

DIRECTION = <string>defined_direction

FUNCTION = <string>function_name

GRAVITATIONAL CONSTANT = <real>g_constant

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [GRAVITY]

A gravity load is generally referred to as a body force boundary condition. A gravity load generates

a force at a node that is proportional to the mass of the node. This section describes how to apply

a gravity load to a body.

The GRAVITY command block is used to specify a gravity load that is applied to all nodes selected

within a command block. The gravity load boundary condition uses the function and scale (grav-

itational constant and scale factor) information to generate a body force at a node based on the

mass of the node. Multiple GRAVITY command blocks can be defined on different sets of nodes.

If two different GRAVITY command blocks reference the same node, the node will have gravity

loads applied by both of the command blocks. Care must be taken to make sure you do not apply

multiple gravity loads to one block if you only want one gravity load condition applied.

The node set commands portion of the GRAVITY command block defines a set of nodes asso-

ciated with the gravity load and can include some combination of the following command lines:

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators for constructing a

set of nodes. See Section 6.1.1 for more information about the use of these command lines for

330 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

creating a set of nodes used by the boundary condition. There must be at least one NODE SET,

SURFACE, BLOCK, or INCLUDE ALL BLOCKS command line in the command block.

The gravity load is specified along an arbitrary user-defined direction, and is defined using the

DIRECTION command line. The name in the string defined_direction is a reference to a

direction, which is defined using the DEFINE DIRECTION command block within the SIERRA

scope.

The strength of the gravitational field can be varied with time by using the FUNCTION com-

mand line. This command line references a function_name defined in the SIERRA scope in

a DEFINITION FOR FUNCTION command block.

A gravitational constant is specified by the GRAVITATIONAL CONSTANT command line in the real

value g_constant. For example, the gravitational constant in units of inches and seconds would

be 386.4 inches per second squared. You must set this quantity based on the actual units for your

model.

The dependent variables in the function can be scaled by the real value scale_factor in the

SCALE FACTOR command line. At any given time, the strength of the gravitational field is a

product of the gravitational constant, the value of the function at that time, and the scale factor.

The ACTIVE PERIODS and INACTIVE PERIODS command lines provides an additional option

for the gravity load condition. These command lines can activate or deactivate the gravity load for

certain time periods. See Section 2.5 for more information about these command lines.

6.7. PRESCRIBED TEMPERATURE 331

6.7 Prescribed Temperature

BEGIN PRESCRIBED TEMPERATURE

#

block set commands

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE BLOCK = <string list>block_names

#

specification command

FUNCTION = <string>function_name

#

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

external database commands

READ VARIABLE = <string>var_name

COPY VARIABLE = <string>var_name [FROM MODEL <string>model_name]

TIME = <real>time

TEMPERATURE TYPE = SOLID_ELEMENT|SHELL_ELEMENT (SOLID_ELEMENT)

#

additional commands

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [PRESCRIBED TEMPERATURE]

The PRESCRIBED TEMPERATURE command block prescribes a temperature field for a given set

of nodes. The prescribed temperature is for each node in the node set. The temperature field

may vary over time and space. If the temperature field has only a time-varying component, the

function command in the above command block can be used to specify the temperature field. If

the temperature field has both time-varying and spatially varying components, a user subroutine

option can be used to specify the temperature field. Finally, you may also read the temperature as

a variable from the mesh file. You can select only one of these options—function, user subroutine,

or read variable—in a command block.

Temperature is applied to nodes, but it is frequently used at the element level, such as in the case

for thermal strains. If the temperatures are used at the element level, the nodal values are averaged

(depending on element) connectivity to produce an element temperature. The temperatures must

be defined for all the nodes defining the connectivity for any given element. For this reason, we

use block commands to derive a set of nodes at which to define temperatures. If the temperatures

are used on an element basis, then the temperature at all the necessary nodes will be defined.

332 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

The PRESCRIBED TEMPERATURE command block contains four groups of commands—block set,

function, user subroutine, and read variable. Each of these command groups is basically indepen-

dent of the others. In addition to the command lines in the four command groups, there are three

additional command lines: SCALE FACTOR, ACTIVE PERIODS, and INACTIVE PERIODS. The

SCALE FACTOR command line can be used in conjunction with the function command, the user

subroutine option, or the read variable option. The ACTIVE PERIODS and INACTIVE PERIODS

command lines are used to activate or deactivate this kinematic boundary condition for certain time

periods. Following are descriptions of the different command groups.

6.7.1 Block Set Commands

The block set commands portion of the PRESCRIBED TEMPERATURE command block defines

a set of nodes associated with the prescribed temperature field and can include some combination

of the following command lines:

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators for constructing

a set of nodes derived from some combination of element blocks. See Section 6.1.1 for more

information about the use of these command lines for creating a set of nodes used by the boundary

condition. There must be at least one BLOCK or INCLUDE ALL BLOCKS command line in the

command block.

6.7.2 Specification Command

If the function command is used, the temperature at any given time is the same for all nodes in

the node set associated with the particular PRESCRIBED TEMPERATURE command block. The

command line

FUNCTION = <string>function_name

references a function_name (defined in the SIERRA scope using a DEFINITION FOR

FUNCTION command block) that specifies the temperature as a function of time. The tempera-

ture can be scaled by use of the SCALE FACTOR command line described in Section 6.7.5.

6.7.3 User Subroutine Commands

If the user subroutine option is used, the temperature field may vary spatially at any given time

for each of the nodes in the node set associated with the particular PRESCRIBED TEMPERATURE

6.7. PRESCRIBED TEMPERATURE 333

command block. The user subroutine option allows for a more complex description of the temper-

ature field than does the function command, but the user subroutine option also requires that you

write a user subroutine to implement this capability. The user subroutine will be used to define a

temperature for every node to which the boundary condition will be applied. The subroutine will

be called by Presto at the appropriate time to generate the temperature field.

Following are the command lines related to the user subroutine option:

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

The user subroutine option is invoked by using the NODE SET SUBROUTINE command line. The

string subroutine_name is the name of a FORTRAN subroutine that is written by the user.

Following the NODE SET SUBROUTINE command line are other command lines that may be used

to implement the user subroutine option. These command lines are described in Section 9.2.2 and

consist of SUBROUTINE DEBUGGING OFF, SUBROUTINE DEBUGGING ON, SUBROUTINE REAL

PARAMETER, SUBROUTINE INTEGER PARAMETER, and SUBROUTINE STRING PARAMETER.

Examples of using these command lines are provided throughout Chapter 9.

The temperature set in the user subroutine can be scaled by use of the SCALE FACTOR command

line, as described in Section 6.7.5.

See Chapter 9 for more details on implementing the user subroutine option.

6.7.4 External Mesh Database Commands

If the external database option is used, the temperature field is read from an external mesh database.

The temperatures are read from a finite element model defined via the FINITE ELEMENT MODEL

command block described in Section 5.1. The finite element model can either be the model used by

the region for its mesh definition as specified with the USE FINITE ELEMENT MODEL command

(see Section 2.3), or it can be a different (but compatible) model. The following command lines

control the use of an external mesh database to prescribe the temperature:

READ VARIABLE = <string>mesh_var_name

COPY VARIABLE = <string>var_name [FROM MODEL <string>model_name]

TIME = <real>time

TEMPERATURE TYPE = SOLID_ELEMENT|SHELL_ELEMENT (SOLID_ELEMENT)

The READ VARIABLE command is used to read the temperature from the region’s finite element

mesh database. The var_name string specifies the name of the variable as it appears on the mesh

database.

334 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

If the analysis will cause topology modifications due to the use of load balancing, remeshing, or

other techniques that can result in nodes and/or elements being moved among processors, then

the COPY VARIABLE command should be used. This command specifies that the variable named

var_name will be used to specify the temperature. The FROM MODEL <string>model_name

portion of the command is optional. If it is specified, the results are read from the mesh database

named model_name. Otherwise, the region’s finite element mesh database will be used as the

model.

The primary difference between the behavior of the COPY VARIABLE command and the READ

VARIABLE command is that the copy command handles topology modifications caused by load

balancing and remeshing, which can move nodes and elements to different processors. The

COPY VARIABLE command will correctly match the nodes from the external database to the cor-

responding nodes in the analysis and communicate the data between processors if needed. Note

that the nodes in the two finite element models must match spatially, but they can be distributed on

different processors.

The field to be read may be specified at an arbitrary number of different times on the mesh file.

The default behavior is for the time history of the variable read from the file to be used to prescribe

the boundary condition. The time history is interpolated as needed for analysis times that do not

correspond exactly to times on the mesh file. The TIME command line can optionally be used

to specify that the boundary condition be constant over time, based on the value of the variable

read from the file at the specified time. If the specified time on the TIME command line does not

correspond exactly to a time on the mesh file, the data on the mesh file will be interpolated as

needed.

If temperature is to be prescribed for shell elements, a linear or quadratic thermal gradient can

optionally be specified through the thickness of the shells using the TEMPERATURE TYPE com-

mand line. The SOLID_ELEMENT option to this command is the default behavior, and results

in a single temperature being read for each node into the temperature variable. With the

SHELL_ELEMENT option, temperatures are read into the shell_temperature variable. Shell

elements may potentially define a temperature gradient though the thickness, in which case there

will be multiple temperatures at a node to describe the temperature gradient through the shell. The

TEMPERATURE_TYPE command is only valid in conjunction with the READ VARIABLE command.

Though-thickness shell temperatures follow the Aria/Calore convention. If there is a single shell

temperature defined at a node, the temperature is constant through the thickness.

If there are two shell temperatures defined at a node, the first is the temperature on the bottom of

the shell and the second the temperature at the top. The temperature varies linearly between the

top and bottom.

If there are three shell temperatures defined at node, the first is the temperature at the bottom of the

shell, the second the temperature at the middle of the shell, and the third the temperature at the top

of the shell. The temperature varies quadratically through the thickness.

SOLID_ELEMENT and SHELL_ELEMENT temperatures may be defined simultaneously in the same

analysis through two different temperature command blocks. If both are defined, the shell element

temperature results override any solid element temperature results on the shell elements.

6.7. PRESCRIBED TEMPERATURE 335

6.7.5 Additional Commands

These command lines in the PRESCRIBED TEMPERATURE command block provide additional op-

tions for the boundary condition:

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

The SCALE FACTOR command line is used to apply an additional scaling factor, which is constant

in both time and space, to all temperature values of the field defined by the function command,

the user subroutine, or the read variable option. For example, if the temperature in a time history

function is given as 100.5 from time 1.0 to time 2.0 and the scale factor is 0.5, then the temperature

from time 1.0 to 2.0 is 50.25. The default value for the scale factor is 1.0.

The ACTIVE PERIODS and INACTIVE PERIODS command lines determine when the boundary

condition is active. See Section 2.5 for more information about these command lines.

336 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

6.8 Pore Pressure

BEGIN PORE PRESSURE

#

block set commands

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE BLOCK = <string list>block_names

#

specification command

FUNCTION = <string>function_name

#

user subroutine commands

ELEMENT BLOCK SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

external database commands

READ VARIABLE = <string>var_name

COPY VARIABLE = <string>var_name [FROM MODEL <string>model_name]

TIME = <real>time

coupled analysis commands

RECEIVE FROM TRANSFER

#

additional commands

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [PORE PRESSURE]

The PORE PRESSURE command block prescribes a pore pressure field for a given set of elements.

The pore pressure is prescribed for each element in the block. The pore pressure field may vary

over time and space. If the pore pressure field has only a time-varying component, the function

command in the above command block can be used to specify the pore pressure field. If the pore

pressure field has both time-varying and spatially varying components, a user subroutine option

can be used to specify the pore pressure field. Finally, the pore pressure can be read as a variable

from the mesh file. You can select only one of these options—function, user subroutine, or read

variable—in a command block.

The PORE PRESSURE command block contains four groups of commands—block set, function,

user subroutine, and read variable. Each of these command groups is basically independent of

the others. In addition to the command lines in the four command groups, there are three ad-

ditional command lines: SCALE FACTOR, ACTIVE PERIODS, and INACTIVE PERIODS. The

SCALE FACTOR command line can be used in conjunction with the function command, the user

6.8. PORE PRESSURE 337

subroutine option, or the read variable option. The ACTIVE PERIODS and INACTIVE PERIODS

command lines are used to activate or deactivate this kinematic boundary condition for certain time

periods. Following are descriptions of the different command groups.

Biot’s coefficient can be defined when prescribing pore pressure. See Section 4.1.2 for more infor-

mation on Biot’s coefficient.

6.8.1 Block Set Commands

The block set commands portion of the PORE PRESSURE command block defines a set of

elements associated with the pore pressure field and can include a combination of the following

command lines:

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators for constructing

a set of elements derived from some combination of element blocks. See Section 6.1.1 for more

information about the use of these command lines for creating a set of elements used by the bound-

ary condition. There must be at least one BLOCK or INCLUDE ALL BLOCKS command line in the

command block.

6.8.2 Specification Command

If the FUNCTION command is used, the pore pressure at any given time is the same for all elements

in the element set associated with the particular PORE PRESSURE command block. The command

line

FUNCTION = <string>function_name

references a function_name (defined in the SIERRA scope using a DEFINITION FOR

FUNCTION command block) that specifies the pore pressure as a function of time. The pore pres-

sure can be scaled using the SCALE FACTOR command line described in Section 6.8.6.

6.8.3 User Subroutine Commands

If the user subroutine option is used, the pore pressure field may vary spatially at any given time for

each of the elements in the element set associated with the particular PORE PRESSURE command

block. The user subroutine option allows for a more complex description of the pore pressure

field than does the FUNCTION command, but the user subroutine option also requires that a user

subroutine be written to implement this capability. The user subroutine will be used to define a

338 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

pore pressure for every element to which the boundary condition will be applied. The subroutine

will be called by Presto at the appropriate time to generate the pore pressure field.

Following are the command lines related to the user subroutine option:

ELEMENT BLOCK SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

The user subroutine option is invoked by using the ELEMENT BLOCK SUBROUTINE command

line. The string subroutine_name is the name of a FORTRAN subroutine that is written by the

user.

Additional command lines

related to the user subroutine option consist of SUBROUTINE DEBUGGING OFF, SUBROUTINE

DEBUGGING ON, SUBROUTINE REAL PARAMETER, SUBROUTINE INTEGER PARAMETER, and

SUBROUTINE STRING PARAMETER. These are described in Section 9.2.2. Examples of using

these command lines are provided throughout Chapter 9.

The pore pressure set in the user subroutine can be scaled by use of the SCALE FACTOR command

line, as described in Section 6.8.6.

See Chapter 9 for more details on implementing the user subroutine option.

6.8.4 External Mesh Database Commands

The pore pressure field can be read from an external mesh database. The finite element model

from which pore pressures are read is defined via the FINITE ELEMENT MODEL command block

described in Section 5.1. The finite element model can either be the model used by the region for its

mesh definition as specified with the USE FINITE ELEMENT MODEL command (see Section 2.3),

or it can be a different (but compatible) model. The following command lines control the use of an

external mesh database to prescribe the pore pressure:

READ VARIABLE = <string>mesh_var_name

COPY VARIABLE = <string>var_name [FROM MODEL <string>model_name]

TIME = <real>time

The READ VARIABLE command is used to read the pore pressure from the region’s finite element

mesh database. The var_name string specifies the name of the variable as it appears on the mesh

database.

If the analysis will cause topology modifications due to the use of load balancing, remeshing,

or other techniques that can result in nodes and/or elements being moved among processors, the

6.8. PORE PRESSURE 339

COPY VARIABLE command should be used. This command specifies that the variable named

var_name will be used to specify the pore pressure. The FROM MODEL <string>model_name

portion of the command is optional. If it is specified, the results are read from the mesh database

named model_name. Otherwise, the region’s finite element mesh database will be used as the

model.

The primary difference between the behavior of the COPY VARIABLE command and the READ

VARIABLE command is that the copy command handles topology modifications caused by load

balancing and remeshing, which can move nodes and elements to different processors. The

COPY VARIABLE command will correctly match the nodes from the external database to the cor-

responding nodes in the analysis and communicate the data between processors if needed. Note

that the nodes in the two finite element models must match spatially, but they can be distributed on

different processors.

The field to be read may be specified at an arbitrary number of different times on the mesh file.

The default behavior is for the time history of the variable read from the file to be used to prescribe

the boundary condition. The time history is interpolated as needed for analysis times that do not

correspond exactly to times on the mesh file. The TIME command line can optionally be used

to specify that the boundary condition be constant over time, based on the value of the variable

read from the file at the specified time. If the specified time on the TIME command line does not

correspond exactly to a time on the mesh file, the data on the mesh file will be interpolated as

needed.

6.8.5 Coupled Analysis Commands

The RECEIVE FROM TRANSFER line command provides the ability to have the pore pressure read

in from a separate analysis code, such as Aria. If this command is specified without the appropriate

input blocks to perform the data transfer, the pore pressure will be zero during the entire simulation.

6.8.6 Additional Commands

These command lines in the PORE PRESSURE command block provide additional options for the

boundary condition:

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

The SCALE FACTOR command line is used to apply an additional scaling factor, which is constant

in both time and space, to all pore pressure values of the field defined by the function command,

the user subroutine, or the read variable option. For example, if the pore pressure in a time history

function is given as 100.5 from time 1.0 to time 2.0 and the scale factor is 0.5, then the pore

pressure from time 1.0 to 2.0 is 50.25. The default value for the scale factor is 1.0.

The ACTIVE PERIODS and INACTIVE PERIODS command lines determine when the boundary

condition is active. See Section 2.5 for more information about these command lines.

340 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

6.9 Fluid Pressure

BEGIN FLUID PRESSURE

#

surface set commands

SURFACE = <string list>surface_names

#

specification commands

DENSITY = <real>fluid_density

DENSITY FUNCTION = <string>density_function_name

GRAVITATIONAL CONSTANT = <real>gravitational_acceleration

FLUID SURFACE NORMAL = <string>global_component_names

DEPTH = <real>fluid_depth

DEPTH FUNCTION = <string>depth_function_name

REFERENCE POINT = <string>reference_point_name

#

additional commands

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [PRESSURE]

The FLUID PRESSURE command block applies a hydrostatic pressure to each node of each face

in the associated surfaces. The pressure at any node is determined from

P = ρgh (6.1)

where P is the pressure, ρ is the fluid density at the current time, g is the gravitational constant, and

h is the current depth of the fluid above the node. The depth of the fluid is computed as the distance

from the current fluid surface to the node in the direction of the fluid surface normal. The normal

must be specified as one of the three global coordinate directions, x, y, or z. The global location

of the fluid surface is found by adding the current depth to the appropriate coordinate component

(the direction defined in the FLUID SURFACE NORMAL command) of a datum point. The datum

point is either the point specified in the REFERENCE POINT line command, or, in the absence of

this command, the minimum coordinate on the applied pressure surface in the component direction

defined in the FLUID SURFACE NORMAL command. Once the current location of the fluid surface

is computed, the depth at each node on the pressure surface is computed as the distance from the

node to the fluid surface in the direction of the fluid surface normal.

Currently, the FLUID PRESSURE command block can be used for surfaces that have faces de-

rived from solid elements (eight-node hexahedra, four-node tetrahedra, eight-node tetrahedra, etc.),

membranes, and shells.

The FLUID PRESSURE command block contains three groups of commands—surface set, specifi-

cation, and additional optional commands.

6.9. FLUID PRESSURE 341

6.9.1 Surface Set Commands

The surface set commands portion of the FLUID PRESSURE command block defines a set of

surfaces associated with the pressure field and consists of the following line:

SURFACE = <string list>surface_names

In the SURFACE command line, a series of surfaces can be listed through the string list surface_

names. There must be at least one SURFACE command line in the command block. See Sec-

tion 6.1.1 for more information about the use of command lines for creating a set of surfaces used

by the boundary condition. The force computed from the hydrostatic pressure will be in the oppo-

site direction of the face normal. When using shells or membranes, the analyst must ensure that all

face normals composing the pressure application surface are in the correct direction.

6.9.2 Specification Commands

The density and the gravitational acceleration must be input by the user in units consistent with

other material properties and the lengths in the mesh. To facilitate convergence of the initial load

step, the gradual application of a hydrostatic load may be specified through a time history function

for the density. A combination of the DENSITY and the DENSITY FUNCTION sets the value for

the fluid density at each time. Either the DENSITY or the DENSITY FUNCTION must be input and

both can be used together. If the DENSITY command is input without the DENSITY FUNCTION

command, the density will be constant in time at that value. If the DENSITY FUNCTION command

is input without a DENSITY command, the function is used as a time history of the density. If both

the DENSITY and the DENSITY FUNCTION commands are input, the density value is used as a

scale factor on the time history function. Finally, the GRAVITATIONAL CONSTANT sets the value

for the acceleration due to gravity, g.

DENSITY = <real>fluid_density

DENSITY FUNCTION = <string>fluid_density_function

GRAVITATIONAL CONSTANT = <real>G

The following command lines are used to define the location of the fluid surface at any time during

the analysis:

FLUID SURFACE NORMAL = <string>normal_component

DEPTH = <real>initial_fluid_depth

DEPTH FUNCTION = <string>depth_function_name

REFERENCE POINT = <string>point_name

The FLUID SURFACE NORMAL command sets the outward normal of the fluid surface to be one

of the global component directions, x, y, or z. The fluid depth is then assumed to be in the direction

opposite this global direction. The DEPTH command is used with the DEPTH FUNCTION command

342 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

to determine the fluid depth at any time. At least one of these commands must be input. If the

DEPTH command is input without the DEPTH FUNCTION command, the fluid depth will be constant

in time with that value. If the DEPTH FUNCTION command is input without a DEPTH command,

the function is used as a time history of the depth. If both the DEPTH and the DEPTH FUNCTION

commands are input, the specified depth is used as a scale factor on the time history function.

The depth and/or depth function are used to determine the current depth, which is added to the

appropriate position of a datum point to compute the current location of the fluid surface in the

FLUID SURFACE NORMAL component direction. The datum point is assumed to be the minimum

coordinate in the component direction on the pressure surface defined in the SURFACE command

if the optional REFERENCE POINT command described below is not used.

The REFERENCE POINT command line is used to specify the fluid surface relative to an external

datum. When applying an external fluid pressure in a quasistatic analysis, a corresponding stiffness

due to the external fluid is added to the diagonal terms of the stiffness matrix for the full tangent

preconditioner to enhance convergence of the solver.

6.9.3 Additional Commands

These command lines in the FLUID PRESSURE command block provide additional options for the

boundary condition:

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

By default, the FLUID PRESSURE boundary condition will be active throughout an analysis. How-

ever, use of the ACTIVE PERIODS and INACTIVE PERIODS commands can be used to limit the

action of the boundary condition to specific time periods. The ACTIVE PERIODS command line

specifies when the boundary condition is active implying that it is inactive during any periods

not included on the command line. Alternatively, the INACTIVE PERIODS determines when the

boundary condition will not be active. See Section 2.5 for more information about these com-

mands.

6.10. SPECIALIZED BOUNDARY CONDITIONS 343

6.10 Specialized Boundary Conditions

Specialized boundary conditions that are provided to enforce kinematic conditions or apply loads

are described in this section.

6.10.1 Cavity Expansion

BEGIN CAVITY EXPANSION

EXPANSION RADIUS = <string>SPHERICAL|CYLINDRICAL

(spherical)

SURFACE = <string list>surface_ids

REMOVE SURFACE = <string list>surface_ids

FREE SURFACE = <real>top_surface_zcoord

<real>bottom_surface_zcoord

NODE SETS TO DEFINE BODY AXIS =

<string>nodelist_1 <string>nodelist_id2

TIP RADIUS = <real>tip_radius

BEGIN LAYER <string>layer_name

LAYER SURFACE = <real>top_layer_zcoord

<real>bottom_layer_zcoord

PRESSURE COEFFICIENTS = <real>c0 <real>c1 <real>c2

SURFACE EFFECT = <string>NONE|SIMPLE_ON_OFF(NONE)

FREE SURFACE EFFECT COEFFICIENTS = <real>coeff1

<real>coeff2

END [LAYER <string>layer_name]

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [CAVITY EXPANSION]

The CAVITY EXPANSION command block is used to apply a cavity expansion boundary condition

to a surface on a body. This boundary condition is typically used for earth penetration studies

where some type of projectile (penetrator) strikes a target. For a more detailed explanation of the

numerical implementation of the cavity expansion boundary condition and the parameters for this

boundary condition, consult Reference 1. The cavity expansion boundary condition is a complex

boundary condition with several options, and the detailed explanation of the implementation of

the boundary condition in the above reference is required reading to fully understand the input

parameters for this boundary condition.

There are two types of cavity expansion—cylindrical expansion and spherical expansion. You can

select either the spherical or cylindrical option by using the EXPANSION RADIUS command line;

the default is SPHERICAL. Reference 1 describes these two types of cavity expansion.

The boundary condition is applied to the surfaces (surface_ids) in the finite element model

specified by the SURFACE command line. (Any surface specified on the SURFACE command line

can be removed from the list of surfaces by using a REMOVE SURFACE command line.) This

boundary condition generates a pressure at a node based on the velocity and surface geometry at

344 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

the node. Since cavity expansion is essentially a pressure boundary condition, cavity expansion

must be specified for a surface.

The target has a top free surface with a normal in the global positive z-direction; the target has

a bottom free surface with a normal in the global negative z-direction. The point on the global

z-axis intersected by the top free surface is given by the parameter top_surface_zcoord on

the FREE SURFACE command line. The point on the global z-axis intersected by the bottom free

surface is given by the parameter bottom_surface_zcoord on the FREE SURFACE command

line.

It is necessary to define two points that lie on the axis (usually the axis of revolution) of the pen-

etrator. These two nodes are specified with the NODE SETS TO DEFINE BODY AXIS command

line. The first node should be a node toward the tip of the penetrator (nodelist_1), and the sec-

ond node should be a node toward the back of the penetrator (nodelist_2). Only one node is

allowed in each node set.

It is necessary to compute either a spherical or cylindrical radius for nodes on the surface where the

cavity expansion boundary condition is applied. This is done automatically for most nodes. The

calculations for these radii break down if the node is close to or at the tip of the axis of revolution

of the penetrator. For nodes where the radii calculations break down, a user-defined radius can be

specified with the TIP RADIUS command line. For more information, consult Reference 1.

Embedded within the target can be any number of layers. Each layer is defined with a LAYER

command block. The command block begins with

BEGIN LAYER <string>layer_name

and is terminated with:

END [LAYER <string>layer_name]

Here the string layer_name is a user-selected name for the layer. This name must be unique to

all other layer names defined in the CAVITY EXPANSION command blocks. The layer properties

are defined by several different command lines—LAYER SURFACE, PRESSURE COEFFICIENTS,

SURFACE EFFECT, and FREE SURFACE EFFECT COEFFICIENTS. These command lines are

described next.

- LAYER SURFACE = <real>top_layer_zcoord

<real>bottom_layer_zcoord

The layer has a top surface with a normal in the global positive z-direction; the layer has

a bottom surface with a normal in the global negative z-direction. In the LAYER SURFACE

command line, the point on the global z-axis intersected by the top layer surface is given

by the parameter top_layer_zcoord, and the point on the global z-axis intersected by the

bottom layer surface is given by the parameter bottom_layer_zcoord.

- PRESSURE COEFFICIENTS = <real>c0 <real>c1 <real>c2

6.10. SPECIALIZED BOUNDARY CONDITIONS 345

The value of the pressure at a node is derived from an equation that is quadratic based on

some scalar value derived from the velocity vector at the node. The three coefficients for the

quadratic equation (c0, c1, c2) in the PRESSURE COEFFICIENTS command line define the

impact properties of a layer.

- SURFACE EFFECT = <string>NONE|SIMPLE_ON\str (NONE)

There can be no surface effects associated with a layer, or there can be a simple on/off

surface effect model associated with a layer. The type of surface effect is determined by

the SURFACE EFFECT command line. The default is no surface effects. If the SIMPLE_

ON_OFF model is chosen, it is necessary to specify free surface effect coefficients with the

FREE SURFACE EFFECT COEFFICIENTS command line.

- FREE SURFACE EFFECT COEFFICIENTS = <real>coeff1 <real>coeff2

All the parameters defined in a LAYER command block apply to that layer. If a simple on/off

surface effect is applied to a layer, the surface effect coefficients are associated with the

layer values. The surface effect parameter associated with the top of the layer is coeff1;

the surface effect parameter associated with the bottom of the layer is coeff2.

The ACTIVE PERIODS and INACTIVE PERIODS command lines provide an additional option for

cavity expansion. These command lines can activate or deactivate cavity expansion for certain time

periods. See Section 2.5 for more information about these command lines.

346 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

6.10.2 Blast Pressure

BEGIN BLAST PRESSURE

SURFACE = <string list>surface_ids

REMOVE SURFACE = <string list>surface_ids

BURST TYPE = <string>SURFACE|AIR

TNT MASS IN LBS = <real>tnt_mass_lbs

BLAST TIME = <real>blast_time

BLAST LOCATION = <real>loc_x <real>loc_y <real>loc_z

ATMOSPHERIC PRESSURE IN PSI = <real>atmospheric_press

AMBIENT TEMPERATURE IN FAHRENHEIT = <real>temperature

FEET PER MODEL UNITS = <real>feet

MILLISECONDS PER MODEL UNITS = <real>milliseconds

PSI PER MODEL UNITS = <real>psi

PRESSURE SCALE FACTOR = <real>pressure_scale(1.0)

IMPULSE SCALE FACTOR = <real>impulse_scale(1.0)

POSITIVE DURATION SCALE FACTOR = <real>duration_scale(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [BLAST PRESSURE]

The BLAST PRESSURE command block is used to apply a pressure load resulting from a con-

ventional explosive blast. This boundary condition is based on Reference 2 and Reference 3, and

Sachs scaling is implemented to match the ConWep code (Reference 4). Angle of incidence is

accounted for by transitioning from reflected pressure to incident pressure according to:

Ptotal = Pre f ∗ cosθ +Pinc ∗ (1− cosθ) (6.2)

where θ is the angle between the face normal vector and the direction to the blast from the face,

Ptotal is the total pressure, Pre f is the reflected portion of the pressure, and Pinc is the incident portion

of the pressure. Pre f and Pinc are based on Friedlander’s equation, as described in Reference 3.

If θ is greater than 90 degrees (i.e. the face is pointing away from the blast), only Pinc is applied to

the face. In this case, the face variable cosa, which contains cosθ , is set to zero.

This boundary condition is applied to the surfaces in the finite element model specified by the

SURFACE command line. (Any surface specified on the SURFACE command line can be removed

from the list of surfaces by using a REMOVE SURFACE command line.)

Warning: Multiple BLAST PRESSURE command blocks may be used in an analy-

sis to apply blast loads at different locations. However, only one should be applied

to a given element face. Each instance of this boundary condition should be applied

to a different set of surfaces, and those surfaces should not overlap surfaces used by

other instances of this boundary condition. This is because face variables are used

to store information used by this boundary condition, and those variables would be

over-written by another instance of the boundary condition.

6.10. SPECIALIZED BOUNDARY CONDITIONS 347

Table 8.18 lists the face variables used by the BLAST PRESSURE boundary condition. These can

be requested for output in the standard manner (see Chapter 8), and can be useful for verifying that

this boundary condition is correctly applied.

The type of burst load is specified with the BURST TYPE command, which can be SURFACE or

AIR. The SURFACE option is used to define a hemispherical burst, while the AIR option is used for

a spherical burst.

The equivalent TNT mass (in pounds) is defined with the TNT MASS IN LBS command. The time

of the explosion is defined using the BLAST TIME command. This can be negative, and can be

used to start the analysis at the time when the blast reaches the structure, saving computational

time. The location of the blast is defined with the BLAST LOCATION command.

The current ambient pressure and temperature are defined using the ATMOSPHERIC PRESSURE

IN PSI and AMBIENT TEMPERATURE IN FAHRENHEIT commands, respectively. As implied

by the command names, these must be supplied in units of pounds per square inch and degrees

Fahrenheit.

Because of the empirical nature of this method for computing an explosive load, appropriate con-

version factors for the unit system used in the model must be supplied. The commands FEET PER

MODEL UNITS, MILLISECONDS PER MODEL UNITS, and PSI PER MODEL UNITS are used to

specify the magnitude of one foot, one millisecond, and one pound per square inch in the unit

system of the model.

All of the commands listed above are required. Scaling factors can optionally be applied to modify

the peak pressure, the impulse, and the duration of the loading. The PRESSURE SCALE FACTOR

command scales the the peak value of both the reflected and incident portions of the applied pres-

sure. The IMPULSE SCALE FACTOR command scales the impulse of the reflected and incident

portions of the applied pressure. The POSITIVE DURATION SCALE FACTOR command scales

the duration of the reflected and incident portions of the applied pressure. Each of these scaling

factors only affects the quantity that it modifies, for example, scaling the pressure does not affect

the impulse or duration.

The ACTIVE PERIODS and INACTIVE PERIODS command lines can optionally be used to ac-

tivate or deactivate this boundary condition for certain time periods. See Section 2.5 for more

information about these command lines.

348 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

6.10.3 Silent Boundary

BEGIN SILENT BOUNDARY

SURFACE = <string list>surface_names

REMOVE SURFACE = <string list>surface_names

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [SILENT BOUNDARY]

The SILENT BOUNDARY command block is also referred to as a non-reflecting surface boundary

condition. A wave striking this surface is not reflected. This boundary condition is implemented

with the techniques described in Reference 5. The method described in this reference is excellent

at transmitting the low- and medium-frequency content through the boundary. While the method

does reflect some of the high-frequency content, the amount of energy reflected is usually minimal.

On the whole, the silent boundary condition implemented in Presto is highly effective.

In the SURFACE command line, you can list a series of surfaces through the string list surface_

names. There must be at least one SURFACE command line in the command block. The

REMOVE SURFACE command line allows you to delete surfaces from the set specified in the

SURFACE command line(s) through the string list surface_names. See Section 6.1.1 for more in-

formation about the use of these command lines for creating a set of surfaces used by the boundary

condition.

The ACTIVE PERIODS and INACTIVE PERIODS command lines provide an additional option

for the boundary condition. These command lines are used to activate or deactivate the boundary

condition for certain time periods. See Section 2.5 for more information about these command

lines.

6.10. SPECIALIZED BOUNDARY CONDITIONS 349

6.10.4 Spot Weld

BEGIN SPOT WELD

NODE SET = <string list>nodelist_ids

REMOVE NODE SET = <string list>nodelist_ids

SURFACE = <string list>surface_ids

REMOVE SURFACE = <string list>surface_ids

SECOND SURFACE = <string>surface_id

NORMAL DISPLACEMENT FUNCTION =

<string>function_nor_disp

NORMAL DISPLACEMENT SCALE FACTOR =

<real>scale_nor_disp(1.0)

TANGENTIAL DISPLACEMENT FUNCTION =

<string>function_tang_disp

TANGENTIAL DISPLACEMENT SCALE FACTOR =

<real>scale_tang_disp(1.0)

FAILURE ENVELOPE EXPONENT = <real>exponent(2.0)

FAILURE FUNCTION = <string>fail_func_name

FAILURE DECAY CYCLES = <integer>number_decay_cycles(10)

SEARCH TOLERANCE = <real>search_tolerance

IGNORE INITIAL OFFSET = NO|YES(NO)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [SPOT WELD]

The spot weld option lets the user model an “attachment” between a node on one surface and a

face on another surface. This option models a weld or a small screw or bolt with a normal force-

displacement curve like that shown in Figure 6.1 and a tangential force-displacement curve like

that shown in Figure 6.2. The displacement shown in the figures is the distance, either normal

or tangential, that the node moves from the nearest point on the face as measured in the original

configuration. The force shown in the figure is the force at the attachment as a function of the

distance between the two attachment points. (The force-displacement curve assumes the two at-

tachment points are originally at the same location and the initial distance is zero, thus zero force

at time zero. However, in most situations there is an initial gap which leads to non-zero forces at

time zero.) Two force-displacement curves are required for the spot weld model; one curve models

normal behavior, and the other curve models tangential behavior. It is worth noting the difference

in how the normal and tangential components behave, therefore explaining why two curves are

required. It is possible for the node to interpenetrate the surface resulting in a negative normal dis-

placement between the connection points. Therefore, the normal force displacement curve must

have the ability to capture negative displacements and thus negative forces. Although this penalty

stiffness approach will work to prevent interpenetration, it is better to model this behavior using

contact. The tangential displacement, however, is always positive.

The sign of the normal displacement of the spot weld (generally tension at positive displacement

or compression at negative displacement) is determined by the relative motion of the attached node

and face as well as the normal direction of the face. See Figure 6.3. If the relative normal motion of

the face is along the face normal the spot weld becomes more compressive. If the relative normal

350 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

Figure 6.1: Force-displacement curve for spot weld normal force.

Figure 6.2: Force-displacement curve for spot weld tangential force.

motion of the face is opposite to the face normal the spot weld becomes more tensile.

The attachment in Presto is defined between a node on one surface and the closest point on an

element face on the other surface. Since a face is used to define one of the attachment points,

it is possible to compute a normal vector and a tangent vector associated with the face. This

allows us to resolve the displacement (distance, both positive and negative) and force (both tensile

6.10. SPECIALIZED BOUNDARY CONDITIONS 351

Figure 6.3: Sign convention for spot weld normal displacements.

and compressive) into normal and tangential components. With normal and tangential vectors

associated with the attachment, the attachment can be characterized for the case of pure tension

and pure shear.

Presto includes two mechanisms for determining failure for cases that fall between pure tension

and pure shear. In the first case, failure is governed by the equation

(un/uncrit
)p +(ut/utcrit

)p < 1.0 . (6.3)

In Equation 6.3, the distance from the node to the original attachment point on the face as measured

normal to the face is un, which is defined as the normal distance. The maximum value given

for un in the normal force-displacement curve is uncrit
, but is different for positive and negative

displacements. In Figure 6.1, the value used for uncrit
is ucrit+ in the positive direction and ucrit−

in the negative direction. The distance from the node to the original attachment point on the face

as measured along a tangent to the face is ut , which is defined as the tangential distance. The

maximum value given for ut in the tangential force-displacement curve is utcrit
. The value p is a

user-specified exponent that controls the shape of the failure surface.

Alternatively, Presto permits a user-specified function to determine the failure surface. The func-

tion defines the ratio of ut/utcrit
at which failure will occur as a function of un/uncrit

. The function

must range from 0.0 to 1.0, and have a value of 1.0 at 0.0 and a value of 0.0 at 1.0. These restrictions

preserve proper failure for the cases of pure tension and pure shear.

To use the spot weld option in Presto, a SPOT WELD command block begins with the input line:

BEGIN SPOT WELD

and is terminated with the input line :

END [SPOT WELD]

352 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

Within the command block, it is necessary to specify the set of nodes on one side of the spot weld

with the NODE SET command line. The NODE SET command line can list one or more node sets.

Any node set listed on the NODE SET command line can be deleted from the list of node sets by

using a REMOVE NODE SET command line. A set of element faces on an opposing side of the spot

weld (which we will refer to as the first surface) is specified with the SURFACE command line.

The SURFACE command line can list one or more surfaces. Any surface listed on the SURFACE

command line can be deleted from the list of surface by using a REMOVE SURFACE command line.

For any node in the node set, the closest point to this node on the opposing surface should lie within

the element faces specified by the SURFACE command line.

The normal force-displacement curve is specified by a function named by the value function_

nor_disp in the NORMAL DISPLACEMENT FUNCTION command line. This function can be

scaled by the real value scale_nor_disp in the NORMAL DISPLACEMENT SCALE FACTOR

command line; the default for this factor is 1.0. The last points in the positive and negative di-

rections are used as the displacements beyond which the spot weld fails. The tangential force-

displacement curve is specified by a function named by the string function_tang_disp in

the TANGENTIAL DISPLACEMENT FUNCTION command line. This function can be scaled by

the real value scale_tang_disp given in the TANGENTIAL DISPLACEMENT SCALE FACTOR

command line; the default for this factor is 1.0. The last point in the positive direction in the

tangential curve is used as the displacement beyond which the spot weld fails.

The failure surface between pure tension and pure shear is controlled by specifying either the

failure envelope exponent, p in Equation 6.3, or a failure function. The failure exponent is specified

by the real value exponent in the FAILURE ENVELOPE EXPONENT command line. The failure

function is specified by the FAILURE FUNCTION command line. If both a failure function and a

failure exponent are given, then the failure function is used.

For an explicit, transient dynamics code like Presto, it is better to remove the force for the spot weld

over several load steps rather than over a single load step once the failure criterion is exceeded.

The FAILURE DECAY CYCLES command line controls the number of load steps over which the

final force is removed (default value is 10). To remove the final force at a spot weld over five load

increments, the integer specified by number_decay_cycles would be set to 5. Once the force

at the spot weld is reduced to zero, it remains zero for all subsequent time (despite the function

definition).

The spot weld can take on area-based behavior by specifying a surface in place of a set of nodes.

The identifier of this surface is specified by the string surface_id in the SECOND SURFACE

command line. The area-based spot weld creates a weld between all nodes on the second surface

and the faces of the first surface. The load-resistance curve at each node is derived from the

tributary area of the node times the given force-displacement curves. Thus, for the area-based spot

welds, the force-displacement curves give the force per unit area resisted by the weld.

The user must set a tolerance for the node-to-face search with the

SEARCH TOLERANCE = <real>search_tolerance

command line. The value you select for search_tolerance will depend upon the distance

between the nodes and surfaces used to define the spot weld.

6.10. SPECIALIZED BOUNDARY CONDITIONS 353

If the user sets IGNORE INITIAL OFFSET = YES, the initial distance between the node and the

face will be taken as the zero normal displacement distance for the spot weld. When using the

IGNORE INITIAL OFFSET = YES command the initial normal force in the will be the value of

the force-displacement curve at displacement=zero. The sign convention used to determine if a

spot weld is in compression or tension is the same as without using IGNORE INITIAL OFFSET

= YES as shown Figure 6.4.

Figure 6.4: Sign convention for spot weld normal displacements with ignore initial offsets on.

The ACTIVE PERIODS and INACTIVE PERIODS command lines provide an additional option

for the boundary condition. These command lines are used to activate or deactivate the boundary

condition for certain time periods. See Section 2.5 for more information about these command

lines.

In explicit dynamics, spot welds do not inherently have a critical time step due to the fact that they

have zero mass. However, when a node-based time step estimate is used, spot welds contribute

their stiffness to the nodes associated with the spot weld, thus influencing the time step calculated

based on those nodes. The spot weld stiffness is calculated as the sum of the current derivative

of the normal force function and the current derivative of the tangential force function, which is a

conservative estimate. If the nodes attached to an element that governs the critical time step have

spot weld stiffness contributions, a line is output to the log file stating the approximate percent

reduction in critical time step due to the the spot weld stiffness contribution.

Output data can be obtained from spot welds. The list of available output variables is documented

in Table 8.17.

354 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

6.10.5 Line Weld

BEGIN LINE WELD

SURFACE = <string list> surface_names

REMOVE SURFACE = <string list> surface_names

BLOCK = <string list> block_names

REMOVE BLOCK = <string list>block_names

SEARCH TOLERANCE = <real>search_tolerance

R DISPLACEMENT FUNCTION = <string>r_disp_function_name

R DISPLACEMENT SCALE FACTOR = <real>r_disp_scale

S DISPLACEMENT FUNCTION = <string>s_disp_function_name

S DISPLACEMENT SCALE FACTOR = <real>s_disp_scale

T DISPLACEMENT FUNCTION = <string>t_disp_function_name

T DISPLACEMENT SCALE FACTOR = <real>t_disp_scale

R ROTATION FUNCTION = <string>r_rotation_function_name

R ROTATION SCALE FACTOR = <real>r_rotation_scale

S ROTATION FUNCTION = <string>s_rotation_function_name

S ROTATION SCALE FACTOR = <real>s_rotation_scale

T ROTATION FUNCTION = <string>t_rotation_function_name

T ROTATION SCALE FACTOR = <real>t_rotation_scale

FAILURE ENVELOPE EXPONENT = <real>k

FAILURE DECAY CYCLES = <integer>number_decay_cycles

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END LINE WELD

The line-weld capability is used to weld the edge of a shell to the face of another shell. The bond

can transmit both translational and rotational forces. When failure of the line weld occurs, it breaks

and no longer transmits any forces.

The edge of the shell that is tied to a surface is modeled with a block of one-dimensional elements

(truss, beam, spring, etc.). The edge of the shell and the one-dimensional elements will share the

same nodes. We will refer to the shell edge and the one-dimensional elements associated with it

as the one-dimensional part of the line-weld model. The element blocks with the one-dimensional

elements are specified by using the BLOCK command line. More than one element block can be

listed on this command line. The element blocks referenced by the BLOCK command line must be

one-dimensional elements—truss, beam, spring, etc.

The other part of the line weld is a set of faces defined by shell elements; this set of faces is the

two-dimensional part of the line weld. The surface (the two-dimensional part of the model) to

which the nodes (from the one-dimensional part of the model) are to be bonded is defined by any

surface of element faces derived from shell elements. The line weld will bond each node in the

element blocks listed in the BLOCK command line to the closest face (or faces) of element faces

in the surfaces listed in the SURFACE command line. More than one surface can be listed on this

command line.

The command line SEARCH TOLERANCE sets a tolerance on the search for node-to-face interac-

tions. For a given node, only those faces within the distance set by the search_tolerance

6.10. SPECIALIZED BOUNDARY CONDITIONS 355

parameter will be searched to determine whether the node should be welded to the face.

Each section of the line weld has its own local coordinate system (r, s, t). The r-direction lies

along a one-dimensional element (and hence on the surface). The s-direction lies on the surface

and is tangential to the one-dimensional element. The t-direction lies normal to the face and is

orthogonal to the r- and s-directions. Force-displacement functions and moment-rotation functions

may be specified for all axes in the local coordinate system. If one of the functions is left out, the

resistance is zero for that axis. These functions are similar to the ones used for the spot weld (see

Figure 6.2).

The force-displacement function in the r-direction represents shear resistance in the direction

of the weld; this function is specified by a SIERRA function name on the R DISPLACEMENT

FUNCTION command line. The force-displacement in the s-direction represents shear resis-

tance tangential to the weld; this function is specified by a SIERRA function name on the

S DISPLACEMENT FUNCTION command line. The force-displacement in the t-direction func-

tion represents tearing resistance normal to the surface; this function is specified by a SIERRA

function name on the T DISPLACEMENT FUNCTION command line. The moment-rotation about

the r-axis represents a rotational tearing resistance; this is specified by a SIERRA function name

on the R ROTATION FUNCTION command line. The rotational resistances about the s-direction

and the t-direction are likely not very meaningful, as rotations along these axes should be well

constrained by the normal and tangential displacement relations. These two rotational resis-

tances, if used, are defined with SIERRA function names on the S ROTATION FUNCTION and

T ROTATION FUNCTION command lines. Note that each SIERRA function used in this command

block is defined via a DEFINITION FOR FUNCTION command block in the SIERRA scope.

Any of the above functions can be scaled by using a corresponding scale factor. For example, the

force-displacement function on the R DISPLACEMENT FUNCTION command line can be scaled by

the parameter r_disp_scale on the R DISPLACEMENT SCALE FACTOR command line. Only

the force values of the force-displacement curve will be scaled.

The failure function for the line weld is similar to that for the spot weld. Denote the displacement

or rotation associated with a line weld as δ . Suppose that δi is a displacement in the r-direction.

The force-displacement curve specified on the R DISPLACEMENT FUNCTION command line has

a maximum value η . This is the maximum displacement the weld can endure in the r-direction be-

fore breaking. Associate this value of η with δi by designating it as ηi. Repeat this pairing process

for all the displacements and rotations defining the line weld. Each displacement component in the

line weld will be paired with one of the three maximum displacement values associated with the

line weld. Each rotation component in the line weld will be paired with one of the three maximum

rotation values associated with the line weld. Breaking of the weld under combined loading is

calculated the same as the spot weld. The weld breaks under the following condition:

k

√

∑
(

δi

ηi

)k

> 1 . (6.4)

In the above equation, the parameter k is set by the user. A typical value for k is 2. The summa-

tion takes place over all the failure functions (force-displacement and moment-rotation) for all the

nodes. (The value for k is specified on the FAILURE ENVELOPE EXPONENT command line.)

356 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

For an explicit, transient dynamics code like Presto, it is better to remove the forces for the line weld

over several time steps rather than over a single time step once the failure criterion is exceeded.

The FAILURE DECAY CYCLES command line controls the number of time steps over which the

final force is removed. To remove the final force at a line weld over five time steps, the integer

specified by number_decay_cycles would be set to 5. Once the force in the line weld is reduced

to zero, it remains zero for all subsequent time.

The ACTIVE PERIODS and INACTIVE PERIODS command lines provide an additional option

for the boundary condition. These command lines are used to activate or deactivate the boundary

condition for certain time periods. See Section 2.5 for more information about these command

lines.

6.10. SPECIALIZED BOUNDARY CONDITIONS 357

6.10.6 Viscous Damping

BEGIN VISCOUS DAMPING <string>damp_name

#

block set commands

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE BLOCK = <string list>block_names

#

MASS DAMPING COEFFICIENT = <real>mass_damping

STIFFNESS DAMPING COEFFICIENT = <real>stiff_damping

#

additional command

ACTIVE PERIODS = <string list>period names

INACTIVE PERIODS = <string list>period_names

END [VISCOUS DAMPING <string>damp_name]

The VISCOUS DAMPING command block adds simple Rayleigh viscous damping to mesh nodes.

At each node, Presto computes a damping coefficient, which is then multiplied by the node velocity

to create a damping force. The damping coefficient is the sum of the mass times a mass damp-

ing coefficient and the nodal stiffness times a stiffness damping coefficient. In general, the mass

damping portion damps out low-frequency modes in the mesh, while the stiffness damping portion

damps out higher-frequency terms. Appropriate values for the damping coefficients depend on the

frequencies of interest in the mesh. The general expression for the critical damping fraction, cd ,

for a given frequency is

cd = (kd ∗ω +md/ω)/2 , (6.5)

where kd is the stiffness damping coefficient, md is the mass damping coefficient, and ω is the

frequency of interest. The stiffness damping portion must be used with caution. Because this

term depends on the stiffness, it can affect the critical time step. Thus certain ranges of values for

the stiffness damping coefficient can change the critical time step for the mesh. As Presto does

not currently modify the critical time step based on the selected values for this coefficient, some

choices for this parameter can cause solution instability.

6.10.6.1 Block Set Commands

The block set commands portion of the VISCOUS DAMPING command block defines a set of

element blocks associated with the viscous damping and can include some combination of the

following command lines:

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators for constructing a

set of element blocks. See Section 6.1.1 for more information about the use of these command

358 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

lines for creating a set of element blocks used by viscous damping. There must be at least one

BLOCK or INCLUDE ALL BLOCKS command line in the command block.

All the nodes associated with the elements specified by the block set commands will have viscous

damping forces applied.

6.10.6.2 Viscous Damping Coefficient

The mass damping coefficient, md , in Equation 6.5 is specified using the parameter mass_

damping on the command line:

MASS DAMPING COEFFICIENT = <real>mass_damping

Mass damping most strongly damps the low-frequency modes, and in Presto, is applied as a bound-

ary condition which does not affect the critical time step.

The stiffness damping coefficient, kd , in Equation 6.5, is specified as the parameter stiff_

damping on the command line:

STIFFNESS DAMPING COEFFICIENT = <real>stiff_damping

Stiffness damping most strongly damps high-frequency modes and is applied through a stress

correction of the pressure term at the element level. Because this type of damping is done at

the element level, it has a direct effect on the critical time step as seen in Equation 6.6, where

ε = kdω
2

in the absence of mass damping and 2
ω ≈ m

κ .

∆t ≤ 2

ω

(

√

1+ ε2 − ε
)

(6.6)

6.10.6.3 Additional Command

The ACTIVE PERIODS and INACTIVE PERIODS command lines can optionally appear in the

VISCOUS DAMPING command block:

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

This command line can activate or deactivate the viscous damping for certain time periods. See

Section 2.5 for more information about this command line.

6.10. SPECIALIZED BOUNDARY CONDITIONS 359

6.10.7 Volume Repulsion Old

BEGIN VOLUME REPULSION OLD <string>repulsion

FRICTION COEFFICIENT = <real>fric_coeff

SCALE FACTOR = <real>scale_factor

OVERLAP TYPE = [NODAL|VOLUMETRIC]

BEGIN BLOCK SET <string>set

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE BLOCK = <string list>block_names

#

SURFACE = <string list>surface_names

REMOVE SURFACE = <string list>surface_names

#

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

#

LINE CYLINDER RADIUS = <real>cylinder_radius

ELEMENT REPRESENTATION = [BEAM_ELEMENT_CYLINDERS|

TRUE_SOLID_VOLUME|NODES]

END [BLOCK SET <string>set]

END [VOLUME REPULSION OLD <string>repulsion]

The VOLUME REPULSION OLD command block is used to create a cylindrical volume around

beam elements that is used as a frictional contact surface. Because beam elements are represented

as line elements, there is no volume associated with the elements that can be used for contact. This

command will generate nodal forces based on interpenetrations of a prescribed set of nodes with

the cylindrical contact surfaces. The force is generated using a penalty stiffness method where the

magnitude of the force depends on the mass of the node and the current time step. This command

will be replaced by Dash contact in the future.

Definition of the coefficient of friction for the cylindrical surface is defined through the FRICTION

COEFFICIENT command line.

The SCALE FACTOR command line specifies a scale factor that scales the force produced from

node-surface interactions.

The OVERLAP TYPE command line must always be set to VOLUMETRIC.

6.10.7.1 Block Set

Complete definition of the contact surfaces and node sets are completely defined within mul-

tiple BLOCK SET command blocks. At least two BLOCK SET command blocks must be de-

fined, one that defines the beam element blocks to wrap in cylinders by setting the ELEMENT

REPRESENTATION command line to BEAM_ELEMENT_CYLINDERS. The second BLOCK SET

command block defines the node set used to contact the cylindrical surfaces by setting the

360 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

ELEMENT REPRESENTATION to NODES.

The BLOCK, INCLUDE ALL BLOCKS and REMOVE BLOCK command lines must be used when

defining the beam element blocks, while a combination of these block command lines and the

following surface command lines, SURFACE and REMOVE SURFACE, must be used to define the

node set used for contact.

ACTIVE PERIODScommand line defined the time periods in which this boundary condition is

active, whereas the INACTIVE PERIODS command line defines when this boundary condition is

inactive.

The LINE CYLINDER RADIUS command line specifies the radius of the cylindrical surface around

the beam elements.

6.10. SPECIALIZED BOUNDARY CONDITIONS 361

6.10.8 General Multi-Point Constraints

BEGIN MPC

#

Master/Slave MPC commands

MASTER NODE SET = <string list>master_nset

MASTER NODES = <integer list>master_nodes

MASTER SURFACE = <string list>master_surf

MASTER BLOCK = <string list>master_block

SLAVE NODE SET = <string list>slave_nset

SLAVE NODES = <integer list>slave_nodes

SLAVE SURFACE = <string list>slave_surf

SLAVE BLOCK = <string list>slave_block

#

Tied contact search command

SEARCH TOLERANCE = <real> tolerance

#

Tied MPC commands

TIED NODES = <integer list>tied_nodes

TIED NODE SET = <string list>tied_nset

END [MPC]

Control handling of multiple MPCs

RESOLVE MULTIPLE MPCS = ERROR|FIRST WINS|LAST WINS(ERROR)

Presto provides a general multi-point constraint (MPC) capability that allows a code user to specify

arbitrary constraints between sets of nodes. The commands to define a MPC are all listed within a

MPC command block. There are three types of MPCs: master/slave, tied contact, and tied. All of

these types of MPCs are defined within the MPC command block, but different commands are used

within that block for each case. The commands for each of these types of MPCs are described in

detail below.

6.10.8.1 Master/Slave Multi-Point Constraints

The master/slave type of MPC imposes a constraint between a set of master nodes and a set of slave

nodes. The motion of the three translational degrees of freedom of the slave nodes is constrained

to be equal to the average motion of the master nodes. This type of MPC is typically most useful

if there is either a single master node and one or more slave nodes, or multiple master nodes and a

single slave node. If there are multiple slave nodes, they are constrained to move together as a set.

The sets of master and slave nodes used in the MPC can be defined by using a node set on the

mesh file, a list of nodes provided in the input file, or a surface on the mesh file from which a list of

nodes is extracted. This can be done for the set of master nodes using one or more of the following

commands:

MASTER NODE SET = <string list>master_nset

362 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

MASTER NODES = <integer list>master_nodes

MASTER SURFACE = <string list>master_surf

MASTER BLOCK = <string list>master_block

SLAVE NODE SET = <string list>slave_nset

SLAVE NODES = <integer list>slave_nodes

SLAVE SURFACE = <string list>slave_surf

SLAVE BLOCK = <string list>slave_block

The MASTER NODE SET and SLAVE NODE SET command lines specify the names of node sets in

the mesh file. The nodes in these node sets are included in the sets of master or slave nodes for the

constraint.

The MASTER NODES and SLAVE NODES command lines specify lists of integer IDs of nodes to be

included in the sets of master or slave nodes for the constraint.

The MASTER SURFACE and SLAVE SURFACE command lines specify the name of a surface in the

mesh file. The nodes contained in this surface are included in the sets of master or slave nodes for

the constraint.

The MASTER BLOCK and SLAVE BLOCK command lines specify the names of a block in the mesh

file. The nodes contained in these blocks are included in the sets of master or slave nodes for the

constraint.

6.10.8.2 Tied Contact

A proximity search can optionally be performed to create a set of MPCs that act as tied contact

constraints. If the MPCs are created in this way, the search is performed at the time of initialization

to find pairings of slave nodes to master faces. A separate constraint is created for each slave node.

This is equivalent to using pure master/slave tied contact, and is significantly faster than Presto’s

standard tied contact for explicit dynamics.

SEARCH TOLERANCE = <real> tolerance

The SEARCH TOLERANCE command line is used to request that a search be performed to create

node/face constraints. This line must be present to use MPCs for tied contact. The tolerance value

given on the line specifies the maximum distance between a node and a face to create an MPC.

This has a similar meaning to the search tolerance used in standard tied contact.

Warning: The SEARCH TOLERANCE command line must be present to use MPCs

for tied contact. If this command is not present in the MPC command block, a

master/slave MPC as described in Section 6.10.8.1 will result. All slave nodes

would be tied to all master nodes, which is very different from tied contact.

To use MPCs for tied contact, the master and slave surfaces must be defined. These may be defined

using the MASTER SURFACE, MASTER BLOCK, SLAVE NODE SET, SLAVE SURFACE, and SLAVE

6.10. SPECIALIZED BOUNDARY CONDITIONS 363

BLOCK line commands. These are a subset of the commands available to define master/slave MPCs,

as described in Section 6.10.8.1. It is important to note that the MASTER NODE SET can not be

used to use MPCs for tied contact. The master surface must have information about faces, and this

is not available with a node set.

The following example demonstrates how to use MPCs for tied contact between two surfaces:

BEGIN MPC

MASTER SURFACE = surface_10

SLAVE SURFACE = surface_11

SEARCH TOLERANCE = 0.0001

END MPC

6.10.8.3 Tied Multi-Point Constraints

The tied type of MPC imposes a constraint that ties together the motion of the three translational

degrees of freedom for a set of nodes. Nodes are not specified as being masters or slaves for this

type of constraint. The set of nodes to be tied together can be specified as either a list of node IDs

or with a node set by using the TIED NODES or TIED NODE SET command.

TIED NODES = <integer list>tied_nodes

TIED NODE SET = <string list>tied_nset

The TIED NODES command line is used to specify an integer list of IDs of the nodes to be tied

together. The TIED NODE SET can be used to specify the name of a node set that contains the

nodes to be tied together. Only one of these commands can be used in a given MPC command block.

Warning: The tied MPC described here does not do a contact search. For the MPC

to behave like tied contact, use the commands described in Section 6.10.8.2.

6.10.8.4 Resolve Multiple MPCs

The behavior of multi-point constraints is ill-defined when a master node is constrained to more

than one set of slave nodes. Presto’s MPC capability can handle chained MPCs, where a master

node is a slave node in another constraint, but it cannot simultaneously enforce multiple MPCs that

have the same master.

RESOLVE MULTIPLE MPCS = ERROR|FIRST WINS|LAST WINS(ERROR)

The RESOLVE MULTIPLE MPCS command line, used within the region scope, controls how to

resolve cases where a slave node is constrained to more than one set of master nodes. Although

multiple MPCs cannot be simultaneously enforced, this command provides ways to work around

364 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

this problem that may be acceptable in many situations. The default option is ERROR, which results

in an error message and terminates the code if this occurs. Alternatively, this command can be set

to FIRST WINS to keep the first MPC found for a given slave node or LAST WINS to keep the last

MPC found. This command line controls the behavior of all MPCs in the model.

6.10. SPECIALIZED BOUNDARY CONDITIONS 365

6.10.9 Submodel

BEGIN SUBMODEL

#

EMBEDDED BLOCKS = <string list>embedded_block

ENCLOSING BLOCKS = <string list>enclosing_block

END [SUBMODEL]

Presto provides a method to embed a submodel in a larger finite element model. The element

blocks for both the submodel and the larger system model should exist in the same mesh file. The

space occupied by the embedded blocks should also be occupied by the enclosing blocks.

This capability ties each node of the submodel to an element in the larger finite element model.

The code makes no correction for mass due to volume overlap. However, this correction in many

cases can be done easily by hand simply by adjusting the density of the submodel block so that it

is the difference between the density of the submodel block and the enclosing block.

The embedded blocks (the submodel blocks) and the enclosing blocks (the system model blocks)

are specified using the following two line commands:

EMBEDDED BLOCKS = <string list>embedded_block

ENCLOSING BLOCKS = <string list>enclosing_block

For example, to embed block_7 and block_8 inside a system model where the embedded blocks

are within block_2, block_3, and block_5, the following can be used:

BEGIN SUBMODEL

EMBEDDED BLOCKS = block_7 block_8

ENCLOSING BLOCKS = block2 block_3 block_5

END

366 CHAPTER 6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

6.11 References

1. Brown, K. H., J. R. Koteras, D. B. Longcope, and T. L. Warren. CavityExpansion: A Library

for Cavity Expansion Algorithms, Version 1.0, in review. Albuquerque, NM: Sandia National

Laboratories, 2003.

2. Kingery, C. N. and Bulmash, G. Airblast Parameters from TNT Spherical Air Burst and

Hemispherical Surface Burst, Technical Report ARBBRL-TR-02555, Aberdeen Proving

Ground, MD: Ballistic Research Laboratory, April 1984.

3. Randers-Pehrson, G. and Bannister, K. A. Airblast Loading Model for DYNA2D and

DYNA3D, ARL-TR-1310, Army Research Laboratory, March 1997.

4. Protective Design Center, United States Army Corps of Engineers, ConWep 2.1.0.8,

https://pdc.usace.army.mil/software/conwep.

5. Lysmer, J., and R. L. Kuhlmeyer. “Finite Dynamic Model for Infinite Media.” Journal of the

Engineering Mechanics Division, Proceedings of the American Society of Civil Engineers

(August 1979): 859–877.

6. Cook, R. D., Malkus, D. S., and Plesha, M. E. Concepts and Applications of Finite Element

Analysis, Third Edition. New York: John Wiley and Sons, 1989.

https://pdc.usace.army.mil/software/conwep

Chapter 7

Contact

This chapter describes the input syntax for defining interactions of contact surfaces in a Presto

analysis. For more information on contact and its computational details, consult References 1

and 2.

Contact refers to the interaction of one or more bodies when they physically touch. This can

include the interaction of one part of a surface against another part of the same surface, the surface

of one body against the surface of another body, and so forth. The contact algorithms within

Presto are designed to ensure that surfaces do not inter-penetrate in a nonphysical way, and that the

interface behavior is computed correctly according to any user-specified surface-physics models

(e.g., energy dissipation from a friction model). Presto uses a kinematic approach rather than

a penalty approach to eliminate the interpenetration of surfaces. In the kinematic approach, a

series of constraint equations are satisfied that remove interpenetration. A penalty approach can

be thought of as introducing “stiff” springs between contact surfaces as a means of preventing

interpenetration.

In the current version of Presto contact between surfaces is computed as node-face interactions.

To establish some key definitions for node-face contact and node-face interactions, we consider

the simple two-dimensional contact problem shown in Figure 7.1. There are two blocks, a and b.

Block a is enclosed by surface a, and block b is enclosed by surface b. In finite element models,

a surface is defined by a collection of finite element faces. The surface of a block of hexahedral

elements, for example, is defined by a collection of quadrilateral faces on the surface of the block.

For our two-dimensional example, the faces are a straight line between two nodes. We only show

the faces on the portions of the surfaces that will come into contact.

Figure 7.1 shows the two blocks at time step n. Figure 7.2 shows the two blocks at time step

n + 1. The blocks have moved and deformed under the influence of external forces. Contact has

not been taken into account, and we now observe interpenetration of the two blocks. We remove

this interpenetration by applying our contact algorithm.

For interpenetration to occur as shown in Figure 7.2, any node on surface a that interpenetrates

surface b must pass through some face on surface b. Likewise, each node on surface b that inter-

penetrates surface a must pass through some face on surface a. We could push all the nodes on

surface a so that they lie on surface b, where surface b has the configuration shown in Figure 7.2.

367

368 CHAPTER 7. CONTACT

Figure 7.1: Two blocks at time step n before contact.

Figure 7.2: Two blocks at time step n + 1, after penetration.

Or we could push all the nodes on surface b so that they lie on surface a, where surface a has the

configuration shown in Figure 7.2. In some cases, we do use one of these two options, a to b or b

to a. However, we typically do something “in between” and move nodes to what can be described

as an interface surface, which is shown by a thick black line in Figure 7.2. The interface surface

is shown as a straight line, but it would really be a curved line in all but the most unusual cases

for a two-dimensional problem like the one shown. For three-dimensional problems, the interface

surface will be a complex surface in three-dimensional space.

For our “in between” solution, each node on surface a that has penetrated some face on surface b,

369

we compute some set of forces (based on the amount of node penetration) on the node on a and

the nodes associated with the face on b to remove “some part” of the interpenetration. Likewise,

for each node on surface b that has penetrated some face on surface a, we can compute some set

of forces (based on the amount of node penetration) on surface b and the nodes associated with the

face on surface a to remove “another part” of the interpenetration. This node-face interaction from

both contact surfaces is typically what is encountered in Presto and it is referred to as “symmetric”

contact. After the nodes on both surfaces, a and b, have been moved, we have defined an interface

surface. A more detailed discussion of how we move the nodes on both surfaces is given in those

sections related to kinematic partitioning, Section 7.15.4 and Section 7.16.2.

The simple two-dimensional example we have just discussed is analogous to much of the contact

that is encountered when contact in Presto is used in an analysis. Surfaces are generated that con-

sist of a collection of faces, each face being defined by a nodal connectivity. Node-face interactions

from both contact surfaces (symmetric contact) are used to move nodes to account for any inter-

penetration of the surfaces. Interpenetration means we have a node on a surface that has moved

through a face on an opposing surface.

Contact in Presto will handle the node-face contact just presented. It will also handle variations of

the node-face contact we have just discussed. Some of these variations are as follows:

• In some cases, you may want one surface of a surface pair to determine the interface sur-

face. One surface will be designated as the master surface. The opposing surface will be

designated as the slave surface. The nodes on the slave surface will be moved to the mas-

ter surface. The master surface sets the interface surface. This arrangement would be a pure

master-slave situation. You might want to use this arrangement if you had a very stiff surface

like steel contacting a very weak surface like foam.

• In some cases, you may want one surface of a surface pair to be more influential in determin-

ing the interface surface than its opposing surface. This arrangement is done by “weighting”

the more influential surface and involves a concept called kinematic partitioning. The above

case of pure master-slave represents the limiting case for kinematic partitioning.

• A special case of contact called “tied contact” allows you to tie two surfaces on different

objects together. The two surfaces that are tied together share a coincident surface or are

in very close proximity at time 0.0. The initial point of contact between a tied node and an

opposing face at time 0.0 is maintained for all times. At each time step, the node is moved

so that it as the same point on the face regardless of where the faces move or how the face

deforms.

• One of the surfaces in a contact pair can be an analytic surface. An analytic surface is defined

by an algebraic expression, not by a collection of faces derived from elements. The algebraic

expression that defines the surface of a cylinder is an example of an analytic surface. The

nodes on the opposing surface cannot penetrate the analytic surface.

• Instead of having two surfaces in contact, you can have a set of nodes not associated with

faces that contacts a surface. We refer to this set of nodes as a “contact node set.” The nodes

in the contact node set can contact a surface that is a collection of faces (the usual surface

370 CHAPTER 7. CONTACT

definition) or an analytic surface. The nodes in the contact node set cannot penetrate the

surface.

• A mesh could have an initial interpenetration of two surfaces due to the meshing process.

We refer to this situation as “initial overlap.” You have the option of removing this initial

overlap.

• An element block can contact itself. A block of elements may deform to such an extent that

a part of the surface of the block comes into contact with another part of the surface of the

block. This is referred to as “self-contact.” For self-contact, a node that is part of an element

block can contact a face that is exterior to the same element block.

There are some special considerations for contact with structural elements (i.e. shells, springs,

trusses, beams) with the current implementation of contact. A shell element has both a top face and

a bottom face that are defined by the same geometric entity. One-dimensional elements (springs,

trusses, and beams) have no faces.

Shell elements are handled by the contact algorithm, but they are much more difficult to handle

than solid elements. Determining whether a node has penetrated a shell element is more difficult

than determining whether a node has penetrated a solid. For a solid element with an external face,

there is only one normal for the face. For a shell element, there are two faces—one on each side

of the geometric entity that defines the shell. Each face has a normal, and the two normals for

the shell element point in opposite directions. For shell elements, two faces are constructed for

the element within the contact algorithm. The faces, each with a unique outward normal, can be

coincident, or they can be separated by the thickness of the shell. Separating the two shell faces that

are originally coincident at the geometric plane of the shell by the thickness of the shell is referred

to as “lofting.” To implement lofting, we need information about the thickness of the shell. This

information is specified in the SHELL SECTION command block described in Section 5.2.3. For

more information on lofting, see Section 7.9.

Contact for shell elements is only considered on shell faces; shell edges are currently not consid-

ered. The contact of a shell edge with another shell edge is not detected, and the contact of a shell

edge with a continuum element edge is not detected. A shell element can coincide with the face

of a continuum element. The contact algorithm will properly account for this situation. Two shell

elements can also overlay each other, i.e., share the same set of nodes. The contact algorithm will

also properly account for this situation. For a block of shell elements, two surfaces are created in

contact.

Contact for one-dimensional elements (springs, trusses, beams) is currently implemented only for

one-dimensional elements contacting a surface. The contact algorithm will not detect contact of a

one-dimensional element with the edge of a continuum element, with the edge of a shell element,

or with another one-dimensional element. Contact of one-dimensional elements is discussed in

Section 7.2.4.

Contact in Presto is implemented in two distinct phases: a search algorithm and an enforcement al-

gorithm. The search algorithm identifies nodes that have penetrated a face, while the enforcement

algorithm computes the forces to remove penetration and the forces that observe the user-specified

371

surface physics. The contact search within Presto focuses on large-scale global contact in a mas-

sively parallel environment. This processing step can be quite expensive, taking upwards of 60%

of the analysis time, especially on multiprocessor analyses. The search algorithm relies on normal

and tangential tolerances to describe a region around each face within which any nodes found are

identified as potential interactions. The size of these tolerances is problem dependent.

The enforcement algorithm is based on a kinematic approach that satisfies momentum balance.

A kinematic approach with momentum balance enforcement, where iterations are used to ensure

normal impact momentum balance and frictional response, is always more accurate than a penalty

approach. Consequently, when the surface interaction involves a frictional response, the kinematic

approach with momentum balance is recommended.

A number of friction models are available to describe the surface interactions. In this chapter on

contact, we will use the term friction model for what is really a surface-physics model.

Contact within a Presto analysis is defined within a CONTACT DEFINITION command block.

Within the contact definition scope, there are command lines and command blocks that define

the specifics for the interaction of surfaces via the contact algorithm. Some of the command lines

and command blocks within the contact scope set up default parameters that affect all contact cal-

culations. Some of the command blocks in the contact scope affect only the interaction between a

pair of surfaces.

There are three approaches that can be used to define a contact problem:

1. Accept all the Presto default parameters for a problem.

2. Accept the Presto default parameters for some of the contact surfaces. For the rest of the

contact surfaces, the user can change some of the Presto default settings.

3. Define all surface-pair interactions separately.

Note that the speed of contact is based primarily on the number of nodes and faces in the contact

surfaces and, to a much lesser extent, on the number of interactions specified. Consequently,

choosing the third approach above is not likely to reduce the run time significantly.

The general pattern of syntax for describing contact is as follows:

- Identify all surfaces that need to be considered for contact. This is done with command lines

(or command blocks) within the contact scope.

- Specify any analytic surface used for contact. Analytic surfaces are described with a com-

mand block.

- Specify any special contact options such as initial overlap removal or angle for multiple

interactions. This is done with command lines within the contact scope.

- Describe friction models used in the surface interactions for this analysis. Currently, there

are 11 types of friction models. user subroutines can also be used as friction models. A

friction model is described with a command block.

372 CHAPTER 7. CONTACT

- Set contact search options that will serve as defaults for all the surface interactions. These

values are set in the SEARCH OPTIONS command block.

- Set contact enforcement options that will apply to all the surface interactions. These values

are set in the ENFORCEMENT OPTIONS command block.

- Set default interaction values that apply to all the surface interactions. These values are set

in the INTERACTION DEFAULTS command block.

- Specify values for interactions between specific contact surfaces. This is done within an

INTERACTION command block. Values specified in this command block override the de-

faults for the particular pair of surface interactions.

7.1. CONTACT DEFINITION BLOCK 373

7.1 Contact Definition Block

All commands for contact occur within a CONTACT DEFINITION command block. A summary

of these commands follows.

BEGIN CONTACT DEFINITION <string>name

#

contact surface and node set definition

CONTACT SURFACE <string>name

CONTAINS <string list>surface_names

#

SKIN ALL BLOCKS = <string>ON|OFF(OFF)

[EXCLUDE <string list> block_names]

#

BEGIN CONTACT SURFACE <string>name

BLOCK = <string list>block_names

SURFACE = <string list>surface_names

NODE SET = <string list>node_set_names

REMOVE BLOCK = <string list>block_names

REMOVE SURFACE = <string list>surface_names

REMOVE NODE SET = <string list>nodelist_names

END [CONTACT SURFACE <string>name]

#

CONTACT NODE SET <string>surface_name

CONTAINS <string>nodelist_names

#

Switch between available contact algorithms

CONTACT FORMULATION TYPE = <string>ACME|DASH(ACME)

analytic surfaces

BEGIN ANALYTIC PLANE <string>name

NORMAL = <string>defined_direction

POINT = <string>defined_point

REFERENCE RIGID BODY = <string>rb_name

END [ANALYTIC PLANE <string>name]

#

BEGIN ANALYTIC CYLINDER <string>name

CENTER = <string>defined_point

AXIAL DIRECTION = <string>defined_axis

RADIUS = <real>cylinder_radius

LENGTH = <real>cylinder_length

CONTACT NORMAL = <string>OUTSIDE|INSIDE

END [ANALYTIC CYLINDER <string>name]

#

BEGIN ANALYTIC SPHERE <string>name

CENTER = <string>defined_point

RADIUS = <real>sphere_radius

END [ANALYTIC SPHERE <string>name]

374 CHAPTER 7. CONTACT

end contact surface and node set definition

#

UPDATE ALL SURFACES FOR ELEMENT DEATH = <string>ON|OFF(ON)

#

BEGIN REMOVE INITIAL OVERLAP

OVERLAP NORMAL TOLERANCE = <real>over_norm_tol

OVERLAP TANGENTIAL TOLERANCE = <real>over_tang_tol

SHELL OVERLAP ITERATIONS = <integer>max_iter(10)

SHELL OVERLAP TOLERANCE = <real>shell_over_tol(0.0)

END [REMOVE INITIAL OVERLAP]

#

MULTIPLE INTERACTIONS = <string>ON|OFF(ON)

MULTIPLE INTERACTIONS WITH ANGLE = <real>angle_in_deg(60.0)

#

BEGIN SURFACE NORMAL SMOOTHING

ANGLE = <real>angle_in_deg

DISTANCE = <real>distance

RESOLUTION = <string>NODE|EDGE

END [SURFACE NORMAL SMOOTHING]

#

ERODED FACE TREATMENT = <string>NONE|ALL(ALL)

#

shell lofting

BEGIN SHELL LOFTING

SURFACE = <string_list>surface_names

REMOVE SURFACE = <string_list>removed_surface_names

LOFTING ALGORITHM = <string>ON|OFF(ON)

COINCIDENT SHELL TREATMENT = <string>DISALLOW|IGNORE|

SIMPLE(DISALLOW)

COINCIDENT SHELL HEX TREATMENT = <string>DISALLOW|

IGNORE|TAPERED|EMBEDDED(DISALLOW)

CONTACT SHELL THICKNESS =

ACTUAL_THICKNESS|LET_CONTACT_CHOOSE(ACTUAL_THICKNESS)

ALLOWABLE SHELL THICKNESS TO ELEMENT SIZE RATIOS =

<real>lower_bound(0.1) TO <real>upper_bound(1.0)

END [SHELL LOFTING]

end shell lofting

#

surface-physics models

BEGIN FRICTIONLESS MODEL <string>name

END [FRICTIONLESS MODEL <string>name]

#

BEGIN CONSTANT FRICTION MODEL <string>name

FRICTION COEFFICIENT = <real>coeff

END [CONSTANT FRICTION MODEL <string>name]

#

BEGIN TIED MODEL <string>name

7.1. CONTACT DEFINITION BLOCK 375

END [TIED MODEL <string>name]

#

BEGIN SPRING WELD MODEL <string>name

NORMAL DISPLACEMENT FUNCTION = <string>func_name

NORMAL DISPLACEMENT SCALE FACTOR =

<real>scale_factor(1.0)

TANGENTIAL DISPLACEMENT FUNCTION = <string>func_name

TANGENTIAL DISPLACEMENT SCALE FACTOR =

<real>scale_factor(1.0)

FAILURE ENVELOPE EXPONENT = <real>exponent(2.0)

FAILURE DECAY CYCLES = <integer>num_cycles(1)

FAILED MODEL = <string>failed_model_name|FRICTIONLESS

(FRICTIONLESS)

END [SPRING WELD MODEL <string>name]

#

BEGIN SURFACE WELD MODEL <string>name

NORMAL CAPACITY = <real>normal_cap

TANGENTIAL CAPACITY = <real>tangential_cap

FAILURE DECAY CYCLES = <integer>num_cycles(1)

FAILED MODEL = <string>failed_model_name|FRICTIONLESS

(FRICTIONLESS)

END [SURFACE WELD MODEL <string>name]

#

BEGIN AREA WELD MODEL <string>name

NORMAL CAPACITY = <real>normal_cap

TANGENTIAL CAPACITY = <real>tangential_cap

FAILURE DECAY CYCLES = <integer>num_cycles(1)

FAILED MODEL = <string>failed_model_name|FRICTIONLESS

(FRICTIONLESS)

END [AREA WELD MODEL <string>name]

#

BEGIN ADHESION MODEL <string>name

ADHESION FUNCTION = <string>func_name

ADHESION SCALE FACTOR = <real>scale_factor(1.0)

END [ADHESION MODEL <string>name]

#

BEGIN COHESIVE ZONE MODEL <string>name

TRACTION DISPLACEMENT FUNCTION = <string>func_name

TRACTION DISPLACEMENT SCALE FACTOR = <real>scale_factor(1.0)

CRITICAL NORMAL GAP = <real>crit_norm_gap

CRITICAL TANGENTIAL GAP = <real>crit_tangential_gap

END [COHESIVE ZONE MODEL <string>name]

#

BEGIN JUNCTION MODEL <string>name

NORMAL TRACTION FUNCTION = <string>func_name

NORMAL TRACTION SCALE FACTOR = <real>scale_factor(1.0)

TANGENTIAL TRACTION FUNCTION = <string>func_name

376 CHAPTER 7. CONTACT

TANGENTIAL TRACTION SCALE FACTOR = <real>scale_factor(1.0)

NORMAL CUTOFF DISTANCE FOR TANGENTIAL TRACTION =

<real>distance

END [JUNCTION MODEL <string>name]

#

BEGIN THREADED MODEL <string>name

NORMAL TRACTION FUNCTION = <string>func_name

NORMAL TRACTION SCALE FACTOR = <real>scale_factor(1.0)

TANGENTIAL TRACTION FUNCTION = <string>func_name

TANGENTIAL TRACTION SCALE FACTOR =

<real>scale_factor(1.0)

TANGENTIAL TRACTION GAP FUNCTION = <string>func_name

TANGENTIAL TRACTION GAP SCALE FACTOR = <real>scale_factor(1.0)

NORMAL CAPACITY = <real>normal_cap

TANGENTIAL CAPACITY = <real>tangential_cap

FAILURE ENVELOPE EXPONENT = <real>exponent(2.0)

FAILURE DECAY CYCLES = <integer>num_cycles(1)

FAILED MODEL = <string>failed_model_name|FRICTIONLESS

(FRICTIONLESS)

END [THREADED MODEL <string>name]

#

BEGIN PV_DEPENDENT MODEL <string>name

STATIC COEFFICIENT = <real>stat_coeff

DYNAMIC COEFFICIENT = <real>dyn_coeff

VELOCITY DECAY = <real>vel_decay

REFERENCE PRESSURE = <real>p_ref

OFFSET PRESSURE = <real>p_off

PRESSURE EXPONENT = <real>p_exp

END [PV_DEPENDENT MODEL <string>name]

end surface physics models

#

BEGIN USER SUBROUTINE MODEL <string>name

INITIALIZE MODEL SUBROUTINE = <string>init_model_name

INITIALIZE TIME STEP SUBROUTINE = <string>init_ts_name

INITIALIZE NODE STATE DATA SUBROUTINE =

<string>init_node_data_name

LIMIT FORCE SUBROUTINE = <string>limit_force_name

ACTIVE SUBROUTINE = <string>active_name

INTERACTION TYPE SUBROUTINE = <string>interaction_name

END [USER SUBROUTINE MODEL <string>name]

#

search options command block

BEGIN SEARCH OPTIONS [<string>name]

GLOBAL SEARCH INCREMENT = <integer>num_steps(1)

GLOBAL SEARCH ONCE = <string>ON|OFF(OFF)

SEARCH TOLERANCE = <string>AUTOMATIC|USER_DEFINED(AUTOMATIC)

NORMAL TOLERANCE = <real>norm_tol

7.1. CONTACT DEFINITION BLOCK 377

TANGENTIAL TOLERANCE = <real>tang_tol

FACE MULTIPLIER = <real>face_multiplier(0.1)

SECONDARY DECOMPOSITION = <string>ON|OFF(OFF)

END [SEARCH OPTIONS <string>name]

#

user search box command block

BEGIN USER SEARCH BOX <string>name

CENTER = <string>center_point

X DISPLACEMENT FUNCTION = <string>x_disp_function_name

Y DISPLACEMENT FUNCTION = <string>y_disp_function_name

Z DISPLACEMENT FUNCTION = <string>z_disp_function_name

X DISPLACEMENT SCALE FACTOR = <real>x_disp_scale_factor

Y DISPLACEMENT SCALE FACTOR = <real>y_disp_scale_factor

Z DISPLACEMENT SCALE FACTOR = <real>z_disp_scale_factor

END [SEARCH OPTIONS <string>name]

#

enforcement

BEGIN ENFORCEMENT OPTIONS [<string>name]

MOMENTUM BALANCE ITERATIONS = <integer>num_iter(5)

NUM GEOMETRY UPDATE ITERATIONS = <integer>num_iter(5)

END [ENFORCEMENT OPTIONS <string>name]

#

BEGIN INTERACTION DEFAULTS [<string>name]

CONTACT SURFACES = <string list>surface_names

SELF CONTACT = <string>ON|OFF(OFF)

GENERAL CONTACT = <string>ON|OFF(OFF)

AUTOMATIC KINEMATIC PARTITION = <string>ON|OFF(OFF)

INTERACTION BEHAVIOR = <string>SLIDING|

INFINITESIMAL_SLIDING|NO_INTERACTION(SLIDING)

FRICTION MODEL = <string>friction_model_name|

FRICTIONLESS(FRICTIONLESS)

CONSTRAINT FORMULATION = <string>NODE_FACE|FACE_FACE

END [INTERACTION DEFAULTS <string>name]

#

BEGIN INTERACTION [<string>name]

SURFACES = <string>surface1 <string>surface2

MASTER = <string>surface

SLAVE = <string>surface

KINEMATIC PARTITION = <real>kin_part

NORMAL TOLERANCE = <real>norm_tol

TANGENTIAL TOLERANCE = <real>tang_tol

FACE MULTIPLIER = <real>face_multiplier(0.1)

OVERLAP NORMAL TOLERANCE = <real>over_norm_tol

OVERLAP TANGENTIAL TOLERANCE = <real>over_tang_tol

FRICTION MODEL = <string>friction_model_name|

FRICTIONLESS(FRICTIONLESS)

AUTOMATIC KINEMATIC PARTITION

378 CHAPTER 7. CONTACT

INTERACTION BEHAVIOR = <string>SLIDING|

INFINITESIMAL_SLIDING|NO_INTERACTION(SLIDING)

CONSTRAINT FORMULATION = <string>NODE_FACE|FACE_FACE

END [INTERACTION <string>name]

#

BEGIN DASH OPTIONS

SCALE FACTOR = <real>factor(1.0)

ENFORCEMENT CONVERGENCE TOLERANCE = <real>1.0e-05

HIDDEN SELF CONTACT = <string>TRUE|FALSE(TRUE)

LOFTED SPHERE REPRESENTATION =

TETRAHEDRON|OCTAHEDRON|CUBE|ICOSAHEDRON(ICOSAHEDRON)

MAX CONTACT SUB STEPS = <integer>value(100)

END

#

end enforcement

#

END [CONTACT DEFINITION <string>name]

The command block begins with the input line:

BEGIN CONTACT DEFINITION <string>name

and is terminated with the input line:

END [CONTACT DEFINITION <string>name]

where name is a name for this contact definition. The name should be unique among all the contact

definitions in an analysis. All other contact commands are encapsulated within this command

block, as shown in the summary of the block presented previously. These other contact commands

are described in Section 7.2through Section 7.16. Section 7.17 explains how to implement contact

for several example problems.

