
SANDIA REPORT
SAND2009-6753
Unlimited Release
Printed October, 2009

Increasing Fault Resiliency in a
Message-Passing Environment

Kurt Ferreira, Rolf Riesen, Ron Oldfield, Jon Stearley, James Laros, Kevin Pedretti,
Todd Kordenbrock, Ron Brightwell

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy

by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United

States Government. Neither the United States Government, nor any agency thereof, nor any

of their employees, nor any of their contractors, subcontractors, or their employees, make any

warranty, express or implied, or assume any legal liability or responsibility for the accuracy,

completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-

resent that its use would not infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,

does not necessarily constitute or imply its endorsement, recommendation, or favoring by the

United States Government, any agency thereof, or any of their contractors or subcontractors.

The views and opinions expressed herein do not necessarily state or reflect those of the United

States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best

available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401

Facsimile: (865) 576-5728

E-Mail: reports@adonis.osti.gov

Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce

National Technical Information Service

5285 Port Royal Rd

Springfield, VA 22161

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders@ntis.fedworld.gov

Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
EP

ARTMENT OF ENERG
Y

• •U
N

IT
ED

STATES OF AM

ER
I C

A

2

SAND2009-6753
Unlimited Release

Printed October, 2009

Increasing Fault Resiliency in a Message-Passing

Environment

Kurt Ferreira (Org. 01423) kbferre@sandia.gov
Rolf Riesen (Org. 01423) rolf@sandia.gov

Ron Oldfield (Org. 01423) raoldfi@sandia.gov
Jon Stearley (Org. 01422) jrstear@sandia.gov
James Laros (Org. 01422) jhlaros@sandia.gov

Kevin Pedretti (Org. 01423) ktpedre@sandia.gov
Ron Brightwell (Org. 01423) rbbrigh@sandia.gov

Sandia National Laboratories
P. O. Box 5800

Albuquerque, NM 87185-1319

Todd Kordenbrock todd.kordenbrock@hp.com

Hewlett-Packard Company

Abstract

Petaflops systems will have tens to hundreds of thousands of compute nodes which increases
the likelihood of faults. Applications use checkpoint/restart to recover from these faults,
but even under ideal conditions, applications running on more than 30,000 nodes will likely
spend more than half of their total run time saving checkpoints, restarting, and redoing work
that was lost.

We created a library that performs redundant computations on additional nodes allocated
to the application. An active node and its redundant partner form a node bundle which will
only fail, and cause an application restart, when both nodes in the bundle fail. The goal of
this library is to learn whether this can be done entirely at the user level, what requirements

3

this library places on a Reliability, Availability, and Serviceability (RAS) system, and what
its impact on performance and run time is.

We find that our redundant MPI layer library imposes a relatively modest performance
penalty for applications, but that it greatly reduces the number of applications interrupts.
This reduction in interrupts leads to huge savings in restart and rework time. For large-
scale applications the savings compensate for the performance loss and the additional nodes
required for redundant computations.

4

Contents

1 Introduction 11

2 Design 13

2.1 Basic operation . 14

2.2 Non-blocking receives: Preserving message order . 16

2.3 Probe, wait and test functions . 17

2.4 Other functions plus groups . 17

2.5 Any-tag receives . 18

2.6 Dependence on RAS system . 18

3 Implementation 21

4 Evaluation 23

4.1 Benchmarks . 23

4.2 Collectives . 26

4.3 Applications . 26

4.4 Evaluation summary . 33

5 Analysis 37

5.1 The lifetime of an application . 37

5.2 Behavior of rMPI . 38

5.3 Simulating an application . 41

5.4 Application behavior . 44

5.5 Validating the simulation . 48

5

6 Implications and trade-offs 53

6.1 System throughput . 53

6.2 Level of redundancy . 55

6.3 Spare nodes . 55

7 Related work 57

8 Summary and future work 59

References 60

6

List of Figures

2.1 Redundant nodes, if enabled, continue computation of active nodes that be-
come disabled. 13

2.2 Node A transmits a message to B in the presence of redundant nodes. 15

2.3 Active and redundant messages with the same tag must maintain the same
order. 15

4.1 Bandwidth comparison. Native is benchmark without the rMPI library. Base
is with rMPI, but no redundant nodes. Forward is fully redundant. 24

4.2 Latency comparison. 25

4.3 Latency using MPI ANY SOURCE. 25

4.4 Broadcast performance on 2,048 nodes. 26

4.5 Reduce performance on 2,048 nodes. 27

4.6 Allreduce performance on 2,048 nodes. 27

4.7 Alltoall performance on 512 nodes. 28

4.8 Barrier performance. 28

4.9 Performance slowdown of redundant MPI Bcast() versus native for forward,
reverse and shuffle mappings . 29

4.10 Performance slowdown of redundant MPI Reduce() versus native for forward,
reverse and shuffle mappings . 30

4.11 Performance slowdown of redundant MPI Allreduce() versus native for for-
ward, reverse and shuffle mappings . 31

4.12 CTH performance. 32

4.13 SAGE performance. 33

4.14 LAMMPS performance. 34

4.15 HPCCG performance. 34

7

5.1 Lifetime of an application. 37

5.2 Simulating the impact of faults on the number of application interrupts. 39

5.3 Ratio of application interrupts to node faults. 40

5.4 Number of interrupts seen by an application using various levels of redundancy. 42

5.5 State diagram of application simulator. 42

5.6 Block diagram of the application simulator. 43

5.7 An application that completes 168 hours of work on a system with a five-year
node MTBF. 45

5.8 Percentage of time spent in each phase of a long-running application. This
graph is for 700-hours of work with a node MTBF of five years. 46

5.9 An application that completes 5,000 hours of work on a system with a one-year
node MTBF. 46

5.10 An application that completes 168 hours of work on a system with a five-year
node MTBF. 47

5.11 An application that completes 5,000 hours of work on a system with a one-year
node MTBF. 47

5.12 An application that completes 168 hours of work on a system with a five-year
node MTBF. No and full redundancy shown. 48

5.13 An application that completes 5,000 hours of work on a system with a one-year
node MTBF and full redundancy. 49

5.14 Comparing Equation 5.4 with our application simulator. 51

6.1 Levels of redundancy versus number of interrupts. 55

8

List of Tables

5.1 Number of interrupts seen by an application with various levels of redundancy. 41

5.2 Number of interrupts seen by a 5,000-hour application and a one-year MTBF. 49

6.1 Comparing total execution times. 54

9

10

Chapter 1

Introduction

Today’s large-scale machines experience outages from failed components, software bugs, and
power disruptions. A common method to allow an application to compute longer than the
interval between faults is to checkpoint the application state at regular intervals and restart
the application from the most recent successful checkpoint after a fault occurs. Check-
point/restart works but is predicted to be inefficient in future machines [13, 5, 14].

Million-core machines for petascale computing will have so many parts that faults will be
frequent. The system-wide Mean Time Between Failures (MTBF) will becomes so small that
more than 50% of an application’s total execution time will be spent writing checkpoints
and recovering from failures [13]. The more failures occur during the execution time of an
application, the longer it will take to finish its work. At large node counts the application
spends more time writing checkpoints, restarting, and redoing work than the actual work.
This decreases the throughput of the machine: fewer applications finish in a unit of time.

We present a method to increase resilience through redundant computation. This ap-
proach effectively increases the time between faults which results in fewer restarts, and less
rework. All of these lead to better system throughput. Each redundant node is coupled to
an active node and continues the computation should the active node fail, and vice versa.
Since the application can continue to work in the presence of some faults, it is now possible
to increase the checkpoint interval and allow the application to make uninterrupted progress
for a longer slice of time. The cost is a small performance degradation and the overhead of
using more nodes than the application and problem would need otherwise.

Redundant computing has been employed in real-time and high-reliability systems for
several decades [2]. With this project we wanted to answer a few specific questions. Is it
feasible to create a replicating infrastructure for a message-passing environment at user level?
If so, what are the exact requirements on the system software and the Reliability, Availability,
and Serviceability (RAS) system? The latter is of interest because, in light of the looming
large-machine-fault crisis, several research groups and manufacturers are reevaluating and
redesigning RAS systems for future machines.

