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Abstract 
 
Graph algorithms are a key component in a wide variety of intelligence analysis activities. The 
Graph-Based Informatics for Non-Proliferation and Counter-Terrorism project addresses the 
critical need of making these graph algorithms accessible to Sandia analysts in a manner that is 
both intuitive and effective. Specifically we describe the design and implementation of an open 
source toolkit for doing graph analysis, informatics, and visualization that provides Sandia with 
novel analysis capability for non-proliferation and counter-terrorism. 
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Nomenclature 
 
ARG    Attributed Relational Graph 
BGL Boost Graph Library 
PBGL Parallel Boost Graph Library 
MTGL Multi-Threaded Graph Library 
ST Source and Target (e.g. find a graph path from Source to Target) 
CSG Connection SubGraph  
DOE Department of Energy 
SNL Sandia National Laboratories 
SMU Strategic Management Unit 
WFO Work for Others 
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1.  INTRODUCTION 
 
The Graph-Based Informatics for Non-Proliferation and Counter-Terrorism project started as a 
project to combine graph algorithms and visualization into a functional toolkit. As the project 
progressed it became the genesis for a much larger and broader effort that is now called the 
Titan Informatics Toolkit. The authors believe the work conducted in this project will have a 
significant long term impact to both the Sandia analysis capabilities and to the global 
informatics community. 
 

1.1. Titan Informatics Toolkit 
The Titan Informatics Toolkit is an expansion of the Visualization ToolKit (VTK) to support the 
ingestion, processing, and display of informatics data. By leveraging the VTK engine, Titan 
provides a flexible, component based, pipeline architecture for the integration and deployment 
of algorithms in the fields of intelligence, semantic graph and information analysis. 
 
The Titan project represents one of the first software development efforts to address the 
merging of scientific visualization and information visualization on a substantive level. The VTK 
parallel client-server layer will provide an excellent framework for doing scalable analysis on 
distributed memory platforms. In the same way that scientific visualization applications can be 
built with VTK, you can now build information visualization and analysis applications with Titan. 
As shown in Figure 1, applications can be built by combining the components as appropriate for 
your specific domain needs. 
 

 
 
Figure 1: The Titan Informatics Toolkit component architecture enables the construction of targeted 
domain specific applications. 
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2.  GRAPH LIBRARIES IN TITAN 
 

There are a number of popular graph libraries that are available as either open source or 
internally within Sandia National Laboratories.  The authors of these libraries have spent 
considerable time and effort developing efficient algorithms to solve a range of common graph 
algorithms.  Titan leverages existing work through the use of graph-adapters which allow other 
libraries to treat the VTK graph data objects as though they are native.  We should note that the 
fact that the VTK graph data structure within Titan can be adapted to multiple independent 
graph libraries illustrates the generality of the data structure itself. 
 
Titan has focused on the integration of three external libraries for the core of its graph 
algorithms.  The following sections will provide a brief overview. 
 

2.1 Boost Graph Library (BGL) 
Graph algorithms are an essential part of many informatics applications and a unified toolkit 
needs to provide that functionality. The Boost C++ library [1] is a large collection of templated 
C++ classes dedicated to generic programming, available online at http://www.boost.org .  A 
popular algorithm library within this collection is the Boost Graph Library (BGL) [2].  This library 
implements many common graph “kernel” operations such as breadth-first search (BFS) and 
depth-first search (DFS), which can be used as the basis for many useful graph algorithms. 
A few of the algorithms available within Titan include: 

- Bi-connected Components 
- Breadth First Search 
- Connected Components 
- Minimum Spanning Tree 
- Network Centrality 
- Strongly Connected Components 

 
The Titan team decided to use these BGL algorithms instead of reimplementing them from 
scratch. To use a vtkGraph with a BGL algorithm, callers simply include 
vtkBoostGraphAdapter.h. This “data-less” adapter implements the required BGL concepts for 
vtkDirectedGraph and vtkUndirected-Graph, thus allowing BGL algorithms to process Titan 
graphs directly. The interface between Titan and BGL follows the VTK pipeline model. 
Referencing the “hello world” code example in Figure 2 we see that the header files for the 
adapter and for the BGL algorithm are included. We create a BGL algorithm, put the algorithm 
in the pipeline, and then color the nodes of the graph by the results of the algorithm. From the 
developers perspective the BGL functionality is a pipeline component. In practice all the BGL 
algorithms can be run in similar fashion. We often string up combinations of various BGL 
algorithms in pipelines. In fact, one of the layout algorithms in the Titan toolkit (G-Space [3]) 
runs three BGL algorithms to compute geodesic distances. 
 