A typical analysis will have only one CONTACT DEFINITION command block. However, more

than one contact definition can be used. As each CONTACT DEFINITION command block creates

its own contact entity, fewer of these command blocks provide more efficient contact processing.

7.2. DESCRIPTIONS OF CONTACT SURFACES 379

7.2 Descriptions of Contact Surfaces

In general, contact determines whether one surface has inter-penetrated another surface. As indi-

cated previously, a surface is defined by an analytic representation or a collection of finite element

faces. This section describes how to define a surface composed of finite element faces. It also de-

scribes how to define a set of nodes (zero-dimensional entities) not associated with faces that can

contact a surface, the surface being composed of finite element faces or the surface being an ana-

lytic surface. This latter case (a node not associated with a face contacting a surface) is useful for

models where, for example, we have both continuum and SPH elements. (We will refer to nodes

not associated with faces as “unassociated” nodes.) Defining rigid analytic surfaces is discussed in

Section 7.3.

Generally, a surface is defined as a collection of finite element faces. Both continuum elements

and shell elements have faces. For a continuum element, any face that is not shared with another

element can be considered for contact. For a shell element, one element can have both a top

face and a bottom face. These top and bottom surfaces are automatically created for the contact

algorithm and may be lofted by a user-specified thickness. Shell contact is done by computing the

contact forces on the top and bottom surfaces of the shells and then moving the resulting forces

back to the original shell nodes.

At this point, it is important to introduce the concept of “skinning” a block of elements. We can

generate a surface (a collection of faces) from a block of continuum elements by skinning the block

of elements. All exterior faces (any face not shared by two elements) will be associated with the

surface for that block when the block is skinned. If we have two blocks of continuum elements

that are connected (some of the element faces in one block are shared by the element faces in the

other block) and we skin both of these blocks, then the skinned surface for each block will consist

of faces that are exterior to both blocks. For this case, we will have generated two surfaces. The

set of external faces from skinning the first block will have a unique surface name, and the set of

external faces generated by skinning the second block will have a unique surface name. Any face

shared by the two blocks will not be in the surfaces derived by skinning the two blocks. If we

have a single block of shell elements and we skin the block, then all the top faces of all the shell

elements will be one surface and the bottom faces of all the shell elements will be another surface.

(In Presto we do not have to be concerned with naming two distinct surfaces for shell elements.

This is handled internally by the code.) Suppose we have two blocks of shell elements in which

none of the elements in one block overlap the elements in another block; the two blocks are joined

only at the shell edges. In this case, we will get a unique surface identifier that references both the

top and bottom faces of all the shell elements in the first block, and we will get a unique surface

identifier that references both the top and bottom faces of all the shell elements in the second block.

Skinning becomes more complicated when we have a shell surface that overlays the surface of

a block of continuum elements. If a shell surface overlays the surface of a block of continuum

elements, we can have shell elements that are coincident with the external faces of the continuum

elements. Coincident in this case means that a shell element has the same nodal connectivity as

the nodal connectivity defining an external face of a continuum element. Skinning also becomes

more complicated when we have two shell blocks with coincident elements. Coincident in this

case means we have two shell elements in different blocks that have the same nodal connectivity.

380 CHAPTER 7. CONTACT

See Section 7.9 for more information about skinning with shells.

A face can only be associated with a single contact surface. However, in the process of defining

contact surfaces, you might create a situation where one face appears on more than one contact

surface. If a face appears on more than one contact surface, an ambiguous situation arises. The

following example should help to explain this ambiguous situation.

First, let us establish a situation where there is a face that appears on two contact surfaces. One

contact surface is defined by skinning an element block of hexahedral elements. The name of this

surface obtained by skinning a block is block_1024. One of the faces in surface block_1024 is

defined by the node connectivity {100, 101, 1002, 1001}. A surface on the same element block is

defined by specifying a side set definition. The name of this surface obtained by using a side set

definition is surface_1000. One of the faces in surface surface_1000 is defined by the node

connectivity {100, 101, 1002, 1001}. In this example, we have the same face, {100, 101, 1002,

1001}, defined on two different surfaces, block_1024 and surface_1000. The definition of the

surface with the side set includes one of the faces in the surface obtained by skinning the block.

Now let us show how an ambiguous situation can arise. Suppose, in our example, that the friction

model specified for surface block_1024 is different from the friction model specified for surface

surface_1000. Furthermore, suppose that the tolerances specified for surface block_1024 are

different from the tolerances specified for surface surface_1000. For contact, only one friction

model and only one set of tolerances can be applied to face {100, 101, 1002, 1001}. The question

arises as to which friction model and which set of tolerances should be applied to the face. Any

face, in general, can have only one type of a given contact property—friction model, tolerances,

etc.,—applied to the face.

To handle the case of a face defined in more than one contact surface, any face defined in more

than one contact surface will be assigned to the first contact surface defined in the CONTACT

DEFINITION command block that includes the face. For example, if contact surface block_1024

is defined before contact surface surface_1000 in the CONTACT DEFINITION command block,

then face {100, 101, 1002, 1001} will be assigned to contact surface block_1024. Face {100,

101, 1002, 1001} will not be assigned to contact surface surface_1000. In general, then, any

face appearing on multiple contact surfaces will be assigned to the first contact surface defined in

the CONTACT DEFINITION command block that includes the face. (The ordering of the contact

surface definitions in the CONTACT DEFINITION command block will determine how faces de-

fined on multiple contact surfaces are assigned to a contact surface.) If a face is defined on multiple

contact surfaces, a warning is generated.

For the case where unassociated nodes are contacting a surface, you will need to define some col-

lection of unassociated nodes and a surface that can be contacted by these nodes. SPH particles

contacting a surface is an example of nodes contacting a surface.The contact of one-dimensional

elements (springs, trusses, beams) with a surface can also be modeled as unassociated nodes con-

tacting a surface, although, as in the case of shells, there are some limitations. The contact al-

gorithm cannot detect a one-dimensional element cutting through the edge of a shell element, the

edge of a continuum element, or through another one-dimensional element.

To describe surfaces defined by finite element faces that can be considered for contact, you

can use the CONTACT SURFACE command line, the SKIN ALL BLOCKS command line, or the

7.2. DESCRIPTIONS OF CONTACT SURFACES 381

CONTACT SURFACE command block. To describe unassociated nodes that can come into contact

with surfaces, you should use the CONTACT NODE SET command line or the CONTACT SURFACE

command block. A CONTACT DEFINITION command block can contain any combination of these

command lines and command blocks provided that no two of these commands have the same name.

The CONTACT DEFINITION command block MUST include some type of surface definition. Any

element faces or unassociated nodes that you want to use for contact interaction must be identified

as contact faces or contact nodes, respectively.

Section 7.2.1 through Section 7.2.4 describe the command lines and command blocks for defining

contact surfaces composed of finite element faces and node sets that can contact surfaces.

7.2.1 Contact Surface Command Line

CONTACT SURFACE <string>name CONTAINS <string list>surface_names

This command line identifies a set of surfaces (specified as side sets) and element blocks that

will be considered as a single contact surface; the string name is the unique name for this contact

surface. The list denoted by surfaces_names is a list of strings identifying surfaces that are to

be associated with this contact surface name. The surfaces can be side sets, element blocks, or any

combination of the two as defined in the exodus file. These are not names of analytic surfaces. Any

specified element blocks are “skinned,” i.e., a surface is created from the exterior of the element

block. See the previous discussion on skinning. Blocks of shell elements will be skinned, and the

shell surfaces generated from a CONTACT SURFACE command line will be lofted for contact if the

lofting algorithm is ON in the SHELL LOFTING command block.

If a block of one-dimensional elements (springs, trusses, beams) is included in the list of surface_

names, the element block will be ignored. Thus, to include the one-dimensional elements for

contact, a CONTACT NODE SET command line should be used. See Section 7.2.4.

The name you create for a surface can be referenced in command blocks that specify how that sur-

face will interact with another contact surface or with itself. See Section 7.15.1 andSection 7.16.1.

The surfaces can contain a heterogeneous set of face types as well as any number of side sets and

element blocks.

If a face appears in a side set and also in a set of faces generated by the skinning of an element

block, that face will produce an error. As indicated previously, any given face may not appear in

more than one contact surface.

7.2.2 Skin All Blocks

SKIN ALL BLOCKS = <string>ON|OFF(OFF)

[EXCLUDE <string list>block_names]

You may wish to consider contact between the external surfaces of all the element blocks in the

mesh. The SKIN ALL BLOCKS command line causes all element blocks to be “skinned,” i.e.,

382 CHAPTER 7. CONTACT

a surface is created from the exterior of each element block. The skinned surfaces are then given

contact surface names identical to the name of the element block. For instance, if a mesh contained

the element blocks block_1, block_10, and block_11, then SKIN ALL BLOCKS would create

three contact surfaces from these blocks with the names block_1, block_10, and block_11,

respectively.

You can selectively delete some blocks from skinning by using the EXCLUDE option. Any blocks

you do not want to be skinned will be included in a list of block names following EXCLUDE.

The SKIN ALL BLOCKS is useful for large models in which the individual specification of contact

surfaces would be unwieldy.

If the SKIN ALL BLOCKS command line is used without the EXCLUDE option, contact surfaces

cannot be defined by the above CONTACT SURFACE command line or the CONTACT SURFACE

command block. The use of the SKIN ALL BLOCKS command line without the EXCLUDE option

would include all exterior faces for all element blocks in the set of contact surfaces generated by

the SKIN ALL BLOCKS command line. The added use of a CONTACT SURFACE command line or

CONTACT SURFACE command block would then generate a new surface that would have to include

at least one exterior face. But all exterior faces have been included in the surfaces generated by the

SKIN ALL BLOCKS command line (without the EXCLUDE option). This creates a situation where

we have the same face in two different surfaces. Specifying the same face in two different contact

surfaces is not allowed. See the example discussed in the introductory part of Section 7.2.

If you use the EXCLUDE option, you can use a CONTACT SURFACE command line or the CONTACT

SURFACE command block as long as you do not reference the same face on different surfaces when

defining the various contact surfaces.

The CONTACT SURFACE command block, if it is used to defined a set of unassociated nodes for

a contact node set, and the CONTACT NODE SET command line can be used with the SKIN ALL

BLOCKS command line regardless of whether or not it uses the EXCLUDE option.

If the mesh includes blocks of shell elements, the shell surfaces generated from a SKIN ALL

BLOCKS command line will be lofted for contact according to the lofting algorithm specified in

the SHELL LOFTING command block.

If the mesh includes blocks of one-dimensional elements (beams, trusses), the element blocks with

one-dimensional elements are ignored in contact. Thus, to include the one-dimensional elements

for contact, a CONTACT NODE SET command line should be used. See Section 7.2.4.

7.2.3 Contact Surface Command Block

BEGIN CONTACT SURFACE <string>name

BLOCK = <string list>block_names

SURFACE = <string list>surface_names

NODE SET = <string list>node_set_names

REMOVE BLOCK = <string list>block_names

REMOVE SURFACE = <string list>surface_names

REMOVE NODE SET = <string list>node_set_names

END [CONTACT SURFACE <string>name]

7.2. DESCRIPTIONS OF CONTACT SURFACES 383

The CONTACT SURFACE command block can be used to define a contact surface consisting of a

collection of finite element faces or a set of unassociated nodes that will be a contact node set. We

can use some combinations of the above command lines as a set of Boolean operations to define

our collection of faces or collection of unassociated nodes. The result of this command block must

be either a set of faces or a set of nodes.

If you want to define a surface named name that is a set of faces, you can use some combination

of the command lines BLOCK, SURFACE, REMOVE BLOCK, and REMOVE SURFACE. For this case,

however, the BLOCK and REMOVE BLOCK command lines must refer to element blocks that are

continuum or shell elements. If the element block referred to is a block of continuum elements, the

block is skinned. If the element block referred to is a block of shell elements, the top and bottom

faces of the shell elements will form the contact faces.

Suppose you specify a BLOCK command line that references several continuum blocks. The set of

faces defining the surface will consist of the exterior faces for all the element blocks. If you want to

preserve the list of element blocks on the BLOCK command line while removing the exterior faces

associated with one or more of the blocks, you could simply add a REMOVE BLOCK command line

listing only those blocks whose associated faces are to be removed from the contact surface.

Suppose you specify a BLOCK command line that references a block of continuum elements and

a SURFACE command line that references a side set. Then the contact surface produced by the

command block will be the union of the faces defined by the skinning of the block of continuum

elements and the faces defined in the side set.

Suppose you specify a BLOCK command line that references a block of continuum elements and

a REMOVE SURFACE command line that references a side set. Furthermore, suppose that the side

set is a set of faces that is a subset of the set of faces obtained from skinning the continuum block.

Then the contact surface produced by the command block will be the set of faces obtained by

skinning the continuum block minus the faces in the side set.

As can be seen from the above examples, we can use the command lines BLOCK, SURFACE, REMOVE

BLOCK, and REMOVE SURFACE as Boolean operators to construct a set of finite element faces

defining a surface. The BLOCK and REMOVE BLOCK command lines should produce (or remove)

faces, however, so that we are performing the Boolean operations on like topological entities. See

Section 7.2.4 for further information about using a node set that contacts a surface.

If you want to define a set of unassociated nodes for contact with a surface, you can use some

combination of the command lines BLOCK, NODE SET, REMOVE BLOCK, and REMOVE NODE SET.

For this case, however, the BLOCK and REMOVE BLOCK command lines must refer to element

blocks that are SPH elements, which are topologically equivalent to a node.

Suppose you specify a BLOCK command line that references a block of SPH elements and a NODE

SET command line that references a node set within a command block. Then the node set produced

by the command block will be the union of the nodes defined by the SPH elements and the nodes

defined in the node set.

Suppose you specify a BLOCK command line that references a block of SPH elements and a REMOVE

NODE SET command line that references a node set. Furthermore, suppose that the node set is a

set of nodes that is a subset of the set of nodes in the SPH block. Then the set of nodes produced

384 CHAPTER 7. CONTACT

by the command block will be the set of nodes obtained from the SPH block minus the nodes in

the node set.

There must be at least one BLOCK, SURFACE, or NODE SET command line in the command block.

7.2.4 Contact Node Set

CONTACT NODE SET <string>surface_name

CONTAINS <string list>nodelist_names

As indicated previously, contact interactions may also be defined between a surface and a set of

nodes. The CONTACT NODE SET command line names a set of nodes (the parameter surface_

name in the above command line) as a collection of nodes in various node sets specified by the

string list nodelist_names. All the nodes in the node set can then interact with a contact surface.

If a node in the node set defined as surface_name attempts to penetrate a contact surface, the

node will be moved to the surface through the contact calculations.

The node defined by the CONTACT NODE SET command line will be paired with either a mesh

surface or an analytic surface when contact interactions are defined. In defining interactions be-

tween a contact node set and another surface, the interaction must be defined as a pure master-slave

interaction, where the nodes in the contact node set are the slave nodes. The master-slave interac-

tion is defined in the INTERACTION command block (see Section 7.16).The easiest way to define

the correct relation between the nodes in the node set and the faces in the actual surface is to pair

the surface with the MASTER command line and the node set with the SLAVE command line. Sup-

pose the set of nodes is named beam_nodes on the CONTACT NODE SET command line and the

surface these nodes are paired with is named plate. Then the INTERACTION command block for

the interaction of the node set and surface would contain the command lines below.

MASTER = plate

SLAVE = beam_nodes

Presto will not detect whether or not you have specified a master-slave relation between a surface

and a set of nodes. If the interaction between a surface and a set of nodes defaults to a kinematic

partition value of 0.5 and there is only one enforcement iteration, then any nodes that have pen-

etrated the surface will only be moved one-half the penetration distance. Therefore, you should

check your input carefully if you have an interaction between a surface and a node set to make sure

that the master-slave relation has been properly defined for this interaction.

The CONTACT NODE SET command line is used to define contact interactions between SPH par-

ticles and other contact surfaces—faces on solid elements, shell/membrane faces, and analytic

surfaces. The CONTACT NODE SET command line also presents a simple approach for contact

between one-dimensional elements (beams, trusses) and other contact surfaces—faces on solid el-

ements, shell/membrane faces, and analytic surfaces. In this case, contact processing will seek

to remove interpenetration of the nodes of the one-dimensional elements into the other contact

surfaces. The contact capabilities in Presto will not currently handle any contact between two

one-dimensional elements.

7.3. ANALYTIC CONTACT SURFACES 385

7.3 Analytic Contact Surfaces

Presto permits the definition of rigid analytic surfaces for use in contact. Contact evaluation be-

tween a deformable body and a rigid analytic surface is much faster than contact evaluation be-

tween two deformable bodies. Therefore, using a rigid analytic surface is more efficient than using

a very stiff deformable body to try to approximate a rigid surface. The commands for defining

the rigid analytic surfaces currently available in Presto–plane, cylinder, and sphere—are described

next.

7.3.1 Plane

BEGIN ANALYTIC PLANE <string>name

NORMAL = <string>defined_direction

POINT = <string>defined_point

REFERENCE RIGID BODY = <string>rb_name

END [ANALYTIC PLANE <string>name]

Analytic planes are not deformable, they cannot be moved, and two analytic planes will not interact

with each other. The ANALYTIC PLANE command block for defining an analytic plane begins with

the input line:

BEGIN ANALYTIC PLANE <string>name

and is terminated with the input line:

END [ANALYTIC PLANE <string>name]

where the string name is some user-selected name for this particular plane. This name is used to

identify the surface in the interaction definitions. The string defined_direction in the NORMAL

command line refers to a vector that has been defined with a DEFINE DIRECTION command line;

this vector defines the outward normal to the plane. The string defined_point in the POINT

command line refers to a point in a plane that has been defined with a DEFINE POINT command

line. The deformable body should initially be on the side of the plane defined by the outward

normal.

If the REFERENCE RIGID BODY command can be used to connect the analytic plane to the named

rigid body block. If the rigid body block rotates or translates, the plane will move with it. The

reference rigid body option only works when the CONTACT FORMULATION TYPE = DASH option

is used.

7.3.2 Cylinder

BEGIN ANALYTIC CYLINDER <string>name

386 CHAPTER 7. CONTACT

CENTER = <string>defined_point

AXIAL DIRECTION = <string>defined_axis

RADIUS = <real>cylinder_radius

LENGTH = <real>cylinder_length

CONTACT NORMAL = <string>OUTSIDE|INSIDE

END [ANALYTIC CYLINDER <string>name]

Analytic cylindrical surfaces are not deformable, they cannot be moved, and two analytic cylin-

drical surfaces will not interact with each other. The ANALYTIC CYLINDER command block for

defining an analytic cylindrical surface begins with the command line:

BEGIN ANALYTIC CYLINDER <string>name

and is terminated with the command line:

END [ANALYTIC CYLINDER <string>name]

where the string name is some user-selected name for this particular cylindrical surface. This

name is used to identify the surface in the interaction definitions. The cylindrical surface has

a finite length; the cylindrical surface is not an infinitely long surface. To fully specify the lo-

cation of the cylindrical surface, therefore, you must specify the center point of the cylindrical

surface in addition to the axial direction of the cylinder. These quantities, center point and di-

rection, are defined by the CENTER and AXIAL DIRECTION command lines, respectively. The

string defined_point in the CENTER command line refers to a point that has been defined with a

DEFINE POINT command line; the string defined_axis in the AXIAL DIRECTION command

line refers to a vector that has been defined with a DEFINE DIRECTION command line. The radius

of the cylinder is the real value cylinder_radius specified with the RADIUS command line, and

the length of the cylinder is the real value cylinder_length specified by the LENGTH command

line. The length of the cylinder (cylinder_length) extends a distance of cylinder_length

divided by 2 along the cylinder axis in both directions from the center point. If the rigid surface is

the outside of the cylinder, you should specify:

CONTACT NORMAL = OUTSIDE

If the rigid surface is the inside of the cylinder, you should specify:

CONTACT NORMAL = INSIDE

7.3.3 Sphere

BEGIN ANALYTIC SPHERE <string>name

CENTER = <string>defined_point

RADIUS = <real>sphere_radius

END [ANALYTIC SPHERE <string>name]

7.3. ANALYTIC CONTACT SURFACES 387

Analytic spherical surfaces are not deformable, they cannot be moved, and two analytic spherical

surfaces will not interact with each other. The ANALYTIC SPHERE command block for defining

an analytic spherical surface begins with the input line:

BEGIN ANALYTIC SPHERE <string>name

and is terminated with the input line:

END [ANALYTIC SPHERE <string>name]

where the string name is some user-selected name for this particular spherical surface. This name

is used to identify the surface in the interaction definitions. The center point of the sphere is

defined by the CENTER command line, which references a point, defined_point, specified by

a DEFINE POINT command line. The radius of the sphere is the real value sphere_radius

specified with the RADIUS command line.

388 CHAPTER 7. CONTACT

7.4 Update All Surfaces for Element Death

UPDATE ALL SURFACES FOR ELEMENT DEATH = <string>ON|OFF(ON)

When elements are killed in an analysis, contact surfaces may need to be updated to account for

the removal of faces attached to killed elements or the addition of faces exposed by element death.

The command line UPDATE ALL SURFACES FOR ELEMENT DEATH permits contact surfaces to

be updated based on all the ELEMENT DEATH command block(s) specified in the input file (see

Section 5.5). This update of contact surfaces is controlled by the command line being set to ON, the

default. The update encompasses the full reinitialization of contact. Thus, surface-physics models

that involve state data may lose some information when the new contact surfaces are created. If

the command line is set to OFF, an element associated with a face on the contact surface could be

killed, but the face would remain in the list of faces defining the contact surface, which may be

unacceptable for your analysis.

7.5. REMOVE INITIAL OVERLAP 389

7.5 Remove Initial Overlap

BEGIN REMOVE INITIAL OVERLAP

OVERLAP NORMAL TOLERANCE = <real>over_norm_tol

OVERLAP TANGENTIAL TOLERANCE = <real>over_tang_tol

SHELL OVERLAP ITERATIONS = <integer>max_iter(10)

SHELL OVERLAP TOLERANCE = <real>shell_over_tol(0.0)

END REMOVE INITIAL OVERLAP

Meshes supplied for finite element analyses frequently have some level of initial mesh overlap,

where finite element nodes rest inside the volume of elements. This can cause problems with

contact; overlaps may cause initial forces that are nonphysical and produce erroneous stress waves.

Presto provides a mechanism to modify the initial mesh to attempt to remove overlaps in surfaces

defined for contact via the REMOVE INITIAL OVERLAP command block.

The process used to remove the initial overlap for three-dimensional solid elements involves chang-

ing the original coordinates of nodes on contact surfaces. Changing the coordinates yields a new

mesh with the overlap removed; the overlap removal adds no initial stresses. Normal and tangential

tolerances are specified by the user for all the contact surfaces in the REMOVE INITIAL OVERLAP

command block. It is also possible to specify overlap normal and tangential tolerances on each

surface pairing separately in the INTERACTION command block. In other words, overlap re-

moval tolerances specified in INTERACTION command blocks will overwrite the tolerances spec-

ified in the REMOVE INITIAL OVERLAP command block. See Section 7.16 for details. The

REMOVE INITIAL OVERLAP command block only removes overlaps that are detected along the

surfaces defined for contact and not all surfaces in the mesh.

Overlap tolerances are used to designate a box around each surface pair to search for overlaps.

If the overlap of the mesh is larger than the box defined by the tolerances, then the overlap will

not be found and thus will not be removed. However, if the specified tolerances are larger than

an element length in the analysis, the overlap removal mechanism may invert elements, leading

to analysis failure. This has two ramifications. First, the tolerances must be carefully specified

to correct mesh overlaps and to not invert elements. Second, this mechanism is unable to remove

initial overlaps that are greater than an element length. In such cases, the overlap must be removed

manually using a meshing tool. The mesh modification done by the REMOVE INITIAL OVERLAP

feature changes the meshed geometry, and thus can change the mass and time step of affected

elements. The mesh returned in the results file includes the changed coordinates and should be

checked to ensure that the modifications are acceptable. A summary of the overlap that is removed

is reported in the log file. (See Section 1.7 for a discussion of the log file.) The log file lists each

block in which the initial overlap has been removed as well as the maximum amount of overlap for

each of these blocks. Additionally, you can request that a nodal variable called REMOVED_OVERLAP

be written to the results file. See Section 8.2.1.1 for a discussion of the output of nodal variables

to the results file.

For contact between shell elements, a slightly different approach is used. Because the thickness

of a shell must be preserved when shell lofting is requested, removing the initial overlap between

nested shells becomes an iterative process whereby shell locations are adjusted to remove the

overlap. This process is approximate and may not remove all the overlap in all cases. It is advised

390 CHAPTER 7. CONTACT

to check the corrected mesh to make sure that the mesh modifications are acceptable. In the input,

two additional input lines, SHELL OVERLAP ITERATIONS and SHELL OVERLAP TOLERANCE,

may be needed to properly remove the initial overlap.

Note, if automatic kinematic partitioning is being used, the overlap algorithm will use the symmet-

ric kinematic partition value of 0.5.

• The SHELL OVERLAP ITERATIONS command line controls the maximum number of it-

erations that will be used by the overlap removal mechanism to resolve nested shells. By

default, the value of max_iter is 10. If the mesh has only a few layers of shells that may

overlap, a value of 10 should suffice. However, if the mesh has a number of layers of shells

that may overlap, this value may need to be much larger.

• The SHELL OVERLAP TOLERANCE command line specifies an amount of overlap, shell_

over_tol, that is permitted to be left in the shell elements. This helps to limit the actual

number of iterations required to remove the shell overlap, and to spread any remaining over-

lap over a number of shells instead of concentrating it all in a single shell. If the default value

of 0.0 for the shell overlap tolerance is used, iteration continues until either all the overlap

is removed or the maximum number of iterations is reached. If a nonzero value for the shell

overlap tolerance is used, iteration continues until the tolerance is reached or the maximum

number of iterations is reached. Note that the overlap removal process is only done once

during an analysis, so a large number of iterations will only affect the first time step, not

every time step.

The SHELL OVERLAP ITERATIONS and SHELL OVERLAP TOLERANCE commands have no

meaning for analyses that do not have shell elements.

7.6. ANGLE FOR MULTIPLE INTERACTIONS 391

7.6 Angle for Multiple Interactions

MULTIPLE INTERACTIONS = <string>ON|OFF(ON)

MULTIPLE INTERACTIONS WITH ANGLE = <real>angle_in_deg(60.0)

When a node lies on the edge of a body, that node may need to support contact interactions with

more than one face at the same time. For instance, see Figure 7.3. In Figure 7.3a, three blocks are

shown, with a single node identified. Through contact, this node can interact with both the block

on the upper right and the block on the bottom. If the node only supports a single interaction,

then it will be arbitrarily considered for contact between one of the blocks, but not the other, as in

Figure 7.3b. In this case, contact enforcement will prevent penetration into the lower block, but

may permit penetration into the upper right block. The proper way to deal with this case is shown

in Figure 7.3c, where multiple interactions are considered at the node.

Figure 7.3: Illustrations of multiple interactions at a node: (a) initial configuration, with node of

interest identified; (b) single interaction; and (c) multiple interactions.

By default, Presto permits multiple interactions at a node. However, these multiple interactions

may incur extra cost in the contact algorithm by increasing the number of interactions in enforce-

ment. Also, a local search algorithm (see Section 7.12), which uses various contact tracking ap-

proaches, may operate more efficiently when the node can only have one interaction. Finally,

multiple interactions may lead to instabilities that can be eliminated by switching to single interac-

tions. For these reasons, the MULTIPLE INTERACTIONS command line allows the user to choose

whether multiple interactions should be considered at a node. A value of OFF indicates that a node

can have only one interaction. This value affects all interactions in a contact definition. Presto does

not currently have the capability to force single interactions for some surface pairs while allowing

multiple interactions for other surface pairs.

When the MULTIPLE INTERACTIONS command line is ON, the number of interactions that can be

considered at a node is dependent on the measure of curvature of those faces that are connected

to the node. If the angle between two faces on which the node is attached is small, then only one

interaction is allowed. However, in cases where the angle between the faces is large enough such

that they form a discrete corner, multiple interactions are considered. The contact algorithms can

392 CHAPTER 7. CONTACT

properly handle only a limited number of interactions per node (currently three), so it is generally

feasible to properly define interactions at a node, e.g., at the corner of a block.

The critical angle for multiple interactions is set with the MULTIPLE INTERACTIONS WITH

ANGLE command line, where angle is the angle over which an edge is considered sharp. If

the angle between adjoining faces is greater than this critical angle, multiple interactions can be

created. By default, this critical angle is 60 degrees, which works well for most analyses. This

value can be changed in the contact input if needed.

7.7. SURFACE NORMAL SMOOTHING 393

7.7 Surface Normal Smoothing

BEGIN SURFACE NORMAL SMOOTHING

ANGLE = <real>angle_in_deg(60.0)

DISTANCE = <real>distance(0.01)

RESOLUTION = <string>NODE|EDGE(NODE)

END SURFACE NORMAL SMOOTHING

Surface normal smoothing is a feature that is primarily used in Adagio.

Finite element discretization often results in models with faceted edges, while the true geometry

of the part is actually smoothly curved. If the faces of adjacent finite elements on a surface have

differing normals, the discontinuities at the edges between those faces can cause problems with

contact. These discontinuities in the face normals are particularly troublesome with an implicit

code such as Adagio, which uses an iterative solver to obtain a converged solution at every step. If

a node is in contact near an edge with a normal discontinuity, the node may slide back and forth

between the two neighboring faces during the iterations. Because the normal directions of the

two faces differ, this can make it difficult to converge on a solution to this discontinuous contact

problem.

Surface normal smoothing is a technique that creates a smooth variation in the normal near edges.

The normal varies linearly from the value on one face to the value on the other face over a distance

that spans the edge. A smoothly varying normal at the edge makes it much easier for an iterative

solver to obtain a converged solution in the case where a node has penetrated near the edge of a

face.

Presto does not use an iterative solver and thus does not encounter the difficulties associated with

face normal discontinuities. Consequently, the SURFACE NORMAL SMOOTHING command block

is not typically useful for Presto models. It is provided in both Presto and Adagio, however,

to provide a consistent transition between the two codes if they are used together in a coupled

analysis.

If the SURFACE NORMAL SMOOTHING command block is present, this feature is activated. There

are three optional commands that can be used within this block to control the behavior of normal

smoothing.

• The ANGLE command is used to control whether smoothing should occur between neighbor-

ing faces. If the angle between two faces is less than the specified angle (given in degrees),

smoothing is activated between them. Otherwise, the discontinuity is considered to be a fea-

ture of the model rather than an artifact of meshing, and they are not smoothed. The default

value for angle is 60.

• The DISTANCE command specifies the distance as a fraction of the face size over which

smoothing should occur. The specified value can vary from 0 to 1. The default value for

distance is 0.01.

• The RESOLUTION command specifies the method used to determine the smoothed normal

direction. The default NODE option uses a node-based algorithm to fit a smooth curve, while

the EDGE option uses an edge-based algorithm.

394 CHAPTER 7. CONTACT

7.8 Eroded Face Treatment

ERODED FACE TREATMENT = <string>ALL|NONE(ALL)

The ERODED FACE TREATMENT command line is used to define what happens to newly exposed

element faces when a contact surface erodes because of element death. This command line applies

to the case in which a contact surface has been generated by the skinning of an element block

(Section 7.2). Suppose we have a contact block that has been skinned to create a contact surface,

and let us consider an element that contributes a face to the original contact surface. If this element

is killed at some point by element death, the death of this element exposes new faces. If the ALL

option in the command line has been selected, any newly exposed faces will be included in the

updated contact definition. If the NONE option is used, the faces exposed by element death will

not be included in the updated contact surface. Both options will remove any faces on killed

elements from the contact definition, though the NONE option tends to be more robust on complex

geometries, such as those containing equivalenced elements, shell elements sandwiched between

solid elements, and degenerate elements.

The default option is ALL.

7.9. SHELL LOFTING 395

7.9 Shell Lofting

BEGIN SHELL LOFTING

SURFACE = <string_list>surface_names

REMOVE SURFACE = <string_list>removed_surface_names

LOFTING ALGORITHM = <string>ON|OFF(ON)

COINCIDENT SHELL TREATMENT = <string>DISALLOW|IGNORE|

SIMPLE(DISALLOW)

COINCIDENT SHELL HEX TREATMENT = <string>DISALLOW|

IGNORE|TAPERED|EMBEDDED(DISALLOW)

CONTACT SHELL THICKNESS =

ACTUAL_THICKNESS|LET_CONTACT_CHOOSE(ACTUAL_THICKNESS)

ALLOWABLE SHELL THICKNESS TO ELEMENT SIZE RATIOS =

<real>lower_bound(0.1) TO <real>upper_bound(1.0)

END [SHELL LOFTING]

Presto can also assess contact on shell elements. Shell elements can interact with other shell

elements, faces of solid elements, and contact node sets (such as SPH). Contact on shell elements

can occur on either the meshed shell geometry, i.e., ignoring any shell thickness, or on the “lofted”

geometry, i.e., a geometry that includes the thickness of the shell. Currently, contact appears to

be more robust on the non-lofted geometry; however, for simulations in which the thickness is

important, the lofted geometry can provide more-reasonable results. Also critical to shell contact

is how shells that are fully coincident with other elements (i.e., share all their nodes with another

element) are treated. These options are controlled by the user in the SHELL LOFTING command

block.

The SURFACE and REMOVE SURFACE command lines allow for the specification of a subset of

shell contact surfaces to be lofted. These command lines are optional and by default, all shell

surfaces are lofted. If the SURFACE command line is used by itself, only those surfaces listed will

be lofted. If the REMOVE SURFACE command line is used by itself, all contact surfaces except

those listed will be lofted.

The LOFTING ALGORITHM command line determines whether contact on a shell should be done

on the lofted geometry or on the original shell geometry. If the value of the LOFTING ALGORITHM

command line is set to ON, shell contact uses the lofted geometry; if it set to OFF, shell contact uses

the original shell geometry.

The COINCIDENT SHELL TREATMENT command line identifies how shells that share the same

nodes should be treated. If the DISALLOW option is selected, (the default), then any time that

shells in contact are detected to share all the same nodes, the code will abort with an error message

indicating which elements were found to be coincident. The DISALLOW option should be used

if you do not want any coincident shells to be considered in the analysis. The option operates

essentially as a check on the mesh. If the IGNORE option is selected, any contact faces attached

to coincident shells are ignored for contact. This option is only provided as a backup approach if

undiagnosed code problems arise from coincident shells. If such a case occurs, the IGNORE option

may permit the user to continue with an analysis while the code team diagnoses the problem. The

SIMPLE option enables coincident shells to be processed correctly. If lofting has been enabled

396 CHAPTER 7. CONTACT

and the SIMPLE option is selected, the thickness of the lofted coincident shell is taken as the

largest thickness of all the coincident shells. If lofting is off and the SIMPLE option is selected, the

coincident shell is treated as if only one of the shells is present.

The COINCIDENT SHELL HEX TREATMENT command line has a function similar to that of the

COINCIDENT SHELL TREATMENT command line. The COINCIDENT SHELL HEX TREATMENT

command line, however, identifies how shells that are fully coincident with the hex elements are

treated. If the DISALLOW option is selected (the default), then any time that a shell in contact is

detected to share all the same nodes with the face of a continuum element, the code will abort

with an error message indicating which elements were found to be coincident. The DISALLOW

option should be used if you do not want any shells coincident with hexes to be considered in

the analysis. The option operates essentially as a check on the mesh. If the IGNORE option is

selected, any contact faces attached to shells that are coincident with faces of continuum elements

are ignored for contact. This option is only provided as a backup approach if undiagnosed code

problems arise from coincident shells and continuum elements. If such a case occurs, the IGNORE

option may permit the user to continue with an analysis while the code team diagnoses the problem.

The TAPERED and EMBEDDED options permit shells that are coincident with faces of continuum

elements to be processed in contact. The TAPERED option does two things: it includes for contact

any faces that are on the free surface and ignores faces sandwiched between the shell and the

continuum element, and it automatically adjusts the lofting of the surfaces to provide a smooth

transition between shells that are not coincident with the faces of the continuum elements and those

that are coincident with the faces of the continuum elements. The EMBEDDED option includes for

contact both free surface faces and those that are between the coincident shells and faces of the

continuum elements; the option does not adjust thicknesses to make smooth transitions between

shells that are not coincident with faces of continuum elements and those that are coincident with

faces of continuum elements. In general, the TAPERED option is preferred; only use the EMBEDDED

option if the TAPERED option causes a code problem.

The CONTACT SHELL THICKNESS command line controls whether contact should be enforced

using the actual thickness of elements, or using a pseudo thickness that is computed by the contact

algorithm. The default option to this command, ACTUAL_THICKNESS, causes the actual element

thickness to be used.

The LET_CONTACT_CHOOSE option to the CONTACT SHELL THICKNESS command tells the con-

tact algorithm to create lofted geometries out of the shells that are more appropriate for con-

tact. Shells that are very thick or very thin in relation to their in-plane dimension can be

problematic in contact. Thin shells may require a large number of time sub-steps in the con-

tact algorithm to ensure that objects do not pass completely through one another. Shells that

are thick in relation to their in-plane dimension can produce ill-defined geometries as seen

in Figure 7.4. The LET_CONTACT_CHOOSE option can help alleviate these problems. The

CONTACT SHELL THICKNESS command is functional only in Dash contact.

By default, when the LET_CONTACT_CHOOSE option is used, lofted geometry thicknesses are en-

sured to be within 0.1 and 1.0 times the in-plane dimension of the shell. If the contact-appropriate

thickness already lies within those bounds, the lofted thickness will not be changed. The permis-

sible bounds for the ratios of contact-appropriate thickness to actual thickness can be set using

the lower_bound and upper_bound parameters in the ALLOWABLE SHELL THICKNESS TO

7.9. SHELL LOFTING 397

ELEMENT SIZE RATIOS command. The ALLOWABLE SHELL THICKNESS command is func-

tional only in Dash contact.

Shell Elements Lofted Geometry,

thickness = 0.20

in-plane dimension

Lofted Geometry,

thickness = 3.0 in-

plane dimension

Figure 7.4: Example lofted geometries produced by shell lofting.

398 CHAPTER 7. CONTACT

7.10 Contact Output Variables

To provide more information about the enforcement of contact interactions, Presto can provide

additional contact variables for output. Currently, information on only one interaction at each node

is provided. If a node has more than one interaction, the last one in its internal interaction list is

reported.

The additional nodal contact variables that can be output are listed in Table 7.1, along with de-

scriptions and names of the equivalent variables in JAS3D. The variables can be output in history

files or results files; see Chapter 8 for more information on outputting nodal variables. Note that

currently the variables cannot be calculated at output time so the first time they are output a request

is made to calculate them. This means that the first output step where they are to appear the data

will be all zero. A work around for this is to have at least one output step in which these variables

appear before their values are needed.

Table 7.1: Nodal Variables for Output

Variable Description JAS3D

contact_status Status of the interactions at the node. Possi-

ble values are as follows:

0.0 = Node is not a contact node (not in a de-

fined contact surface)

0.5 = Node is not in contact

1.0 = Node is in contact and is slipping

-1.0 = Node is in contact and is sticking

celement

contact_normal_direction Vector direction of the constraint. This is, in

general, the normal of the face in the interac-

tion.

cdirnor

contact_tangential_

direction

Vector direction of the contact tangential

force.

cdirtan

contact_normal_force_

magnitude

Magnitude of the contact force at the node

in the direction normal to the contact face

(contact_normal_direction).

N/A

contact_tangential_

force_magnitude

Magnitude of the contact force at the node

in the plane of the contact face (contact_

tangential_direction).

N/A

contact_normal_traction_

magnitude

Traction normal to the contact face, i.e.,

contact_normal_force_magnitude di-

vided by contact_area. If there are mul-

tiple interactions for this node, the traction

only for the last interaction is given.

cfnor

Continued on next page

7.10. CONTACT OUTPUT VARIABLES 399

Table 7.1 – Continued from previous page

Variable Description JAS3D

contact_tangential_

traction_magnitude

Traction in the plane of the contact face, i.e.,

contact_traction_force_magnitude

divided by contact_area. If there are mul-

tiple interactions for this node, the traction

only for the last interaction is given.

cftan

contact_incremental_

slip_magnitude

Magnitude of incremental slip over the cur-

rent time step.

cdtan

contact_incremental_

slip_direction

Normalized direction of incremental slip over

the current time step.

cdirislp

contact_accumulated_slip Magnitude of tangential slip accumulated

over the entire analysis. This is the distance

along the slip path, and not the magnitude of

contact_accumulated_slip_vector.

cstan

contact_accumulated_

slip_vector

Vector of total accumulated tangential slip

over the entire analysis. This vector is not

normalized.

cdirslp

contact_frictional_

energy

Accumulated amount of frictional energy dis-

sipated over the entire analysis.

N/A

contact_frictional_

energy_density

Accumulated amount of frictional energy dis-

sipated over the entire analysis, divided by

the contact area.

cetan

contact_area Contact area for the node. This is the tribu-

tary area around the node for this interaction.

If there are multiple interactions, the reported

area is the area associated with the last inter-

action.

carea

contact_normal_gap Magnitude of gap in the direction normal to

the face.

cgnor

contact_tangential_gap Magnitude of gap in the direction tangent to

the face (only applicable for compliant fric-

tion models).

cgtan

400 CHAPTER 7. CONTACT

7.11 Friction Models

To describe the physics of interactions that occur between contact surfaces, the Presto input for

contact relies upon the definition of friction models. The user then relates these friction models to

pairs of interactions in the interaction-definition blocks (see Section 7.15 and Section 7.16). During

the search phase of contact, node-face interactions are identified, and the designated friction model

is used to determine how the resulting contact forces are resolved between these pairs.

Currently, there are 11 primary friction models: frictionless contact, constant coulomb friction, tied

contact, spring weld, surface weld, area weld, adhesion, cohesive zone, junction, threaded joint,

and pressure-velocity–dependent friction. In addition, models defined by user subroutines can be

used as friction models. By default, interactions between contact surfaces that have not had friction

models assigned are treated as frictionless. All friction models are command blocks, although

some of the models do not have any command lines inside the command block. The commands

for defining the available friction models are described next. Friction models are associated with

specific pairings of contact surfaces through the interaction-definition blocks in Section 7.15 and

Section 7.16. Presto uses the ACME library for contact enforcement. See the documentation

for ACME to obtain a more in-depth description of the implementation and usage for the various

friction models.

7.11.1 Frictionless Model

BEGIN FRICTIONLESS MODEL <string>name

END [FRICTIONLESS MODEL <string>name]

The FRICTIONLESS MODEL command block defines frictionless contact between surfaces. In fric-

tionless contact, contact forces are computed normal to the contact surfaces to prevent penetration,

but no forces are computed tangential to the contact surfaces. The string name is a user-selected

name for this friction model that is used when identifying this model in the interaction definitions.

No command lines are needed inside the command block.

7.11.2 Constant Friction Model

BEGIN CONSTANT FRICTION MODEL <string>name

FRICTION COEFFICIENT = <real>coeff

END [CONSTANT FRICTION MODEL <string>name]

The CONSTANT FRICTION MODEL command block defines a constant coulomb friction coeffi-

cient between two surfaces as they slide past each other in contact. No resistance is provided to

keep the surfaces together if they start to separate. The string name is a user-selected name for this

friction model that is used to identify this model in the interaction definitions, and coeff is the

constant coulomb friction coefficient. There is no default value for the friction coefficient.

7.11. FRICTION MODELS 401

7.11.3 Tied Model

BEGIN TIED MODEL <string>name

END [TIED MODEL <string>name]

The TIED MODEL command block restricts nodes found in initial contact with faces to stay in

the same relative location to the faces throughout the analysis. The string name is a user-selected

name for this friction model that is used to identify this model in the interaction definitions. No

command lines are needed inside the command block.

7.11.4 Spring Weld Model

BEGIN SPRING WELD MODEL <string>name

NORMAL DISPLACEMENT FUNCTION = <string>func_name

NORMAL DISPLACEMENT SCALE FACTOR = <real>scale_factor(1.0)

TANGENTIAL DISPLACEMENT FUNCTION = <string>func_name

TANGENTIAL DISPLACEMENT SCALE FACTOR =

<real>scale_factor(1.0)

FAILURE ENVELOPE EXPONENT = <real>exponent(2.0)

FAILURE DECAY CYCLES = <integer> num_cycles(1)

FAILED MODEL = <string>failed_model_name|FRICTIONLESS

(FRICTIONLESS)

END [SPRING WELD MODEL <string>name]

The SPRING WELD MODEL command block defines a contact friction model that, when applied

between two contact surfaces, connects a slave node to the nearest point of a corresponding master

face with a spring. The spring behavior is defined by a force-displacement curve in the normal

and tangential directions. If the motion of the problem generates displacement between the slave

node and its corresponding master face and this motion is in purely the normal or tangential di-

rection, the spring will fail once it passes the maximum displacement in the normal and tangential

force-displacement curves, respectively. For displacements that include both normal and tangen-

tial components, the spring fails according to a failure criterion defined as the sum of the ratios

of the normal and tangential components to their maximum values, raised to a power. If the cri-

terion is greater than 1.0, the spring fails. Once the spring fails, its contact forces reduce over a

number of load steps, and the contact evaluation reverts to another user-specified friction model

(or frictionless contact if not specified).

In the above command block:

- The string name is a user-selected name for this friction model that is used to identify this

model in the interaction definitions.

- The normal force-displacement curve is specified by the NORMAL DISPLACEMENT

FUNCTION command line, where the string func_name is the name of a function defined in

a DEFINITION FOR FUNCTION command line in the SIERRA scope. This function can be

402 CHAPTER 7. CONTACT

scaled by the real value scale_factor in the NORMAL DISPLACEMENT SCALE FACTOR

command line; the default for this factor is 1.0

- The tangential force-displacement curve is specified by the TANGENTIAL DISPLACEMENT

FUNCTION command line, where the string func_name is the name of a function defined

in a DEFINITION FOR FUNCTION command line in the SIERRA scope. This function can

be scaled by the real value scale_factor in the TANGENTIAL DISPLACEMENT SCALE

FACTOR command line; the default for this factor is 1.0.

- The real value exponent in the FAILURE ENVELOPE EXPONENT command line specifies

how normal and tangential failure criteria may be combined to yield failure of the weld, as

described above. The default value for this exponent is 2.0.

- The FAILURE DECAY CYCLES command line describes how many cycles to ramp down

the load in the spring weld after it fails through the integer value num_cycles. The default

value for the number of decay cycles is 1.

- When the spring weld breaks, the friction model that contact reverts to when evaluating

future node-face interactions between the surfaces is identified in the FAILED MODEL com-

mand line with the string failed_model_name. The friction model listed in this command

must have been previously defined in the input file. The default value for the model used

after failure is the frictionless model.

The SPRING WELD MODEL command block is very similar to the Presto SPOT WELD command

block, but permits greater flexibility in specifying a different friction model to be applied after

failure.

7.11.5 Surface Weld Model

BEGIN SURFACE WELD MODEL <string>name

NORMAL CAPACITY = <real>normal_cap

TANGENTIAL CAPACITY = <real>tangential_cap

FAILURE DECAY CYCLES = <integer>num_cycles(1)

FAILED MODEL = <string>failed_model_name|FRICTIONLESS

(FRICTIONLESS)

END [SURFACE WELD MODEL <string>name]

The SURFACE WELD MODEL command block defines a contact friction model that behaves iden-

tically to the TIED MODEL until a maximum force between the node and face of an interaction is

reached in the normal direction or the tangential direction. Once this maximum force is reached,

the tied contact “fails” and the friction model switches to a different friction model, as specified by

the user.

In the above command block, the string name is a user-selected name for this friction model that is

used to identify this model in the interaction definitions. The maximum allowed force in the normal

direction is specified by the real value normal_cap in the NORMAL CAPACITY command line. The

7.11. FRICTION MODELS 403

maximum allowed force in the tangential direction is specified by the real value tangential_cap

in the TANGENTIAL CAPACITY command line. There are no defaults for these values. The surface

weld will break when either the specified normal or tangential capacity is reached. Once the

model fails, the applied forces decrease to zero over a number of time steps defined through the

integer value num_cycles in the FAILURE DECAY CYCLES command line. The default for num_

cycles is 1. The friction model that should be used after the weld fails is identified in the FAILED

MODEL command line with the string failed_model_name. The friction model designated in

the FAILED MODEL command line must be defined within the CONTACT DEFINITION command

block. The default model after failure is the frictionless contact model.

7.11.6 Area Weld Model

BEGIN AREA WELD MODEL <string>name

NORMAL CAPACITY = <real>normal_cap

TANGENTIAL CAPACITY = <real>tangential_cap

FAILURE DECAY CYCLES = <integer> num_cycles(1)

FAILED MODEL = <string>failed_model_name|FRICTIONLESS

(FRICTIONLESS)

END [AREA WELD MODEL <string>name]

The AREA WELD MODEL command block defines a contact friction model that behaves identically

to the TIED MODEL until a maximum traction between a node and face in an interaction is reached

in the normal direction or the tangential direction. Once this maximum traction is reached, the

tied contact “fails” and the friction model switches to a different friction model, as specified by the

user. This model is identical to the SURFACE WELD MODEL command block, except that tractions

are used instead of forces.

In the above command block, the string name is a user-selected name for this friction model that

is used to identify this model in the interaction definitions. The maximum allowed traction in

the normal direction is specified by the real value normal_cap in the NORMAL CAPACITY com-

mand line. The maximum allowed traction in the tangential direction is specified by the real

value tangential_cap in the TANGENTIAL CAPACITY command line. There are no defaults

for these values. The area weld will break when either the specified normal or tangential capacity

is reached. Once the model fails, the applied tractions decrease to zero over a number of time

steps defined through the integer value num_cycles in the FAILURE DECAY CYCLES command

line. The default for num_cycles is 1. The friction model that should be used after the weld

fails is identified in the FAILED MODEL command line with the string failed_model_name.

The friction model designated in the FAILED MODEL command line must be defined within the

CONTACT DEFINITION command block. The default model after failure is the frictionless con-

tact model.

7.11.7 Adhesion Model

BEGIN ADHESION MODEL <string>name

404 CHAPTER 7. CONTACT

ADHESION FUNCTION = <string>func_name

ADHESION SCALE FACTOR = <real>scale_factor(1.0)

END [ADHESION MODEL <string>name]

The ADHESION MODEL command block defines a friction model that behaves like frictionless con-

tact when two surfaces are in contact, but computes an additional force between the surfaces when

they are not touching. The value of the additional force is given by a user-specified function of

force versus distance, where the distance is the distance between a node and the closest point on

the opposing surface.

In the above command block, the string name is a user-selected name for this friction model that

is used to identify this model in the interaction definitions. The force between surfaces that are not

touching is given by the ADHESION FUNCTION command line, where the string func_name is the

name of a function defined in a DEFINITION FOR FUNCTION command block in the SIERRA

scope. The values of this function are expected to be nonnegative. The function can be scaled by

the real value scale_factor in the ADHESION SCALE FACTOR command line; the default for

this factor is 1.0. Because contact forces are typically only given to node-face interactions if they

touching, the contact search requires appropriate tolerances when this model is used. The normal

and tangential tolerances specified in the interaction definitions should be set to the maximum

distance at which the adhesion model should be applying force. However, setting this distance to

be very large may cause excessive numbers of interactions to be identified in the search phase,

causing the contact processing to be very slow and/or generate erroneous interactions.

7.11.8 Cohesive Zone Model

BEGIN COHESIVE ZONE MODEL <string>name

TRACTION DISPLACEMENT FUNCTION = <string>func_name

TRACTION DISPLACEMENT SCALE FACTOR = <real>scale_factor(1.0)

CRITICAL NORMAL GAP = <real>crit_norm_gap

CRITICAL TANGENTIAL GAP = <real>crit_tangential_gap

END [COHESIVE ZONE MODEL <string>name]

The COHESIVE ZONE MODEL command block defines a friction model that prevents penetration

when contact surfaces are touching, but provides an additional force when the distance between

the node and face in an interaction increases. This force is determined by a user-specified function.

Once the distance exceeds a user-specified value in the normal direction or the tangential direction,

the force is no longer applied. This model can be used to mimic the energy required to separate

two surfaces that are initially touching.

In the above command block, the string name is a user-selected name for this friction model

that is used to identify this model in the interaction definitions. The displacement function for

traction is given by the TRACTION DISPLACEMENT FUNCTION command line, where the string

func_name is the name of a function defined in a DEFINITION FOR FUNCTION command block

in the SIERRA scope. This function can be scaled by the real value scale_factor in the

TRACTION DISPLACEMENT SCALE FACTOR command line; the default for this factor is 1.0. In

7.11. FRICTION MODELS 405

the CRITICAL NORMAL GAP command line, the real value crit_norm_gap specifies the normal

distance between the node and face past which the cohesive zone no longer provides a force. In the

CRITICAL TANGENTIAL GAP command line, the real value crit_tangential_gap specifies

the tangential distance between the node and face past which the cohesive zone no longer provides

a force.

7.11.9 Junction Model

BEGIN JUNCTION MODEL <string>name

NORMAL TRACTION FUNCTION = <string>func_name

NORMAL TRACTION SCALE FACTOR = <real>scale_factor(1.0)

TANGENTIAL TRACTION FUNCTION = <string>func_name

TANGENTIAL TRACTION SCALE FACTOR = <real>scale_factor(1.0)

NORMAL CUTOFF DISTANCE FOR TANGENTIAL TRACTION = <real>distance

END [JUNCTION MODEL <string>name]

The JUNCTION MODEL command block defines a model that prevents the interpenetration of con-

tact surfaces and that also provides normal and tangential tractions to a node-face interaction when

the surfaces are not touching. The normal tractions are defined as a function of the normal distance

between the node and face of an interaction, while the tangential traction is given as a function

of the relative tangential velocity. The tractions are defined by user-specified functions, and the

tangential tractions from this model drop to zero once the normal distance between the node and

the face exceeds a critical value. This friction model provides a simple way to model threaded

connections, though the THREADED MODEL defined in Section 7.11.10 has more flexibility.

In the above command block, the string name is a user-selected name for this friction model that

is used to identify this model in the interaction blocks. The normal traction curve is specified by

the NORMAL TRACTION FUNCTION command line, where the string func_name is the name of a

function defined in a DEFINITION FOR FUNCTION command block in the SIERRA scope. This

function defines a relation between the traction and the distance between the node and the face in

the normal direction. This function can be scaled by the real value scale_factor in the NORMAL

TRACTION SCALE FACTOR command line; the default for this factor is 1.0. Similarly, the tangen-

tial traction curve is specified by the TANGENTIAL TRACTION FUNCTION command line, where

the string func_name is the name of a function defined in a DEFINITION FOR FUNCTION com-

mand block in the SIERRA scope. This function defines a relation between the traction and the

relative velocity of the node and face in the tangential direction. This function can be scaled by the

real value scale_factor in the TANGENTIAL TRACTION SCALE FACTOR command line; the

default for this factor is 1.0. Once the normal distance between a node and a face using this model

reaches a critical distance, the tangential traction drops to zero; this distance is specified with the

real value distance in the NORMAL CUTOFF DISTANCE FOR TANGENTIAL TRACTION com-

mand line.

406 CHAPTER 7. CONTACT

7.11.10 Threaded Model

BEGIN THREADED MODEL <string>name

NORMAL TRACTION FUNCTION = <string>func_name

NORMAL TRACTION SCALE FACTOR = <real>scale_factor(1.0)

TANGENTIAL TRACTION FUNCTION = <string>func_name

TANGENTIAL TRACTION SCALE FACTOR = <real>scale_factor(1.0)

TANGENTIAL TRACTION GAP FUNCTION = <string>func_name

TANGENTIAL TRACTION GAP SCALE FACTOR = <real>scale_factor(1.0)

NORMAL CAPACITY = <real>normal_cap

TANGENTIAL CAPACITY = <real>tangential_cap

FAILURE ENVELOPE EXPONENT = <real>exponent(2.0)

FAILURE DECAY CYCLES = <integer>num_cycles(1)

FAILED MODEL = <string>failed_model_name|FRICTIONLESS

(FRICTIONLESS)

END [THREADED MODEL <string>name]

The THREADED MODEL command block defines a friction model that is designed to mimic a

threaded interface. This model prevents interpenetration of contact surfaces, and also supplies ad-

ditional tractions when the surfaces are not touching. Tensile tractions in the normal direction are

given by a user-specified function of force versus distance between the node and face. Tensile trac-

tions in the tangential direction are computed as the product of a traction tangential-displacement

curve and a scaling curve that is a function of the normal displacement. Maximum normal and

tangential tractions are input such that the model “fails” at a node-face interaction once they are

reached. For interactions that include both normal and tangential displacements, the model failure

is defined according to a failure criterion defined as the sum of the ratios of the normal and tan-

gential traction components to their maximum capacity values, raised to a power. After failure,

interactions shift to a different user-specified friction model.

In the above command block:

- The string name is a user-selected name for this friction model that is used to identify the

model in the interaction definitions.

- The traction-displacement relation in the normal direction is specified by the NORMAL

TRACTION FUNCTION command line, where the string func_name is the name of a func-

tion defined in a DEFINITION FOR FUNCTION command block in the SIERRA scope. This

function can be scaled by the real value scale_factor in the NORMAL TRACTION SCALE

FACTOR command line; the default for this factor is 1.0.

- The traction-displacement relation in the tangential direction is specified by two curves.

The traction-displacement relation in the tangential direction when there is no displacement

in the normal direction is defined by the TANGENTIAL TRACTION FUNCTION command

line, where the string func_name is the name of a function defined in a DEFINITION FOR

FUNCTION command block in the SIERRA scope. This function can be scaled by the real

value scale_factor in the TANGENTIAL TRACTION SCALE FACTOR command line; the

default for this factor is 1.0. When the distance in the normal direction is greater than zero,

7.11. FRICTION MODELS 407

the tangential traction is scaled by a function specified in the TANGENTIAL TRACTION GAP

FUNCTION command line, where the string func_name is the name of a function defined

in a DEFINITION FOR FUNCTION command block in the SIERRA scope. This function

defines a scaling factor as a function of the normal displacement. The function can be scaled

by the real value scale_factor in the TANGENTIAL TRACTION GAP SCALE FACTOR

command line; the default for this factor is 1.0.

- The threaded model “fails” once the normal and tangential tractions reach a critical ca-

pacity value. The normal capacity is specified by the real value normal_cap in the

NORMAL CAPACITY command line. The tangential capacity is specified by the real value

tangential_cap in the TANGENTIAL CAPACITY command line. There are no default

values for these parameters. These capacities are defined for pure normal or tangential dis-

placements. In cases where there is a combination of tangential and normal displacements,

a failure curve is used to determine the combination of tangential and normal tractions that

determines model failure. This curve is defined as the sum of the ratios of the normal and tan-

gential traction components to their maximum capacity values, raised to a power. The power

in the function is defined by the real value exponent in the FAILURE ENVELOPE EXPONENT

command line. The default value of the exponent is 2.0. Once the model fails, the ap-

plied tractions decrease to zero over a number of time steps defined through the inte-

ger value num_cycles in the FAILURE DECAY CYCLES command line. The default for

num_cycles is 1. When the model exceeds the designated capacity, the contact surfaces

using this model switch to a different friction model as identified in the FAILED MODEL

command line with the string failed_model_name. The friction model designated in the

FAILED MODEL command line must be defined within the CONTACT DEFINITION com-

mand block. The default model is the frictionless model.

7.11.11 PV_Dependent Model

BEGIN PV_DEPENDENT MODEL <string>name

STATIC COEFFICIENT = <real>stat_coeff

DYNAMIC COEFFICIENT = <real>dyn_coeff

VELOCITY DECAY = <real>vel_decay

REFERENCE PRESSURE = <real>p_ref

OFFSET PRESSURE = <real>p_off

PRESSURE EXPONENT = <real>p_exp

END [PV_DEPENDENT MODEL <string> name]

The PV_DEPENDENT MODEL command block defines a friction model similar to a coulomb fric-

tion model, but which provides a frictional response that is dependent on the pressure and the

velocity. The pressure-dependent portion of the model behaves similarly to the constant friction

model except that the tangential traction is given by

[

p+p_off

p_ref

]p_exp

. (7.1)

408 CHAPTER 7. CONTACT

The velocity-dependent part is given by

(stat_coeff−dyn_coeff)e(−vel_decay‖v‖) +dyn_coeff. (7.2)

The PV_DEPENDENT MODEL command block multiplies the pressure and velocity effects together.

In the above command block:

- The string name is a name assigned to this friction model that is used to identify the model

in the interaction definitions.

- The real value p_ref in the pressure-dependent part given in Equation (7.1) is specified with

the REFERENCE PRESSURE command line.

- The real value p_off in the pressure-dependent part given in Equation (7.1) is specified with

the OFFSET PRESSURE command line.

- The real value p_exp in the pressure-dependent part given in Equation (7.1) is specified with

the PRESSURE EXPONENT command line.

- The real value stat_coeff in the velocity-dependent part given in Equation (7.2) is speci-

fied with the STATIC COEFFICIENT command line.

- The real value dyn_coeff in the velocity-dependent part given in Equation (7.2) is specified

with the DYNAMIC COEFFICIENT command line.

- The real value vel_decay in the velocity-dependent part given in Equation (7.2) is specified

with the VELOCITY DECAY command line.

7.11.12 User Subroutine Friction Models

BEGIN USER SUBROUTINE MODEL <string>name

INITIALIZE MODEL SUBROUTINE = <string>init_model_name

INITIALIZE TIME STEP SUBROUTINE = <string>init_ts_name

INITIALIZE NODE STATE DATA SUBROUTINE =

<string>init_node_data_name

LIMIT FORCE SUBROUTINE = <string>limit_force_name

ACTIVE SUBROUTINE = <string>active_name

INTERACTION TYPE SUBROUTINE = <string>interaction_name

END [USER SUBROUTINE MODEL <string>name]

The USER SUBROUTINE MODEL command blocks permit contact to use a user subroutine to define

a friction model between surfaces. This capability is in a test phase at this time; please contact a

Presto developer for more information.

In this command block:

7.11. FRICTION MODELS 409

- The string name is a user-specified name that is used to identify this model in the interaction

definitions.

- The command line INITIALIZE MODEL SUBROUTINE specifies a user subroutine to ini-

tialize the friction model. The name of the subroutine is given by init_model_name.

- The command line INITIALIZE TIME STEP SUBROUTINE specifies a user subroutine to

initialize the time step. The name of the subroutine is given by init_ts_name.

- The command line INITIALIZE NODE STATE DATA SUBROUTINE specifies a user sub-

routine to initialize the node state data. The name of the subroutine is given by init_node_

data_name.

- The command line LIMIT FORCE SUBROUTINE specifies a user subroutine to provide the

limit force for the friction model. The name of the subroutine is given by limit_force_

name.

- The command line ACTIVE SUBROUTINE specifies a user subroutine to compute forces for

an active node-face interaction. The name of the subroutine is given by active_name.

- The command line INTERACTION TYPE SUBROUTINE specifies a user subroutine to define

the interaction type. The name of the subroutine is given by interaction_name.

410 CHAPTER 7. CONTACT

7.12 Search Options

BEGIN SEARCH OPTIONS [<string>name]

#

search algorithms

GLOBAL SEARCH INCREMENT = <integer>num_steps(1)

GLOBAL SEARCH ONCE = <string>ON|OFF(OFF)

#

search tolerances

SEARCH TOLERANCE = <string>AUTOMATIC|USER_DEFINED(AUTOMATIC)

NORMAL TOLERANCE = <real>norm_tol

TANGENTIAL TOLERANCE = <real>tang_tol

FACE MULTIPLIER = <real>face_multiplier(0.1)

#

secondary decomposition

SECONDARY DECOMPOSITION = <string>ON|OFF(OFF)

END [SEARCH OPTIONS <string>name]

Contact involves a search phase and an enforcement phase. The contact search algorithm used

to detect interactions between contact surfaces is often the most computationally expensive part

of an analysis. The user can exert some control over how the search phase is carried out via the

SEARCH OPTIONS command block. By selecting different options in this command block, the

user can make trade-offs between the accuracy of the search and computing time.

The most accurate approach to the search phase is a global search at every time step. For a global

search, a box is drawn around each face. The box depends on the shape of the face, the location

of the face in space, and search tolerances. Now suppose we want to determine whether some

node has penetrated that face. We must first determine if the node lies in one or more boxes that

surround a face. This search, although done with an optimal algorithm, is still time consuming.

The search must be done for all nodes that may be in contact with a face. A less accurate approach

for the search phase is to use what is called a local tracking algorithm. For the tracking algorithm

approach, we first do a global search. When a node has contacted a face in the global search, we

record the face (or faces) contacted by the node. Instead of using the global search on subsequent

time steps, we simply rely on the record of the node-face interactions to compute the contact forces.

The last face contacted by a node in the global search is assumed to remain in contact with that

node for subsequent time steps. In actuality, the node may slide off the face it was contacting at the

time of the global search. In this case, faces that share an edge with the original contact face are

searched to determine whether they (the edge adjacent faces) are in contact with the node. If the

node moves across a corner of the face (rather than an edge), we may lose the contact interaction

for the node until the next global search. If we lose the contact interaction, we lose some of the

accuracy in the contact calculations until we do the next global search. Furthermore, it is possible

that additional nodes may actually come into contact in the time steps between global searches.

These nodes are typically caught during the next global search, but inaccuracies can result from

missing the exact time of contact. The tracking algorithm, under certain circumstances, can work

quite well even though it is less accurate. We can encounter analyses where we can set the number

of intervals (time steps) between global searches to a relatively small number (5) and lose only

7.12. SEARCH OPTIONS 411

a few or none of the node-to-face contacts between global searches. Likewise, we can encounter

analyses where we can set the interval between global searches to a large number (100 or more)

and lose only a few or none of the node-to-face contacts between global searches. Finally, we can

encounter problems where we may only have to do one global search at the beginning and rely

solely on the tracking information for the rest of the problem (without losing any contact). What

search approach is best for your problem depends on the geometry of your structure, the loads on

your structure, and the amount of deformation of your structure. This section tells you how to

control the search phase for your specific problem.

The SEARCH OPTIONS command block begins with the input line:

BEGIN SEARCH OPTIONS [<string>name]

and ends with:

END [SEARCH OPTIONS <string>name]

The name for the command block is optional.

Without a SEARCH OPTIONS command block, the default search with associated default search

parameters is used for all contact pairs. If you want to override the default search method for

all contact pairs, you should add a SEARCH OPTIONS command block. By adding a SEARCH

OPTIONS command block, you establish a new set of global defaults for the search for all contact

pairs. The default for the search is that tracking is turned on and the number of intervals (time

steps) between a global search is one (GLOBAL SEARCH INCREMENT = 1 and GLOBAL SEARCH

ONCE = OFF).

The valid command lines within a SEARCH OPTIONS command block are described in Sec-

tion 7.12.1, Section 7.12.2, and Section 7.12.3. The values specified by these commands are

applied by default to all interaction contact surfaces, unless overridden by a specific interaction

definition.

7.12.1 Search Algorithms

GLOBAL SEARCH INCREMENT = <integer>num_steps(1)

GLOBAL SEARCH ONCE = <string>ON|OFF(OFF)

Known Issue: Attempting to use GLOBAL SEARCH INCREMENT with a value

greater than 1, especially in a problem that contains shells and/or restart, will, in

most cases, cause code failure. A GLOBAL SEARCH INCREMENT value greater than

1 will, under the best circumstances, give only a marginal improvement in speed.

The above two command lines let you determine the frequency of the global search. Although

these command lines are mutually exclusive, they provide for three search options:

412 CHAPTER 7. CONTACT

1. If you want to do only one global search and have all subsequent searches be tracking

searches, then you should use the GLOBAL SEARCH ONCE command line with the string

parameter set to ON. By default, the GLOBAL SEARCH ONCE option is OFF. If you set

GLOBAL SEARCH ONCE to ON, then this should be the only command line for the search al-

gorithms in the command block. The GLOBAL SEARCH INCREMENT command line should

not be used.

2. If you want to use the global search only intermittently, with the tracking search in between

the global search, you should use the GLOBAL SEARCH INCREMENT set to some integer

value greater than 1. The integer value num_steps determines the number of time steps

between global searches. The GLOBAL SEARCH ONCE command line should not be used.

3. If you want to do a global search at every time step, you should use the GLOBAL SEARCH

INCREMENT command line with num_steps set to 1 or just simply omit this line since the

default for the search increment is 1. The GLOBAL SEARCH ONCE command line should not

be used.

In summary, you have three options for the global search. You can do a global search only once (the

first time step), and do a tracking search for all subsequent searches by setting GLOBAL SEARCH

ONCE to ON. You can do a global search for the beginning time step and intermittently thereafter;

the time steps between the global searches will use a tracking search. For this approach, you

will need only the GLOBAL SEARCH INCREMENT command line. Finally, you can set GLOBAL

SEARCH INCREMENT to 1 and do a global search at every time step.

7.12.2 Search Tolerances

SEARCH TOLERANCE = <string>AUTOMATIC|USER_DEFINED(AUTOMATIC)

NORMAL TOLERANCE = <real>norm_tol

TANGENTIAL TOLERANCE = <real>tang_tol

FACE MULTIPLIER = <real>face_multiplier(0.1)

As indicated previously, the contact functionality in Presto uses a box defined around each face to

locate nodes that may potentially contact the face. This box is defined by a tolerance normal to the

face and another tolerance tangential to the face (see Figure 7.5). The code adds to these tolerances

the maximum motion over a time step when identifying interactions. In the above command lines,

the parameter norm_tol is the normal tolerance (defined on the NORMAL TOLERANCE command

line) for the search box and the parameter tang_tol is the tangential tolerance (defined on the

TANGENTIAL TOLERANCE command line) for the search box.

By default, Presto will automatically calculate normal and tangential tolerances based on the mini-

mum characteristic length multiplied by the value input by the FACE MULTIPLIER command. The

face multiplier is 0.1. The automatic tolerances add the maximum motion over a time step just like

the user defined tolerances. If you leave automatic search on and also specify normal and/or tan-

gential tolerances with the NORMAL TOLERANCE and TANGENTIAL TOLERANCE command lines,

the larger of the two (automatic or user specified) tolerances will be used. For example, suppose

7.12. SEARCH OPTIONS 413

you specify a normal tolerance of 1.0× 10−3 and the automatic tolerancing computes a normal

tolerance of 1.05×10−3. Then Presto will use a normal tolerance of 1.05×10−3.

When the USER_DEFINED option is specified for the SEARCH TOLERANCE command line, these

normal and tangential tolerances must be specified. If these tolerances are not specified, code

execution will be terminated with an error.

Figure 7.5: Illustration of normal and tangential tolerances.

Both of these tolerances are absolute distances in the same units as the analysis. The proper

tolerances are problem dependent. If a normal or tangential tolerance is specified in the

SEARCH OPTIONS command block, they apply to all interactions. These default search toler-

ances can be overwritten for a specific interaction by specifying a value for the normal tolerance

and/or tangential tolerance for that interaction inside the INTERACTION command block (see Sec-

tion 7.16).

7.12.3 Secondary Decomposition

SECONDARY DECOMPOSITION = <string>ON|OFF(ON)

The SECONDARY DECOMPOSITION command line controls internal options used by the ACME

contact search algorithm. Computational results for secondary decomposition ON should be iden-

tical to those for secondary decomposition OFF. However, the computational time for these two

distinct options may vary significantly.

When a mesh is divided for parallel processing, it is usually divided such that each processor has

the same number of elements. The element-based load balance needs to achieve good parallel per-

formance for element and material calculations. It is possible to have the number of elements per

processor balanced but the number of contact faces per processor highly unbalanced. If contact is

highly localized in one region of the model, it may happen that a small subset of the processors

contains most of the contact interactions. A secondary decomposition is a parallel decomposi-

tion that balances the number of contact faces. When secondary decomposition is on, the contact

algorithm first moves all data to the secondary decomposition and then it runs the contact calcula-

tions. When the secondary decomposition is off, all contact calculations are done in the primary

decomposition.

414 CHAPTER 7. CONTACT

The computational effort to move data to the secondary decomposition can be quite large. Thus,

if the contact surfaces are well balanced in the primary decomposition, a large cost savings can

be realized by turning off the secondary decomposition. Three conditions must be met for turning

off the secondary decomposition to achieve cost savings. First, the number of contact faces per

processor must be somewhat balanced in the primary decomposition. Second, faces in contact

should be on the same processor as much as possible. Inertial and RCB decomposition tend to

meet this condition of having contact faces in proximity on the same processor, while Multi-KL

does not. Third, conditions one and two must persist throughout the entire analysis. An initially

well balanced, well distributed mesh may become poorly balanced through element death or large

deformations.

7.13. USER SEARCH BOX 415

7.13 User Search Box

BEGIN USER SEARCH BOX <string>name

#

box center point

CENTER = <string>center_point

X DISPLACEMENT FUNCTION = <string>x_disp_function_name

Y DISPLACEMENT FUNCTION = <string>y_disp_function_name

Z DISPLACEMENT FUNCTION = <string>z_disp_function_name

X DISPLACEMENT SCALE FACTOR = <real>x_disp_scale_factor

Y DISPLACEMENT SCALE FACTOR = <real>y_disp_scale_factor

Z DISPLACEMENT SCALE FACTOR = <real>z_disp_scale_factor

#

box lengths

X EXTENT FUNCTION = <string>x_extent_function_name

Y EXTENT FUNCTION = <string>y_extent_function_name

Z EXTENT FUNCTION = <string>z_extent_function_name

#

END [USER SEARCH BOX <string>name]

When using Dash contact, user-defined search boxes can be used to improve the efficiency of the

contact search in some situations. The USER SEARCH BOX command can be used to define the

coordinates of a rectangular box aligned with the global coordinate system that contains the regions

where contact will be enforced. Multiple user search boxes can be defined.

Commands used within the USER SEARCH BOX command block define the location of the center

of the box, a prescribed displacement of the center, and the size of the box in the three global

coordinate directions. These are documented in the following sections.

If the USER SEARCH BOX command is used, contact will not be enforced outside the set of user-

defined search boxes specified by the user. These search boxes should be defined over an area

larger than the actual contact zone to handle cases of large motion.