Another critical issue is overhead of redundant computing in a message-passing environ-
ment. Additional messages are needed to enable redundant computing and that negatively
impacts performance. To avoid sharing a single point of failure between an active and a
redundant node, such as a fan or power-supply in the chassis, we would like the two nodes

11

to be physically as far away as possible from each other. This introduces additional delays
and network congestion that slows down synchronizations and application performance.

This paper makes four contributions:

1. We show how a user-level library can be designed and implemented that allows MPI
applications to use redundant nodes for computation (Sections 2 and 3).

2. We evaluate the message-passing overhead introduced by our library and find that it
is not significant for most applications (Chapter 4).

3. We created a tool that simulates an application’s work, checkpoint, restart, and rework
cycles and allows the modeling of various combinations of node count, MTBF, and work
to be performed (Chapter 5).

4. The results of these simulations let us determine when it is beneficial to use twice the
number of nodes to run in redundant mode (Chapter 6).

The paper closes with a related work section (Chapter 7), and a summary and future
work (Chapter 8).

12

Chapter 2

Design

The basic idea for the rMPI library is simple: mirror each active node in an application
and let the redundant nodes continue when an active node fails. This does not completely
eliminate application interruptions since both nodes in a bundle could fail. However, the
application now requires fewer restarts and therefore finishes more quickly. As is common
with checkpoint/restart, we assume that the application will restart on the same number of
nodes. That means spare nodes must be available or nodes must be repaired before a restart.

Figure 2.1 shows an example. An eight-node application is started on up to sixteen nodes.
Eight nodes are designated active nodes (dark green on the left in the figure) and carry out
the original computation. Additional nodes allocated are redundant nodes. Each redundant
node is paired with one specific active node and carries out the same computation as the
active node. Not every active node needs to have a redundant node assigned to it. Some
algorithms, such as work-stealing, may survive the failure of a worker node. In this case it
makes sense to replicate only the master coordinator node. For most applications where any
node failure terminates the application, all n nodes should be replicated.

Figure 2.1. Redundant nodes, if enabled, continue compu-
tation of active nodes that become disabled.

When a node fails, it is removed from the mapping and no further messages are sent to it,
or posted for it. If this happens during an operation in progress; e.g., while rMPI is waiting

13

for a message from a failed node, rMPI cancels the in-progress operation and updates its
internal state so it will no longer look for messages from that node.

Nodes A’, B’, and G’ in Figure 2.1 represent redundant nodes that did not get allocated
at start time, or failed during the run of the application. If an active node fails and it has a
redundant node allocated to it, the redundant node will take over the role of the active node.
Redundant node D’ in Figure 2.1 continues the work of active node D after it has failed.

Because of the message-passing guarantees MPI makes, an active node and its redundant
node cannot be completely symmetrical. They need to coordinate. For example, the order
in which unexpected messages arrive at C must match the order in which they arrive at C’.
Since some computations are message-order dependent, different arrival orders would lead
to different computations on the two nodes and therefore an inconsistent state.

The rMPI library is implemented at the profiling layer of an MPI implementation. The
design of rMPI is agnostic of the underlying MPI library and requires only a standard
conforming profiling layer.

2.1 Basic operation

rMPI must interact with the RAS system and check the status of pending operations. There-
fore, rMPI uses non-blocking operations to transfers data. We begin the description of the
rMPI design with MPI’s blocking send and receive operations.

The sending side is simple: the active and the redundant node perform the non-blocking
version of the send to the destination node. Node A sends to B, and redundant node A’ sends
to redundant node B’. These sends occur after consultation with a RAS system maintained
table to make sure the respective destinations are available and have not faulted yet. Then
these sends are repeated to the alternate destination: A to B’ and A’ to B. The process is
illustrated in Figure 2.2.

When performing a blocking receive the sequence of events depends on whether the
request is for a specific source or MPI ANY SOURCE. If the application has specified a specific
source, then both the active (B) and redundant (B’) nodes post up to two non-blocking
receives. The exact number depends on whether senders, A and A’, exist. Again, rMPI uses
a RAS system maintained table to determine the status of nodes.

The two non-blocking receives posted on each node, one for each node in the source
bundle, differ in their tag bits used. rMPI uses one high order bit in the tag to distinguish
messages from active and redundant nodes. rMPI receives both the active and the redundant
message into the buffer provided by the user. Since the data in the two arriving messages
is identical, no danger of corrupting the buffer exists. If multiple messages with the same
tag arrive, rMPI must make sure that the first active and first redundant arrive in the first
buffer, and the second active and second redundant in the second buffer. rMPI achieves this

14

Figure 2.2. Node A transmits a message to B in the pres-
ence of redundant nodes.

by setting an unused tag bit in all outgoing redundant messages and setting the same bit
for all receives of redundant messages.

The situation is illustrated in Figure 2.3. Node A sends messages msg1 and msg2 with
the same tag to node B. MPI message ordering semantics demand that msg1 arrives in buf1
and msg2 arrives in buf2. If the redundant messages msg1’ and msg2’ had the same tags
as the active messages, then it would be possible for msg1 and msg2 to both arrive in buf1
or buf2, since rMPI posts two receives for each buffer. Using an unused tag bit to mark
redundant messages avoids the possible mix-up.

Figure 2.3. Active and redundant messages with the same
tag must maintain the same order.

When the application uses MPI ANY SOURCE to receive messages, the situation gets more
complicated. Messages msg1 and msg2, if they come from different nodes, can each end up in

15

buf1 or buf2. Whatever that order, it must be preserved on the redundant node. To ensure
this order, rMPI performs the following steps: On the active receive node B, only one receive
with tag MPI ANY SOURCE is posted. When a message arrives for buf1, node B sends the MPI
envelope information to node B’ (if it exists). Node B’ uses the envelope information to post
a specific receive with the extra tag bit set to receive the redundant message from the node
that sent the first message to node B.

Node B in the meantime posts a fully specified receive for the redundant message. Node
B’ does the same to receive the redundant message from the sender’s redundant partner.
Depending on which redundant nodes are currently active, for the two messages from different
senders to node B, up to four messages arrive at B. Node B’, if it exists, ensures that it
receives the same four messages in the same order as B. In addition, there are short protocol
messages between B and B’ to coordinate the receives.

When the receive of a message and the redundant message is complete, a blocking receive
returns to the application. The status information about the receive on node B and B’ must
be updated such that both nodes report the same message source and tag, without the extra
bit set, to the user.

In general, rMPI must carefully keep track of node rank information and always let
redundant nodes return to the user the rank of their active partner. For example, MPI Comm -

rank() must return the same value on an active node and its redundant partner. Message
destinations and sources must be treated the same way.

Other point-to-point transport functions are implemented using the basic operations
described in this section. For non-blocking send operations, rMPI issues non-blocking sends
to the active and redundant destination nodes and completes them during wait and test
operations. Non-blocking receive operations are more complicated and described in the next
section.

2.2 Non-blocking receives: Preserving message order

We mentioned that preserving message order is important and that MPI ANY SOURCE is a
problem. It is an even bigger problem for non-blocking receives. As soon as rMPI posts the
first MPI ANY SOURCE receive it must wait to post the corresponding receive for the redundant
message until it has received the original message which will provide enough information to
filter incoming messages for the relevant redundant message.

Since the user requested a non-blocking receive, both nodes must return at this point. The
redundant node cannot post the receive yet, since it does not have the envelope information of
the original message to receive its messages. That means the redundant node must maintain
a queue of receives the user has posted but that rMPI has not been able to submit to the
underlying MPI library.

16

During test and wait operations, the active node may complete receives and send the
envelope information to the redundant node. The redundant node matches these envelopes
with the receives in its queue and posts the corresponding ones to complete those operations.