 
 
  

http://www.boost.org/


10 

#include "vtkBoostBreadthFirstSearch.h" 

#include "vtkGraphLayoutView.h" 

#include "vtkRandomGraphSource.h" 

#include "vtkRenderWindowInteractor.h" 

 

int main(int argc, char* argv[]) 

{ 

  // Create a random graph 

  vtkRandomGraphSource* source = vtkRandomGraphSource::New(); 

 

  // Create BGL algorithm and put it in the pipeline 

  vtkBoostBreadthFirstSearch* bfs = vtkBoostBreadthFirstSearch::New(); 

  bfs->SetInputConnection(source->GetOutputPort()); 

 

  // Create a view and add the BFS output 

  vtkGraphLayoutView* view = vtkGraphLayoutView::New(); 

  view->AddRepresentationFromInputConnection(bfs->GetOutputPort()); 

 

  // Color vertices and label based on BFS search 

  view->SetVertexColorArrayName("BFS"); 

  view->SetVertexLabelArrayName("BFS"); 

 

  // Start view interaction 

  view->GetInteractor()->Start(); 

} 

 

Figure 2: Example usage of the Titan Informatics Toolkit; leveraging powerful graph algorithm libraries is 
easy and intuitive. 

 

2.2 Parallel Boost Graph Library (PBGL) 
As a distributed memory toolkit, VTK currently provides a myriad of functionality around 
parallel scientific processing and visualization. The Parallel Boost Graph Library (PBGL) is a 
generic C++ library for high-performance parallel and distributed graph algorithms. The 
vtkGraph data structure, along with some distributed helper classes, enables the PBGL 
functionality to work in the same way as the BGL classes. PBGL is now part of the Boost Library 
proper as of release 1.40.0 (August 2009).  
 

2.3 Multi-Threaded Graph Library (MTGL) 
The Multi-Threaded Graph Library (MTGL) developed at Sandia National Laboratories (Jonathan 
Berry – Org 1416) targets shared memory platforms such as the massively multi-threaded Cray 
MTA/XMT [8], and can be used with the Sandia Qthreads library [9] on chip multiprocessors 
such as the Sun Niagara [10] and multi-core workstations. The MTGL API shares many of the 
same concepts as the Boost Graph Library (BGL). As in the BGL, the visitor pattern enables users 
to apply methods at key points of algorithm execution. MTGL users write adapters over their 
graph data structures as BGL users do, but there is no assumption that Boost and STL are 
available. MTGL algorithms for connected components are well designed and have scaled 
almost perfectly on the Cray MTA-2. 
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3.  TARGETTED GRAPH ALGORITHMS 
 

The current focus of graph algorithms within the Titan toolkit falls within the domain of 
informatics to search through social networks or perhaps TCP/IP network traffic for intrusion 
detection, etc.  This graphs constructed to model this type of data are often referred to as 
“semantic graphs” but are formally called Attributed Relational Graphs (ARGs), the 
distinguishing characteristic of an ARG is the data contained on its nodes and edges.  
 
The following sections provide details on three algorithms implemented within the Titan 
toolkit. 
 

3.1 Temporal Search 
There are multiple ways to consider temporal data within a graph.  One way might be to 
consider the evolution of a graph with respect to time.  Another might be to consider the time 
associated with the links in a graph and how this might relate to the spread of information (or 
contamination) through the network.  Our work to date has focused on the latter of these two. 
 
The temporal search query was implemented in Titan natively.  The ARG used by this algorithm 
treats nodes as entities and lets edges represent a discrete interaction between two nodes 
occurring at a particular time.  Using the Enron email database as an example in which people 
are represented by nodes and emails are edges containing a timestamp showing when it was 
sent. 
 
Temporal search asks the question:  “Given a root node and a starting time, what other nodes 
are reached and at what times?”  The goal of this search is to discover two things (a) where 
might an infection spread if it originates from a given point in the graph and (b) when is the 
earliest time a node might become infected.  Our temporal search labels nodes with their 
‘earliest’ infection time and marks edges as valid if they leave an infected node.  A special label 
is given to the earliest infection edge emanating from infected nodes.   
 

 
Figure 3: This figure shows a temporal search result on a graph of cell phone calls.  The node and edge 
labels represent time-stamps for each call.  The search was rooted at the call with time “21600”;  red 
edges indicate the path of fastest propagation from the root node and blue edges are forward-in-time 
edges that are not the earliest. 
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The addition of the constraint that an edge can only be followed if its timestamp occurs after 
the node from which it originates differentiates this search from standard shortest-path type 
searches in that time-stamps are absolute values and are not incremental as in weighted 
shortest-paths.   Given this constraint, we are also not guaranteed to take all available paths 
that might exist in the static graph.  Figure 4 illustrates how a temporal search might progress 
through a simple graph.  Note that node D is never visited because its interaction with B 
precedes B’s earliest possible infection time. 
 