In general, problems having a large area in which the analyst wishes to ignore contact (such as an

area of particle collisions outside the scope of interest) or in which the area of contact is a known

patch that encompasses a small subset of the faces in the contact surfaces are the most likely to

experience enhanced performance with user-defined search boxes.

7.13.1 Search Box Location

CENTER = <string>center_point

X DISPLACEMENT FUNCTION = <string>x_disp_function_name

Y DISPLACEMENT FUNCTION = <string>y_disp_function_name

Z DISPLACEMENT FUNCTION = <string>z_disp_function_name

X DISPLACEMENT SCALE FACTOR = <real>x_disp_scale_factor

Y DISPLACEMENT SCALE FACTOR = <real>y_disp_scale_factor

Z DISPLACEMENT SCALE FACTOR = <real>z_disp_scale_factor

416 CHAPTER 7. CONTACT

The location of a user search box is specified by a combination of a center point location and a set

of extents in the global coordinates. The commands listed here define the location of the center of

the search box as a function of time.

The CENTER command is used to specify a point, where center_point is the name of a point

that is defined externally to this command block using the DEFINE POINT command (See Sec-

tion 2.1.6).

The X DISPLACEMENT FUNCTION, Y DISPLACEMENT FUNCTION, and Z DISPLACEMENT

FUNCTION command lines refer to functions that define the motion of the search box center in

the X, Y, and Z directions as a function of time. These commands are required.

The X DISPLACEMENT SCALE FACTOR, Y DISPLACEMENT SCALE FACTOR,

and Z DISPLACEMENT SCALE FACTOR command lines are optional, and can be used to provide

scale factors that are multiplied by the corresponding displacement functions.

7.13.2 Search Box Size

X EXTENT FUNCTION = <string>x_extent_function_name

Y EXTENT FUNCTION = <string>y_extent_function_name

Z EXTENT FUNCTION = <string>z_extent_function_name

The size of the user search box is defined by the X, Y, and Z extent functions, which are

required. These are specified using the X EXTENT FUNCTION, Y EXTENT FUNCTION, and

Z EXTENT FUNCTION command lines. Each of these functions defines the total length of the

box in the respective coordinate direction as a function in time. The search box extends half the

distance in the negative and positive directions from the center point.

7.14. ENFORCEMENT OPTIONS 417

7.14 Enforcement Options

Options

BEGIN ENFORCEMENT OPTIONS [<string>name]

MOMENTUM BALANCE ITERATIONS = <integer>num_iterations(5)

END [ENFORCEMENT OPTIONS <string>name]

Contact, as previously indicated, involves a search phase and an enforcement phase. The user can

exert some control over how the enforcement phase is carried out via the ENFORCEMENT OPTIONS

command block. By selecting different options in this command block, the user can make trade-

offs between solution accuracy and computing time. The ENFORCEMENT OPTIONS command

block begins with the input line:

BEGIN ENFORCEMENT OPTIONS [<string>name]

and is terminated with the input line:

END [ENFORCEMENT OPTIONS <string>name]

The name for the command block, name, is optional

Only a single ENFORCEMENT OPTIONS command block is permitted within a CONTACT

DEFINITION command block. Without an ENFORCEMENT OPTIONS command block, the de-

fault enforcement algorithm with associated default enforcement options is used for all contact

pairs. If you want to override the defaults for enforcement for all contact pairs, you should add an

ENFORCEMENT OPTIONS command block. By adding this command block, you establish a new

set of global defaults for enforcement for all contact pairs. You can override some of these global

defaults for enforcement for a contact pair by inserting certain command lines in the INTERACTION

command block (see Section 7.16) for that contact pair. It is possible, therefore to tailor the en-

forcement approach for individual contact pairs.

Currently, the enforcement option is of limited use. Options for user control will be expanded in

future versions of Presto.

The momentum balance algorithm for enforcement of the contact constraints uses an itera-

tive process to ensure incremental momentum balance over a time step. Rather than making

one pass to compute contact forces for node push-back, several passes are made to more ac-

curately compute the normal contact force and, subsequently, the tangential (frictional) con-

tact forces. The number of passes (iterations) is set by the value num_iterations in the

MOMENTUM BALANCE ITERATIONS command line. The default value for the number of itera-

tions is 5. This value is generally acceptable for removing overlap in the mesh. To get accurate

results in a global sense in analyses that use friction, a value of 10 is more appropriate. To get ac-

curate contact response at individual points in analyses with friction, a value of 20 or greater may

be needed. Note that as the number of iterations increases, the expense of enforcement increases.

418 CHAPTER 7. CONTACT

Thus a user can balance execution speed and accuracy with this command line, though care must

be taken to ensure that the appropriate level of accuracy is attained. This command line affects

only the enforcement phase of the contact. A single search phase is used for contact detection, but

the enforcement phase uses an iterative process.

7.15. DEFAULT VALUES FOR INTERACTIONS 419

7.15 Default Values for Interactions

BEGIN INTERACTION DEFAULTS [<string>name]

CONTACT SURFACES = <string list>surface_names

SELF CONTACT = <string>ON|OFF(OFF)

GENERAL CONTACT = <string>ON|OFF(OFF)

AUTOMATIC KINEMATIC PARTITION = <string>ON|OFF(OFF)

FRICTION MODEL = <string>friction_model_name|FRICTIONLESS

(FRICTIONLESS)

INTERACTION BEHAVIOR = <string>SLIDING|

INFINITESIMAL_SLIDING|NO_INTERACTION(SLIDING)

CONSTRAINT FORMULATION = <string>NODE_FACE|FACE_FACE

END [INTERACTION DEFAULTS <string>name]

This section discusses the INTERACTION DEFAULTS command block. Note that the name for the

INTERACTION DEFAULTS command block, name, is currently not used or required. This com-

mand block lets you enforce contact on a subset of all contact surfaces or on all contact surfaces.

You may overwrite predefined values defining surface interaction (for all surfaces defined by this

command block) by using several different command lines.

It is important to note that unless some combination of the INTERACTION DEFAULTS command

block and INTERACTION command blocks (Section 7.16) exists in the CONTACT DEFINITION

command block, enforcement will not take place. Up to this point, all command lines and com-

mand blocks have provided information to set up the search phase and have provided details for

surface interaction. However, contact enforcement for surfaces—the actual removal of interpene-

tration between surfaces and the calculation of surface forces consistent with friction models—will

not take place unless some combination of the INTERACTION DEFAULTS command block and

INTERACTION command blocks is used to set up surface interactions.

Contact between surfaces requires data to describe the interaction between these surfaces. You

may specify defaults for the surface interactions for some or all surface pairs by using the

INTERACTION DEFAULTS command block. Within this command block, you can provide a

list of surfaces that are a subset of the contact surfaces. Any pair of surfaces listed in the

INTERACTION DEFAULTS command block will acquire the default values that are defined within

the INTERACTION DEFAULTS command block. If you omit the CONTACT SURFACES command

line, defaults in the INTERACTION DEFAULTS command block are applied to all surfaces. Any

default set within an INTERACTION DEFAULTS command block can be overridden by commands

in an INTERACTION command block. See Section 7.16.

If you consider only the use of the INTERACTION DEFAULTS command block (and not the use of

the INTERACTION command block), you have three options for the surface interaction values:

• You can specify default surface interaction values for all the contact surface pairs by speci-

fying all the contact surfaces in an INTERACTION DEFAULTS command block.

• You can specify default surface interaction values for some of the contact surface pairs by

specifying a subset of the contact surfaces in an INTERACTION DEFAULTS command block.

420 CHAPTER 7. CONTACT

• You can leave all interactions off by default by not specifying an INTERACTION DEFAULTS

command block.

You can overwrite surface interaction values that you have set with an INTERACTION DEFAULTS

command block by using an INTERACTION command block.

The valid commands within an INTERACTION DEFAULTS command block are described in

Section 7.15.1 through Section 7.15.5. The values specified by the command lines in the

INTERACTION DEFAULTS command block are applied by default to all interaction contact sur-

faces unless overridden by a specific interaction definition.

7.15.1 Surface Identification

CONTACT SURFACES = <string list>surface_names

This command line identifies the contact surfaces to which the surface interaction values defined

in the INTERACTION DEFAULTS command block will apply. The string list on the CONTACT

SURFACES command line specifies the names of these contact surfaces. The CONTACT SURFACES

command line can include any surface specified in a CONTACT SURFACE command line, a

CONTACT SURFACE command block, or a SKIN ALL BLOCKS command line.

The SURFACES command line is optional. If you want the defaults to apply to all the surfaces you

have defined, you will NOT use the SURFACES command line in this command block. If you want

the defaults to apply to a subset of all contact surfaces, then you will list the specific set of surfaces

on a SURFACES command line. The names of all the surfaces with the default values will be listed

in the string list designated as surface_names.

7.15.2 Self-Contact and General Contact

SELF CONTACT = <string>ON|OFF(OFF)

GENERAL CONTACT = <string>ON|OFF(OFF)

The SELF CONTACT command line, if set to ON, specifies that the default values set in the com-

mand lines of the command block will apply to self-contact between the listed surfaces (or all

surfaces if no surfaces are listed). The GENERAL CONTACT command line, if set to ON, specifies

that the default values set in the command lines of this command block apply to contact between

the listed surfaces (or all surfaces if no surfaces are listed) excluding self-contact. The default

values for both of these command lines is OFF. If you want to enforce general contact between all

surfaces specified in the INTERACTION DEFAULTS command block but no self-contact, you must

include the line:

GENERAL CONTACT = ON

If you want to enforce self-contact for all surfaces specified in the INTERACTION DEFAULTS

command block, you must include the line:

7.15. DEFAULT VALUES FOR INTERACTIONS 421

SELF CONTACT = ON

Suppose that you have only an INTERACTION DEFAULTS command block with no INTERACTION

command block in your CONTACT DEFINITION command block. Unless you have a GENERAL

CONTACT command line set to ON, a SELF CONTACT command line set to ON, or both the GENERAL

CONTACT command line set to ON and the SELF CONTACT command line set to ON, no enforcement

will occur.

Suppose you have turned on contact enforcement for all contact surface pairs (general contact

and self-contact) in the INTERACTION DEFAULTS command block. You may turn off contact en-

forcement for a specific contact pair by use of the INTERACTION BEHAVIOR command line in the

INTERACTION command block. (The same holds true if you have turned on contact enforcement

for only a subset of contact surface pairs in the INTERACTION DEFAULTS command block.)

Suppose you have turned on self-contact enforcement for all contact surfaces in the INTERACTION

DEFAULTS command block. You may override self-enforcement for a specific contact surface by

use of the INTERACTION BEHAVIOR command line in the INTERACTION command block. (The

same holds true if you have turned on contact enforcement for only a subset of contact surfaces in

the INTERACTION DEFAULTS command block.)

7.15.3 Friction Model

FRICTION MODEL = <string>friction_model_name|FRICTIONLESS

(FRICTIONLESS)

The FRICTION MODEL command line permits the description of how surfaces interact with each

other using a friction model defined in a friction-model command block (see Section 7.11). In

the above command line, the string friction_model_name should match the name assigned to

some friction model command block. For example, if you specified the name of an AREA WELD

command block as AW1 and wanted to reference that name in the FRICTION MODEL command

line, the value of friction_model_name would be AW1.

The default interaction is frictionless contact.

7.15.4 Automatic Kinematic Partition

AUTOMATIC KINEMATIC PARTITION

If the AUTOMATIC KINEMATIC PARTITION command line is used, Presto will automatically

compute the kinematic partition factors for pairs of surfaces. (See Section 7.16.2 for more in-

formation on kinematic partitioning.) The automatic kinematic partitions are computed from the

impedance of each surface based on nodal average density and wave speed. Automatic computa-

tion of kinematic partition factors provides the best approach to exact enforcement of symmetric

contact of opposing surfaces provided that these surfaces have the same mesh resolution. If the

422 CHAPTER 7. CONTACT

mesh resolution is disparate, you can specify the coarser meshed body as master, but generally it is

better to use more contact iterations to deal with this case of a fine mesh contacting a coarse mesh.

For the interaction of any two surfaces, the sum of the partition factors for the surfaces must be 1.0.

This is automatically taken care of when the AUTOMATIC KINEMATIC PARTITION command

line is used. The default value for kinematic partition factors for all surfaces is 0.5.

The AUTOMATIC KINEMATIC PARTITION command line can be used to set the kinematic par-

titions for all interactions or to set the kinematic partitions for specific interactions. Thus the

command line can appear in two different scopes:

1. The command line can be used within the INTERACTION DEFAULTS command block. In

this case, all contact surface interactions defined in the command block will use the automatic

kinematic partitioning scheme by default. This will override the default case that assigns a

kinematic partition factor of 0.5 to all surfaces. For particular interactions, it is possible to

override the use of the automatic kinematic partition factors by specifying kinematic par-

tition values (with the KINEMATIC PARTITION command line) within the INTERACTION

command blocks for those interactions.

2. The command line can be used inside an INTERACTION command block. If the automatic

partitioning command line appears inside an INTERACTION command block, the kinematic

partition factors for that particular interaction will be calculated by the automatic kinematic

partition scheme.

Automatic kinematic partitioning is not currently operational for shell elements. If it is enabled,

the kinematic partitioning factor is set to 0.5 for all contact interactions involving shell elements.

7.15.5 Interaction Behavior

INTERACTION BEHAVIOR = <string>SLIDING|

INFINITESIMAL_SLIDING|NO_INTERACTION(SLIDING)

The INTERACTION BEHAVIOR command line specifies how the search will be done. For

SLIDING contact, the search algorithm is constantly updating information that lets the code ac-

curately track the sliding of the node over the face and any adjacent faces. The SLIDING option,

which is the default, lets us handle the case where we have large relative sliding between a face

and a node. A node contacting a face can slide over time by a significant amount over the face.

The node can slide onto an adjacent face or onto a face on a nearby surface. For the case of

INFINITESIMAL_SLIDING, search information is not updated to the extent that it is with the

SLIDING option. In the case of INFINITESIMAL_SLIDING, it is assumed that there is very little

slip over time of a node relative to its initial contact point on a face. Furthermore, it is assumed a

node will not slide off the face that it initially contacts. The INFINITESIMAL_SLIDING option is

not as accurate as the SLIDING option, but neither is it as expensive as the SLIDING option. For

some cases, however, the INFINITESIMAL_SLIDING option may work quite well even though it

7.15. DEFAULT VALUES FOR INTERACTIONS 423

is not as accurate as the SLIDING option. Finally, you may turn off the search completely by using

the NO_INTERACTION option.

With the third option, NO_INTERACTION, you could turn off the search for all surfaces specified

in the INTERACTION DEFAULTS command block. You could then turn on the search on a case-

by-case basis for various contact pairs or for the self-contact of surfaces by using INTERACTION

command blocks. This is a convenient way to set defaults for the friction model and automatic

kinematic partitioning without turning on all the interactions. More likely, you will set contact

interactions to default to the SLIDING option in the INTERACTION DEFAULTS command block,

and then turn off specific contact interactions through INTERACTION command blocks.

Using the INTERACTION BEHAVIOR command line in the INTERACTION DEFAULTS command

block represents a sophisticated application of this command line. Please consult with Presto devel-

opers for more information about this command line if it is used in an INTERACTION DEFAULTS

command block.

7.15.6 Constraint Formulation

CONSTRAINT FORMULATION = NODE_FACE|FACE_FACE

The CONSTRAINT FORMULATION command is used to switch between node/face and face/face

enforcement for contact constraints. If the NODE_FACE option is selected, node/face contact is

used, and if the FACE_FACE option is selected, face/face contact is used. This command only has

an effect when Dash contact is used. ACME only supports node/face contact. With Dash contact,

face/face contact is used by default, except for the case where one of the surfaces is explicitly

defined by a node set, in which case node/face contact is used.

424 CHAPTER 7. CONTACT

7.16 Values for Specific Interactions

BEGIN INTERACTION [<string>name]

SURFACES = <string_list>surfaces [EXCLUDE <string_list>surfaces]

MASTER = <string_list>surfaces [EXCLUDE <string_list>surfaces]

SLAVE = <string_list>surfaces [EXCLUDE <string_list>surfaces]

KINEMATIC PARTITION = <real>kin_part

NORMAL TOLERANCE = <real>norm_tol

TANGENTIAL TOLERANCE = <real>tang_tol

FACE MULTIPLIER = <real>face_multiplier(0.1)

OVERLAP NORMAL TOLERANCE = <real>over_norm_tol

OVERLAP TANGENTIAL TOLERANCE = <real>over_tang_tol

FRICTION MODEL = <string>friction_model_name|FRICTIONLESS

(FRICTIONLESS)

AUTOMATIC KINEMATIC PARTITION

INTERACTION BEHAVIOR = <string>SLIDING|

INFINITESIMAL_SLIDING|NO_INTERACTION(SLIDING)

CONSTRAINT FORMULATION = <string>NODE_FACE|FACE_FACE

END [INTERACTION <string>name]

The Presto contact input also permits the setting of values for specific interactions using the

INTERACTION command block. If an INTERACTION DEFAULTS command block is present

within a CONTACT DEFINITION command block, the values provided by an INTERACTION com-

mand block override the defined defaults. If an INTERACTION DEFAULTS command block is

not present, only those interactions defined by INTERACTION command blocks are searched for

contact, and values without system defaults must be specified.

The INTERACTION command block begins with:

BEGIN INTERACTION [<string>name]

and ends with:

END [INTERACTION <string>name]

where name is a name for the interaction. Note that this name is currently used only for informa-

tional output purposes and is not required.

The valid commands within an INTERACTION command block are described in Section 7.16.1

through Section 7.16.6.

7.16.1 Surface Identification

SURFACES = <string_list>surfaces [EXCLUDE <string_list>surfaces]

MASTER = <string_list>surfaces [EXCLUDE <string_list>surfaces]

SLAVE = <string_list>surfaces [EXCLUDE <string_list>surfaces]

7.16. VALUES FOR SPECIFIC INTERACTIONS 425

There are two methods to identify the surfaces described by a specific interaction.

One method is to identify all surfaces in a single line with the SURFACES command line. For

explicit dynamics, the surface list must contain at least two surfaces. This command will define a

symmetric two-way contact interaction between each surface on the command line and every other

surface on the command line. If a contact KINEMATIC PARTITION is also specified, the surface

list must contain only two surfaces (see Section 7.16.2).

To specify self contact, the surface must appear in the SURFACES command line twice. Each

surface specified on the SURFACES command line interacts with each other surface on that line. If

a surface is specified on the line twice, it indicates that a surface will also interact with itself.

The second method to identify contact surfaces is to use the MASTER and SLAVE command lines.

The nodes of the slave surfaces are searched against the faces of the master surfaces. Each of these

command lines takes as input a list of names of contact surfaces defined in the contact block. A

master slave interaction will be defined between each surface in the master list and each surface in

the slave list. A surface may not be present in both the master and the slave list.

Master/Slave contact always uses a kinematic partition of 1.0 thus the KINEMATIC PARTITION

command may not be used with master/slave contact.

The surface named all_surfaces is a special reserved word that is equivalent to typing all

contact surfaces known by the contact block into the string list. Optionally, the EXCLUDE keyword

can be placed on the command line and followed by a list of surface names to exclude from the

list. If the SURFACES, MASTER, or SLAVE command lines appear multiple times within a CONTACT

INTERACTION block, their surface lists will be concatenated. The effect is equivalent to specifying

all of the surface names on a single line.

The SURFACES command line cannot be used simultaneously with the MASTER and SLAVE com-

mand lines.

The following examples demonstrate ways to identify contact surfaces involved in an interaction:

This command defines a symmetric interaction between s1 and s2:This command defines an in-

teraction between s1 and s2 where s1 is the master and s2 is the slave:

SURFACES = s1 s2

This defines a symmetric self contact interaction between s1 and itself:

SURFACES = s1 s1

This defines a set of symmetric interactions between s1 and s2, s1 and s3, s2 and s3:

SURFACES = s1 s2 s3

This defines a full set of symmetric interactions between s1 and itself, s2 and itself, s1 and s2:

SURFACES = s1 s1 s2 s2

426 CHAPTER 7. CONTACT

This command defines a set of interactions between all pairs of defined surfaces in the model, with

the exception of surfaces s7 and s8, which have no interactions:

SURFACES = all_surfaces exclude s7 s8

This command defines a set of interactions between all pairs of defined surfaces in the model, as

well interactions between each surface and itself, with the exception of surfaces s7 and s8, which

have no interactions:

SURFACES = all_surfaces all_surfaces exclude s7 s8

These commands define a one-way interaction between the nodes of s1 and the faces of m1:

MASTER = m1

SLAVE = s1

These commands define a set of one-way interactions between the nodes of s1 and the faces of m1,

the nodes of s1 and the faces of m2, the nodes of s2 and the faces of m1, the nodes of s2 and the

faces of m2.

MASTER = m1 m2

SLAVE = s1 s2

These commands define that the nodes of surface s1 are slaved to all other contact faces in the

contact definition block.

MASTER = all_surfaces exclude s1

SLAVE = s1

7.16.2 Kinematic Partition

KINEMATIC PARTITION = <real>kin_part

To provide accurate contact evaluation, Presto typically computes two-way contact between two

surfaces, where interactions are defined between the nodes of the first surface and the faces of the

second surface, and also between the nodes of the second surface and the faces of the first surface.

If the two surfaces have penetrated each other by a distance δ , then each of the contact evaluations

will compute forces to move the surface a distance δ , so that the total resulting displacement would

be 2δ if both sets of contact computations were fully applied. The KINEMATIC PARTITION com-

mand line defines a kinematic partition scaling factor, kin_part, for the two contact computations

so that the total contact motion is correct. The kinematic partition factor, kin_part, is a value

between 0.0 and 1.0. The factor scales the relative motion of the first surface, where kin_part =

0.0 means the first surface will move none of δ , while kin_part = 1.0 means the surface moves

all of δ . The second surface moves the portion of δ that remains after the motion of the first surface

(i.e., δ for second surface = 1.0 – kin_part). For instance, if kin_part is 0.2, the first surface

7.16. VALUES FOR SPECIFIC INTERACTIONS 427

will move 20% of the penetration distance (0.2δ in our example), and the second surface would

move the remaining 80% (0.8δ in our example). The default value is 0.5, so that each surface

would move half of the penetration distance. If kin_part is 0.0, the first surface does not move

at all, and the second surface moves the full distance. This is exactly equivalent to a one-way

master-slave contact definition, where the first surface is the master and the second is the slave.

If kin_part is 1.0, the second surface is the master, and the first surface is the slave. Figure 7.6

illustrates how the kinematic partition factor varies from 0.0 to 1.0, with the specific example of

kin_part being set to 0.2.

Figure 7.6: Illustration of kinematic partition values.

The capability provided by the KINEMATIC PARTITION command line is important in cases

where contact occurs between two materials of disparate stiffness. Physically, we would expect a

material with a higher stiffness to have more of an effect in determining the position of the con-

tact surface than a more compliant material. In this case, we want the softer material to move

more of the distance, and thus it should have a higher kinematic partition factor. The appropriate

kinematic partition factor can be determined in closed form; see the ACME contact library refer-

ence [1] for more information. Alternately, the AUTOMATIC KINEMATIC PARTITION capability

can automatically calculate the proper kinematic partition based on the stiffness of the materials.

Another case where the kinematic partition factor has traditionally been used is when meshes with

dissimilar resolutions contact each other. If an interaction is defined with a fine mesh as the master

surface and a coarse mesh as a slave surface, the contact algorithms will permit nodes on the

master surface to penetrate the slave surface. In these cases, such problems can be alleviated by

making the coarse mesh the master surface. However, the iterative approach implemented in the

enforcement can also take care of this problem and is advised. If very few iterations are chosen,

an appropriate kinematic partition factor may be needed to prevent unintentional penetration due

to mesh discretization.

428 CHAPTER 7. CONTACT

For self-contact, the kinematic partition factor should be 0.5.

A kinematic partition factor cannot be defined for interactions that use the pure master-slave syntax

(see Section 7.16.1).

In general, it is best to use the automatic kinematic partition option to properly compute the kine-

matic partition for a pair of surfaces. However, in a few cases, master-slave interactions are pre-

ferred. These cases consist of (1) interaction between an analytic surface and a deformable body,

where the analytic body should be the master surface; and (2) contact between shells and solids,

where the solid should be the master surface.

7.16.3 Tolerances

NORMAL TOLERANCE = <real>norm_tol

TANGENTIAL TOLERANCE = <real>tang_tol

FACE MULTIPLIER = <real>face_multiplier(0.1)

OVERLAP NORMAL TOLERANCE = <real>over_norm_tol

OVERLAP TANGENTIAL TOLERANCE = <real>over_tang_tol

You can set tolerances for the interaction for a specific contact surface pair or for self-contact

of a surface by using the above tolerance-related command lines in an INTERACTION command

block. See Section 7.12.2 on search tolerances and Section 7.5 on overlap tolerances for a complete

discussion of tolerances for contact.

7.16.4 Friction Model

FRICTION MODEL = <string>friction_model_name|FRICTIONLESS

(FRICTIONLESS)

You can set the friction model for the interaction for a specific contact surface pair or for self-

contact of a surface by using the above command line in an INTERACTION command block. See

Section 7.15.3 for a discussion of this command line.

7.16.5 Automatic Kinematic Partition

AUTOMATIC KINEMATIC PARTITION

You can turn on (or off) automatic kinematic partitioning for a specific contact surface pair by

using the above command line in an INTERACTION command block. See Section 7.15.4 for a

discussion of automatic kinematic partitioning.

7.16. VALUES FOR SPECIFIC INTERACTIONS 429

7.16.6 Interaction Behavior

INTERACTION BEHAVIOR = <string>SLIDING|

INFINITESIMAL_SLIDING|NO_INTERACTION(SLIDING)

You can set the search behavior for a specific contact surface pair or for self-contact of a surface

by using the above command line in an INTERACTION command block. See Section 7.15.5 for a

discussion of this command line.

A particular use of this command line in this particular command block is to set the interaction

behavior to NO_INTERACTION. This deactivates enforcement between the surfaces specified in

the INTERACTION command block.

7.16.7 Constraint Formulation

CONSTRAINT FORMULATION = NODE_FACE|FACE_FACE

The CONSTRAINT FORMULATION command is used to switch between node/face and face/face

enforcement for contact constraints. See Section 7.16.7 for a discussion of this command line.

430 CHAPTER 7. CONTACT

7.17 Examples

This section has several example problems. We present the geometric configuration for the prob-

lems and the appropriate command lines to describe contact for the problems.

7.17.1 Example 1

Our first example problem has two blocks that come into contact due to initial velocity conditions.

Block 1 has an initial velocity equal to v1, and block 2 has an initial velocity equal to v2. The

geometric configuration for this problem is shown in Figure 7.7.

Figure 7.7: Problem with two blocks coming into contact.

The simplest input for this problem will be named EXAMPLE1 and is shown as follows:

BEGIN CONTACT DEFINITION EXAMPLE1

define contact surfaces

SKIN ALL BLOCKS = ON

set interactions

BEGIN INTERACTION DEFAULTS

GENERAL CONTACT = ON

END INTERACTION DEFAULTS

END

In our example, the SKIN ALL BLOCKS command line with its parameter set to ON will create

a surface named surface_1 (from the skinning of block_1 and a surface named surface_2

(from the skinning of block_2).

All the normal and tangential tolerances will be set automatically in the above example. Fric-

tionless contact is assumed. The kinematic partition factor defaults to 0.5 for both surfaces,

surface_1 and surface_2.

If you omitted the INTERACTION DEFAULTS command block with GENERAL CONTACT set to ON,

then contact enforcement would not take place.

7.17. EXAMPLES 431

Now, let us consider the same problem (two blocks coming into contact) in which the contact

definition for the problem is not defined simply by using all the default settings. The input for this

variation of our two-block problem will be named EXAMPLE1A and is shown as follows:

BEGIN CONTACT DEFINITION EXAMPLE1A

define contact surfaces

SKIN ALL BLOCKS = ON

friction model

BEGIN CONSTANT FRICTION MODEL ROUGH

FRICTION COEFFICIENT = 0.5

END CONSTANT FRICTION MODEL ROUGH

search options

BEGIN SEARCH OPTIONS

GLOBAL SEARCH INCREMENT = 10

NORMAL TOLERANCE = 1.0E-3

TANGENTIAL TOLERANCE = 1.0E-3

END SEARCH OPTIONS

set interactions

BEGIN INTERACTION DEFAULTS

FRICTION MODEL = ROUGH

GENERAL CONTACT = ON

END INTERACTION DEFAULTS

END

As is the case of the EXAMPLE1 command block, the SKIN ALL BLOCKS command line with its

parameter set to ON will create a surface named surface_1 (from the skinning of block_1) and

a surface named surface_2 (from the skinning of block_2).

For EXAMPLE1A, we want to have frictional contact between the two blocks. For the frictional con-

tact, we define a constant friction model with a CONSTANT FRICTION MODEL command block.

We name this model ROUGH.

The SEARCH OPTIONS command block sets the interval between global searches to 10; the de-

fault value is 5. Also, in this command block, we have set values for the normal and tangential

tolerances. The option to compute the search tolerance automatically has been left on. The larger

of the two values—an automatically computed tolerance or the user-specified tolerance—will be

selected as the search tolerance during the search phase.

In the INTERACTION DEFAULTS command block, we select the friction model ROUGH on the

FRICTION MODEL command line. As in the case of the EXAMPLE1 command block, if you omit-

ted the INTERACTION DEFAULTS command block with GENERAL CONTACT set to ON, contact

enforcement would not take place.

432 CHAPTER 7. CONTACT

7.17.2 Example 2

Our second example problem has three blocks that come into contact due to initial velocity con-

ditions. Block 1 has an initial velocity equal to v1, and block 3 has an initial velocity equal to v3.

The geometric configuration for this problem is shown in Figure 7.8.

Figure 7.8: Problem with three blocks coming into contact.

The input for this three-block problem will be named EXAMPLE2 and is shown as follows:

BEGIN CONTACT DEFINITION EXAMPLE2

define contact surfaces

CONTACT SURFACE surface_1 CONTAINS block_1

CONTACT SURFACE surface_2 CONTAINS block_2

CONTACT SURFACE surf_3 CONTAINS surface_3

friction model

BEGIN CONSTANT FRICTION MODEL ROUGH

FRICTION COEFFICIENT = 0.5

END CONSTANT FRICTION MODEL ROUGH

search options

BEGIN SEARCH OPTIONS

GLOBAL SEARCH INCREMENT = 10

NORMAL TOLERANCE = 1.0E-3

TANGENTIAL TOLERANCE = 1.0E-3

END SEARCH OPTIONS

set interactions

BEGIN INTERACTION DEFAULTS

FRICTION MODEL = ROUGH

GENERAL CONTACT = ON

7.17. EXAMPLES 433

SELF CONTACT = ON

END INTERACTION DEFAULTS

set specific interaction

BEGIN INTERACTION S2TOS3

SURFACES = surface_2 surf_3

KINEMATIC PARTITION = 0.4

NORMAL TOLERANCE = 0.5E-3

TANGENTIAL TOLERANCE = 0.5E-3

FRICTION MODEL = FRICTIONLESS

END INTERACTION S2TOS3

END

For the EXAMPLE2 command block, we have defined three surfaces. The first surface, surface_

1, is obtained by skinning block_1. The second surface, surface_2 is obtained by skinning

block_2. The third surface, surf_3, is the user-defined surface surface_3. The user-defined

surface, surface_3, can contain a subset of the external element faces that define block_3 or all

the external element faces that define block_3.

The SEARCH OPTIONS command block sets the interval between global searches to 10; the de-

fault value is 5. Also, in this command block, we have set values for the normal and tangential

tolerances. The option to compute the search tolerance automatically has been left on. The larger

of the two values—an automatically computed tolerance or the user-specified tolerance—will be

selected as the search tolerance during the search phase.

In the INTERACTION DEFAULTS command block, we select the friction model ROUGH on the

FRICTION MODEL command line. Both GENERAL CONTACT and SELF CONTACT are set to ON

in the EXAMPLE2 command block. For this problem, block_2 can undergo self-contact. Setting

GENERAL CONTACT to ON will enforce contact between surface_1 and surface_2, surface_

2 and surf_3, and surface_1 and surf_3. Setting SELF CONTACT to ON will enforce self-

contact for all three of the surfaces.

For this particular example, we want to override some of the Presto default values for surface inter-

action and some of the default values for surface interaction set by the INTERACTION DEFAULTS

command block for the interaction between surface_2 and surf_3. To override default values,

we use an INTERACTION command block and indicate that it applies to surface_2 and surf_3

with a SURFACES command line. We override the Presto default for the kinematic partition factor

by using a KINEMATIC PARTITION command line with the kinematic partition parameter set to

a value of 0.4. We override the normal and tangential tolerances and the friction model set in

the INTERACTION command block. The normal and tangential tolerances for interaction between

surface_2 and surf_3 is set to 0.5E-3 rather than the global value of 1.0E-3. The friction

model for interaction between surface_2 and surf_3 is set to FRICTIONLESS rather than the

default value of ROUGH.

434 CHAPTER 7. CONTACT

7.18 Dash Contact

CONTACT FORMULATION TYPE = ACME|DASH(ACME)

Dash is an alternative contact algorithm that is a replacement for the ACME explicit dynamics

contact algorithm. The Dash algorithm is selected with the contact formulation type command.

Generally any existing ACME contact command block may be converted to a Dash command

block simply by using this one command. However, Dash will ignore some ACME options so is

only applicable on a subset of problems that ACME can run.

7.18.1 How Dash is Different from ACME

Dash is a facet-based enforcement algorithm. Dash attempts to compute the total volume of overlap

between two facet sets and remove the overlap. In contrast, ACME only removes the gap between

nodes and faces. Dash uses a reduced order area integration scheme for calculation and removal of

volumetric overlaps.

In some cases, Dash is more robust than ACME and can more accurately solve certain classes of

problems. Dash often works better than ACME for problems with high loading rates and stiffening

materials. ACME contact enforcement tends to aggravate hourglass modes when used on these

types of problems. Additionally, problems in which tolerancing issues, multiple interaction issues,

or topology restrictions cause ACME to perform poorly may be run more robustly with Dash.

However, Dash results for frictional behavior is generally less accurate than is ACME. Dash is less

able to exactly capture the transition from sticking to slipping behavior and other such frictional

details than is ACME.

Dash is designed to work correctly for a wide variety of problems with minimal user tweaking. It

is generally recommended that Dash be used with a minimal set of inputs, for example ’skin all

blocks’, ’self and/or general contact = on’, and interaction friction models. Dash has no tolerances,

kinematic partitions, or any other such inputs.

Dash uses an iterative penalty based enforcement scheme. Dash enforcement explicitly balances

Momentum by always applying equal and opposite forces.

7.18.2 Current Dash Usage Guidelines

Use Dash for remeshing problems. ACME does not perform well on changing topologies. Dash

may also be useful for problems with element death. ACME often must artificially kill a large

number of additional elements other than those which have reached a user defined death criteria.

ACME requires these additional element removals in order to work around certain ACME surface

topology restrictions. Dash has no topology restrictions so does not need to kill any extra elements

to maintain a valid contact topology.

Dash is often significantly faster than ACME, particularly on parallel problems. Speedups from

1.5 to 4 times have been observed on a wide range of problems when using Dash as compared to

7.18. DASH CONTACT 435

ACME.

When performing contact involving shells, Dash turns the shells into lofted volumes. The volume

thickness is stored in the shell_thickness element variable, and is used within the shell lofting

algorithm as the offset to use in contact enforcement.

The following ACME capabilities are not currently supported by Dash:

• Analytic Surfaces

• 8 and 10 node tetrahedron contact

• Complex friction models (anything other than frictionless, constant friction, glued, and tied)

• Tied contact at a distance. Dash assumes all contact occurs at a nominal gap of zero. Toler-

ances specified in the input deck are currently ignored.

• Rigid body contact

• Contact variable output

Additionally avoid using side set contact with Dash and prefer block skinning. Dash contains ray

tracing algorithms to determine if certain contact points are inside or outside of bodies. If the

surfaces Dash is using do not define fully enclosed bodies Dash may become confused and think a

point inside the body is actually outside the body or vice versa.

Dash can also perform node face contact by defining a contact node set in the same fashion as is

done in ACME. The nodes defined in a node face interaction must be the slave object to correctly

compute contact. Node normals used to determine tied contact are computed by averaging the

normals of the faces connected to that node.

Dash accepts the same surface definitions as does ACME. Dash also uses identical syntax for

interaction definition. The relevant contact block options for Dash are:

CONTACT SURFACE <name> CONTAINS <surface_name>

CONTACT SURFACE <name> CONTAINS <block_name>

CONTACT NODE SET <name> CONTAINS <nodelist_name>

BEGIN INTERACTION DEFAULTS

GENERAL CONTACT = ON|OFF (OFF)

SELF CONTACT = ON|OFF (OFF)

DEFAULT FRICTION MODEL = <string>(default_frictionless)

END

BEGIN FRICTIONLESS MODEL <string>name

END [FRICTIONLESS MODEL <string>name]

BEGIN CONSTANT FRICTION MODEL <string>name

FRICTION COEFFICIENT = <real>coeff

436 CHAPTER 7. CONTACT

END [CONSTANT FRICTION MODEL <string>name]

BEGIN TIED MODEL <string>name

END [TIED MODEL <string>name]

BEGIN GLUED FRICTION MODEL <string>name

END [GLUED FRICTION MODEL <string>name]

BEGIN INTERACTION <string>name

SURFACES = <string>surface1 <string>surface2

MASTER = <string>surface

SLAVE = <string>surface

FRICTION MODEL = <string>friction_model_name

END [INTERACTION <string>name]

BEGIN ENFORCEMENT OPTIONS

MOMENTUM BALANCE ITERATIONS = <integer>(5)

NUM GEOMETRY UPDATE ITERATIONS = <integer>(1)

END

BEGIN OVERLAP REMOVAL

END OVERLAP REMOVAL

BEGIN DASH OPTIONS

SCALE FACTOR = <real>factor(1.0)

INTERACTION DEFINITION SCHEME = <string>DASH_DEFAULT|EXPLICIT

(DASH_DEFAULT)

SEARCH LENGTH SCALING = <real>factor(0.15)

LOFTED SPHERE REPRESENTATION =

TETRAHEDRON|OCTAHEDRON|CUBE|ICOSAHEDRON(ICOSAHEDRON)

MAX CONTACT SUB STEPS = <integer>value(100)

END

BEGIN DEBUG

OUTPUT LEVEL = <integer>(0)

END DEBUG

All contact definition block commands not listed above are ignored by Dash. This includes contact

tolerances, kinematic partitions, ACME performance options, etc. The contact surface definition,

interaction definition, and friction model specification commands work identically to their ACME

counterparts. The four supported friction models also behave identically to the ACME versions of

those friction models.

The MOMENTUM BALANCE ITERATIONS command controls how many iterative enforcement

passes Dash will perform. For Dash these are not really momentum balance iterations as Dash

explicitly balances momentum at every iteration. Increasing the number of momentum balance

iterations will increase result accuracy, minimizing overlap and better conserving energy terms.

7.18. DASH CONTACT 437

NUM GEOMETRY UPDATE ITERATIONS is unique to Dash. This command allows the contact

search geometry to be updated multiple times per search step. Larger values for this command

yield better enforcement, but at significantly increased cost.

The DASH OPTIONS command block contains a few options unique to Dash. Generally Dash is

designed to run accurately with as few knobs as possible, however a few options do exist.

The SCALE FACTOR command defines the final scaling factor to apply to contact forces. This is

mostly a developer option to help debug certain contact pathologies.

The INTERACTION DEFINITION SCHEME, command controls how contact interactions are de-

fined. By default all Dash interactions are one sided. As the full volume of overlap is removed

there is really no concept of master face or slave face. By default Dash picks an optimal enforce-

ment order for each interaction pair based on face size. However, the ability exists to explicitly

use the potentially symmetric interactions defined in the input deck by supplying the EXPLICIT

option to this command. This may allow better enforcement in some circumstances, particularly

tied contact.

The SEARCH LENGTH SCALING command defines how far into a body Dash will search for po-

tentially interacting faces. The search tolerance is a multiplier on the face characteristic length.

If faces move farther than the factor supplied in the SEARCH LENGTH SCALING command line

times the face characteristic length in a single time step, contact could be lost. Thus, extremely

high velocity contacts may require use of higher values of this parameter. Note that the default

values used should be sufficient for impact speeds below the material sound speed.

The LOFTED SPHERE REPRESENTATION command defines how sphere elements are represented

in contact. When a sphere element block is skinned for contact it is turned into a set of faceted

spheres. The type of faceting used on the spheres is controlled by the option to this command, and

can be either TETRAHEDRON, OCTAHEDRON, CUBE, or ICOSAHEDRON. The ICOSAHEDRON option

is the default. The radius of the spheres is given by half of the particle radius, which is stored in

the sph_radius nodal variable. Lower order geometries are generally slightly faster, but may be

significantly less accurate.

The MAX CONTACT SUB STEPS command controls contact substepping during an analysis time

step. Contact can only operate properly if the distance that objects in contact move during a time

step is less than the search distance on those objects. If objects are moving very quickly or contact

search distances are very small, the time step may be subdivided into multiple sub-steps in order to

accurately enforce contact. The MAX CONTACT SUB STEPS command sets the maximum number

of substeps that can be used for contact enforcement in a given time step.

Note the contact search distance is generally roughly proportional to the size of a contact object.

It is taken as the square root of the area of a face, the radius of a sphere, or the thickness of a shell.

Taking sub-steps requires extra computational effort for contact, and the amount of time spent in

contact increases in proportion to the number of sub-steps taken.

By default, the maximum number of contact sub-steps allowed is set to 100. Lowering the number

may yield better performance at the cost of decreased contact accuracy. Raising the number may

have the opposite effect. However, in the vast majority of analyses, contact is enforced accurately

with a single enforcement step per time step. Changing this option would have no effect in those

438 CHAPTER 7. CONTACT

cases, as substepping is only done as needed. An example of an analysis where contact sub-

stepping may become relevant would be hyper-velocity impact of thin shell structures.

7.19. REFERENCES 439

7.19 References

1. Brown, K. H., R. M. Summers, M. W. Glass, A. S. Gullerud, M. W. Heinstein, and R. E.

Jones. ACME: Algorithms for Contact in a Multiphysics Environment, API Version, 2.2,

SAND2004-5486. Albuquerque, NM: Sandia National Laboratories, October 2001.

2. Heinstein, M. W., and T. E. Voth. Contact Enforcement for Explicit Transient Dynamics,

Draft SAND report. Albuquerque, NM: Sandia National Laboratories, 2005.

440 CHAPTER 7. CONTACT

Chapter 8

Output

Presto produces a variety of output. This chapter discusses how to control the four major types

of output: results output, history output, heartbeat output, and restart output. Results output lets

the user select some set of variables (registered, user-defined, or some combination thereof). If the

user selects a nodal variable such as displacement for results output, the displacements for all the

nodes in a model will be output to a results file. If the user selects an element variable such as stress

for results output, the stress for all elements in the model that calculate this quantity (stress) will be

output. The history output option lets the user select a very specific set of information for output.

For example, if you know that the displacement at a particular node is critical, then you can select

only the displacement at that particular node as history output. The heartbeat output is similar to

the history output except that the output is written to a text file instead of to a binary (exodusII [1])

file. The restart output is written so that any calculation can be halted at some arbitrary analysis

time and then restarted at this time. The user has no control over what is written to the restart file.

When a restart file is written, it must be a complete state description of the calculations at some

given time. A restart file contains a great deal of information and is typically much larger than a

results file. You need to carefully limit how often a restart file is written.

Section 8.2 describes the results output. Included in the results output is a description of commands

for user-defined output (Section 8.2.2). User-defined output lets the user postprocess analysis re-

sults as the code is running to produce a reduced set of output information. Section 8.3 describes

the history output, Section 8.4 describes the heartbeat output, and Section 8.5 describes the restart

output. All four types of output (results, history, heartbeat, and restart) can be synchronized for

analyses with multiple regions. This scheduling functionality is discussed in Section 8.6. In Sec-

tion 8.7, there is a list of key registered variables.

Unless otherwise noted, the command blocks and command lines discussed in Chapter 8 appear in

the region scope.

441

442 CHAPTER 8. OUTPUT

8.1 Parenthesis Syntax for Requesting Variables

Variables may be accessed in the code either in whole or by component. Values at specific compo-

nents or integration points of multi-component variables may be accessed via parentheses syntax.

Parenthesis syntax may be applied to results output, history output, element death, or any other

command where variable names are specified.

Parenthesis syntax is a variable name of the form:

<string>var_name[(<index>component[,<integer>integration_point)]]

For a variable named var, a variable name of the form var(A,B) asks for the A component of

the variable at integration point B. If a variable is a vector, x, y, or z may be specified as the

component. If a variable is 3x3 tensor, xx, yy, zz, xy, xz, yz, yx, zx, or zy may be specified as

the component. For other types of variables components of the variable may be requested through

an integer index.

The characters : and * are wild cards if used for specifying either the component or the integration

point. var(:,B) asks for all components of var at integration point B. var(A,:) asks for compo-

nent A of var at all integration points. var(:,:) asks for all components of var at all integration

points. var is shorthand for var(:,:).

var(A) will behave slightly differently depending on the nature of the variable. If the variable

has multiple components, then Var(A) is treated like var(A,:). If a variable has one and only

one component then it is assumed that A refers to the integration point number rather than the

component number and Var(A) is treated like var(1,A).

8.1.1 Example 1

Let stress be a tensor defined on a single integration point element and a displacement vector be

defined at all model nodes. The following output variable specification:

element variables = stress as str

nodal variables = displacement as disp

asks for all the components of the stress tensor on elements and all components of the displacement

vector on nodes. The code would write the following variables to the output file:

str_xx

str_yy

str_zz

str_xy

str_xz

str_yz

disp_x

disp_y

disp_z

8.1. PARENTHESIS SYNTAX FOR REQUESTING VARIABLES 443

If only the yy component of stress is desired, either of the following could be used:

element variables = stress(yy) as my_yy_str1

element variables = stress(2) as my_yy_str2

If only the z component of displacement is desired either of the following could be specified:

nodal variables = displacement(z) as my_z_disp1

nodal variables = displacement(3) as my_z_disp2

Note, index 2 of a tensor corresponds to the yy component of the tensor and index 3 of a vector

corresponds to the z component of the vector.

8.1.2 Example 2

Let stress be a tensor defined on each integration point of a three integration point element. Let

eqps be a scalar material state variable also defined at each element integration point. To ask for all

stress components on all integration points and all eqps data at all integration points the following

could be specified:

element variables = stress as str

element variables = eqps as eqps

Which would output the variables:

str_xx_1, str_yy_1, str_zz_1, str_xy_1, str_xz_1, str_yz_1

str_xx_2, str_yy_2, str_zz_2, str_xy_2, str_xz_2, str_yz_2

str_xx_3, str_yy_3, str_zz_3, str_xy_3, str_xz_3, str_yz_3

eqps_1, eqps_2, eqps_2

To ask for just the stress tensor and eqps value on the second integration point the following syntax

can be used:

element variables = stress(:,2) as str_intg2

element variables = eqps(2) as eqps_intg2

This would output the variables:

str_intg2_xx

str_intg2_yy

str_intg2_zz

str_intg2_xy

str_intg2_xz

str_intg2_yz

eqps_intg2

444 CHAPTER 8. OUTPUT

To ask for the xy component of stress on all integration points any of the following could be used:

element variables = stress(xy,*) as str_xy_all

element variables = stress(xy,:) as str_xy_all

element variables = stress(xy) as str_xy_all

Any of the above would output:

str_xy_all_1

str_xy_all_2

str_xy_all_3

8.1.3 Other command blocks

The parenthesis syntax described above for results output can also be used in most other commands

involving variable names. For example, to kill elements based on yy stress or z displacement the

following could be specified:

begin element death

criterion is element value of stress(yy) > 1000

criterion is average nodal value of displacement(z) > 3.0

end

8.2 Results Output

The results output capability lets you select some set of variables that will be written to a file at

various intervals. As previously indicated, all the values for each selected variable will be written

to the results file. (The interval at which information is written can be changed throughout the

analysis time.) The name of the results file is set in the RESULTS OUTPUT command block.

8.2. RESULTS OUTPUT 445

8.2.1 Exodus Results Output File

BEGIN RESULTS OUTPUT <string>results_name

DATABASE NAME = <string>results_file_name

DATABASE TYPE = <string>database_type(exodusII)

OVERWRITE = <string>OFF|ON|TRUE|FALSE|YES|NO

(ON|TRUE|YES)

TITLE <string>user_title

NODE VARIABLES = <string>variable_name

[AS <string>dbase_variable_name] ...

<string>variable_name [AS

<string>dbase_variable_name]

| NODAL VARIABLES = <string>variable_name

[AS <string>dbase_variable_name] ...

<string>variable_name [AS

<string>dbase_variable_name]

NODESET VARIABLES = <string>variable_name

[AS <string>dbase_variable_name] ...

<string>variable_name [AS

<string>dbase_variable_name]

| NODESET VARIABLES = <string>variable_name

[AS <string>dbase_variable_name]

INCLUDE|ON|EXCLUDE <string list>nodelist_names

... <string>variable_name

[AS <string>dbase_variable_name] INCLUDE|ON|EXCLUDE

<string list>nodelist_names

FACE VARIABLES = <string>variable_name

[AS <string>dbase_variable_name] ...

<string>variable_name [AS

<string>dbase_variable_name]

| FACE VARIABLES = <string>variable_name

[AS <string>dbase_variable_name]

INCLUDE|ON|EXCLUDE <string list>surface_names

... <string>variable_name

[AS <string>dbase_variable_name] INCLUDE|ON|EXCLUDE

<string list>surface_names

ELEMENT VARIABLES = <string>variable_name

[AS <string>dbase_variable_name] ...

<string>variable_name [AS

<string>dbase_variable_name]

| ELEMENT VARIABLES = <string>variable_name

[AS <string>dbase_variable_name]

INCLUDE|ON|EXCLUDE <string list>block_names

... <string>variable_name

[AS dbase_variable_name] INCLUDE|ON|EXCLUDE

<string list>block_names

OUTPUT MESH = EXPOSED_SURFACE|BLOCK_SURFACE

446 CHAPTER 8. OUTPUT

COMPONENT SEPARATOR CHARACTER = <string>character|NONE

GLOBAL VARIABLES = <string>variable_name

[AS <string>dbase_variable_name] ...

<string>variable_name [AS

<string>dbase_variable_name]

START TIME = <real>output_start_time

TIMESTEP ADJUSTMENT INTERVAL = <integer>steps

AT TIME <real>time_begin INCREMENT =

<real>time_increment_dt

ADDITIONAL TIMES = <real>output_time1

<real>output_time2 ...

AT STEP <integer>step_begin INCREMENT =

<integer>step_increment

ADDITIONAL STEPS = <integer>output_step1

<integer>output_step2 ...

TERMINATION TIME = <real>termination_time_value

USE OUTPUT SCHEDULER <string>scheduler name

OUTPUT ON SIGNAL = <string>SIGALRM|SIGFPE|SIGHUP|SIGINT|

SIGPIPE|SIGQUIT|SIGTERM|SIGUSR1|SIGUSR2|SIGABRT|

SIGKILL|SIGILL|SIGSEGV

END [RESULTS OUTPUT <string>results_name]

You can specify a results file, the results to be included in this file, and the frequency at which

results are written by using a RESULTS OUTPUT command block. The command block appears

inside the region scope.

More than one results file can be specified for an analysis. Thus for each results file, there will be

one RESULTS OUTPUT command block. The command block begins with:

BEGIN RESULTS OUTPUT <string>results_name

and is terminated with:

END [RESULTS OUTPUT <string>results_name]

where results_name is a user-selected name for the command block. Nested within the

RESULTS OUTPUT command block is a set of command lines, as shown in the block summary

given above. The first two command lines listed (DATABASE NAME and DATABASE TYPE) give

pertinent information about the results file. The command line

DATABASE NAME = <string>results_file_name

gives the name of the results file with the string results_file_name. If the results file is to

appear in the current directory and is named job.e, this command line would appear as:

DATABASE NAME = job.e

If the results file is to be created in some other directory the command line must include the path

to that directory.

Two metacharacters can appear in the name of the results file. If the %P character is found in the

name, it will be replaced with the number processors being used for the run. For example, if you

8.2. RESULTS OUTPUT 447

are running on 1024 processors and use the name results-%P/job.e, then the name would be

expanded to results-1024/job.e and the actual results files would be results-1024/job.

e.1024.0000 to results-1024/job.g.1024.1023. The other recognized metacharacter is

%B which is replaced with the base name of the input file containing the input commands. For

example, if the commands are in the file my_analysis_run.i and the results database name is

specified as %B.e, then the results would be written to the file my_analysis_run.e.

If the results file does not use the Exodus II format [1], you must specify the format for the results

file using the command line:

DATABASE TYPE = <string>database_type(exodusII)

Currently, both the Exodus II database and the XDMF database [2] are supported in Presto and

Adagio. Exodus II is more commonly used than XDMF. Other options may be added in the future.

The OVERWRITE command line can be used to prevent the overwriting of existing results files.

OVERWRITE = <string>OFF|ON|TRUE|FALSE|YES|NO

(ON|TRUE|YES)

The OVERWRITE command line allows only a single value. If you set the value to FALSE, NO, or

OFF, the code will terminate before existing results files can be overwritten. If you set the value to

TRUE, YES, or ON, then existing results files can be overwritten (the default status). Suppose, for

example, that we have an existing results file named job21.e. Suppose also that we have an input

file with a RESULTS OUTPUT command block that contains the OVERWRITE command line set to

ON and the DATABASE NAME command line set to:

DATABASE NAME = job21.e

If you run the code under these conditions, the existing results file job21.e will be overwritten.

Whether or not results files are overwritten is also impacted by the use of the automatic read

and write option for restart files described in Section 8.5.1.1. If you use the automatic read and

write option for restart files, the results files, like the restart files, are automatically managed.

The automatic read and write option in restart adds extensions to file names and prevents the

overwriting of any existing restart or results files. For the case of a user-controlled read and write

of restart files (Section 8.5.1.2) or of no restart, however, the OVERWRITE command line is useful

for preventing the overwriting of results files.

You may add a title to the results file by using the TITLE command line. Whatever you specify for

the user_title will be written to the results file. Some of the programs that process the results

file (such as various SEACAS programs [3]) can read and display this information.

The other command lines that appear in the RESULTS OUTPUT command block determine the

type and frequency of information that is output. Descriptions of these command lines follow in

Section 8.2.1.1 through Section 8.2.1.16.

8.2.1.1 Output Nodal Variables

NODE VARIABLES = <string>variable_name

[AS <string>dbase_variable_name] ...

448 CHAPTER 8. OUTPUT

<string>variable_name [AS <string>dbase_variable_name]

| NODAL VARIABLES = <string>variable_name

[AS <string>dbase_variable_name] ...

<string>variable_name [AS <string>dbase_variable_name]

Any nodal variable in Presto can be selected for output in the results file by using a command line

in one of the two forms shown above. The only difference between the two forms is the use of

NODE or NODAL. The string variable_name is the name of the nodal variable to output. The

string variable_name can be either a registered variable listed in Section 8.7 or a user-defined

variable (see Section 8.2.2 and Section 9.2.4).

For the above two command lines, any nodal variable requested for output is output for all nodes.

It is possible to specify an alias for any of the nodal variables by using the AS specification. Sup-

pose, for example, you wanted to output the external forces in Presto, which are registered as

force_external, with the alias f_ext. You would then enter the command line:

NODE VARIABLES = force_external AS f_ext

In this example, the external force is a vector quantity. For a vector quantity at a node, suffixes

are appended to the variable name (or alias name) to denote each vector component. The results

database would have three variable names associated with the external force: f_ext_x, f_ext_

y, and f_ext_z. Consult with Table 8.5 for a list of component identifiers for vectors. You

can change the component separator, an underscore in this example, by using the COMPONENT

SEPARATOR CHARACTER command line (see Section 8.2.1.6).

The NODE VARIABLES command line can be used an arbitrary number of times within a RESULTS

OUTPUT command block. It is also possible to specify more than one nodal variable for output

on a command line, as indicated by the ellipsis in the command line format. In the following

example, two nodal variables are specified for output. Note that the internal forces are registered

as force_internal.

NODE VARIABLES = force_external force_internal

Aliases can be specified for each of the variables in a single command line. Thus, If you wanted to

output the alias f_ext for external forces and also wanted to output the alias f_int for internal

forces, you would enter the command line:

NODE VARIABLES = force_external AS f_ext

force_internal AS f_int

The specification of an alias is optional.

8.2.1.2 Output Node Set Variables

NODESET VARIABLES = <string>variable_name

[AS <string>dbase_variable_name] ...

<string>variable_name [AS <string>dbase_variable_name]

| NODESET VARIABLES = <string>variable_name

[AS <string>dbase_variable_name]

8.2. RESULTS OUTPUT 449

INCLUDE|ON|EXCLUDE <string list>nodelist_names

... <string>variable_name [AS <string>dbase_variable_name]

INCLUDE|ON|EXCLUDE <string list>nodelist_names

A nodal variable may be registered on a subset of the total set of nodes defining a model. A nodal

variable that is registered only on a subset of nodes is referred to as a node set variable. The

NODESET VARIABLES command line lets you specify a node set variable for output to the results

file.

There are two forms of the NODESET VARIABLES command line. Either form will let you output

a node set variable.

The first form of the command line is as follows:

NODESET VARIABLES = <string>variable_name

[AS <string>dbase_variable_name] ...

<string>variable_name [AS <string>dbase_variable_name]

Here, the string variable_name is a node set variable associated with one or more node sets. In

this form, the node set variable is output for all node sets associated with that node set variable.

It is possible to specify an alias in the results file for any of the node set variables by using the

AS specification. Suppose, for example, you wanted to output a node set variable registered as

force_nsetype with the alias fnsetype. You would then enter the command line:

NODESET VARIABLES = force_nsetype AS fnsetype

The NODESET VARIABLES command line can be used an arbitrary number of times within a

RESULTS OUTPUT command block. It is also possible to specify more than one node set vari-

able for output on a command line, as indicated by the ellipsis in the command line format. In

the following example, two node set variables are specified for output. Here, the second node set

variable is registered as force_nsetype2.

NODESET VARIABLES = force_nsetype force_nsetype2

Aliases can be specified for each of the variables in a single command line. Thus, if you wanted to

output the alias fnsetype for node set variable force_nsetype and also wanted to output the

alias fnsetype2 for node set variable force_nsetype2, you would enter the command line:

NODESET VARIABLES = force_nsetype AS fnsetype

force_nsetype2 AS fnsetype2

The specification of an alias is optional.

The second form of the command line is as follows:

NODESET VARIABLES = <string>variable_name

[AS <string>dbase_variable_name]

INCLUDE|ON|EXCLUDE <string list>nodelist_names

... <string>variable_name [AS <string>dbase_variable_name]

INCLUDE|ON|EXCLUDE <string list>nodelist_names

450 CHAPTER 8. OUTPUT

This form of the NODESET VARIABLES command line is similar to the first, except that the user

can control which node sets are used for output. The user can include a specific list of node sets

for output by using the INCLUDE option or the ON option. (The keyword INCLUDE is synonymous

with the keyword ON.) Alternatively, the user can exclude a specific list of node sets for output by

using the EXCLUDE option.

Suppose that the node set variable force_nsetype from the above example has been registered

for nodelist_10, nodelist_11, nodelist_20, and nodelist_21. If we only want to output

the node set variable for node sets nodelist_10, nodelist_11, and nodelist_21, then we

could specify the NODESET VARIABLES command line as follows:

NODESET VARIABLES = force_nsetype AS fnsetype

INCLUDE nodelist_10, nodelist_11, nodelist_21

(In the above command line, the keyword ON could be substituted for INCLUDE.) Alternatively, we

could use the command line:

NODESET VARIABLES = force_nsetype AS fnsetype

EXCLUDE nodelist_20

In the above command lines, an alias for a node set can be substituted for a node set identifier.

For example, if center_case is an alias for nodelist_10, then the string center_case could

be substituted for nodelist_10 in the above command lines. Because a node set identifier is a

mesh entity, the alias for the node set identifier would be defined via an ALIAS command line in a

FINITE ELEMENT MODEL command block.

Note that the list of identifiers uses a comma to separate one node set identifier from the next node

set identifier.

8.2.1.3 Output Face Variables

FACE VARIABLES = <string>variable_name

[AS <string>dbase_variable_name] ...

<string>variable_name [AS <string>dbase_variable_name]

| FACE VARIABLES = <string>variable_name

[AS <string>dbase_variable_name]

INCLUDE|ON|EXCLUDE <string list>surface_names

... <string>variable_name [AS <string>dbase_variable_name]

INCLUDE|ON|EXCLUDE <string list>surface_names

A variable may be registered on some set of faces that constitute a surface. A variable registered

on a set of faces is referred to as a face variable. The FACE VARIABLES command line lets you

specify a face variable for output to the results file.

There are two forms of the FACE VARIABLE command line. Either form will let you output a face

variable.

The first form of the command line is as follows:

FACE VARIABLES = <string>variable_name

8.2. RESULTS OUTPUT 451

[AS <string>dbase_variable_name] ...

<string>variable_name [AS

<string>dbase_variable_name]

Here, the string variable_name is a face variable associated with one or more surfaces. In this

form, the face variable is output for all surfaces associated with that face variable.

It is possible to specify an alias in the results file for any face variable by using the AS specification.

Suppose, for example, you wanted to output a face variable registered as pressure_face with

the alias pressuref. You would then enter the command line:

FACE VARIABLES = pressure_face AS pressuref

The FACE VARIABLES command line can be used an arbitrary number of times within a RESULTS

OUTPUT command block. It is also possible to specify more than one face variable for output

on a command line, as indicated by the ellipsis in the command line format. In the following

example, two face variables are specified for output. Here, the second face variable is registered as

scalar_face2.

FACE VARIABLES = pressure_face scalar_face2

Aliases can be specified for each of the variables in a single command line. Thus, If you wanted

to output the alias pressuref for face variable pressure_face and also wanted to output the

alias scalarf2 for face variable scalar_face2, you would enter the command line:

FACE VARIABLES = pressure_face AS pressuref

scalar_face2 AS scalarf2

The specification of an alias is optional.

The second form of the command line is as follows:

FACE VARIABLES = <string>variable_name

[AS <string>dbase_variable_name]

INCLUDE|ON|EXCLUDE <string list>surface_names

... <string>variable_name

[AS <string>dbase_variable_name] INCLUDE|ON|EXCLUDE

<string list>surface_names

This form of the FACE VARIABLES command line is similar to the first, except that the user can

control which surfaces are used for output. The user can include a specific list of surfaces for

output by using the INCLUDE option or the ON option. (The keyword INCLUDE is synonymous

with the keyword ON.) Alternatively, the user can exclude a specific list of surfaces for output by

using the EXCLUDE option.

Suppose that the face variable pressure_face from the above example has been registered for

surface_10, surface_11, surface_20, and surface_21. If we only want to output the

face variable for surface_10, surface_11, and surface_21, then we could specify the FACE

VARIABLES command line as follows:

452 CHAPTER 8. OUTPUT

FACE VARIABLES = pressure_face AS pressuref

INCLUDE surface_10, surface_11,

surface_21

(In the above command line, the keyword ON could be substituted for INCLUDE.) Alternatively, we

could use the command line:

FACE VARIABLES = pressure_face AS pressuref

EXCLUDE surface_20

In the above command lines, an alias for a surface can be substituted for a surface identifier.

For example, if center_case is an alias for surface_10, then the string center_case could

be substituted for surface_10 in the above command lines. Because a surface identifier is a

mesh entity, the alias for the surface identifier would be defined via an ALIAS command line in a

FINITE ELEMENT MODEL command block.

Note that the list of identifiers uses a comma to separate one surface identifier from the next surface

identifier.

8.2.1.4 Output Element Variables

ELEMENT VARIABLES = <string>variable_name

[AS <string>dbase_variable_name] ...

<string>variable_name [AS

<string>dbase_variable_name]

| ELEMENT VARIABLES = <string>variable_name

[AS <string>dbase_variable_name]

INCLUDE|ON|EXCLUDE <string list>block_names

... <string>variable_name

[AS dbase_variable_name] INCLUDE|ON|EXCLUDE

<string list>block_names

Any element variable in Presto can be selected for output in the results file by using the ELEMENT

VARIABLES command line.

There are two forms of the ELEMENT VARIABLES command line. Either form will let you output

an element variable.

The first form of the command line is as follows:

ELEMENT VARIABLES = <string>variable_name

[AS <string>dbase_variable_name] ...

<string>variable_name [AS

<string>dbase_variable_name]

Here, the string variable_name is the name of the element variable to output. The string

variable_name can be a registered variable listed in Section 8.7, a user-defined variable (see

8.2. RESULTS OUTPUT 453

Section 8.2.2 and Section 9.2.4), or a derived output quantity. The derived output option is dis-

cussed in detail in the latter portion of this discussion of the ELEMENT VARIABLES command

line.

In the first form of the ELEMENT VARIABLES command line, the element variable is output for all

element blocks that have the element variable as a registered variable. For example, all the solid

elements have stress as a registered variable. If you had a mesh consisting of hexahedral and

tetrahedral elements and requested output of the element variable stress, then stress would be

output for all element blocks consisting of hexahedral and tetrahedral elements.

It is possible to specify an alias for any of the element variables by using the AS specification.

Suppose, for example, you wanted to output the stress in Presto, which is registered as stress,

with the alias str. You would then enter the command line:

ELEMENT VARIABLES = stress AS str

In this example, stress is a symmetric tensor quantity. For a symmetric tensor quantity, suffixes are

appended to the variable name (or alias name) to denote each symmetric tensor component. The re-

sults database would have six variable names associated with the stress: stress_xx, stress_yy,

stress_zz, stress_xy, stress_xz, and stress_yz. Consult with Table 8.5 for a list of com-

ponent identifiers for symmetric and full tensors. You can change the tensor component separator,

an underscore in this example, by using the COMPONENT SEPARATOR CHARACTER command line

(see Section 8.2.1.6).

The ELEMENT VARIABLES command line can be used an arbitrary number of times within a

RESULTS OUTPUT command block. It is also possible to specify more than one element vari-

able for output on a command line, as indicated by the ellipsis in the command line format. In

the following example, two element variables are specified for output. Here, the second element

variable is registered as left_stretch.

ELEMENT VARIABLES = stress left_stretch

Aliases can be specified for each of the variables in a single command line. Thus, If you wanted

to output the alias str for element variable stress and also wanted to output the alias strch for

face variable lseft_stretch, you would enter the command line:

ELEMENT VARIABLES = stress AS str

left_stretch AS strch

The specification of an alias is optional.

The second form of the command line is as follows:

ELEMENT VARIABLES = <string>variable_name

[AS <string>dbase_variable_name]

INCLUDE|ON|EXCLUDE <string list>block_names

... <string>variable_name

[AS dbase_variable_name] INCLUDE|ON|EXCLUDE

<string list>block_names

This form of the ELEMENT VARIABLES command line is similar to the first, except that the user

can control which element blocks are used for output. The user can include a specific list of

454 CHAPTER 8. OUTPUT

element blocks for output by using the INCLUDE option or the ON option. (The keyword INCLUDE

is synonymous with the keyword ON.) Alternatively, the user can exclude a specific list of element

blocks for output by using the EXCLUDE option.

Suppose that the element variable stress from the above example exists for element blocks

block_10, block_11, block_20, and block_21. If we only want to output the element vari-

able for block_10, block_11, and block_21, then we could specify the ELEMENT VARIABLES

command line as follows:

ELEMENT VARIABLES = stress AS str

INCLUDE block_10, block_11,

block_21

(In the above command line, the keyword ON could be substituted for INCLUDE.) Alternatively, we

could use the command line:

ELEMENT VARIABLES = stress AS str

EXCLUDE block_20

In the above command lines, an alias for an element block can be substituted for an element block

identifier. For example, if center_case is an alias for block_10, then the string center_

case could be substituted for block_10 in the above command lines. Because an element block

identifier is a mesh entity, the alias for the element block identifier would be defined via an ALIAS

command line in a FINITE ELEMENT MODEL command block.

Note that the list of identifiers uses a comma to separate one element block identifier from the next

element block identifier.

As mentioned previously, you can use the ELEMENT VARIABLES command line for the output of

a derived quantity. Derived quantities are calculated for solid elements and for shell elements. A

derived quantity is identified by supplying one of the available options listed in Table 8.1, Table 8.2,

or Table 8.4 for the string variable_name. For example, you would use the following command

to compute and output von Mises stress on all solid elements:

ELEMENT VARIABLES = von_mises

Note that the AS specification can be included in the command line when you output derived

quantities. The above command line could be written as:

ELEMENT VARIABLES = von_mises AS vm

Table 8.1 gives the complete set of derived stresses for solid elements and for shell elements. For

multi-integration point elements, the derived quantities from the stress tensor or strain tensors are

given at each of the integration points. A suffix ranging from 1 to the number of integration points

is attached to the derived quantity to indicate the corresponding integration point. The suffix is

padded with leading zeros. If the number of integration points is less than 10, the suffix has the

form _i, where i ranges from 1 to the number of integration points. If the number of integration

points is greater than or equal to 10 and less than 100, the sequence of suffixes takes the form _01,

_02, _03, and so forth. Finally, if the number of integration points is greater than or equal to 100,

the sequence of suffixes takes the form _001, _002, _003, and so forth. As an example, if the von

Mises stress is requested for a shell element with 15 integration points, then the derived quantities

8.2. RESULTS OUTPUT 455

von_mises_01, von_mises_02, . . . , von_mises_15 are output for the shell element.

Table 8.1: Derived Stress Output for Elements

Option Option Description

von_mises Von Mises stress norm.

hydrostatic_stress One-third the trace of the stress sensor.

fluid_pressure Negative of hydrostatic_stress.

stress_invariant_1 Trace of the stress tensor.

stress_invariant_2 Second invariant of the stress tensor.

stress_invariant_3 Third invariant of the stress tensor.

max_principal_stress Largest eigenvalue of the stress tensor.

intermediate_principal_stress Middle eigenvalue of the stress tensor.

min_principal_stress Smallest eigenvalue of the stress tensor

max_shear_stress Maximum shear stress from Mohr’s circle.

octahedral_shear_stress Octahedral shear norm of the stress tensor.

Most solid elements use only one integration point. For solid elements with multiple integration

points, the conventions used for multiple integration points in shells are also used for multiple

integration points in solids.

In the above discussion concerning the format for output at multiple integration points, the un-

derscore character preceding the integration point number can be replaced by another delimiter or

the underscore character can be eliminated by use of the COMPONENT SEPARATOR CHARACTER

command line (see Section 8.2.1.6).

Table 8.2 gives the complete set of quantities derived from the log strain for solid elements. (Solid

elements generate log strain information, while shell elements generate integrated strain informa-

tion.)

456 CHAPTER 8. OUTPUT

Table 8.2: Derived Log Strain Output for Solid Elements

Option Option Description

log_strain Log strain tensor.

unrotated_log_strain Log strain tensor in unrotated configuration.

effective_log_strain Effective log strain.

log_strain_invariant_1 Trace of the log strain tensor.

log_strain_invariant_2 Second invariant of the log strain tensor.

log_strain_invariant_3 Third invariant of the log strain tensor.

max_principal_log_strain Largest eigenvalue of the log strain tensor.

intermediate_principal_log_strain Middle eigenvalue of the log strain tensor.

min_principal_log_strain Smallest eigenvalue of the log strain tensor.

max_shear_log_strain Maximum shear log strain from Mohr’s circle.

octahedral_shear_log_strain Octahedral strain norm of the log strain tensor.

Most solid elements use only one integration point. For solid elements with multiple integration

points, the conventions used for multiple integration points in shells are also used for multiple

integration points in solids.

Table 8.3 gives the complete set of stress quantities derived from shell stress. These values are

given at each integration point and a suffix ranging from 1 to the number of integration points is

attached to the derived quantity to indicate the corresponding integration point.

8.2. RESULTS OUTPUT 457

Table 8.3: Derived Stress Output for Shell Elements

Option Option Description

transform_shell_stress In-plane shell stress

Table 8.4 gives the complete set of quantities derived from the integrated strain for shell elements.

(Solid elements generate log strain information, while shell elements generate integrated strain

information.) For the shell elements, the derived quantities from the integrated strain are given at

each of the integration points. A suffix ranging from 1 to the number of integration points is at-

tached to the derived quantity to indicate the corresponding integration point. The suffix is padded

with leading zeros. If the number of integration points is less than 10, the suffix has the form _i,

where i ranges from 1 to the number of integration points. If the number of integration points is

greater than or equal to 10 and less than 100, the sequence of suffixes takes the form _01, _02,

_03, and so forth. Finally, if the number of integration points is greater than or equal to 100,

the sequence of suffixes takes the form _001, _002, _003, and so forth. As an example, if the

effective strain is requested for a shell element with 15 integration points, then the derived quanti-

ties effective_strain_01, effective_strain_02, . . . , effective_strain_15 are out-

put for the shell element.

In the above discussion concerning the output format for multiple integration points for shells, the

underscore character preceding the integration point number can be replaced by another delimiter,

or the underscore character can be eliminated by use of the COMPONENT SEPARATOR CHARACTER

command line (see Section 8.2.1.6).

Table 8.4: Derived Strain Output for Shell Elements

Option Option Description

effective_strain Effective strain tensor.

strain_invariant_1 Trace of the strain tensor.

strain_invariant_2 Second invariant of the strain tensor.

strain_invariant_3 Third invariant of the strain tensor.

max_principal_strain Largest eigenvalue of the strain tensor.

intermediate_principal_strain Middle eigenvalue of the strain tensor.

min_principal_strain Smallest eigenvalue of the strain tensor.

max_shear_strain Maximum shear strain from Mohr’s circle.

octahedral_shear_strain Octahedral strain norm of the strain tensor.

transform_shell_strain In-plane shell strain.

8.2.1.5 Output Mesh Selection

OUTPUT MESH = EXPOSED_SURFACE|BLOCK_SURFACE

458 CHAPTER 8. OUTPUT

The OUTPUT MESH command provides a way to reduce the amount of data that is written to the

results database. There are two options that can be selected:

EXPOSED_SURFACE Only output the element faces that make up the “skin” of the finite element

model; no internal nodes or elements will be written to the results database. The element

results variables will be applied to the skin faces. If the mesh is visualized without any

cutting planes, the display should look the same as if the original full mesh were visualized;

however, the amount of data written to the output file can be much less than is needed if the

full mesh were output.

BLOCK_SURFACE This option is similar to the EXPOSED_SURFACE option except that the skinning

process is done an element block at a time instead of for the full model. In this option, faces

shared between element blocks will appear in the output model.

8.2.1.6 Component Separator Character

COMPONENT SEPARATOR CHARACTER = <string>character|NONE

The component separator character is used to separate an output-variable base name from any

suffixes. For example, the variable stress can have the suffixes xx, yy, etc. By default, the base

name is separated from the suffixes with an underscore character so that we have stress_xx,

stress_yy, etc. in the results output file.

You can replace the underscore as the default separator by using the above command line. If you

wanted to use the period as the separator, then you would use the following command line:

COMPONENT SEPARATOR CHARACTER = .

For our example with stress, the stress components would then appear in the results output file

as stress.xx, stress.yy, etc. If the stress is for a shell element, there is also an integration

point suffix preceded, by default, with an underscore. The above command line also resets the

underscore character that precedes the integration point suffix. For our example with the stress

base name and the underscore replaced by the period, the results file would have stress.xx.01,

stress.xx.02, etc., for the shell elements.

You can eliminate the separator with an empty string or NONE.

8.2.1.7 Output Global Variables

GLOBAL VARIABLES = <string>variable_name

[AS <string>dbase_variable_name

<string>variable_name AS <string>dbase_variable_name ...]

Any global variable in Presto can be selected for output in the results file by using the GLOBAL

VARIABLES command line. The string variable_name is the name of the global variable. The

string variable_name can be either a registered variable listed in Section 8.7 or a user-defined

variable (see Section 8.2.2 and Section 9.2.4).

8.2. RESULTS OUTPUT 459

With the AS specification, you can specify the variable and select an alias for this variable in

the results file. Suppose, for example, you wanted to output the time steps in Presto, which are

identified as timestep, with the alias tstep. You would then enter the command line:

GLOBAL VARIABLES = timestep AS tstep

The GLOBAL VARIABLES command line can be used an arbitrary number of times within a

RESULTS OUTPUT command block. It is also possible to specify more than one global variable

for output on a command line. If you also wanted to output the kinetic energy , which is registered

as KineticEnergy , with the alias ke , you would enter the command line:

GLOBAL VARIABLES = timestep as tstep

KineticEnergy as ke

The specification of an alias is optional.

8.2.1.8 Set Begin Time for Results Output

START TIME = <real>output_start_time

Using the START TIME command line, you can write output to the results file beginning at time

output_start_time. No results will be written before this time. If other commands set times

for results (AT TIME, ADDITIONAL TIMES) that are less than output_start_time, those times

will be ignored, and results will not be written at those times.

8.2.1.9 Adjust Interval for Time Steps

TIMESTEP ADJUSTMENT INTERVAL = <integer>steps

This command line is used to specify that the output will be at exactly the times specified. To hit the

output times exactly in an explicit, transient dynamics code, it is necessary to adjust the time step

as the time approaches an output time. The integer value steps in the TIMESTEP ADJUSTMENT

INTERVAL command line specifies the number of time steps to look ahead in order to adjust the

time step.

If this command line does not appear, results are output at times closest to the specified output

times.

8.2.1.10 Output Interval Specified by Time Increment

AT TIME <real>time_begin INCREMENT = <real>time_increment_dt

At the time specified by time_begin, results will be output every time increment given by the

real value time_increment_dt.

460 CHAPTER 8. OUTPUT

8.2.1.11 Additional Times for Output

ADDITIONAL TIMES = <real>output_time1 <real>output_time2 ...

In addition to any times specified by the command line in Section 8.2.1.10, you can use the

ADDITIONAL TIMES command line to specify an arbitrary number of additional output times.

8.2.1.12 Output Interval Specified by Step Increment

AT STEP <integer>step_begin INCREMENT =

<integer>step_increment

At the step specified by step_begin, results will be output every step increment given by the

integer value step_increment.

8.2.1.13 Additional Steps for Output

ADDITIONAL STEPS = <integer>output_step1

<integer>output_step2 ...

In addition to any steps specified by the command line in Section 8.2.1.12, you can use the

ADDITIONAL STEPS command line to specify an arbitrary number of additional output steps.

8.2.1.14 Set End Time for Results Output

TERMINATION TIME = <real>termination_time_value

Results will not be written to the results file after time termination_time_value. If other com-

mands set times for results (AT TIME, ADDITIONAL TIMES) that are greater than termination_

time_value, those times will be ignored, and results will not be written at those times.

8.2.1.15 Use Output Scheduler

USE OUTPUT SCHEDULER <string>scheduler_name

In an analysis with multiple regions, it can be difficult to synchronize output such as re-

sults files. To help synchronize output for analyses with multiple regions, you can define an

OUTPUT SCHEDULER command block at the SIERRA scope. The scheduler can then be referenced

in the RESULTS OUTPUT command block via the USE OUTPUT SCHEDULER command line. The

string scheduler_name must match a name used in an OUTPUT SCHEDULER command block.

See Section 8.6 for a description of using this command block and the USE OUTPUT SCHEDULER

command line.

8.2. RESULTS OUTPUT 461

8.2.1.16 Write Results If System Error Encountered

OUTPUT ON SIGNAL = <string>SIGALRM|SIGFPE|SIGHUP|SIGINT|

SIGPIPE|SIGQUIT|SIGTERM|SIGUSR1|SIGUSR2|SIGABRT|

SIGKILL|SIGILL|SIGSEGV

The OUTPUT ON SIGNAL command line is used to initiate the writing of a results file when the

system encounters a type of system error. Only one error type in the list of error types should be

entered for this command line. Generally, these system errors cause the code to terminate before

the code can add any current results output (results output past the last results output time step) to

the results output file. If the code encounters the specified type of error during execution, a results

file will be written before execution is terminated.

This command line can also be used to force the writing of a results file at some point during

execution of the code. Suppose the command line

OUTPUT ON SIGNAL = SIGUSR2

is included in the input file. While the code is running, a user can execute (from the keyboard) the

system command line

kill -s SIGUSR2 pid

to terminate execution and force the writing of a results file. In the above system command line,

pid is the process identifier, which is an integer.

Note that the OUTPUT ON SIGNAL command line is primarily a debugging tool for code develop-

ers.