MPI guarantees message ordering between node pairs. In addition, rMPI needs to ensure
that all message are received in the same order on an active and its redundant node. MPI -

ANY SOURCE makes this especially difficult and introduces additional overhead. When the
queue of posted receives on the redundant node is empty, and while no further MPI ANY -

SOURCE receives are posted, new receive requests can be submitted to the MPI library right
away.

rMPI uses its own request handles to return to the user because many receives will not
have been submitted to the MPI library at the time rMPI needs to return a request handles
to the user. This means rMPI needs to maintain data structures that map its request handles
to the ones used by the underlying MPI implementation.

2.3 Probe, wait and test functions

Redundant nodes must return the same information as their active nodes for probe, wait,
and test functions. Since receives on a redundant node may not be posted wit the MPI
library yet, the implementation of these functions requires coordination between the active
and the redundant node.

An active node must test for both the original message and the redundant message
before it can report positively to a user request. It then sends that information to the
redundant node which waits for its message with a specific tag and source. Wait operations
are implemented by looping over the corresponding test operations.

2.4 Other functions plus groups

Some applications and benchmarks make decisions based on elapsed time. Therefore, MPI -

Wtime() needs to return the same value on active and redundant nodes. The active node
sends its MPI Wtime() value to the redundant node. Collective operations in rMPI call the
point-to-point operations internal to rMPI.

rMPI also needs to implement its own groups. Because rMPI re-maps ranks between
the user level and the underlying MPI implementation, rMPI needs to carefully track which
nodes and redundant nodes belong to which groups. This is necessary so that message
transfer functions and function calls like MPI Group rank() work properly.

The same is true for communicators and functions like MPI Comm dup(). Implementing
collectives, request handles, groups, and communicators inside rMPI reduces the underlying

17

MPI implementation to a simple transport mechanism and increases the complexity of rMPI
greatly.

2.5 Any-tag receives

We already describes the difficulty in handling MPI ANY SOURCE receives. It requires that
redundant nodes wait until the active node has completed a receive and can tell the redundant
node to post a receive for that specific source and tag. It also requires posted receive queues
on redundant nodes to keep track of receives that cannot be submitted to the MPI library
yet.

Receives using MPI ANY TAG are also problematic. Redundant messages use an extra tag
bit to identify them so that messages with the same tag will not mix with the corresponding
redundant messages. Using an extra tag bit assumes the underlying MPI implementation
provides a larger tag space than the 215 range mandated by the MPI standard. Most MPI
implementations provide a much larger tag space and rMPI can easily reserve one of those
bits.

The problem with this approach is that of course we cannot post a receive with a tag
of MPI ANY TAG and set the bit, which rMPI needs, at the same time. A similar scheme is
needed where redundant nodes wait to post MPI ANY TAG receives until such messages have
arrived at the active node. Due to this complexity, rMPI currently does not support receives
that use MPI ANY TAG and MPI ANY SOURCE simultaneously.

2.6 Dependence on RAS system

rMPI’s requirements of the RAS system are modest. We expect that there is a method
to learn whether a given node is available or has failed. This could be a table which rMPI
consults and the RAS system updates when a node’s status changes. Or an event mechanism
that informs rMPI whenever the RAS system detects a failed node.

rMPI also requires that messages to failed nodes will be consumed and do not deadlock
the network or cause other resources, such as status in the underlying MPI implementation,
to be consumed. Furthermore, failing nodes must not corrupt state on other nodes. I.e.,
corrupted or truncated messages in flight must be discarded. Most systems already do this
using CRC or other mechanisms to detect corrupt messages. The RAS system is responsible
that the machine stops the retry of messages from and to failed nodes.

In order not to increase buffer space requirements and limit memory copies, rMPI receives
both the original and the redundant message into the same buffer. We assume that two
identical messages arriving in same buffer will not “collide” and that, once both messages
have been received, the buffer memory will be in the same state it would have been had it

18

received only one or the other message. Again, we are not aware of any system today which
does not fulfill this requirement.

19

20

Chapter 3

Implementation

We implemented the design described in Chapter 2 and list in this section some things
that are specific to our current implementation. rMPI is implemented as a library that
inserts at the MPI profiling layer between the the application and the MPI library. It is
activated during MPI Init() at which time it partitions MPI COMM WORLD into a set of active
and redundant nodes. We performed this work on a Cray XT3 Red Storm system which
uses a version of MPICH [7, 6] for message transport. Although the design described in the
previous section does not depend on a specific version of MPI, our current implementation
of rMPI does. To accelerate prototyping we used several functions from MPICH, such as
the collectives, and adapted them to work inside rMPI. While doing this we left several
low-level, MPICH internal, function calls in place. Examples include functions to determine
the size and extent of data-types, figuring out whether a user-provided reduction function
was declared non-commutative, checking for thread-safety, and dealing with heterogeneous
systems (data type alignment and padding). That means rMPI will currently only work
running on top of the specific MPICH version we used.

Since few machines actually provide a RAS system that gives us the minimal set of
functions we listed in Section 2.6, we had to improvise. rMPI maintains a table of all nodes
in the application and whether they have failed. We use signals to alert rMPI of failed nodes
and can thus simulate the failure of nodes for testing purposes. However, since all nodes
still are part of a complete MPI application and due to the way MPICH interacts with the
XT3, simulated failed nodes cannot simply exit. They enter MPI Finalize() and wait for all
other nodes to finish. This also means that if we failed a node during an rMPI operation
that involves several MPI messages, we could get MPICH into an inconsistent state. Proper
integration of rMPI, a RAS system, and MPI would solve this problem.

When users start an application linked with rMPI they selects how many redundant nodes
to allocate and how to map them to the active nodes. An environment variable specifies
this mapping. The rMPI implementation imposes some restrictions on these mappings. The
redundant nodes must always be at end of the MPI COMM WORLD rank list. Not every active
node needs to be assigned a redundant partner. If nodes A, B, C, and D are active nodes,
then ABCD|A’B’C’D’, ABCD|A’B’, ABCD|D’C’B’A’, and ABCD|D’C’ are some of the many
valid mappings. At most one redundant node can be assigned to an active node.

21

22

Chapter 4

Evaluation

From the discussion in the previous sections it should be clear that using rMPI will add
overhead and lengthen the execution time of an application. To measure this overhead we
ran multiple tests with benchmarks and applications on a Cray XT3 Red Storm systems
at Sandia National Laboratories. Some of these systems have two or four CPUs per node
that share a single Seastar NIC. To make sure active and redundant nodes were on separate
nodes, and to avoid memory and bandwidth bottlenecks on the nodes themselves, we only
used one CPU on each node.

Redundant nodes should be physically as far away from their active node as possible. The
goal is to share as few hardware resources between these nodes as possible. Co-locating an
active and its redundant node on two cores of the same CPU makes sense from a performance
perspective, but not for reliability. Ideally, no power-supplies, fans, communication channels
to other nodes, boards, or chips are shared. However, that is difficult to achieve in today’s
machines. Furthermore, it is often impossible or difficult to assign MPI ranks to specific
nodes in the system.

Because of this and because of the impact a given allocation may have on the performance
of an application, we ran our tests in three different modes. The first mode, called forward,
assigns rank n/2 as a redundant node to rank 0, rank n/2+1 to rank 1, and so on resulting in
a mapping like this: ABCD|A’B’C’D’. Reverse mode is ABCD|D’C’B’A’, and shuffle mode
(Fisher/Yates) is a random order such as ABCD|C’B’D’A’.

We expect that the rMPI library adds some overhead, even if no redundant nodes are
used, due to the checks whether there are redundant nodes available and the way we im-
plemented the collective operations. We compare this baseline overhead to the native per-
formance when the rMPI library is not linked in at all. We then run in a fully redundant
configuration using the forward, reverse, and shuffle mappings.

4.1 Benchmarks

The micro-benchmarks we expect to see most impacted by the overhead of rMPI are band-
width and latency. Bandwidth because we send twice as much data, or four times as much
data when traffic among the additional redundant nodes is also counted. Latency is affected

23

because of the logic overhead inside rMPI and the additional messages.