 
Figure 4: A simple graph illustrating 4 actors and the times associated with their connections.  At time 
2.5 node A is infected.  The final state at T>=4 A,B, and C are infected but D is not because it interacted 
with B before B was infected. 

  
 

3.2 Multi-ST/Connection Subgraph 
 
The Multi-ST and Connection Subgraphs (CSG) algorithms described here perform a similar task.  
These algorithms can be considered as path-finding algorithms.  Generally speaking both 
algorithms take a set of nodes within a graph and are tasked with finding path(s) within the 
input graph that connects the endpoints.  Along the way, these algorithms attempt to optimize 
the paths they find in a very different way, resulting in results that can be quite different given 
the same inputs. 
 
The Multi-ST search is an extension of a common graph ST search algorithm.  The ST search is a 
two-phase search containing a discovery phase and a recording phase.  In discovery, ST expands 
search frontiers using BFS from two nodes in a graph that we call the Source and the Target.  If 
a path does exist between S and T, the frontiers of our BFS will eventually meet.  Once we find 
our meeting point the discovery phase ends and we enter the recording phase.  The recording 
phase will backtrack from the meeting point back to S and T using information saved during 
discovery and record the path it takes.   
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Since the ST search at its core only supports two endpoints, we extended the algorithm to 
support >2 endpoints by permuting a set of endpoints and merge results from individual 
searches.  The current ST and Multi-ST search algorithms are implemented in MTGL. 
 
Unfortunately, one problem with the ST search is that it only captures the shortest path 
between nodes.  This is desirable in many cases such as finding driving directions on a map, etc. 
but graphs that model many informatics problems have a power-law degree distribution.  
These power-law graphs are generally sparse and have a low diameter resulting from a 
relatively small set of nodes that are highly connected.  Shortest-paths algorithms will tend to 
gravitate towards these highly connected nodes, but those paths may not represent an 
interesting relationship between two nodes (i.e., In a social network the shortest path 
connecting myself to Kevin Bacon may pass through Bill Clinton but it’s unlikely that path 
represents a substantive chain of relationships.)   
 
With the rise of graph-based informatics on social network, a number of algorithms and 
heuristics have been proposed to try and find meaningful connections between individuals that 
avoid the “Bill Clinton” type nodes.  We implemented one such heuristic to find these 
Connection Subgraphs [11] in MTGL and use it within Titan. 
 
The CSG heuristic attempts to find meaningful paths between nodes in a graph by adding a 
penalty to highly connected nodes as well as to long paths.  We accomplish this by modeling 
the graph as an electrical network in which the source node is treated as a voltage source and 
the target node is treated as a sink (ground).  We then compute a conductance for every edge 
that is inversely proportional to the degrees of the nodes they connect.  Finally, every node is 
connected to a ground through a link that has a fixed conductance.  We then compute the 
amount of electric current that is delivered from S to T through this network and find the 
interesting connections by backtracking from T to S along connections that have the highest 
current values. 
 
In this heuristic, the high resistance along edges that connect high-degree nodes will tend to 
force current away from these highly connected nodes.  This satisfies the avoidance criteria for 
highly connected nodes.  Additionally, the fixed conductance from each vertex to a global sink 
provides a ‘tax’ for each subsequent hop along a path we take providing an increasing penalty 
for long paths.  The result is a path connecting S and T, which tends to avoid highly connected 
nodes and long paths if possible in the hope that the result represents a more meaningful 
connection between the endpoints. 
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3.3 Isomorphic Graph Queries 
Database queries are generally quite effective for simple queries but as the query grows in 
complexity traditional SQL syntax and function can break down. For example: 
“Show me all instances where payload X was transferred to computer Y, and then computer Y 
signaled known bad computer Z, and Z pulled payload X”. 
 
The SQL command to encapsulate this logic would be both significantly complex and extremely 
slow to execute. The “white board” version of this query might look something like this: 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: An example isomorphic graph query. 

 
The diagram in Figure 5 is a graph and is the natural way to represent these types of queries. 
The research domain that addresses these types of semantic graph queries is called 
“Isomorphic Graph Search”.  Subgraph Isomorphism is an NP-Complete problem in general, but 
heuristics are available which can gain approximate results quickly when vertices and edges in a 
graph are colored. This data can be used to quickly prune down the possibilities.  

Heuristic Description  

Input  
G1 : Input graph.  
G2 : Graph, presumably much smaller than G1, which we wish to locate within G1, if it exists.  
 
Output  
Are there instances of G2 within G1? If so, return them.  
 