462 CHAPTER 8. OUTPUT

8.2.2 User-Defined Output

BEGIN USER OUTPUT

mesh-entity set commands

NODE SET = <string_list>nodelist_names

SURFACE = <string_list>surface_names

BLOCK = <string_list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list> surface_names

REMOVE BLOCK = <string list>block_names

#

compute global result command

COMPUTE GLOBAL <string>results_var_name AS

<string>SUM|AVERAGE|MAX|MIN OF <string>NODAL|ELEMENT

<string>value_var_name

#

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name |

SURFACE SUBROUTINE = <string>subroutine_name |

ELEMENT BLOCK SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

copy command

COPY ELEMENT VARIABLE <string>ev_name TO NODAL VARIABLE

<string>nv_name

#

compute for element death

COMPUTE AT EVERY TIME STEP

#

additional command

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [USER OUTPUT]

The USER OUTPUT command block lets the user generate specialized output information derived

from analysis results such as element stresses, displacements, and velocities. For example, the

USER OUTPUT command block could be used to sum the contact forces in a particular direction in

the global axes and on a certain surface to give a net resultant contact force on that surface. In this

8.2. RESULTS OUTPUT 463

example, we essentially postprocess contact information and reduce it to a single value for a surface

(or set of surfaces). This, then, is one of the purposes of the USER OUTPUT command block—

to postprocess analysis results as the code is running and produce a reduced set of specialized

output information. The USER OUTPUT command block offers an alternative to writing out large

quantities of data and then postprocessing them with an external code to produce specialized output

results. Another use of the USER OUTPUT command block is to generate variables that can be used

for element death. An element can be killed by using a criterion based on a user variable defined

in the USER OUTPUT command block.

There are three options for calculating user-defined quantities. In the first option, a single command

line in the command block is used to compute reductions of variables on subsets of the mesh. This

option makes use of the COMPUTE GLOBAL command line. The above example of the contact force

represents an instance where we can accomplish the desired result simply by using the COMPUTE

GLOBAL command line. In the second option, the command block specifies a user subroutine to

run immediately preceding output to calculate any desired variable. This option makes use of

a NODE SET, SURFACE, or ELEMENT BLOCK SUBROUTINE command line. Finally, there is an

option to copy an element variable for an element to the nodes associated with the element, via

the COPY ELEMENT VARIABLE command line. This copy option is a specialized option that has

been made available primarily for creating results files for some of the postprocessing tools used

with Presto. You can use only one of the three options—compute global result, user subroutine, or

copy—in a given command block.

For the compute global result option, a user-defined variable is automatically generated. This user-

defined variable is given whatever name the user selects for results_var_name in the above

specification for the COMPUTE GLOBAL command line. Parenthesis syntax (Section 8.1) may be

used to define reductions on specific integration points or components of a variable. By default,

a reduction operation operates on each integration point. For example, if the compute global

command was used to average values of element stress it would average the values of stress at all

integration points of all elements. If the command was used to average stress(:,1), the result

would only be the average of stress on the first integration points.

If the user subroutine or copy option is used, the user will need to define some type of user variable

with the USER VARIABLE command block described in Section 9.2.4.

User-defined variables, whether they are generated via the compute global result option or the

USER VARIABLE command block, are not automatically written to a results or history file. If the

user wants to output any user-defined variables, these variables must be referenced in a results

or history output specification (see Section 8.2.1 and Section 8.3, which describe the output of

variables to results files and history files, respectively). If the user wants to use any user-defined

variable for element death, the user must include the COMPUTE AT EVERY TIME STEP command

line.

The USER OUTPUT command block contains five groups of commands—mesh-entity set, compute

global result, user subroutine, copy, and compute for element death. Each of these command

groups is basically independent of the others. In addition to the command lines in the five command

groups, there is an additional command line: ACTIVE PERIODS. The following sections provide

descriptions of the different command groups and the ACTIVE PERIODS command line.

464 CHAPTER 8. OUTPUT

8.2.2.1 Mesh-Entity Set Commands

The mesh-entity set commands portion of the USER OUTPUT command block specifies the

nodes, element faces, or elements associated with the variable to be output. This portion of the

command block can include some combination of the following command lines:

NODE SET = <string_list>nodelist_names

SURFACE = <string_list>surface_names

BLOCK = <string_list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list> surface_names

REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators for constructing a

set of nodes, element faces, or elements. See Section 6.1.1 for more information about the use of

these command lines for mesh entities. There must be at least one NODE SET, SURFACE, BLOCK,

or INCLUDE ALL BLOCKS command line in the command block.

8.2.2.2 Compute Global Result Command

If the compute global result option is selected, Presto returns a single global value or a set of global

values by examining the current values for a named registered nodal or element variable and then

calculating the output according to a user-specified operation. A single global value, for example,

might be the maximum value of one of the stress components of all the elements in our specified

set; a set of global values would be the maximum value of each stress component of all elements

in our specified set. Importantly, this option can only be used with a variable that is registered in

Presto, not a variable that is created by the user via the USER VARIABLE command block.

The following command line is related to the compute global result option.

COMPUTE GLOBAL <string>results_var_name AS

<string>SUM|AVERAGE|MAX|MIN OF <string>NODAL|ELEMENT

<string>value_var_name [(<integer>component_num)]

In the above command line, the following definitions apply:

- The string results_var_name is the name of a new global variable in which to store the

reduced results. To output this variable in a results file, a heartbeat file, or a history file, you

will simply use whatever you have selected for results_var_name as the variable name

in a GLOBAL VARIABLES command line.

- Four different methods (or reduction types) are available for specifying the operation that

will be performed on the values retrieved from the registered variable: SUM, AVERAGE, MAX,

and MIN. Only one of these methods can be selected in a GLOBAL COMPUTE command line,

8.2. RESULTS OUTPUT 465

however. SUM adds the variable value of all included mesh entities. AVERAGE takes the

average value of the variable over all included mesh entities. MAX finds the maximum value

over all included mesh entities. MIN finds the minimum value over all included mesh entities.

- The registered variable used to compute the global variable must be either a nodal quantity

or an element quantity, as specified by the NODAL or ELEMENT option.

- The string value_var_name is the name of the registered variable (see Section 8.7 for a

listing of the registered variables).

- There is an optional input, component_num (meaning component number), on the com-

mand line that allows the user to specify a particular (and single) value that will be returned

for the new global variable. If component_num is not included in the command line, the

global variable will have as many components as the registered variable. For example, if

component_num was not specified and the registered variable was a displacement (which

has three components—x, y, and z), the global variable that is returned would have three val-

ues. Each component of the registered variable will be reduced independently and placed in

the corresponding position of the returned global variable. In the output file, the returned val-

ues will begin with the name of the global variable and be appended with the identification of

the kind of component. For example, if myresults was specified for results_var_name

and the registered variable was a displacement, the output values would be displayed as

myresults_x, myresults_y, and myresults_z.

Usage of component_num, which must be enclosed in parentheses, requires that you enter

an integer number that corresponds to the position of the desired value in the set of possi-

ble values for the named registered variable. In other words, this number does not indicate

how many components are stored for the variable. See the section below titled “Determin-

ing the Component Number” for further information on obtaining the required value for

component_num.

The following is an example of using the GLOBAL COMPUTE command line to compute the net

x-direction reaction force:

COMPUTE GLOBAL wall_x_reaction AS SUM OF NODAL reaction(1)

Determining the Component Number: If you want to specify that a specific value is returned for

the global variable, the one named results_var_name, select an integer that corresponds to the

position of that value in Table 8.5. Thus, for example, if you only wanted the ZZ component of a

registered variable that was a symmetric tensor, the value for component_num would be specified

as “(3)” in the command line.

8.2.2.3 User Subroutine Commands

If the user subroutine option is used, the user-defined output quantities will be calculated by a

subroutine that is written by the user explicitly for this purpose. The subroutine will be called

by Presto at the appropriate time to perform the calculations. User subroutines allow for more

generality in computing user-defined results than the COMPUTE GLOBAL command line. Suppose,

466 CHAPTER 8. OUTPUT

Table 8.5: Selection of Component Number

Variable Type component_num and

Description

Notes

Vector 1 X component

2 Y component

3 Z component

A vector has three components.

Displacements, for example, are

handled as vectors.

Symmetric Tensor 1 XX component

2 YY component

3 ZZ component

4 XY component

5 YZ component

6 ZX component

Symmetric tensors have six

components. Stresses for most

solid elements are symmetric

tensors.

Full Tensor 1 XX component

2 YY component

3 ZZ component

4 XY component

5 YZ component

6 ZX component

7 YX component

8 ZY component

9 XZ component

Full tensors are used

occasionally by Presto.

Examples include velocity

gradients and material rotations.

for example, you had an analytic solution for a problem and wanted to compute the difference

between some analytic value and a corresponding computed value throughout an analysis. The user

subroutine option would allow you to make this comparison. The full details for user subroutines

are given in Chapter 9.

The following command lines are related to the user subroutine option:

NODE SET SUBROUTINE = <string>subroutine_name |

SURFACE SUBROUTINE = <string>subroutine_name |

ELEMENT BLOCK SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

The user subroutine option is invoked by using the NODE SET SUBROUTINE command line, the

SURFACE SUBROUTINE command line, or the ELEMENT BLOCK SUBROUTINE command line.

The particular command line selected depends on the mesh-entity type of the variable for which

8.2. RESULTS OUTPUT 467

the result quantities are being calculated. For example, variables associated with nodes would be

calculated by using a NODE SET SUBROUTINE command line, variables associated with faces by

using a SURFACE SUBROUTINE command line, and variables associated with elements by using

the ELEMENT BLOCK SUBROUTINE command line. The string subroutine_name is the name

of a FORTRAN subroutine that is written by the user. A user subroutine in the USER OUTPUT

command block returns no values. Instead, it performs its operations directly with commands such

as aupst_put_nodal_var, aupst_put_elem_var, and aupst_put_global_var. Consult

with Chapter 9 for further discussion of these various put commands.

Following the selected command line (NODE SET SUBROUTINE, SURFACE SUBROUTINE, or

ELEMENT BLOCK SUBROUTINE) are other command lines that may be used to implement

the user subroutine option. These command lines are described in Section 9.2.2 and con-

sist of SUBROUTINE DEBUGGING OFF, SUBROUTINE DEBUGGING ON, SUBROUTINE REAL

PARAMETER, SUBROUTINE INTEGER PARAMETER, and SUBROUTINE STRING PARAMETER.

Examples of using these command lines are provided in Chapter 9.

Importantly, to implement the user subroutine option and output the calculated information, you

would also need to do the following:

1. Create the user-defined variable with a USER VARIABLE command block.

2. Calculate the results for the user-defined variable in the user subroutine.

3. Write the results for the user-defined variable to an output file by referencing it in a

RESULTS OUTPUT command block and/or a HISTORY OUTPUT command block and/or

a HEARTBEAT OUTPUT command block. In the RESULTS OUTPUT command block, you

would use a NODAL VARIABLES command line, an ELEMENT VARIABLES command line,

or a GLOBAL VARIABLES command line, depending on how you defined the variable in

the USER VARIABLE command block. Similarly, in the HISTORY OUTPUT or HEARTBEAT

OUTPUT command block, you would use the applicable form of the VARIABLE command

line, depending on how you defined the variable in the USER VARIABLE command block.

8.2.2.4 Copy Command

COPY ELEMENT VARIABLE <string>ev_name TO NODAL VARIABLE

<string>nv_name

The COPY ELEMENT VARIABLE command line copies the value of an element variable to a node

associated with the element. The element variable to be copied is specified by ev_name; the name

of the nodal variable to which the value is being transferred is nv_name. The nodal variable must

be specified as a user-defined variable.

8.2.2.5 Compute at Every Step Command

COMPUTE AT EVERY TIME STEP

468 CHAPTER 8. OUTPUT

If this command line appears in the USER OUTPUT command block, a user-defined variable in

the command block will be written at every time step. The COMPUTE AT EVERY TIME STEP

command line is required if a user-defined variable is used in a criterion for element death. (Sec-

tion 9.2.4 discusses user-defined variables, and Section 5.5 discusses element death.) For element

death, a user-defined variable must be calculated at every time step.

8.2.2.6 Additional Command

The ACTIVE PERIODS or INACTIVE PERIODS command lines can appear as an option in the

USER OUTPUT command block:

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

These command lines determine when the boundary condition is active. See Section 2.5 for more

information about this optional command line.

8.3. HISTORY OUTPUT 469

8.3 History Output

BEGIN HISTORY OUTPUT <string>history_name

DATABASE NAME = <string>history_file_name

DATABASE TYPE = <string>database_type(exodusII)

OVERWRITE = <string>OFF|ON|TRUE|FALSE|YES|NO

(ON|TRUE|YES)

TITLE <string>user_title

#

for global variables

VARIABLE = GLOBAL

<string>variable_name

[AS <string>history_variable_name]

#

for mesh entity - node, edge, face,

element - variables

VARIABLE =

NODE|NODAL|EDGE|FACE|ELEMENT <string>variable_name

AT NODE|NODAL|EDGE|FACE|ELEMENT <integer>entity_id

AS <string>history_variable_name

#

for nearest point output of mesh entity - node,

edge, face, element - variables

VARIABLE =

NODE|NODAL|EDGE|FACE|ELEMENT <string>variable_name

NEAREST LOCATION <real>global_x,

<real>global_y>, <real>global_z

AS <string>history_variable_name

START TIME = <real>output_start_time

TIMESTEP ADJUSTMENT INTERVAL = <integer>steps

AT TIME <real>time_begin INCREMENT =

<real>time_increment_dt

ADDITIONAL TIMES = <real>output_time1

<real>output_time2 ...

AT STEP <integer>step_begin INCREMENT =

<integer>step_increment

ADDITIONAL STEPS = <integer>output_step1

<integer>output_step2 ...

TERMINATION TIME = <real>termination_time_value

USE OUTPUT SCHEDULER <string>scheduler_name

OUTPUT ON SIGNAL = <string>SIGALRM|SIGFPE|SIGHUP|SIGINT|

SIGPIPE|SIGQUIT|SIGTERM|SIGUSR1|SIGUSR2|SIGABRT|

SIGKILL|SIGILL|SIGSEGV

END [HISTORY OUTPUT <string>history_name]

A history file gives nodal variable results (displacements, forces, etc.) for specific nodes, edge

variable results for specific edges, face variable results for specific faces, element results (stress,

470 CHAPTER 8. OUTPUT

strain, etc.) for specific elements, and global results at specified times. You can specify a history

file, the results to be included in this file, and the frequency at which results are written by using

a HISTORY OUTPUT command block. The command block appears inside the region scope. For

history output, you will typically work with node and element variables, and, on some occasions,

face variables.

More than one history file can be specified for an analysis. For each history file, there will be

one HISTORY OUTPUT command block. The command block for a history file description begins

with:

BEGIN HISTORY OUTPUT <string>history_name

and is terminated with:

END [HISTORY OUTPUT <string>history_name]

where history_name is a user-selected name for the command block. Nested within the

HISTORY OUTPUT command block are a set of command lines, as shown in the block summary

given above. The first two command lines listed (DATABASE NAME and DATABASE TYPE) give

pertinent information about the history file. The command line

DATABASE NAME = <string>history_file_name

gives the name of the history file with the string history_file_name. If the history file is to

appear in the current directory and is named job.h, this command line would appear as:

DATABASE NAME = job.h

If the history file is to be created in some other directory, the command line would have to show

the path to that directory.

Two metacharacters can appear in the name of the history file. If the %P character is found in the

name, it will be replaced with the number processors being used for the run. For example, if you

are running on 1024 processors and use the name history-%P/job.h, then the name would be

expanded to history-1024/job.h. The other recognized metacharacter is %B which is replaced

with the base name of the input file containing the input commands. For example, if the commands

are in the file my_analysis_run.i and the history database name is specified as %B.h, then the

history would be written to the file my_analysis_run.h.

If the history file does not use the Exodus II format [1], you must specify the format for the history

file using the command line:

DATABASE TYPE = <string>database_type(exodusII)

Currently, both the Exodus II database and the XDMF database [2] are supported in Presto and

Adagio. Exodus II is more commonly used than XDMF. Other options may be added in the future.

The OVERWRITE command line can be used to prevent the overwriting of existing history files.

OVERWRITE = <string>OFF|ON|TRUE|FALSE|YES|NO

(ON|TRUE|YES)

The OVERWRITE command line allows only a single value. If you set the value to FALSE, NO, or

OFF, the code will terminate before existing history files can be overwritten. If you set the value

8.3. HISTORY OUTPUT 471

to TRUE, YES, or ON, then existing history files can be overwritten (the default status). Suppose,

for example, that we have an existing history file named job21.h. Suppose also that we have an

input file with a HISTORY OUTPUT command block that contains the OVERWRITE command line

set to ON and the DATABASE NAME command line set to:

DATABASE NAME = job21.h

If you run the code under these conditions, the existing history file job21.h will be overwritten.

Whether or not history files are overwritten is also impacted by the use of the automatic read

and write option for restart files described in Section 8.5.1.1. If you use the automatic read and

write option for restart files, the history files, like the restart files, are automatically managed.

The automatic read and write option in restart adds extensions to file names and prevents the

overwriting of any existing restart or history files. For the case of a user-controlled read and write

of restart files (Section 8.5.1.2) or of no restart, however, the OVERWRITE command line is useful

for preventing the overwriting of history files.

You may add a title to the history file by using the TITLE command line. Whatever you specify for

the user_title will be written to the history file. Some of the programs that process the history

file (such as various SEACAS programs [3]) can read and display this information.

The other command lines that appear in the HISTORY OUTPUT command block determine the

type and frequency of information that is output. Descriptions of these command lines follow in

Section 8.3.1 through Section 8.3.11. Note that the command lines for controlling the frequency

of history output (in Section 8.3.1 through Section 8.3.11) are the same as those for controlling

the frequency of results output. These frequency-related command lines are repeated here for

convenience.

8.3.1 Output Variables

The VARIABLE command line is used to select variables for output in the history file. One of

several types of variables—GLOBAL, NODE (or NODAL), EDGE, FACE, or ELEMENT—can be selected

for output. The form of the command line varies depending on the type of variable that is selected

for output.

8.3.1.1 Global Output Variables

VARIABLE = GLOBAL

<string>variable_name

[AS <string>history_variable_name]

This form of the VARIABLE command line lets you select any global variable for output in the

history file. The variable is selected with the string variable_name. The string variable_name

is the name of the global variable and can be either a registered variable listed in Section 8.7 or a

user-defined variable (see Section 8.2.2 and Section 9.2.4).

472 CHAPTER 8. OUTPUT

You can also specify a name, history_variable_name, for the selected entity following the AS

keyword. For example, suppose you want to output the kinetic energy (KineticEnergy) as KE. The

command line to obtain the kinetic energyin the history file would be

VARIABLE = GLOBAL KineticEnergy AS KE

The specification of an alias is optional for output of a global variable.

8.3.1.2 Mesh Entity Output Variables

VARIABLE =

NODE|NODAL|EDGE|FACE|ELEMENT <string>variable_name

AT NODE|NODAL|EDGE|FACE|ELEMENT <integer>entity_id

AS <string>history_variable_name

This form of the VARIABLE command line lets you select any nodal, edge, face, or element variable

for a specific mesh entity for output in the history file. For example, this form of the VARIABLE

command line will let you pick the displacement at a specific node and output the displacement to

the history file using an alias that you have chosen.

For this form of the VARIABLE command line, the mesh entity type following the delimiter

(=) is set to NODE (or NODAL), EDGE, FACE, or ELEMENT depending on the variable (set by

variable_name) to be output. If the mesh entity type is set to NODE (or NODAL), EDGE, or FACE,

the string variable_name can be either a registered variable listed in Section 8.7 or a user-defined

variable (see Section 8.2.2 and Section 9.2.4). If the mesh entity type is set to ELEMENT, the string

variable_name can be a registered variable listed in Section 8.7, a user-defined variable (see Sec-

tion 8.2.2 and Section 9.2.4), or a derived output quantity. See the latter portion of Section 8.2.1.4

for a detailed discussion of derived output. A complete list of derived output quantities is given in

Tables 8.1, 8.2, and 8.4 in Section 8.2.1.4.

Selection of a specific mesh entity follows the AT keyword. You select a mesh entity type (NODE

[or NODAL], EDGE, FACE, or ELEMENT) followed by the specific integer identifier, entity_id,

for the mesh entity. You must specify a name, history_variable_name, for the selected entity

following the AS keyword. For example, suppose you want to output the accelerations at node 88.

The command line to obtain the accelerations at node 88 for the history file would be:

VARIABLE = NODE ACCELERATION AT NODE 88 AS accel_88

where accel_88 is the name that will be used for this history variable in the history file.

Note that either the keyword NODE or NODAL can be used for nodal quantities.

As an example of derived output, suppose you wanted to output the von Mises stress for solid

element 1024. The command line to obtain the von Mises stress for element 1024 for the history

file would be:

VARIABLE = ELEMENT VON_MISES AT ELEMENT 1024 AS vm_1024

where vm_1024 is the name that will be used for this history variable in the history file.

8.3. HISTORY OUTPUT 473

8.3.1.3 Nearest Point Output Variables

VARIABLE =

NODE|NODAL|EDGE|FACE|ELEMENT <string>variable_name

NEAREST LOCATION <real>global_x,

real<global_y>, real<global_z>

AS <string>history_variable_name

This form of the VARIABLE command line lets you select any nodal, edge, face, or element vari-

able for output in the history file using a nearest point criterion. The command line described

in this subsection is an alternative to the command line described in the preceding section, Sec-

tion 8.3.1.2, for obtaining history output. The command line in this section or the command line

in Section 8.3.1.2 produces history files with variable information. The difference in these two

command lines (Section 8.3.1.3 and Section 8.3.1.2) is simply in how the variable information is

selected.

For the above form of the VARIABLE command line, the mesh entity type following the delim-

iter (=) is set to NODE (or NODAL), EDGE, FACE, or ELEMENT depending on the variable (set by

variable_name) to be output. If the mesh entity type is set to NODE (or NODAL), EDGE, or FACE,

the string variable_name can be either a registered variable listed in Section 8.7 or a user-defined

variable (see Section 8.2.2 and Section 9.2.4). If the mesh entity type is set to ELEMENT, the string

variable_name can be a registered variable listed in Section 8.7, a user-defined variable (see Sec-

tion 8.2.2 and Section 9.2.4), or a derived output quantity. See the latter portion of Section 8.2.1.4

for a detailed discussion of derived output. A complete list of derived output quantities is given in

Tables 8.1, 8.2, and 8.4 in Section 8.2.1.4.

The specific mesh entity used for output is determined by global coordinates specified by

the NEAREST LOCATION keyword and its associated input parameters—global_x, global_y,

global_z. The specific mesh entity chosen for output is as follows:

• If the mesh entity has been set to NODE (or NODAL), the node in the mesh selected for output

is the node whose initial position is nearest the input global X, Y, and Z coordinates specified

with the parameters global_x, global_y, and global_z.

• If the mesh entity has been set to EDGE, the edge in the mesh selected for output is the edge

with a center point (the average location of the two end points of the edge) whose initial

position is nearest the input global X, Y, and Z coordinates specified with the parameters

global_x, global_y, and global_z.

• If the mesh entity has been set to FACE, the face in the mesh selected for output is the face

with a centroid whose initial position is nearest the input global X, Y, and Z coordinates

specified with the parameters global_x, global_y, and global_z.

• If the mesh entity has been set to ELEMENT, the element in the mesh selected for output is

the element with a centroid whose initial position is nearest the input global X, Y, and Z

coordinates specified with the parameters global_x, global_y, and global_z.

474 CHAPTER 8. OUTPUT

Note that, in all the above cases, the original model coordinates are used when selecting the nearest

entity, not the current coordinates.

You must specify a name, history_variable_name, for the selected entity following the AS

keyword. As an example, suppose you want to output the accelerations at a node closest to the point

with global coordinates (1012.0, 54.86, 103.3141). The command line to obtain the accelerations

at the node closest to this location for the history file would be:

VARIABLE = NODE ACCELERATION

NEAREST LOCATION 1012.0, 54.86, 103.3141 AS accel_near

where accel_near is the name that will be used for this history variable in the history file.

Note that either the keyword NODE or NODAL can be used for nodal quantities.

8.3.2 Outputting History Data on a Node Set

It is commonly desired to output history data on a single-node node set. If a mesh file is slightly

modified, the node and element numbers will completely change. The node associated with a node

set, however, remains the same, i.e., the node in the node set retains the same initial geometric

location with the same connectivity to other elements even when its node number changes. There-

fore, we might want to specify the history output for a node set with a single node rather than with

the global identifier for a node. This can easily be accomplished, as follows:

begin user output

node set = nodelist_1

compute global disp_ns_1 as average of nodal displacement

end

begin history output

variable = global disp_ns_1

end

If nodelist_1 contains only a single node, the history output variable disp_ns_1 will contain

the displacement for the single node in the node set. If nodelist_1 contains multiple nodes, the

average displacement of the nodes will be output.

8.3.3 Set Begin Time for History Output

START TIME = <real>output_start_time

Using the START TIME command line, you can write history variables to the history file begin-

ning at time output_start_time. No history variables will be written before this time. If

other commands set times for history output (AT TIME, ADDITIONAL TIMES) that are less than

output_start_time, those times will be ignored, and history output will not be written at those

times.

8.3. HISTORY OUTPUT 475

8.3.4 Adjust Interval for Time Steps

TIMESTEP ADJUSTMENT INTERVAL = <integer>steps

This command line is used to specify that the output will be at exactly the times specified. To hit the

output times exactly in an explicit, transient dynamics code, it is necessary to adjust the time step

as the time approaches an output time. The integer value steps in the TIMESTEP ADJUSTMENT

INTERVAL command line specifies the number of time steps to look ahead in order to adjust the

time step.

If this command line does not appear, history variables are output at times closest to the specified

output times.

8.3.5 Output Interval Specified by Time Increment

AT TIME <real>time_begin INCREMENT = <real>time_increment_dt

At the time specified by time_begin, history variables will be output every time increment given

by the real value time_increment_dt.

8.3.6 Additional Times for Output

ADDITIONAL TIMES = <real>output_time1 <real>output_time2 ...

In addition to any times specified by the command line in Section 8.3.5, you can use the

ADDITIONAL TIMES command line to specify an arbitrary number of additional output times.

8.3.7 Output Interval Specified by Step Increment

AT STEP <integer>step_begin INCREMENT =

<integer>step_increment

At the step specified by step_begin, history variables will be output every step increment given

by the integer value step_increment.

8.3.8 Additional Steps for Output

ADDITIONAL STEPS = <integer>output_step1

<integer>output_step2 ...

In addition to any steps specified by the command line in Section 8.3.7, you can use the

ADDITIONAL STEPS command line to specify an arbitrary number of g

476 CHAPTER 8. OUTPUT

8.3.9 Set End Time for History Output

TERMINATION TIME = <real>termination_time_value

History output will not be written to the history file after time termination_time_value. If

other commands set times for history output (AT TIME, ADDITIONAL TIMES) that are greater

than termination_time_value, those times will be ignored, and history output will not be

written at those times.

8.3.10 Use Output Scheduler

USE OUTPUT SCHEDULER <string>scheduler_name

In an analysis with multiple regions, it can be difficult to synchronize output such as his-

tory files. To help synchronize output for analyses with multiple regions, you can define an

OUTPUT SCHEDULER command block at the SIERRA scope. The scheduler can then be referenced

in the HISTORY OUTPUT command block via the USE OUTPUT SCHEDULER command line. The

string scheduler_name must match a name used in an OUTPUT SCHEDULER command block.

See Section 8.6 for a description of using this command block and the USE OUTPUT SCHEDULER

command line.

8.3.11 Write History If System Error Encountered

OUTPUT ON SIGNAL = <string>SIGALRM|SIGFPE|SIGHUP|SIGINT|

SIGPIPE|SIGQUIT|SIGTERM|SIGUSR1|SIGUSR2|SIGABRT|

SIGKILL|SIGILL|SIGSEGV

The OUTPUT ON SIGNAL command line is used to initiate the writing of a history file when the

system encounters a type of system error. Only one error type in the list of error types should be

entered for this command line. Generally, these system errors cause the code to terminate before

the code can add any current history output (history output past the last history output time step)

to the history file. If the code encounters the specified type of error during execution, a history file

will be written before execution is terminated.

This command line can also be used to force the writing of a history file at some point during

execution of the code. Suppose the command line

OUTPUT ON SIGNAL = SIGUSR2

is included in the input file. While the code is running, a user can execute (from the keyboard) the

system command line

kill -s SIGUSR2 pid

to terminate execution and force the writing of a results file. In the above system command line,

pid is the process identifier, which is an integer.

8.3. HISTORY OUTPUT 477

Note that the OUTPUT ON SIGNAL command line is primarily a debugging tool for code develop-

ers.

478 CHAPTER 8. OUTPUT

8.4 Heartbeat Output

BEGIN HEARTBEAT OUTPUT <string>heartbeat_name

Can also use predefined streams "cout", "stdout",

"cerr", "clog", "log", "output", or "outputP0"

STREAM NAME = <string>heartbeat_file_name

#

Specify whether heartbeat file will be in spyhis (cth)

format, or default format

FORMAT = SPYHIS|DEFAULT

#

for global variables

VARIABLE = GLOBAL

<string>variable_name

[AS <string>heartbeat_variable_name]

#

for mesh entity - node, edge, face,

element - variables

VARIABLE =

NODE|NODAL|EDGE|FACE|ELEMENT <string>variable_name

AT NODE|NODAL|EDGE|FACE|ELEMENT <integer>entity_id

AS <string>heartbeat_variable_name

#

for nearest point output of mesh entity - node,

edge, face, element - variables

VARIABLE =

NODE|NODAL|EDGE|FACE|ELEMENT <string>variable_name

NEAREST LOCATION <real>global_x,

<real>global_y>, <real>global_z

AS <string>heartbeat_variable_name

START TIME = <real>output_start_time

TIMESTEP ADJUSTMENT INTERVAL = <integer>steps

AT TIME <real>time_begin INCREMENT =

<real>time_increment_dt

ADDITIONAL TIMES = <real>output_time1

<real>output_time2 ...

AT STEP <integer>step_begin INCREMENT =

<integer>step_increment

ADDITIONAL STEPS = <integer>output_step1

<integer>output_step2 ...

TERMINATION TIME = <real>termination_time_value

USE OUTPUT SCHEDULER <string>scheduler_name

OUTPUT ON SIGNAL = <string>SIGALRM|SIGFPE|SIGHUP|SIGINT|

SIGPIPE|SIGQUIT|SIGTERM|SIGUSR1|SIGUSR2|SIGABRT|

SIGKILL|SIGILL|SIGSEGV

PRECISION = <integer>precision

LABELS = <string>OFF|ON

8.4. HEARTBEAT OUTPUT 479

LEGEND = <string>OFF|ON

TIMESTAMP FORMAT <string>timestamp_format

MONITOR = <string>RESULTS|RESTART|HISTORY

END [HEARTBEAT OUTPUT <string>heartbeat_name]

The heartbeat output is text output file that gives:

• nodal variable results (displacements, forces, etc.) for specific nodes,

• edge variable results for specific edges,

• face variable results for specific faces,

• element results (stress, strain, etc.) for specific elements, and

• global results

at specified times.

Known Issue: User defined variables (see Section 9.2.4) are not currently sup-

ported with heartbeat output.

The output is written as text instead of the binary history output. You can specify a heartbeat file,

the results to be included in this file, the formatting of the output, and the frequency at which results

are written by using a HEARTBEAT OUTPUT command block. The command block appears inside

the region scope. For heartbeat output, you will typically work with global, node, and element

variables, and, on some occasions, face variables.

More than one heartbeat file can be specified for an analysis. For each heartbeat file, there will be

one HEARTBEAT OUTPUT command block. The command block for a heartbeat file description

begins with

BEGIN HEARTBEAT OUTPUT <string>heartbeat_name

and is terminated with

END [HEARTBEAT OUTPUT <string>heartbeat_name]

where heartbeat_name is a user-selected name for the command block. Nested within the

HEARTBEAT OUTPUT command block are a set of command lines, as shown in the block sum-

mary given above. The first command line listed (STREAM NAME) gives pertinent information

about the heartbeat file. The command line

STREAM NAME = <string>heartbeat_file_name

gives the name of the heartbeat file with the string heartbeat_file_name. If the file already

exists, it is overwritten. If the heartbeat file is to appear in the current directory and is named

job.h, this command line would appear as

STREAM NAME = job.h

480 CHAPTER 8. OUTPUT

If the heartbeat file is to be created in some other directory, the command line would have to show

the absolute path to that directory.

In addition to specifying a specific filename, there are several predefined streams that can be spec-

ified. The predefined streams are:

• ’cout’ or ’stdout’ specifies standard output;

• ’cerr’, ’stderr’, ’clog’, or ’log’ specifies standard error;

• ’output’ or ’outputP0’ specifies Sierra’s standard output which is redirected to the file speci-

fied by the ’-o’ option on the command line.

Two metacharacters can appear in the name of the heartbeat file. If the %P character is found in the

name, it will be replaced with the number processors being used for the run. For example, if you

are running on 1024 processors and use the name heartbeat-%P/job.h, then the name would

be expanded to heartbeat-1024/job.h. The other recognized metacharacter is %B which is

replaced with the base name of the input file containing the input commands. For example, if

the commands are in the file my_analysis_run.i and the heartbeat stream name is specified as

%B.h, then the heartbeat data would be written to the file my_analysis_run.h.

The other command lines that appear in the HEARTBEAT OUTPUT command block determine the

type, frequency, and format of information that is output. Descriptions of these command lines

follow in Section 8.4.1 through Section 8.4.13. Note that the command lines for controlling the

frequency of heartbeat output (in Section 8.4.3 through Section 8.4.11) are the same as those for

controlling the frequency of results and history output. These frequency-related command lines

are repeated here for convenience.

8.4.1 Output Variables

The VARIABLE command line is used to select variables for output in the heartbeat file. One of

several types of variables—GLOBAL, NODE (or NODAL), EDGE, FACE, or ELEMENT—can be selected

for output. The form of the command line varies depending on the type of variable that is selected

for output.

8.4.1.1 Global Output Variables

VARIABLE = GLOBAL

<string>variable_name

[AS <string>heartbeat_variable_name]

This form of the VARIABLE command line lets you select any global variable for output in the

heartbeat file. The variable is selected with the string variable_name. The string variable_

name is the name of the global variable and can be either a registered variable listed in Section 8.7

or a user-defined variable (see Section 8.2.2 and Section 9.2.4). The variable_name can also

8.4. HEARTBEAT OUTPUT 481

specify time, timestep, or step to output the current simulation time, timestep, or execution

step, respectively.

You can also specify a name, heartbeat_variable_name, for the selected entity following the

AS keyword. For example, suppose you want to output the kinetic energy (KineticEnergy) as KE.

The command line to obtain the kinetic energyin the heartbeat file would be:

VARIABLE = GLOBAL KineticEnergy AS KE

The specification of an alias is optional for a global variable.

8.4.1.2 Mesh Entity Output Variables

VARIABLE =

NODE|NODAL|EDGE|FACE|ELEMENT <string>variable_name

AT NODE|NODAL|EDGE|FACE|ELEMENT <integer>entity_id

AS <string>heartbeat_variable_name

This form of the VARIABLE command line lets you select any nodal, edge, face, or element variable

for a specific mesh entity for output in the heartbeat file. For example, this form of the VARIABLE

command line will let you pick the displacement at a specific node and output the displacement to

the heartbeat file using an alias that you have chosen.

For this form of the VARIABLE command line, the mesh entity type following the delimiter

(=) is set to NODE (or NODAL), EDGE, FACE, or ELEMENT depending on the variable (set by

variable_name) to be output. If the mesh entity type is set to NODE (or NODAL), EDGE, or FACE,

the string variable_name can be either a registered variable listed in Section 8.7 or a user-defined

variable (see Section 8.2.2 and Section 9.2.4). If the mesh entity type is set to ELEMENT, the string

variable_name can be a registered variable listed in Section 8.7, a user-defined variable (see Sec-

tion 8.2.2 and Section 9.2.4), or a derived output quantity. See the latter portion of Section 8.2.1.4

for a detailed discussion of derived output. A complete list of derived output quantities is given in

Tables 8.1, 8.2, and 8.4 in Section 8.2.1.4.

Selection of a specific mesh entity follows the AT keyword. You select a mesh entity type (NODE

[or NODAL], EDGE, FACE, or ELEMENT) followed by the specific integer identifier, entity_id, for

the mesh entity. You must specify a name, heartbeat_variable_name, for the selected entity

following the AS keyword. For example, suppose you want to output the accelerations at node 88.

The command line to obtain the accelerations at node 88 for the heartbeat file would be:

VARIABLE = NODE ACCELERATION AT NODE 88 AS accel_88

where accel_88 is the name that will be used for this heartbeat variable in the heartbeat file.

Note that either the keyword NODE or NODAL can be used for nodal quantities.

As an example of derived output, suppose you wanted to output the von Mises stress for solid

element 1024. The command line to obtain the von Mises stress for element 1024 for the heartbeat

file would be:

VARIABLE = ELEMENT VON_MISES AT ELEMENT 1024 AS vm_1024

482 CHAPTER 8. OUTPUT

where vm_1024 is the name that will be used for this heartbeat variable in the heartbeat file.

8.4.1.3 Nearest Point Output Variables

VARIABLE =

NODE|NODAL|EDGE|FACE|ELEMENT <string>variable_name

NEAREST LOCATION <real>global_x,

real<global_y>, real<global_z>

AS <string>heartbeat_variable_name

This form of the VARIABLE command line lets you select any nodal, edge, face, or element vari-

able for output in the heartbeat file using a nearest point criterion. The command line described

in this subsection is an alternative to the command line described in the preceding section, Sec-

tion 8.4.1.2, for obtaining heartbeat output. The command line in this section or the command line

in Section 8.4.1.2 produces heartbeat files with variable information. The difference in these two

command lines (Section 8.4.1.3 and Section 8.4.1.2) is simply in how the variable information is

selected.

For the above form of the VARIABLE command line, the mesh entity type following the delim-

iter (=) is set to NODE (or NODAL), EDGE, FACE, or ELEMENT depending on the variable (set by

variable_name) to be output. If the mesh entity type is set to NODE (or NODAL), EDGE, or FACE,

the string variable_name can be either a registered variable listed in Section 8.7 or a user-defined

variable (see Section 8.2.2 and Section 9.2.4). If the mesh entity type is set to ELEMENT, the string

variable_name can be a registered variable listed in Section 8.7, a user-defined variable (see Sec-

tion 8.2.2 and Section 9.2.4), or a derived output quantity. See the latter portion of Section 8.2.1.4

for a detailed discussion of derived output. A complete list of derived output quantities is given in

Tables 8.1, 8.2, and 8.4 in Section 8.2.1.4.

The specific mesh entity used for output is determined by global coordinates specified by

the NEAREST LOCATION keyword and its associated input parameters—global_x, global_y,

global_z. The specific mesh entity chosen for output is as follows:

• If the mesh entity has been set to NODE (or NODAL), the node in the mesh selected for output

is the node whose initial position is nearest the input global X, Y, and Z coordinates specified

with the parameters global_x, global_y, and global_z.

• If the mesh entity has been set to EDGE, the edge in the mesh selected for output is the edge

with a center point (the average location of the two end points of the edge) whose initial

position is nearest the input global X, Y, and Z coordinates specified with the parameters

global_x, global_y, and global_z.

• If the mesh entity has been set to FACE, the face in the mesh selected for output is the face

with a centroid whose initial position is nearest the input global X, Y, and Z coordinates

specified with the parameters global_x, global_y, and global_z.

• If the mesh entity has been set to ELEMENT, the element in the mesh selected for output is

the element with a centroid whose initial position is nearest the input global X, Y, and Z

coordinates specified with the parameters global_x, global_y, and global_z.

8.4. HEARTBEAT OUTPUT 483

Note that, in all the above cases, the original model coordinates are used when selecting the nearest

entity, not the current coordinates.

You must specify a name, heartbeat_variable_name, for the selected entity following the AS

keyword. As an example, suppose you want to output the accelerations at a node closest to the point

with global coordinates (1012.0, 54.86, 103.3141). The command line to obtain the accelerations

at the node closest to this location for the heartbeat file would be:

VARIABLE = NODE ACCELERATION

NEAREST LOCATION 1012.0, 54.86, 103.3141 AS accel_near

where accel_near is the name that will be used for this heartbeat variable in the heartbeat file.

Note that either the keyword NODE or NODAL can be used for nodal quantities.

8.4.2 Outputting Heartbeat Data on a Node Set

It is commonly desired to output heartbeat data on a single-node node set. If a mesh file is slightly

modified, the node and element numbers will completely change. The node associated with a node

set, however, remains the same, i.e., the node in the node set retains the same initial geometric

location with the same connectivity to other elements even when its node number changes. There-

fore, we might want to specify the heartbeat output for a node set with a single node rather than

with the global identifier for a node. This can easily be accomplished, as follows:

begin user output

node set = nodelist_1

compute global disp_ns_1 as average of nodal displacement

end

begin heartbeat output

variable = global disp_ns_1

end

If nodelist_1 contains only a single node, the heartbeat output variable disp_ns_1 will contain

the displacement for the single node in the node set. If nodelist_1 contains multiple nodes, the

average displacement of the nodes will be output.

8.4.3 Set Begin Time for Heartbeat Output

START TIME = <real>output_start_time

Using the START TIME command line, you can write heartbeat variables to the heartbeat file

beginning at time output_start_time. No heartbeat variables will be written before this time.

If other commands set times for heartbeat output (AT TIME, ADDITIONAL TIMES) that are less

than output_start_time, those times will be ignored, and heartbeat output will not be written

at those times.

484 CHAPTER 8. OUTPUT

8.4.4 Adjust Interval for Time Steps

TIMESTEP ADJUSTMENT INTERVAL = <integer>steps

This command line is used to specify that the output will be at exactly the times specified. To hit the

output times exactly in an explicit, transient dynamics code, it is necessary to adjust the time step

as the time approaches an output time. The integer value steps in the TIMESTEP ADJUSTMENT

INTERVAL command line specifies the number of time steps to look ahead in order to adjust the

time step.

If this command line does not appear, heartbeat variables are output at times closest to the specified

output times.

8.4.5 Output Interval Specified by Time Increment

AT TIME <real>time_begin INCREMENT = <real>time_increment_dt

At the time specified by time_begin, heartbeat variables will be output every time increment

given by the real value time_increment_dt.

8.4.6 Additional Times for Output

ADDITIONAL TIMES = <real>output_time1 <real>output_time2 ...

In addition to any times specified by the command line in Section 8.4.5, you can use the

ADDITIONAL TIMES command line to specify an arbitrary number of additional output times.

8.4.7 Output Interval Specified by Step Increment

AT STEP <integer>step_begin INCREMENT =

<integer>step_increment

At the step specified by step_begin, heartbeat variables will be output every step increment

given by the integer value step_increment.

8.4.8 Additional Steps for Output

ADDITIONAL STEPS = <integer>output_step1

<integer>output_step2 ...

In addition to any steps specified by the command line in Section 8.3.7, you can use the

ADDITIONAL STEPS command line to specify an arbitrary number of g

8.4. HEARTBEAT OUTPUT 485

8.4.9 Set End Time for Heartbeat Output

TERMINATION TIME = <real>termination_time_value

Heartbeat output will not be written to the heartbeat file after time termination_time_value.

If other commands set times for heartbeat output (AT TIME, ADDITIONAL TIMES) that are greater

than termination_time_value, those times will be ignored, and heartbeat output will not be

written at those times.

8.4.10 Use Output Scheduler

USE OUTPUT SCHEDULER <string>scheduler_name

In an analysis with multiple regions, it can be difficult to synchronize output such as heart-

beat files. To help synchronize output for analyses with multiple regions, you can define an

OUTPUT SCHEDULER command block at the SIERRA scope. The scheduler can then be ref-

erenced in the HEARTBEAT OUTPUT command block via the USE OUTPUT SCHEDULER com-

mand line. The string scheduler_name must match a name used in an OUTPUT SCHEDULER

command block. See Section 8.6 for a description of using this command block and the

USE OUTPUT SCHEDULER command line.

8.4.11 Write Heartbeat On Signal

OUTPUT ON SIGNAL = <string>SIGALRM|SIGFPE|SIGHUP|SIGINT|

SIGPIPE|SIGQUIT|SIGTERM|SIGUSR1|SIGUSR2|SIGABRT|

SIGKILL|SIGILL|SIGSEGV

The OUTPUT ON SIGNAL command line is used to initiate the writing of a heartbeat file when the

system encounters the specified signal. The signal can either occur as the result of a system error,

or the user can explicitly send the specified signal to the application (See the system documentation

man pages for “signal” or “kill” for more information). Only one signal type in the list of signal

types should be entered for this command line. Generally, these signals cause the code to terminate

before the code can add any current heartbeat output (heartbeat output past the last heartbeat output

time step) to the heartbeat file. If the code encounters the specified type of error during execution,

a heartbeat file will be written before execution is terminated.

This command line can also be used to force the writing of a heartbeat file at some point during

execution of the code. Suppose the command line

OUTPUT ON SIGNAL = SIGUSR2

is included in the input file. While the code is running, a user can execute (from the keyboard) the

system command line

kill -s SIGUSR2 pid

486 CHAPTER 8. OUTPUT

to force the writing of a results file. In the above system command line, pid is the process identifier,

which is an integer.

Note that the OUTPUT ON SIGNAL command line is primarily a debugging tool for code develop-

ers.

8.4.12 Heartbeat Output Formatting Commands

There are several command lines for the heartbeat section that modify the formatting of the heart-

beat text output. The default output for the heartbeat data consists of a line beginning with a

timestamp showing the current wall-clock time followed by multiple columns of data, for exam-

ple:

Begin HeartBeat Region_1_Heartbeat

Stream Name = output

At Step 0, Increment = 10

precision is 5

Variable = global step

Variable = global timestep as dt

Variable = global time

Variable = global total_energy as te

End

+[12:18:51] step=240, dt=3.13933e-04, time=7.56578e-02, te=4.02795e-06

+[12:18:51] step=250, dt=3.13933e-04, time=7.87971e-02, te=1.32125e-06

+[12:18:51] step=260, dt=3.13933e-04, time=8.19365e-02, te=6.88142e-07

+[12:18:51] step=270, dt=3.13933e-04, time=8.50758e-02, te=3.93574e-06

+[12:18:52] step=280, dt=3.13933e-04, time=8.82151e-02, te=7.46609e-06

+[12:18:52] step=290, dt=3.13933e-04, time=9.13545e-02, te=1.03856e-05

+[12:18:52] step=300, dt=3.13933e-04, time=9.44938e-02, te=1.36822e-05

+[12:18:52] step=310, dt=3.13933e-04, time=9.76331e-02, te=1.64630e-05

The above example begins each line with a timestamp followed by five labeled data columns. The

precision of the real data is 5. There is no legend in the above example. This format can be

modified with the following commands.

8.4.12.1 CTH SpyHis output format

FORMAT = SPYHIS|DEFAULT

If the FORMAT=SPYHIS is specified, then the heartbeat output will be formatted such that it can be

processed with the CTH spyhis application which is a post-processor for time-history data.

8.4. HEARTBEAT OUTPUT 487

8.4.12.2 Specify floating point precision

PRECISION = <integer>precision

By default, the real data is written with a precision of 5 which gives 5 digits following the decimal

point. This can be altered with the PRECISION command. If the command line PRECISION = 2

is specified, then the above data would look like:

Begin HeartBeat Region_1_Heartbeat

...

precision = 2

...

End

+[12:18:51] step=240, dt=3.14e-04, time=7.57e-02, te=4.03e-06

+[12:18:51] step=250, dt=3.14e-04, time=7.88e-02, te=1.32e-06

+[12:18:51] step=260, dt=3.14e-04, time=8.19e-02, te=6.88e-07

Note that the precision applies to all real data; it is not possible to specify a different precision for

each variable.

8.4.12.3 Specify Labeling of Heartbeat Data

LABELS = <string>OFF|ON

The above example shows the default output which consists of a label and the data separated by

“=”. The existence of the labels is controlled with the LABELS command. If LABELS = OFF is

specified, then the above data would look like:

Begin HeartBeat Region_1_Heartbeat

...

labels = off

precision = 2

...

End

+[12:17:37] 240, 3.14e-04, 7.57e-02, 4.03e-06

+[12:17:37] 250, 3.14e-04, 7.88e-02, 1.32e-06

+[12:17:38] 260, 3.14e-04, 8.19e-02, 6.88e-07

8.4.12.4 Specify Existence of Legend for Heartbeat Data

LEGEND = <string>OFF|ON

Outputting the data without labels can make it easier to work with the data in a spreadsheet program

or other data manipulation program, but with no labels, it is difficult to determine what the data

really represents. The LEGEND output will print a line at the beginning of the heartbeat output

identifying the data in each column. For example:

488 CHAPTER 8. OUTPUT

Begin HeartBeat Region_1_Heartbeat

...

legend = on

labels = off

precision = 2

...

End

+[12:17:37] Legend: step, dt, time, te

+[12:17:37] 240, 3.14e-04, 7.57e-02, 4.03e-06

+[12:17:37] 250, 3.14e-04, 7.88e-02, 1.32e-06

+[12:17:38] 260, 3.14e-04, 8.19e-02, 6.88e-07

8.4.12.5 Specify format of timestamp

TIMESTAMP FORMAT <string>"timestamp_format"

Each line of the heartbeat output is preceded by a timestamp which shows the wall-clock time

at the time that the line was output. This can be useful to verify that the code is still running

and producing output and to determine how fast the code is running. The default timestamp is

in the format “[12:34:56]” which is specified by the format [̈%H:%M:%S].̈ If a different format

is desired, it can be specified with the TIMESTAMP FORMAT command line. The format must be

surrounded by double or single quotes and the format is defined to be the string between the first

single or double quote and the last matching quote type. If you want to modify the format, see the

documentation for the UNIX strftime command for details on how to specify the format. The

example below shows a timestamp format delimited by “{” and “}”. The timestamp consists of a

ISO-8601 date format followed by the current time.

...

timestamp format "{%F %H:%M:%S}"

...

+{2008-03-17 09:26:17} 2212, 1.34244e-06, 2.96948e-03, 2.96948e-03

+{2008-03-17 09:26:17} 2213, 1.34244e-06, 2.97082e-03, 2.97082e-03

+{2008-03-17 09:26:17} 2214, 1.34244e-06, 2.97216e-03, 2.97216e-03

+{2008-03-17 09:26:17} 2215, 1.34244e-06, 2.97350e-03, 2.97350e-03

+{2008-03-17 09:26:17} 2216, 1.34244e-06, 2.97485e-03, 2.97485e-03

8.4.13 Monitor Output Events

MONITOR = <string>RESULTS|RESTART|HISTORY

It is sometimes a benefit to know when the code has written a new set of data to one of the other

output files (restart output, history output, or results output). The heartbeat output will report this

data if the MONITOR command line is specified. Each time output is performed to any of the

monitored output types, a line will be written to the heartbeat file specifying the timestamp, the

simulation time and step, and the label name of the output type. For example:

8.4. HEARTBEAT OUTPUT 489

begin results output my_results

at step 0, increment = 10

...

end results output results

begin heartbeat data hb

stream name = stdout

monitor = results

labels = off

legend = on

timestamp format "%F %H:%M:%S "

at step 0, increment = 2

variable = global step

variable = global timestep as dt

variable = global time

variable = element spring_engineering_strain at \#

element 1 as sp1
end

Will give the following output:

....

+2008-03-17 10:03:22 718, 1.34244e-06, 9.63871e-04, 9.63871e-04

-2008-03-17 10:03:22 Results data written at time = 0.00096656,

step = 720. my_results

+2008-03-17 10:03:22 720, 1.34244e-06, 9.66556e-04, 9.66556e-04

+2008-03-17 10:03:22 722, 1.34244e-06, 9.69241e-04, 9.69241e-04

+2008-03-17 10:03:22 724, 1.34244e-06, 9.71926e-04, 9.71926e-04

+2008-03-17 10:03:22 726, 1.34244e-06, 9.74611e-04, 9.74611e-04

+2008-03-17 10:03:22 728, 1.34244e-06, 9.77296e-04, 9.77296e-04

-2008-03-17 10:03:22 Results data written at time = 0.00097998,

step = 730. my_results

+2008-03-17 10:03:22 730, 1.34244e-06, 9.79981e-04, 9.79981e-04

....

490 CHAPTER 8. OUTPUT

8.5 Restart Data

BEGIN RESTART DATA <string>restart_name

DATABASE NAME = <string>restart_file

INPUT DATABASE NAME = <string>restart_input_file

OUTPUT DATABASE NAME = <string>restart_output_file

DATABASE TYPE = <string>database_type(exodusII)

OVERWRITE = <string>OFF|ON|TRUE|FALSE|YES|NO

(ON|TRUE|YES)

START TIME = <real>restart_start_time

TIMESTEP ADJUSTMENT INTERVAL = <integer>steps

AT TIME <real>time_begin INCREMENT =

<real>time_increment_dt

ADDITIONAL TIMES = <real>output_time1

<real>output_time2 ...

AT STEP <integer>step_begin INCREMENT =

<integer>step_increment

ADDITIONAL STEPS = <integer>output_step1

<integer>output_step2 ...

TERMINATION TIME = <real>termination_time_value

OVERLAY COUNT = <integer>overlay_count

CYCLE COUNT = <integer>cycle_count

USE OUTPUT SCHEDULER <string>scheduler_name

OUTPUT ON SIGNAL = <string>SIGALRM|SIGFPE|SIGHUP|SIGINT|

SIGPIPE|SIGQUIT|SIGTERM|SIGUSR1|SIGUSR2|SIGABRT|

SIGKILL|SIGILL|SIGSEGV

OPTIONAL

END [RESTART DATA <string>restart_name]

You can specify restart files, either to be written to or read from, and the frequency at which restarts

are written by using a RESTART DATA command block. The command block appears inside the

region scope. To initiate a restart, the RESTART TIME command line (see Section 2.1.3.1) or the

RESTART command line (see Section 2.1.3.2) must also be used. These command lines appear in

the SIERRA scope.

NOTE: In addition to the times at which you request restart information to be written, restart

information is automatically written when an element inverts.

The RESTART DATA command block begins with the input line:

BEGIN RESTART DATA <string>restart_name

and is terminated with:

END [RESTART DATA <string>restart_name]

where restart_name is a user-selected name for the RESTART DATA command block.

Nested within the RESTART DATA command block are a set of command lines, as shown in the

block summary given above.

8.5. RESTART DATA 491

We begin the discussion of the RESTART DATA command block with various options regarding the

use of restart in general. In Section 8.5.1, you will learn how to use the DATABASE NAME, INPUT

DATABASE NAME, OUTPUT DATABASE NAME, DATABASE TYPE, and OPTIONAL command lines.

Usage of the first three of these command lines is tied to the two restart-related command lines

RESTART and RESTART TIME, which are found in the SIERRA scope.

Section 8.5.2 discusses use of the OVERWRITE command line, which will prevent or allow the

overwriting of existing restart files. (Note that this command line also appears in the command

blocks for results output and history output.)

The other command lines that appear in the RESTART DATA command block determine the fre-

quency at which restarts are written. Descriptions of these command lines follow in Section 8.5.3

through Section 8.5.13. Note that the command lines for controlling the frequency of restart out-

put are the same as those for controlling the frequency of results output and history output. These

frequency-related command lines are repeated here for convenience.

8.5.1 Restart Options

DATABASE NAME = <string>restart_file

INPUT DATABASE NAME = <string>restart_input_file

OUTPUT DATABASE NAME = <string>restart_output_file

DATABASE TYPE = <string>database_type(exodusII)

OPTIONAL

You can read from and create restart files in an automated fashion, the preferred method, or you can

carefully control how you read from and create restart files. In our discussion of the overall options

for the use of restart, we begin with the first three command lines listed above (DATABASE NAME,

INPUT DATABASE NAME, and OUTPUT DATABASE NAME). All three of these command lines

specify a parameter that is a file name or a directory path and file name. If the parameter begins

with the “/” character, it is an absolute path; otherwise, the path to the current directory will be

prepended to the parameter on the command line. Suppose, for example, that we want to work with

a restart file named component.rst in the current directory. If we are using the DATABASE NAME

command line, then this command line would appear as:

DATABASE NAME = component.rst

To read or create files in some other directory, the command line must include the path to that

directory. The directory must exist, it will not be created.

The DATABASE NAME command line will let you read restart information and write restart infor-

mation to the same file. Section 8.5.1.1 through Section 8.5.1.4 show how this command line is

used in particular instances.

You can specify a restart file to read from by using the command line:

INPUT DATABASE NAME = <string>restart_input_file

You can specify a restart file to write to by using the command line:

OUTPUT DATABASE NAME = <string>restart_output_file

492 CHAPTER 8. OUTPUT

Note that you must use either a DATABASE NAME command line or the INPUT DATABASE NAME

command line/OUTPUT DATABASE NAME command line pair, but not both, in a RESTART DATA

command block.

Two metacharacters can appear in the name of the restart file. If the %P character is found in the

name, it will be replaced with the number processors being used for the run. For example, if you

are running on 1024 processors and use the name restart-%P/job.rs, then the name would be

expanded to restart-1024/job.rs and the actual restart files would be restart-1024/job.

rs.1024.0000 to restart-1024/job.rs.1024.1023. The other recognized metacharacter

is %B which is replaced with the base name of the input file containing the input commands. For

example, if the commands are in the file my_analysis_run.i and the restart database name is

specified as %B.rs, then the restart data would be written to or read from the file my_analysis_

run.rs.

If the restart file does not use the Exodus II format [1], you must specify the format for the results

file using the DATABASE TYPE command line:

DATABASE TYPE = <string>database_type(exodusII)

Currently, the Exodus II database and the XDMF database [2] are supported in Presto and Adagio.

Exodus II is more commonly used than XDMF. Other options may be added in the future.

In certain coupled physics analyses in which there are multiple regions, only a subset of the regions

may have a restart database associated with them. The OPTIONAL command (Section 8.5.1) is

used to tell the application that it is acceptable to restart the analysis even though a region does not

have an associated restart database. Note that this is only allowed in analyses containing multiple

regions; if there is only a single region, it must have a restart database in order to restart.

8.5.1.1 Automatic Read and Write of Restart Files

You can use the restart option in an automated fashion by using a combination of the RESTART

command line in the SIERRA scope and the DATABASE NAME command line in the RESTART

DATA command block. This automated use of restart can best be explained by an example. We

will use a two-processor example and assume all files will be in our current directory.

The option of automated restart will not only manage the restart files to prevent overwriting, it will

also manage the results files and history files to prevent overwriting. In the example we give, we

will assume our run includes a RESULTS OUTPUT command block with the command line

DATABASE NAME = rslt.e

to generate results files with the root file name rslt.e. We will also assume a run includes a

HISTORY OUTPUT command block with the command line

DATABASE NAME = hist.h

to generate history files with the root file name hist.h.

For the first run in our restart sequence, we will have the command line

RESTART = AUTOMATIC

8.5. RESTART DATA 493

in the SIERRA scope of our input file. In a TIME STEPPING command block, which is embedded

in a TIME CONTROL command block (Section 3.1.1) in the procedure scope of our input file, we

will have the command line:

START TIME = 0.0

In the TIME CONTROL command block we will have the command line

TERMINATION TIME = 2.5E-3

to set the limits for the begin and end times of the first restart run. These time-related command

lines should not be confused with the START TIME and TERMINATION TIME command lines that

appear in the RESTART DATA command block.

Finally, for the first run in our restart sequence, the RESTART DATA command block in our input

file will be as follows:

BEGIN RESTART DATA RESTART_DATA

DATABASE NAME = g.rsout

AT TIME 0.0 INCREMENT = 0.25E-3

END RESTART DATA RESTART_DATA

In this block, the DATABASE NAME command line specifies a root file name for the restart file. The

AT TIME command line gives the time when we will start to write the restart information and the

interval at which the restart information will be written (see Section 8.5.5).

For our first run, the automatic restart option will generate the following restart files:

restart files

g.rsout.2.0

g.rsout.2.1

results files

rslt.e.2.0

rslt.e.2.1

history files

hist.h.2.0

hist.h.2.1

For the above files, there are extensions on the file names that indicate we have a two-processor run.

The 2.0 and 2.1 extensions associate the restart files with the corresponding individual mesh files

on each processor. (If our mesh file is mesh.g, then our mesh files on the individual processors

will be mesh.g.2.0 and mesh.g.2.1.) All restart information in the above files appears at time

intervals of 0.25× 10−3, and the last restart information is written at time 2.5× 10−3. We have

also listed the results and history files that will be generated for this run due to the file definitions

in the command blocks for the results and history files.

For the second run in our sequence of restart runs, we want to start at the previous termination time,

2.5×10−3, and terminate at time 5.0×10−3. We leave everything in our input file (including the

START TIME = 0.0 command line in the TIME STEPPING command block, the RESTART com-

mand line, and the RESTART DATA command block) the same except for the TERMINATION TIME

494 CHAPTER 8. OUTPUT

command line (in the TIME CONTROL command block). The TERMINATION TIME command line

will now become:

TERMINATION TIME = 5.0E-3

It is important to note here that the actual start time for the second run in our analysis is now set by

the last time (2.5× 10−3) that restart information was written. The command line START TIME

= 0.0 in the TIME STEPPING command block is now superseded as the actual starting time for

the second run by the restart commands. Any START TIME command line in a TIME STEPPING

command block is still valid in terms of defining time stepping blocks (these blocks being used

to set activation periods), but the restart process sets the actual start time for our analysis. This

pattern of control for setting the actual start time holds for any run in our sequence of restart runs.

For the second run in our sequence of restart runs, the restart files will be from time 2.5×10−3 to

time 5.0×10−3. The restart files in our current directory after the second run will be as follows:

restart files

g.rsout.2.0

g.rsout.2.1

g.rsout-s0002.2.0

g.rsout-s0002.2.1

results files

rslt.e.2.0

rslt.e.2.1

rslt.e-s0002.2.0

rslt.e-s0002.2.1

history files

hist.h.2.0

hist.h.2.1

hist.h-s0002.2.0

hist.h-s0002.2.1

Notice that we have generated new restart files with a -s0002 extension in addition to the ex-

tension associated with the individual processors. All restart information in the above files with

the -s0002 extension appears at time intervals of 0.25× 10−3, the restart information is written

between time 2.5× 10−3 and time 5.0× 10−3, and the final restart information is written at time

5.0× 10−3. The restart files for the first run in our sequence of restart runs, g.rsout.2.0 and

g.rsout.2.1, have been preserved. New results and history files have been created using the

same extension, -s0002, as that used for the restart files. The original results and history files

have been preserved.

Now, we want to do a third run in our sequence of restart runs. For the third run in our sequence

of restart runs, we want to start at the previous termination time, 5.0× 10−3, and terminate at

time 8.5× 10−3. We leave everything in our input file (including the START TIME command

line, the RESTART command line, and the RESTART DATA command block) the same except for

the TERMINATION TIME command line. The TERMINATION TIME command line (within the

TIME CONTROL command block) will now become:

TERMINATION TIME = 8.5E-3

8.5. RESTART DATA 495

For the third run in our sequence of restart runs, the restart files will be from time 5.0× 10−3 to

time 8.5×10−3. The restart files in our current directory after the third run will be as follows:

restart files

g.rsout.2.0

g.rsout.2.1

g.rsout-s0002.2.0

g.rsout-s0002.2.1

g.rsout-s0003.2.0

g.rsout-s0003.2.1

results files

rslt.e.2.0

rslt.e.2.1

rslt.e-s0002.2.0

rslt.e-s0002.2.1

rslt.e-s0003.2.0

rslt.e-s0003.2.1

history files

hist.h.2.0

hist.h.2.1

hist.h-s0002.2.0

hist.h-s0002.2.1

hist.h-s0003.2.0

hist.h-s0003.2.1

Notice that we have generated new restart files with a -s0003 extension in addition to the ex-

tension associated with the individual processors. All restart information in the above files with

the -s0003 extension appears at time intervals of 0.25× 10−3, the restart information is written

between time 5.0× 10−3 and time 8.5× 10−3, and the final restart information is written at time

8.5×10−3. The restart files for the first and second runs in our sequence of restart runs have been

preserved. New results and history files have been created using the same extension, -s0003, as

that used for the restart files. The original results and history files have been preserved.

The process just described can be continued as long as necessary. We will continue the process of

generating new restart files with extensions that indicate their place in the sequence of runs.

8.5.1.2 User-Controlled Read and Write of Restart Files

You can use the restart option and select specific restart times and specific restart files to read from

and write to by using a combination of the RESTART TIME command line in the SIERRA scope

and the INPUT DATABASE NAME and OUTPUT DATABASE NAME command line in the RESTART

DATA command block. This “controlled” use of restart can best be explained by an example.

We will use a two-processor example and assume all files will be in our current directory. In this

example, we will manage the creation of new restart files so as not to overwrite existing restart files.

Unlike the automated option for restart, this controlled use of restart requires that the user manage

restart file names so as to prevent overwriting previously generated restart files. The same is true

496 CHAPTER 8. OUTPUT

for the results and history files. The user will have to manage the creation of new results and history

files so as not to overwrite existing results and history files. Creating new results and history files

for each run in the sequence of restart runs requires changing the DATABASE NAME command line

in the RESULTS OUTPUT and HISTORY OUTPUT command blocks. We will not show examples

for use of the DATABASE NAME command line in the RESULTS OUTPUT and HISTORY OUTPUT

command blocks here, as the actual use of the DATABASE NAME command line in the results and

history command blocks would closely parallel the pattern we see for management of the restart

file names.

For the first run in our restart sequence, we will have only a RESTART DATA command block in

the region; there will be no restart-related command line in the SIERRA scope of our input file.

We will, however, have a

START TIME = 0.0

command line in a TIME STEPPING command block (within the TIME CONTROL command

block) and a

TERMINATION TIME = 2.5E-3

command line within the TIME CONTROL command block to set the limits for the begin and end

times. The RESTART DATA command block in our input file will be as follows:

BEGIN RESTART DATA RESTART_DATA

OUTPUT DATABASE NAME = RS1.rsout

AT TIME 0.0 INCREMENT = 0.5E-3

END RESTART DATA RESTART_DATA

For our first run, the restart option will generate the following restart files:

RS1.rsout.2.0

RS1.rsout.2.1

For the above files, the extensions on the file names indicate that we have a two-processor run. The

2.0 and 2.1 extensions associate the restart files with the corresponding individual mesh files on

each processor. If our mesh file is mesh.g, then our mesh files on the individual processors will be

mesh.g.2.0 and mesh.g.2.1. All restart information in the above files appears at time intervals

of 0.5×10−3, and the last restart information is written at time 2.5×10−3.

For the second run in our sequence of restart runs, we want to start at the previous termination

time, 2.5×10−3, and terminate at time 5.0×10−3. To do this, we must add a

RESTART TIME = 2.5E-3

command line to the SIERRA scope and set the termination time to 5.0×10−3 by using the com-

mand line

TERMINATION TIME = 5.0E-3 \rm

within the TIME CONTROL command block.

8.5. RESTART DATA 497

It is important to note here that the actual start time for the second run in our analysis is now

set by the restart time set on the RESTART TIME command line, 2.5× 10−3. The command line

START TIME = 0.0 in the TIME STEPPING command block is now superseded as the actual

starting time for the second run by the restart commands. Any START TIME command line in a

TIME STEPPING command block is still valid in terms of defining time stepping blocks (these

blocks being used to set activation periods), but the restart process sets the actual start time for our

analysis. This pattern of control for setting the actual start time holds for any run in our sequence

of restart runs.

We also must change the RESTART DATA command block to the following:

BEGIN RESTART DATA RESTART_DATA

INPUT DATABASE NAME = RS1.rsout

OUTPUT DATABASE NAME = RS2.rsout

AT TIME 0.0 INCREMENT = 0.5E-3

END RESTART DATA RESTART_DATA

For this second run, we will read from the following files:

RS1.rsout.2.0

RS1.rsout.2.1

And we will write to the following files:

RS2.rsout.2.0

RS2.rsout.2.1

All restart information in the above output files, RS2.rsout.2.0 and RS2.rsout.2.1, appears

at time intervals of 0.5× 10−3, restart information is written from time 2.5× 10−3 to time 5.0×
10−3, and the last restart information is written at time 5.0×10−3. Notice that we have preserved

the restart files from the first run from our restart sequence of runs because we have specifically

given the input and output databases distinct names—RS2.rsout for the input file name and

RS1.rsout for the output file name.

Now, we want to do a third run in our sequence of restart runs. For this third run, we want to start

at time 4.5× 10−3 and terminate at time 8.5× 10−3. We do not want to start at the termination

time for the previous restart, which is 5.0×10−3; rather, we want to start at time 4.5×10−3. We

change the RESTART TIME command line to

RESTART TIME = 4.5E-3

and the TERMINATION TIME command line within the TIME CONTROL command block to:

TERMINATION TIME = 8.5E-3

And we change the RESTART DATA command block to the following:

498 CHAPTER 8. OUTPUT

BEGIN RESTART DATA RESTART_DATA

INPUT DATABASE NAME = RS2.rsout

OUTPUT DATABASE NAME = RS3.rsout

AT TIME 0.0, INCREMENT = 0.5E-3

END RESTART DATA RESTART_DATA

For this third run, we will read from the following files:

RS2.rsout.2.0

RS2.rsout.2.1

And we will write to the following files:

RS3.rsout.2.0

RS3.rsout.2.1

All restart information in the above output files, RS3.rsout.2.0 and RS3.rsout.2.1, appears

at time intervals of 0.5× 10−3, restart information is written from time 4.5× 10−3 to time 8.5×
10−3, and the last restart information is written at time 8.5×10−3. Notice that we have preserved

all restart files from previous runs in our restart sequence of runs because we have specifically

given the input and output databases distinct names for this third run.

8.5.1.3 Overwriting Restart Files

If you use the RESTART TIME command line in conjunction with the DATABASE NAME command

line, you will overwrite restart information (unless you have included an OVERWRITE command

line set to ON). As indicated previously, you will probably want to have a restart file (or files in

the case of parallel runs) associated with each run in a sequence of restart runs. The example in

this section shows how to overwrite restart files if that is an acceptable approach for a particular

analysis.

For our first run, we will set a termination time of 1.0×10−3 with the command line

TERMINATION TIME = 1.0E-3

and set the RESTART DATA command block as follows:

BEGIN RESTART DATA

DATABASE NAME = RS.out

AT TIME 0.0 INTERVAL = 0.25E-3

END RESTART DATA

Our first run will generate the following restart files:

RS.out.2.0

RS.out.2.1

8.5. RESTART DATA 499

All restart information in the above output files, RS.out.2.0 and RS.out.2.1, appears at time

intervals of 0.25× 10−3, restart information is written from time 0.0 to time 1.0× 10−3, and the

last restart information is written at time 1.0×10−3.

Suppose for our second run we set the termination time to 2.0×10−3 with the command line

TERMINATION TIME = 2.0E-3

and add the command line

RESTART TIME = 1.0E-3

to the SIERRA scope. We leave the RESTART DATA command block unchanged.

For our second run, restart information is read from the files RS.out.2.0 and RS.out.2.1.

These files are then overwritten with new restart information beginning at time 1.0× 10−3. The

files RS.out.2.0 and RS.out.2.1 will have restart information beginning at time 1.0×10−3 in

intervals of 0.25×10−3. The restart information will terminate at time 2.0×10−3.

Now we want to do a third run with a termination time of 3.0×10−3. We change the termination

time by using the command line:

TERMINATION TIME = 3.0E-3

And we change the RESTART TIME command line so that it is now:

RESTART TIME = 3.0E-3

For our third run, restart information is read from the files RS.out.2.0 and RS.out.2.1. These

files are then overwritten with new restart information beginning at time 2.0×10−3. The files RS.

out.2.0 and RS.out.2.1 will have restart information beginning at time 2.0×10−3 in intervals

of 0.25×10−3. The restart information will terminate at time 3.0×10−3.

8.5.1.4 Recovering from a Corrupted Restart

Suppose you are using the automated option for restart and a system crash occurs when the restart

file is being written. The restart file contains a corrupted entry for one of the restart times. In this

case, you can continue using the automated option for restart. Restart will detect the corrupted en-

try and then find an entry previous to the corrupted entry that can be used for restart. This previous

entry should be the entry prior to the corrupted entry unless something unusual has occurred. If the

first intact restart entry is not the previous entry, restart continues to back up until an intact restart

entry is found.

You could do a manual recovery. The manual recovery requires the use of a RESTART TIME

command line to select some intact restart entry. You will have to use the INPUT DATABASE

NAME and OUTPUT DATABASE NAME command lines to avoid overwriting previous restart files

(see Section 8.5.1.2). You will also have to change file names in the results and history command

blocks to avoid overwriting previous results and history files. Once you have done the manual

recovery, you could then revert to the automatic restart option.

500 CHAPTER 8. OUTPUT

8.5.2 Overwrite Command in Restart

OVERWRITE = <string>OFF|ON|TRUE|FALSE|YES|NO

(ON|TRUE|YES)

The OVERWRITE command line can be used to prevent the overwriting of existing restart files. The

use of the automatic read and write option for restart files as described in Section 8.5.1.1 does

not require the OVERWRITE command line. The automatic read and write option adds extensions

to file names and prevents the overwriting of any existing restart files. For the case of a user-

controlled read and write of restart files (Section 8.5.1.2), however, the OVERWRITE command line

is useful for preventing the overwriting of restart files. If the OVERWRITE command line is set to

OFF, FALSE, or NO, then existing restart files will not be overwritten. Execution of the code will

terminate before existing restart files are overwritten. The default option is to overwrite existing

restart files. If the OVERWRITE command line is not included, or the command line is set to ON,

TRUE, or YES, then existing files can be overwritten.

8.5.3 Set Begin Time for Restart Writes

START TIME = <real>restart_start_time

Using the START TIME command line, you can write restarts to the restart file beginning at time

restart_start_time. No restarts will be written before this time. If other commands set times

for restarts (AT TIME, ADDITIONAL TIMES) that are less than restart_start_time, those

times will be ignored, and restarts will not be written at those times.

8.5.4 Adjust Interval for Time Steps

TIMESTEP ADJUSTMENT INTERVAL = <integer>steps

This command line is used to specify that the restarts will be written at exactly the times specified.

To hit the restart times exactly in an explicit transient dynamics code, it is necessary to adjust

the time step as the time approaches a restart time. The integer value steps in the TIMESTEP

ADJUSTMENT INTERVAL command line specifies the number of time steps to look ahead in order

to adjust the time step.

If this command line does not appear, then restarts are written at times closest to the specified

restart times.

8.5.5 Restart Interval Specified by Time Increment

AT TIME <real>time_begin INCREMENT = <real>time_increment_dt

At the time specified by time_begin, restarts will be written every time increment given by the

real value time_increment_dt.

8.5. RESTART DATA 501

8.5.6 Additional Times for Restart

ADDITIONAL TIMES = <real>output_time1 <real>output_time2 ...

In addition to any restart times specified by the command line in Section 8.5.5, you can use the

ADDITIONAL TIMES command line to specify an arbitrary number of additional restart times.

8.5.7 Restart Interval Specified by Step Increment

AT STEP <integer>step_begin INCREMENT =

<integer>step_increment

At the step specified by step_begin, restarts will be written every step increment given by the

integer value step_increment.

8.5.8 Additional Steps for Restart

ADDITIONAL STEPS = <integer>output_step1

<integer>output_step2 ...

In addition to any steps specified by the command line in Section 8.5.7, you can use the

ADDITIONAL STEPS command line to specify an arbitrary number of additional restart steps.

8.5.9 Set End Time for Restart Writes

TERMINATION TIME = <real>termination_time_value

Restarts will not be written to the restart file after time termination_time_value. If

other commands set times for restarts (AT TIME, ADDITIONAL TIMES) that are greater than

termination_time_value, those times will be ignored, and restarts will not be written at those

times.

8.5.10 Overlay Count

OVERLAY COUNT = <integer>overlay_count

The OVERLAY COUNT command line specifies the number of restart output times that will be over-

laid on top of the current step before advancing to the next step. For example, suppose that we set

the overlay_count parameter to 2, and we request that restart information be written every 0.1

second. At time 0.1 second, restart step 1 will be written to the output restart database. At time 0.2

second, restart information will be written over the step 1 information, which originally contained

502 CHAPTER 8. OUTPUT

restart information at 0.1 second. At time 0.3 second, restart information will be written over the

step 1 information, which last contained information at 0.2 second. At time 0.4 second, we will

now write step 2 to the output restart database (step 1 has already been written over twice). At time

0.5 second, restart information will be written over the step 2 information, which originally con-

tained information at 0.4 second. At time 0.6 second, restart information will be written over the

step 2 information, which last contained information at 0.5 second. At time 0.7 second, restart step

3 will be written to the output restart database (step 2 has already been written over twice). This

pattern continues so that we would build up a sequence of restart information at times 0.3, 0.6, 0.9,

. . . second until we reach the termination time for the problem. If there was a problem during the

analysis, the last step on the output restart database would be whatever had last been written to the

database. If, for example, we had set our termination time to 1.0 second and a problem occurred

after restart information had been written at 0.7 second but before we completed the time step at

0.8 second, then the last information on the output restart database would be at 0.7 second.

You can use the OVERLAY COUNT command line in conjunction with a CYCLE COUNT command

line. For a description of the CYCLE COUNT command line and its use with the OVERLAY COUNT

command line, see Section 8.5.11.

8.5.11 Cycle Count

CYCLE COUNT = <integer>cycle_count

The CYCLE COUNT command line specifies the number of restart steps that will be written to the

output restart database before previously written steps are overwritten. For example, suppose we

set the cycle_count parameter to 5, and we request that restart information be written every

0.1 second. The restart system will write information to the output restart database at times 0.1,

0.2, 0.3, 0.4, and 0.5 second. At time 0.6 second, the information at step 1, originally written at

time 0.1 second, will be overwritten with information at time 0.6 second. At time 0.7 second, the

information at step 2, originally written at time 0.2 second, will be overwritten with information at

time 0.7 second. At time 0.8 second, the output restart database will contain restart information at

times 0.6, 0.7, 0.8, 0.4, and 0.5 second. Time will not necessarily be monotonically increasing on

a database that uses a CYCLE COUNT command line.

If you only want the last step available on the output restart database, set cycle_count equal to

1.

The CYCLE COUNT and OVERLAY COUNT command lines can be used at the same time. For this

example, we will combine our example with an overlay count of 2 as given in Section 8.5.10 with

our example of a cycle count of 5 as given in this section (Section 8.5.11). Information is written

to the output restart database time step every 0.1 second. The output times at which information

is written to the output restart database are 0.1, 0.2, 0.3, . . . second. Each of these times

corresponds to an output step. Time 0.1 second corresponds to output step 1, time 0.2 second

corresponds to output step 2, time 0.3 corresponds to output step 3, and so forth. An output time

of n× 0.1 corresponds to output step n. The overlay command will result in information at time

0.3, 0.6, 0.9, 1.2, and 1.5 seconds written as steps 1, 2, 3, 4, and 5 on the output restart database.

For times greater than 1.6 seconds, the cycle command will now take effect because we have five

8.5. RESTART DATA 503

steps written on the output restart database. Information at times 1.6, 1.7, and 1.8 seconds will now

overwrite the information at step 1, which had information at time 0.3 second. Information at times

1.9, 2.0, and 2.1 seconds will now overwrite the information at step 2, which had information at

time 0.6 second. For any output step n, its position, step number ns, in the restart output database

is as follows:

if ns 6= 0

ns = int(n/(no +1))%nc

else

ns = nc

end

In the above equations, nc is the cycle count, and no is the overlay count. The expression

int(n/(no + 1)) produces an integer arithmetic result. For example, if n is 4 and no is 2, then

we have 4 divided by 3, and the integer arithmetic result is 1 (any fractional remainder is dis-

carded). The operator % is the modulus operator; the modulus operator gives the modulus of its

first operand with respect to its second operand, i.e., it produces the remainder of dividing the first

operand by the second operand. The result of 1 % 5 is 1, for example.