Our bandwidth experiment is shown in Figure 4.1. The first observation is that baseline,
when no redundant messages are sent, does not lower bandwidth appreciably compared
to native operation. When redundant messages are sent, the bandwidth measured by the
benchmark drops by about 60%. This halving of bandwidth is expected since we are sending
twice as much data through a given NIC. Since bandwidth and latency tests are between
two nodes, changing the mappings does not have much effect outside the error-bars of each
run.

B
an

dw
ith

D
iff

er
en

ce
 to

 n
at

iv
e

Message size

Base Base % Forward Forward % Native

0.0 B/s

200.0 MB/s

400.0 MB/s

600.0 MB/s

800.0 MB/s

1.0 GB/s

1.2 GB/s

1.4 GB/s

1.6 GB/s

1.8 GB/s

2.0 GB/s

1 B
10 B

100 B

1 kB
10 kB

100 kB

1 M
B

10 M
B

0 %

20 %

40 %

60 %

80 %

100 %

Figure 4.1. Bandwidth comparison. Native is benchmark
without the rMPI library. Base is with rMPI, but no redun-
dant nodes. Forward is fully redundant.

Figure 4.2 shows the results of our latency tests. Again, baseline shows some rMPI
library overhead for smaller messages but it becomes negligible as message size increases.
When we add redundant nodes, the impact is much more significant. Just as rMPI halves
the bandwidth achievable, it also doubles the latency since, basically, we send two messages
for each one the application sends. (Two more messages are injected into the network by
the redundant node.) In addition, there is overhead for the coordination protocol.

This coordination overhead between active and redundant nodes becomes more severe
when MPI ANY SOURCE is used. Remember from the discussion in Chapter 2, MPI ANY SOURCE

causes redundant nodes to delay positing of receives until the active node has received its
message and informed the redundant node. In Figure 4.3 we see the result of this. Latency
increases by a factor of 1.5.

24

La
te

nc
y

D
iff

er
en

ce
 to

 n
at

iv
e

Message size

Base Base % Forward Forward % Native

4.0 us

6.0 us

8.0 us

10.0 us

12.0 us

14.0 us

16.0 us

18.0 us

20.0 us

1 B
10 B

100 B

1 kB
10 kB

0 %

20 %

40 %

60 %

80 %

100 %

Figure 4.2. Latency comparison.

La
te

nc
y

D
iff

er
en

ce
 to

 n
at

iv
e

Message size

Base Base % Forward Forward % Native

0.0 s

5.0 us

10.0 us

15.0 us

20.0 us

25.0 us

30.0 us

1 B
10 B

100 B

1 kB
10 kB

0 %

20 %

40 %

60 %

80 %

100 %

120 %

140 %

160 %

Figure 4.3. Latency using MPI ANY SOURCE.

25

4.2 Collectives

In addition to the point-to-point benchmarks described in Section 4.1, we also measured
the performance of four collective operations benchmarks. We ran each test ten times,
except native and baseline, which we ran five times each. Because of the current method
of implementing collectives and the performance overhead of rMPI, we expect collective
operations to perform poorly. Figure 4.4, Figure 4.5, Figure 4.6, and Figure 4.7, Figure 4.8
shows the performance graphs for broadcast, reduce, allreduce, alltoall, and barrier for the
largest node counts we ran. Figure 4.9, Figure 4.10, Figure 4.11, and Figure ?? shows the
performance of a redundant broadcast, reduce, allreduce, and all-to-all varying both the
number of nodes the operation ran on as well as the size in bytes of the operation.

E
xe

cu
tio

n
tim

e

D
iff

er
en

ce
 to

 n
at

iv
e

Message size

Base
Base %

Reverse
Reverse %

Shuffle
Shuffle %

Forward
Forward %

Native

0.0 s

5.0 ks

10.0 ks

15.0 ks

20.0 ks

25.0 ks

30.0 ks

35.0 ks

40.0 ks

45.0 ks

1.0 B
10.0 B

100.0 B

1.0 kB

10.0 kB

100.0 kB

1.0 M
B

0 %

100 %

200 %

300 %

400 %

500 %

Figure 4.4. Broadcast performance on 2,048 nodes.

4.3 Applications

Performance loss introduced by the rMPI library is large for simple point-to-point bench-
marks. In this section we investigate how this impacts applications. We ran tests using four
different applications.

CTH [4] is a multi-material, large deformation, strong shock wave, solid mechanics code
developed by Sandia National Laboratories with models for multi-phase, elastic viscoplastic,
porous, and explosive materials. CTH supports three-dimensional rectangular meshes; two-
dimensional rectangular, and cylindrical meshes; and one-dimensional rectilinear, cylindrical,

26

E
xe

cu
tio

n
tim

e

D
iff

er
en

ce
 to

 n
at

iv
e

Message size

Base
Base %

Reverse
Reverse %

Shuffle
Shuffle %

Forward
Forward %

Native

0.0 s

5.0 ks

10.0 ks

15.0 ks

20.0 ks

25.0 ks

30.0 ks

35.0 ks

40.0 ks

45.0 ks

50.0 ks

1.0 B
10.0 B

100.0 B

1.0 kB

10.0 kB

100.0 kB

1.0 M
B

0 %

100 %

200 %

300 %

400 %

500 %

600 %

700 %

Figure 4.5. Reduce performance on 2,048 nodes.

E
xe

cu
tio

n
tim

e

D
iff

er
en

ce
 to

 n
at

iv
e

Message size

Base
Base %

Reverse
Reverse %

Shuffle
Shuffle %

Forward
Forward %

Native

0.0 s

20.0 ks

40.0 ks

60.0 ks

80.0 ks

100.0 ks

120.0 ks

1.0 B
10.0 B

100.0 B

1.0 kB

10.0 kB

100.0 kB

1.0 M
B

0 %

200 %

400 %

600 %

800 %

1000 %

Figure 4.6. Allreduce performance on 2,048 nodes.

27

E
xe

cu
tio

n
tim

e

D
iff

er
en

ce
 to

 n
at

iv
e

Message size

Base
Base %

Reverse
Reverse %

Shuffle
Shuffle %

Forward
Forward %

Native

0.0 s

500.0 ks

1.0 Ms

1.5 Ms

2.0 Ms

2.5 Ms

3.0 Ms

3.5 Ms

4.0 Ms

4.5 Ms

5.0 Ms

1.0 B
10.0 B

100.0 B

1.0 kB

10.0 kB

100.0 kB

1.0 M
B

0 %

50 %

100 %

150 %

200 %

250 %

300 %

350 %

400 %

Figure 4.7. Alltoall performance on 512 nodes.

E
xe

cu
tio

n
tim

e

D
iff

er
en

ce
 to

 n
at

iv
e

Nodes

Base
Base %

Reverse
Reverse %

Shuffle
Shuffle %

Forward
Forward %

Native

0.0 s

100.0 s

200.0 s

300.0 s

400.0 s

500.0 s

600.0 s

700.0 s

4 8 16 32 64 128
256

512
1,024

2,048

0 %

50 %

100 %

150 %

200 %

250 %

300 %

350 %

400 %

450 %

Figure 4.8. Barrier performance.