Implementation  
The basic procedure is the following:  

1. Generate a walk, W, which covers all edges and vertices in G1 containing the pattern of 
colors visited on each step. This will follow a vertex-edge-vertex-edge-vertex ... pattern. 
Think of this as unrolling G1 into a linked list. Generating an Eulerian path works but not 
all graphs will have one. Relaxing the each-edge-is-traversed-exactly-once requirement 
lets us quickly get a walk that visits every vertex and edge in G1.  

Any Computer 

Computer Y 

Bad Computer Z 

Transferred X 

Transferred X 

Signaled 
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Figure 6: Diagrammatical representation of the isomorphic graph search. A user specifies a 
pattern of interest, an Eulerian tour is conducted (graph walk) and that walk is stored as a linear 
sequence.  

2. Perform a filtered traversal of G2 starting at vertices with the same color as W[0], 
following edges which respect the source-edge-target color pattern in W, until we get to 
the end of W.  

3. At this point, any vertices in G2 that are still active were reached by some valid traversal 
respecting the pattern encoded in W. So, the next step is to reverse our pattern, W, and 
re-traverse G2 starting at the active vertices at the end of the previous phase, but this 
time we record the vertices and edges we follow.  

4. Return the vertices and edges found. 

 

Figure 7: All instances of the user specified pattern are identified and highlighted. 

Limitations 
Classic (sub)graph isomorphism approaches that yield exact answers are well known to be NP 
complete, giving rather severe limitations to the size of graphs that isomorphism can be 
computed.  We avoid this through the addition of two major constraints to this heuristic.   
 
First, this heuristic based approach can only produce an inexact solution.  While the existence 
of an inexact solution from this method does not guarantee that an exact match exists, we can 
say with confidence that if there are exact matches, they will be wholly contained within the 

http://www.kitware.com/InfovisWiki/index.php/Image:Mtgl_isomorphism_in_graph.png
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solution returned by this method.  Further refinement could be done using exact solvers against 
the set of results if they are small enough to be tractable. 
 
The second limitation to note is on the input data.  This search only works for ARGs since the 
node/edge labels (i.e., colors) are what allow the aggressive pruning to occur in a way that we 
could not do if we looked only at the structure of the input graph.  Though a limitation, we 
don’t believe it a serious one for the types of problems we are likely to encounter as most 
useful data sets will contain node and edge attributes of some sort that is important to the 
problem. 
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4.  RESULTS AND CONCLUSIONS 
 

The Graph-Based Informatics for Non-Proliferation and Counter-Terrorism project was 
specifically targeted at combining graph algorithms and visualization. The project has 
significantly grown in scope since its inception and has now become the scalable software 
architecture (Titan) that links visualization, graph algorithms, linear algebra, tensor methods, 
statistics and deep text analysis. Within the specific scope of this project we achieved following 
goals: 

- Data-less adapters to Boost, Parallel Boost, and MTGL graph algorithms.  
- Multi-ST robust graph path-finding algorithm. 
- Subgraph Isomorphic Predicate Engine. 

 
In addition, the members of this project hope that the broader toolkit becomes the basis for a 
popular, long lived, open source toolkit for doing graph analysis, informatics, and visualization. 
We also believe the toolkit will attract external partnerships and WFO funding, while providing 
Sandia with novel analysis capability for non-proliferation and counter-terrorism. 
 

4.1 SMU Benefit and Project Impact 
 
The primary SMU benefiting from the research and development conducted in the “Graph-
Based Informatics for Non-Proliferation and Counter-Terrorism” LDRD is DS&A, but the work 
may also be beneficial to the HSD and ST&E SMUs. All of the graph algorithms and visualization 
techniques developed as part of this LDRD have been deployed into an open source informatics 
toolkit called Titan (www.sandia.gov/Titan).  The toolkit is quite flexible and can be combined in 
various ways for different problem domains, including strategically important problems to 
Sandia like large scale network packet monitoring (5600) and deep unstructured text analysis 
(5900). Our expectation is that the, already popular, open source toolkit will have a lifetime in 
excess of ten years, and that Sandia will be developing and using the toolkit perhaps across 
multiple SMUs during that lifetime. 
 
The developers believe the open source toolkit will have significantly greater impact then an 
isolated in-house project. The Titan toolkit already has users/developers from around the 
world: Indiana University, Harvard, Cal-Tech, Leeds University and University of Utah all have 
known users or developers. We also believe that the toolkit’s open standards and APIs will 
attract intelligence organizations dissatisfied with proprietary and inflexible commercial 
offerings. If these agencies see promise in a flexible, open source informatics toolkit, it may 
attract strategic long term partnerships and bring additional WFO funding into Sandia. 
 

http://www.sandia.gov/Titan
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