8.5.12 Use Output Scheduler

USE OUTPUT SCHEDULER <string>scheduler_name

In an analysis with multiple regions, it can be difficult to synchronize output such as restart

files. To help synchronize output for analyses with multiple regions, you can define an OUTPUT

SCHEDULER command block at the SIERRA scope. The scheduler can then be referenced in the

RESTART DATA command block via the USE OUTPUT SCHEDULER command line. The string

scheduler_name must match a name used in an RESTART DATA command block. See Sec-

tion 8.6 for a description of using this command block and the USE OUTPUT SCHEDULER com-

mand line.

8.5.13 Write Restart If System Error Encountered

OUTPUT ON SIGNAL = <string>SIGALRM|SIGFPE|SIGHUP|SIGINT|

SIGPIPE|SIGQUIT|SIGTERM|SIGUSR1|SIGUSR2|SIGABRT|

SIGKILL|SIGILL|SIGSEGV

The OUTPUT ON SIGNAL command line is used to initiate the writing of a restart file when the

system encounters a type of system error. Only one error type in the list of error types should be

entered for this command line. Generally, these system errors cause the code to terminate before

the code can add any current restart output (restart output past the last restart output time step) to

504 CHAPTER 8. OUTPUT

the restart file. If the code encounters the specified type of error during execution, a restart file will

be written before execution is terminated.

This command line can also be used to force the writing of a restart file at some point during

execution of the code. Suppose the command line

OUTPUT ON SIGNAL = SIGUSR2

is included in the input file. While the code is running, a user can execute (from the keyboard) the

system command line

kill -s SIGUSR2 pid

to terminate execution and force the writing of a results file. In the above system command line,

pid is the process identifier, which is an integer.

The most useful application of the command line is to send a signal via a system command line

to write a restart file. Note that the OUTPUT ON SIGNAL command line is primarily a debugging

tool for code developers.

8.6. OUTPUT SCHEDULER 505

8.6 Output Scheduler

In an analysis with multiple regions, it can be difficult to synchronize output such as results files,

history files, and restart files. To help synchronize output for analyses with multiple regions, you

can define an OUTPUT SCHEDULER command block at the SIERRA scope. This scheduler can

then be referenced in several places:

• The scheduler can be referenced in the RESULTS OUTPUT command block to control the

output of results information.

• The scheduler can be referenced in the HISTORY OUTPUT command block to control the

output of history information.

• The scheduler can be referenced in the RESTART DATA command block to control the writ-

ing of restart files.

In summary, the OUTPUT SCHEDULER command block is defined in the SIERRA scope. The

scheduler is referenced by a USE OUTPUT SCHEDULER command line that can appear in a

RESULTS OUTPUT, HISTORY OUTPUT, and RESTART DATA command block. Section 8.6.1 de-

scribes the OUTPUT SCHEDULER command block, and Section 8.6.2 illustrates how this block is

referenced with the USE OUTPUT SCHEDULER command line.

8.6.1 Output Scheduler Command Block

BEGIN OUTPUT SCHEDULER <string>scheduler_name

START TIME = <real>output_start_time

TIMESTEP ADJUSTMENT INTERVAL = <integer>steps

AT TIME <real>time_begin INCREMENT =

<real>time_increment_dt

ADDITIONAL TIMES = <real>output_time1

<real>output_time2 ...

AT STEP <integer>step_begin INCREMENT =

<integer>step_increment

ADDITIONAL STEPS = <integer>output_step1

<integer>output_step2 ...

TERMINATION TIME = <real>termination_time_value

END [OUTPUT SCHEDULER <string>scheduler_name]

An output scheduler is defined with a command block in the SIERRA scope. The OUTPUT

SCHEDULER command block begins with the input line:

BEGIN OUTPUT SCHEDULER <string>scheduler_name

and is terminated with the line:

END OUTPUT SCHEDULER <string>scheduler_name

506 CHAPTER 8. OUTPUT

where scheduler_name is a user-defined name for the command block. All the normal schedul-

ing command lines are valid in an OUTPUT SCHEDULER command block.

8.6.1.1 Set Begin Time for Output Scheduler

START TIME = <real>output_start_time

Using the START TIME command line, you can set the start time for a scheduler beginning at time

output_start_time. The scheduler will not take effect before this time. If other commands set

times for scheduling (AT TIME, ADDITIONAL TIMES) that are less than output_start_time,

those times will be ignored.

8.6.1.2 Adjust Interval for Time Steps

TIMESTEP ADJUSTMENT INTERVAL = <integer>steps

This command line is used to specify that, when the scheduler is in effect, output will be at exactly

the times specified. To hit the output times exactly in an explicit, transient dynamics code, it is

necessary to adjust the time step as the time approaches an output time. The integer value steps

in the TIMESTEP ADJUSTMENT INTERVAL command line specifies the number of time steps to

look ahead in order to adjust the time step.

If this command line does not appear, output occurs at times closest to the specified output times.

8.6.1.3 Output Interval Specified by Time Increment

AT TIME <real>time_begin INCREMENT = <real>time_increment_dt

At the time specified by time_begin, output will be scheduled at every time increment given by

the real value time_increment_dt.

8.6.1.4 Additional Times for Output

ADDITIONAL TIMES = <real>output_time1 <real>output_time2 ...

In addition to any times specified by the command line in Section 8.6.1.3, you can use the

ADDITIONAL TIMES command line to specify an arbitrary number of additional output times.

8.6.1.5 Output Interval Specified by Step Increment

AT STEP <integer>step_begin INCREMENT =

<integer>step_increment

8.6. OUTPUT SCHEDULER 507

At the step specified by step_begin, output will be scheduled at every step increment given by

the integer value step_increment.

8.6.1.6 Additional Steps for Output

ADDITIONAL STEPS = <integer>output_step1

<integer>output_step2 ...

In addition to any steps specified by the command line in Section 8.6.1.5, you can use the

ADDITIONAL STEPS command line to specify an arbitrary number of additional output steps.

8.6.1.7 Set End Time for Output Scheduler

TERMINATION TIME = <real>termination_time_value

Using the TERMINATION TIME command line, you can set the termination time for a scheduler

beginning at time termination_time_value. The scheduler will not be in effect after this time.

If other commands set times for scheduling (AT TIME, ADDITIONAL TIMES) that are greater than

termination_time_value, those times will be ignored by the scheduler.

8.6.2 Example of Using the Output Scheduler

Once an output scheduler has been defined via the OUTPUT SCHEDULER command block, it can

be used by inserting a USE OUTPUT SCHEDULER command line in any of the following command

blocks: RESULTS OUTPUT, HISTORY OUTPUT, and RESTART DATA. The following paragraph

provides an example of using output schedulers.

In the SIERRA scope, we define two output schedulers, Timer and Every_Step:

BEGIN OUTPUT SCHEDULER Timer

AT TIME 0.0 INCREMENT = 10.0e-6

TIME STEP ADJUSTMENT INTERVAL = 4

END OUTPUT SCHEDULER Timer

#

BEGIN OUTPUT SCHEDULER Every_Step

AT STEP 0 INCREMENT = 1

END OUTPUT SCHEDULER Every_Step

With the USE OUTPUT SCHEDULER command, we reference the scheduler named Timer for re-

sults output:

BEGIN RESULTS OUTPUT Out_Region_1

.

508 CHAPTER 8. OUTPUT

USE OUTPUT SCHEDULER Timer

.

END RESULTS OUTPUT Out_Region_1

With the USE OUTPUT SCHEDULER command, we reference the scheduler named Every_STEP

for history output:

BEGIN HISTORY OUTPUT Out_Region_2

.

USE OUTPUT SCHEDULER Every_Step

.

END HISTORY OUTPUT Out_Region_2

8.7. REGISTERED VARIABLES 509

8.7 Registered Variables

This section lists commonly used registered variables that the user can select as output to the results

file and the history file. The first part of this section lists global, nodal, and element registered

variables. The second part of this section lists registered variables associated with material models.

8.7.1 Global, Nodal, and Element Registered Variables

This section lists commonly used global, nodal, and element registered variables. The registered

variables are presented in tables based on use, as follows:

- Table 8.6 Variables Registered on Nodes (Variable and Type)

- Table 8.7 Element Variables Registered for All Elements

- Table 8.8 Element Variables Registered for Solid Elements

- Table 8.9 Element Variables Registered for Membranes

- Table 8.10 Nodal Variables Registered for Shells

- Table 8.11 Element Variables Registered for Shells

- Table 8.12 Element Variables Registered for Truss

- Table 8.13 Element Variables Registered for Cohesive Elements

- Table 8.14 Element Variables Registered for Beam

- Table 8.15 Element Variables Registered for Springs

- Table 8.16 Global Registered Variables

- Table 8.17 Nodal Variables Registered for Spot Welds

- Table 8.18 Face Variables Registered for Blast Pressure boundary condition (See Sec-

tion 6.10.2)

The tables provide the following information about each registered variable:

Variable Name. This is the string that will appear on the GLOBAL VARIABLES, NODE

VARIABLES, or ELEMENT VARIABLES command line.

Type. This is the variable’s type. The various types are denoted with the labels Integer, Real,

Vector_2D, Vector_3D, SymTen33, and FullTen36. The type Integer indicates the reg-

istered variable is an integer; the type Real indicates the registered variable is a real. The

type Vector_2D indicates the registered variable type is a two-dimensional vector. The type

Vector_3D indicates the registered variable is a three-dimensional vector. For a three-dimensional

510 CHAPTER 8. OUTPUT

vector, the variable quantities will be output with suffixes of _x, _y, and _z. For example, if

the registered variable displacement is requested to be output as displ, the components of the

displacement vector on the results file will be displ_x, displ_y, and displ_z. The type

SymTen33 indicates the registered variable is a symmetric 3 × 3 tensor. For a 3 × 3 symmetric

tensor, the variable quantities will be output with suffixes of _xx, _yy, _zz, _xy, _yz, and _zx.

For example, if the registered variable stress is requested for output as stress, the components

of the stress tensor on the results file will be stress_xx, stress_yy, stress_zz, stress_xy,

stress_yz, and stress_zx. The type FullTen36 is a full 3 × 3 tensor with three diagonal

terms and six off-diagonal terms.

The tables of registered variables follow.

Table 8.6: Variables Registered on Nodes (Variable and Type)

Variable Name Type Comments

model_coordinates Vector_3D Original coordinates of nodes.

coordinates Vector_3D Current coordinates of nodes.

displacement Vector_3D Total displacement.

displacement_increment Vector_3D Displacement increment at current time

step.

velocity Vector_3D

acceleration Vector_3D

force_internal Vector_3D

force_external Vector_3D

force_hourglass Vector_3D

force_contact Vector_3D

reaction Vector_3D

moment_reaction Vector_3D

mass Real

nodal_time_step Real Nodal stable time step (explicit control

modes, coarse mesh only)

Table 8.7: Element Variables Registered for All Elements

Variable Name Type Comments

timestep Real Critical time step for the element. The

element in the model with the smallest time

step controls the analysis time step.

element_mass Real

8.7. REGISTERED VARIABLES 511

Table 8.8: Element Variables Registered for Solid Elements

Variable Name Type Comments

stress SymTen33

unrotated_stress SymTen33

left_stretch SymTen33

rotation FullTen36

volume Real

shrmod Real

dilmod Real

hourglass_energy Real

Table 8.9: Element Variables Registered for Membranes

Variable Name Type Comments

memb_stress SymTen33

element_area Real

element_thickness Real

Table 8.10: Nodal Variables Registered for Shells

Variable Name Type Comments

rotational_displacement Vector_3D

rotational_velocity Vector_3D

rotational_acceleration Vector_3D

moment_internal Vector_3D

moment_external Vector_3D

rotational_mass Real

512 CHAPTER 8. OUTPUT

Table 8.11: Element Variables Registered for Shells

Variable Name Type Comments

memb_stress SymTen33 Stress at midplane in global X, Y, and Z

coordinates.

bottom_stress SymTen33 Stress at bottom integration point in global

X, Y, and Z coordinates.

top_stress SymTen33 Stress at top integration point in global X,

Y, and Z coordinates.

strain SymTen33 Integrated strain at midplane in local shell

coordinate system.

element_area Real

element_thickness Real

rate_of_deformation SymTen33 Rate of deformation (stretching) tensor

Table 8.12: Element Variables Registered for Truss

Variable Name Type Comments

truss_init_length Real

truss_stretch Real

stress SymTen33 Axial stress is stored in stress_xx. All

other components are zero. See

Section 5.2.6 for more details.

truss_strain_incr Real

truss_force Real

Table 8.13: Element Variables Registered for Cohesive Elements

Variable Name Type Comments

cse_traction Vector_3D

cse_separation Vector_3D

cse_initial_trac Vector_3D If traction initialization is used

cse_activated Integer For intrinsic elements

cse_fracture_area Real Currently not used

8.7. REGISTERED VARIABLES 513

Table 8.14: Element Variables Registered for Beam

Variable Name Type Comments

beam_strain_inc Vector_2D Thirty-two strain increment values are

output. Some values may be zero

depending on section. Axial strains are 01,

03, 05, . . . Shear strains are 02, 04, 06, . . .

See Section 5.2.5 for more details.

stress SymTen33 Ninety-six stress values are output,

although only the first two values per

integration point contain actual stress

values. Some integration points may not

have data depending on the section. Axial

stresses are in stress_xx_01,

stress_xx_02, . . . , stress_xx_16.

Shear stresses are in stress_xy_01,

stress_xy_02, . . . , stress_xy_16,

where 01, 02, . . . , 16, refer to the

integration points. See Section 5.2.5 for

more details.

beam_stress_axial Real Sixteen axial stress values. Some may be

zero depending on section.

beam_stress_shear Real Sixteen shear stress values. Some may be

zero depending on section.

beam_axial_force Real Axial force at midpoint.

beam_transverse_force_s Real Transverse shear in s-direction at midpoint.

beam_transverse_force_t Real Transverse shear in t-direction at midpoint.

beam_moment_r Real Torsion at midpoint.

beam_moment_s Real Moment about s-direction at midpoint.

beam_moment_t Real Moment about t-direction at midpoint.

Table 8.15: Element Variables Registered for Springs

Variable Name Type Comments

spring_force Real Magnitude of the internal spring force.

spring_engineering_

strain

Real Change in length over initial length dL
L0

.

spring_init_length Real Initial spring length, L0.

514 CHAPTER 8. OUTPUT

Table 8.16: Global Registered Variables

Variable Name Type Comments

artificial_energy Real

contact_energy Real

external_energy Real

ke_blockblockID Real Kinetic energy sum for block blockID

ee_strain_blockblockID Real External energy sum for block blockID

ie_strain_blockblockID Real Internal energy sum for block blockID

momentum_blockblockID Vector_3D Momentum sum for block blockID

hourglass_energy Real

internal_energy Real

kinetic_energy Real

strain_energy Real

momentum Vector_3D Momentum vector

timestep Real Current time step

timestep_element Real Time step from element estimator

timestep_nodal Real Time step from nodal estimator

timestep_material Real Time step from material model

timestep_lanczos Real Time step from Lanczos estimator

timestep_powermethod Real Time step from power method estimator

wall_clock_time Real Accumulated wall clock time

wall_clock_time_per_

step

Real Wall clock time for last time step

cpu_time Real Accumulated CPU time

cpu_time_per_step Real CPU time for last time step

8.7. REGISTERED VARIABLES 515

Table 8.17: Nodal Variables Registered for Spot Welds

Variable Name Type Comments

spot_weld_parametric_

coords

Vector_2D Coordinates of node on face.

spot_weld_normal_force_

at_death

Real Value of force normal to face when

spot-weld breaks.

spot_weld_tangential_

force_at_death

Real Value of force tangential to face when

spot-weld breaks.

spot_weld_death_flag Integer alive = 0, dead = FAILURE DECAY

CYCLES (default is 10), -1 = no spot weld

constructed at this node.

spot_weld_scale_factor Real Nodal influence area of current node.

spot_weld_normal_

displacement

Real Current displacement of weld normal to

face.

spot_weld_tangential_

displacement

Real Current displacement of weld tangential to

face.

spot_weld_normal_force Real Current force of weld normal to face.

spot_weld_tangential_

force

Real Current force of weld tangential to face.

spot_weld_initial_

offset

Vector_3D The initial offset of the spot weld node

from the spot weld surface. Does not

change over time, only output if IGNORE

INITIAL OFFSET = YES is specified at

input.

initial_normal Vector_3D The initial normal of the spot weld surface

at the point of interaction. Only output if

IGNORE INITIAL OFFSET = YES is

specified at input.

516 CHAPTER 8. OUTPUT

Table 8.18: Face Variables Registered for Blast Pressure boundary condition

Variable Name Type Comments

pressure Real Current total pressure. This is the only field

for this boundary condition that varies in

time.

normal Vector_3D Face normal vector.

incident_pressure Real Peak incident pressure.

reflected_pressure Real Peak reflected pressure.

alpha Real Decay coefficient α .

beta Real Decay coefficient β .

cosa Real Cosine of θ .

arrival_time Real Time for arrival of blast at face.

positive_duration Real Duration of blast at face.

8.7. REGISTERED VARIABLES 517

8.7.2 Registered Variables for Material Models

It is possible to output the state variables from the material models. Most of the materials, with

the exception of simple models such as the elastic model, have state variables that can be output.

The method used to output state variables depends on how the model is implemented. There are

currently three cases:

- The Strumento version of most of the solid models for which the entire state variable array

can be dumped.

- The Strumento version of a few solid models for which state variables are accessed by name

- The versions of the solid models implemented in the LAME library for which state variables

are accessed by name

In the future, the implementation of the solid material models in LAME will be used by default,

and all state variables will be accessed by name. The following sections describe the different

methods required to output material model variables.

8.7.2.1 State Variable Output by Index for Strumento Solid Material Models

To output all of the state variables for a given material model. Use the ELEMENT VARIABLES

command line in the RESULTS OUTPUT command block of the form:

ELEMENT VARIABLES = state_material_name

where material_name is the name of the material model, e.g. state_elastic_plastic,

state_power_law_hardening, state_foam_plasticity, or state_orthotropic_

rate. All of the state variables for the material will be output.

Some of the Strumento material models are implemented in a way such that state variables are

accessed directly by name rather than by index. For example, to access the C10 variable in the

Mooney-Rivlin material model, one would simply list the name C10 to obtain that output. The state

variables for the Mooney-Rivlin, Swanson, and Orthotropic Crush material models are accessed in

this way.

Section 8.7.2.3 provides tables listing the state variables for all solid material models. Models for

which state variable output is requested by name have names entered in a column entitled "Name

(Strumento Model)".

8.7.2.2 State Variable Output for LAME Solid Material Models

The state variables for material models in LAME are accessible directly by name. For instance,

the equivalent plastic strain variable is accessible by the name EQPS for all elastic-plastic material

models.

518 CHAPTER 8. OUTPUT

Section 8.7.2.3 provides tables listing the state variables for all solid material models. Models

that are implemented in LAME have state variable names listed in the column entitled "Name

(LAME Model)". If there are no entries in that column for a given material, then that material is

not implemented in LAME.

Available LAME state variables for a material will also be listed in the log file from a run that uses

the material model.

8.7.2.3 State Variable Tables for Solid Material Models

As explained in the preceding sections, there are three cases to be considered for state variable

output from solid material models: Strumento models, Strumento models for which state output

is obtained using the variable name, and LAME models, for which state output is also obtained

by variable name. Tables of state variables for commonly used material models are provided

in Tables 8.23 through 8.44. These tables contain the indices or names used to access the state

variables in the Strumento version of the models, as well as the names used to access the LAME

versions of the models. If there are no entries in the "Strumento Model" column for a model, that

model is only implemented in LAME. Likewise, if there are no entries in the "LAME Model"

column, there is no version of that model in LAME.

Table 8.19: State Variables for ELASTIC Model (Section 4.2.1)

This model has no state variables.

Table 8.20: State Variables for ELASTIC FRACTURE Model (Section 4.2.2)

Index Name Variable Description

(Strumento

Model)

(LAME Model)

1 DEATH_FLAG flag for element death

2 CRACK_OPENING_

STRAIN

critical value of opening strain

3 FAILURE_

DIRECTION_X

crack opening direction - x component

4 FAILURE_

DIRECTION_Y

crack opening direction - y component

5 FAILURE_

DIRECTION_Z

crack opening direction - z component

6 PRINCIPAL_

STRESS

value of maximum principal stress

8.7. REGISTERED VARIABLES 519

Table 8.21: State Variables for ELASTIC PLASTIC Model (Section 4.2.3)

Index Name Variable Description

(Strumento

Model)

(LAME Model)

1 EQPS equivalent plastic strain

2 BACK_STRESS_XX back stress - xx component

3 BACK_STRESS_YY back stress - yy component

4 BACK_STRESS_ZZ back stress - zz component

5 BACK_STRESS_XY back stress - xy component

6 BACK_STRESS_YZ back stress - yz component

7 BACK_STRESS_ZX back stress - zx component

8 RADIUS radius of yield surface

Table 8.22: State Variables for EP POWER HARD Model (Section 4.2.4)

Index Name Variable Description

(Strumento

Model)

(LAME Model)

1 EQPS equivalent plastic strain

2 RADIUS radius of yield surface

Table 8.23: State Variables for DUCTILE FRACTURE Model (Section 4.2.5)

Index Name Variable Description

(Strumento

Model)

(LAME Model)

1 EQPS equivalent plastic strain

2 TEARING_

PARAMETER

tearing parameter

3 CRACK_OPENING_

STRAIN

crack opening strain

4 FAILURE_

DIRECTION_X

crack opening direction - x component

5 FAILURE_

DIRECTION_Y

crack opening direction - y component

6 FAILURE_

DIRECTION_Z

crack opening direction - z component

7 DEATH_FLAG flag for element death

8 RADIUS radius of yield surface

520 CHAPTER 8. OUTPUT

Table 8.24: State Variables for MULTILINEAR EP Model (Section 4.2.6)

Index Name Variable Description

(Strumento

Model)

(LAME Model)

1 EQPS equivalent plastic strain

2 RADIUS radius of yield surface

3 BACK_STRESS_XX back stress - xx component

4 BACK_STRESS_YY back stress - yy component

5 BACK_STRESS_ZZ back stress - zz component

6 BACK_STRESS_XY back stress - xy component

7 BACK_STRESS_YZ back stress - yz component

8 BACK_STRESS_ZX back stress - zx component

Table 8.25: State Variables for ML EP FAIL Model (Section 4.2.7)

Index Name Variable Description

(Strumento

Model)

(LAME Model)

1 EQPS equivalent plastic strain

2 RADIUS radius of yield surface

3 BACK_STRESS_XX back stress - xx component

4 BACK_STRESS_YY back stress - yy component

5 BACK_STRESS_ZZ back stress - zz component

6 BACK_STRESS_XY back stress - xy component

7 BACK_STRESS_YZ back stress - yz component

8 BACK_STRESS_ZX back stress - zx component

9 TEARING_

PARAMETER

tearing parameter

10 CRACK_OPENING_

STRAIN

crack opening strain

11 FAILURE_

DIRECTION_X

crack opening direction - x component

12 FAILURE_

DIRECTION_Y

crack opening direction - y component

13 FAILURE_

DIRECTION_Z

crack opening direction - z component

14 CRACK_FLAG status of the model: 0 for loading, 1 or 2 for

initiation of failure, 3 during unloading, 4 for

completely unloaded

8.7. REGISTERED VARIABLES 521

Table 8.26: State Variables for FOAM PLASTICITY Model (Section 4.2.11)

Index Name Variable Description

(Strumento

Model)

(LAME Model)

1 ITER iterations

2 EVOL volumetric strain

3 PHI phi

4 EQPS equivalent plastic strain

5 PA A

6 PB B

Table 8.27: State Variables for HONEYCOMB Model

Index Name Variable Description

(Strumento

Model)

(LAME Model)

1 CRUSH minimum volume ratio

2 EQDOT effective strain rate

3 RMULT rate multiplier

5 ITER iterations

6 EVOL volumetric strain

522 CHAPTER 8. OUTPUT

Table 8.28: State Variables for HYPERFOAM Model

This model has no state variables.

Table 8.29: State Variables for JOHNSON COOK Model

Index Name Variable Description

(Strumento

Model)

(LAME Model)

1 RADIUS radius of yield surface

2 EQPS equivalent plastic strain

3 THETA temperature

4 EQDOT equivalent strain rate

Table 8.30: State Variables for LOW DENSITY FOAM Model

Index Name Variable Description

(Strumento

Model)

(LAME Model)

PAIR air pressure

8.7. REGISTERED VARIABLES 523

Table 8.31: State Variables for MOONEY RIVLIN Model

Name Name Variable Description

(Strumento

Model)

(LAME Model)

C10 C10

C01 C01

RK K

SFJth SFJTH

RJTH JTH

V_MECH VMECH_XX

VMECH_YY

VMECH_ZZ

VMECH_XY

VMECH_YZ

VMECH_ZX

SFJTH_FLAG

Table 8.32: State Variables for NEO HOOKEAN Model

This model has no state variables.

Table 8.33: State Variables for ORTHOTROPIC CRUSH Model (Section 4.2.13)

Name Name Variable Description

(Strumento

Model)

(LAME Model)

CRUSH CRUSH

Table 8.34: State Variables for ORTHOTROPIC RATE Model (Section 4.2.14)

Index Name Variable Description

(Strumento

Model)

(LAME Model)

CRUSH

524 CHAPTER 8. OUTPUT

Table 8.35: State Variables for PIEZO Model

Index Name Variable Description

(Strumento

Model)

(LAME Model)

STATE

Table 8.36: State Variables for POWER LAW CREEP Model

Index Name Variable Description

(Strumento

Model)

(LAME Model)

1 ECREEP equivalent creep strain

2 SEQDOT equivalent stress rate

Table 8.37: State Variables for SHAPE MEMORY Model

Index Name Variable Description

(Strumento

Model)

(LAME Model)

STATE

Table 8.38: State Variables for SOIL FOAM Model (Section 4.2.10)

Index Name Variable Description

(Strumento

Model)

(LAME Model)

EVOL

8.7. REGISTERED VARIABLES 525

Table 8.39: State Variables for SWANSON Model (Section 4.2.21)

Name Name Variable Description

(Strumento

Model)

(LAME Model)

SFJTH SFJTH

RJTH RJTH

V_MECH VMECHXX

VMECHYY

VMECHZZ

VMECHXY

VMECHYZ

VMECHZX

SFJTH_FLAG

526 CHAPTER 8. OUTPUT

Table 8.40: State Variables for VISCOELASTIC SWANSON Model (Section 4.2.22)

Index Name Variable Description

(Strumento

Model)

(LAME Model)

SFJTH

JTH

VMECHXX

VMECHYY

VMECHZZ

VMECHXY

VMECHYZ

VMECHZX

VSXXDEV1 -

VSXXDEV10

VSYYDEV1 -

VSYYDEV10

VSZZDEV1 -

VSZZDEV10

VSXYDEV1 -

VSXYDEV10

VSYZDEV1 -

VSYZDEV10

VSZXDEV1 -

VSZXDEV10

SOXXDEV

SOYYDEV

SOZZDEV

SOXYDEV

SOYZDEV

SOZXDEV

8.7. REGISTERED VARIABLES 527

Table 8.41: State Variables for THERMO EP POWER Model

Index Name Variable Description

(Strumento

Model)

(LAME Model)

1 EQPS equivalent plastic strain

2 RADIUS radius of yield surface

3 BACK_STRESS_XX back stress - xx component

4 BACK_STRESS_YY back stress - yy component

5 BACK_STRESS_ZZ back stress - zz component

6 BACK_STRESS_XY back stress - xy component

7 BACK_STRESS_YZ back stress - yz component

8 BACK_STRESS_ZX back stress - zx component

Table 8.42: State Variables for THERMO EP POWER WELD Model

Index Name Variable Description

(Strumento

Model)

(LAME Model)

EQPS equivalent plastic strain

RADIUS radius of yield surface

BACK_STRESS_XX back stress - xx component

BACK_STRESS_YY back stress - yy component

BACK_STRESS_ZZ back stress - zz component

BACK_STRESS_XY back stress - xy component

BACK_STRESS_YZ back stress - yz component

BACK_STRESS_ZX back stress - zx component

WELD_FLAG

528 CHAPTER 8. OUTPUT

Table 8.43: State Variables for UNIVERSAL POLYMER Model

Index Name Variable Description

(Strumento

Model)

(LAME Model)

AEND

IGXX1 - IGXX20

IGYY1 - IGYY20

IGZZ1 - IGZZ20

IGXY1 - IGXY20

IGYZ1 - IGYZ20

IGZX1 - IGZX20

IKI11 - IKI120

IKAT1 - IKAT20

IF1P1 - IF1P20

IF2J1 - IF2J20

EPSXX

EPSYY

EPSZZ

EPSXY

EPSYZ

EPSZX

LOGA

8.7. REGISTERED VARIABLES 529

Table 8.44: State Variables for VISCOPLASTIC Model

Index Name Variable Description

(Strumento

Model)

(LAME Model)

SVBXX

SVBYY

SVBZZ

SVBXY

SVBYZ

SVBZX

EQDOT

COUNT

SHEAR

BULK

RATE

EXP

ALPHA

A1

A2

A4

A5

530 CHAPTER 8. OUTPUT

8.7.2.4 Registered Variables for Shell/Membrane Material Models

Shell and membrane material models also make their state variables available through direct nam-

ing of the variables. Tables 8.45 through 8.48 indicate the names of the state variables for the shell

material models.

Table 8.45: State Variables for Elastic-Plastic Model for Shells

Variable Name Variable Description

eqps Equivalent plastic strain

back_stress Back stress

radius Radius of the yield surface

Table 8.46: State Variables for Elastic-Plastic Power-Law Hardening Model for Shells

Variable Name Variable Description

eqps Equivalent plastic strain

radius Radius of yield surface

Table 8.47: State Variables for Multilinear Elastic-Plastic Hardening Model for Shells

Variable Name Variable Description

eqps Equivalent plastic strain

tensile_eqps Equivalent plastic strain only accumulated in tension

back_stress Back stress

radius Radius of the yield surface

8.7. REGISTERED VARIABLES 531

Table 8.48: State Variables for Multilinear Elastic-Plastic Hardening Model with Failure for Shells

Variable Name Variable Description

eqps Equivalent plastic strain

back_stress Back stress

radius Radius of the yield surface

tearing_parameter The current value of the tearing parameter

crack_opening_strain The value of the crack opening strain during the failure

process

crack_flag Status of the model: 0 for loading, 1 or 2 for initiation of

failure, 3 during unloading, 4 for completely unloaded

532 CHAPTER 8. OUTPUT

8.7.3 Registered Variables for Surface Models

It is possible to output the state variables from the surface models. The state variables are registered

at the element and as such are output using the variable name by use of following line command:

ELEMENT VARIABLES = surface_model_state_name

Section 8.7.3.1 provides tables listing the state variables for all surface models.

8.7.3.1 State Variable Tables for Surface Models

Table 8.49: State Variables for TRACTION DECAY Surface Model

Index Name Variable Description

0 MAX_

SEPARATION_S

maximum separation in the first tangential

direction

1 MAX_

SEPARATION_T

maximum separation in the second

tangential direction

2 MAX_

SEPARATION_N

maximum separation in the normal direction

Table 8.50: State Variables for TVERGAARD HUTCHINSON Surface Model

Index Name Variable Description

0 PEAK_TRACTION maximum traction the model can experience

1 LAMBDA_MAX maximum lambda the model has experienced

2 TRACTION_AT_

LAMBDA_MAX

traction at LAMBDA_MAX

8.7. REGISTERED VARIABLES 533

Table 8.51: State Variables for THOULESS PARMIGIANI Surface Model

Index Name Variable Description

0 PERCENT_OF_

FAILURE

current percentage of failure

1 PEAK_TRACTION_

N

maximum normal traction the model can

experience

2 PEAK_TRACTION_

T

maximum tangential traction the model can

experience

3 LAMBDA_MAX_N maximum normal lambda the model has

experienced

4 TRACTION_AT_

LAMBDA_MAX_N

normal traction at LAMBDA_MAX_N

5 LAMBDA_MAX_T maximum tangential lambda the model has

experienced

6 TRACTION_AT_

LAMBDA_MAX_T

tangential traction at LAMBDA_MAX_T

7 G_AT_LAMBDA_

MAX_N

the area under the normal traction separation

curve up to LAMBDA_MAX_N

8 G_AT_LAMBDA_

MAX_T

the area under the tangential traction

separation curve up to LAMBDA_MAX_T

534 CHAPTER 8. OUTPUT

8.8 References

1. Larry A. Schoof, Victor R. Yarberry, EXODUS II: A Finite Element Data Model, SAND92-

2137, Sandia National Laboratories, September 1994. See also new draft documentation

available at http://sourceforge.net/projects/exodusii.

2. The eXtensible Data Model and Format (XDMF) http://www.xdmf.org (Accessed

March 17, 2008).

3. Sjaardema, G. D. Overview of the Sandia National Laboratories Engineering Analysis Code

Access System, SAND92-2292. Albuquerque, NM: Sandia National Laboratories, January

1993.

http://jal.sandia.gov/SEACAS/Documentation/SEACAS_Overview.pdf.

http://sourceforge.net/projects/exodusii
http://www.xdmf.org
http://jal.sandia.gov/SEACAS/Documentation/SEACAS_Overview.pdf

Chapter 9

User Subroutines

User-defines subroutines is a functionality shared by Adagio and Presto. This chapter discusses

when and how to use user-defined subroutines. There are examples of user-defined subroutines

in the latter part of this chapter. Some of the examples are code specific, i.e., they are applicable

to Presto rather than Adagio or vice versa. All examples, regardless of their applicability, do

provide important information about how to use the command options available for user-defined

subroutines.

In the introductory part of Chapter 9, we first describe, in general, possible applications for the

user subroutine functionality in Presto. Then, again in general, we describe the various pieces and

steps that are required by the user to implement a user subroutine. Subsequently, we focus on

various aspects of implementing the user subroutine functionality. Section 9.1 describes the details

of the user subroutine. Section 9.2 describes the command lines associated with user subroutines

that appear in the Presto input file. In Section 9.3, we explain how to build and use a version of

Presto that incorporates your user subroutine. Finally, Section 9.4 provides examples of actual user

subroutines, and Section 9.5 lists some subroutines that are now in the standard user library.

Applications. User subroutines are primarily intended as complex function evaluators that are to

be used in conjunction with existing Presto capability (boundary conditions, element death, user

output, etc.). For example, suppose we want to have a prescribed displacement boundary condition

applied to a set of nodes, and we want the displacement at each node to vary with both time and

spatial location of the node. The standard function option associated with the prescribed direction

displacement boundary condition in Presto only allows for time variation; i.e., at any given time,

the direction and the magnitude of the displacement at each node, regardless of the spatial location

of the node, are the same. If we wanted to have a spatial variation of the displacement field

in addition to the time variation, it would be necessary to implement a user subroutine for the

prescribed direction displacement boundary condition. Other examples of possible uses of user

subroutines are as follows:

• Element death is determined by a complex function based on a set of physical parameters

and element stress.

• The user wants to compute the total contact force acting on a given surface.

535

536 CHAPTER 9. USER SUBROUTINES

• Element stress information must be transformed to a local coordinate system so that the

stress values will be meaningful.

• An aerodynamic pressure based on velocity and surface normal is applied to a specified

surface.

Some capability exists for using mesh connectivity. It is possible to compute an element quantity

based on values at the element nodes.

Some difficulties might occur in parallel applications. If computations for element A depend on

quantities in element B and elements A and B are on different processors, then the computations

for A may not have access to quantities in element B. For most computations in user subroutines,

however, this should not be a problem.

Implementing completely new capabilities, particularly if these capabilities involve parallel com-

puting, may be difficult or impossible with user subroutines.

General Pieces and Steps. A number of pieces and steps are required to make use of user sub-

routines. Here, we present a brief description of the pieces and steps that a user will need for user

subroutines without going into detail. The details are discussed in later parts of this chapter.

1. You must first determine whether your application fits in the user subroutine format. This can

be done by considering the above requirements and examining the description of commands

for functionality in Presto. For example, the basic kinematic boundary conditions and force

conditions allow for the use of user subroutines. The description of these commands includes

a discussion of how a user subroutine could be applied and what command line will invoke

a user subroutine.

2. If you determine that your application can make use of the user subroutine functionality in

Presto, you will then need to write the subroutine. The parts of the subroutine that interface to

Presto have specified formats. The details of these interfaces are described in later sections.

One part of the subroutine with a specified format is the call list. Other parts of the subroutine

with a specified format are code that will do the following:

- Read parameters from the Presto input file

- Access a variety of information—field variables, analysis time, etc.—from Presto

- Store computed quantities

Parameters are values they may be passed from the Presto input file to the user subroutine.

Suppose that the spatial variation for some quantity in the user subroutine uses some char-

acteristic length and the user wishes to examine results generated by using several different

values of the characteristic length. By setting up the characteristic length as a parameter, the

value for the parameter in the user subroutine can easily be changed by changing the value

for the parameter in the input file. This lets the user change the value for a variable inside

the user subroutine without having to recompile the user subroutine.

537

The portion of your subroutine not built on the Presto specifications will reflect your specific

application. The code to implement your application may include a loop over nodes that

prescribes a displacement based on the current time for the analysis and the spatial location

of the node.

3. After you write the user subroutine, you will need to have a command line in your input file

that tells Presto you want to use the user subroutine you have written. For example, if your

user subroutine is a specialized prescribed displacement boundary condition, then inside a

PRESCRIBED DISPLACEMENT command block, you will have a command line of the form

NODE SET SUBROUTINE = <string>subroutine_name

that provides the name of your user subroutine.

4. Following the invocation of the user subroutine, there may be command lines for various

parameters associated with the user subroutine. There may also be some additional command

lines in other sections of the code required for your application. For example, you may have

to add command lines in the region scope that will create an internal variable associated with

a computed quantity so that the computed quantity can be written to the results file.

5. Once you have constructed the user subroutine, which is a FORTRAN file, and the Presto

input file, you can build an executable version of Presto that will run your user subroutine.

Your Presto run will then incorporate the functionality you have created in your user subrou-

tine.

Figure 9.1 presents a very high-level overview of the various components that work together to im-

plement the user subroutine functionality. The two main components needed for user subroutines,

which are commands in the Presto input file and the actual user subroutine, are represented by the

two columns in Figure 9.1.

538 CHAPTER 9. USER SUBROUTINES

Figure 9.1: Overview of components required to implement user subroutine functionality, exclud-

ing compilation and execution commands.

9.1. USER SUBROUTINES: PROGRAMMING 539

9.1 User Subroutines: Programming

Currently, user subroutines are only supported in FORTRAN 77. Any subroutine that can be com-

piled with a FORTRAN 77 compiler on the target execution machine can be used. The user should

be aware that some computers support different FORTRAN language extensions than others. (In

the future, other languages such as FORTRAN 90, C, and C++ may be supported.)

User subroutine variable types must interface directly with the matching variable types used in the

main Presto code. Thus, the FORTRAN 77 subroutines should use only integer, double precision,

or character types for any data used in the interface or in any query function. Using the wrong

data type may yield unpredictable results. The methods used to pass character types from Presto

to FORTRAN user subroutines can be machine-dependent, but generally this functionality works

quite well.

The basic structure for the user subroutine is as follows:

subroutine sub_name(call list)

{declaration of variables}

{retrieve parameters from Presto input file}

{query Presto for information}

{application-specific code

.

.

}

{write computed values}

END

In general, the user will begin the subroutine with variable declarations. After the variable decla-

rations, the user can then query the Presto input file for parameters. Additional Presto information

such as field variables or element topology can then be retrieved from Presto. Once the user has

collected all the information for the application, the application-specific portion of the code can be

written. After the application-specific code is complete, the user may store computed values.

Section 9.1.1 through Section 9.1.3 describe in detail the format for the interfaces to Presto that will

allow the user to make the subroutine call, retrieve information from Presto, and write computed

values. In these sections, mesh entities can be a node, an element face, or an element.

540 CHAPTER 9. USER SUBROUTINES

9.1.1 Subroutine Interface

The following interface is used for all user subroutines:

subroutine sub_name(int num_objects,

int num_values,

real evaluation_time,

int object_ids[],

real output_values[],

int output_flags[],

int error_code)

The name of the user subroutine, sub_name, is selected by the user. Avoid names for the subrou-

tine that are longer than 10 characters. This may cause build problems on some systems.

A detailed description of the input and output parameters is provided in Table 9.1 and Table 9.2.

Table 9.1: Subroutine Input Parameters

Input Parameter Data Type Parameter Description

num_objects Integer Number of input mesh entities. For

example, if the subroutine is a node set

subroutine, this would be the number of

nodes on which the subroutine will

operate.

num_values Integer Number of return values. This is the

number of values per mesh entity.

evaluation_time Real Time at which the subroutine should be

evaluated. This may vary slightly from the

current analysis time. Velocities for

example are evaluated one-half time step

ahead.

object_ids

(num_objects)

Integer Array of mesh-entity identification

numbers. The array has a length of

num_objects. The input numbers are the

global numbers of the input objects. The

object identification numbers can be used

to query information about a mesh entity.

9.1.2 Query Functions

Presto follows a design philosophy for user subroutines that a minimal amount of information

should be passed through the call list. Additional information may be queried from within the

subroutine. A user subroutine may query a wide variety of information from Presto.

9.1. USER SUBROUTINES: PROGRAMMING 541

Table 9.2: Subroutine Output Parameters

Output Parameter Data Type Parameter Description

output_values

(num_values,

num_objects)

Integer Array of output values computed by the

subroutine. The number of output values

will be either the number of mesh entities

or some multiple of the number of mesh

entities. For example, if there were six

nodes (num_objects equals 6) and one

value was to be computed per node, the

length of output_values would be 6.

Similarly, if there were six nodes

(num_objects equals 6) and three values

were to be computed for each node (as for

acceleration, which has X-, Y-, and

Z-components), the length of

output_values would be 18.

output_flags

(num_objects)

Integer Array of returned flags for each set of data

values. When used, this array will

generally have a length of num_objects.

The usage of the flags depends on

subroutine type; the flags are currently

used only for element death and for

kinematic boundary conditions. For the

kinematic boundary conditions

(displacement, velocity, acceleration) a

flag of –1 means ignore the constraint, a

flag of 0 means set the absolute constraint

value, and a flag of 1 means set the

constraint with direction and distance.

error_code Integer Error code returned by the user subroutine.

A value of 0 indicates no errors. Any value

other than zero is an error. If the return

value is nonzero, Presto will report the

error code and terminate the analysis.

542 CHAPTER 9. USER SUBROUTINES

9.1.2.1 Parameter Query

A number of user subroutine parameters may be set as described in Section 9.2.2.3. These subrou-

tine parameters can be obtained from the Presto input file via the query functions listed below.

aupst_get_real_param(string var_name, real var_value,

int error_code)

aupst_get_integer_param(string var_name, int var_value,

int error_code)

aupst_get_string_param(string var_name, string var_value,

int error_code)

All three of these subroutine calls are tied to a corresponding “parameter” command line that will

appear in the Presto input file. The parameter command lines are described in Section 9.2.2.3.

These command lines are named based on the type of value they store, i.e., SUBROUTINE REAL

PARAMETER, SUBROUTINE INTEGER PARAMETER, and SUBROUTINE STRING PARAMETER.

We will use the example of a real parameter to show how the subroutine call works in conjunc-

tion with the SUBROUTINE REAL PARAMETER command line. Suppose we have a real parameter

radius that is set to a value of 2.75 on the SUBROUTINE REAL PARAMETER command line:

SUBROUTINE REAL PARAMETER: radius = 2.75

Also suppose we have a call to aupst_get_real_parameter in the user subroutine:

call aupst_get_real_parameter("radius",cyl_radius,error_code)

In the call to aupst_get_real_parameter, we have var_name set to radius and var_value

defined as the real FORTRAN variable cyl_radius. The call to aupst_get_real_parameter

will assign the value 2.75 to the FORTRAN variable cyl_radius. A similar pattern is followed

for integer and string parameters.

The arguments for the parameter-related query functions are described in Table 9.3, Table 9.4, and

Table 9.5. The function is repeated prior to each table for easy reference.

9.1. USER SUBROUTINES: PROGRAMMING 543

aupst_get_real_param(string var_name, real var_value,

int error_code)

Table 9.3: aupst_get_real_param Arguments

Parameter Usage Data Type Description

var_name Input String Name of a real-valued subroutine

parameter, as defined in the Presto

input file via the

SUBROUTINE REAL PARAMETER

command line.

var_value Output Real Name of a real variable to be used in

the FORTRAN subroutine. The

FORTRAN variable var_value will be

set to the value specified by the

SUBROUTINE REAL PARAMETER

command line.

error_code Output Integer Error code indicating status of

retrieving the parameter value from

the input file. If the retrieval is

successful, error_code is set to 0. If

the parameter is not found or is the

wrong type, error_code is set to a

value other than 0.

544 CHAPTER 9. USER SUBROUTINES

aupst_get_integer_param(string var_name, int var_value,

int error_code)

Table 9.4: aupst_get_integer_param Arguments

Parameter Usage Data Type Description

var_name Input String Name of an integer-valued subroutine

parameter, as defined in the Presto

input file via the

SUBROUTINE INTEGER PARAMETER

command line.

var_value Output Integer Name of an integer variable to be used

in the FORTRAN subroutine. The

FORTRAN variable var_value will be

set to the value specified by the

SUBROUTINE INTEGER PARAMETER

command line.

error_code Output Integer Error code indicating status of

retrieving the parameter value from

the input file. If the retrieval is

successful, error_code is set to 0. If

the parameter is not found or is the

wrong type, error_code is set to a

value other than 0.

9.1. USER SUBROUTINES: PROGRAMMING 545

aupst_get_string_param(string var_name, string var_value,

int error_code)

Table 9.5: aupst_get_string_param Arguments

Parameter Usage Data Type Description

var_name Input String Name of a string-valued subroutine

parameter, as defined in the Presto

input file via the

SUBROUTINE STRING PARAMETER

command line.

var_value Output String Name of a string variable to be used in

the FORTRAN subroutine. The

FORTRAN variable var_value will be

set to the value specified by the

SUBROUTINE STRING PARAMETER

command line.

error_code Output Integer Error code indicating status of

retrieving the parameter value from

the input file. If the retrieval is

successful, error_code is set to 0. If

the parameter is not found or is the

wrong type, error_code is set to a

value other than 0.

546 CHAPTER 9. USER SUBROUTINES

9.1.2.2 Function Data Query

The function data query routine listed below may be used for extracting data from a function that

is defined in a DEFINITION FOR FUNCTION command block in the Presto input file. This query

allows the user to directly access information stored in a function defined in the Presto input file.

aupst_evaluate_function(string func_name, real input_times[],

int num_times, real output_data[])

The arguments for this function are described in Table 9.6.

Table 9.6: aupst_evaluate_function Arguments

Parameter Usage Data Type Description

func_name Input String Name of the function to look up.

input_times

(num_times)

Input Real Array of times used to extract values

of the function.

num_times Input Integer Length of the array input_times.

output_data

(num_times)

Output Real Array of output values of the named

function at the specified times.

9.1.2.3 Time Query

The time query function can be used to determine the current analysis time. This is the time

associated with the new time step. This time may not be equivalent to the evaluation_time

argument passed into the subroutine (see Section 9.1.1, Table 9.1) as some boundary conditions

need to be evaluated at different times than others. The parameter of the time query function listed

below is given in Table 9.7.

aupst_get_time(real time)

Table 9.7: aupst_get_time Argument

Parameter Usage Data Type Description

time Output Real Current analysis time.

9.1.2.4 Field Variables

Field variables (displacements, stresses, etc.) may be defined on groups of mesh entities. A number

of queries are available for getting and putting field variables. These queries involve passing in a

set of mesh-entity identification numbers to receive field values on the mesh entities. There are

9.1. USER SUBROUTINES: PROGRAMMING 547

query functions to check for the existence and size of a field, functions to retrieve the field values,

and functions to store new variables in a field. The field query functions listed below can be used

to extract any registered nodal or element variable field.

aupst_check_node_var(int num_nodes, int num_components,

int node_ids[], string var_name,

int error_code)

aupst_check_elem_var(int num_elems, int num_components,

int elem_ids[], string var_name,

int error_code)

aupst_get_node_var(int num_nodes, int num_components,

int node_ids[], real return_data[],

string var_name, int error_code)

aupst_get_elem_var(int num_elems, int num_components,

int elem_ids[], real return_data[],

string var_name, int error_code)

aupst_get_elem_var_offset(int num_elems, int num_components,

int offset, int elem_ids[],

real return_data[], string var_name,

int error_code)

aupst_put_node_var(int num_nodes, int num_components,

int node_ids[], real new_data[],

string var_name, int error_code)

aupst_put_elem_var(int num_elems, int num_components,

int elem_ids[], real new_data[],

string var_name, int error_code)

aupst_put_elem_var_offset(int num_elems, int num_components,

int offset, int elem_ids[],

real new_data[], string var_name,

int error_code)

The arrays where data are stored are static arrays. These arrays of a set size will be declared at the

beginning of a user subroutine. The query functions to check for the existence and size of a field

can be used to ensure that the size of the array of information being returned from Presto does not

exceed the size of the array allocated by the user.

The arguments to field query functions are defined in Table 9.8 through Table 9.15. The function

is repeated before each table for easy reference.

548 CHAPTER 9. USER SUBROUTINES

aupst_check_node_var(int num_nodes, int num_components,

int node_ids[], string var_name,

int error_code)

Table 9.8: aupst_check_node_var Arguments

Parameter Usage Data Type Description

num_nodes Input Integer Number of nodes used to extract field

information.

num_components Output Integer Number of components in the field

information. A displacement field at a

node has three components, for

example.

node_ids

(num_nodes)

Input Integer Array of size num_nodes listing the

node identification number for each

node where field information will be

retrieved.

var_name Input String Name of the field variable. The field

variable must be a registered Presto

variable.

error_code Output Integer Error code indicating status of

retrieving the field. If the retrieval is

successful, error_code is set to 0. If a

nonzero value is returned for

error_code, the field variable does not

exist or is not defined on one or more

of the input nodes.

9.1. USER SUBROUTINES: PROGRAMMING 549

aupst_check_elem_var(int num_elems, int num_components,

int elem_ids[], string var_name,

int error_code)

Table 9.9: aupst_check_elem_var Arguments

Parameter Usage Data Type Description

num_elems Input Integer Number of elements used to extract

field information.

num_components Output Integer Number of components in the field

information. A stress field for a an

eight-node hexahedron element has

six components, for example.

elem_ids

(num_elems)

Input Integer Array of size num_elems listing the

element identification number for each

element where field information will

be retrieved.

var_name Input String Name of the field variable. The field

variable must be a registered Presto

variable.

error_code Output Integer Error code indicating status of

retrieving the field. If the retrieval is

successful, error_code is set to 0. If a

nonzero value is returned for

error_code, the field variable does not

exist or is not defined on one or more

of the input nodes.

550 CHAPTER 9. USER SUBROUTINES

aupst_get_node_var(int num_nodes, int num_components,

int node_ids[], real return_data[],

string var_name, int error_code)

Table 9.10: aupst_get_node_var Arguments

Parameter Usage Data Type Description

num_nodes Input Integer Number of nodes used to extract field

information.

num_components Input Integer Number of components in the field

information. A displacement field at a

node has three components, for

example.

node_ids

(num_nodes)

Input Integer Array of size num_nodes listing the

node identification number for each

node where field information will be

retrieved.

return_data

(num_components,

num_nodes)

Output Real Array of size num_components ×
num_nodes containing the field data at

each node.

var_name Input String Name of the field variable. The field

variable must be a registered Presto

variable.

error_code Output Integer Error code indicating status of

retrieving the field. If the retrieval is

successful, error_code is set to 0. If a

nonzero value is returned for

error_code, the field variable does not

exist or is not defined on one or more

of the input nodes.

9.1. USER SUBROUTINES: PROGRAMMING 551

aupst_get_elem_var(int num_elems, int num_components,

int elem_ids[], real return_data[],

string var_name, int error_code)

Table 9.11: aupst_get_elem_var Arguments

Parameter Usage Data Type Description

num_elems Input Integer Number of elements used to extract

field information.

num_components Input Integer Number of components in the field

information. A stress field for a an

eight-node hexahedron element has

six components, for example.

elem_ids

(num_elems)

Input Integer Array of size num_elems listing the

element identification number for each

element where field information will

be retrieved.

return_data

(num_components,

num_elems)

Output Real Array of size num_components ×
num_elems containing the field data

for each element.

var_name Input String Name of the field variable. The field

variable must be a registered Presto

variable.

error_code Output Integer Error code indicating status of

retrieving the field. If the retrieval is

successful, error_code is set to 0. If a

nonzero value is returned for

error_code, the field variable does not

exist or is not defined on one or more

of the input nodes.

552 CHAPTER 9. USER SUBROUTINES

aupst_get_elem_var_offset(int num_elems, int num_components,

int offset, int elem_ids[],

real return_data[], string var_name,

int error_code)

Table 9.12: aupst_get_elem_var_offset Arguments

Parameter Usage Data Type Description

num_elems Input Integer Number of elements used to extract

field information.

num_components Input Integer Number of components in the field

information. A stress field for an

eight-node hexahedron element has

six components, for example.

offset Input Integer Offset into var_name field variable at

which to get data.

elem_ids

(num_elems)

Input Integer Array of size num_elems listing the

element identification number for each

element where field information will

be retrieved.

return_data

(num_components,

num_elems)

Output Real Array of size num_components ×
num_elems containing the field data

for each element.

var_name Input String Name of the field variable. The field

variable must be a registered Presto

variable.

error_code Output Integer Error code indicating status of

retrieving the field. If the retrieval is

successful, error_code is set to 0. If a

nonzero value is returned for

error_code, the field variable does not

exist or is not defined on one or more

of the input nodes.

9.1. USER SUBROUTINES: PROGRAMMING 553

aupst_put_node_var(int num_nodes, int num_components,

int node_ids[], real new_data[],

string var_name, int error_code)

Table 9.13: aupst_put_node_var Arguments

Parameter Usage Data Type Description

num_nodes Input Integer Number of nodes for which the user

will specify the field data.

num_components Input Integer Number of components in the field

information. A displacement field at a

node has three components, for

example.

node_ids

(num_nodes)

Input Integer Array of size num_nodes listing the

node identification number for each

node where field information will be

retrieved.

new_data

(num_components,

num_nodes)

Input Real Array of size num_components ×
num_nodes containing the new data

for the field.

var_name Input String Name of the field variable. The field

variable must be a registered Presto

variable.

error_code Output Integer Error code indicating status of

retrieving the field. If the retrieval is

successful, error_code is set to 0. If a

nonzero value is returned for

error_code, the field variable does not

exist or is not defined on one or more

of the input nodes.

554 CHAPTER 9. USER SUBROUTINES

aupst_put_elem_var(int num_elems, int num_components,

int elem_ids[], real new_data[],

string var_name, int error_code)

Table 9.14: aupst_put_elem_var Arguments

Parameter Usage Data Type Description

num_elems Input Integer Number of elements for which the

user will specify the field data.

num_components Input Integer Number of components in the field

information. A stress field for a an

eight-node hexahedron element has

six components, for example.

elem_ids

(num_elems)

Input Integer Array of size num_elems listing the

element identification number for each

element where field information will

be retrieved.

new_data

(num_components,

num_elems)

Input Real Array of size num_components ×
num_elems containing the new data

for the field.

var_name Input String Name of the field variable. The field

variable must be a registered Presto

variable.

error_code Output Integer Error code indicating status of

retrieving the field. If the retrieval is

successful, error_code is set to 0. If a

nonzero value is returned for

error_code, the field variable does not

exist or is not defined on one or more

of the input nodes.

9.1. USER SUBROUTINES: PROGRAMMING 555

aupst_put_elem_var_offset(int num_elems, int num_components,

int offset, int elem_ids[],

real new_data[], string var_name,

int error_code)

Table 9.15: aupst_put_elem_var_offset Arguments

Parameter Usage Data Type Description

num_elems Input Integer Number of elements for which the

user will specify the field data.

num_components Input Integer Number of components in the field

information. A stress field for an

eight-node hexahedron element has

six components, for example.

offset Input Integer Offset into var_name field variable at

which to put data.

elem_ids

(num_elems)

Input Integer Array of size num_elems listing the

element identification number for each

element where field information will

be retrieved.

new_data

(num_components,

num_elems)

Input Real Array of size num_components ×
num_elems containing the new data

for the field.

var_name Input String Name of the field variable. The field

variable must be a registered Presto

variable.

error_code Output Integer Error code indicating status of

retrieving the field. If the retrieval is

successful, error_code is set to 0. If a

nonzero value is returned for

error_code, the field variable does not

exist or is not defined on one or more

of the input nodes.

9.1.2.5 Global Variables

Global variables may be extracted or set from user subroutines. A global variable has a single

value for a given region.

Global variables have limited support for parallel operations. There are two subroutines to perform

parallel modification of global variables: aupst_put_global_var and aupst_local_put_

global_var.

556 CHAPTER 9. USER SUBROUTINES

• The subroutine aupst_local_put_global_var only modifies a temporary local copy of

the global variable. The local copies on the various processors are reduced to create the

true global value at the end of the time step. Global variables set with aupst_local_put_

global_var do not have the single processor value available immediately. The true global

variable will not be available through the aupst_get_global_var routine until the next

time step.

• The subroutine aupst_put_global_var attempts to immediately modify and perform a

parallel reduction of the value of a global variable. Care must be taken to call this routine on

all processors at the same time with the same arguments. Failure to call the routine from all

processors will result in the code hanging. For some types of subroutines this is not possible

or reliable. For example, a boundary condition subroutine may not be called at all on a

processor that contains no nodes in the set of nodes assigned to the boundary condition. It

is recommended that aupst_local_put_global_var only be used in conjunction with a

user subroutine referenced in a USER OUTPUT command block (Section 8.2.2).

Only user-defined global variables may be modified by the user subroutine (see Section 9.2.4).

However, any global variable that exists on the region may be checked or extracted. The following

subroutine calls pertain to global variables:

aupst_get_global_var(int num_comp, real return_data,

string var_name, int error_code)

aupst_put_global_var(int num_comp, real input_data,

string reduction_type,

string var_name, int error_code)

aupst_local_put_global_var(int num_comp, real input_data,

string var_name, string reduction_type,

int error_code)

The arguments for subroutine calls pertaining to global variables are defined in Table 9.16 through

Table 9.19. The call is repeated before each table for easy reference.

9.1. USER SUBROUTINES: PROGRAMMING 557

aupst_check_global_var(int num_comp, string var_name

int error_code)

Table 9.16: aupst_check_global_var Arguments

Parameter Usage Data Type Description

num_comp Output Integer Number of components of the global

variable.

var_name Input String Name of the global variable.

error_code Output Integer Error code indicating status of

accessing the global variable. If there

is no error in accessing this variable,

error_code is set to 0. A nonzero value

of error_code means the global

variable does not exist or in some way

cannot be accessed.

aupst_get_global_var(int num_comp, real return_data,

string var_name, int error_code)

Table 9.17: aupst_get_global_var Arguments

Parameter Usage Data Type Description

num_comp Input Integer Number of components of the global

variable.

return_data Output Real Value of the global variable.

var_name Input String Name of the global variable.

error_code Output Integer Error code indicating status of

accessing the global variable. If there

is no error in accessing this variable,

error_code is set to 0. A nonzero value

of error_code means the global

variable does not exist or in some way

cannot be accessed.

558 CHAPTER 9. USER SUBROUTINES

aupst_put_global_var(int num_comp, real input_data,

string reduction_type,

string var_name, int error_code)

Table 9.18: aupst_put_global_var Arguments

Parameter Usage Data Type Description

num_comp Input Integer Number of components of the global

variable.

input_data Input Real New value of the global variable.

reduction_type Input String Type of parallel reduction to perform

on the variable. Options are “sum”,

“min”, “max”, and “none”.

var_name Input String Name of the global variable.

error_code Output Integer Error code indicating status of

accessing the global variable. If there

is no error in accessing this variable,

error_code is set to 0. A nonzero value

of error_code means the global

variable does not exist, in some way

cannot be accessed, or may not be

overwritten.

9.1. USER SUBROUTINES: PROGRAMMING 559

aupst_local_put_global_var(int num_comp, real input_data,

string var_name,

string reduction_type,

int error_code)

Table 9.19: aupst_local_put_global_var Arguments

Parameter Usage Data Type Description

num_comp Input Integer Number of components of the global

variable.

input_data Input Real New value of the global variable.

reduction_type Input String Type of parallel reduction to perform

on the variable. Options are “sum”,

“min”, and “max”. The operation type

specified here must match the

operation type given to the

user-defined global variable when it is

defined in the Presto input file.

var_name Input String Name of the global variable.

error_code Output Integer Error code indicating status of

accessing the global variable. If there

is no error in accessing this variable,

error_code is set to 0. A nonzero value

of error_code means the global

variable does not exist, in some way

cannot be accessed, or may not be

overwritten.

9.1.2.6 Topology Extraction

The element and surface subroutines operate on groups of elements or faces. The elements and

faces may have a variety of topologies. Topology queries can be used to get topological data about

elements and faces. The topology of an object is represented by an integer. The integer is formed

from a function of the number of dimensions, vertices, and nodes of an object. The topology of an

object is given by:

topology = num_node + 100 * num_vert + 10000 * num_dim

In a FORTRAN routine, the number of nodes can easily be extracted with the mod function:

num_node = mod(topo,100)

num_vert = mod(topo / 100, 100)

num_dim = mod(topo / 10000, 100)

560 CHAPTER 9. USER SUBROUTINES

Table 9.20: Topologies Used by Presto

Topology Element / Face Type

00101 One-node particle

10202 Two-node beam, truss, or damper

20404 Four-node quadrilateral

20303 Three-node triangle

20304 Four-node triangle

20306 Six-node triangle

30404 Four-node tetrahedron

30408 Eight-node tetrahedron

30410 Ten-node tetrahedron

30808 Eight-node hexahedron

Table 9.20 lists the topologies currently in use by Presto.

The following topology query functions are available in Presto:

aupst_get_elem_topology(int num_elems, int elem_ids[],

int topology[], int error_code)

aupst_get_elem_nodes(int num_elems, int elem_ids[],

int elem_node_ids[], int error_code)

aupst_get_face_topology(int num_faces, int face_ids[],

int topology[], int error_code)

aupst_get_face_nodes(int num_faces, int face_ids[],

int face_node_ids[], int error_code)

The arguments for the topology extraction functions are defined in Table 9.21 through Table 9.24.

The function is repeated before each table for easy reference.

9.1. USER SUBROUTINES: PROGRAMMING 561

aupst_get_elem_topology(int num_elems, int elem_ids[],

int topology[], int error_code)

Table 9.21: aupst_get_elem_topology Arguments

Parameter Usage Data Type Description

num_elems Input Integer Number of elements from which the

topology will be extracted.

elem_ids

(num_elems)

Input Integer Array of length num_elems listing the

element identification for each

element from which the topology will

be extracted.

topology

(num_elems)

Output Integer Array of length num_elems that has

the topology for each element. See

Table 8.18.

error_code Output Integer Error code indicating status of

retrieving the element identification

numbers. If the retrieval is successful,

error_code is set to 0. A nonzero value

is returned for error_code if one of the

element identification numbers is not

valid.

562 CHAPTER 9. USER SUBROUTINES

aupst_get_elem_nodes(int num_elems, int elem_ids[],

int elem_node_ids[], int error_code)

Table 9.22: aupst_get_elem_nodes Arguments

Parameter Usage Data Type Description

num_elems Input Integer Number of elements from which the

topology will be extracted.

elem_ids

(num_elems)

Input Integer Array of length num_elems listing the

element identification for each

element from which the topology will

be extracted.

elem_node_ids

(number of nodes

for element type ×
num_elems)

Output Integer Array containing the node

identification numbers for each

element requested. The length of the

array is the total number of nodes

contained in all elements. If the

elements are eight-node hexahedra,

then the number of nodes will be 8 ×
num_elems. The first set of eight

entries in the array will be the eight

nodes defining the first element. The

second set of eight entries will be the

eight nodes defining the second

element, and so on.

error_code Output Integer Error code indicating status of

retrieving the element identification

numbers. If the retrieval is successful,

error_code is set to 0. A nonzero value

is returned for error_code if one of the

element identification numbers is not

valid.

9.1. USER SUBROUTINES: PROGRAMMING 563

aupst_get_face_topology(int num_faces, int face_ids[],

int topology[], int error_code)

Table 9.23: aupst_get_face_topology Arguments

Parameter Usage Data Type Description

num_faces Input Integer Number of faces from which the

topology will be extracted.

face_ids

(num_faces)

Input Integer Array of length num_faces listing the

face identification for each face from

which the topology will be extracted.

topology

(num_faces)

Output Integer Array of length num_faces containing

the output topologies of each face.

error_code Output Integer Error code indicating status of

retrieving the face identification

numbers. If the retrieval is successful,

error_code is set to 0. A nonzero value

is returned for error_code if one of the

face identification numbers is not

valid.

564 CHAPTER 9. USER SUBROUTINES

aupst_get_face_nodes(int num_faces, int face_ids[],

int face_node_ids[], int error_code)

Table 9.24: aupst_get_face_nodes Arguments

Parameter Usage Data Type Description

num_faces Input Integer Number of faces from which the

topology will be extracted.

face_ids

(num_faces)

Input Integer Array of length num_faces listing the

face identification for each face from

which the topology will be extracted.

face_node_ids

(number of nodes

for face type ×
num_faces)

Output Integer Array containing the node

identification numbers for each face

requested. The length of the array is

the total number of nodes contained in

all faces. If the faces are four-node

quadrilaterals, then the number of

nodes will be 4 × num_faces. The

first set of four entries in the array will

be the four nodes defining the first

face. The second set of four entries

will be the four nodes defining the

second face, and so on.

error_code Output Integer Error code indicating status of

retrieving the face identification

numbers. If the retrieval is successful,

error_code is set to 0. A nonzero value

is returned for error_code if one of the

face identification numbers is not

valid.

9.1. USER SUBROUTINES: PROGRAMMING 565

9.1.3 Miscellaneous Query Functions

A number of miscellaneous query functions are available for computing some commonly used

quantities.

aupst_get_one_elem_centroid(int num_elems, int elem_ids[],

real centroids, int error_code)

aupst_get_point(string point_name, real point_coords,

int error_code)

aupst_get_proc_num(proc_num)

The arguments for the miscellaneous query functions are defined in Table 9.25 through Table 9.27.

The function is repeated before each table for easy reference.

aupst_get_one_elem_centroid(int num_elems, int elem_ids[],

real centroids[], int error_code)

Table 9.25: aupst_get_one_elem_centroid Arguments

Parameter Usage Data Type Description

num_elems Input Integer Number of elements for which to

extract the topology.

elem_ids

(num_elems)

Input Integer Array of length num_elems listing the

element identification for each

element for which the centroid will be

computed.

centroids

(3, num_elems)

Output Real Array of length 3 × num_elems

containing the centroid of each

element.

error_code Output Integer Error code indicating status of

retrieving the element identification

numbers. If the retrieval is successful,

error_code is set to 0. A nonzero value

is returned for error_code if one of the

element identification numbers is not

valid.

566 CHAPTER 9. USER SUBROUTINES

aupst_get_point(string point_name, real point_coords,

int error_code)

Table 9.26: aupst_get_point Arguments

Parameter Usage Data Type Description

point_name Input String SIERRA name for a given point.

point_coords

(3)

Output Real Array of length 3 containing the x, y,

and z coordinates of the point.

error_code Output Integer Error code indicating status of

retrieving the point. If the retrieval is

successful, error_code is set to 0. A

nonzero value is returned for

error_code if the point cannot be

found

aupst_get_proc_num(proc_num)

Table 9.27: aupst_get_proc_num Arguments

Parameter Usage Data Type Description

proc_num Output Integer Processor number of the calling

process. This number can be used for

informational purposes. A common

example is that output could only be

written by a single processor, e.g.,

processor 0, rather than by all

processors.

9.2. USER SUBROUTINES: COMMAND FILE 567

9.2 User Subroutines: Command File

In addition to the actual user subroutine, you will need to add command lines to your input file

to make use of your user subroutine. This section describes the command lines that are used in

conjunction with user subroutines. This section also describes two additional command blocks,

TIME STEP INITIALIZATION and USER VARIABLE. The TIME STEP INITIALIZATION

command block lets you execute a user subroutine at the beginning of a time step as opposed

to some later time. The USER VARIABLE command block can be used in conjunction with user

subroutines or for user-defined output.

9.2.1 Subroutine Identification

As described in Section 2.1.4, there is one command line associated with the user subroutine

functionality that must be provided in the SIERRA scope:

USER SUBROUTINE FILE = <string>file_name

The named file may contain one or more user subroutines. The file must have an extension of “.F”,

as in blast.F.

9.2.2 User Subroutine Command Lines

{begin command block}

NODE SET SUBROUTINE = <string>subroutine name |

SURFACE SUBROUTINE = <string>subroutine_name |

ELEMENT BLOCK SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

{end command block}

A number of user subroutine command lines will appear in some Presto command block. User

subroutine commands can appear in boundary condition, element death,user output, and state ini-

tialization command blocks. The possible command lines are shown above. The following sections

describe the command lines related to user subroutines.

9.2.2.1 Type

User subroutines are currently available in three general types: node set, surface, and element.

568 CHAPTER 9. USER SUBROUTINES

Node set subroutines operate on groups of nodes. The command line for defining a node set

subroutine is:

NODE SET SUBROUTINE = <string>subroutine_name

where subroutine_name is the name of the user subroutine. The name is case sensitive. A node

set subroutine will operate on all nodes contained in an associated mechanics instance.

Surface subroutines work on groups of surfaces. A surface may be an external face of a solid

element or the face of a shell element associated with either the positive or negative normal for the

surface of the shell. The command line for defining a surface subroutine is:

SURFACE SUBROUTINE = <string>subroutine_name

Element block subroutines work on groups of elements. The command line for defining an element

block subroutine is:

ELEMENT BLOCK SUBROUTINE = <string>subroutine_name

An element may be a solid element such as a hexahedron or a two-dimensional element such as a

shell.

Different Presto features may accept one or more types of user subroutines. Only one subroutine

is allowed per command block.

9.2.2.2 Debugging

Subroutines may be run in a special debugging mode to help catch memory errors. For example,

there is a potential for a user subroutine to write outside of its allotted data space by writing beyond

the bounds of an input or output array. Generally, this causes Presto to crash, but it also has the

potential to introduce other very hard-to-trace bugs into the Presto analysis. Subroutines run in

debug mode require more memory and more processing time than subroutines not run in debug

mode.

Subroutine debugging is on by default in debug executables. It can be turned off with the following

command line:

SUBROUTINE DEBUGGING OFF

Subroutine debugging is off by default in optimized executables. It can be turned on with the

following command line:

SUBROUTINE DEBUGGING ON

9.2.2.3 Parameters

All user subroutines have the ability to use parameters. Parameters are defined in the input file and

are quickly accessible by the user subroutine during run time. Parameters are a way of making

a single user subroutine much more versatile. For example, a user subroutine could be written to

define a periodic loading on a structure. A parameter for the subroutine could be defined specifying

the frequency of the function. In this way, the same subroutine can be used in different parts of

9.2. USER SUBROUTINES: COMMAND FILE 569

the model, and the subroutine behavior can be modified without recompiling the program. These

command lines are placed within the scope of the command block in which the user subroutine is

specified.

Real-valued parameters can be stored with the following command line:

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

Integer-valued parameters can be stored with the following command line:

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

String-valued parameters can be stored with the following command line:

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

Any number of subroutine parameters may be defined. The subroutine parameters may be defined

in any order within the command block. The user subroutine may request the values of the param-

eters but is not required to use them or even have any knowledge of their existence. An example

of subroutine usage with parameters is as follows:

BEGIN PRESSURE

SURFACE = surface_1

SURFACE SUBROUTINE = blast_pressure

SUBROUTINE REAL PARAMETER: blast_time = 1.2

SUBROUTINE REAL PARAMETER: blast_power = 1.3e+07

SUBROUTINE STRING PARAMETER: formulation = alpha

SUBROUTINE INTEGER PARAMETER: decay_exponent = 2

SUBROUTINE DEBUGGING ON

END PRESSURE

In the above example, four parameters are associated with the subroutine blast_pressure. Two

of the parameters are real (blast_time and blast_power), one of the parameters is a string

(formulation), and one of the parameters is an integer (decay_exponent). To access the

parameters in the user subroutine, the user will need to include interface calls described in previous

sections.

570 CHAPTER 9. USER SUBROUTINES

9.2.3 Time Step Initialization

BEGIN TIME STEP INITIALIZATION

mesh-entity set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list> surface_names

REMOVE BLOCK = <string list>block_names

#

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name |

SURFACE SUBROUTINE = <string>sub_name |

ELEMENT BLOCK SUBROUTINE = <string>sub_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

additional command

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END TIME STEP INITIALIZATION

The TIME STEP INITIALIZATION command block, which appears in the region scope, is used

to flag a user subroutine to run at the beginning of every time step. This subroutine can be used

to compute quantities used by other command types. For example, if the traction on a surface was

dependent on the area, the time step initialization subroutine could be used to calculate the area,

and that area could be stored and later read when calculating the traction. The user initialization

subroutine will pass the specified mesh objects to the subroutine for use in calculating some value.

The TIME STEP INITIALIZATION command block contains two groups of commands—mesh

entity set and user subroutine. In addition to the command lines in the these command groups,

there is an additional command line: ACTIVE PERIODS or INACTIVE PERIODS. Following are

descriptions of the different command groups and the ACTIVE PERIODS or INACTIVE PERIODS

command line.

9.2.3.1 Mesh-Entity Set Commands

The mesh-entity set commands portion of the TIME STEP INITIALIZATION command

block specifies the nodes, element faces, or elements associated with the particular subroutine that

9.2. USER SUBROUTINES: COMMAND FILE 571

will be run at the beginning of the applicable time steps. This portion of the command block can

include some combination of the following command lines:

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list> surface_names

REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators for constructing a

set of nodes, element faces, or elements. See Section 5.1 for more information about the use of

these command lines for mesh entities. There must be at least one NODE SET, SURFACE, BLOCK,

or INCLUDE ALL BLOCKS command line in the command block.

9.2.3.2 User Subroutine Commands

The following command lines are related to the user subroutine specification:

NODE SET SUBROUTINE = <string>subroutine_name |

SURFACE SUBROUTINE = <string>subroutine_name |

ELEMENT BLOCK SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

Only one of the first three command lines listed above can be specified in the command block.

The particular command line selected depends on the mesh-entity type of the variable being ini-

tialized. For example, variables associated with nodes would be initialized if you are using the

NODE SET SUBROUTINE command line, variables associated with faces if you are using the

SURFACE SUBROUTINE command line, and variables associated with elements if you are using

the ELEMENT BLOCK SUBROUTINE command line. The string subroutine_name is the name

of a FORTRAN subroutine that is written by the user.

Following the selected subroutine command line are other command lines that may be used to

implement the user subroutine option. These command lines are described in Section 9.2.2 and

consist of SUBROUTINE DEBUGGING OFF, SUBROUTINE DEBUGGING ON, SUBROUTINE REAL

PARAMETER, SUBROUTINE INTEGER PARAMETER, and SUBROUTINE STRING PARAMETER.

Examples of using these command lines are provided throughout Chapter 9.

572 CHAPTER 9. USER SUBROUTINES

9.2.3.3 Additional Command

The ACTIVE PERIODS or INACTIVE PERIODS command line can optionally appear in the TIME

STEP INITIALIZATION command block:

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

The ACTIVE PERIODS or INACTIVE PERIODS command line is used to activate or deactivate

the running of the user subroutine at the beginning of every time step for certain time periods. See

Section 2.5 for more information about this optional command line.

9.2. USER SUBROUTINES: COMMAND FILE 573

9.2.4 User Variables

BEGIN USER VARIABLE <string>var_name

TYPE = <string>NODE|ELEMENT|GLOBAL

[<string>REAL|INTEGER LENGTH = <integer>length]|

[<string>SYM_TENSOR|FULL_TENSOR|VECTOR]

GLOBAL OPERATOR = <string>SUM|MIN|MAX]

INITIAL VALUE = <real list>values

USE WITH RESTART

END [USER VARIABLE <string>var_name]

The USER VARIABLE command block is used to create a user-defined variable. This kind of

variable may be used for scratch space in a user subroutine or for some user-defined output. A

user-defined variable may be output to the results file or the history file just like any registered

variable; i.e., a user-defined variable once defined by the USER VARIABLE command block can

be specified in a USER OUTPUT command block, a RESULTS OUTPUT command block, and a

HISTORY OUTPUT command block.

User-defined variables are associated with mesh entities. For example, a node variable will exist at

every node of the model. An element variable will exist on every element of the model. A global

variable will have a single value for the entire model.

If the user-defined variable functionality is used in conjunction with restart, the USE WITH

RESTART command line must be included.

Known Issue: User defined variables are not currently supported with heartbeat

output (see Section 8.4).

The USER VARIABLE command block is placed within a Presto region. The command block

begins with the input line:

BEGIN USER VARIABLE <string>var_name

and ends with the input line:

END [USER VARIABLE <string>var_name]

where var_name is a user-selected name for the variable.

In the above command block:

- A user-defined variable has an associated type that is specified by the TYPE command line,

which itself contains several parameters. The TYPE command line is required.

1. The variable must be a nodal quantity, an element quantity, or a global quantity. The

options NODE, ELEMENT, and GLOBAL determine whether the variable will be a nodal,

element, or global quantity. One of these options must appear on the TYPE command

line.

574 CHAPTER 9. USER SUBROUTINES

2. The user-defined variable can be either an integer or a real, as specified by the INTEGER

or REAL option.

3. The length of the variable must be set by using one of the options SYM_TENSOR,

FULL_TENSOR, VECTOR, or LENGTH = <integer>length. If the LENGTH option

is used, the user must specify whether the variable is an integer number or a real num-

ber by using the INTEGER or REAL option. If the SYM_TENSOR option is used, the

variable has six real components. If the FULL_TENSOR is used, the variable has nine

real components. If the VECTOR option is used, the variable has three real components.

The three options SYM_TENSOR, FULL_TENSOR, and VECTOR all imply real numbers,

and thus the REAL option need not be included in the command line when one of these

three options is specified.

Some examples of the TYPE command line follow:

type = global real length = 1

type = element tensor

type = element real length = 3

type = node sym_tensor

type = node vector

- If you use the GLOBAL option on the TYPE command line, a global variable is created, and

this global variable must be given an associated reduction type, which is specified by the

GLOBAL OPERATOR command line. The reduction type tells Presto how to reduce the in-

dividual values stored on each processor to a mesh global value. Global reductions are

performed at the end of each time step. Any modifications to a global variable made by an

aupst_local_put_global_var call (see Section 9.1.2.5) will not be seen until the next

time step after the user-defined global variables have been updated and reduced. The SUM

operator sums all processor variable contributions. The MAX operator takes the maximum

value of the aupst_local_put_global_var calls. The MIN operator takes the minimum

value of the aupst_local_put_global_var calls.

- One or more initial values may be specified for the user-defined variable in the INITIAL

VALUE command line. The number of initial values specified should be the same as the

length of the variable, as specified in the TYPE command line either explicitly via the LENGTH

option or implicitly via the SYM_TENSOR, FULL_TENSOR, or VECTOR option. The initial

values will be copied to the variable space on every mesh object on which the variable is

defined. Only real type variables may be given initial values at this time.

- All intrinsic type options such as REAL, INTEGER, SYM_TENSOR, FULL_TENSOR, VECTOR

and the LENGTH option can be used with any of the mesh entity options (NODE, ELEMENT,

GLOBAL).

- As indicated previously, if the user-defined variable functionality is used in conjunction with

restart, the USE WITH RESTART command line must be included.

9.3. USER SUBROUTINES: COMPILATION AND EXECUTION 575

9.3 User Subroutines: Compilation and Execution

Running a code with user subroutines is a two-step process. First, you must create an executable

version of Presto that recognizes the user subroutines. Next, you must use this version of Presto

for an actual Presto run with an input file that incorporates the proper user subroutine command

lines.

How the above two steps are carried out is site-specific. The actual process will depend on how

Presto is set up at your installation. We will give an example that shows how the process is car-

ried out on various systems at Sandia using SIERRA command lines. SIERRA is a general code

framework and code management system at Sandia.

For the first step, you will need the user subroutine, in a FORTRAN file, and a Presto input file that

makes use of the user subroutine. You will use a system command line of the general form shown

below.