28

 4 8 16 32 64 128 256 512 1024 2048
Nodes 1

10
100

1 k
10 k

100 k
1 M

10 M

Message Size
 (bytes)

0

50

100

150

200

250

300

350

P
er

ce
nt

 S
lo

w
do

w
n

0
50
100
150
200
250
300
350

P
er

ce
nt

 S
lo

w
do

w
n

(a) Forward

 4 8 16 32 64 128 256 512 1024 2048
Nodes 1

10
100

1 k
10 k

100 k
1 M

10 M

Message Size
 (bytes)

0
50

100
150
200
250
300
350
400
450

P
er

ce
nt

 S
lo

w
do

w
n

0
50
100
150
200
250
300
350
400
450

P
er

ce
nt

 S
lo

w
do

w
n

(b) Reverse

 4 8 16 32 64 128 256 512 1024 2048
Nodes 1

10
100

1 k
10 k

100 k
1 M

10 M

Message Size
 (bytes)

0
50

100
150
200
250
300
350
400
450
500

P
er

ce
nt

 S
lo

w
do

w
n

0
50
100
150
200
250
300
350
400
450
500

P
er

ce
nt

 S
lo

w
do

w
n

(c) Shuffle

Figure 4.9. Performance slowdown of redundant MPI -

Bcast() versus native for forward, reverse and shuffle map-
pings

29

 4 8 16 32 64 128 256 512 1024 2048
Nodes 1

10
100

1 k
10 k

100 k
1 M

10 M

Message Size
 (bytes)

0

50

100

150

200

250

300

350

P
er

ce
nt

 S
lo

w
do

w
n

0
50
100
150
200
250
300
350

P
er

ce
nt

 S
lo

w
do

w
n

(a) Forward

 4 8 16 32 64 128 256 512 1024 2048
Nodes 1

10
100

1 k
10 k

100 k
1 M

10 M

Message Size
 (bytes)

0
50

100
150
200
250
300
350
400
450
500
550

P
er

ce
nt

 S
lo

w
do

w
n

0
50
100
150
200
250
300
350
400
450
500
550

P
er

ce
nt

 S
lo

w
do

w
n

(b) Reverse

 4 8 16 32 64 128 256 512 1024 2048
Nodes 1

10
100

1 k
10 k

100 k
1 M

10 M

Message Size
 (bytes)

0
50

100
150
200
250
300
350
400
450
500

P
er

ce
nt

 S
lo

w
do

w
n

0
50
100
150
200
250
300
350
400
450
500

P
er

ce
nt

 S
lo

w
do

w
n

(c) Shuffle

Figure 4.10. Performance slowdown of redundant MPI -

Reduce() versus native for forward, reverse and shuffle map-
pings

30

 4 8 16 32 64 128 256 512 1024 2048
Nodes 1

10
100

1 k
10 k

100 k
1 M

10 M

Message Size
 (bytes)

0
100
200
300
400
500
600
700
800
900

P
er

ce
nt

 S
lo

w
do

w
n

0
100
200
300
400
500
600
700
800
900

P
er

ce
nt

 S
lo

w
do

w
n

(a) Forward

 4 8 16 32 64 128 256 512 1024 2048
Nodes 1

10
100

1 k
10 k

100 k
1 M

10 M

Message Size
 (bytes)

0
100
200
300
400
500
600
700
800
900

1 k

P
er

ce
nt

 S
lo

w
do

w
n

0
100
200
300
400
500
600
700
800
900
1 k

P
er

ce
nt

 S
lo

w
do

w
n

(b) Reverse

 4 8 16 32 64 128 256 512 1024 2048
Nodes 1

10
100

1 k
10 k

100 k
1 M

10 M

Message Size
 (bytes)

0
100
200
300
400
500
600
700
800
900

1 k

P
er

ce
nt

 S
lo

w
do

w
n

0
100
200
300
400
500
600
700
800
900
1 k

P
er

ce
nt

 S
lo

w
do

w
n

(c) Shuffle

Figure 4.11. Performance slowdown of redundant MPI -

Allreduce() versus native for forward, reverse and shuffle
mappings

31

and spherical meshes, and uses second-order accurate numerical methods to reduce dispersion
and dissipation and to produce accurate, efficient results. It is used for studying armor/anti-
armor interactions, warhead design, high explosive initiation physics, and weapons safety
issues.

Figure 4.12 shows the performance of CTH on node counts up to 2,048. That means
CTH uses 4,096 nodes when running in fully redundant mode. As we observed with the
benchmarks, simply adding the rMPI library without using redundant nodes does not greatly
impact the performance.

E
xe

cu
tio

n
tim

e

D
iff

er
en

ce
 to

 n
at

iv
e

Nodes

Base
Base %

Reverse
Reverse %

Shuffle
Shuffle %

Forward
Forward %

Native

240.0 s

260.0 s

280.0 s

300.0 s

320.0 s

340.0 s

360.0 s

380.0 s

400.0 s

420.0 s

440.0 s

4 8 16 32 64 128
256

512
1,024

2,048

0 %

20 %

40 %

60 %

80 %

100 %

Figure 4.12. CTH performance.

Each curve in Figure 4.12 and all other graphs in this section, represents ten runs of each
benchmark and application (five runs each for native and baseline). We use error-bars to show
the variations between runs. The performance impact of using redundant nodes with CTH,
which is communication intensive, is less than 20%. A forward mapping of redundant nodes
to active nodes is not significantly different from a reverse or shuffle mapping. Although the
shuffle mapping seems to produce more repeatable and slightly better results.

SAGE, SAIC’s Adaptive Grid Eulerian hydro-code, is a multi-dimensional, multi-material,
Eulerian hydrodynamics code with adaptive mesh refinement that uses second-order accu-
rate numerical techniques [12]. It represents a large class of production applications at Los
Alamos National Laboratory. It is a large-scale parallel code written in Fortran 90 and uses
MPI for inter-processor communications. It routinely runs on thousands of processors for
months at a time. The SAGE performance is shown in Figure 4.13. When we enable full
redundancy, we lose about 10% in performance on large node counts.

LAMMPS [15] is a classical molecular dynamics code developed at Sandia. For our

32

E
xe

cu
tio

n
tim

e

D
iff

er
en

ce
 to

 n
at

iv
e

Nodes

Base
Base %

Reverse
Reverse %

Shuffle
Shuffle %

Forward
Forward %

Native

300.0 s

400.0 s

500.0 s

600.0 s

700.0 s

800.0 s

900.0 s

1.0 ks

1.1 ks

4 8 16 32 64 128
256

512
1,024

2,048

0 %

20 %

40 %

60 %

80 %

100 %

Figure 4.13. SAGE performance.

experiments we use the embedded atom method (EAM) metallic solid input script which is
used by the Sequoia benchmark suite. The LAMMPS code and input scripts are provided
on the LAMMPS web site [16]. For this experiment we ran LAMMPS in weak-scaling mode.
The performance impact of rMPI on LAMMPS is shown in Figure 4.14. It is less than 3%
independent of the number of nodes used.

The HPCCG mini-application, part of the Mantevo project [17], is a simple sparse con-
jugate gradient solver designed to capture an important component of Sandia’s production
workload. The majority of its runtime is spent performing sparse matrix-vector multiplies,
where the sparse matrix is encoded in compressed row storage format. The interprocessor
communication is minimal, requiring exchange of nearest neighbor boundary information, in
addition to global MPI Allreduce() operations required for the scalar computations in the
CG algorithm. The performance impact on HPCCG when using rMPI and redundant nodes
is minimal. The results are shown in Figure 4.15.

4.4 Evaluation summary

Results on different systems will vary with the capacity and performance of the network,
application and data sets used, as well as the parallelism and architecture of the individual
nodes. Nevertheless, the numbers presented here are representative for a large-scale machine
and should be comparable to similar configurations on other machines.

While micro-benchmarks clearly show the overhead introduced by rMPI, the impact on

33

E
xe

cu
tio

n
tim

e

D
iff

er
en

ce
 to

 n
at

iv
e

Nodes

Base
Base %

Reverse
Reverse %

Shuffle
Shuffle %

Forward
Forward %

Native

315.0 s

320.0 s

325.0 s

330.0 s

335.0 s

340.0 s

345.0 s

350.0 s

4 8 16 32 64 128
256

512
1,024

2,048

0 %

20 %

40 %

60 %

80 %

100 %

Figure 4.14. LAMMPS performance.

E
xe

cu
tio

n
tim

e

D
iff

er
en

ce
 to

 n
at

iv
e

Nodes

Base
Base %

Reverse
Reverse %

Shuffle
Shuffle %

Forward
Forward %

Native

0.0 s

5.0 s

10.0 s

15.0 s

20.0 s

25.0 s

30.0 s

35.0 s

4 8 16 32 64 128
256

512
1,024

0 %

20 %

40 %

60 %

80 %

100 %

Figure 4.15. HPCCG performance.