% sierra presto -i <string>input_file_name --make

Suppose that you have a subdirectory in your area called test and you wish to incorporate a user

subroutine called blast_load. The actual user subroutine will be in a file called blast_load.F,

and the associated input file will be called blast_load_1.i. Both of these files will be in the

directory test. In the input file, you will have the following command line in the SIERRA scope:

USER SUBROUTINE FILE = blast_load.F

You will also have some subset of the command lines described in the previous section in your

Presto input file. The specific form of the system command line to execute the first step of the user

subroutine process is shown below.

% sierra presto -i blast_load_1.i --make The above command will create a local

version of Presto in a local directory named UserSubsProject. The system command line to

run the local version of Presto is shown below.

% sierra presto -i <string>input_file_name

-x UserSubsProject

The specific form of the system command line you will execute in the subdirectory test is shown

below.

% sierra presto -i blast_load_1.i -x UserSubsProject

The second command line runs Presto using blast_load_1.i as an input file and utilizes the

user subroutines in the process. Again, all of this is a site-specific example. You must determine

how Presto is set up at your installation to determine what system command lines are necessary to

build Presto with user subroutines and then use this version of Presto.

576 CHAPTER 9. USER SUBROUTINES

9.4 User Subroutines: Examples

9.4.1 Pressure as a Function of Space and Time

(The following example provides functionality—a blast load on a surface—more applicable to

Presto than Adagio. It is included in both manuals as it is instructive in the general use of a user-

defined subroutine.)

The following code is an example of a user subroutine to compute blast pressures on a group of

faces. The blast pressure simulates a blast occurring at a specified position and time. The blast

wave radiates out from the center of the blast and dissipates over time. This subroutine is included

in the input file as follows:

#In the SIERRA scope:

user subroutine file = blast_load.F

#In the region scope:

begin pressure

surface = surface_1

surface subroutine = blast_load

subroutine real parameter: pos_x = 5.0

subroutine real parameter: pos_y = 5.0

subroutine real parameter: pos_z = 1.6

subroutine real parameter: wave_speed = 1.5e+02

subroutine real parameter: blast_time = 0.0

subroutine real parameter: blast_energy = 1.0e+09

subroutine real parameter: blast_wave_width = 0.75

end pressure

The FORTRAN 77 subroutine listing follows. Note that it would be possible to increase the speed

of this subroutine by calling the topology functions (see Section 9.1.2.6) on groups of elements,

though this would increase subroutine complexity.

c

c Subroutine to simulate a blast load on a surface

c

subroutine blast_load(num_faces, num_vals,

& eval_time, faceID, pressure, flags, err_code)

implicit none

c

c Subroutine input arguments

c

integer num_faces

double precision eval_time

integer faceID(num_faces)

9.4. USER SUBROUTINES: EXAMPLES 577

integer num_vals

c

c Subroutine output arguments

c

double precision pressure(num_vals, num_faces)

integer flags(num_faces)

integer err_code

c

c Variables to hold the subroutine parameters

c

double precision pos_x, pos_y, pos_z, wave_speed,

& blast_time, blast_energy,

& blast_wave_width

c

c Local variables

c

integer iface, inode

integer cur_face_id, face_topo, num_nodes

integer num_comp_check

double precision dist, blast_o_rad, blast_i_rad

double precision blast_volume, blast_pressure

integer query_error

double precision face_center(3)

c

c Create some static variables to hold queried

c information. Assume no face has more than 10

c nodes

c

double precision face_nodes(10)

double precision face_coords(3, 10)

c

c Extract the subroutine parameters

c

call aupst_get_real_param("pos_x",pos_x,query_error)

call aupst_get_real_param("pos_y",pos_y,query_error)

call aupst_get_real_param("pos_z",pos_z,query_error)

call aupst_get_real_param("wave_speed",wave_speed,

& query_error)

call aupst_get_real_param("blast_energy",

& blast_energy,query_error)

call aupst_get_real_param("blast_time",

& blast_time,query_error)

call aupst_get_real_param("blast_wave_width",

& blast_wave_width, query_error)

c

c Determine the outer radius of the blast wave

578 CHAPTER 9. USER SUBROUTINES

c

blast_o_rad = (eval_time - blast_time) * wave_speed

if(blast_o_rad .le. 0.0) return;

c

c Determine the inner radius of the blast wave

c

blast_i_rad = blast_o_rad - blast_wave_width

if(blast_i_rad .le. 0.0) blast_i_rad = 0.0

c

c Determine the total volume the blast wave occupies

c

blast_volume = 3.1415 * (4.0/3.0) *
& (blast_o_rad**2 - blast_i_rad**2)

c

c Determine the total pressure on faces inside the

c blast wave

c

blast_pressure = blast_energy / blast_volume

c

c Loop over all faces in the set

c

do iface = 1, num_faces

c

c Extract the topology of the current face

c

cur_face_id = faceID(iface)

call aupst_get_face_topology(1, cur_face_id,

& face_topo, query_error)

c

c Determine the number of nodes of the current face

c

num_nodes = mod(face_topo,100)

c

c Extract the node ids for nodes contained in the current

c face

c

call aupst_get_face_nodes(1, cur_face_id,

& face_nodes, query_error)

c

c Extract the nodal coordinates of the face nodes

c

call aupst_get_node_var(num_nodes, 3, face_nodes,

& face_coords, "coordinates", query_error)

c

c Compute the centroid of the face

c

face_center(1) = 0.0

9.4. USER SUBROUTINES: EXAMPLES 579

face_center(2) = 0.0

face_center(3) = 0.0

do inode = 1, num_nodes

face_center(1) = face_center(1) +

& face_coords(1,inode)

face_center(2) = face_center(2) +

& face_coords(2,inode)

face_center(3) = face_center(3) +

& face_coords(3,inode)

enddo

face_center(1) = face_center(1)/num_nodes

face_center(2) = face_center(2)/num_nodes

face_center(3) = face_center(3)/num_nodes

c

c Determine the distance from the current face

c to the blast center

c

dist = sqrt((face_center(1) - pos_x)**2 +

& (face_center(2) - pos_y)**2 +

& (face_center(3) - pos_z)**2)

c

c Apply pressure to the current face if it falls within

c the blast wave

c

if(dist .ge. blast_i_rad .and.

& dist .le. blast_o_rad) then

pressure(1,iface) = blast_pressure

else

pressure(1,iface) = 0.0

endif

enddo

err_code = 0

end

9.4.2 Error Between a Computed and an Analytic Solution

The following code is a user subroutine to compute the error between Presto-computed results

and results from an analytic manufactured solution. This subroutine is called by a USER OUTPUT

command block immediately prior to producing an output Exodus file. The error for the mesh is

computed by taking the squared difference between the computed and analytic displacements at

every node. Finally, a global sum of the error is produced along with the square root norm of the

error.

This user subroutine requires a user variable, which is defined in the Presto input file. The com-

mand block for the user variable specified in this user subroutine is as follows:

begin user variable conv_error

580 CHAPTER 9. USER SUBROUTINES

type = global real length = 1

global operator = sum

initial value = 0.0

end user variable conv_error

The subroutine is called in the Presto input file as follows:

begin user output

node set = nodelist_10

node set subroutine = conv0_error

subroutine real parameter: char_length = 1.0

subroutine real parameter: char_time = 1.0e-3

subroutine real parameter: x_offset = 0.0

subroutine real parameter: y_offset = 0.0

subroutine real parameter: z_offset = 0.0

subroutine real parameter: t_offset = 0.0

subroutine real parameter: u0 = 0.01

subroutine real parameter: v0 = 0.02

subroutine real parameter: w0 = 0.03

subroutine real parameter: alpha = 1.0

subroutine real parameter: youngs_modulus = 10.0e6

subroutine real parameter: poissons_ratio = 0.3

subroutine real parameter: density = 0.0002588

subroutine real parameter: num_nodes = 125.0

end user output

The FORTRAN listing for the subroutine is as follows:

subroutine conv0_error(num_nodes, num_vals,

& eval_time, nodeID, values, flags, ierror)

implicit none

integer num_nodes

integer num_vals

double precision eval_time

integer nodeID(num_nodes)

double precision values(1)

integer flags(1)

integer ierror

c

c Local vars

c

integer inode

integer error_code

double precision clength, ctime, xoff, yoff, zoff, toff

double precision zero, one, two, three, four, nine

9.4. USER SUBROUTINES: EXAMPLES 581

double precision mod_coords(3,3000)

double precision cdispl(3,3000)

integer num_comp_check

double precision expat

double precision x, y, z, t

double precision u0, v0, w0, alpha

double precision pi

double precision half

double precision mdisplx, mdisply, mdisplz

double precision xdiff, ydiff, zdiff

double precision conv_error

double precision numnod

pi = 3.141592654

half = 0.5

zero = 0.0

one = 1.0

two = 2.0

three = 3.0

four = 4.0

nine = 9.0

c

c Check that the nodal coordinates will fit into the

c statically allocated array

c

if(num_nodes .gt. 3000) then

write(6,*) ŠERROR in sphere disp, Ś,

& num_nodes exceeds static array sizeŠ

ierror = 1

return

endif

c

c Extract the model coordinates for all nodes

c

call aupst_check_node_var(num_nodes, num_comp_check,

& nodeID, "model_coordinates",

& ierror)

if(ierror .ne. 0) return

if(num_comp_check .ne. 3) return

call aupst_get_node_var(num_nodes, num_comp_check,

& nodeID, mod_coords, "model_coordinates",

& ierror)

c

c Extract the computed displacements for all nodes

c

call aupst_check_node_var(num_nodes, num_comp_check,

& nodeID, "displacement",

582 CHAPTER 9. USER SUBROUTINES

& ierror)

if(ierror .ne. 0) return

if(num_comp_check .ne. 3) return

call aupst_get_node_var(num_nodes, num_comp_check,

& nodeID, cdispl, "displacement",

& ierror)

c

c Extract the subroutine parameters.

c

call aupst_get_real_param("char_length",

& clength,error_code)

call aupst_get_real_param("char_time",

& ctime,error_code)

call aupst_get_real_param("x_offset",xoff,error_code)

call aupst_get_real_param("y_offset",yoff,error_code)

call aupst_get_real_param("z_offset",zoff,error_code)

call aupst_get_real_param("t_offset",toff,error_code)

call aupst_get_real_param("u0",u0,error_code)

call aupst_get_real_param("v0",v0,error_code)

call aupst_get_real_param("w0",w0,error_code)

call aupst_get_real_param("alpha",alpha,error_code)

call aupst_get_real_param("num_nodes",

& numnod,error_code)

c

c Calculate a solution scaling factor

c

expat = half * (one - cos(pi * eval_time / ctime))

c

c Compute the expected solution at each node and do a

c sum of the differences from the analytic solution

c

conv_error = zero

do inode = 1, num_nodes

c

c Set the displacement value from the manufactured solution

c

x = (mod_coords(1,inode) - xoff) / clength

y = (mod_coords(2,inode) - yoff) / clength

z = (mod_coords(3,inode) - zoff) / clength

c

mdisplx = u0 * sin(x) * cos(two*y) * cos(three*z)

* * expat

mdisply = v0 * cos(three*x) * sin(y) * cos(two*z)

* * expat

mdisplz = w0 * cos(two*x) * cos(three*y) * sin(z)

* * expat

c

9.4. USER SUBROUTINES: EXAMPLES 583

xdiff = mdisplx - cdispl(1,inode)

ydiff = mdisply - cdispl(2,inode)

zdiff = mdisplz - cdispl(3,inode)

conv_error = conv_error + xdiff*xdiff

* + ydiff*ydiff

* + zdiff*zdiff

c

enddo

c

ierror = 0

c

c Do a parallel sum of the squared errors and extract

c the total summed value on all processors

c

call aupst_put_global_var(1,conv_error,

& "conv_error","sum",ierror)

call aupst_get_global_var(1,conv_error,

& "conv_error",ierror)

c

c Take the square root of the errors and store that as

c the net error norm

c

conv_error = sqrt(conv_error) / sqrt(numnod)

call aupst_put_global_var(1,conv_error,

& "conv_error","none",ierror)

c

return

end

9.4.3 Transform Output Stresses to a Cylindrical Coordinate System

The following code is a user subroutine to transform element stresses in global x, y, and z coor-

dinates to a global cylindrical coordinate system. This subroutine could be used to transform the

relatively meaningless shell stress in x, y, and z coordinates to more meaningful tangential, hoop,

and radial stresses. The subroutine is called from a USER OUTPUT command block. It reads in the

old stresses, transforms them, and writes them back out to a user-created scratch variable, defined

via a USER VARIABLE command block, for output.

begin user variable cyl_stress

type = element sym_tensor length = 1

initial value = 0.0 0.0 0.0 0.0 0.0 0.0

end user variable

begin user output

block = block_1

element block subroutine = aupst_cyl_transform

584 CHAPTER 9. USER SUBROUTINES

subroutine string parameter: origin_point = Point_O

subroutine string parameter: z_point = Point_Z

subroutine string parameter: xz_point = Point_XZ

subroutine string parameter: input_stress = memb_stress

subroutine string parameter: output_stress = cyl_stress

end user output

The FORTRAN listing for the subroutine is as follows:

subroutine aupst_cyl_transform(num_elems, num_vals,

* eval_time, elemID, values, flags, ierror)

implicit none

#include<framewk/Fmwk_type_sizes_decl.par>

#include<framewk/Fmwk_type_sizes.par>

c

c Subroutine Arguments

c

c num_elems: Input: Number of elements to calculate on

c num_vals : Input: Ignored

c eval_time: Input: Time at which to evaluate the stress.

c elemID : Input: Global sierra IDs of the input elements

c values : I/O : Ignored, stress will be stored manually

c flags : I/O : Ignored

c ierror :Output: Returns non-zero if an error occurs

c

integer num_elems

integer num_vals

double precision eval_time

integer elemID(num_elems)

double precision values(1)

integer flags(1)

integer ierror

c

c Fortran cannot dynamically allocate memory, thus worksets

c will be iterated over by chucks each of size chunk_size.

c

integer chunk_size

parameter (chunk_size = 100)

integer chunk_ids(chunk_size)

c

c Subroutine parameter data

c

character*80 origin_point_name

double precision origin_point(3)

character*80 z_point_name

double precision z_point(3)

character*80 xz_point_name

9.4. USER SUBROUTINES: EXAMPLES 585

double precision xz_point(3)

character*80 input_stress_name

character*80 output_stress_name

c

c Local element data for centroids and rotation vectors

c

double precision cent(3)

double precision centerline_pos(3)

double precision dot_prod

double precision z_vec(3)

double precision r_vec(3)

double precision theta_vec(3)

double precision rotation_tensor(9)

c

c Chunk data storage

c

double precision elem_centroid(3, chunk_size)

double precision input_stress_val(6, chunk_size)

double precision output_stress_val(6, chunk_size)

c

c Simple iteration variables

c

integer error_code

integer ichunk, ielem

integer zero_elem, nel

c

c Extract the current subroutine parameters. origin_point

c is the origin of the coordinate system

c z_point is a point on the z axis of the coordinate system

c xz_point is a point on the xz plane

c

call aupst_get_string_param("origin_point",

& origin_point_name,

& error_code)

call aupst_get_string_param("z_point",

& z_point_name,

& error_code)

call aupst_get_string_param("xz_point",

& xz_point_name,

& error_code)

call aupst_get_string_param("input_stress",

& input_stress_name,

& error_code)

call aupst_get_string_param("output_stress",

& output_stress_name,

& error_code)

c

586 CHAPTER 9. USER SUBROUTINES

c Use the point names to look up the coordinates of each

c relevant point

c

call aupst_get_point(origin_point_name, origin_point,

& error_code)

call aupst_get_point(z_point_name, z_point,

& error_code)

call aupst_get_point(xz_point_name, xz_point,

& error_code)

c

c Compute the z axis vector

c

z_vec(1) = z_point(1) - origin_point(1)

z_vec(2) = z_point(2) - origin_point(2)

z_vec(3) = z_point(3) - origin_point(3)

c

c Transform z_vec into a unit vector, abort if it is invalid

c

call aupst_unitize_vector(z_vec, ierror)

if(ierror .ne. 0) return

c

c Loop over chunks of the data arrays

c

do ichunk = 1, (num_elems/chunk_size + 1)

c

c Determine the first and last element number for the

c current chunk of elements

c

zero_elem = (ichunk-1) * chunk_size

if((zero_elem + chunk_size) .gt. num_elems) then

nel = num_elems - zero_elem

else

nel = chunk_size

endif

c

c Copy the elemIDs for all elems in the current chunk to a

c temporary array

c

do ielem = 1, nel

chunk_ids(ielem) = elemID(zero_elem + ielem)

enddo

c

c Extract the element centroids and stresses

c

call aupst_get_elem_centroid(nel, chunk_ids,

& elem_centroid,

& ierror)

9.4. USER SUBROUTINES: EXAMPLES 587

call aupst_get_elem_var(nel, 6, chunk_ids,

& input_stress_val,

& input_stress_name, ierror)

c

c Loop over each element in the current chunk

c

do ielem = 1, nel

c

c Find the closest point on the cylinder centerline axis

c to the element centroid

c

cent(1) = elem_centroid(1, ielem) - origin_point(1)

cent(2) = elem_centroid(2, ielem) - origin_point(2)

cent(3) = elem_centroid(3, ielem) - origin_point(3)

dot_prod = cent(1) * z_vec(1) +

& cent(2) * z_vec(2) +

& cent(3) * z_vec(3)

centerline_pos(1) = z_vec(1) * dot_prod

centerline_pos(2) = z_vec(2) * dot_prod

centerline_pos(3) = z_vec(3) * dot_prod

c

c Compute the current normal radial vector

c

r_vec(1) = cent(1) - centerline_pos(1)

r_vec(2) = cent(2) - centerline_pos(2)

r_vec(3) = cent(3) - centerline_pos(3)

call aupst_unitize_vector(r_vec, ierror)

if(ierror .ne. 0) return

c

c Compute the current hoop vector

c

theta_vec(1) = z_vec(2)*r_vec(3) - r_vec(2)*z_vec(3)

theta_vec(2) = z_vec(3)*r_vec(1) - r_vec(3)*z_vec(1)

theta_vec(3) = z_vec(1)*r_vec(2) - r_vec(1)*z_vec(2)

c

c The r, theta, and z vectors describe the new stress

c coordinate system, Transform the input stress tensor

c in x,y,z coords to the output stress tensor in r, theta,

c and z coords use the unit vectors to create a rotation

c tensor

c

rotation_tensor(k_f36xx) = r_vec(1)

rotation_tensor(k_f36yx) = r_vec(2)

rotation_tensor(k_f36zx) = r_vec(3)

rotation_tensor(k_f36xy) = theta_vec(1)

rotation_tensor(k_f36yy) = theta_vec(2)

rotation_tensor(k_f36zy) = theta_vec(3)

588 CHAPTER 9. USER SUBROUTINES

rotation_tensor(k_f36xz) = z_vec(1)

rotation_tensor(k_f36yz) = z_vec(2)

rotation_tensor(k_f36zz) = z_vec(3)

c

c Rotate the current stress tensor to the new configuration

c

call fmth_rotate_symten33(1, 1, 0, rotation_tensor,

& input_stress_val(1,ielem),

& output_stress_val(1,ielem))

enddo

c

c Store the new stress

c

call aupst_put_elem_var(nel, 6, chunk_ids,

& output_stress_val,

& output_stress_name, ierror)

enddo

ierror = 0

end

9.5. USER SUBROUTINES: LIBRARY 589

9.5 User Subroutines: Library

A number of user subroutines are used commonly and have been permanently incorporated into

the code. These subroutines are used just like any other subroutines, but they do not need to be

compiled into the code. (The user need be concerned only about the Presto command lines.) This

section describes the usage of each of these subroutines.

9.5.1 aupst_cyl_transform

Author: Nathan Crane

Purpose:

The purpose of this subroutine is to transform element stresses from a global rectangular coordinate

system to a local cylindrical coordinate system. This subroutine is generally called by a USER

OUTPUT command block. For example:

begin user output

block = block_1

element block subroutine = aupst_cyl_transform

subroutine string parameter: origin_point = Point_O

subroutine string parameter: z_point = Point_Z

subroutine string parameter: xz_point = Point_XZ

subroutine string parameter: input_stress = memb_stress

subroutine string parameter: output_stress = cyl_stress

end user output

Requirements:

This subroutine requires a tensor variable to store the cylindrical stress into a registered variable

for each element. The registered variable is created by the following command block in the Presto

region:

begin user variable cyl_stress

type = element sym_tensor length = 1

initial value = 0.0 0.0 0.0 0.0 0.0 0.0

end user variable

590 CHAPTER 9. USER SUBROUTINES

Parameters:

Parameter Name Usage Description

origin_point String Name of the point at the cylinder origin.

z_point String Point on the cylinder axis.

xz_point String Point on the line that passes through theta

= 0 on the cylinder.

input_stress String Name of the Presto internal input stress

tensor variable.

output_stress String Name of the Presto internal output stress

tensor variable.

9.5.2 aupst_rec_transform

Author: Daniel Hammerand

Purpose:

The purpose of this subroutine is to transform element stresses from a global rectangular coordinate

system to a different local rectangular coordinate system. This subroutine is generally called by a

USER OUTPUT command block. For example:

begin user output

block = block_1

element block subroutine = aupst_rec_transform

subroutine string parameter: origin_point = Point_O

subroutine string parameter: z_point = Point_Z

subroutine string parameter: xz_point = Point_XZ

subroutine string parameter: input_stress = memb_stress

subroutine string parameter: output_stress = new_stress

end user output

Requirements:

This subroutine requires a tensor variable to store the new stress into a registered variable for each

element. The registered variable is created by the following command block in the Presto region:

begin user variable new_stress

type = element sym_tensor length = 1

initial value = 0.0 0.0 0.0 0.0 0.0 0.0

end user variable

9.5. USER SUBROUTINES: LIBRARY 591

Parameters:

Parameter Name Usage Description

origin_point String Name of the point at the cylinder origin.

z_point String Point on the cylinder axis.

xz_point String Point on the line that passes through theta

= 0 on the cylinder.

input_stress String Name of the Presto internal input stress

tensor variable.

output_stress String Name of the Presto internal output stress

tensor variable.

9.5.3 copy_data

Author: Jason Hales

Purpose:

The purpose of this subroutine is to copy data from one variable to another with offsets given

for both variables. This subroutine is generally called by a USER OUTPUT command block. For

example:

begin user output

block = block_1

element block subroutine = copy_data

subroutine integer parameter: source_offset = 4

subroutine string parameter: source_name = stress

subroutine integer parameter: destination_offset = 1

subroutine string parameter: destination_name = uservarxy

end user output

Requirements:

This subroutine requires that the source and destination fields exist and have lengths at least as

great as the values supplied as offsets. The fields used may be defined by the user as registered

variables. In this example, the registered variable is created by the following command block in

the Presto region:

begin user variable uservarxy

type = element real length = 1

initial value = 0.0

end user variable

592 CHAPTER 9. USER SUBROUTINES

Parameters:

Parameter Name Usage Description

source_offset Integer The offset into the source variable.

source_name String The name of the source variable.

destination_offset Integer The offset into the destination variable.

destination_name String The name of the destination variable.

9.5.4 trace

Author: Jason Hales

Purpose:

The purpose of this subroutine is to compute the trace of a tensor. This subroutine is generally

called by a USER OUTPUT command block. For example:

begin user output

block = block_1

element block subroutine = trace

subroutine string parameter: source_name = log_strain

subroutine string parameter: destination_name = uvarbulkstrain

end user output

Requirements:

This subroutine requires that the source and destination fields exist. The source field should have a

length of six. The destination field should have a length of one. The destination field will typically

be defined by the user as a registered variable. In this example, the registered variable is created

by the following command block in the Presto region:

begin user variable uvarbulkstrain

type = element real length = 1

initial value = 0.0

end user variable

9.5. USER SUBROUTINES: LIBRARY 593

Parameters:

Parameter Name Usage Description

source_name String The name of the source variable.

destination_name String The name of the destination variable.

594 CHAPTER 9. USER SUBROUTINES

Appendix A

Example Problem

This chapter provides an example problem to illustrate the construction of an input file for an

analysis. The example problem consists of 124 spheres made of lead enclosed in a steel box. The

steel box has an open top into which a steel plate is placed (see Figure A.1). A prescribed velocity

is then applied on the steel plate, pushing it into the box and crushing the spheres contained within

using frictionless contact. This problem is a severe test for the contact algorithms as the spheres

crush into a nearly solid block. See Figure A.2 for results of this problem.

X

Y

Z

(a) Undeformed Mesh

X

Y

Z

(b) Initial Crush of Spheres

Figure A.1: Mesh for example problem: (a) box (red and green surfaces) with plate in top (blue

surface) and (b) mesh with blue and green surfaces removed to show internal spheres (yellow) with

initial crush.

The input file is described below, with comments to explain every few lines. Following the de-

scription, the full input file is listed again. Most of the key words in this example are all lowercase,

which is different from the convention we have used to describe the command lines in this doc-

ument. However, all the lowercase usage in the following example is an acceptable format in

Presto.

The input file starts with a begin sierra statement (i.e., the first line of the SIERRA command block),

as is required for all input files:

begin sierra crush_124_spheres

595

596 APPENDIX A. EXAMPLE PROBLEM

X

Y

Z

(a) Additional Crush of Spheres

X

Y

Z

(b) Final Deformed Configuration

Figure A.2: Mesh with blue and green surfaces removed to show internal spheres (yellow) after

initial crush shown in Figure A.1 (b).

We now need to define the functions used with this problem. The boundary conditions require a

function for the initial velocity, as follows:

begin definition for function constant_velocity

type is piecewise linear

ordinate is velocity

abscissa is time

begin values

0.0 30.0

1.0 30.0

end values

end definition for function constant_velocity

To define the boundary conditions, we need to define the direction for the initial velocity—this is in

the y-direction. We could also choose to simply specify the Y component for the initial condition,

but this input file uses directions.

define direction y_axis with vector 0.0 1.0 0.0

Next we define the material models that will be used for this analysis. There are two materials

in this problem: steel for the box, and lead for the spheres. Both materials use the elastic-plastic

material model (denoted as elastic_plastic).

begin property specification for material steel

density = 7871.966988

begin parameters for model elastic_plastic

youngs modulus = 1.999479615e+11

poissons ratio = 0.33333

yield stress = 275790291.7

hardening modulus = 275790291.7

597

beta = 1.0

end parameters for model elastic_plastic

end property specification for material steel

begin property specification for material lead

density = 11253.30062

begin parameters for model elastic_plastic

youngs modulus = 1.378951459e+10

poissons ratio = 0.44

yield stress = 13789514.59

hardening modulus = 0.0

beta = 1.0

end parameters for model elastic_plastic

end property specification for material lead

Now we define the finite element mesh. This includes specification of the file that contains the

mesh, as well as a list of all the element blocks we will use from the mesh and the material

associated with each block. The name of the file is crush_124_spheres.g. The specification

of the database type is optional—ExodusII is the default. Currently, each element block must be

defined individually. For this particular problem, all the spheres are the same element block. Each

sphere is a distinct geometry entity, but all spheres constitute one element block in the Exodus II

database. Note that the three element blocks that make up the box and lid all reference the same

material description. The material description is not repeated three times. The material description

for steel appears once and is then referenced three times.

begin finite element model mesh1

Database Name = crush_124_spheres.g

Database Type = exodusII

begin parameters for block block_1

material linear_elastic_steel

solid mechanics use model elastic_plastic

end parameters for block block_1

begin parameters for block block_2

material linear_elastic_steel

solid mechanics use model elastic_plastic

end parameters for block block_2

begin parameters for block block_3

material linear_elastic_steel

solid mechanics use model elastic_plastic

end parameters for block block_3

598 APPENDIX A. EXAMPLE PROBLEM

begin parameters for block block_4

material linear_elastic_lead

solid mechanics use model elastic_plastic

end parameters for block block_4

end finite element model mesh1

As an alternative to referencing the material description for steel three times as done above, you

could define multiple element blocks simultaneously on the same command line. Thus, the three

element block specifications with the material linear_elastic_steel could be consolidated

into one, as follows:

begin parameters for block block_1 block 2 block 3

material linear_elastic_steel

solid mechanics use model elastic_plastic

end parameters for block block_1 block 2 block 3

At this point we have finished specifying physics-independent quantities. We now want to set

up the Presto procedure and region, along with the time control command block. We start

by defining the beginning of the procedure scope, the time control command block, and the

beginning of the region scope. Only one time stepping block command block is needed for

this analysis. The termination time is set to 7×10−4.

begin presto procedure Apst_Procedure

begin time control

begin time stepping block p1

start time = 0.0

begin parameters for presto region presto

time step scale factor = 1.0

time step increase factor = 2.0

step interval = 25

end parameters for presto region presto

end time stepping block p1

termination time = 7.0e-4

end time control

begin presto region presto

Next we associate the finite element model we defined above (mesh1) with this presto region.

use finite element model mesh1

599

Now we define the boundary conditions on the problem. We prescribe the velocity on the top

surface of the box (nodelist_100) to crush the spheres, and we confine the bottom surface of the

box (nodelist_200) not to move. Note that although we use node sets to define these boundary

conditions, we could have used the corresponding side sets.

begin prescribed velocity

node set = nodelist_100

direction = y_axis

function = constant_velocity

scale factor = -1.0

end

begin fixed displacement

node set = nodelist_200

components = Y

end

Now we define the contact for this problem. For this problem, we want all four element blocks to be

able to contact each other, with a normal tolerance of 0.0001 and a tangential tolerance of 0.0005.

In this case, we simply define the same contact characteristics for all interactions. However, we

could also specify tolerances and kinematic partition factors for individual interactions. Since no

friction model is defined in the block below, the contact defaults to frictionless contact. (There are

numerous options you can use to control the contact algorithm. The options you choose will affect

contact algorithm efficiency and solution accuracy. Consult with Chapter 7 to determine how to

set input for the CONTACT DEFINITION command block to obtain the best level of efficiency and

accuracy for your particular problem.)

begin contact definition

skin all blocks = on

begin search options

normal tolerance = 0.0001

tangential tolerance = 0.00005

end

begin interaction defaults

general contact = on

self contact = on

end

end

Now we define what variables we want in the results file, as well as how often we want this file

to be written. Here we request files written every 7× 10−6 sec of analysis time. This will result

in results output at one hundred time steps (plus the zero time step) since the termination time

is set to 7× 10−4 sec. The output file will be called crush_124_spheres.e, and it will be an

Exodus II file (the database type command is optional; it defaults to ExodusII). The variables we

are requesting are the displacements and external forces at the nodes, the rotated stresses for the

elements, the time-step increment, and the kinetic energy.

600 APPENDIX A. EXAMPLE PROBLEM

begin Results Output output_presto

Database Name = crush_124_spheres.e

Database Type = exodusII

At Time 0.0, Increment = 7.0e-6

nodal Variables = displacement as displ

nodal Variables = force_external as fext

element Variables = stress as stress

global Variables = KineticEnergy as KE

global Variables = timestep

end

Now we end the presto region, presto procedure, and sierra blocks to complete the input file.

end presto region presto

end presto procedure Apst_Procedure

end sierra crush_124_spheres

Here is the resulting full input file for this problem:

601

begin sierra crush_124_spheres

begin definition for function constant_velocity

type is piecewise linear

ordinate is velocity

abscissa is time

begin values

0.0 30.0

1.0 30.0

end values

end definition for function constant_velocity

define direction y_axis with vector 0.0 1.0 0.0

begin property specification for material steel

density = 7871.966988

begin parameters for model elastic_plastic

youngs modulus = 1.999479615e+11

poissons ratio = 0.33333

yield stress = 275790291.7

hardening modulus = 275790291.7

beta = 1.0

end parameters for model elastic_plastic

end property specification for material steel

begin property specification for material lead

density = 11253.30062

begin parameters for model elastic_plastic

youngs modulus = 1.378951459e+10

poissons ratio = 0.44

yield stress = 13789514.59

hardening modulus = 0.0

beta = 1.0

end parameters for model elastic_plastic

end property specification for material lead

begin finite element model mesh1

Database Name = crush_124_spheres.g

Database Type = exodusII

begin parameters for block block_1

material linear_elastic_steel

solid mechanics use model elastic_plastic

end parameters for block block_1

602 APPENDIX A. EXAMPLE PROBLEM

begin parameters for block block_2

material linear_elastic_steel

solid mechanics use model elastic_plastic

end parameters for block block_2

begin parameters for block block_3

material linear_elastic_steel

solid mechanics use model elastic_plastic

end parameters for block block_3

begin parameters for block block_4

material linear_elastic_lead

solid mechanics use model elastic_plastic

end parameters for block block_4

end finite element model mesh1

begin presto procedure Apst_Procedure

begin time control

begin time stepping block p1

start time = 0.0

begin parameters for presto region presto

time step scale factor = 1.0

time step increase factor = 2.0

step interval = 25

end parameters for presto region presto

end time stepping block p1

termination time = 7.0e-4

end time control

begin presto region presto

use finite element model mesh1

begin prescribed velocity

node set = nodelist_100

direction = y_axis

function = constant_velocity

scale factor = -1.0

end prescribed velocity

begin fixed displacement

node set = nodelist_200

components = Y

end fixed displacement

603

begin contact definition

skin all blocks = on

begin search options

normal tolerance = 0.0001

tangential tolerance = 0.00005

end

begin interaction defaults

general contact = on

self contact = on

end

end

begin Results Output output_presto

Database Name = crush_124_spheres.e

Database Type = exodusII

At Time 0.0, Increment = 7.0e-6

nodal Variables = displacement as displ

nodal Variables = force_external as fext

element Variables = stress as stress

global Variables = KineticEnergy as KE

global Variables = timestep

end results output output_presto

end presto region presto

end presto procedure Apst_Procedure

end sierra crush_124_spheres

604 APPENDIX A. EXAMPLE PROBLEM

Appendix B

Command Summary

This chapter gives all of the Presto commands in the proper scope.

SIERRA scope specification

BEGIN SIERRA <string>name

Title

TITLE = <string list>title

Restart time

RESTART TIME = <real>restart_time

RESTART = AUTOMATIC

User subroutine file

USER SUBROUTINE FILE = <string>file name

Function definition

BEGIN DEFINITION FOR FUNCTION <string>function_name

TYPE = <string>CONSTANT|PIECEWISE LINEAR|PIECEWISE CONSTANT|

ANALYTIC

ABSCISSA = <string>abscissa_label

[scale = <real>abscissa_scale(1.0)]

[offset = <real>abscissa_offset(0.0)]

ORDINATE = <string>ordinate_label

[scale = <real>ordinate_scale(1.0)]

[offset = <real>ordinate_offset(0.0)]

X SCALE = <real>x_scale(1.0)

X OFFSET = <real>x_offset(0.0)

Y SCALE = <real>y_scale(1.0)

Y OFFSET = <real>y_offset(0.0)

605

606 APPENDIX B. COMMAND SUMMARY

BEGIN VALUES

<real>x_1 <real>y_1

<real>x_2 <real>y_2

...

<real>x_n <real>y_n

END [VALUES]

AT DISCONTINUITY EVALUATE TO <string>LEFT|RIGHT(LEFT)

EVALUATE EXPRESSION = <string>analytic_expression1;

analytic_expression2;...

DEBUG = ON|OFF(OFF)

END [DEFINITION FOR FUNCTION <string>function_name]

Definitions

DEFINE POINT <string>point_name WITH COORDINATES

<real>value_1 <real>value_2 <real>value_3

DEFINE DIRECTION <string>direction_name WITH VECTOR

<real>value_1 <real>value_2 <real>value_3

DEFINE AXIS <string>axis_name WITH POINT

<string>point_1 POINT <string>point_2

DEFINE AXIS <string>axis_name WITH POINT

<string>point_name DIRECTION <string>direction

Local coordinate system

BEGIN ORIENTATION <string>orientation_name

SYSTEM = <string>RECTANGULAR|Z RECTANGULAR|CYLINDRICAL|

SPHERICAL(RECTANGULAR)

#

POINT A = <real>global_ax <real>global_ay <real>global_az

POINT B = <real>global_bx <real>global_by <real>global_bz

#

ROTATION ABOUT <integer> 1|2|3(1) = <real>theta(0.0)

END [ORIENTATION <string>orientation_name]

Rigid bodies

BEGIN RIGID BODY <string>rb_name

MASS = <real>mass

MASS LOCATION = <real>CGx <real>CGy <real>CGz

INERTIA = <real>Ixx <real>Iyy <real>Izz <real>Ixy

<real>Iyz <real>Izx

POINT INERTIA = <real>Ixx <real>Iyy <real>Izz <real>Ixy

<real>Iyz <real>Izx

607

MAGNITUDE = <real>magnitude_of_velocity

DIRECTION = <string>direction_definition

ANGULAR VELOCITY = <real>omega

CYLINDRICAL AXIS = <string>axis_definition

INCLUDE NODES IN <string>surface_name

[if <string>field_name <|<=|=|>=|> <real>value]

END [RIGID BODY <string>rb_name]

Elastic material

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL ELASTIC

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

END [PARAMETERS FOR MODEL ELASTIC]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Elastic fracture material

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

608 APPENDIX B. COMMAND SUMMARY

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL ELASTIC_FRACTURE

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

MAX STRESS = <real>max_stress

CRITICAL STRAIN = <real>critical_strain

END [PARAMETERS FOR MODEL ELASTIC_FRACTURE]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Elastic-plastic material

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL ELASTIC_PLASTIC

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

YIELD STRESS = <real>yield_stress

HARDENING MODULUS = <real>hardening_modulus

BETA = <real>beta_parameter(1.0)

END [PARAMETERS FOR MODEL ELASTIC_PLASTIC]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Elastic-plastic power-law hardening

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

609

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL EP_POWER_HARD

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

YIELD STRESS = <real>yield_stress

HARDENING CONSTANT = <real>hardening_constant

HARDENING EXPONENT = <real>hardening_exponent

LUDERS STRAIN = <real>luders_strain

END [PARAMETERS FOR MODEL EP_POWER_HARD]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Elastic plastic power-law hardening with failure

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL DUCTILE_FRACTURE

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

YIELD STRESS = <real>yield_stress

HARDENING CONSTANT = <real>hardening_constant

610 APPENDIX B. COMMAND SUMMARY

HARDENING EXPONENT = <real>hardening_exponent

LUDERS STRAIN <real>luders_strain

CRITICAL TEARING PARAMETER = <real>crit_tearing

CRITICAL CRACK OPENING STRAIN = <real>crit_crack

END [PARAMETERS FOR MODEL DUCTILE_FRACTURE]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Multilinear elastic plastic power-law hardening

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL MULTILINEAR_EP

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

YIELD STRESS = <real>yield_stress

BETA = <real>beta_parameter(1.0)

HARDENING FUNCTION = <real>hardening_function_name

YOUNGS MODULUS FUNCTION = <real>ym_function_name

POISSONS RATIO FUNCTION = <real>pr_function_name

YIELD STRESS FUNCTION =

<real>yield_stress_function_name

END [PARAMETERS FOR MODEL MULTILINEAR_EP]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Multilinear elastic plaster power-law hardening with

failure

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

611

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL ML_EP_FAIL

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

YIELD STRESS = <real>yield_stress

BETA = <real>beta_parameter(1.0)

HARDENING FUNCTION = <real>hardening_function_name

YOUNGS MODULUS FUNCTION = <real>ym_function_name

POISSONS RATIO FUNCTION = <real>pr_function_name

YIELD STRESS FUNCTION =

<real>yield_stress_function_name

CRITICAL TEARING PARAMETER = <real>crit_tearing

CRITICAL CRACK OPENING STRAIN = <real>crit_crack

END [PARAMETERS FOR MODEL ML_EP_FAIL]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

BCJ plasticity

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL BCJ

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

612 APPENDIX B. COMMAND SUMMARY

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

C1 = <real>c1

C2 = <real>c2

C3 = <real>c3

C4 = <real>c4

C5 = <real>c5

C6 = <real>c6

C7 = <real>c7

C8 = <real>c8

C9 = <real>c9

C10 = <real>c10

C11 = <real>c11

C12 = <real>c12

C13 = <real>c13

C14 = <real>c14

C15 = <real>c15

C16 = <real>c16

C17 = <real>c17

C18 = <real>c18

C19 = <real>c19

C20 = <real>c20

DAMAGE EXPONENT = <real>damage_exponent

INITIAL ALPHA_XX = <real>alpha_xx

INITIAL ALPHA_YY = <real>alpha_yy

INITIAL ALPHA_ZZ = <real>alpha_zz

INITIAL ALPHA_XY = <real>alpha_xy

INITIAL ALPHA_YZ = <real>alpha_yz

INITIAL ALPHA_XZ = <real>alpha_xz

INITIAL KAPPA = <real>initial_kappa

INITIAL DAMAGE = <real>initial_damage

YOUNGS MODULUS FUNCTION = <string>ym_function_name

POISSONS RATIO FUNCTION = <string>pr_function_name

SPECIFIC HEAT = <real>specific_heat

THETA OPT = <integer>theta_opt

FACTOR = <real>factor

RHO = <real>rho

TEMP0 = <real>temp0

END [PARAMETERS FOR MODEL BCJ]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Soil and crushable foam

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

613

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL SOIL_FOAM

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

A0 = <real>const_coeff_yieldsurf

A1 = <real>lin_coeff_yieldsurf

A2 = <real>quad_coeff_yieldsurf

PRESSURE CUTOFF = <real>pressure_cutoff

PRESSURE FUNCTION = <string>function_press_volstrain

END [PARAMETERS FOR MODEL SOIL_FOAM]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

Foam plasticity

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL FOAM_PLASTICITY

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

PHI = <real>phi

614 APPENDIX B. COMMAND SUMMARY

SHEAR STRENGTH = <real>shear_strength

SHEAR HARDENING = <real>shear_hardening

SHEAR EXPONENT = <real>shear_exponent

HYDRO STRENGTH = <real>hydro_strength

HYDRO HARDENING = <real>hydro_hardening

HYDRO EXPONENT = <real>hydro_exponent

BETA = <real>beta

END [PARAMETERS FOR MODEL FOAM_PLASTICITY]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Elastic three-dimensional orthotropic

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

BEGIN PARAMETERS FOR MODEL ELASTIC_3D_ORTHOTROPIC

YOUNGS MODULUS AA = <real>Eaa_value

YOUNGS MODULUS BB = <real>Ebb_value

YOUNGS MODULUS CC = <real>Ecc_value

POISSONS RATIO AB = <real>NUab_value

POISSONS RATIO BC = <real>NUbc_value

POISSONS RATIO CA = <real>NUca_value

SHEAR MODULUS AB = <real>Gab_value

SHEAR MODULUS BC = <real>Gbc_value

SHEAR MODULUS CA = <real>Gca_value

COORDINATE SYSTEM = <string>coordinate_system_name

DIRECTION FOR ROTATION = <real>1|2|3

ALPHA = <real>alpha_in_degrees

SECOND DIRECTION FOR ROTATION = <real>1|2|3

SECOND ALPHA = <real>second_alpha_in_degrees

THERMAL STRAIN AA FUNCTION = <string>ethaa_function_name

THERMAL STRAIN BB FUNCTION = <string>ethbb_function_name

THERMAL STRAIN CC FUNCTION = <string>ethcc_function_name

END [PARAMETERS FOR MODEL ELASTIC_3D_ORTHOTROPIC]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Orthotropic crush

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

615

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL ORTHOTROPIC_CRUSH

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

YIELD STRESS = <real>yield_stress

EX = <real>modulus_x

EY = <real>modulus_y

EZ = <real>modulus_z

GXY = <real>shear_modulus_xy

GYZ = <real>shear_modulus_yz

GZX = <real>shear_modulus_zx

VMIN = <real>min_crush_volume

CRUSH XX = <string>stress_volume_xx_function_name

CRUSH YY = <string>stress_volume_yy_function_name

CRUSH ZZ = <string>stress_volume_zz_function_name

CRUSH XY =

<string>shear_stress_volume_xy_function_name

CRUSH YZ =

<string>shear_stress_volume_yz_function_name

CRUSH ZX =

<string>shear_stress_volume_zx_function_name

END [PARAMETERS FOR MODEL ORTHOTROPIC_CRUSH]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Orthotropic rate

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL ORTHOTROPIC_RATE

616 APPENDIX B. COMMAND SUMMARY

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

YIELD STRESS = <real>yield_stress

MODULUS TTTT = <real>modulus_tttt

MODULUS TTLL = <real>modulus_ttll

MODULUS TTWW = <real>modulus_ttww

MODULUS LLLL = <real>modulus_llll

MODULUS LLWW = <real>modulus_llww

MODULUS WWWW = <real>modulus_wwww

MODULUS TLTL = <real>modulus_tltl

MODULUS LWLW = <real>modulus_lwlw

MODULUS WTWT = <real>modulus_wtwt

TX = <real>tx

TY = <real>ty

TZ = <real>tz

LX = <real>lx

LY = <real>ly

LZ = <real>lz

MODULUS FUNCTION = <string>modulus_function_name

RATE FUNCTION = <string>rate_function_name

T FUNCTION = <string>t_function_name

L FUNCTION = <string>l_function_name

W FUNCTION = <string>w_function_name

TL FUNCTION = <string>tl_function_name

LW FUNCTION = <string>lw_function_name

WT FUNCTION = <string>wt_function_name

END [PARAMETERS FOR MODEL ORTHOTROPIC_RATE]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Elastic laminate

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BEGIN PARAMETERS FOR MODEL ELASTIC_LAMINATE

A11 = <real>a11_value

A12 = <real>a12_value

A16 = <real>a16_value

A22 = <real>a22_value

A26 = <real>a26_value

A66 = <real>a66_value

A44 = <real>a44_value

A45 = <real>a45_value

A55 = <real>a55_value

B11 = <real>b11_value

617

B12 = <real>b12_value

B16 = <real>b16_value

B22 = <real>b22_value

B26 = <real>b26_value

B66 = <real>b66_value

D11 = <real>d11_value

D12 = <real>d12_value

D16 = <real>d16_value

D22 = <real>d22_value

D26 = <real>d26_value

D66 = <real>d66_value

COORDINATE SYSTEM = <string>coord_sys_name

DIRECTION FOR ROTATION = 1|2|3

ALPHA = <real>alpha_value_in_degrees

THETA = <real>theta_value_in_degrees

NTH11 FUNCTION = <string>nth11_function_name

NTH22 FUNCTION = <string>nth22_function_name

NTH12 FUNCTION = <string>nth12_function_name

MTH11 FUNCTION = <string>mth11_function_name

MTH22 FUNCTION = <string>mth22_function_name

MTH12 FUNCTION = <string>mth12_function_name

END [PARAMETERS FOR MODEL ELASTIC_LAMINATE]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Fiber membrane

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL FIBER_MEMBRANE

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

CORD DENSITY = <real>cord_density

CORD DIAMETER = <real>cord_diameter

618 APPENDIX B. COMMAND SUMMARY

MATRIX DENSITY = <real>matrix_density

TENSILE TEST FUNCTION = <string>test_function_name

PERCENT CONTINUUM = <real>percent_continuum

EPL = <real>epl

AXIS X = <real>axis_x

AXIS Y = <real>axis_y

AXIS Z = <real>axis_z

MODEL = <string>RECTANGULAR

STIFFNESS SCALE = <real>stiffness_scale

REFERENCE STRAIN = <real>reference_strain

END [PARAMETERS FOR MODEL FIBER_MEMBRANE]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Incompressible solid

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL INCOMPRESSIBLE_SOLID

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

BULK MODULUS = <real>bulk_modulus

SHEAR MODULUS = <real>shear_modulus

LAMBDA = <real>lambda

K SCALING = <real>k_scaling

2G SCALING = <real>2g_scaling

TARGET E = <real>target_e

MAX POISSONS RATIO = <real>max_poissons_ratio

REFERENCE STRAIN = <real>reference_strain

SCALING FUNCTION = <string>scaling_function_name

END [PARAMETERS FOR MODEL INCOMPRESSIBLE_SOLID]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Mooney Rivlin

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

619

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

BEGIN PARAMETERS FOR MODEL MOONEY_RIVLIN

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

BULK MODULUS = <real>bulk_modulus

SHEAR MODULUS = <real>shear_modulus

LAMBDA = <real>lambda

C10 = <real>c10

C01 = <real>c01

C10 FUNCTION = <string>c10_function_name

C01 FUNCTION = <string>c01_function_name

BULK FUNCTION = <string>bulk_function_name

THERMAL EXPANSION FUNCTION = <string>eth_function_name

TARGET E = <real>target_e

TARGET E FUNCTION = <string>etar_function_name

MAX POISSONS RATIO = <real>max_poissons_ratio

REFERENCE STRAIN = <real>reference_strain

END [PARAMETERS FOR MODEL MOONEY_RIVLIN]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

NVLE 3D Orthotropic

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

BEGIN PARAMETERS FOR MODEL NLVE_3D_ORTHOTROPIC

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

COORDINATE SYSTEM = <string>coordinate_system_name

DIRECTION FOR ROTATION = <real>1|2|3

ALPHA = <real>alpha_in_degrees

SECOND DIRECTION FOR ROTATION = <real>1|2|3

SECOND ALPHA = <real>second_alpha_in_degrees

FICTITIOUS LOGA FUNCTION = <string>fict_loga_function_name

FICTITIOUS LOGA SCALE FACTOR = <real>fict_loga_scale_factor

In each of the five ‘‘PRONY’’ command lines and in

the RELAX TIME command line, the value of i can be from

1 through 30

1PSI PRONY <integer>i = <real>psi1_i

2PSI PRONY <integer>i = <real>psi2_i

3PSI PRONY <integer>i = <real>psi3_i

620 APPENDIX B. COMMAND SUMMARY

4PSI PRONY <integer>i = <real>psi4_i

5PSI PRONY <integer>i = <real>psi5_i

RELAX TIME <integer>i = <real>tau_i

REFERENCE TEMP = <real>tref

REFERENCE DENSITY = <real>rhoref

WLF C1 = <real>wlf_c1

WLF C2 = <real>wlf_c2

B SHIFT CONSTANT = <real>b_shift

SHIFT REF VALUE = <real>shift_ref

WWBETA 1PSI = <real>wwb_1psi

WWTAU 1PSI = <real>wwt_1psi

WWBETA 2PSI = <real>wwb_2psi

WWTAU 2PSI = <real>wwt_2psi

WWBETA 3PSI = <real>wwb_3psi

WWTAU 3PSI = <real>wwt_3psi

WWBETA 4PSI = <real>wwb_4psi

WWTAU 4PSI = <real>wwt_4psi

WWBETA 5PSI = <real>wwb_5psi

WWTAU 5PSI = <real>wwt_5psi

DOUBLE INTEG FACTOR = <real>dble_int_fac

REF RUBBERY HCAPACITY = <real>hcapr

REF GLASSY HCAPACITY = <real>hcapg

GLASS TRANSITION TEM = <real>tg

REF GLASSY C11 = <real>c11g

REF RUBBERY C11 = <real>c11r

REF GLASSY C22 = <real>c22g

REF RUBBERY C22 = <real>c22r

REF GLASSY C33 = <real>c33g

REF RUBBERY C33 = <real>c33r

REF GLASSY C12 = <real>c12g

REF RUBBERY C12 = <real>c12r

REF GLASSY C13 = <real>c13g

REF RUBBERY C13 = <real>c13r

REF GLASSY C23 = <real>c23g

REF RUBBERY C23 = <real>c23r

REF GLASSY C44 = <real>c44g

REF RUBBERY C44 = <real>c44r

REF GLASSY C55 = <real>c55g

REF RUBBERY C55 = <real>c55r

REF GLASSY C66 = <real>c66g

REF RUBBERY C66 = <real>c66r

REF GLASSY CTE1 = <real>cte1g

REF RUBBERY CTE1 = <real>cte1r

REF GLASSY CTE2 = <real>cte2g

REF RUBBERY CTE2 = <real>cte2r

REF GLASSY CTE3 = <real>cte3g

REF RUBBERY CTE3 = <real>cte3r

621

LINEAR VISCO TEST = <real>lvt

T DERIV GLASSY C11 = <real>dc11gdT

T DERIV RUBBERY C11 = <real>dc11rdT

T DERIV GLASSY C22 = <real>dc22gdT

T DERIV RUBBERY C22 = <real>dc22rdT

T DERIV GLASSY C33 = <real>dc33gdT

T DERIV RUBBERY C33 = <real>dc33rdT

T DERIV GLASSY C12 = <real>dc12gdT

T DERIV RUBBERY C12 = <real>dc12rdT

T DERIV GLASSY C13 = <real>dc13gdT

T DERIV RUBBERY C13 = <real>dc13rdT

T DERIV GLASSY C23 = <real>dc23gdT

T DERIV RUBBERY C23 = <real>dc23rdT

T DERIV GLASSY C44 = <real>dc44gdT

T DERIV RUBBERY C44 = <real>dc44rdT

T DERIV GLASSY C55 = <real>dc55gdT

T DERIV RUBBERY C55 = <real>dc55rdT

T DERIV GLASSY C66 = <real>dc66gdT

T DERIV RUBBERY C66 = <real>dc66rdT

T DERIV GLASSY CTE1 = <real>dcte1gdT

T DERIV RUBBERY CTE1 = <real>dcte1rdT

T DERIV GLASSY CTE2 = <real>dcte2gdT

T DERIV RUBBERY CTE2 = <real>dcte2rdT

T DERIV GLASSY CTE3 = <real>dcte3gdT

T DERIV RUBBERY CTE3 = <real>dcte3rdT

T DERIV GLASSY HCAPACITY = <real>dhcapgdT

T DERIV RUBBERY HCAPACITY = <real>dhcaprdT

REF PSIC = <real>psic_ref

T DERIV PSIC = <real>dpsicdT

T 2DERIV PSIC = <real>d2psicdT2

PSI EQ 2T = <real>psitt

PSI EQ 3T = <real>psittt

PSI EQ 4T = <real>psitttt

PSI EQ XX 11 = <real>psiXX11

PSI EQ XX 22 = <real>psiXX22

PSI EQ XX 33 = <real>psiXX33

PSI EQ XX 12 = <real>psiXX12

PSI EQ XX 13 = <real>psiXX13

PSI EQ XX 23 = <real>psiXX23

PSI EQ XX 44 = <real>psiXX44

PSI EQ XX 55 = <real>psiXX55

PSI EQ XX 66 = <real>psiXX66

PSI EQ XXT 11 = <real>psiXXT11

PSI EQ XXT 22 = <real>psiXXT22

PSI EQ XXT 33 = <real>psiXXT33

PSI EQ XXT 12 = <real>psiXXT12

PSI EQ XXT 13 = <real>psiXXT13

622 APPENDIX B. COMMAND SUMMARY

PSI EQ XXT 23 = <real>psiXXT23

PSI EQ XXT 44 = <real>psiXXT44

PSI EQ XXT 55 = <real>psiXXT55

PSI EQ XXT 66 = <real>psiXXT66

PSI EQ XT 1 = <real>psiXT1

PSI EQ XT 2 = <real>psiXT2

PSI EQ XT 3 = <real>psiXT3

PSI EQ XTT 1 = <real>psiXTT1

PSI EQ XTT 2 = <real>psiXTT2

PSI EQ XTT 3 = <real>psiXTT3

REF PSIA 11 = <real>psiA11

REF PSIA 22 = <real>psiA22

REF PSIA 33 = <real>psiA33

REF PSIA 12 = <real>psiA12

REF PSIA 13 = <real>psiA13

REF PSIA 23 = <real>psiA23

REF PSIA 44 = <real>psiA44

REF PSIA 55 = <real>psiA55

REF PSIA 66 = <real>psiA66

T DERIV PSIA 11 = <real>dpsiA11dT

T DERIV PSIA 22 = <real>dpsiA22dT

T DERIV PSIA 33 = <real>dpsiA33dT

T DERIV PSIA 12 = <real>dpsiA12dT

T DERIV PSIA 13 = <real>dpsiA13dT

T DERIV PSIA 23 = <real>dpsiA23dT

T DERIV PSIA 44 = <real>dpsiA44dT

T DERIV PSIA 55 = <real>dpsiA55dT

T DERIV PSIA 66 = <real>dpsiA66dT

REF PSIB 1 = <real>psiB1

REF PSIB 2 = <real>psiB2

REF PSIB 3 = <real>psiB3

T DERIV PSIB 1 = <real>dpsiB1dT

T DERIV PSIB 2 = <real>dpsiB2dT

T DERIV PSIB 3 = <real>dpsiB3dT

PSI POT TT = <real>psipotTT

PSI POT TTT = <real>psipotTTT

PSI POT TTTT = <real>psipotTTTT

PSI POT XT 1 = <real>psipotXT1

PSI POT XT 2 = <real>psipotXT2

PSI POT XT 3 = <real>psipotXT3

PSI POT XTT 1 = <real>psipotXTT1

PSI POT XTT 2 = <real>psipotXTT2

PSI POT XTT 3 = <real>psipotXTT3

PSI POT XXT 11 = <real>psipotXXT11

PSI POT XXT 22 = <real>psipotXXT22

PSI POT XXT 33 = <real>psipotXXT33

PSI POT XXT 12 = <real>psipotXXT12

623

PSI POT XXT 13 = <real>psipotXXT13

PSI POT XXT 23 = <real>psipotXXT23

PSI POT XXT 44 = <real>psipotXXT44

PSI POT XXT 55 = <real>psipotXXT55

PSI POT XXT 66 = <real>psipotXXT66

END [PARAMETERS FOR MODEL NLVE_3D_ORTHOTROPIC]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Stiff elastic

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL STIFF_ELASTIC

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

BULK MODULUS = <real>bulk_modulus

SHEAR MODULUS = <real>shear_modulus

LAMBDA = <real>lambda

SCALE FACTOR = <real>scale_factor

REFERENCE STRAIN = <real>reference_strain

END [PARAMETERS FOR MODEL STIFF_ELASTIC]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Swanson

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

BEGIN PARAMETERS FOR MODEL SWANSON

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

BULK MODULUS = <real>bulk_modulus

SHEAR MODULUS = <real>shear_modulus

LAMBDA = <real>lambda

624 APPENDIX B. COMMAND SUMMARY

A1 = <real>a1

P1 = <real>p1

B1 = <real>b1

Q1 = <real>q1

C1 = <real>c1

R1 = <real>r1

CUT OFF STRAIN = <real>ecut

THERMAL EXPANSION FUNCTION = <string>eth_function_name

TARGET E = <real>target_e

TARGET E FUNCTION = <string>etar_function_name

MAX POISSONS RATIO = <real>max_poissons_ratio

REFERENCE STRAIN = <real>reference_strain

END [PARAMETERS FOR MODEL SWANSON]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Viscoelastic Swanson

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

BIOTS COEFFICIENT = <real>biots_value

#

BEGIN PARAMETERS FOR MODEL VISCOELASTIC_SWANSON

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

BULK MODULUS = <real>bulk_modulus

SHEAR MODULUS = <real>shear_modulus

LAMBDA = <real>lambda

A1 = <real>a1

P1 = <real>p1

B1 = <real>b1

Q1 = <real>q1

C1 = <real>c1

R1 = <real>r1

CUT OFF STRAIN = <real>ecut

THERMAL EXPANSION FUNCTION = <string>eth_function_name

PRONY SHEAR INFINITY = <real>ginf

PRONY SHEAR 1 = <real>g1

PRONY SHEAR 2 = <real>g2

PRONY SHEAR 3 = <real>g3

PRONY SHEAR 4 = <real>g4

PRONY SHEAR 5 = <real>g5

PRONY SHEAR 6 = <real>g6

PRONY SHEAR 7 = <real>g7

PRONY SHEAR 8 = <real>g8

PRONY SHEAR 9 = <real>g9

PRONY SHEAR 10 = <real>g10

SHEAR RELAX TIME 1 = <real>tau1

SHEAR RELAX TIME 2 = <real>tau2

625

SHEAR RELAX TIME 3 = <real>tau3

SHEAR RELAX TIME 4 = <real>tau4

SHEAR RELAX TIME 5 = <real>tau5

SHEAR RELAX TIME 6 = <real>tau6

SHEAR RELAX TIME 7 = <real>tau7

SHEAR RELAX TIME 8 = <real>tau8

SHEAR RELAX TIME 9 = <real>tau9

SHEAR RELAX TIME 10 = <real>tau10

WLF COEF C1 = <real>wlf_c1

WLF COEF C2 = <real>wlf_c2

WLF TREF = <real>wlf_tref

NUMERICAL SHIFT FUNCTION = <string>ns_function_name

TARGET E = <real>target_e

TARGET E FUNCTION = <string>etar_function_name

MAX POISSONS RATIO = <real>max_poissons_ratio

REFERENCE STRAIN = <real>reference_strain

END [PARAMETERS FOR MODEL VISCOELASTIC_SWANSON]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Traction Decay

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

#

BEGIN PARAMETERS FOR MODEL TRACTION_DECAY

NORMAL DECAY LENGTH = <real>

TANGENTIAL DECAY LENGTH = <real>

END [PARAMETERS FOR MODEL TRACTION_DECAY]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Tvergaard Hutchinson

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

#

BEGIN PARAMETERS FOR MODEL TVERGAARD_HUTCHINSON

INIT TRACTION METHOD = IGNORE|ADD (IGNORE)

LAMBDA_1 = <real>

LAMBDA_2 = <real>

NORMAL LENGTH SCALE = <real>

TANGENTIAL LENGTH SCALE = <real>

PEAK TRACTION = <real>

PENETRATION STIFFNESS MULTIPLIER = <real>

NORMAL INITIAL TRACTION DECAY LENGTH = <real>

TANGENTIAL INITIAL TRACTION DECAY LENGTH = <real>

USE ELASTIC UNLOADING = NO|YES (YES)

END [PARAMETERS FOR MODEL TVERGAARD_HUTCHINSON]

626 APPENDIX B. COMMAND SUMMARY

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Thouless Parmigiani

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

#

BEGIN PARAMETERS FOR MODEL THOULESS_PARMIGIANI

INIT TRACTION METHOD = IGNORE|ADD (IGNORE)

LAMBDA_1_N = <real>

LAMBDA_2_N = <real>

LAMBDA_1_T = <real>

LAMBDA_2_T = <real>

NORMAL LENGTH SCALE = <real>

TANGENTIAL LENGTH SCALE = <real>

PEAK NORMAL TRACTION = <real>

PEAK TANGENTIAL TRACTION = <real>

PENETRATION STIFFNESS MULTIPLIER = <real>

USE ELASTIC UNLOADING = NO|YES (YES)

END [PARAMETERS FOR MODEL THOULESS_PARMIGIANI]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Define mesh

BEGIN FINITE ELEMENT MODEL <string>mesh_descriptor

DATABASE NAME = <string>mesh_file_name

DATABASE TYPE = <string>database_type(exodusII)

ALIAS <string>mesh_identifier AS <string>user_name

OMIT BLOCK <string>block_list

COMPONENT SEPARATOR CHARACTER = <string>separator

BEGIN PARAMETERS FOR BLOCK [<string list>block_names]

MATERIAL <string>material_name

SOLID MECHANICS USE MODEL <string>model_name

INCLUDE ALL BLOCKS

REMOVE BLOCK = <string list>block_names

SECTION = <string>section_id

LINEAR BULK VISCOSITY =

<real>linear_bulk_viscosity_value(0.06)

QUADRATIC BULK VISCOSITY =

<real>quad_bulk_viscosity_value(1.20)

HOURGLASS STIFFNESS =

<real>hour_glass_stiff_value(solid = 0.05,

shell/membrane = 0.0)

HOURGLASS VISCOSITY =

<real>hour_glass_visc_value(solid = 0.0,

shell/membrane = 0.0)

MEMBRANE HOURGLASS STIFFNESS =

627

<real>memb_hour_glass_stiff_value(0.0)

MEMBRANE HOURGLASS VISCOSITY =

<real>memb_hour_glass_visc_value(0.0)

BENDING HOURGLASS STIFFNESS =

<real>bend_hour_glass_stiff_value(0.0)

BENDING HOURGLASS VISCOSITY =

<real>bend_hour_glass_visc_value(0.0)

TRANSVERSE SHEAR HOURGLASS STIFFNESS =

<real>tshr_hour_glass_stiff_value(0.0)

TRANSVERSE SHEAR HOURGLASS VISCOSITY =

<real>tshr_hour_glass_visc_value(0.0)

EFFECTIVE MODULI MODEL = <string>PRESTO|PRONTO|

CURRENT|ELASTIC(PRONTO)

ELEMENT NUMERICAL FORMULATION = <string>OLD|NEW(OLD)

ACTIVE FOR PROCEDURE <string>proc_name DURING PERIODS

<string list>period_names

INACTIVE FOR PROCEDURE <string>proc_name DURING PERIODS

<string list>period_names

END [PARAMETERS FOR BLOCK <string list>block_names]

END [FINITE ELEMENT MODEL <string>mesh_descriptor]

Element sections

BEGIN SOLID SECTION <string>solid_section_name

FORMULATION = <string>MEAN_QUADRATURE|

SELECTIVE_DEVIATORIC|VOID(MEAN QUADRATURE)

DEVIATORIC PARAMETER = <real>deviatoric_param

STRAIN INCREMENTATION = <string>MIDPOINT_INCREMENT|

STRONGLY_OBJECTIVE|NODE_BASED(MIDPOINT_INCREMENT)

NODE BASED ALPHA FACTOR =

<real>bulk_stress_weight(0.01)

NODE BASED BETA FACTOR =

<real>shear stress_weight(0.35)

HOURGLASS FORMULATION = <string>TOTAL|INCREMENTAL(INCREMENTAL)

RIGID BODY = <string>rigid_body_name

USE LAME|STRUMENTO(LAME)

END [SOLID SECTION <string>solid_section_name]

BEGIN COHESIVE SECTION <string>cohesive_section_name

NUMBER OF INTEGRATION POINTS = <integer>num_int_points(1)

END [COHESIVE SECTION <string>cohesive_section_name]

BEGIN SHELL SECTION <string>shell_section_name

THICKNESS = <real>shell_thickness

THICKNESS MESH VARIABLE =

<string>THICKNESS|<string>var_name

THICKNESS TIME STEP = <real>time_value

628 APPENDIX B. COMMAND SUMMARY

THICKNESS SCALE FACTOR = <real>thick_scale_factor(1.0)

INTEGRATION RULE = TRAPEZOID|GAUSS|LOBATTO|SIMPSONS|

USER(TRAPEZOID)

NUMBER OF INTEGRATION POINTS =

<integer>num_int_points(5)

BEGIN USER INTEGRATION RULE

<real>location_1 <real>weight_1

<real>location_2 <real>weight_2

.

.

<real>location_n <real>weight_n

END [USER INTEGRATION RULE]

LOFTING FACTOR = <real>lofting_factor(0.5)

ORIENTATION = <string>orientation_name

DRILLING STIFFNESS FACTOR = <real>stiffness_factor(0.0)

RIGID BODY = <string>rigid_body_name

USE LAME|STRUMENTO(LAME)

END [SHELL SECTION <string>shell_section_name]

BEGIN MEMBRANE SECTION <string>membrane_section_name

THICKNESS = <real>mem_thickness

THICKNESS MESH VARIABLE =

<string>THICKNESS|<string>var_name

THICKNESS TIME STEP = <real>time_value

THICKNESS SCALE FACTOR = <real>thick_scale_factor(1.0)

FORMULATION = <string>MEAN_QUADRATURE|

SELECTIVE_DEVIATORIC(MEAN QUADRATURE)

DEVIATORIC PARAMETER = <real>deviatoric_param

LOFTING FACTOR = <real>lofting_factor(0.5)

RIGID BODY = <string>rigid_body_name

END [MEMBRANE SECTION <string>membrane_section_name]

BEGIN BEAM SECTION <string>beam_section_name

SECTION = <string>ROD|TUBE|BAR|BOX|I

WIDTH = <real>section_width

WIDTH VARIABLE = <string>width_var

HEIGHT = <real>section_width

HEIGHT VARIABLE= <string>height_var

WALL THICKNESS = <real>wall_thickness

WALL THICKNESS VARIABLE = <string>wall_thickness_var

FLANGE THICKNESS = <real>flange_thickness

FLANGE THICKNESS VARIABLE = <string>flange_thickness_var

T AXIS = <real>tx <real>ty <real>tz (0 0 1)

T AXIS VARIABLE = <string>t_axis_var

REFERENCE AXIS = <string>CENTER|RIGHT|

TOP|LEFT|BOTTOM (CENTER)

AXIS OFFSET = <real>s_offset <real>t_offset

629

AXIS OFFSET VARIABLE = <string>axis_offset_var

USE LAME|STRUMENTO(LAME)

END [BEAM SECTION <string>beam_section_name]

BEGIN TRUSS SECTION <string>truss_section_name

AREA = <real>cross_sectional_area

INITIAL LOAD = <real>initial_load

PERIOD = <real>period

RIGID BODY = <string>rigid_body_name

USE LAME|STRUMENTO(LAME)

END [TRUSS SECTION <string>truss_section_name]

BEGIN DAMPER SECTION <string>damper_section_name

AREA = <real>damper_cross_sectional_area

END [DAMPER SECTION <string>damper_section_name]

BEGIN POINT MASS SECTION <string>pointmass_section_name

VOLUME = <real>volume

MASS = <real>mass

IXX = <real>Ixx

IYY = <real>Iyy

IZZ = <real>Izz

IXY = <real>Ixy

IXZ = <real>Ixz

IYZ = <real>Iyz

RIGID BODY = <string>rigid_body_name

MASS VARIABLE = <string>mass_variable_name

INERTIA VARIABLE = <string>inertia_variable_name

OFFSET VARIABLE = <string>offset_variable_name

ATTRIBUTES VARIABLE NAME = <string>attrib_variable_name

END [POINT MASS SECTION <string>pointmass_section_name]

BEGIN SPH SECTION <string>sph_section_name

RADIUS MESH VARIABLE =

<string>var_name|<string>attribute|SPHERE INITIAL

RADIUS = <real>rad

RADIUS MESH VARIABLE TIME STEP = <string>time

PROBLEM DIMENSION = <integer>1|2|3(3)

CONSTANT SPHERE RADIUS

FINAL RADIUS MULTIPLICATION FACTOR = <real>factor(1.0)

FORMULATION = <string>GPA|MASS_PARTICLE|SPH(SPH)

MONAGHAN EPSILON = <real>monaghan_epsilon(0.0)

MONAGHAN N = <real>monaghan_n(0.0)

SPH ALPHAQ PARAMETER = <real>alpha(1.0)

SPH BETAQ PARAMETER = <real>beta(2.0)

DENSITY FORMULATION = <string>MATERIAL|KERNEL(MATERIAL)

USE LAME|STRUMENTO(LAME)

630 APPENDIX B. COMMAND SUMMARY

END [SPH SECTION <string>sph_section_name]

SPH utility commands

SPH SYMMETRY PLANE <string>+X|+Y|+Z|-X|-Y|-Z

<real>position_on_axis(0.0)

SPH DECOUPLE STRAINS: <string>material1 <string>material2

BEGIN SUPERELEMENT SECTION <string>section_name

BEGIN MAP

<integer>node_index_1 <integer>component_index_1

<integer>node_index_2 <integer>component_index_2

...

<integer>node_index_n <integer>component_index_n

END

BEGIN STIFFNESS MATRIX

<real>k_1_1 <real>k_1_2 ... <real>k_1_n

<real>k_2_1 <real>k_2_2 ... <real>k_2_n

...

<real>k_n_1 <real>k_n_2 ... <real>k_n_n

END

BEGIN DAMPING MATRIX

<real>c_1_1 <real>c_1_2 ... <real>c_1_n

<real>c_2_1 <real>c_2_2 ... <real>c_2_n

...

<real>c_n_1 <real>c_n_2 ... <real>c_n_n

END

BEGIN MASS MATRIX

<real>m_1_1 <real>m_1_2 ... <real>m_1_n

<real>m_2_1 <real>m_2_2 ... <real>m_2_n

...

<real>m_n_1 <real>m_n_2 ... <real>m_n_n

END

FILE = <string>netcdf_file_name

END [SUPERELEMENT SECTION <string>section_name]

Zoltan parameters

BEGIN ZOLTAN PARAMETERS <string>parameter_name

LOAD BALANCING METHOD = <string>recursive coordinate

bisection|recursive inertial bisection|hilbert space

filling curve|octree

DETERMINISTIC DECOMPOSITION = <string>false|true

IMBALANCE TOLERANCE = <real>imb_tol

OVER ALLOCATE MEMORY = <real>over_all_mem

REUSE CUTS = <string>false|true

ALGORITHM DEBUG LEVEL = <integer>alg_level

631

0<=(alg_level)<=3

CHECK GEOMETRY = <string>false|true

KEEP CUTS = <string>false|true

LOCK RCB DIRECTIONS = <string>false|true

SET RCB DIRECTIONS = <string>do not order cuts|xyz|xzy|

yzx|yxz|zxy|zyx

RECTILINEAR RCB BLOCKS = <string>false|true

RENUMBER PARTITIONS = <string>false|true

OCTREE DIMENSION = <integer>oct_dimension

OCTREE METHOD = <string>morton indexing|grey code|hilbert

OCTREE MIN OBJECTS = <integer>min_obj # 1<=(min_obj)

OCTREE MAX OBJECTS = <integer>max_obj # 1<=(max_obj)

ZOLTAN DEBUG LEVEL = <integer>zoltan_level

0<=(zoltan_level)<=10

DEBUG PROCESSOR NUMBER = <integer>proc # 1<=proc

TIMER = <string>wall|cpu

DEBUG MEMORY = <integer>dbg_mem # 0<=(dbg_mem)<=3

END [ZOLTAN PARAMETERS <string>parameter_name]

Output scheduler

BEGIN OUTPUT SCHEDULER <string>scheduler_name

START TIME = <real>output_start_time

TIMESTEP ADJUSTMENT INTERVAL = <integer>steps

AT TIME <real>time_begin INCREMENT =

<real>time_increment_dt

ADDITIONAL TIMES = <real>output_time1

<real>output_time2 ...

AT STEP <integer>step_begin INCREMENT =

<integer>step_increment

ADDITIONAL STEPS = <integer>output_step1

<integer>output_step2 ...

TERMINATION TIME = <real>termination_time_value

END [OUTPUT SCHEDULER <string>scheduler_name]

Begin Procedure scope

BEGIN PRESTO PROCEDURE <string>presto_procedure_name

PRINT BANNER INTERVAL = <integer>print_banner_interval(MAX_INT)

Time block

BEGIN TIME CONTROL

BEGIN TIME STEPPING BLOCK <string>time_block_name

START TIME = <real>start_time_value

BEGIN PARAMETERS FOR PRESTO REGION

<string>region_name

INITIAL TIME STEP = <real>initial_time_step_value

632 APPENDIX B. COMMAND SUMMARY

TIME STEP SCALE FACTOR =

<real>time_step_scale_factor(1.0)

TIME STEP INCREASE FACTOR =

<real>time_step_increase_factor(1.1)

STEP INTERVAL = <integer>nsteps(100)

USER TIME STEP = <real>time_step

END [PARAMETERS FOR PRESTO REGION

<string>region_name]

END [TIME STEPPING BLOCK <string>time_block_name]

TERMINATION TIME = <real>termination_time

END TIME CONTROL

Begin Region scope

BEGIN PRESTO REGION <string>presto_region_name

USE FINITE ELEMENT MODEL <string>model_name

Time step control using Lanczos

BEGIN LANCZOS PARAMETERS <string>lanczos_name

NUMBER EIGENVALUES = <integer>num_eig(20)

STARTING VECTOR = <string>STRETCH_X|STRETCH_Y|STRETCH_Z

(STRETCH_X)

VECTOR SCALE = <real>vec_scale(1.0e-5)

TIME SCALE = <real>time_scale(0.9)

STEP INTERVAL = <integer>step_int(1)

INCREMENT INTERVAL = <integer>incr_int(5)

TIME STEP LIMIT = <real>step_lim(0.10)

END [LANCZOS PARAMETERS <string>lanczos_name]

Time step control using nodes

BEGIN NODE BASED TIME STEP PARAMETERS <string>nbased_name

INCREMENT INTERVAL = <integer>incr_int(5)

STEP INTERVAL = <integer>step_int(500)

TIME STEP LIMIT = <real>step_lim(0.10)

END [NODE BASED TIME STEP PARAMETERS <string>nbased_name]

Mass scaling

BEGIN MASS SCALING

#

node set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

633

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

TARGET TIME STEP = <real>target_time_step

ALLOWABLE MASS INCREASE RATIO

= <real>mass_increase_ratio

#

additional command

ACTIVE PERIODS = <string list>periods

INACTIVE PERIODS = <string list>periods

END MASS SCALING

Torsional spring

BEGIN TORSIONAL SPRING MECHANISM <string>spring_name

NODE SETS = <string>nodelist_int1

<string>nodelist_int2

<string>nodelist_int3 <string>nodelist_int4

TORSIONAL STIFFNESS = <real>stiffness

INITIAL TORQUE = <real>init_load

PERIOD = <real>time_period

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [TORSIONAL SPRING MECHANISM <string>spring_name]

Mass property calculations

BEGIN MASS PROPERTIES

#

block set commands

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE BLOCK = <string list>block_names

#

structure command

STRUCTURE NAME = <string>structure_name

END [MASS PROPERTIES]

Element death

BEGIN ELEMENT DEATH <string>death_name

#

block set commands

BLOCK = <string list>block_names

634 APPENDIX B. COMMAND SUMMARY

INCLUDE ALL BLOCKS

REMOVE BLOCK = <string list>block_names

#

criterion commands

CRITERION IS AVG|MAX|MIN NODAL VALUE OF

<string>var_name <|<=|=|>=|> <real>tolerance

CRITERION IS ELEMENT VALUE OF

<string>var_name <|<=|=|>=|> <real>tolerance [KILL WHEN

<integer>num_intg INTEGRATION POINTS REMAIN]

CRITERION IS GLOBAL VALUE OF

<string>var_name <|<=|=|>=|> <real>tolerance

ELEMENT BLOCK SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

MATERIAL CRITERION

= <string list>material_model_names [KILL WHEN

<integer>num_intg INTEGRATION POINTS REMAIN]

#

evaluation commands

CHECK STEP INTERVAL = <integer>num_steps

CHECK TIME INTERVAL = <real>delta_t

DEATH START TIME = <real>time

#

miscellaneous option commands

SUMMARY OUTPUT STEP INTERVAL = <integer>output_step_interval

SUMMARY OUTPUT TIME INTERVAL = <real>output_time_interval

DEATH ON INVERSION = OFF|ON(OFF)

DEATH STEPS = <integer>death_steps(1)

FORCE VALID ACME CONNECTIVITY

AGGRESSIVE CONTACT CLEANUP = <string>OFF|ON(OFF)

DEATH METHOD = <string>DEACTIVATE ELEMENT|

DEACTIVATE NODAL MPCS|DISCONNECT ELEMENT|

INSERT COHESIVE ZONES(DEACTIVATE ELEMENT)

CONVERT ELEMENTS TO PARTICLES WITH SECTION =

<string>section_name

[MATERIAL <string>material_name <string>material_model]

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

#

cohesive zone setup commands

COHESIVE SECTION = <string>sect_name

COHESIVE MATERIAL = <string>mat_name

635

COHESIVE MODEL = <string>model_name

COHESIVE ZONE INITIALIZATION METHOD = <string>NONE|

ELEMENT STRESS AVG(NONE)

END [ELEMENT DEATH <string>death_name]

Derived output

BEGIN DERIVED OUTPUT

COMPUTE AND STORE VARIABLE =

<string>derived_quantity_name

END DERIVED OUTPUT

Mesh rebalance

BEGIN REBALANCE

ELEMENT GROUPING TYPE = SPLIT SPH AND STANDARD ELEMENTS|

UNIFORM UNIFIED(SPLIT SPH AND STANDARD ELEMENTS)

INITIAL REBALANCE = ON|OFF(OFF)

PERIODIC REBALANCE = ON|OFF|AUTO(OFF)

REBALANCE STEP INTERVAL = <integer>step_interval

LOAD RATIO THRESHOLD = <real>load_ratio

COMMUNICATION RATIO THRESHOLD = <real>communication_ratio

ZOLTAN PARAMETERS = <string>parameter_name

END [REBALANCE]

Remeshing

BEGIN REMESH

MAX REMESH STEP INTERVAL = <integer>step_interval (Infinity)

MAX REMESH TIME INTERVAL = <real>time_interval (Infinity)

NEW MESH MAX EDGE LENGTH RATIO = <real>new_max_ratio (1.25)

NEW MESH MIN EDGE LENGTH RATIO = <real>new_min_ratio (0.25)

NEW MESH MIN SHAPE = <real>new_shape (0.125)

REMESH AT MAX EDGE LENGTH RATIO = <real>max_cutoff_ratio

(new_mesh_max_edge_length_ratio*1.75)

REMESH AT MIN EDGE LENGTH RATIO = <real>min_cutoff_ratio

(new_mesh_min_edge_length_ratio*0.25)

REMESH AT SHAPE = <real>cutoff_shape (0.025)

CONTACT CLEANUP = AUTO|OFF|ON (AUTO)

DEBUG OUTPUT LEVEL = <integer>level (0)

MAX REMESH REBALANCE METRIC = <integer>rebalance_metric (1.25)

BEGIN REMESH BLOCK SET

BLOCK = <string list>block_names

REMOVE BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

END [REMESH BLOCK SET]

636 APPENDIX B. COMMAND SUMMARY

BEGIN ADAPTIVE REFINEMENT

#

adaptive refinement control commands

ADAPT TYPE = NODE_PROXIMITY|POINT_PROXIMITY|

SHARP_EDGE_PROXIMITY

RADIUS = <real>radius

ADAPT SHARP ANGLE = <real>angle (45)

ADAPT SMOOTH ANGLE = <real>angle (10)

GEOMETRIC POINT COORDINATES = <real>x <real>y <real>z

ADAPT SIZE RATIO = <real>ratio (2.0)

#

tool mesh entity commands

NODE SET = <string list>nodelist_names

REMOVE NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

REMOVE SURFACE = <string list>surface_names

BLOCK = <string list>block_names

REMOVE BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

#

activation commands

ACTIVE PERIODS = <string>period_names

INACTIVE PERIODS = <string>period_names

END [ADAPTIVE REFINEMENT]

END [REMESH]

Initial condition

BEGIN INITIAL CONDITION

#

mesh-entity set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

variable identification commands

INITIALIZE VARIABLE NAME = <string>var_name

VARIABLE TYPE = [NODE|EDGE|FACE|ELEMENT|GLOBAL]

#

constant magnitude command

MAGNITUDE = <real list>initial_values

#

input mesh commands

637

READ VARIABLE = <string>var_name

COPY VARIABLE = <string>var_name

[FROM MODEL <string>model_name]

TIME = <real>time

#

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name |

SURFACE SUBROUTINE = <string>subroutine_name |

ELEMENT BLOCK SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

additional command

SCALE FACTOR = <real>scale_factor(1.0)

END [INITIAL CONDITION]

Boundary conditions

BEGIN FIXED DISPLACEMENT

#

node set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

component commands

COMPONENT = <string>X/Y/Z | COMPONENTS =

<string>X/Y/Z

#

additional command

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [FIXED DISPLACEMENT]

BEGIN PRESCRIBED DISPLACEMENT

#

node set commands

NODE SET = <string list>nodelist_names

638 APPENDIX B. COMMAND SUMMARY

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

function commands

DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z |

CYLINDRICAL AXIS = <string>defined_axis |

RADIAL AXIS = <string>defined_axis

FUNCTION = <string>function_name

#

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

external database commands

READ VARIABLE = <string>var_name

COPY VARIABLE = <string>var_name

[FROM MODEL <string>model_name]

TIME = <real>time

#

additional commands

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [PRESCRIBED DISPLACEMENT]

BEGIN PRESCRIBED VELOCITY

#

node set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

639

function commands

DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z |

CYLINDRICAL AXIS = <string>defined_axis |

RADIAL AXIS = <string>defined_axis

FUNCTION = <string>function_name

#

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

external database commands

READ VARIABLE = <string>var_name

COPY VARIABLE = <string>var_name

[FROM MODEL <string>model_name]

TIME = <real>time

#

additional commands

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [PRESCRIBED VELOCITY]

BEGIN PRESCRIBED ACCELERATION

#

node set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

function commands

DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z

FUNCTION = <string>function_name

#

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name

640 APPENDIX B. COMMAND SUMMARY

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

external database commands

READ VARIABLE = <string>var_name

COPY VARIABLE = <string>var_name

[FROM MODEL <string>model_name]

TIME = <real>time

#

additional commands

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [PRESCRIBED ACCELERATION]

BEGIN FIXED ROTATION

#

node set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

component commands

COMPONENT = <string>X/Y/Z | COMPONENTS =

<string>X/Y/Z

#

additional command

ACTIVE PERIODS = <string list>periods_names

INACTIVE PERIODS = <string list>periods_names

END [FIXED ROTATION]

BEGIN PRESCRIBED ROTATION

#

node set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

641

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

function commands

DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z

FUNCTION = <string>function_name

#

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

external database commands

READ VARIABLE = <string>var_name

COPY VARIABLE = <string>var_name

[FROM MODEL <string>model_name]

TIME = <real>time

#

additional commands

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [PRESCRIBED ROTATION]

BEGIN PRESCRIBED ROTATIONAL VELOCITY

#

node set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

function commands

DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z

FUNCTION = <string>function_name

#

642 APPENDIX B. COMMAND SUMMARY

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

external database commands

READ VARIABLE = <string>var_name

COPY VARIABLE = <string>var_name

[FROM MODEL <string>model_name]

TIME = <real>time

#

additional commands

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [PRESCRIBED ROTATIONAL VELOCITY]

BEGIN REFERENCE AXIS ROTATION

#

block command

BLOCK = <string list>block_names

#

specification commands

REFERENCE AXIS X FUNCTION = <string>function_name

REFERENCE AXIS Y FUNCTION = <string>function_name

REFERENCE AXIS Z FUNCTION = <string>function_name

#

rotation commands

ROTATION = <string>function_name

ROTATIONAL VELOCITY = <string>function_name

#

torque command

TORQUE = <string>function_name

#

additional command

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [REFERENCE AXIS ROTATION]

BEGIN INITIAL VELOCITY

#

643

node set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

direction commands

COMPONENT = <string>X|Y|Z |

DIRECTION = <string>defined_direction

MAGNITUDE = <real>magnitude_of_velocity

#

angular velocity commands

CYLINDRICAL AXIS = <string>defined_axis

ANGULAR VELOCITY = <real>angular_velocity

#

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

END [INITIAL VELOCITY]

BEGIN PRESSURE

#

surface set commands

SURFACE = <string list>surface_names

REMOVE SURFACE = <string list>surface_names

#

function command

FUNCTION = <string>function_name

#

user subroutine commands

SURFACE SUBROUTINE = <string>subroutine_name |

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

644 APPENDIX B. COMMAND SUMMARY

= <string>param_value

#

external pressure sources

READ VARIABLE = <string>variable_name

OBJECT TYPE = <string>NODE|FACE(NODE)

TIME = <real>time

FIELD VARIABLE = <string>field_variable

#

output external forces from pressure

EXTERNAL FORCE CONTRIBUTION OUTPUT NAME

= <string>variable_name

#

additional commands

USE DEATH = <string>death_name

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [PRESSURE]

BEGIN TRACTION

#

surface set commands

SURFACE = <string list>surface_names

REMOVE SURFACE = <string list>surface_names

#

function commands

DIRECTION = <string>direction_name

FUNCTION = <string>function_name

#

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

additional commands

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [TRACTION]

BEGIN PRESCRIBED FORCE

#

645

node set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

function commands

DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z

FUNCTION = <string>function_name

#

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

additional commands

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [PRESCRIBED FORCE]

BEGIN PRESCRIBED MOMENT

#

node set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

function commands

DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z

FUNCTION = <string>function_name

#

user subroutine commands

646 APPENDIX B. COMMAND SUMMARY

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

additional commands

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [PRESCRIBED MOMENT]

BEGIN GRAVITY

#

node set commands

NODE SET = <string list>nodelist_names

SURFACE = <string list>surface_names

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list>surface_names

REMOVE BLOCK = <string list>block_names

#

DIRECTION = <string>defined_direction

FUNCTION = <string>function_name

GRAVITATIONAL CONSTANT = <real>g_constant

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [GRAVITY]

BEGIN PRESCRIBED TEMPERATURE

#

block set commands

BLOCK = <string_list>block_names

INCLUDE ALL BLOCKS

REMOVE BLOCK

#

function command

FUNCTION = <string>function_name

#

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

647

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

read variable commands

READ VARIABLE = <string>mesh_var_name

COPY VARIABLE = <string>var_name

[FROM MODEL <string>model_name]

TIME = <real>time

TEMPERATURE TYPE = SOLID_ELEMENT|SHELL_ELEMENT(SOLID_ELEMENT)

#

additional commands

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [PRESCRIBED TEMPERATURE]

BEGIN PORE PRESSURE

#

block set commands

BLOCK = <string_list>block_names

INCLUDE ALL BLOCKS

REMOVE BLOCK

#

function command

FUNCTION = <string>function_name

#

user subroutine commands

ELEMENT BLOCK SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

read variable commands

READ VARIABLE = <string>mesh_var_name

COPY VARIABLE = <string>var_name

[FROM MODEL <string>model_name]

TIME = <real>time

#

additional commands

648 APPENDIX B. COMMAND SUMMARY

SCALE FACTOR = <real>scale_factor(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [PORE PRESSURE]

BEGIN FLUID PRESSURE

#

surface set commands

SURFACE = <string list>surface_names

#

specification commands

DENSITY = <real>fluid_density

DENSITY FUNCTION = <string>density_function_name

GRAVITATIONAL CONSTANT = <real>gravitational_acceleration

FLUID SURFACE NORMAL = <string>global_component_names

DEPTH = <real>fluid_depth

DEPTH FUNCTION = <string>depth_function_name

#

additional commands

REFERENCE POINT = <string>reference_point_name

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [FLUID PRESSURE]

Specialized boundary conditions

BEGIN CAVITY EXPANSION

EXPANSION RADIUS = <string>SPHERICAL|CYLINDRICAL

(spherical)

SURFACE = <string list>surface_ids

REMOVE SURFACE = <string list>surface_ids

FREE SURFACE = <real>top_surface_zcoord

<real>bottom_surface_zcoord

NODE SETS TO DEFINE BODY AXIS =

<string>nodelist_1 <string>nodelist_id2

TIP RADIUS = <real>tip_radius

BEGIN LAYER <string>layer_name

LAYER SURFACE = <real>top_layer_zcoord

<real>bottom_layer_zcoord

PRESSURE COEFFICIENTS = <real>c0 <real>c1

<real>c2

SURFACE EFFECT = <string>NONE|SIMPLE_ON_OFF(NONE)

FREE SURFACE EFFECT COEFFICIENTS = <real>coeff1

<real>coeff2

END [LAYER <string>layer_name]

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

649

END [CAVITY EXPANSION]

BEGIN BLAST PRESSURE

SURFACE = <string list>surface_ids

REMOVE SURFACE = <string list>surface_ids

BURST TYPE = <string>SURFACE|AIR

TNT MASS IN LBS = <real>tnt_mass_lbs

BLAST TIME = <real>blast_time

BLAST LOCATION = <real>loc_x <real>loc_y <real>loc_z

ATMOSPHERIC PRESSURE IN PSI = <real>atmospheric_press

AMBIENT TEMPERATURE IN FAHRENHEIT = <real>temperature

FEET PER MODEL UNITS = <real>feet

MILLISECONDS PER MODEL UNITS = <real>milliseconds

PSI PER MODEL UNITS = <real>psi

PRESSURE SCALE FACTOR = <real>pressure_scale(1.0)

IMPULSE SCALE FACTOR = <real>impulse_scale(1.0)

POSITIVE DURATION SCALE FACTOR = <real>duration_scale(1.0)

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [BLAST PRESSURE]

BEGIN SILENT BOUNDARY

SURFACE = <string list>surface_names

REMOVE SURFACE = <string list>surface_names

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [SILENT BOUNDARY]

BEGIN SPOT WELD

NODE SET = <string list>nodelist_ids

REMOVE NODE SET = <string list>nodelist_ids

SURFACE = <string list>surface_ids

REMOVE SURFACE = <string list>surfac_ids

SECOND SURFACE = <string>surface_id

NORMAL DISPLACEMENT FUNCTION =

<string>function_nor_disp

NORMAL DISPLACEMENT SCALE FACTOR =

<real>scale_nor_disp(1.0)

TANGENTIAL DISPLACEMENT FUNCTION =

<string>function_tang_disp

TANGENTIAL DISPLACEMENT SCALE FACTOR =

<real>scale_tang_disp(1.0)

FAILURE ENVELOPE EXPONENT = <real>exponent

FAILURE FUNCTION = <string>fail_func_name

FAILURE DECAY CYCLES = <integer>number_decay_cycles(10)

SEARCH TOLERANCE = <real>search_tolerance

IGNORE INITIAL OFFSET = NO|YES(NO)

650 APPENDIX B. COMMAND SUMMARY

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [SPOT WELD]

BEGIN LINE WELD

SURFACE = <string list> surface_names

REMOVE SURFACE = <string list> surface_names

BLOCK = <string list> block_names

REMOVE BLOCK = <string list>block_names

SEARCH TOLERANCE = <real>search_tolerance

R DISPLACEMENT FUNCTION =

<string>r_disp_fucntion_name

R DISPLACEMENT SCALE FACTOR = <real>r_disp_scale

S DISPLACEMENT FUNCTION =

<string>s_disp_function_name

S DISPLACEMENT SCALE FACTOR = <real>s_disp_scale

T DISPLACEMENT FUNCTION =

<string>t_disp_function_name

T DISPLACEMENT SCALE FACTOR = <real>t_disp_scale

R ROTATION FUNCTION =

<string>r_rotation_function_name

R ROTATION SCALE FACTOR = <real>r_rotation_scale

S ROTATION FUNCTION =

<string>s_rotation_function_name

S ROTATION SCALE FACTOR = <real>s_rotation_scale

T ROTATION FUNCTION =

<string>t_rotation_function_name

T ROTATION SCALE FACTOR = <real>t_rotation_scale

FAILURE ENVELOPE EXPONENT = <real>k

FAILURE DECAY CYCLES = <integer>number_decay_cycles

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [LINE WELD]

BEGIN VISCOUS DAMPING <string>damp_name

#

block set commands

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE BLOCK = <string list>block_names

#

MASS DAMPING COEFFICIENT = <real>mass_damping

STIFFNESS DAMPING COEFFICIENT = <real>stiff_damping

#

additional command

ACTIVE PERIODS = <string list>period names

INACTIVE PERIODS = <string list>period_names

651

END [VISCOUS DAMPING <string>damp_name]

BEGIN VOLUME REPULSION OLD <string>repulsion

FRICTION COEFFICIENT = <real>fric_coeff

SCALE FACTOR = <real>scale_factor

OVERLAP TYPE = [NODAL|VOLUMETRIC]

BEGIN BLOCK SET <string>set

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

REMOVE BLOCK = <string list>block_names

#

SURFACE = <string list>surface_names

REMOVE SURFACE = <string list>surface_names

#

ACTIVE PERIODS = <string list>period names

INACTIVE PERIODS = <string list>period names

#

LINE CYLINDER RADIUS = <real>cylinder_radius

ELEMENT REPRESENTATION = [BEAM_ELEMENT_CYLINDERS|

TRUE_SOLID_VOLUME|NODES]

END [BLOCK SET <string>set]

END [VOLUME REPULSION OLD <string>repulsion]

BEGIN MPC

#

Master/Slave MPC commands

MASTER NODE SET = <string list>master_nset

MASTER NODES = <integer list>master_nodes

MASTER SURFACE = <string list>master_surf

MASTER BLOCK = <string list>master_block

SLAVE NODE SET = <string list>slave_nset

SLAVE NODES = <integer list>slave_nodes

SLAVE SURFACE = <string list>slave_surf

SLAVE BLOCK = <string list>slave_block

#

Tied contact search command

SEARCH TOLERANCE = <real> tolerance

#

Tied MPC commands

TIED NODES = <integer list>tied_nodes

TIED NODE SET = <string list>tied_nset

END [MPC]

RESOLVE MULTIPLE MPCS = ERROR|FIRST WINS|LAST WINS(ERROR)

652 APPENDIX B. COMMAND SUMMARY

BEGIN SUBMODEL

#

EMBEDDED BLOCKS = <string list>embedded_block

ENCLOSING BLOCKS = <string list>enclosing_block

END [SUBMODEL]

Contact

BEGIN CONTACT DEFINITION <string>name

#

contact surface and node set definition

CONTACT SURFACE <string>name

CONTAINS <string list>surface_names

#

SKIN ALL BLOCKS = <string>ON|OFF(OFF)

[EXCLUDE <string list> block_names]

#

BEGIN CONTACT SURFACE <string>name

BLOCK = <string list>block_names

SURFACE = <string list>surface_names

NODE SET = <string list>node_set_names

REMOVE BLOCK = <string list>block_names

REMOVE SURFACE = <string list>surface_names

REMOVE NODE SET = <string list>nodelist_names

END [CONTACT SURFACE <string>name]

#

CONTACT NODE SET <string>surface_name

CONTAINS <string>nodelist_names

#

Switch between available contact algorithms

CONTACT FORMULATION TYPE = <string>ACME|DASH(ACME)

analytic surfaces

BEGIN ANALYTIC PLANE <string>name

NORMAL = <string>defined_direction

POINT = <string>defined_point

REFERENCE RIGID BODY = <string>rb_name

END [ANALYTIC PLANE <string>name]

#

BEGIN ANALYTIC CYLINDER <string>name

CENTER = <string>defined_point

AXIAL DIRECTION = <string>defined_axis

RADIUS = <real>cylinder_radius

LENGTH = <real>cylinder_length

CONTACT NORMAL = <string>OUTSIDE|INSIDE

END [ANALYTIC CYLINDER <string>name]

#

BEGIN ANALYTIC SPHERE <string>name

653

CENTER = <string>defined_point

RADIUS = <real>sphere_radius

END [ANALYTIC SPHERE <string>name]

end contact surface and node set definition

#

UPDATE ALL SURFACES FOR ELEMENT DEATH = <string>ON|OFF(ON)

#

BEGIN REMOVE INITIAL OVERLAP

OVERLAP NORMAL TOLERANCE = <real>over_norm_tol

OVERLAP TANGENTIAL TOLERANCE = <real>over_tang_tol

SHELL OVERLAP ITERATIONS = <integer>max_iter(10)

SHELL OVERLAP TOLERANCE = <real>shell_over_tol(0.0)

END [REMOVE INITIAL OVERLAP]

#

MULTIPLE INTERACTIONS = <string>ON|OFF(ON)

MULTIPLE INTERACTIONS WITH ANGLE = <real>angle_in_deg(60.0)

#

BEGIN SURFACE NORMAL SMOOTHING

ANGLE = <real>angle_in_degrees

DISTANCE = <real>distance

RESOLUTION = <string>NODE|EDGE

END [SURFACE NORMAL SMOOTHING]

#

ERODED FACE TREATMENT = <string>NONE|ALL(ALL)

#

shell lofting

BEGIN SHELL LOFTING

SURFACE = <string_list>surface_names

REMOVE SURFACE = <string_list>removed_surface_names

LOFTING ALGORITHM = <string>ON|OFF(ON)

COINCIDENT SHELL TREATMENT = <string>DISALLOW|IGNORE|

SIMPLE(DISALLOW)

COINCIDENT SHELL HEX TREATMENT = <string>DISALLOW|

IGNORE|TAPERED|EMBEDDED(DISALLOW)

CONTACT SHELL THICKNESS =

ACTUAL_THICKNESS|LET_CONTACT_CHOOSE(ACTUAL_THICKNESS)

ALLOWABLE SHELL THICKNESS TO ELEMENT SIZE RATIOS =

<real>lower_bound(0.1) TO <real>upper_bound(1.0)

END [SHELL LOFTING]

end shell lofting

#

surface-physics models

BEGIN FRICTIONLESS MODEL <string>name

END [FRICTIONLESS MODEL <string>name]

#

BEGIN CONSTANT FRICTION MODEL <string>name

FRICTION COEFFICIENT = <real>coeff

654 APPENDIX B. COMMAND SUMMARY

END [CONSTANT FRICTION MODEL <string>name]

#

BEGIN TIED MODEL <string>name

END [TIED MODEL <string>name]

#

BEGIN SPRING WELD MODEL <string>name

NORMAL DISPLACEMENT FUNCTION = <string>func_name

NORMAL DISPLACEMENT SCALE FACTOR =

<real>scale_factor(1.0)

TANGENTIAL DISPLACEMENT FUNCTION = <string>func_name

TANGENTIAL DISPLACEMENT SCALE FACTOR =

<real>scale_factor(1.0)

FAILURE ENVELOPE EXPONENT = <real>exponent(2.0)

FAILURE DECAY CYCLES = <integer>num_cycles(1)

FAILED MODEL = <string>failed_model_name|FRICTIONLESS

(FRICTIONLESS)

END [SPRING WELD MODEL <string>name]

#

BEGIN SURFACE WELD MODEL <string>name

NORMAL CAPACITY = <real>normal_cap

TANGENTIAL CAPACITY = <real>tangential_cap

FAILURE DECAY CYCLES = <integer>num_cycles(1)

FAILED MODEL = <string>failed_model_name|FRICTIONLESS

(FRICTIONLESS)

END [SURFACE WELD MODEL <string>name]

#

BEGIN AREA WELD MODEL <string>name

NORMAL CAPACITY = <real>normal_cap

TANGENTIAL CAPACITY = <real>tangential_cap

FAILURE DECAY CYCLES = <integer>num_cycles(1)

FAILED MODEL = <string>failed_model_name|FRICTIONLESS

(FRICTIONLESS)

END [AREA WELD MODEL <string>name]

#

BEGIN ADHESION MODEL <string>name

ADHESION FUNCTION = <string>func_name

ADHESION SCALE FACTOR = <real>scale_factor(1.0)

END [ADHESION MODEL <string>name]

#

BEGIN COHESIVE ZONE MODEL <string>name

TRACTION DISPLACEMENT FUNCTION = <string>func_name

TRACTION DISPLACEMENT SCALE FACTOR =

< real>scale_factor(1.0)

CRITICAL NORMAL GAP = <real>crit_norm_gap

CRITICAL TANGENTIAL GAP = <real>crit_tangential_gap

END [COHESIVE ZONE MODEL <string>name]

#

655

BEGIN JUNCTION MODEL <string>name

NORMAL TRACTION FUNCTION = <string>func_name

NORMAL TRACTION SCALE FACTOR = <real>scale_factor(1.0)

TANGENTIAL TRACTION FUNCTION = <string>func_name

TANGENTIAL TRACTION SCALE FACTOR =

<real>scale_factor(1.0)

NORMAL CUTOFF DISTANCE FOR TANGENTIAL TRACTION =

<real>distance

END [JUNCTION MODEL <string>name]

#

BEGIN THREADED MODEL <string>name

NORMAL TRACTION FUNCTION = <string>func_name

NORMAL TRACTION SCALE FACTOR = <real>scale_factor(1.0)

TANGENTIAL TRACTION FUNCTION = <string>func_name

TANGENTIAL TRACTION SCALE FACTOR =

<real>scale_factor(1.0)

TANGENTIAL TRACTION GAP FUNCTION = <string>func_name

TANGENTIAL TRACTION GAP SCALE FACTOR =

<real>scale_factor(1.0)

NORMAL CAPACITY = <real>normal_cap

TANGENTIAL CAPACITY = <real>tangential_cap

FAILURE ENVELOPE EXPONENT = <real>exponent(2.0)

FAILURE DECAY CYCLES = <integer>num_cycles(1)

FAILED MODEL = <string>failed_model_name|FRICTIONLESS

(FRICTIONLESS)

END [THREADED MODEL <string>name]

#

BEGIN PV_DEPENDENT MODEL <string>name

STATIC COEFFICIENT = <real>stat_coeff

DYNAMIC COEFFICIENT = <real>dyn_coeff

VELOCITY DECAY = <real>vel_decay

REFERENCE PRESSURE = <real>p_ref

OFFSET PRESSURE = <real>p_off

PRESSURE EXPONENT = <real>p_exp

END [PV_DEPENDENT MODEL <string>name]

end surface physics models

#

BEGIN USER SUBROUTINE MODEL <string>name

INITIALIZE MODEL SUBROUTINE = <string>init_model_name

INITIALIZE TIME STEP SUBROUTINE = <string>init_ts_name

INITIALIZE NODE STATE DATA SUBROUTINE =

<string>init_node_data_name

LIMIT FORCE SUBROUTINE = <string>limit_force_name

ACTIVE SUBROUTINE = <string>active_name

INTERACTION TYPE SUBROUTINE = <string>interaction_name

END [USER SUBROUTINE MODEL <string>name]

#

656 APPENDIX B. COMMAND SUMMARY

search options command block

BEGIN SEARCH OPTIONS [<string>name]

GLOBAL SEARCH INCREMENT = <integer>num_steps(1)

GLOBAL SEARCH ONCE = <string>ON|OFF(OFF)

SEARCH TOLERANCE = <string>AUTOMATIC|USER_DEFINED

(AUTOMATIC)

NORMAL TOLERANCE = <real>norm_tol

TANGENTIAL TOLERANCE = <real>tang_tol

FACE MULTIPLIER = <real>face_multiplier(0.1)

SECONDARY DECOMPOSITION = <string>ON|OFF(OFF)

END [SEARCH OPTIONS <string>name]

#

user search box command block

BEGIN USER SEARCH BOX <string>name

CENTER = <string>center_point

X DISPLACEMENT FUNCTION = <string>x_disp_function_name

Y DISPLACEMENT FUNCTION = <string>y_disp_function_name

Z DISPLACEMENT FUNCTION = <string>z_disp_function_name

X DISPLACEMENT SCALE FACTOR = <real>x_disp_scale_factor

Y DISPLACEMENT SCALE FACTOR = <real>y_disp_scale_factor

Z DISPLACEMENT SCALE FACTOR = <real>z_disp_scale_factor

END [SEARCH OPTIONS <string>name]

#

enforcement options command block

BEGIN ENFORCEMENT OPTIONS [<string>name]

MOMENTUM BALANCE ITERATIONS = <integer>num_iter(5)

NUM GEOMETRY UPDATE ITERATIONS = <integer>num_iter(5)

END [ENFORCEMENT OPTIONS <string>name]

#

interactions defaults command block

BEGIN INTERACTION DEFAULTS [<string>name]

CONTACT SURFACES = <string list>surface_names

SELF CONTACT = <string>ON|OFF(OFF)

GENERAL CONTACT = <string>ON|OFF(OFF)

AUTOMATIC KINEMATIC PARTITION = <string>ON|OFF(OFF)

INTERACTION BEHAVIOR = <string>SLIDING|

INFINITESIMAL_SLIDING|NO_INTERACTION(SLIDING)

FRICTION MODEL = <string>friction_model_name|

FRICTIONLESS(FRICTIONLESS)

CONSTRAINT FORMULATION = <string>NODE_FACE|FACE_FACE

END [INTERACTION DEFAULTS <string>name]

#

BEGIN INTERACTION [<string>name]

SURFACES = <string>surface1 <string>surface2

MASTER = <string>surface

SLAVE = <string>surface

KINEMATIC PARTITION = <real>kin_part

657

NORMAL TOLERANCE = <real>norm_tol

TANGENTIAL TOLERANCE = <real>tang_tol

FACE MULTIPLIER = <real>face_multiplier(0.1)

OVERLAP NORMAL TOLERANCE = <real>over_norm_tol

OVERLAP TANGENTIAL TOLERANCE = <real>over_tang_tol

FRICTION MODEL = <string>friction_model_name|

FRICTIONLESS(FRICTIONLESS)

AUTOMATIC KINEMATIC PARTITION

INTERACTION BEHAVIOR = <string>SLIDING|

INFINITESIMAL_SLIDING|NO_INTERACTION(SLIDING)

CONSTRAINT FORMULATION = <string>NODE_FACE|FACE_FACE

END [INTERACTION <string>name]

#

BEGIN DASH OPTIONS

SCALE FACTOR = <real>factor(1.0)

ENFORCEMENT CONVERGENCE TOLERANCE = <real>1.0e-05

HIDDEN SELF CONTACT = <string>TRUE|FALSE(TRUE)

LOFTED SPHERE REPRESENTATION =

TETRAHEDRON|OCTAHEDRON|CUBE|ICOSAHEDRON(ICOSAHEDRON)

MAX CONTACT SUB STEPS = <integer>value(100)

END

#

end enforcement

#

END [CONTACT DEFINITION <string>name]

Results specification

BEGIN RESULTS OUTPUT <string>results_name

DATABASE NAME = <string>results_file_name

DATABASE TYPE =

<string>database_type(exodusII)

OVERWRITE = <string>OFF|ON|TRUE|FALSE|YES|NO

(ON|TRUE|YES)

TITLE <string>user_title

NODE VARIABLES = <string>variable_name

[AS <string>dbase_variable_name] ...

<string>variable_name [AS

<string>dbase_variable_name]

| NODAL VARIABLES = <string>variable_name

[AS <string>dbase_variable_name] ...

<string>variable_name [AS

<string>dbase_variable_name]

NODESET VARIABLES = <string>variable_name

[AS <string>dbase_variable_name] ...

<string>variable_name [AS

<string>dbase_variable_name]

658 APPENDIX B. COMMAND SUMMARY

| NODESET VARIABLES = <string>variable_name

[AS <string>dbase_variable_name]

INCLUDE|ON|EXCLUDE <string list>nodelist_names

... <string>variable_name

[AS <string>dbase_variable_name] INCLUDE|ON|EXCLUDE

<string list>nodelist_names

FACE VARIABLES = <string>variable_name

[AS <string>dbase_variable_name] ...

<string>variable_name [AS

<string>dbase_variable_name]

| FACE VARIABLES = <string>variable_name

[AS <string>dbase_variable_name]

INCLUDE|ON|EXCLUDE <string list>surface_names

... <string>variable_name

[AS <string>dbase_variable_name] INCLUDE|ON|EXCLUDE

<string list>surface_names

ELEMENT VARIABLES = <string>variable_name

[AS <string>dbase_variable_name] ...

<string>variable_name [AS

<string>dbase_variable_name]

| ELEMENT VARIABLES = <string>variable_name

[AS <string>dbase_variable_name]

INCLUDE|ON|EXCLUDE <string list>block_names

... <string>variable_name

[AS dbase_variable_name] INCLUDE|ON|EXCLUDE

<string list>block_names

OUTPUT MESH = EXPOSED_SURFACE|BLOCK_SURFACE

COMPONENT SEPARATOR CHARACTER = <string>character|NONE

GLOBAL VARIABLES = <string>variable_name

[AS <string>dbase_variable_name] ...

<string>variable_name [AS

<string>dbase_variable_name]

START TIME = <real>output_start_time

TIMESTEP ADJUSTMENT INTERVAL = <integer>steps

AT TIME <real>time_begin INCREMENT =

<real>time_increment_dt

ADDITIONAL TIMES = <real>output_time1

<real>output_time2 ...

AT STEP <integer>step_begin INCREMENT =

<integer>step_increment

ADDITIONAL STEPS = <integer>output_step1

<integer>output_step2 ...

TERMINATION TIME = <real>termination_time_value

USE OUTPUT SCHEDULER <string>scheduler name

OUTPUT ON SIGNAL = <string>SIGALRM|SIGFPE|SIGHUP|SIGINT|

SIGPIPE|SIGQUIT|SIGTERM|SIGUSR1|SIGUSR2|SIGABRT|

SIGKILL|SIGILL|SIGSEGV

659

END [RESULTS OUTPUT <string>results_name]

User output

BEGIN USER OUTPUT

#

mesh-entity set commands

NODE SET = <string_list>nodelist_names

SURFACE = <string_list>surface_names

BLOCK = <string_list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list> surface_names

REMOVE BLOCK = <string list>block_names

#

compute global result command

COMPUTE GLOBAL <string>results_var_name AS

<string>SUM|AVERAGE|MAX|MIN OF <string>NODAL|

ELEMENT <string>value_var_name

[(<integer>component_num)]

#

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name |

SURFACE SUBROUTINE = <string>subroutine_name |

ELEMENT BLOCK SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

copy command

COPY ELEMENT VARIABLE <string>ev_name TO NODAL

VARIABLE <string>nv_name

#

compute for element death

COMPUTE AT EVERY TIME STEP

#

additional command

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END [USER OUTPUT]

Time step initialization

660 APPENDIX B. COMMAND SUMMARY

BEGIN TIME STEP INITIALIZATION

#

mesh-entity set commands

NODE SET = <string_list>nodelist_names

SURFACE = <string_list>surface_names

BLOCK = <string_list>block_names

INCLUDE ALL BLOCKS

REMOVE NODE SET = <string list>nodelist_names

REMOVE SURFACE = <string list> surface_names

REMOVE BLOCK = <string list>block_names

#

user subroutine commands

NODE SET SUBROUTINE = <string>subroutine_name |

SURFACE SUBROUTINE = <string>sub_name |

ELEMENT BLOCK SUBROUTINE = <string>sub_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON

SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value

SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

#

additional command

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END TIME STEP INITIALIZATION

User variable

BEGIN USER VARIABLE <string>var_name

TYPE = <string>NODE|ELEMENT|GLOBAL

[<string>REAL|INTEGER LENGTH = <integer>length]|

[<string>SYM_TENSOR|FULL_TENSOR|VECTOR]

GLOBAL OPERATOR = <string>SUM|MIN|MAX]

INITIAL VALUE = <real list>values

USE WITH RESTART

END [USER VARIABLE <string>var_name]

History specification

BEGIN HISTORY OUTPUT <string>history_name

DATABASE NAME = <string>history_file_name

DATABASE TYPE =

<string>database_type(exodusII)

661

OVERWRITE = <string>OFF|ON|TRUE|FALSE|YES|NO

(ON|TRUE|YES)

TITLE <string>user_title

VARIABLE = GLOBAL

<string>variable_name

[AS <string>history_variable_name]

VARIABLE =

NODE|NODAL|EDGE|FACE|ELEMENT <string>variable_name

AT NODE|NODAL|EDGE|FACE|ELEMENT <integer>entity_id

[AS <string>history_variable_name]

VARIABLE =

NODE|NODAL|EDGE|FACE|ELEMENT <string>variable_name

NEAREST LOCATION <real>global_x,

<real>global_y>, <real>global_z

[AS <string>history_variable_name]

START TIME = <real>output_start_time

TIMESTEP ADJUSTMENT INTERVAL = <integer>steps

AT TIME <real>time_begin INCREMENT =

<real>time_increment_dt

ADDITIONAL TIMES = <real>output_time1

<real>output_time2 ...

AT STEP <integer>step_begin INCREMENT =

<integer>step_increment

ADDITIONAL STEPS = <integer>output_step1

<integer>output_step2 ...

TERMINATION TIME = <real>termination_time_value

USE OUTPUT SCHEDULER <string>scheduler_name

OUTPUT ON SIGNAL = <string>SIGALRM|SIGFPE|

SIGHUP|SIGINT|SIGPIPE|SIGQUIT|SIGTERM|

SIGUSR1|SIGUSR2|SIGABRT|

SIGKILL|SIGILL|SIGSEGV

END [HISTORY OUTPUT <string>history_name]

Heartbeat specification

BEGIN HEARTBEAT OUTPUT <string>heartbeat_name

STREAM NAME = <string>heartbeat_file_name

FORMAT = SPYHIS|DEFAULT

VARIABLE = GLOBAL

<string>variable_name

[AS <string>heartbeat_variable_name]

VARIABLE =

NODE|NODAL|EDGE|FACE|ELEMENT <string>variable_name

AT NODE|NODAL|EDGE|FACE|ELEMENT <integer>entity_id

[AS <string>heartbeat_variable_name]

VARIABLE =

NODE|NODAL|EDGE|FACE|ELEMENT <string>variable_name

662 APPENDIX B. COMMAND SUMMARY

NEAREST LOCATION <real>global_x,

<real>global_y>, <real>global_z

[AS <string>heartbeat_variable_name]

START TIME = <real>output_start_time

TIMESTEP ADJUSTMENT INTERVAL = <integer>steps

AT TIME <real>time_begin INCREMENT =

<real>time_increment_dt

ADDITIONAL TIMES = <real>output_time1

<real>output_time2 ...

AT STEP <integer>step_begin INCREMENT =

<integer>step_increment

ADDITIONAL STEPS = <integer>output_step1

<integer>output_step2 ...

TERMINATION TIME = <real>termination_time_value

USE OUTPUT SCHEDULER <string>scheduler_name

OUTPUT ON SIGNAL = <string>SIGALRM|SIGFPE|SIGHUP|SIGINT|

SIGPIPE|SIGQUIT|SIGTERM|SIGUSR1|SIGUSR2|SIGABRT|

SIGKILL|SIGILL|SIGSEGV

PRECISION = <integer>precision

LABELS = <string>OFF|ON

LEGEND = <string>OFF|ON

TIMESTAMP FORMAT <string>timestamp_format

MONITOR = <string>RESULTS|RESTART|HISTORY

END [HEARTBEAT OUTPUT <string>heartbeat_name]

Restart specification

BEGIN RESTART DATA <string>restart_name

DATABASE NAME = <string>restart_file_name

INPUT DATABASE NAME = <string>restart_input_file

OUTPUT DATABASE NAME =

<string>restart_output_file

DATABASE TYPE =

<string>database_type(exodusII)

OVERWRITE = <string>OFF|ON|TRUE|FALSE|YES|NO

(ON|TRUE|YES)

START TIME = <real>restart_start_time

TIMESTEP ADJUSTMENT INTERVAL = <integer>steps

AT TIME <real>time_begin INCREMENT =

<real>time_increment_dt

ADDITIONAL TIMES = <real>output_time1

<real>output_time2 ...

AT STEP <integer>step_begin INCREMENT =

<integer>step_increment

ADDITIONAL STEPS = <integer>output_step1

<integer>output_step2 ...

TERMINATION TIME = <real>termination_time_value

663

OVERLAY COUNT = <integer>overlay_count

CYCLE COUNT = <integer>cycle_count

USE OUTPUT SCHEDULER <string>scheduler_name

OUTPUT ON SIGNAL = <string>SIGALRM|SIGFPE|SIGHUP|SIGINT|

SIGPIPE|SIGQUIT|SIGTERM|SIGUSR1|SIGUSR2|SIGABRT|

SIGKILL|SIGILL|SIGSEGV

OPTIONAL

END [RESTART DATA <string>restart_name]

END [PRESTO REGION <string>presto_region_name]

Control modes region

BEGIN CONTROL MODES REGION

#

model setup

USE FINITE ELEMENT MODEL <string>model_name

CONTROL BLOCKS [WITH <string>coarse_block] =

<string list>control_blocks

#

time step control

TIME STEP RATIO SCALING = <real>cm_time_scale(1.0)

TIME STEP RATIO FUNCTION = <string>cm_time_func

LANCZOS TIME STEP INTERVAL = <integer>lanczos_interval

POWER METHOD TIME STEP INTERVAL = <integer>pm_interval

#

mass scaling

HIGH FREQUENCY MASS SCALING = <real>cm_mass_scale(1.0)

#

stiffness damping

HIGH FREQUENCY STIFFNESS DAMPING COEFFICIENT =

<real>cm_stiff_damp(0.0)

#

kinematic boundary condition commands

BEGIN FIXED DISPLACEMENT

#

Parameters for fixed displacement

#

END [FIXED DISPLACEMENT]

#

output commands

BEGIN RESULTS OUTPUT <string> results_name

#

Parameters for results output

#

END RESULTS OUTPUT <string> results_name

END [CONTROL MODES REGION]

664 APPENDIX B. COMMAND SUMMARY

END [PRESTO PROCEDURE <string>presto_procedure_name]

END [SIERRA <string>name]

Appendix C

Consistent Units

This chapter describes common consistent sets of units. In using Presto, it is crucial to maintain a

consistent set of units when entering material properties and interpeting results. The only variables

that have intrinsic units are rotations, which are in radians. All other variables depend on the

consistent set of units that the user uses in inputing the material properties and dimensioning the

geometry.

A consistent set of units is made by picking the base units, which when using SI unit systems are

length, mass, and time. If English unit systems are used, these base units are length, force, and

time. All other units are then derived from these base units. Table C.1 provides several examples

of commonly used consistent sets of units. In general, the names of the unit systems in this table

are taken from the names of the base units. For example, CGS stands for (centimeters, grams,

seconds) and IPS stands for (inches, pounds, seconds).

One of the most common mistakes related to consistent units comes in when entering density. For

example, in the IPS system, a common error is to enter the density of stainless steel as 0.289 lb/in3,

when it should be entered as 7.48e-4 lb · s2/in. The weight per unit volume should be divided by

the gravitational constant (386.4 in/s2 in this case) to obtain a mass per unit volume.

665

666 APPENDIX C. CONSISTENT UNITS

Table C.1: Consistent Unit Sets

Unit System

Unit
SI CGS IPS FPS MMTS

Mass kg g lb·s2

in
slug tonne

Length m cm in f t mm

Time s s s s s

Density
kg

m3

g

cm3
lb·s2

in4

slug

f t3
tonne
mm3

Force N dyne lb lb N

Pressure Pa
dyne

cm2 psi ps f MPa

Moment N ·m dyne · cm in · lb f t · lb N ·mm

Temperature K K ◦R ◦R K

Energy J erg lb · in lb · f t mJ

Velocity m
s

cm
s

in
s

f t
s

mm
s

Acceleration m
s2

cm
s2

in
s2

f t

s2
mm
s2

Index

1PSI PRONY

in NLVE 3D Orthotropic material model, 164

2G SCALING

in Incompressible Solid material model, 158

2PSI PRONY

in NLVE 3D Orthotropic material model, 164

3PSI PRONY

in NLVE 3D Orthotropic material model, 164

4PSI PRONY

in NLVE 3D Orthotropic material model, 164

5PSI PRONY

in NLVE 3D Orthotropic material model, 164

A0

in Soil and Crushable Foam material model, 138

A1

in Soil and Crushable Foam material model, 138

in Swanson material model, 170

in Viscoelastic Swanson material model, 173

A11

in Elastic Laminate material model, 152

A12

in Elastic Laminate material model, 152

A16

in Elastic Laminate material model, 152

A2

in Soil and Crushable Foam material model, 138

A22

in Elastic Laminate material model, 152

A26

in Elastic Laminate material model, 152

A44

in Elastic Laminate material model, 152

A45

in Elastic Laminate material model, 152

A55

in Elastic Laminate material model, 152

A66

in Elastic Laminate material model, 152

ABSCISSA

in Definition for Function, 54

ACTIVE FOR PROCEDURE

in Finite Element Model – in Parameters For Block,

191

description of, 198

ACTIVE PERIODS, 72

description of, 72

in Adaptive Refinement, 262

usage in, 264

in Blast Pressure, 346

in Cavity Expansion, 343

in Element Death, 240

usage in, 250

in Fixed Displacement, 276

usage in, 277

in Fixed Rotation, 294

usage in, 295

in Fluid Pressure, 340

usage in, 342

in Gravity, 329

in Line Weld, 354

in Mass Scaling, 101

usage in, 103

in Pore Pressure, 336

usage in, 339

in Prescribed Acceleration, 289

usage in, 293

in Prescribed Displacement, 278

usage in, 282

in Prescribed Force, 321

usage in, 324

in Prescribed Moment, 325

usage in, 328

in Prescribed Rotation, 296

usage in, 300

in Prescribed Rotational Velocity, 301

usage in, 305

in Prescribed Temperature, 331

usage in, 335

in Prescribed Velocity, 284

usage in, 288

in Pressure, 311

usage in, 315

in Silent Boundary, 348

in Spot Weld, 349

in Time Step Initialization, 570

usage in, 572

in Torsional Spring Mechanism, 234

in Traction, 317

usage in, 320

667

668 INDEX

in User Output, 462

description of, 468

in Viscous Damping, 357

usage in, 358

in Volume Repulsion Old

usage in, 359

in Volume Repulsion Old – in BLOCK SET, 359

ACTIVE SUBROUTINE

in Contact Definition – in User Subroutine Model,

373

description of, 408

ADAPT SHARP ANGLE

in Adaptive Refinement, 262

usage in, 263

ADAPT SIZE RATIO

in Adaptive Refinement, 262

usage in, 263

ADAPT SMOOTH ANGLE

in Adaptive Refinement, 262

usage in, 263

ADAPT TYPE

in Adaptive Refinement, 262

usage in, 263

ADAPTIVE REFINEMENT, 262

in Remesh, 259

ADDITIONAL STEPS

in Heartbeat Output, 478

description of, 484

in History Output, 469

description of, 475

in Output Scheduler, 505

description of, 507

in Restart Data, 490

description of, 501

in Results Output, 445

description of, 460

ADDITIONAL TIMES

in Heartbeat Output, 478

description of, 484

in History Output, 469

description of, 475

in Output Scheduler, 505

description of, 506

in Restart Data, 490

description of, 501

in Results Output, 445

description of, 460

ADHESION FUNCTION

in Contact Definition – in Adhesion Model, 373

description of, 403

ADHESION MODEL

in Contact Definition, 373

description of, 403

ADHESION SCALE FACTOR

in Contact Definition – in Adhesion Model, 373

description of, 403

AGGRESSIVE CONTACT CLEANUP

in Element Death, 240

in Element Death

description of, 249

ALGORITHM DEBUG LEVEL

in Zoltan Parameters, 258

as default, 257

ALIAS

in Finite Element Model, 186

description of, 189

ALLOWABLE MASS INCREASE RATIO

in Mass Scaling, 101

description of, 102

ALPHA

in Elastic 3D Orthotropic material model, 144

in Elastic Laminate material model, 152

in NLVE 3D Orthotropic material model, 164

AMBIENT TEMPERATURE IN FAHRENHEIT

in Blast Pressure, 346

ANALYTIC CYLINDER

in Contact Definition, 373

description of, 385

ANALYTIC PLANE

in Contact Definition, 373

description of, 385

ANALYTIC SPHERE

in Contact Definition, 373

description of, 386

ANGULAR VELOCITY

in Initial Velocity, 307

description of, 309

in Rigid Body command block, 229

AREA

in Damper Section, 218

in Truss Section, 216

AREA WELD MODEL

in Contact Definition, 373

description of, 403

AT DISCONTINUITY EVALUATE TO

in Definition for Function, 54

AT STEP

in Heartbeat Output, 478

description of, 484

in History Output, 469

description of, 475

in Output Scheduler, 505

description of, 506

in Restart Data, 490

description of, 501

in Results Output, 445

description of, 460

AT TIME

INDEX 669

in Heartbeat Output, 478

description of, 484

in History Output, 469

description of, 475

in Output Scheduler, 505

description of, 506

in Restart Data, 490

description of, 500

in Results Output, 445

description of, 459

ATMOSPHERIC PRESSURE IN PSI

in Blast Pressure, 346

aupst_check_elem_var, 547

aupst_check_global_var, 556

aupst_check_node_var, 547

aupst_cyl_transform, 589

aupst_evaluate_function, 546

aupst_get_elem_nodes, 560

aupst_get_elem_topology, 560

aupst_get_elem_var, 547

aupst_get_elem_var_offset, 547

aupst_get_face_nodes, 560

aupst_get_face_topology, 560

aupst_get_global_var, 556

aupst_get_integer_param, 542

aupst_get_node_var, 547

aupst_get_one_elem_centroid, 565

aupst_get_point, 565

aupst_get_proc_num, 565

aupst_get_real_param, 542

aupst_get_string_param, 542

aupst_get_time, 546

aupst_local_put_global_var, 556

aupst_put_elem_var, 547

aupst_put_elem_var_offset, 547

aupst_put_global_var, 556

aupst_put_node_var, 547

aupst_rec_transform, 590

AUTOMATIC KINEMATIC PARTITION

in Contact Definition – in Interaction, 373, 424

description of, 428

in Contact Definition – in Interaction Defaults, 373,

419

description of, 421

AXIAL DIRECTION

in Contact Definition – in Analytic Cylinder, 373

description of, 385

AXIS

in Fiber Membrane material model, 155

AXIS OFFSET

in Beam Section, 211

AXIS Y

in Fiber Membrane material model, 155

AXIS Z

in Fiber Membrane material model, 155

B SHIFT CONSTANT

in NLVE 3D Orthotropic material model, 164

B1

in Swanson material model, 170

in Viscoelastic Swanson material model, 173

B11

in Elastic Laminate material model, 152

B12

in Elastic Laminate material model, 152

B16

in Elastic Laminate material model, 152

B22

in Elastic Laminate material model, 152

B26

in Elastic Laminate material model, 152

B66

in Elastic Laminate material model, 152

BEAM SECTION, 211

BENDING HOURGLASS STIFFNESS

in Finite Element Model – in Parameters For Block,

191

description of, 195

BENDING HOURGLASS VISCOSITY

in Finite Element Model – in Parameters For Block,

191

description of, 195

BETA

in Elastic-Plastic material model, 123

in Foam Plasticity material model, 141

in Multilinear Elastic-Plastic Hardening Model

material model, 129

in Multilinear Elastic-Plastic Hardening Model with

Failure material model, 131

BIOT’S COEFFICIENT

about, 115

in BCJ material model, 136

in Ductile Fracture material model, 127

in Elastic 3D Orthotropic material model, 144

in Elastic Fracture material model, 121

in Elastic material model, 119

in Elastic-Plastic material model, 123

in Elastic-Plastic Power-Law Hardening material

model, 125

in Foam Plasticity material model, 141

in Johnson-Cook material model, 134

in Multilinear Elastic-Plastic Hardening Model

material model, 129

in Multilinear Elastic-Plastic Hardening Model with

Failure material model, 131

in Orthotropic Crush material model, 146

in Orthotropic Rate material model, 149

in Soil and Crushable Foam material model, 138

670 INDEX

BLAST LOCATION

in Blast Pressure, 346

BLAST PRESSURE, 346

BLAST TIME

in Blast Pressure, 346

BLOCK

description of, 268

in Adaptive Refinement, 262

usage in, 264

in Contact Definition – in Contact Surface (block),

373

usage in, 382

in Element Death, 240

description of, 242

in Fixed Displacement, 276

usage in, 276

in Fixed Rotation, 294

usage in, 294

in Gravity, 329

usage in, 329

in Initial Condition, 271

usage in, 272

in Initial Velocity, 307

usage in, 308

in Line Weld, 354

in Mass Properties, 238

usage in, 238

in Mass Scaling, 101

usage in, 102

in Pore Pressure, 336

usage in, 337

in Prescribed Acceleration, 289

usage in, 290

in Prescribed Displacement, 278

usage in, 279

in Prescribed Force, 321

usage in, 322

in Prescribed Moment, 325

usage in, 326

in Prescribed Rotation, 296

usage in, 297

in Prescribed Rotational Velocity, 301

usage in, 302

in Prescribed Temperature, 331

usage in, 332

in Prescribed Velocity, 284

usage in, 285

in Remesh Block Set, 261

in Time Step Initialization, 570

usage in, 571

in User Output, 462

usage in, 464

in Viscous Damping, 357

usage in, 357

in Volume Repulsion Old

usage in, 359

in Volume Repulsion Old – in BLOCK SET, 359

BLOCK SET

in Volume Repulsion Old, 359

BULK FUNCTION

in Mooney-Rivlin material model, 161

BULK MODULUS

in BCJ material model, 136

in Ductile Fracture material model, 127

in Elastic Fracture material model, 121

in Elastic material model, 119

in Elastic-Plastic material model, 123

in Elastic-Plastic Power-Law Hardening material

model, 125

in Fiber Membrane material model, 155

in Foam Plasticity material model, 141

in Incompressible Solid material model, 158

in Johnson-Cook material model, 134

in Mooney-Rivlin material model, 161

in Multilinear Elastic-Plastic Hardening Model

material model, 129

in Multilinear Elastic-Plastic Hardening Model with

Failure material model, 131

in NLVE 3D Orthotropic material model, 164

in Orthotropic Crush material model, 146

in Orthotropic Rate material model, 149

in Soil and Crushable Foam material model, 138

in Stiff Elastic material model, 168

in Swanson material model, 170

in Viscoelastic Swanson material model, 173

BURST TYPE

in Blast Pressure, 346

C01

in Mooney-Rivlin material model, 161

C01 FUNCTION

in Mooney-Rivlin material model, 161

C1

in BCJ material model, 136

in Swanson material model, 170

in Viscoelastic Swanson material model, 173

C10

in BCJ material model, 136

in Mooney-Rivlin material model, 161

C10 FUNCTION

in Mooney-Rivlin material model, 161

C11

in BCJ material model, 136

C12

in BCJ material model, 136

C13

in BCJ material model, 136

C14

INDEX 671

in BCJ material model, 136

C15

in BCJ material model, 136

C16

in BCJ material model, 136

C17

in BCJ material model, 136

C18

in BCJ material model, 136

C19

in BCJ material model, 136

C2

in BCJ material model, 136

C20

in BCJ material model, 136

C3

in BCJ material model, 136

C4

in BCJ material model, 136

C5

in BCJ material model, 136

C6

in BCJ material model, 136

C7

in BCJ material model, 136

C8

in BCJ material model, 136

C9

in BCJ material model, 136

CAVITY EXPANSION, 343

CENTER

in Contact Definition – in Analytic Cylinder, 373

description of, 385

in Contact Definition – in Analytic Sphere, 373

description of, 386

in Contact Definition – in User Search Box, 373,

415

description of, 415

CHECK GEOMETRY

in Zoltan Parameters, 258

as default, 257

CHECK STEP INTERVAL

in Element Death, 240

description of, 247

CHECK TIME INTERVAL

in Element Death, 240

description of, 247

Coarse Mesh

for Explicit Control Modes, 103

COHESIVE MATERIAL

in Element Death, 240

description of, 251

COHESIVE MODEL

in Element Death, 240

description of, 251

COHESIVE SECTION, 201

in Element Death, 240

description of, 251

COHESIVE ZONE INITIALIZATION METHOD

in Element Death, 240

description of, 251

COHESIVE ZONE MODEL

in Contact Definition, 373

description of, 404

COINCIDENT SHELL HEX TREATMENT

in Contact Definition – in Shell Lofting, 373

description of, 395

COINCIDENT SHELL TREATMENT

in Contact Definition – in Shell Lofting, 373

description of, 395

COMMUNICATION RATIO THRESHOLD

in Rebalance, 255

description of, 256

COMPONENT

in Fixed Displacement, 276

description of, 277

in Fixed Rotation, 294

description of, 295

in Initial Velocity, 307

description of, 308

in Prescribed Acceleration, 289

description of, 290

in Prescribed Displacement, 278

description of, 279

in Prescribed Force, 321

description of, 322

in Prescribed Moment, 325

description of, 326

in Prescribed Rotation, 296

description of, 297

in Prescribed Rotational Velocity, 301

description of, 302

in Prescribed Velocity, 284

description of, 285

COMPONENT SEPARATOR CHARACTER

in Finite Element Model, 186

description of, 190

in Results Output, 445

description of, 458

COMPONENTS

in Fixed Displacement, 276

description of, 277

in Fixed Rotation, 294

description of, 295

COMPUTE AT EVERY TIME STEP, 462

in User Output

description of, 467

COMPUTE GLOBAL

672 INDEX

in User Output, 462

description of, 464

CONSTANT FRICTION MODEL

in Contact Definition, 373

description of, 400

CONSTANT SPHERE RADIUS

in SPH Section, 221

CONSTRAINT FORMULATION

in Contact Definition – in Interaction Defaults, 419

description of, 423

CONTACT CLEANUP

in Remesh, 259

usage in, 260

CONTACT DEFINITION, 373

use of, 381

CONTACT NODE SET

in Contact Definition, 373

description of, 384

CONTACT NORMAL

in Contact Definition – in Analytic Cylinder, 373

description of, 385

CONTACT SURFACE

in Contact Definition, 373

description of, 381

use of, 379, 382

CONTACT SURFACE (block)