34

application is much less severe. It ranges from 20% overhead for CTH, a communication
intensive application, to almost no overhead for HPCCG and LAMMPS. In the next section
we analyze whether it is worth it to pay the price of this performance overhead and use twice
as many nodes to reduce the number of application interruptions.

35

36

Chapter 5

Analysis

Since rMPI introduces some message-passing overhead and requires up to twice the number
of nodes to perform the same amount of work, it is only beneficial to use it if it can improve
the throughput of a system. The throughput of a system is determined by how much work
each job does, how many nodes it needs, and how much overhead it has due to interrupts,
restarts, checkpoints, and rework.

5.1 The lifetime of an application

Figure 5.1 illustrates the phases an application goes through in order to complete a cer-
tain amount of work. After it starts running, the application does some of its work and
then pauses to write a checkpoint to stable storage. Once it has written a checkpoint, the
application continues with its work.

Figure 5.1. Lifetime of an application.

When an interrupt (application failure) occurs, the application restarts and has to redo
the work that was lost since the last successful checkpoint. Making progress on the work load
continues after that until it is time again to write another checkpoint, or a new interruption
occurs.

37

Interrupts can occur during any phase of the application. If an interrupt occurs during a
work phase, the work since the last successful checkpoint is wasted and needs to be redone
after the application restarts. An interrupt during the writing of a checkpoint is in some
sense the worst case. Even though a whole work phase has been completed, all of it needs
to be repeated, since saving was unsuccessful.

It is very common for applications to schedule checkpoints at regular, fixed-duration,
intervals. Given the knowledge of how long it takes to write a checkpoint δ and the ap-
plication’s Mean Time Between Failures (MTBF) Θ (based on the number of nodes), it is
possible to calculate an optimal checkpoint interval τopt [3]:

τ̃opt =

√
2δΘ

[

1 + 1
3

√

δ

2Θ
+ δ

18Θ

]

− δ for δ < 2Θ

Θ for δ ≥ 2Θ
(5.1)

For all of our work, we assume that the checkpoint interval τopt is calculated using Equa-
tion 5.1. The checkpoint interval applies to work and rework phases. If the rework phase
does not consume the entire interval, then the remaining time until the next checkpoint is
used to continue regular work. When all the successfully completed work phases add up to
the total work time an application needs to perform, then the application will end.

From Figure 5.1 it is clear that an application, even if it gets interrupted rarely, will
need more time to complete than the actual amount of work suggests. If interrupts are fre-
quent, then a considerable amount of the total application time may be used for checkpoints,
restarts, and rework.

5.2 Behavior of rMPI

With the help of the rMPI library we hope to reduce the number of interrupts an application
experiences and, therefore, the time required to complete the work. By reducing the number
of interrupts we are improving the MTBF the application experiences. This in turn has an
impact on τopt from Equation 5.1. The resulting, longer checkpoint interval further improves
the efficiency of the application.

Using rMPI reduces the number of application interruptions because the application can
continue as long as at least one node in each bundle of nodes is still working. We created a
simulation of rMPI to learn how many fewer application interruptions we might expect when
compared to running an application without redundant. In the latter case, the application
will have to restart after each node fault.

The probability that a fault causes an application interrupt when the fault affects a node
without a redundant partner is 1. Using a redundant nodes decreases that probability. Since
we are assuming, just as in the non-redundant case, that the application will be restarted
on the same number of nodes, the calculation of the probability that a failure will cause an

38

application interrupt is not easy. For this reason we we wrote a model of rMPI to help us
determine the fault to interrupt ratio.

Figure 5.2 shows the model we created. The model is configured with the number of
active and redundant nodes as parameters. We then feed it with a certain number of faults.
For each fault, the rMPI model pseudo randomly picks a node that is killed by that fault.
If that node has a redundant partner that is still alive, the rMPI model continues killing a
node for each additional fault. When a fault kills the last node in a bundle, the rMPI model
records that occurrence and “restarts” the application; i.e., all active and redundant nodes
are reset to an “alive” state. This continues until the rMPI model has processed all faults.
The model prints the number of faults and resulting application interrupts at the end.

Figure 5.2. Simulating the impact of faults on the number
of application interrupts.

For our initial evaluation of rMPI behavior we generate 100 faults for each node on
average. When simulating a 10,000-node application, we generate 100 ∗ 10,000 faults to feed
into the rMPI model. When simulating a fully redundant application we generate twice that
many faults, since application uses twice as many nodes.

If there are no redundant nodes, each fault causes an application interrupt. The ratio
of interrupts to faults; i.e., the probability that a fault causes an application interrupt, will
always be 1 (top line in Figure 5.3). With redundant nodes, some faults will not cause an
application interrupt and the interrupt/fault ratio will be less than 1 (sloping bottom line
in Figure 5.3).

When running in fully redundant mode, the probability of an application experiencing
a fault decreases if it is run on a higher number of nodes. This is surprising at first, but a
thought experiment can help with understanding this behavior.

The very first fault will have no effect on the application, since the redundant node that
is in the same bundle as the faulted one will continue the work. When a second fault occurs,
one of the remaining n − 1 nodes will fail. The probability that the second fault affects the
second node in the bundle where the first fault occurred is 1/(n − 1). As we increase n,
it is less and less likely that the second fault falls within the same bundle and causes an
application interrupt.

39

P
ro

ba
bi

lit
y

of
 a

pp
lic

at
io

n
in

te
rr

up
t (

in
te

rr
up

ts
/fa

ul
ts

)

Number of nodes

No redundancy
N redundant nodes

0.001

0.010

0.100

1.0

100
200

500
1,000

2,000
5,000

10,000

20,000

50,000

100,000

Figure 5.3. Ratio of application interrupts to node faults.

For the experiment shown in Figure 5.3 we generated 100 faults per node in the simula-
tion. This is somewhat unrealistic, but gave us enough data points to calculate a interrupts
to faults ratio.

In the next section we describe the simulation we used to to obtain the numbers in
Table 5.1. For now let us explain what they mean. The rMPI library allows us to allocate
up to N additional nodes for redundant computations. We chose to look at no redundant
nodes, 1/4, 1/2, 3/4, and N redundant nodes. The latter being fully redundant and the
other cases are when only some of the active nodes have a redundant partner.

The numbers in Table 5.1 are for an application that needs to complete 168 hours of
work (a week). We simulated a system that has an MTBF of 43,800 hours (about five years)
for each node. The table shows that as more nodes are used, the number of application
interrupts also increases. The first column shows how many nodes the application sees.
That number is higher when the redundant nodes are included. For a fully redundant run
on 50,000 nodes, 100,000 nodes are used, all of which can fail and contribute to the overall
application MTBF.

Table 5.1 shows that an application running without redundancy on 50,000 nodes, experi-
ences 550 interrupts. The same application experiences zero interrupts when full redundancy
is enabled in rMPI (last column of the table). Different runs of the simulation and the distri-
bution properties of faults make it so that that number is not always zero. But, it is always
very low when compared to the non-redundant case. Note the big increase in the number of
interrupts between 100,000 and 500,000 nodes.

40

Table 5.1. Number of interrupts seen by an application
with various levels of redundancy.

Num. nodes Level of redundancy
none 1/4 1/2 3/4 full

100 2 0 0 0 0
200 3 2 1 0 0
500 3 2 2 1 0

1,000 2 2 1 1 0
2,000 9 5 3 2 0
5,000 35 27 12 7 0

10,000 53 49 24 18 1
20,000 117 84 52 29 0
50,000 550 339 185 87 0

100,000 1,658 1,103 497 177 1
200,000 7,269 3,713 1,693 531 2
500,000 135,905 47,550 13,819 2,882 7

1,000,000 992,103 152,113 17,115 13

We ran a simulation of an application that requires 5,000 hours (about seven months)
to complete with the same node MTBF of five years as the system shown in Table 5.1. The
result is shown in Figure 5.4. Without redundancy on a 50,000-node system, the application
will have to restart 14,215 times. By dedicating another 50,000 nodes to the application run,
that number drops to 39.

We will analyze how such a drastic reduction in the number of interrupts an application
experiences impacts its execution time after we describe our simulator in the next section.

5.3 Simulating an application

In Section 5.1 we described the lifetime of an application. Using Figure 5.1 as a guide
we created a simulator to help us understand the effect of using redundant nodes on total
execution time of an application. The application simulator mimics the interaction of an
application with the system it runs on. The state diagram in Figure 5.5 shows that the
simulator, just like a real application, transitions from working on a problem, to check-
pointing to stable storage, and back to working again.

When an interrupt occurs, either during a work or checkpoint phase, a restart from the
last successful checkpoint is initiated. The work that was lost since the last checkpoint has
to be redone in the rework phase. After that, the regular cycle of work and check-pointing
continues.

41

N
um

be
r

of
 a

pp
lic

at
io

n
in

te
rr

up
ts

Number of nodes

No redundant nodes
1/4 redundant nodes
1/2 redundant nodes
3/4 redundant nodes

N redundant nodes

0.0

50.0 k

100.0 k

150.0 k

200.0 k

250.0 k

100
200

500
1,000

2,000
5,000

10,000

20,000

50,000

100,000

200,000

Figure 5.4. Number of interrupts seen by an application
using various levels of redundancy.

Figure 5.5. State diagram of application simulator.

42

The transitions to the checkpoint state occur whenever the checkpoint interval timer
expires. That timer is reset in the checkpoint state. Our simulator uses Equation 5.1 to
calculate the optimal checkpoint interval. When the amount of successfully completed work
reaches the simulated workload, the simulator enters the end state and stops. At that point
it outputs the amount of time spent in each state and various other statistics it accumulated
during the run.

One of the parameters to control the simulator is the MTBF of the simulated system.
The simulator generates random events that are exponentially distributed around the MTBF.
Each event is a fault that we feed into an rMPI model. The model determines which node
has failed and whether the application receives an interrupt or can continue doing its work.
If the model determines that an application interrupt should occur, it forces a transition to
the restart state in the state diagram in Figure 5.5. These transitions are indicated by the
exclamation point signs in the diagram. We are assuming that for a restart, the same number
of nodes will be available again. This is the same assumption that is made for applications
using checkpoint/restart running without redundant nodes.

The MTBF parameter for the application simulator is the MTBF of a single node. The
fault generator within the simulator generates faults for the individual nodes. Therefore,
we expect the overall MTBF, the system MTBF, to be much smaller than the one for
an individual node. The simulator has the option to output the times of each individual
interrupt and we can calculate the mean time between these interrupts. This is shown in
Figure 5.6. The state machine requests the next time an application interrupt will occur
from the rMPI model. The fault generator generates exponentially distributed faults for each
node. The rMPI model then determines at what time to cause an application interrupt. It
will be the earliest time both nodes in a bundle have failed. The application interrupt times
are fed into a analysis module which computes the system MTBF and prints various statistics
about the run.

Figure 5.6. Block diagram of the application simulator.

When there are no redundant nodes, each node fault causes an application interrupt.

43

The system MTBF for n components in series (all depending on all others) is [11]

Θsys =
1

1
Θ1

+ 1
Θ2

+ . . . + 1
Θn

(5.2)

If we assume that the MTBF for all the nodes is the same (Θ1 = Θ2 = . . . Θn), then the
system MTBF is

Θsys =
1

1
Θ1

+ 1
Θ2

+ . . . + 1
Θn

=
1

n 1
Θ

=
Θ

n
(5.3)

When calculating the mean of the times output by the application simulator for a given
number of nodes without redundant partners, we get the result mandated by Equation 5.3.
This indicates that our simulator which uses the node MTBF, correctly simulates the MTBF
of the complete system.

5.4 Application behavior

We will now use the simulator described in the previous section to investigate the behavior
of applications on large number of nodes. For our first experiment we chose an application
that needs to get 168 hours of work done. That amount of work is not uncommon for large-
scale simulations. We assume the amount of work per node remains constant, independent
of the number of nodes used. Such weak-scaling applications are common, but our assumed
perfect efficiency is not. Each application exhibits its own scaling behavior. Since we are
not simulating a specific application, we use the simplifying assumption of perfect scaling.
For real applications with less than perfect scaling the situation described below gets even
worse and the use of redundant nodes becomes even more beneficial.

For the node MTBF we chose 43,800 hours; about five years. Manufacturers often claim
a higher MTBF for their products. However, [18] found an MTBF of about four years more
realistic for a large high-performance-computing site. The MTBF we are considering is not
purely due to hardware faults. Any interruptions that causes an application restart adds
to the overhead an application experiences. Even scheduled maintenance is not handled
properly by many applications and causes work to be lost. For comparisons we also include
some results assuming an MTBF of one year. While probably not common, it has been used
in the literature [5], and provides a lower bound on what to expect.

Figure 5.7 shows how much time, as a percentage, a 168-hour work application spends
working, writing checkpoints, restarting, and redoing work that was lost. We see that, on
large numbers of nodes, the amount of time spent doing the actual work drops below 50%.
The dark green bars represent the amount of work plus work that was subsequently lost due

44

to an application interrupt. For our example that means the application performed more
than 168 hours of work to complete its task. Figure 5.8 shows and example for a 700-hour,
five-year MTBF application.

E
la

ps
ed

 ti
m

e

Number of nodes

work
ckpt
rework
restart

0%

20%

40%

60%

80%

100%

100
200

500
1,000

2,000
5,000

10,000

20,000

50,000

100,000

200,000

Figure 5.7. An application that completes 168 hours of
work on a system with a five-year node MTBF.

The amount of work does not seem to influence these percentages greatly. Lowering the
MTBF, however, has a large impact. A 5,000-hour (about six months) application on a
system with a one-year node MTBF spends less tan 20% of its total execution time making
progress on 50,000 nodes. Most of the time is spent in restarts. Figure 5.9 shows this
graphically.

The graph in Figure 5.10 shows the 168-hour application again but using the total elapsed
hours for the y-axis. It requires more than twice that time to complete its task. The situation
for the 5,000-hour application with an MTBF of one year per node is even worse. On
50,000 nodes it runs twelve times longer than the amount of work it is assigned to complete
(Figure 5.11.

In Section 5.2 we have seen that using redundant nodes results in a drastic reduction
in application interrupts. Given that, on large number of nodes, an application runs many
times as long as the amount of work it is completing due to frequent interrupts and restarts,
using redundant nodes should be very beneficial for large scale applications.

Figure 5.12 shows the drastic reduction in execution time side by side with the data from
Figure 5.10. When running with redundant nodes there are very few restarts which almost
eliminates restart and rework time. Note that in the data we present in this section, we are
not considering the slowdown our rMPI library introduces, since it is application specific

45

E
la

ps
ed

 ti
m

e

Number of nodes

work
ckpt
rework
restart

0%

20%

40%

60%

80%

100%

100
200

500
1,000

2,000
5,000

10,000

20,000

50,000

100,000

200,000

Figure 5.8. Percentage of time spent in each phase of a
long-running application. This graph is for 700-hours of work
with a node MTBF of five years.

E
la

ps
ed

 ti
m

e

Number of nodes

work
ckpt
rework
restart

0%

20%

40%

60%

80%

100%

100
200

500
1,000

2,000
5,000

10,000

20,000

50,000

100,000

Figure 5.9. An application that completes 5,000 hours of
work on a system with a one-year node MTBF.

46

E
la

ps
ed

 ti
m

e
in

 h
ou

rs

Number of nodes

work
ckpt
rework
restart

0.0

200.0

400.0

600.0

800.0

1.0 k

1.2 k

1.4 k

1.6 k

100
200

500
1,000

2,000
5,000

10,000

20,000

50,000

100,000

200,000

Figure 5.10. An application that completes 168 hours of
work on a system with a five-year node MTBF.