in Contact Definition, 373

description of, 382

use of, 379, 382

CONTACT VARIABLES

in Contact Definition

description of, 398

CONTROL BLOCKS

in Control Modes Region, 104

usage in, 105

CONTROL MODES REGION, 104

usage of for Explicit Control Modes, 103

CONVERT ELEMENT TO PARTICLES WITH

SECTION

in Element Death, 240

CONVERT ELEMENTS TO PARTICLES WITH

SECTION

in Element Death

description of, 250

COORDINATE SYSTEM

in Elastic 3D Orthotropic material model, 144

in Elastic Laminate material model, 152

in NLVE 3D Orthotropic material model, 164

COPY ELEMENT VARIABLE

in User Output, 462

description of, 467

COPY VARIABLE

in Initial Condition, 271

description of, 273

in Pore Pressure, 336

description of, 338

in Prescribed Acceleration, 289

description of, 292

in Prescribed Displacement, 278

description of, 281

in Prescribed Rotation, 296

description of, 299

in Prescribed Rotational Velocity, 301

description of, 304

in Prescribed Temperature, 331

description of, 333

in Prescribed Velocity, 284

description of, 287

copy_data, 591

CORD DENSITY

in Fiber Membrane material model, 155

CORD DIAMETER

in Fiber Membrane material model, 155

CRITERION IS

in Element Death – for Element Value Of, 240

description of, 243

in Element Death – for Global Value Of, 240

description of, 245

in Element Death – for Nodal Value Of, 240

description of, 243

CRITICAL CRACK OPENING STRAIN

in Ductile Fracture material model, 127

in Multilinear Elastic-Plastic Hardening Model with

Failure material model, 131

CRITICAL NORMAL GAP

in Contact Definition – in Cohesive Zone Model,

373

description of, 404

CRITICAL STRAIN

in Elastic Fracture material model, 121

CRITICAL TANGENTIAL GAP

in Contact Definition – in Cohesive Zone Model,

373

description of, 404

CRITICAL TEARING PARAMETER

in Ductile Fracture material model, 127

in Multilinear Elastic-Plastic Hardening Model with

Failure material model, 131

CRUSH XX

in Orthotropic Crush material model, 146

CRUSH XY

in Orthotropic Crush material model, 146

CRUSH YY

in Orthotropic Crush material model, 146

CRUSH YZ

in Orthotropic Crush material model, 146

CRUSH ZX

in Orthotropic Crush material model, 146

INDEX 673

CRUSH ZZ

in Orthotropic Crush material model, 146

CUT OFF STRAIN

in Swanson material model, 170

in Viscoelastic Swanson material model, 173

CYCLE COUNT

in Restart Data, 490

description of, 502

CYLINDRICAL AXIS

in Initial Velocity, 307

description of, 309

in Prescribed Displacement, 278

description of, 279

in Prescribed Velocity, 284

description of, 285

in Rigid Body command block, 229

D11

in Elastic Laminate material model, 152

D12

in Elastic Laminate material model, 152

D16

in Elastic Laminate material model, 152

D22

in Elastic Laminate material model, 152

D26

in Elastic Laminate material model, 152

D66

in Elastic Laminate material model, 152

DAMAGE EXPONENT

in BCJ material model, 136

DAMPER SECTION, 218

DAMPING MATRIX

in Superelement Section, 225

description of, 226

DATABASE NAME

in Finite Element Model, 186

description of, 189

in History Output, 469

in Restart Data, 490

description of, 491

in Results Output, 445

DATABASE TYPE

in Finite Element Model, 186

description of, 189

in History Output, 469

in Restart Data, 490

description of, 491

in Results Output, 445

DEATH METHOD

in Element Death, 240

in Element Death

description of, 249

DEATH ON INVERSION

in Element Death

description of, 248

DEATH START TIME

in Element Death, 240

description of, 247

DEATH STEPS

in Element Death, 240

description of, 248

DEBUG MEMORY

in Zoltan Parameters, 258

DEBUG OUTPUT LEVEL

in Remesh, 259

usage in, 260

DEBUG PROCESSOR NUMBER

in Zoltan Parameters, 258

DEFINE AXIS

with point and direction, 59

with two points, 59

DEFINE DIRECTION, 59

DEFINE POINT, 37, 59

DEFINITION FOR FUNCTION, 54

usage for thermal strains, 118

DENSITY

in Fluid Pressure, 340

about, 115

in BCJ material model, 136

in Ductile Fracture material model, 127

in Elastic 3D Orthotropic material model, 144

in Elastic Fracture material model, 121

in Elastic Laminate material model, 152

in Elastic material model, 119

in Elastic-Plastic material model, 123

in Elastic-Plastic Power-Law Hardening material

model, 125

in Fluid Pressure

usage in, 341

in Foam Plasticity material model, 141

in Johnson-Cook material model, 134

in Multilinear Elastic-Plastic Hardening Model

material model, 129

in Multilinear Elastic-Plastic Hardening Model with

Failure material model, 131

in Orthotropic Crush material model, 146

in Orthotropic Rate material model, 149

in Soil and Crushable Foam material model, 138

Density

in Fiber Membrane material model, 155

in Incompressible Solid material model, 158

in Mooney-Rivlin material model, 161

in NLVE 3D Orthotropic material model, 164

in Stiff Elastic material model, 168

in Swanson material model, 170

in Viscoelastic Swanson material model, 173

DENSITY FORMULATION

674 INDEX

in SPH Section, 221

DENSITY FUNCTION

in Fluid Pressure, 340

usage in, 341

DEPTH

in Fluid Pressure, 340

in Fluid Pressure

usage in, 341

DEPTH FUNCTION

in Fluid Pressure, 340

usage in, 341

DERIVED LOG STRAIN OUTPUT, 254

DERIVED OUTPUT, 254

DERIVED STRAIN OUTPUT, 254

DETERMINISTIC DECOMPOSITION

in Zoltan Parameters, 258

DEVIATORIC PARAMETER

in Membrane Section, 207

in Solid Section, 199

DIRECTION

in Gravity, 329

in Initial Velocity, 307

description of, 308

in Prescribed Acceleration, 289

description of, 290

in Prescribed Displacement, 278

description of, 279

in Prescribed Force, 321

description of, 322

in Prescribed Moment, 325

description of, 326

in Prescribed Rotation, 296

description of, 297

in Prescribed Rotational Velocity, 301

description of, 302

in Prescribed Velocity, 284

description of, 285

in Rigid Body command block, 229

in Traction, 317

description of, 318

DIRECTION FOR ROTATION

in Elastic 3D Orthotropic material model, 144

in Elastic Laminate material model, 152

in NLVE 3D Orthotropic material model, 164

DOUBLE INTEG FACTOR

in NLVE 3D Orthotropic material model, 164

DRILLING STIFFNESS FACTOR

in Shell Section, 202

DYNAMIC COEFFICIENT

in Contact Definition – in PV_Dependent Model,

373

description of, 407

EFFECTIVE MODULI MODEL

in Finite Element Model – in Parameters For Block,

191

description of, 196

EIGENVALUE CONVERGENCE TOLERANCE

in Lanczos Parameters, 89

in Power Method Parameters, 96

ELEMENT BLOCK SUBROUTINE

as user subroutine command line, 567

description of, 568

in Element Death, 240

description of, 245

in Initial Condition, 271

description of, 274

in Pore Pressure, 336

in Time Step Initialization, 570

description of, 571

in User Output, 462

description of, 466

ELEMENT DEATH, 240

example of, 251

ELEMENT GROUPING TYPE

in Rebalance, 255

ELEMENT NUMERICAL FORMULATION

in Finite Element Model – in Parameters For Block,

191

description of, 197

ELEMENT REPRESENTATION

in Volume Repulsion Old

usage in, 359

in Volume Repulsion Old – in BLOCK SET, 359

ELEMENT VARIABLES

in Results Output, 445

description of, 452

EMBEDDED BLOCKS

in Submodel

usage in, 365

ENCLOSING BLOCKS

in Submodel

usage in, 365

ENFORCEMENT OPTIONS

in Contact Definition, 373

description of, 417

EPL

in Fiber Membrane material model, 155

ERODED FACE TREATMENT

in Contact Definition, 373

description of, 394

EVALUATE EXPRESSION

in Definition For Function, 54

examples of, 56

rules and options for composing, 56

EX

in Orthotropic Crush material model, 146

EXPANSION RADIUS

INDEX 675

in Cavity Expansion, 343

Explicit Control Modes, 103

EXTERNAL FORCE CONTRIBUTION OUTPUT

NAME, 311

in Pressure

description of, 315

EY

in Orthotropic Crush material model, 146

EZ

in Orthotropic Crush material model, 146

FACE MULTIPLIER

in Contact Definition – in Interaction

description of, 428

in Contact Definition – in Search Options, 373, 410

description of, 412

FACE MULTIPLIER

in Contact Definition – in Interaction, 424

FACE VARIABLES

in Results Output

description of, 450

FACTOR

in BCJ material model, 136

FAILED MODEL

in Contact Definition – in Area Weld Model, 373

description of, 403

in Contact Definition – in Spring Weld Model, 373

description of, 401

in Contact Definition – in Surface Weld Model, 373

description of, 402

in Contact Definition – in Threaded Model, 373

description of, 406

FAILURE DECAY CYCLES

in Contact Definition – in Area Weld Model, 373

description of, 403

in Contact Definition – in Spring Weld Model, 373

description of, 401

in Contact Definition – in Surface Weld Model, 373,

402

in Contact Definition – in Threaded Model, 373

description of, 406

in Line Weld, 354

in Spot Weld, 349

FAILURE ENVELOPE EXPONENT

in Contact Definition – in Spring Weld Model, 373

description of, 401

in Contact Definition – in Threaded Model, 373

description of, 406

in Line Weld, 354

in Spot Weld, 349

FAILURE FUNCTION

in Spot Weld, 349

FEET PER MODEL UNITS

in Blast Pressure, 346

FICTITIOUS LOGA FUNCTION

in NLVE 3D Orthotropic material model, 164

FICTITIOUS LOGA SCALE FACTOR

in NLVE 3D Orthotropic material model, 164

FIELD VARIABLE

in Pressure, 311

description of, 314

FILE

in Superelement Section, 225

description of, 226

FINAL RADIUS MULTIPLICATION FACTOR

in SPH Section, 221

FINITE ELEMENT MODEL, 186

usage of for Explicit Control Modes, 103

FIXED DISPLACEMENT, 276

in Control Modes Region, 104

usage in, 108

FIXED ROTATION, 294

FLANGE THICKNESS

in Beam Section, 211

FLUID PRESSURE, 340

FLUID SURFACE NORMAL

in Fluid Pressure, 340

in Fluid Pressure

usage in, 341

FORCE STRAIN FUNCTION

in Spring Section, 217

FORCE VALID ACME CONNECTIVITY

in Element Death, 240

description of, 248

FORMAT

in Heartbeat Output, 478

FORMULATION

in Membrane Section, 207

in Solid Section, 199

in SPH Section, 221

FREE SURFACE

in Cavity Expansion, 343

FREE SURFACE EFFECT COEFFICIENTS

in Cavity Expansion – in Layer, 343

description of, 345

FRICTION COEFFICIENT

in Contact Definition – in Constant Friction Model,

373

description of, 400

in Volume Repulsion Old, 359

FRICTION MODEL

in Contact Definition – in Interaction, 373, 424

description of, 428

in Contact Definition – in Interaction Defaults, 373,

419

description of, 421

FRICTIONLESS MODEL

in Contact Definition, 373

676 INDEX

description of, 400

FUNCTION

in Gravity, 329

in Pore Pressure, 336

description of, 337

in Prescribed Acceleration, 289

description of, 290

in Prescribed Displacement, 278

description of, 279

in Prescribed Force, 321

description of, 322

in Prescribed Moment, 325

description of, 326

in Prescribed Rotation, 296

description of, 297

in Prescribed Rotational Velocity, 301

description of, 302

in Prescribed Temperature, 331

description of, 332

in Prescribed Velocity, 284

description of, 285

in Pressure, 311

description of, 313

in Traction, 317

description of, 318

GENERAL CONTACT

in Contact Definition – in Interaction Defaults, 373,

419

GEOMETRIC POINT COORDINATES

in Adaptive Refinement, 262

usage in, 263

GLASS TRANSITION TEM

in NLVE 3D Orthotropic material model, 164

GLOBAL OPERATOR

in User Variable, 573

GLOBAL SEARCH INCREMENT

in Contact Definition – in Search Options, 373, 410

description of, 411

GLOBAL SEARCH ONCE

in Contact Definition – in Search Options, 373, 410

description of, 411

GLOBAL VARIABLES

in Results Output, 445

description of, 458

GRAVITATIONAL CONSTANT

in Fluid Pressure, 340

in Fluid Pressure

usage in, 341

in Gravity, 329

GRAVITY, 329

GXY

in Orthotropic Crush material model, 146

GYZ

in Orthotropic Crush material model, 146

GZX

in Orthotropic Crush material model, 146

HARDENING CONSTANT

in Ductile Fracture material model, 127

in Elastic-Plastic Power-Law Hardening material

model, 125

HARDENING EXPONENT

in Ductile Fracture material model, 127

in Elastic-Plastic Power-Law Hardening material

model, 125

HARDENING FUNCTION

in Multilinear Elastic-Plastic Hardening Model

material model, 129

in Multilinear Elastic-Plastic Hardening Model with

Failure material model, 131

HARDENING MODULUS

in Elastic-Plastic material model, 123

HEARTBEAT OUTPUT, 478

HEIGHT

in Beam Section, 211

HIGH FREQUENCY MASS SCALING

in Control Modes Region, 104

usage in, 107

HIGH FREQUENCY STIFFNESS DAMPING

in Control Modes Region

usage in, 108

HISTORY OUTPUT, 469

HOURGLASS FORMULATION

in Solid Section, 199

HOURGLASS STIFFNESS

in Finite Element Model – in Parameters For Block,

191

description of, 195

HOURGLASS VISCOSITY

in Finite Element Model – in Parameters For Block,

191

description of, 195

HYDRO EXPONENT

in Foam Plasticity material model, 141

HYDRO HARDENING

in Foam Plasticity material model, 141

HYDRO STRENGTH

in Foam Plasticity material model, 141

IGNORE INITIAL OFFSET

in Spot Weld, 349

IMBALANCE TOLERANCE

in Zoltan Parameters, 258

IMPULSE SCALE FACTOR

in Blast Pressure, 346

INACTIVE PERIODS, 72

description of, 72

INDEX 677

in Adaptive Refinement, 262

usage in, 264

in Blast Pressure, 346

in Cavity Expansion, 343

in Element Death, 240

usage in, 250

in Fixed Displacement, 276

usage in, 277

in Fixed Rotation, 294

usage in, 295

in Fluid Pressure, 340

usage in, 342

in Gravity, 329

in Line Weld, 354

in Mass Scaling, 101

usage in, 103

in Pore Pressure, 336

usage in, 339

in Prescribed Acceleration, 289

usage in, 293

in Prescribed Displacement, 278

usage in, 282

in Prescribed Force, 321

usage in, 324

in Prescribed Moment, 325

usage in, 328

in Prescribed Rotation, 296

usage in, 300

in Prescribed Rotational Velocity, 301

usage in, 305

in Prescribed Temperature, 331

usage in, 335

in Prescribed Velocity, 284

usage in, 288

in Pressure, 311

in Silent Boundary, 348

in Spot Weld, 349

in Torsional Spring Mechanism, 234

in Traction, 317

usage in, 320

in Viscous Damping, 357

usage in, 358

in Volume Repulsion Old

usage in, 359

in Volume Repulsion Old – in BLOCK SET, 359

INCLUDE ALL BLOCKS

description of, 268

in Adaptive Refinement, 262

usage in, 264

in Element Death, 240

description of, 242

in Finite Element Model, 186

description of, 193

in Fixed Displacement, 276

usage in, 276

in Fixed Rotation, 294

usage in, 294

in Gravity, 329

usage in, 329

in Initial Condition, 271

usage in, 272

in Initial Velocity, 307

usage in, 308

in Mass Properties, 238

usage in, 238

in Mass Scaling, 101

usage in, 102

in Pore Pressure, 336

usage in, 337

in Prescribed Acceleration, 289

usage in, 290

in Prescribed Displacement, 278

usage in, 279

in Prescribed Force, 321

usage in, 322

in Prescribed Moment, 325

usage in, 326

in Prescribed Rotation, 296

usage in, 297

in Prescribed Rotational Velocity, 301

usage in, 302

in Prescribed Temperature, 331

usage in, 332

in Prescribed Velocity, 284

usage in, 285

in Remesh Block Set, 261

in Time Step Initialization, 570

usage in, 571

in User Output, 462

usage in, 464

in Viscous Damping, 357

usage in, 357

in Volume Repulsion Old

usage in, 359

in Volume Repulsion Old – in BLOCK SET, 359

INCLUDE NODES IN

in Rigid Body command block, 229

INCLUDEFILE, 43

INCREASE OVER STEPS

in Lanczos Parameters, 89

in Power Method Parameters, 96

INCREMENT INTERVAL

in Node Based Time Step Parameters, 99

INERTIA

in Rigid Body command block, 229

INITIAL ALPHA_XX

in BCJ material model, 136

INITIAL ALPHA_XY

678 INDEX

in BCJ material model, 136

INITIAL ALPHA_XZ

in BCJ material model, 136

INITIAL ALPHA_YY

in BCJ material model, 136

INITIAL ALPHA_YZ

in BCJ material model, 136

INITIAL ALPHA_ZZ

in BCJ material model, 136

INITIAL CONDITION, 271

INITIAL DAMAGE

in BCJ material model, 136

INITIAL KAPPA

in BCJ material model, 136

INITIAL LOAD

in Truss Section, 216

INITIAL REBALANCE

in Rebalance, 255

description of, 256

INITIAL TIME STEP

in Parameters For Presto Region, 77

description of, 78

INITIAL TORQUE

in Torsional Spring Mechanism, 234

INITIAL VALUE

in User Variable, 573

INITIAL VELOCITY, 307

INITIALIZE MODEL SUBROUTINE

in Contact Definition – in User Subroutine Model,

373

description of, 408

INITIALIZE NODE STATE DATA SUBROUTINE

in Contact Definition – in User Subroutine Model,

373

description of, 408

INITIALIZE TIME STEP SUBROUTINE

in Contact Definition – in User Subroutine Model,

373

description of, 408

INITIALIZE VARIABLE NAME

in Initial Condition, 271

description of, 272

INPUT DATABASE NAME

in Restart Data, 490

description of, 491

INTEGRATION RULE

in Shell Section, 202

INTERACTION

in Contact Definition, 373

description of, 424

INTERACTION BEHAVIOR

in Contact Definition – in Interaction, 373, 424

description of, 429

in Contact Definition – in Interaction Defaults, 373,

419

description of, 422

INTERACTION DEFAULTS

in Contact Definition, 373

description of, 419

INTERACTION TYPE SUBROUTINE

in Contact Definition – in User Subroutine Model,

373

description of, 408

JUNCTION MODEL

in Contact Definition, 373

description of, 405

K SCALING

in Incompressible Solid material model, 158

KEEP CUTS

in Zoltan Parameters, 258

KINEMATIC PARTITION

in Contact Definition – in Interaction, 373, 424

description of, 426

L FUNCTION

in Orthotropic Rate material model, 149

LABELS

in Heartbeat Output, 478

LAMBDA

in BCJ material model, 136

in Ductile Fracture material model, 127

in Elastic Fracture material model, 121

in Elastic material model, 119

in Elastic-Plastic material model, 123

in Elastic-Plastic Power-Law Hardening material

model, 125

in Fiber Membrane material model, 155

in Foam Plasticity material model, 141

in Incompressible Solid material model, 158

in Johnson-Cook material model, 134

in Mooney-Rivlin material model, 161

in Multilinear Elastic-Plastic Hardening Model

material model, 129

in Multilinear Elastic-Plastic Hardening Model with

Failure material model, 131

in NLVE 3D Orthotropic material model, 164

in Orthotropic Crush material model, 146

in Orthotropic Rate material model, 149

in Soil and Crushable Foam material model, 138

in Stiff Elastic material model, 168

in Swanson material model, 170

in Viscoelastic Swanson material model, 173

LANCZOS PARAMETERS, 89

LANCZOS TIME STEP INTERVAL

in Control Modes Region

INDEX 679

usage in, 106

LAYER

in Cavity Expansion, 343

description of, 344

LAYER SURFACE

in Cavity Expansion – in Layer, 343

description of, 344

LEGEND

in Heartbeat Output, 478

LENGTH

in Contact Definition – in Analytic Cylinder, 373

description of, 385

LIMIT FORCE SUBROUTINE

in Contact Definition – in User Subroutine Model,

373

description of, 408

LINE CYLINDER RADIUS

in Volume Repulsion Old

usage in, 359

in Volume Repulsion Old – in BLOCK SET, 359

LINE WELD, 354

LINEAR BULK VISCOSITY

in Finite Element Model – in Parameters For Block,

191

description of, 195

LINEAR VISCO TEST

in NLVE 3D Orthotropic material model, 164

LOAD BALANCING METHOD

in Zoltan Parameters, 258

as default, 257

LOAD RATIO THRESHOLD

in Rebalance, 255

LOCK RCB DIRECTIONS

in Zoltan Parameters, 258

LOFTING ALGORITHM

in Contact Definition – in Shell Lofting, 373

description of, 395

LOFTING FACTOR

in Membrane Section, 207

in Shell Section, 202

LUDERS STRAIN

in Ductile Fracture material model, 127

in Elastic-Plastic Power-Law Hardening material

model, 125

LW FUNCTION

in Orthotropic Rate material model, 149

LX

in Orthotropic Rate material model, 149

LY

in Orthotropic Rate material model, 149

LZ

in Orthotropic Rate material model, 149

MAGNITUDE

in Initial Condition, 271

description of, 273

in Initial Velocity, 307

description of, 308

in Rigid Body command block, 229

MAP

in Superelement Section, 225

description of, 226

MASS

in Rigid Body command block, 229

MASS DAMPING COEFFICIENT

in Viscous Damping, 357

description of, 358

MASS LOCATION

in Rigid Body command block, 229

MASS MATRIX

in Superelement Section, 225

description of, 226

MASS PROPERTIES, 238

MASS SCALING, 101

MASTER

in Contact Definition – in Interaction, 373, 424

description of, 424

MASTER BLOCK

in MPC, 361

usage in, 361

MASTER NODE SET

in MPC, 361

usage in, 361

MASTER NODES

in MPC, 361

usage in, 361

MASTER SURFACE

in MPC, 361

usage in, 361

MATERIAL

in Finite Element Model – in Parameters For Block,

191

description of, 193

MATERIAL CRITERION

in Element Death, 240

description of, 246

MATRIX DENSITY

in Fiber Membrane material model, 155

MAX NUMBER ELEMENTS

in Remesh, 259

MAX NUMBER ELEMENTS

in Remesh

usage in, 260

MAX POISSONS RATIO

in Incompressible Solid material model, 158

in Mooney-Rivlin material model, 161

in Swanson material model, 170

in Viscoelastic Swanson material model, 173

680 INDEX

MAX REMESH REBALANCE METRIC

in Remesh, 259

usage in, 260

MAX REMESH STEP INTERVAL

in Remesh, 259

usage in, 260

MAX REMESH TIME INTERVAL

in Remesh, 259

usage in, 260

MAX STRESS

in Elastic Fracture material model, 121

MEMBRANE HOURGLASS STIFFNESS

in Finite Element Model – in Parameters For Block,

191

description of, 195

MEMBRANE HOURGLASS VISCOSITY

in Finite Element Model – in Parameters For Block,

191

description of, 195

MEMBRANE SECTION, 207

MILLISECONDS PER MODEL UNITS

in Blast Pressure, 346

MODEL

in Fiber Membrane material model, 155

MODULUS FUNCTION

in Orthotropic Rate material model, 149

MODULUS LLLL

in Orthotropic Rate material model, 149

MODULUS LLWW

in Orthotropic Rate material model, 149

MODULUS LWLW

in Orthotropic Rate material model, 149

MODULUS TLTL

in Orthotropic Rate material model, 149

MODULUS TTLL

in Orthotropic Rate material model, 149

MODULUS TTTT

in Orthotropic Rate material model, 149

MODULUS TTWW

in Orthotropic Rate material model, 149

MODULUS WTWT

in Orthotropic Rate material model, 149

MODULUS WWWW

in Orthotropic Rate material model, 149

MOMENTUM BALANCE ITERATIONS

in Contact Definition – in Enforcement Options,

373, 417

description of, 417

MONAGHAN EPSILON

in SPH Section, 221

MONAGHAN N

in SPH Section, 221

MONITOR

in Heartbeat Output, 478

description of, 488

MPC, 361

MTH11 FUNCTION

in Elastic Laminate material model, 152

MTH12 FUNCTION

in Elastic Laminate material model, 152

MTH22 FUNCTION

in Elastic Laminate material model, 152

MULTIPLE INTERACTIONS

in Contact Definition, 373

description of, 391

MULTIPLE INTERACTIONS WITH ANGLE

in Contact Definition, 373

description of, 391

NEW MESH MAX EDGE LENGTH RATIO

in Remesh, 259

usage in, 260

NEW MESH MIN EDGE LENGTH RATIO

in Remesh, 259

usage in, 260

NEW MESH MIN SHAPE

in Remesh, 259

usage in, 260

NODAL VARIABLES

in Results Output, 445

description of, 447

NODE BASED ALPHA FACTOR

in Solid Section, 199

NODE BASED BETA FACTOR

in Solid Section, 199

NODE BASED TIME STEP PARAMETERS, 99

NODE SET

description of, 268

in Adaptive Refinement, 262

usage in, 264

in Contact Definition – in Contact Surface (block),

373

usage in, 382

in Fixed Displacement, 276

usage in, 276

in Fixed Rotation, 294

usage in, 294

in Gravity, 329

usage in, 329

in Initial Condition, 271

usage in, 272

in Initial Velocity, 307

usage in, 308

in Mass Scaling, 101

usage in, 102

in Prescribed Acceleration, 289

usage in, 290

in Prescribed Displacement, 278

INDEX 681

usage in, 279

in Prescribed Force, 321

usage in, 322

in Prescribed Moment, 325

usage in, 326

in Prescribed Rotation, 296

usage in, 297

in Prescribed Rotational Velocity, 301

usage in, 302

in Prescribed Velocity, 284

usage in, 285

in Spot Weld, 349

in Time Step Initialization, 570

usage in, 571

in User Output, 462

usage in, 464

NODE SET SUBROUTINE

as user subroutine command line, 567

description of, 567

in Initial Condition, 271

description of, 274

in Initial Velocity, 307

description of, 309

in Pore Pressure

description of, 338

in Prescribed Acceleration, 289

description of, 291

in Prescribed Displacement, 278

description of, 281

in Prescribed Force, 321

description of, 323

in Prescribed Moment, 325

description of, 327

in Prescribed Rotation, 296

description of, 298

in Prescribed Rotational Velocity, 301

description of, 303

in Prescribed Temperature, 331

description of, 333

in Prescribed Velocity, 284

description of, 287

in Pressure, 311

description of, 313

in Time Step Initialization, 570

description of, 571

in Traction, 317

description of, 319

in User Output, 462

description of, 466

NODE SETS

in Torsional Spring Mechanism, 234

NODE SETS TO DEFINE BODY AXIS

in Cavity Expansion, 343

NODE VARIABLES

in Results Output, 445

description of, 447

NODESET VARIABLES

in Results Output, 445

description of, 448

NORMAL

in Contact Definition – in Analytic Plane, 373

description of, 385

NORMAL CAPACITY

in Contact Definition – in Area Weld Model, 373

description of, 403

in Contact Definition – in Surface Weld Model, 373

description of, 402

in Contact Definition – in Threaded Model, 373

description of, 406

NORMAL CUTOFF DISTANCE FOR TANGENTIAL

TRACTION

in Contact Definition – in Junction Model, 373

description of, 405

NORMAL DISPLACEMENT FUNCTION

in Contact Definition – in Spring Weld Model, 373

description of, 401

in Spot Weld, 349

NORMAL DISPLACEMENT SCALE FACTOR

in Contact Definition – in Spring Weld Model, 373

description of, 401

in Spot Weld, 349

NORMAL TOLERANCE

in Contact Definition – in Interaction, 373, 424

description of, 428

in Contact Definition – in Search Options, 373, 410

description of, 412

NORMAL TRACTION FUNCTION

in Contact Definition – in Junction Model, 373

description of, 405

in Contact Definition – in Threaded Model, 373

description of, 406

NORMAL TRACTION SCALE FACTOR

in Contact Definition – in Junction Model, 373

description of, 405

in Contact Definition – in Threaded Model, 373

description of, 406

NTH11 FUNCTION

in Elastic Laminate material model, 152

NTH12 FUNCTION

in Elastic Laminate material model, 152

NTH22 FUNCTION

in Elastic Laminate material model, 152

NUMBER EIGENVALUES

in Lanczos Parameters, 89

NUMBER ITERATIONS

in Power Method Parameters, 96

NUMBER OF INTEGRATION POINTS

in Cohesive Section, 201

682 INDEX

in Shell Section, 202

NUMERICAL SHIFT FUNCTION

in Viscoelastic Swanson material model, 173

OBJECT TYPE

in Pressure, 311

description of, 314

OCTREE DIMENSION

in Zoltan Parameters, 258

OCTREE MAX OBJECTS

in Zoltan Parameters, 258

OCTREE METHOD

in Zoltan Parameters, 258

OCTREE MIN OBJECTS

in Zoltan Parameters, 258

OFFSET PRESSURE

in Contact Definition – in PV_Dependent Model,

373

description of, 407

OMIT BLOCK

in Finite Element Model, 186

description of, 190

OPTIONAL

in Restart Data, 490

description of, 491

ORDINATE

in Definition for Function, 54

ORIENTATION, 60

in Shell Section, 202

OUTPUT DATABASE NAME

in Restart Data, 490

description of, 491

OUTPUT MESH

BLOCK_SURFACE, 457

EXPOSED_SURFACE, 457

in Results Output, 445

description of, 457

OUTPUT ON SIGNAL

in Heartbeat Output, 478

description of, 485

in History Output, 469

description of, 476

in Restart Data, 490

description of, 503

in Results Output, 445

description of, 461

OUTPUT SCHEDULER, 505

example of, 507

use of, 505

OVER ALLOCATE MEMORY

in Zoltan Parameters, 258

as default, 257

OVERLAP NORMAL TOLERANCE

in Contact Definition – in Interaction, 373, 424

description of, 428

in Contact Definition – in Remove Initial Overlap,

373

description of, 389

OVERLAP TANGENTIAL TOLERANCE

in Contact Definition – in Interaction, 373, 424

description of, 428

in Contact Definition – in Remove Initial Overlap,

373

description of, 389

OVERLAY COUNT

in Restart Data, 490

description of, 501

OVERWRITE

in History Output, 469

in Restart Data, 490

description of, 500

in Results Output, 445

P1

in Swanson material model, 170

in Viscoelastic Swanson material model, 173

PARAMETERS FOR BLOCK

in Finite Element Model, 186

about, 192

listing of, 191

PARAMETERS FOR MODEL

in Property Specification for Material command

blocks

description of, 112

PARAMETERS FOR MODEL BCJ

in BCJ material model, 136

PARAMETERS FOR MODEL DUCTILE FRACTURE

in Ductile Fracture material model, 127

PARAMETERS FOR MODEL ELASTIC

in Elastic material model, 119

PARAMETERS FOR MODEL

ELASTIC_3D_ORTHOTROPIC

in Elastic 3D Orthotropic material model, 144

PARAMETERS FOR MODEL ELASTIC_FRACTURE

in Elastic Fracture material model, 121

PARAMETERS FOR MODEL ELASTIC_LAMINATE

in Elastic Laminate material model, 152

PARAMETERS FOR MODEL ELASTIC_PLASTIC

in Elastic-Plastic material model, 123

in Johnson-Cook material model, 134

PARAMETERS FOR MODEL EP_POWER_HARD

in Elastic-Plastic Power-Law Hardening material

model, 125

PARAMETERS FOR MODEL FIBER_MEMBRANE

in Fiber Membrane material model, 155

PARAMETERS FOR MODEL FOAM_PLASTICITY

in Foam Plasticity material model, 141

INDEX 683

PARAMETERS FOR MODEL

INCOMPRESSIBLE_SOLID

in Incompressible Solid material model, 158

PARAMETERS FOR MODEL ML_EP_FAIL

in Multilinear Elastic-Plastic Hardening Model

material mode, 129

in Multilinear Elastic-Plastic Hardening Model with

Failure material mode, 131

PARAMETERS FOR MODEL MOONEY_RIVLIN

in Mooney-Rivlin material model, 161

PARAMETERS FOR MODEL

NLVE_3D_ORTHOTROPIC

in NLVE 3D Orthotropic material model, 164

PARAMETERS FOR MODEL

ORTHOTROPIC_CRUSH

in Orthotropic Crush material model, 146

PARAMETERS FOR MODEL ORTHOTROPIC_RATE

in Orthotropic Rate material model, 149

PARAMETERS FOR MODEL SOIL_FOAM

in Soil and Crushable Foam material model, 138

PARAMETERS FOR MODEL STIFF_ELASTIC

in Stiff Elastic material model, 168

PARAMETERS FOR MODEL SWANSON

in Swanson material model, 170

PARAMETERS FOR MODEL

VISCOELASTIC_SWANSON

in Viscoelastic Swanson material model, 173

PARAMETERS FOR PRESTO REGION

in Time Stepping Block, 76

contents of, 77

PERCENT CONTINUUM

in Fiber Membrane material model, 155

PERIOD

in Torsional Spring Mechanism, 234

in Truss Section, 216

PERIODIC REBALANCE

in Rebalance, 255

description of, 256

PHI

in Foam Plasticity material model, 141

POINT

in Contact Definition – in Analytic Plane, 373

description of, 385

POINT A

in Orientation, 60

POINT B

in Orientation, 60

POINT INERTIA

in Rigid Body command block, 229

POINT MASS SECTION, 219

POISSONS RATIO

in BCJ material model, 136

in Ductile Fracture material model, 127

in Elastic Fracture material model, 121

in Elastic material model, 119

in Elastic-Plastic material model, 123

in Elastic-Plastic Power-Law Hardening material

model, 125

in Fiber Membrane material model, 155

in Foam Plasticity material model, 141

in Incompressible Solid material model, 158

in Johnson-Cook material model, 134

in Mooney-Rivlin material model, 161

in Multilinear Elastic-Plastic Hardening Model

material model, 129

in Multilinear Elastic-Plastic Hardening Model with

Failure material model, 131

in NLVE 3D Orthotropic material model, 164

in Orthotropic Crush material model, 146

in Orthotropic Rate material model, 149

in Soil and Crushable Foam material model, 138

in Stiff Elastic material model, 168

in Swanson material model, 170

in Viscoelastic Swanson material model, 173

POISSONS RATIO AB

in Elastic 3D Orthotropic material model, 144

POISSONS RATIO BC

in Elastic 3D Orthotropic material model, 144

POISSONS RATIO CA

in Elastic 3D Orthotropic material model, 144

POISSONS RATIO FUNCTION

in BCJ material model, 136

in Multilinear Elastic-Plastic Hardening Model

material model, 129

in Multilinear Elastic-Plastic Hardening Model with

Failure material model, 131

PORE PRESSURE, 336

POSITIVE DURATION SCALE FACTOR

in Blast Pressure, 346

POWER METHOD PARAMETERS, 96

POWER METHOD TIME STEP INTERVAL

in Control Modes Region

usage in, 106

PRECISION

in Heartbeat Output, 478

PRESCRIBED ACCELERATION, 289

PRESCRIBED DISPLACEMENT, 278

PRESCRIBED FORCE, 321

PRESCRIBED MOMENT, 325

PRESCRIBED ROTATION, 296

PRESCRIBED ROTATIONAL Velocity, 301

PRESCRIBED TEMPERATURE, 331

usage for thermal strains, 118

PRESCRIBED VELOCITY, 284

PRESSURE, 311

PRESSURE COEFFICIENTS

in Cavity Expansion – in Layer, 343

description of, 344

684 INDEX

PRESSURE CUTOFF

in Soil and Crushable Foam material model, 138

PRESSURE EXPONENT

in Contact Definition – in PV_Dependent Model,

373

description of, 407

PRESSURE FUNCTION

in Soil and Crushable Foam material model, 138

PRESSURE SCALE FACTOR

in Blast Pressure, 346

PRESTO PROCEDURE, 66

description of, 66

PRESTO REGION

in Presto Procedure, 66

description of, 67

PROBLEM DIMENSION

in SPH Section, 221

PRONY SHEAR 1

in Viscoelastic Swanson material model, 173

PRONY SHEAR 10

in Viscoelastic Swanson material model, 173

PRONY SHEAR 2

in Viscoelastic Swanson material model, 173

PRONY SHEAR 3

in Viscoelastic Swanson material model, 173

PRONY SHEAR 4

in Viscoelastic Swanson material model, 173

PRONY SHEAR 5

in Viscoelastic Swanson material model, 173

PRONY SHEAR 6

in Viscoelastic Swanson material model, 173

PRONY SHEAR 7

in Viscoelastic Swanson material model, 173

PRONY SHEAR 8

in Viscoelastic Swanson material model, 173

PRONY SHEAR 9

in Viscoelastic Swanson material model, 173

PRONY SHEAR INFINITY

in Viscoelastic Swanson material model, 173

PROPERTY SPECIFICATION FOR MATERIAL, 111

about, 193

PSI EQ 2T

in NLVE 3D Orthotropic material model, 164

PSI EQ 3T

in NLVE 3D Orthotropic material model, 164

PSI EQ 4T

in NLVE 3D Orthotropic material model, 164

PSI EQ XT 1

in NLVE 3D Orthotropic material model, 164

PSI EQ XT 2

in NLVE 3D Orthotropic material model, 164

PSI EQ XT 3

in NLVE 3D Orthotropic material model, 164

PSI EQ XTT 1

in NLVE 3D Orthotropic material model, 164

PSI EQ XTT 2

in NLVE 3D Orthotropic material model, 164

PSI EQ XTT 3

in NLVE 3D Orthotropic material model, 164

PSI EQ XX 11

in NLVE 3D Orthotropic material model, 164

PSI EQ XX 12

in NLVE 3D Orthotropic material model, 164

PSI EQ XX 13

in NLVE 3D Orthotropic material model, 164

PSI EQ XX 22

in NLVE 3D Orthotropic material model, 164

PSI EQ XX 23

in NLVE 3D Orthotropic material model, 164

PSI EQ XX 33

in NLVE 3D Orthotropic material model, 164

PSI EQ XX 44

in NLVE 3D Orthotropic material model, 164

PSI EQ XX 55

in NLVE 3D Orthotropic material model, 164

PSI EQ XX 66

in NLVE 3D Orthotropic material model, 164

PSI EQ XXT 11

in NLVE 3D Orthotropic material model, 164

PSI EQ XXT 12

in NLVE 3D Orthotropic material model, 164

PSI EQ XXT 13

in NLVE 3D Orthotropic material model, 164

PSI EQ XXT 22

in NLVE 3D Orthotropic material model, 164

PSI EQ XXT 23

in NLVE 3D Orthotropic material model, 164

PSI EQ XXT 33

in NLVE 3D Orthotropic material model, 164

PSI EQ XXT 44

in NLVE 3D Orthotropic material model, 164

PSI EQ XXT 55

in NLVE 3D Orthotropic material model, 164

PSI EQ XXT 66

in NLVE 3D Orthotropic material model, 164

PSI POT TT

in NLVE 3D Orthotropic material model, 164

PSI POT TTT

in NLVE 3D Orthotropic material model, 164

PSI POT TTTT

in NLVE 3D Orthotropic material model, 164

PSI POT XT 1

in NLVE 3D Orthotropic material model, 164

PSI POT XT 2

in NLVE 3D Orthotropic material model, 164

PSI POT XT 3

in NLVE 3D Orthotropic material model, 164

PSI POT XTT 1

INDEX 685

in NLVE 3D Orthotropic material model, 164

PSI POT XTT 2

in NLVE 3D Orthotropic material model, 164

PSI POT XTT 3

in NLVE 3D Orthotropic material model, 164

PSI POT XXT 11

in NLVE 3D Orthotropic material model, 164

PSI POT XXT 12

in NLVE 3D Orthotropic material model, 164

PSI POT XXT 13

in NLVE 3D Orthotropic material model, 164

PSI POT XXT 22

in NLVE 3D Orthotropic material model, 164

PSI POT XXT 23

in NLVE 3D Orthotropic material model, 164

PSI POT XXT 33

in NLVE 3D Orthotropic material model, 164

PSI POT XXT 44

in NLVE 3D Orthotropic material model, 164

PSI POT XXT 55

in NLVE 3D Orthotropic material model, 164

PSI POT XXT 66

in NLVE 3D Orthotropic material model, 164

PV_DEPENDENT MODEL

in Contact Definition, 373

description of, 407

Q1

in Swanson material model, 170

in Viscoelastic Swanson material model, 173

QUADRATIC BULK VISCOSITY

in Finite Element Model – in Parameters For Block,

191

description of, 195

R DISPLACEMENT FUNCTION

in Line Weld, 354

R DISPLACEMENT SCALE FACTOR

in Line Weld, 354

R ROTATION FUNCTION

in Line Weld, 354

R ROTATION SCALE FACTOR

in Line Weld, 354

R1

in Swanson material model, 170

in Viscoelastic Swanson material model, 173

RADIAL AXIS

in Prescribed Displacement, 278

description of, 279

in Prescribed Velocity, 284

description of, 285

RADIUS

in Adaptive Refinement, 262

usage in, 263

in Contact Definition – in Analytic Cylinder, 373

description of, 385

in Contact Definition – in Analytic Sphere, 373

description of, 386

RADIUS MESH VARIABLE

in SPH Section, 221

RADIUS MESH VARIABLE TIME STEP

in SPH Section, 221

RATE FUNCTION

in Orthotropic Rate material model, 149

READ VARIABLE

in Initial Condition, 271

description of, 273

in Pore Pressure, 336

description of, 338

in Prescribed Acceleration, 289

description of, 292

in Prescribed Displacement, 278

description of, 281

in Prescribed Rotation, 296

description of, 299

in Prescribed Rotational Velocity, 301

description of, 304

in Prescribed Temperature, 331

description of, 333

in Prescribed Velocity, 284

description of, 287

in Pressure, 311

description of, 314

REBALANCE, 255

REBALANCE STEP INTERVAL

in Rebalance, 255

RECEIVE FROM TRANSFER

in Pore Pressure, 336

RECTILINEAR RCB BLOCKS

in Zoltan Parameters, 258

REF GLASSY C11

in NLVE 3D Orthotropic material model, 164

REF GLASSY C12

in NLVE 3D Orthotropic material model, 164

REF GLASSY C13

in NLVE 3D Orthotropic material model, 164

REF GLASSY C22

in NLVE 3D Orthotropic material model, 164

REF GLASSY C23

in NLVE 3D Orthotropic material model, 164

REF GLASSY C33

in NLVE 3D Orthotropic material model, 164

REF GLASSY C44

in NLVE 3D Orthotropic material model, 164

REF GLASSY C55

in NLVE 3D Orthotropic material model, 164

REF GLASSY C66

in NLVE 3D Orthotropic material model, 164

686 INDEX

REF GLASSY CTE1

in NLVE 3D Orthotropic material model, 164

REF GLASSY CTE2

in NLVE 3D Orthotropic material model, 164

REF GLASSY CTE3

in NLVE 3D Orthotropic material model, 164

REF GLASSY HCAPACITY

in NLVE 3D Orthotropic material model, 164

REF PSIA 11

in NLVE 3D Orthotropic material model, 164

REF PSIA 12

in NLVE 3D Orthotropic material model, 164

REF PSIA 13

in NLVE 3D Orthotropic material model, 164

REF PSIA 22

in NLVE 3D Orthotropic material model, 164

REF PSIA 23

in NLVE 3D Orthotropic material model, 164

REF PSIA 33

in NLVE 3D Orthotropic material model, 164

REF PSIA 44

in NLVE 3D Orthotropic material model, 164

REF PSIA 55

in NLVE 3D Orthotropic material model, 164

REF PSIA 66

in NLVE 3D Orthotropic material model, 164

REF PSIB 1

in NLVE 3D Orthotropic material model, 164

REF PSIB 2

in NLVE 3D Orthotropic material model, 164

REF PSIB 3

in NLVE 3D Orthotropic material model, 164

REF PSIC

in NLVE 3D Orthotropic material model, 164

REF RUBBERY C11

in NLVE 3D Orthotropic material model, 164

REF RUBBERY C12

in NLVE 3D Orthotropic material model, 164

REF RUBBERY C13

in NLVE 3D Orthotropic material model, 164

REF RUBBERY C22

in NLVE 3D Orthotropic material model, 164

REF RUBBERY C23

in NLVE 3D Orthotropic material model, 164

REF RUBBERY C33

in NLVE 3D Orthotropic material model, 164

REF RUBBERY C44

in NLVE 3D Orthotropic material model, 164

REF RUBBERY C55

in NLVE 3D Orthotropic material model, 164

REF RUBBERY C66

in NLVE 3D Orthotropic material model, 164

REF RUBBERY CTE1

in NLVE 3D Orthotropic material model, 164

REF RUBBERY CTE2

in NLVE 3D Orthotropic material model, 164

REF RUBBERY CTE3

in NLVE 3D Orthotropic material model, 164

REF RUBBERY HCAPACITY

in NLVE 3D Orthotropic material model, 164

REFERENCE AXIS

in Beam Section, 211

REFERENCE DENSITY

in NLVE 3D Orthotropic material model, 164

Reference Mesh

for Explicit Control Modes, 103

REFERENCE PLANE AXIS

in Traction, 317

REFERENCE PLANE T1 DIRECTION

in Traction, 317

REFERENCE POINT

in Fluid Pressure, 340

in Fluid Pressure

usage in, 341

REFERENCE PRESSURE

in Contact Definition – in PV_Dependent Model,

373

description of, 407

REFERENCE STRAIN

in Fiber Membrane material model, 155

in Incompressible Solid material model, 158

in Mooney-Rivlin material model, 161

in Stiff Elastic material model, 168

in Swanson material model, 170

in Viscoelastic Swanson material model, 173

REFERENCE TEMP

in NLVE 3D Orthotropic material model, 164

RELAX TIME

in NLVE 3D Orthotropic material model, 164

REMESH, 259

REMESH AT MAX EDGE LENGTH RATIO

in Remesh, 259

usage in, 260

REMESH AT MIN EDGE LENGTH RATIO

in Remesh, 259

usage in, 260

REMESH AT SHAPE

in Remesh, 259

usage in, 260

REMESH BLOCK SET, 261

in Remesh, 259

REMOVE BLOCK

description of, 269

in Adaptive Refinement, 262

usage in, 264

in Contact Definition – in Contact Surface (block),

373

usage in, 382

INDEX 687

in Element Death, 240

description of, 242

in Finite Element Model, 186

description of, 193

in Fixed Displacement, 276

usage in, 276

in Fixed Rotation, 294

usage in, 294

in Gravity, 329

usage in, 329

in Initial Condition, 271

usage in, 272

in Initial Velocity, 307

usage in, 308

in Line Weld, 354

in Mass Properties, 238

usage in, 238

in Mass Scaling, 101

usage in, 102

in Pore Pressure, 336

usage in, 337

in Prescribed Acceleration, 289

usage in, 290

in Prescribed Displacement, 278

usage in, 279

in Prescribed Force, 321

usage in, 322

in Prescribed Moment, 325

usage in, 326

in Prescribed Rotation, 296

usage in, 297

in Prescribed Rotational Velocity, 301

usage in, 302

in Prescribed Temperature, 331

usage in, 332

in Prescribed Velocity, 284

usage in, 285

in Remesh Block Set, 261

in Time Step Initialization, 570

usage in, 571

in User Output, 462

usage in, 464

in Viscous Damping, 357

usage in, 357

in Volume Repulsion Old

usage in, 359

in Volume Repulsion Old – in BLOCK SET, 359

REMOVE INITIAL OVERLAP

in Contact Definition, 373

description of, 389

REMOVE NODE SET

description of, 269

in Adaptive Refinement, 262

usage in, 264

in Contact Definition – in Contact Surface (block),

373

usage in, 382

in Fixed Displacement, 276

usage in, 276

in Fixed Rotation, 294

usage in, 294

in Gravity, 329

usage in, 329

in Initial Condition, 271

usage in, 272

in Initial Velocity, 307

usage in, 308

in Mass Scaling, 101

usage in, 102

in Prescribed Acceleration, 289

usage in, 290

in Prescribed Displacement, 278

usage in, 279

in Prescribed Force, 321

usage in, 322

in Prescribed Moment, 325

usage in, 326

in Prescribed Rotation, 296

usage in, 297

in Prescribed Rotational Velocity, 301

usage in, 302

in Prescribed Velocity, 284

usage in, 285

in Spot Weld, 349

in Time Step Initialization, 570

usage in, 571

in User Output, 462

usage in, 464

REMOVE SURFACE

description of, 269

in Adaptive Refinement, 262

usage in, 264

in Cavity Expansion, 343

in Contact Definition – in Contact Surface (block),

373

usage in, 382

in Contact Definition – in Shell Lofting

description of, 395

in Fixed Displacement, 276

usage in, 276

in Fixed Rotation, 294

usage in, 294

in Gravity, 329

usage in, 329

in Initial Condition, 271

usage in, 272

in Initial Velocity, 307

usage in, 308

688 INDEX

in Line Weld , 354

in Mass Scaling, 101

usage in, 102

in Prescribed Acceleration, 289

usage in, 290

in Prescribed Displacement, 278

usage in, 279

in Prescribed Force, 321

usage in, 322

in Prescribed Moment, 325

usage in, 326

in Prescribed Rotation, 296

usage in, 297

in Prescribed Rotational Velocity, 301

usage in, 302

in Prescribed Velocity, 284

usage in, 285

in Pressure, 311

description of, 312

in Silent Boundary, 348

in Spot Weld, 349

in Time Step Initialization, 570

usage in, 571

in Traction, 317

description of, 318

in User Output, 462

usage in, 464

in Volume Repulsion Old

usage in, 359

in Volume Repulsion Old – in BLOCK SET, 359

REMOVE SURFACE

in Blast Pressure, 346

RENUMBER PARTITIONS

in Zoltan Parameters, 258

RESOLVE MULTIPLE MPCS, 361

RESTART, 53

about, 52

RESTART DATA, 490

about, 52

about auto read and write, 492

about overwriting, 498

about recovering, 499

about user-controlled read and write, 495

RESTART TIME, 53

about, 52

with Restart Data, 490

RESULTS OUTPUT, 445

in Control Modes Region

usage in, 108

REUSE CUTS

in Zoltan Parameters, 258

as default, 257

RHO

in BCJ material model, 136

RIGID BODY

as command block, 229

in Membrane Section, 207

in Point Mass Section, 219

in Shell Section, 202

in Solid Section, 199

in Truss Section, 216

ROTATION ABOUT

in Orientation, 60

S DISPLACEMENT FUNCTION

in Line Weld, 354

S DISPLACEMENT SCALE FACTOR

in Line Weld, 354

S ROTATION FUNCTION

in Line Weld, 354

S ROTATION SCALE FACTOR

in Line Weld, 354

SCALE FACTOR

in Gravity, 329

in Initial Condition, 271

description of, 275

in Lanczos Parameters, 89

in Pore Pressure, 336

description of, 339

in Power Method Parameters, 96

in Prescribed Acceleration, 289

description of, 293

in Prescribed Displacement, 278

description of, 282

in Prescribed Force, 321

description of, 324

in Prescribed Moment, 325

description of, 328

in Prescribed Rotation, 296

description of, 300

in Prescribed Rotational Velocity, 301

description of, 305

in Prescribed Temperature, 331

description of, 335

in Prescribed Velocity, 284

description of, 288

in Pressure, 311

description of, 315

in Stiff Elastic material model, 168

in Traction, 317

description of, 320

in Volume Repulsion Old, 359

SCALING FUNCTION

in Incompressible Solid material model, 158

SEARCH OPTIONS

in Contact Definition, 373

description of, 410

SEARCH TOLERANCE

INDEX 689

in Contact Definition – in Search Options, 373, 410

description of, 412

in Line Weld, 354

in MPC, 361

usage in, 361, 362

in Spot Weld, 349

SECOND ALPHA

in Elastic 3D Orthotropic material model, 144

in NLVE 3D Orthotropic material model, 164

SECOND DIRECTION FOR ROTATION

in Elastic 3D Orthotropic material model, 144

in NLVE 3D Orthotropic material model, 164

SECOND SURFACE

in Spot Weld, 349

SECONDARY DECOMPOSITION

in Contact Definition – in Search Options, 373, 410

description of, 413

SECTION

in Beam Section, 211

in Finite Element Model – in Parameters For Block,

191

description of, 194

general overview, 192

Section command blocks

about, 199

SELF CONTACT

in Contact Definition – in Interaction Defaults, 373,

419

description of, 420

SET RCB DIRECTIONS

in Zoltan Parameters, 258

SHEAR EXPONENT

in Foam Plasticity material model, 141

SHEAR HARDENING

in Foam Plasticity material model, 141

SHEAR MODULUS

in BCJ material model, 136

in Ductile Fracture material model, 127

in Elastic Fracture material model, 121

in Elastic material model, 119

in Elastic-Plastic material model, 123

in Elastic-Plastic Power-Law Hardening material

model, 125

in Fiber Membrane material model, 155

in Foam Plasticity material model, 141

in Incompressible Solid material model, 158

in Johnson-Cook material model, 134

in Mooney-Rivlin material model, 161

in Multilinear Elastic-Plastic Hardening Model

material model, 129

in Multilinear Elastic-Plastic Hardening Model with

Failure material model, 131

in NLVE 3D Orthotropic material model, 164

in Orthotropic Crush material model, 146

in Orthotropic Rate material model, 149

in Soil and Crushable Foam material model, 138

in Stiff Elastic material model, 168

in Swanson material model, 170

in Viscoelastic Swanson material model, 173

SHEAR MODULUS AB

in Elastic 3D Orthotropic material model, 144

SHEAR MODULUS BC

in Elastic 3D Orthotropic material model, 144

SHEAR MODULUS CA

in Elastic 3D Orthotropic material model, 144

SHEAR RELAX TIME 1

in Viscoelastic Swanson material model, 173

SHEAR RELAX TIME 10

in Viscoelastic Swanson material model, 173

SHEAR RELAX TIME 2

in Viscoelastic Swanson material model, 173

SHEAR RELAX TIME 3

in Viscoelastic Swanson material model, 173

SHEAR RELAX TIME 4

in Viscoelastic Swanson material model, 173

SHEAR RELAX TIME 5

in Viscoelastic Swanson material model, 173

SHEAR RELAX TIME 6

in Viscoelastic Swanson material model, 173

SHEAR RELAX TIME 7

in Viscoelastic Swanson material model, 173

SHEAR RELAX TIME 8

in Viscoelastic Swanson material model, 173

SHEAR RELAX TIME 9

in Viscoelastic Swanson material model, 173

SHEAR STRENGTH

in Foam Plasticity material model, 141

SHELL LOFTING

in Contact Definition, 373

description of, 395

SHELL OVERLAP ITERATIONS

in Contact Definition – in Remove Initial Overlap,

373

description of, 389

SHELL OVERLAP TOLERANCE

in Contact Definition – in Remove Initial Overlap,

373

description of, 389

SHELL SECTION, 202

SHIFT REF VALUE

in NLVE 3D Orthotropic material model, 164

SIERRA, 51

SILENT BOUNDARY, 348

SKIN ALL BLOCKS

in Contact Definition, 373

description of, 381

use of, 379

SLAVE

690 INDEX

in Contact Definition – in Interaction, 373, 424

description of, 424

SLAVE BLOCK

in MPC, 361

usage in, 361

SLAVE NODE SET

in MPC, 361

usage in, 361

SLAVE NODES

in MPC, 361

usage in, 361

SLAVE SURFACE

in MPC, 361

usage in, 361

SMALL STRAIN

in Lanczos Parameters, 89

in Power Method Parameters, 96

SOLID MECHANICS USE MODEL

in Finite Element Model – in Parameters For Block,

191

description of, 193

SOLID SECTION, 199

SPECIFIC HEAT

in BCJ material model, 136

SPH ALPHAQ PARAMETER

in SPH Section, 221

SPH BETAQ PARAMETER

in SPH Section, 221

SPH DECOUPLE STRAINS, 223

SPH SECTION, 221

SPH SYMMETRY PLANE, 223

SPHERE INITIAL RADIUS

in SPH Section, 221

SPOT WELD, 349

SPRING SECTION, 217

SPRING WELD MODEL

in Contact Definition, 373

description of, 401

START TIME

in Heartbeat Output, 478

description of, 483

in History Output, 469

description of, 474

in Output Scheduler, 505

description of, 506

in Restart Data, 490

description of, 500

in Results Output, 445

description of, 459

in Time Stepping Block, 76

STARTING VECTOR

in Lanczos Parameters, 89

in Power Method Parameters, 96

STATIC COEFFICIENT

in Contact Definition – in PV_Dependent Model,

373

description of, 407

STEP INTERVAL

in Node Based Time Step Parameters, 99

in Parameters For Presto Region, 77

description of, 78

in Rebalance

description of, 256

STIFFNESS DAMPING COEFFICIENT

in Viscous Damping, 357

description of, 358

STIFFNESS MATRIX

in Superelement Section, 225

description of, 226

STIFFNESS SCALE

in Fiber Membrane material model, 155

STRAIN INCREMENTATION

in Solid Section, 199

STREAM NAME

in Heartbeat Output, 478

STRUCTURE NAME

in Mass Properties, 238

description of, 239

Submodel, 365

SUBROUTINE DEBUGGING OFF

as user subroutine command line, 567

description of, 568

in Element Death, 240

usage in, 245

in Initial Condition, 271

usage in, 275

in Initial Velocity, 307

usage in, 309

in Pore Pressure, 336

usage in, 338

in Prescribed Acceleration, 289

usage in, 291

in Prescribed Displacement, 278

usage in, 281

in Prescribed Force, 321

usage in, 323

in Prescribed Moment, 325

usage in, 327

in Prescribed Rotation, 296

usage in, 298

in Prescribed Rotational Velocity, 301

usage in, 304

in Prescribed Temperature, 331

usage in, 333

in Prescribed Velocity, 284

usage in, 287

in Pressure, 311

usage in, 313

INDEX 691

in Time Step Initialization, 570

usage in, 571

in Traction, 317

usage in, 319

in User Output, 462

usage in, 467

SUBROUTINE DEBUGGING ON

as user subroutine command line, 567

description of, 568

in Element Death, 240

usage in, 245

in Initial Condition, 271

usage in, 275

in Initial Velocity, 307

usage in, 309

in Pore Pressure, 336

usage in, 338

in Prescribed Acceleration, 289

usage in, 291

in Prescribed Displacement, 278

usage in, 281

in Prescribed Force, 321

usage in, 323

in Prescribed Moment, 325

usage in, 327

in Prescribed Rotation, 296

usage in, 298

in Prescribed Rotational Velocity, 301

usage in, 304

in Prescribed Temperature, 331

usage in, 333

in Prescribed Velocity, 284

usage in, 287

in Pressure, 311

usage in, 313

in Time Step Initialization, 570

usage in, 571

in Traction, 317

usage in, 319

in User Output, 462

usage in, 467

SUBROUTINE INTEGER PARAMETER

as user subroutine command line, 567

description of, 568

in Element Death, 240

usage in, 245

in Initial Condition, 271

usage in, 275

in Initial Velocity, 307

usage in, 309

in Pore Pressure, 336

usage in, 338

in Prescribed Acceleration, 289

usage in, 291

in Prescribed Displacement, 278

usage in, 281

in Prescribed Force, 321

usage in, 323

in Prescribed Moment, 325

usage in, 327

in Prescribed Rotation, 296

usage in, 298

in Prescribed Rotational Velocity, 301

usage in, 304

in Prescribed Temperature, 331

usage in, 333

in Prescribed Velocity, 284

usage in, 287

in Pressure, 311

usage in, 313

in Time Step Initialization, 570

usage in, 571

in Traction, 317

usage in, 319

in User Output, 462

usage in, 467

SUBROUTINE REAL PARAMETER

as user subroutine command line, 567

description of, 568

in Element Death, 240

usage in, 245

in Initial Condition, 271

usage in, 275

in Initial Velocity, 307

usage in, 309

in Pore Pressure, 336

usage in, 338

in Prescribed Acceleration, 289

usage in, 291

in Prescribed Displacement, 278

usage in, 281

in Prescribed Force, 321

usage in, 323

in Prescribed Moment, 325

usage in, 327

in Prescribed Rotation, 296

usage in, 298

in Prescribed Rotational Velocity, 301

usage in, 304

in Prescribed Temperature, 331

usage in, 333

in Prescribed Velocity, 284

usage in, 287

in Pressure, 311

usage in, 313

in Time Step Initialization, 570

usage in, 571

in Traction, 317

692 INDEX

usage in, 319

in User Output, 462

usage in, 467

usage with query function, 542

SUBROUTINE STRING PARAMETER

as user subroutine command line, 567

description of, 568

in Element Death, 240

usage in, 245

in Initial Condition, 271

usage in, 275

in Initial Velocity, 307

usage in, 309

in Pore Pressure, 336

usage in, 338

in Prescribed Acceleration, 289

usage in, 291

in Prescribed Displacement, 278

usage in, 281

in Prescribed Force, 321

usage in, 323

in Prescribed Moment, 325

usage in, 327

in Prescribed Rotation, 296

usage in, 298

in Prescribed Rotational Velocity, 301

usage in, 304

in Prescribed Temperature, 331

usage in, 333

in Prescribed Velocity, 284

usage in, 287

in Pressure, 311

usage in, 313

in Time Step Initialization, 570

usage in, 571

in Traction, 317

usage in, 319

in User Output, 462

usage in, 467

SUMMARY OUTPUT STEP INTERVAL

in Element Death, 240

description of, 247

SUMMARY OUTPUT TIME INTERVAL

in Element Death, 240

description of, 247

SUPERELEMENT SECTION, 225

Support, 48

SURFACE

in Fluid Pressure, 340

description of, 268

in Adaptive Refinement, 262

usage in, 264

in Cavity Expansion , 343

in Contact Definition – in Contact Surface (block),

373

usage in, 382

in Contact Definition – in Shell Lofting

description of, 395

in Fixed Displacement, 276

usage in, 276

in Fixed Rotation, 294

usage in, 294

in Fluid Pressure

usage in, 341

in Gravity, 329

usage in, 329

in Initial Condition, 271

usage in, 272

in Initial Velocity, 307

usage in, 308

in Line Weld, 354

in Mass Scaling, 101

usage in, 102

in Prescribed Acceleration, 289

usage in, 290

in Prescribed Displacement, 278

usage in, 279

in Prescribed Force, 321

usage in, 322

in Prescribed Moment, 325

usage in, 326

in Prescribed Rotation, 296

usage in, 297

in Prescribed Rotational Velocity, 301

usage in, 302

in Prescribed Velocity, 284

usage in, 285

in Pressure, 311

description of, 312

in Silent Boundary, 348

in Spot Weld, 349

in Time Step Initialization, 570

usage in, 571

in Traction, 317

description of, 318

in User Output, 462

usage in, 464

in Volume Repulsion Old

usage in, 359

in Volume Repulsion Old – in BLOCK SET, 359

SURFACE

in Blast Pressure, 346

SURFACE EFFECT

in Cavity Expansion – in Layer, 343

description of, 345

SURFACE NORMAL SMOOTHING

in Contact Definition, 373

INDEX 693

description of, 393

SURFACE SUBROUTINE

as user subroutine command line, 567

description of, 568

in Initial Condition, 271

description of, 274

in Pressure, 311

description of, 313

in Time Step Initialization, 570

description of, 571

in User Output, 462

description of, 466

SURFACE WELD MODEL

in Contact Definition, 373

description of, 402

SURFACES

in Contact Definition – in Interaction, 373, 424

description of, 424

in Contact Definition – in Interaction Defaults, 373,

419

description of, 420

SYSTEM

in Orientation, 60

T 2DERIV PSIC

in NLVE 3D Orthotropic material model, 164

T AXIS

in Beam Section, 211

T DERIV GLASSY C11

in NLVE 3D Orthotropic material model, 164

T DERIV GLASSY C12

in NLVE 3D Orthotropic material model, 164

T DERIV GLASSY C13

in NLVE 3D Orthotropic material model, 164

T DERIV GLASSY C22

in NLVE 3D Orthotropic material model, 164

T DERIV GLASSY C23

in NLVE 3D Orthotropic material model, 164

T DERIV GLASSY C33

in NLVE 3D Orthotropic material model, 164

T DERIV GLASSY C44

in NLVE 3D Orthotropic material model, 164

T DERIV GLASSY C55

in NLVE 3D Orthotropic material model, 164

T DERIV GLASSY C66

in NLVE 3D Orthotropic material model, 164

T DERIV GLASSY CTE1

in NLVE 3D Orthotropic material model, 164

T DERIV GLASSY CTE2

in NLVE 3D Orthotropic material model, 164

T DERIV GLASSY CTE3

in NLVE 3D Orthotropic material model, 164

T DERIV GLASSY HCAPACITY

in NLVE 3D Orthotropic material model, 164

T DERIV PSIA 11

in NLVE 3D Orthotropic material model, 164

T DERIV PSIA 12

in NLVE 3D Orthotropic material model, 164

T DERIV PSIA 13

in NLVE 3D Orthotropic material model, 164

T DERIV PSIA 22

in NLVE 3D Orthotropic material model, 164

T DERIV PSIA 23

in NLVE 3D Orthotropic material model, 164

T DERIV PSIA 33

in NLVE 3D Orthotropic material model, 164

T DERIV PSIA 44

in NLVE 3D Orthotropic material model, 164

T DERIV PSIA 55

in NLVE 3D Orthotropic material model, 164

T DERIV PSIA 66

in NLVE 3D Orthotropic material model, 164

T DERIV PSIB 1

in NLVE 3D Orthotropic material model, 164

T DERIV PSIB 2

in NLVE 3D Orthotropic material model, 164

T DERIV PSIB 3

in NLVE 3D Orthotropic material model, 164

T DERIV PSIC

in NLVE 3D Orthotropic material model, 164

T DERIV RUBBERY C11

in NLVE 3D Orthotropic material model, 164

T DERIV RUBBERY C12

in NLVE 3D Orthotropic material model, 164

T DERIV RUBBERY C13

in NLVE 3D Orthotropic material model, 164

T DERIV RUBBERY C22

in NLVE 3D Orthotropic material model, 164

T DERIV RUBBERY C23

in NLVE 3D Orthotropic material model, 164

T DERIV RUBBERY C33

in NLVE 3D Orthotropic material model, 164

T DERIV RUBBERY C44

in NLVE 3D Orthotropic material model, 164

T DERIV RUBBERY C55

in NLVE 3D Orthotropic material model, 164

T DERIV RUBBERY C66

in NLVE 3D Orthotropic material model, 164

T DERIV RUBBERY CTE1

in NLVE 3D Orthotropic material model, 164

T DERIV RUBBERY CTE2

in NLVE 3D Orthotropic material model, 164

T DERIV RUBBERY CTE3

in NLVE 3D Orthotropic material model, 164

T DERIV RUBBERY HCAPACITY

in NLVE 3D Orthotropic material model, 164

T DISPLACEMENT FUNCTION

in Line Weld, 354

694 INDEX

T DISPLACEMENT SCALE FACTOR

in Line Weld, 354

T FUNCTION

in Orthotropic Rate material model, 149

T ROTATION FUNCTION

in Line Weld, 354

T ROTATION SCALE FACTOR

in Line Weld, 354

TANGENTIAL CAPACITY

in Contact Definition – in Area Weld Model, 373

description of, 403

in Contact Definition – in Surface Weld Model, 373

description of, 402

in Contact Definition – in Threaded Model, 373

description of, 406

TANGENTIAL DISPLACEMENT FUNCTION

in Contact Definition – in Spring Weld Model, 373

description of, 401

in Spot Weld, 349

TANGENTIAL DISPLACEMENT SCALE FACTOR

in Contact Definition – in Spring Weld Model, 373

description of, 401

in Spot Weld, 349

TANGENTIAL TOLERANCE

in Contact Definition – in Interaction, 373, 424

description of, 428

in Contact Definition – in Search Options, 373, 410

description of, 412

TANGENTIAL TRACTION FUNCTION

in Contact Definition – in Junction Model, 373

description of, 405

in Contact Definition – in Threaded Model, 373

description of, 406

TANGENTIAL TRACTION GAP FUNCTION

in Contact Definition – in Threaded Model, 373

description of, 406

TANGENTIAL TRACTION GAP SCALE FACTOR

in Contact Definition – in Threaded Model, 373

description of, 406

TANGENTIAL TRACTION SCALE FACTOR

in Contact Definition – in Junction Model, 373

description of, 405

in Contact Definition – in Threaded Model, 373

description of, 406

TARGET E

in Incompressible Solid material model, 158

in Mooney-Rivlin material model, 161

in Swanson material model, 170

in Viscoelastic Swanson material model, 173

TARGET E FUNCTION

in Mooney-Rivlin material model, 161

in Swanson material model, 170

in Viscoelastic Swanson material model, 173

TARGET TIME STEP

in Mass Scaling, 101

description of, 102

TEMPERATURE TYPE

in Prescribed Temperature

description of, 333

TEMPO

in BCJ material model, 136

TENSILE TEST FUNCTION

in Fiber Membrane material model, 155

TERMINATION TIME

in Heartbeat Output, 478

description of, 485

in History Output, 469

description of, 476

in Output Scheduler, 505

description of, 507

in Restart Data, 490

description of, 501

in Results Output, 445

description of, 460

in Time Control, 76

THERMAL EXPANSION FUNCTION

in Mooney-Rivlin material model, 161

in Swanson material model, 170

in Viscoelastic Swanson material model, 173

THERMAL STRAIN AA FUNCTION

in Elastic 3D Orthotropic material model, 144

THERMAL STRAIN BB FUNCTION

in Elastic 3D Orthotropic material model, 144

THERMAL STRAIN CC FUNCTION

in Elastic 3D Orthotropic material model, 144

THERMAL STRAIN FUNCTION

description of, 116

in BCJ material model, 136

in Ductile Fracture material model, 127

in Elastic Fracture material model, 121

in Elastic material model, 119

in Elastic-Plastic material model, 123

in Elastic-Plastic Power-Law Hardening material

model, 125

in Fiber Membrane material model, 155

in Foam Plasticity material model, 141

in Incompressible Solid material model, 158

in Johnson-Cook material model, 134

in Multilinear Elastic-Plastic Hardening Model

material model, 129

in Multilinear Elastic-Plastic Hardening Model with

Failure material model, 131

in Orthotropic Crush material model, 146

in Orthotropic Rate material model, 149

in Soil and Crushable Foam material model, 138

in Stiff Elastic material model, 168

usage of, 118

THERMAL STRAIN X FUNCTION

INDEX 695

description of, 116

in BCJ material model, 136

in Ductile Fracture material model, 127

in Elastic Fracture material model, 121

in Elastic material model, 119

in Elastic-Plastic material model, 123

in Elastic-Plastic Power-Law Hardening material

model, 125

in Fiber Membrane material model, 155

in Foam Plasticity material model, 141

in Incompressible Solid material model, 158

in Johnson-Cook material model, 134

in Multilinear Elastic-Plastic Hardening Model

material model, 129

in Multilinear Elastic-Plastic Hardening Model with

Failure material model, 131

in Orthotropic Crush material model, 146

in Orthotropic Rate material model, 149

in Soil and Crushable Foam material model, 138

in Stiff Elastic material model, 168

usage of, 118

THERMAL STRAIN Y FUNCTION

description of, 116

in BCJ material model, 136

in Ductile Fracture material model, 127

in Elastic Fracture material model, 121

in Elastic material model, 119

in Elastic-Plastic material model, 123

in Elastic-Plastic Power-Law Hardening material

model, 125

in Fiber Membrane material model, 155

in Foam Plasticity material model, 141

in Incompressible Solid material model, 158

in Johnson-Cook material model, 134

in Multilinear Elastic-Plastic Hardening Model

material model, 129

in Multilinear Elastic-Plastic Hardening Model with

Failure material model, 131

in Orthotropic Crush material model, 146

in Orthotropic Rate material model, 149

in Soil and Crushable Foam material model, 138

in Stiff Elastic material model, 168

usage of, 118

THERMAL STRAIN Z FUNCTION

description of, 116

in BCJ material model, 136

in Ductile Fracture material model, 127

in Elastic Fracture material model, 121

in Elastic material model, 119

in Elastic-Plastic material model, 123

in Elastic-Plastic Power-Law Hardening material

model, 125

in Fiber Membrane material model, 155

in Foam Plasticity material model, 141

in Incompressible Solid material model, 158

in Johnson-Cook material model, 134

in Multilinear Elastic-Plastic Hardening Model

material model, 129

in Multilinear Elastic-Plastic Hardening Model with

Failure material model, 131

in Orthotropic Crush material model, 146

in Orthotropic Rate material model, 149

in Soil and Crushable Foam material model, 138

in Stiff Elastic material model, 168

usage of, 118

THETA

in Elastic Laminate material model, 152

THETA OPT

in BCJ material model, 136

THICKNESS

in Membrane Section, 207

in Shell Section, 202

THICKNESS MESH VARIABLE

in Membrane Section, 207

in Shell Section, 202

THICKNESS SCALE FACTOR

in Membrane Section, 207

in Shell Section, 202

THICKNESS TIME STEP

in Membrane Section, 207

in Shell Section, 202

THREADED MODEL

in Contact Definition, 373

description of, 406

TIED MODEL

in Contact Definition, 373

description of, 401

TIED NODE SET

in MPC, 361

TIED NODES

in MPC, 361

usage in, 363

TIME

in Initial Condition, 271

description of, 273

in Pore Pressure, 336

description of, 338

in Prescribed Acceleration, 289

description of, 292

in Prescribed Displacement, 278

description of, 281

in Prescribed Rotation, 296

description of, 299

in Prescribed Rotational Velocity, 301

description of, 304

in Prescribed Temperature, 331

description of, 333

in Prescribed Velocity, 284

696 INDEX

description of, 287

in Pressure, 311

description of, 314

TIME CONTROL

example of, 79

in Presto Procedure, 66

contents and description of, 76

general layout of, 74

overview, 73

usage of, 74

in Procedure

about, 67

TIME STEP INCREASE FACTOR

in Parameters For Presto Region, 77

description of, 78

usage of, 75

TIME STEP INITIALIZATION, 570

TIME STEP LIMIT

in Node Based Time Step Parameters, 99

TIME STEP RATIO FUNCTION

in Control Modes Region, 104

usage in, 106

TIME STEP RATIO SCALING

in Control Modes Region, 104

usage in, 106

TIME STEP SCALE FACTOR

in Parameters For Presto Region, 77

description of, 78

usage of, 75

with Element Numerical Formulation, 197

TIME STEPPING BLOCK

in Time Control, 76

description of, 76

TIMESTEP ADJUSTMENT INTERVAL

in Heartbeat Output, 478

description of, 484

in History Output, 469

description of, 475

in Output Scheduler, 505

description of, 506

in Restart Data, 490

description of, 500

in Results Output, 445

description of, 459

TIMESTEP FORMAT

in Heartbeat Output, 478

TIP RADIUS

in Cavity Expansion, 343

TITLE, 52

in Heartbeat Output, 478

in History Output, 469

in Results Output, 445

TL FUNCTION

in Orthotropic Rate material model, 149

TNT MASS IN LBS

in Blast Pressure, 346

TORSIONAL SPRING MECHANISM, 234

TORSIONAL STIFFNESS

in Torsional Spring Mechanism, 234

TRACTION, 317

TRACTION DISPLACEMENT FUNCTION

in Contact Definition – in Cohesive Zone Model,

373

description of, 404

TRACTION DISPLACEMENT SCALE FACTOR

in Contact Definition – in Cohesive Zone Model,

373

description of, 404

TRANSVERSE SHEAR HOURGLASS STIFFNESS

in Finite Element Model – in Parameters For Block,

191

description of, 195

TRANSVERSE SHEAR HOURGLASS VISCOSITY

in Finite Element Model – in Parameters For Block,

191

description of, 195

TRUSS SECTION, 216

TX

in Orthotropic Rate material model, 149

TY

in Orthotropic Rate material model, 149

TYPE

in Definition For Function, 54

in User Variable, 573

TZ

in Orthotropic Rate material model, 149

UPDATE ALL SURFACES FOR ELEMENT DEATH

in Contact Definition, 373

description of, 388

UPDATE ON TIME STEP CHANGE

in Lanczos Parameters, 89

in Power Method Parameters, 96

UPDATE STEP INTERVAL

in Lanczos Parameters, 89

in Power Method Parameters, 96

USE DEATH

in Pressure, 311

description of, 315

USE FINITE ELEMENT MODEL, 69

in Control Modes Region, 104

usage in, 105

USE LAME

in Beam Section, 211

in Shell Section, 202

in Solid Section, 199

in SPH Section, 221

in Truss Section, 216

INDEX 697

USE OUTPUT SCHEDULER

example of, 507

in Heartbeat Output, 478

description of, 485

in History Output, 469

description of, 476

in Restart Data, 490

description of, 503

in Results Output, 445

description of, 460

USE STRUMENTO

in Beam Section, 211

in Shell Section, 202

in Solid Section, 199

in SPH Section, 221

in Truss Section, 216

USE WITH RESTART

in User Variable, 573

USER INTEGRATION RULE

in Shell Section, 202

USER OUTPUT, 462

example of, 580

USER SEARCH BOX

in Contact Definition, 373

description of, 415

USER SUBROUTINE FILE, 53

example of, 575

usage in context, 567

USER SUBROUTINE MODEL

in Contact Definition, 373

description of, 408

User Subroutines

aupst_check_elem_var, 547

aupst_check_global_var, 556

aupst_check_node_var, 547

aupst_cyl_transform, 589

aupst_evaluate_function, 546

aupst_get_elem_nodes, 560

aupst_get_elem_topology, 560

aupst_get_elem_var, 547

aupst_get_elem_var_offset, 547

aupst_get_face_nodes, 560

aupst_get_face_topology, 560

aupst_get_global_var, 556

aupst_get_integer_param, 542

aupst_get_node_var, 547

aupst_get_one_elem_centroid, 565

aupst_get_point, 565

aupst_get_proc_num, 565

aupst_get_real_param, 542

aupst_get_string_param, 542

aupst_get_time, 546

aupst_local_put_global_var, 556

aupst_put_elem_var, 547

aupst_put_elem_var_offset, 547

aupst_put_global_var, 556

aupst_put_node_var, 547

aupst_rec_transform, 590

copy_data, 591

ELEMENT BLOCK SUBROUTINE, 567

HEARTBEAT OUTPUT, 478

HISTORY OUTPUT, 469

NODE SET SUBROUTINE, 567

RESULTS OUTPUT, 445

SUBROUTINE DEBUGGING OFF, 567

SUBROUTINE DEBUGGING ON, 567

SUBROUTINE INTEGER PARAMETER, 567

SUBROUTINE REAL PARAMETER, 567

SUBROUTINE STRING PARAMETER, 567

SURFACE SUBROUTINE, 567

USER OUTPUT, 462

USER VARIABLE, 573

USER VARIABLE, 573

VALUES

in Definition For Function, 54

VARIABLE

in Heartbeat Output, 478

about, 480

in Heartbeat Output – for global variables

description of, 480

in Heartbeat Output – for mesh entities variables

description of, 481

in Heartbeat Output – for nearest point variables

description of, 482

in History Output, 469

about, 471

in History Output – for global variables

description of, 471

in History Output – for mesh entities variables

description of, 472

in History Output – for nearest point variables

description of, 473

VARIABLE TYPE

in Initial Condition, 271

description of, 272

VECTOR SCALE

in Lanczos Parameters, 89

in Power Method Parameters, 96

VELOCITY DECAY

in Contact Definition – in PV_Dependent Model,

373

description of, 407

VISCOUS DAMPING, 357

VMIN

in Orthotropic Crush material model, 146

Void Elements, 200

VOLUME

698 INDEX

in Point Mass Section, 219

VOLUME REPULSION OLD, 359

W FUNCTION

in Orthotropic Rate material model, 149

WALL THICKNESS

in Beam Section, 211

WIDTH

in Beam Section, 211

WLF C1

in NLVE 3D Orthotropic material model, 164

WLF C2

in NLVE 3D Orthotropic material model, 164

WLF COEF C1

in Viscoelastic Swanson material model, 173

WLF COEF C2

in Viscoelastic Swanson material model, 173

WLF TREF

in Viscoelastic Swanson material model, 173

WT FUNCTION

in Orthotropic Rate material model, 149

WWBETA 1PSI

in NLVE 3D Orthotropic material model, 164

WWBETA 2PSI

in NLVE 3D Orthotropic material model, 164

WWBETA 3PSI

in NLVE 3D Orthotropic material model, 164

WWBETA 4PSI

in NLVE 3D Orthotropic material model, 164

WWBETA 5PSI

in NLVE 3D Orthotropic material model, 164

WWTAU 1PSI

in NLVE 3D Orthotropic material model, 164

WWTAU 2PSI

in NLVE 3D Orthotropic material model, 164

WWTAU 3PSI

in NLVE 3D Orthotropic material model, 164

WWTAU 4PSI

in NLVE 3D Orthotropic material model, 164

WWTAU 5PSI

in NLVE 3D Orthotropic material model, 164

X DISPLACEMENT FUNCTION

in Contact Definition – in User Search Box, 373,

415

description of, 415

X DISPLACEMENT SCALE FACTOR

in Contact Definition – in User Search Box, 373,

415

description of, 415

X EXTENT FUNCTION

in Contact Definition – in User Search Box, 373,

415

description of, 416

Y DISPLACEMENT FUNCTION

in Contact Definition – in User Search Box, 373,

415

description of, 415

Y DISPLACEMENT SCALE FACTOR

in Contact Definition – in User Search Box, 373,

415

description of, 415

Y EXTENT FUNCTION

in Contact Definition – in User Search Box, 373,

415

description of, 416

YIELD STRESS

in Ductile Fracture material model, 127

in Elastic-Plastic material model, 123

in Elastic-Plastic Power-Law Hardening material

model, 125

in Johnson-Cook material model, 134

in Multilinear Elastic-Plastic Hardening Model

material model, 129

in Multilinear Elastic-Plastic Hardening Model with

Failure material model, 131

in Orthotropic Crush material model, 146

in Orthotropic Rate material model, 149

YIELD STRESS FUNCTION

in Multilinear Elastic-Plastic Hardening Model

material model, 129

in Multilinear Elastic-Plastic Hardening Model with

Failure material model, 131

YOUNGS MODULUS

in BCJ material model, 136

in Ductile Fracture material model, 127

in Elastic Fracture material model, 121

in Elastic material model, 119

in Elastic-Plastic material model, 123

in Elastic-Plastic Power-Law Hardening material

model, 125

in Fiber Membrane material model, 155

in Foam Plasticity material model, 141

in Incompressible Solid material model, 158

in Johnson-Cook material model, 134

in Mooney-Rivlin material model, 161

in Multilinear Elastic-Plastic Hardening Model

material model, 129

in Multilinear Elastic-Plastic Hardening Model with

Failure material model, 131

in NLVE 3D Orthotropic material model, 164

in Orthotropic Crush material model, 146

in Orthotropic Rate material model, 149

in Soil and Crushable Foam material model, 138

in Stiff Elastic material model, 168

in Swanson material model, 170

in Viscoelastic Swanson material model, 173

YOUNGS MODULUS AA

INDEX 699

in Elastic 3D Orthotropic material model, 144

YOUNGS MODULUS BB

in Elastic 3D Orthotropic material model, 144

YOUNGS MODULUS CC

in Elastic 3D Orthotropic material model, 144

YOUNGS MODULUS FUNCTION

in BCJ material model, 136

in Multilinear Elastic-Plastic Hardening Model

material model, 129

in Multilinear Elastic-Plastic Hardening Model with

Failure material model, 131

Z DISPLACEMENT FUNCTION

in Contact Definition – in User Search Box, 373,

415

description of, 415

Z DISPLACEMENT SCALE FACTOR

in Contact Definition – in User Search Box, 373,

415

description of, 415

Z EXTENT FUNCTION

in Contact Definition – in User Search Box, 373,

415

description of, 416

ZOLTAN DEBUG LEVEL

in Zoltan Parameters, 258

as default, 257

ZOLTAN PARAMETERS

as command block, 258

with defaults, 257

as command line in Rebalance, 255

description of, 256

Distribution

1 0899 Technical Library, 9536 (1 electronic)

700

	Cover
	Title
	Table of Contents
	List of Figures
	List of Tables
	Release Notes
	1 Introduction
	1.1 Document Overview
	1.2 Overall Input Structure
	1.3 Conventions for Command Descriptions
	1.3.1 Key Words
	1.3.2 User-Specified Input
	1.3.3 Optional Input
	1.3.4 Default Values
	1.3.5 Multiple Options for Values
	1.3.6 Known Issues and Warnings

	1.4 Style Guidelines
	1.4.1 Comments
	1.4.2 Continuation Lines
	1.4.3 Case
	1.4.4 Commas and Tabs
	1.4.5 Blank Spaces
	1.4.6 General Format of the Command Lines
	1.4.7 Delimiters
	1.4.8 Order of Commands
	1.4.9 Abbreviated END Specifications
	1.4.10 Indentation
	1.4.11 Including Files

	1.5 Naming Conventions Associated with the Exodus II Database
	1.6 Major Scope Definitions for an Input File
	1.7 Input/Output Files
	1.8 Obtaining Support
	1.9 References

	2 General Commands
	2.1 SIERRA Scope
	2.1.1 SIERRA Command Block
	2.1.2 Title
	2.1.3 Restart Control
	2.1.3.1 Restart Time
	2.1.3.2 Automatic Restart

	2.1.4 User Subroutine Identification
	2.1.5 Functions
	2.1.6 Axes, Directions, and Points
	2.1.7 Orientation

	2.2 Procedure and Region
	2.2.1 Procedure
	2.2.2 Time Control
	2.2.3 Region

	2.3 Use Finite Element Model
	2.4 Element Distortion Metrics
	2.5 Activation/Deactivation of Functionality

	3 Time Step Control in Presto
	3.1 Procedure Time Control
	3.1.1 Command Blocks for Time Control and Time Stepping
	3.1.2 Initial Time Step
	3.1.3 Time Step Scale Factor
	3.1.4 Time Step Increase Factor
	3.1.5 Step Interval
	3.1.6 Example

	3.2 Other Critical Time Step Methods
	3.2.1 Lanczos Method
	3.2.1.1 Lanczos Method with Constant Time Steps
	3.2.1.2 Controls for Lanczos Method
	3.2.1.3 Scale Factor for Lanczos Method
	3.2.1.4 Accuracy of Eigenvalue Estimate
	3.2.1.5 Lanczos Parameters Command Block

	3.2.2 Power Method
	3.2.2.1 Power Method with Constant Time Steps
	3.2.2.2 Controls for Power Method
	3.2.2.3 Scale Factor for Power Method
	3.2.2.4 Accuracy of Eigenvalue Estimate
	3.2.2.5 Power Method Parameters Command Block

	3.2.3 Node-Based Method
	3.2.3.1 Node-Based Parameters Command Block

	3.3 Mass Scaling
	3.3.1 What is Mass Scaling?
	3.3.2 Mass Scaling Command Block
	3.3.3 Node Set Commands
	3.3.3.1 Mass Scaling Commands
	3.3.3.2 Additional Commands

	3.4 Explicit Control Modes
	3.4.1 Control Modes Region
	3.4.1.1 Model Setup Commands
	3.4.1.2 Time Step Control Commands
	3.4.1.3 Mass Scaling Commands
	3.4.1.4 Damping Commands
	3.4.1.5 Kinematic Boundary Condition Commands
	3.4.1.6 Output Commands

	3.5 References

	4 Materials
	4.1 General Material Commands
	4.1.1 Density Command
	4.1.2 Biot's Coefficient Command
	4.1.3 Thermal Strain Behavior
	4.1.3.1 Defining Thermal Strains
	4.1.3.2 Activating Thermal Strains

	4.2 Model Specifications
	4.2.1 Elastic Model
	4.2.2 Elastic Fracture Model
	4.2.3 Elastic-Plastic Model
	4.2.4 Elastic-Plastic Power-Law Hardening Model
	4.2.5 Ductile Fracture Model
	4.2.6 Multilinear EP Hardening Model
	4.2.7 Multilinear EP Hardening Model with Failure
	4.2.8 Johnson-Cook Model
	4.2.9 BCJ Model
	4.2.10 Soil and Crushable Foam Model
	4.2.11 Foam Plasticity Model
	4.2.12 Elastic Three-Dimensional Orthotropic Model
	4.2.13 Orthotropic Crush Model
	4.2.14 Orthotropic Rate Model
	4.2.15 Elastic Laminate Model
	4.2.16 Fiber Membrane Model
	4.2.17 Incompressible Solid Model
	4.2.18 Mooney-Rivlin Model
	4.2.19 NLVE 3D Orthotropic Model
	4.2.20 Stiff Elastic
	4.2.21 Swanson Model
	4.2.22 Viscoelastic Swanson Model

	4.3 Cohesive Zone Material Models
	4.3.1 Traction Decay
	4.3.2 Tvergaard Hutchinson
	4.3.3 Thouless Parmigiani

	4.4 References

	5 Elements
	5.1 Finite Element Model
	5.1.1 Identification of Mesh File
	5.1.2 Alias
	5.1.3 Omit Block
	5.1.4 Component Separator Character
	5.1.5 Descriptors of Element Blocks
	5.1.5.1 Material Property
	5.1.5.2 Include All Blocks
	5.1.5.3 Remove Block
	5.1.5.4 Section
	5.1.5.5 Linear and Quadratic Bulk Viscosity
	5.1.5.6 Hourglass Control
	5.1.5.7 Effective Moduli Model
	5.1.5.8 Element Numerical Formulation
	5.1.5.9 Activation/Deactivation of Element Blocks by Time

	5.2 Element Sections
	5.2.1 Solid Section
	5.2.2 Cohesive Section
	5.2.3 Shell Section
	5.2.4 Membrane Section
	5.2.5 Beam Section
	5.2.6 Truss Section
	5.2.7 Spring Section
	5.2.8 Damper Section
	5.2.9 Point Mass Section
	5.2.10 SPH Section
	5.2.11 Superelement Section
	5.2.11.1 Input Commands

	5.3 Element-like Functionality
	5.3.1 Rigid Body
	5.3.2 Torsional Spring Mechanism

	5.4 Mass Property Calculations
	5.4.1 Block Set Commands
	5.4.2 Structure Command

	5.5 Element Death
	5.5.1 Block Set Commands
	5.5.2 Criterion Commands
	5.5.2.1 Nodal Variable Death Criterion
	5.5.2.2 Element Variable Death Criterion
	5.5.2.3 Global Death Criterion
	5.5.2.4 Subroutine Death Criterion
	5.5.2.5 Material Death Criterion

	5.5.3 Evaluation Commands
	5.5.4 Miscellaneous Option Commands
	5.5.4.1 Summary Output Commands
	5.5.4.2 Death on Inversion
	5.5.4.3 Death Steps
	5.5.4.4 Degenerate Mesh Repair
	5.5.4.5 Aggressive Contact Cleanup
	5.5.4.6 Death Method
	5.5.4.7 Particle Conversion
	5.5.4.8 Active Periods

	5.5.5 Cohesive Zone Setup Commands
	5.5.6 Example
	5.5.7 Element Death Visualization

	5.6 Explicitly Computing Derived Quantities
	5.7 Mesh Rebalancing
	5.7.1 Rebalance
	5.7.1.1 Rebalance Command Lines
	5.7.1.2 Zoltan Command Line

	5.7.2 Zoltan Parameters

	5.8 Remeshing
	5.8.1 Remeshing Commands
	5.8.2 Remesh Block Set
	5.8.3 Adaptive Refinement
	5.8.3.1 Adaptive Refinement Control Commands
	5.8.3.2 Tool Mesh Entity Commands
	5.8.3.3 Activation Commands

	5.9 References

	6 Boundary Conditions and Initial Conditions
	6.1 General Boundary Condition Concepts
	6.1.1 Mesh-Entity Assignment Commands
	6.1.2 Methods for Specifying Boundary Conditions

	6.2 Initial Variable Assignment
	6.2.1 Mesh-Entity Set Commands
	6.2.2 Variable Identification Commands
	6.2.3 Specification Command
	6.2.4 External Mesh Database Commands
	6.2.5 User Subroutine Commands
	6.2.6 Additional Command

	6.3 Kinematic Boundary Conditions
	6.3.1 Fixed Displacement Components
	6.3.1.1 Node Set Commands
	6.3.1.2 Specification Commands
	6.3.1.3 Additional Commands

	6.3.2 Prescribed Displacement
	6.3.2.1 Node Set Commands
	6.3.2.2 Specification Commands
	6.3.2.3 User Subroutine Commands
	6.3.2.4 External Mesh Database Commands
	6.3.2.5 Additional Commands

	6.3.3 Prescribed Velocity
	6.3.3.1 Node Set Commands
	6.3.3.2 Specification Commands
	6.3.3.3 User Subroutine Commands
	6.3.3.4 External Mesh Database Commands
	6.3.3.5 Additional Commands

	6.3.4 Prescribed Acceleration
	6.3.4.1 Node Set Commands
	6.3.4.2 Specification Commands
	6.3.4.3 User Subroutine Commands
	6.3.4.4 External Mesh Database Commands
	6.3.4.5 Additional Commands

	6.3.5 Fixed Rotation
	6.3.5.1 Node Set Commands
	6.3.5.2 Specification Commands
	6.3.5.3 Additional Commands

	6.3.6 Prescribed Rotation
	6.3.6.1 Node Set Commands
	6.3.6.2 Specification Commands
	6.3.6.3 User Subroutine Commands
	6.3.6.4 External Mesh Database Commands
	6.3.6.5 Additional Commands

	6.3.7 Prescribed Rotational Velocity
	6.3.7.1 Node Set Commands
	6.3.7.2 Specification Commands
	6.3.7.3 User Subroutine Commands
	6.3.7.4 External Mesh Database Commands
	6.3.7.5 Additional Commands

	6.3.8 Subroutine Usage for Kinematic Boundary Conditions

	6.4 Initial Velocity Conditions
	6.4.1 Node Set Commands
	6.4.2 Direction Specification Commands
	6.4.3 Angular Velocity Specification Commands
	6.4.4 User Subroutine Commands

	6.5 Force Boundary Conditions
	6.5.1 Pressure
	6.5.1.1 Surface Set Commands
	6.5.1.2 Specification Commands
	6.5.1.3 User Subroutine Commands
	6.5.1.4 External Pressure Sources
	6.5.1.5 Output Command
	6.5.1.6 Additional Commands

	6.5.2 Traction
	6.5.2.1 Surface Set Commands
	6.5.2.2 Specification Commands
	6.5.2.3 User Subroutine Commands
	6.5.2.4 Additional Commands

	6.5.3 Prescribed Force
	6.5.3.1 Node Set Commands
	6.5.3.2 Specification Commands
	6.5.3.3 User Subroutine Commands
	6.5.3.4 Additional Commands

	6.5.4 Prescribed Moment
	6.5.4.1 Node Set Commands
	6.5.4.2 Specification Commands
	6.5.4.3 User Subroutine Commands
	6.5.4.4 Additional Commands

	6.6 Gravity
	6.7 Prescribed Temperature
	6.7.1 Block Set Commands
	6.7.2 Specification Command
	6.7.3 User Subroutine Commands
	6.7.4 External Mesh Database Commands
	6.7.5 Additional Commands

	6.8 Pore Pressure
	6.8.1 Block Set Commands
	6.8.2 Specification Command
	6.8.3 User Subroutine Commands
	6.8.4 External Mesh Database Commands
	6.8.5 Coupled Analysis Commands
	6.8.6 Additional Commands

	6.9 Fluid Pressure
	6.9.1 Surface Set Commands
	6.9.2 Specification Commands
	6.9.3 Additional Commands

	6.10 Specialized Boundary Conditions
	6.10.1 Cavity Expansion
	6.10.2 Blast Pressure
	6.10.3 Silent Boundary
	6.10.4 Spot Weld
	6.10.5 Line Weld
	6.10.6 Viscous Damping
	6.10.6.1 Block Set Commands
	6.10.6.2 Viscous Damping Coefficient
	6.10.6.3 Additional Command

	6.10.7 Volume Repulsion Old
	6.10.7.1 Block Set

	6.10.8 General Multi-Point Constraints
	6.10.8.1 Master/Slave Multi-Point Constraints
	6.10.8.2 Tied Contact
	6.10.8.3 Tied Multi-Point Constraints
	6.10.8.4 Resolve Multiple MPCs

	6.10.9 Submodel

	6.11 References

	7 Contact
	7.1 Contact Definition Block
	7.2 Descriptions of Contact Surfaces
	7.2.1 Contact Surface Command Line
	7.2.2 Skin All Blocks
	7.2.3 Contact Surface Command Block
	7.2.4 Contact Node Set

	7.3 Analytic Contact Surfaces
	7.3.1 Plane
	7.3.2 Cylinder
	7.3.3 Sphere

	7.4 Update All Surfaces for Element Death
	7.5 Remove Initial Overlap
	7.6 Angle for Multiple Interactions
	7.7 Surface Normal Smoothing
	7.8 Eroded Face Treatment
	7.9 Shell Lofting
	7.10 Contact Output Variables
	7.11 Friction Models
	7.11.1 Frictionless Model
	7.11.2 Constant Friction Model
	7.11.3 Tied Model
	7.11.4 Spring Weld Model
	7.11.5 Surface Weld Model
	7.11.6 Area Weld Model
	7.11.7 Adhesion Model
	7.11.8 Cohesive Zone Model
	7.11.9 Junction Model
	7.11.10 Threaded Model
	7.11.11 PV_Dependent Model
	7.11.12 User Subroutine Friction Models

	7.12 Search Options
	7.12.1 Search Algorithms
	7.12.2 Search Tolerances
	7.12.3 Secondary Decomposition

	7.13 User Search Box
	7.13.1 Search Box Location
	7.13.2 Search Box Size

	7.14 Enforcement Options
	7.15 Default Values for Interactions
	7.15.1 Surface Identification
	7.15.2 Self-Contact and General Contact
	7.15.3 Friction Model
	7.15.4 Automatic Kinematic Partition
	7.15.5 Interaction Behavior
	7.15.6 Constraint Formulation

	7.16 Values for Specific Interactions
	7.16.1 Surface Identification
	7.16.2 Kinematic Partition
	7.16.3 Tolerances
	7.16.4 Friction Model
	7.16.5 Automatic Kinematic Partition
	7.16.6 Interaction Behavior
	7.16.7 Constraint Formulation

	7.17 Examples
	7.17.1 Example 1
	7.17.2 Example 2

	7.18 Dash Contact
	7.18.1 How Dash is Different from ACME
	7.18.2 Current Dash Usage Guidelines

	7.19 References

	8 Output
	8.1 Parenthesis Syntax for Requesting Variables
	8.1.1 Example 1
	8.1.2 Example 2
	8.1.3 Other command blocks

	8.2 Results Output
	8.2.1 Exodus Results Output File
	8.2.1.1 Output Nodal Variables
	8.2.1.2 Output Node Set Variables
	8.2.1.3 Output Face Variables
	8.2.1.4 Output Element Variables
	8.2.1.5 Output Mesh Selection
	8.2.1.6 Component Separator Character
	8.2.1.7 Output Global Variables
	8.2.1.8 Set Begin Time for Results Output
	8.2.1.9 Adjust Interval for Time Steps
	8.2.1.10 Output Interval Specified by Time Increment
	8.2.1.11 Additional Times for Output
	8.2.1.12 Output Interval Specified by Step Increment
	8.2.1.13 Additional Steps for Output
	8.2.1.14 Set End Time for Results Output
	8.2.1.15 Use Output Scheduler
	8.2.1.16 Write Results If System Error Encountered

	8.2.2 User-Defined Output
	8.2.2.1 Mesh-Entity Set Commands
	8.2.2.2 Compute Global Result Command
	8.2.2.3 User Subroutine Commands
	8.2.2.4 Copy Command
	8.2.2.5 Compute at Every Step Command
	8.2.2.6 Additional Command

	8.3 History Output
	8.3.1 Output Variables
	8.3.1.1 Global Output Variables
	8.3.1.2 Mesh Entity Output Variables
	8.3.1.3 Nearest Point Output Variables

	8.3.2 Outputting History Data on a Node Set
	8.3.3 Set Begin Time for History Output
	8.3.4 Adjust Interval for Time Steps
	8.3.5 Output Interval Specified by Time Increment
	8.3.6 Additional Times for Output
	8.3.7 Output Interval Specified by Step Increment
	8.3.8 Additional Steps for Output
	8.3.9 Set End Time for History Output
	8.3.10 Use Output Scheduler
	8.3.11 Write History If System Error Encountered

	8.4 Heartbeat Output
	8.4.1 Output Variables
	8.4.1.1 Global Output Variables
	8.4.1.2 Mesh Entity Output Variables
	8.4.1.3 Nearest Point Output Variables

	8.4.2 Outputting Heartbeat Data on a Node Set
	8.4.3 Set Begin Time for Heartbeat Output
	8.4.4 Adjust Interval for Time Steps
	8.4.5 Output Interval Specified by Time Increment
	8.4.6 Additional Times for Output
	8.4.7 Output Interval Specified by Step Increment
	8.4.8 Additional Steps for Output
	8.4.9 Set End Time for Heartbeat Output
	8.4.10 Use Output Scheduler
	8.4.11 Write Heartbeat On Signal
	8.4.12 Heartbeat Output Formatting Commands
	8.4.12.1 CTH SpyHis output format
	8.4.12.2 Specify floating point precision
	8.4.12.3 Specify Labeling of Heartbeat Data
	8.4.12.4 Specify Existence of Legend for Heartbeat Data
	8.4.12.5 Specify format of timestamp

	8.4.13 Monitor Output Events

	8.5 Restart Data
	8.5.1 Restart Options
	8.5.1.1 Automatic Read and Write of Restart Files
	8.5.1.2 User-Controlled Read and Write of Restart Files
	8.5.1.3 Overwriting Restart Files
	8.5.1.4 Recovering from a Corrupted Restart

	8.5.2 Overwrite Command in Restart
	8.5.3 Set Begin Time for Restart Writes
	8.5.4 Adjust Interval for Time Steps
	8.5.5 Restart Interval Specified by Time Increment
	8.5.6 Additional Times for Restart
	8.5.7 Restart Interval Specified by Step Increment
	8.5.8 Additional Steps for Restart
	8.5.9 Set End Time for Restart Writes
	8.5.10 Overlay Count
	8.5.11 Cycle Count
	8.5.12 Use Output Scheduler
	8.5.13 Write Restart If System Error Encountered

	8.6 Output Scheduler
	8.6.1 Output Scheduler Command Block
	8.6.1.1 Set Begin Time for Output Scheduler
	8.6.1.2 Adjust Interval for Time Steps
	8.6.1.3 Output Interval Specified by Time Increment
	8.6.1.4 Additional Times for Output
	8.6.1.5 Output Interval Specified by Step Increment
	8.6.1.6 Additional Steps for Output
	8.6.1.7 Set End Time for Output Scheduler

	8.6.2 Example of Using the Output Scheduler

	8.7 Registered Variables
	8.7.1 Global, Nodal, and Element Registered Variables
	8.7.2 Registered Variables for Material Models
	8.7.2.1 State Variable Output by Index for Strumento Solid Material Models
	8.7.2.2 State Variable Output for LAME Solid Material Models
	8.7.2.3 State Variable Tables for Solid Material Models
	8.7.2.4 Registered Variables for Shell/Membrane Material Models

	8.7.3 Registered Variables for Surface Models
	8.7.3.1 State Variable Tables for Surface Models

	8.8 References

	9 User Subroutines
	9.1 User Subroutines: Programming
	9.1.1 Subroutine Interface
	9.1.2 Query Functions
	9.1.2.1 Parameter Query
	9.1.2.2 Function Data Query
	9.1.2.3 Time Query
	9.1.2.4 Field Variables
	9.1.2.5 Global Variables
	9.1.2.6 Topology Extraction

	9.1.3 Miscellaneous Query Functions

	9.2 User Subroutines: Command File
	9.2.1 Subroutine Identification
	9.2.2 User Subroutine Command Lines
	9.2.2.1 Type
	9.2.2.2 Debugging
	9.2.2.3 Parameters

	9.2.3 Time Step Initialization
	9.2.3.1 Mesh-Entity Set Commands
	9.2.3.2 User Subroutine Commands
	9.2.3.3 Additional Command

	9.2.4 User Variables

	9.3 User Subroutines: Compilation and Execution
	9.4 User Subroutines: Examples
	9.4.1 Pressure as a Function of Space and Time
	9.4.2 Error Between a Computed and an Analytic Solution
	9.4.3 Transform Output Stresses to a Cylindrical Coordinate System

	9.5 User Subroutines: Library
	9.5.1 aupst_cyl_transform
	9.5.2 aupst_rec_transform
	9.5.3 copy_data
	9.5.4 trace

	A Example Problem
	B Command Summary
	C Consistent Units
	Index
	Index

	Distribution