E
la

ps
ed

 ti
m

e
in

 h
ou

rs

Number of nodes

work
ckpt
rework
restart

0.0

50.0 k

100.0 k

150.0 k

200.0 k

250.0 k

300.0 k

350.0 k

400.0 k

100
200

500
1,000

2,000
5,000

10,000

20,000

50,000

100,000

Figure 5.11. An application that completes 5,000 hours of
work on a system with a one-year node MTBF.

47

and dwarfed by the time savings when running on large numbers of nodes.

E
la

ps
ed

 ti
m

e
in

 h
ou

rs

Number of nodes

work
ckpt
rework
restart

0.0

200.0

400.0

600.0

800.0

1.0 k

1.2 k

1.4 k

1.6 k

100
200

500
1,000

2,000
5,000

10,000

20,000

50,000

100,000

200,000

100
200

500
1,000

2,000
5,000

10,000

20,000

50,000

100,000

200,000
Full redundancyNo redundancy

Figure 5.12. An application that completes 168 hours of
work on a system with a five-year node MTBF. No and full
redundancy shown.

The number of nodes on the x-axis of Figure 5.12 is what the application sees. In fully
redundant mode, it uses twice that many. Figure 5.13 shows the totals for our 5,000 hour
application and a one-year node MTBF. Compare to Figure 5.11

Table 5.2 gives the detailed numbers for the 5,000-hour and one-year MTBF case with
different level of redundancy.

5.5 Validating the simulation

With any simulation, validation is important. Because of the time scales involved in run-
ning such large applications and the scarcity of measured data, it is impractical for us to
empirically evaluate the rMPI library. However, we can scrutinize our application simulator
from various angles and arrive at the conclusion that it accurately reflects the behavior of
an application on a massively parallel system,

In Section 5.3 we explained that the application simulator takes the node MTBF as one
of its input parameters. It simulates node failures over the time an application needs to
complete its task. We can output the time of each application interruption and calculate
the mean. When we do that for simulations without redundant nodes we get the application

48

E
la

ps
ed

 ti
m

e
in

 h
ou

rs

Number of nodes

work
ckpt
rework
restart

0.0

2.0 k

4.0 k

6.0 k

8.0 k

10.0 k

12.0 k

14.0 k

16.0 k

18.0 k

20.0 k

100
200

500
1,000

2,000
5,000

10,000

20,000

50,000

100,000

200,000

Figure 5.13. An application that completes 5,000 hours
of work on a system with a one-year node MTBF and full
redundancy.

Table 5.2. Number of interrupts seen by a 5,000-hour ap-
plication and a one-year MTBF.

Num. nodes Level of redundancy
none 1/4 1/2 3/4 full

100 72 58 37 23 6
200 122 95 61 36 7
500 345 239 160 89 16

1,000 771 539 363 184 22
2,000 1,658 1,166 794 358 35
5,000 5,292 3,692 2,240 998 61

10,000 14,313 9,169 5,541 2,459 92
20,000 47,235 28,622 14,997 5,913 143
50,000 379,640 181,632 76,535 23,959 302

100,000 4,047,758 1,376,461 406,890 89,265 548
200,000 4,439,041 503,426 1,127
500,000 3,337

1,000,000 9,035

49

MTBF as calculated by Equation 5.3. This is a good indication that the rMPI model within
the simulator is doing its job correctly.

The rMPI model within the application is only 135 lines of code including white space
and comments. There are 52 lines with a semicolon, which is often used to count statements.
Therefore, a code inspection of the rMPI model is not difficult and gives us confidence in
that portion of the code.

We use the default random number generator from the GNU Scientific Library (GSL) to
generate the expected time for the next fault a node will experience. We use gsl ran exponential()

to retrieve exponentially distributed values with a mean of the node MTBF from the random
number generator.

We already mentioned Jon Daly’s paper [3] where he calculates an optimal checkpoint
interval (Equation 5.1). His Equation 20, which we repeat below, assumes the same check-
point/restart behavior as we do in Section 5.1 and calculates the estimated run time of an
application.

Tw(τ) = Θe
R

Θ (e
τ+δ

Θ − 1)Ts

τ
for δ << Ts (5.4)

Where Tw(τ) is the total wall clock time for the checkpoint interval τ . Θ is the MTBF
for the application and Ts is the solve time, the amount of time required to complete the
assigned work.

We run our simulator 200 times, without redundant nodes, for a 700-hour application
and a five-year node MTBF for various node numbers. The result is shown in Figure 5.14.
We also plot the result of Daly’s equation for the same configuration. Out to about 5,000
nodes, Equation 5.4 matches the minimum values our simulation produces.

At higher node counts the simulation and the calculation begin to diverge. Multiple
experiments show that the divergence gets larger if the MTBF and runtime becomes lower.
A lower MTBF means more application interruptions and even a small difference in the
assumptions underlying Equation 5.4 and our simulator will be amplified. We are currently
investigating the differences.

50

E
xe

cu
tio

n
tim

e
in

 h
ou

rs

Number of nodes

Daly’s model
App simulation

600.0

800.0

1.0 k

1.2 k

1.4 k

1.6 k

1.8 k

2.0 k

100
200

500
1,000

2,000
5,000

10,000

20,000

50,000

Figure 5.14. Comparing Equation 5.4 with our application
simulator.

51

52

Chapter 6

Implications and trade-offs

In this section we discuss what we have learned from our experiments and analysis, and
discuss some of the implications and the trade-offs that need to be considered. Initially,
we thought a library such as rMPI would require substantial support from the underlying
RAS system. Our experience implementing rMPI has taught us that the requirements are
relatively few (see Section 2.6). Most existing RAS systems and current frameworks such
as [8] provide the features necessary for rMPI.

It would be beneficial, if failed nodes could be repaired and reintegrated into the running
application. The latter would require changes to rMPI and the MPI library, and a mechanism
for the RAS system to inform the libraries about the availability of repaired nodes.

Given the extensive portion of MPI functionality inside the rMPI library, it would make
sense to integrate it into an existing MPI implementation. This would reduce overhead and
improve the performance of collective operations.

Chapter 5 showed that using redundant nodes can improve system throughput by a factor
of more than two for large scale systems. The decision to use twice as many nodes to run
redundant computations has several trade-offs which we consider next.

6.1 System throughput

The amount of work Tw a system deliveries per unit of time is its throughput. All activities
that are not work; i.e., restarts, checkpoints, and rework, are overhead. If we denote this
overhead To(none) when no redundant nodes are in use, and To(full) for the fully redundant
case, then we can calculate the following ratio:

R =
Tw + To(none)

Tw + To(full) + T
rMPI

(6.1)

T
rMPI is the overhead the rMPI library adds. Only when R exceeds two does it make

sense to use additional nodes for redundancy. R is dependent on the MTBF of a system,
the number of nodes in use, and how much work (Tw) a job has to do. In Table 6.1 we list
some examples and calculate R.

53

Table 6.1. Comparing total execution times.

Node count
Job Redun. 10,000 50,000 100,000

Tw = 8 h full 8.67 9.58 10.33
5-year MTBF none 8.83 20.81 30.73

R = 1.02 2.17 2.97

Tw = 24 h full 26.00 28.75 31.17
5-year MTBF none 43.74 58.68 94.38

R = 1.68 2.04 3.03

Tw = 168 h full 184.17 201.75 225.20
5-year MTBF none 242.63 458.98 699.36

R = 1.32 2.27 3.11

Tw = 700 h full 833.00 945.75 1044.46
5-year MTBF none 994.02 1785.14 2853.09

R = 1.19 1.89 2.73

Tw = 5,000 h full 5778.95 6985.25 7526.20
5-year MTBF none 7200.97 12396.50 20208.84

R = 1.25 1.77 2.69

Tw = 24 h full 37.67 36.67 73.75
1-year MTBF none 61.29 284.27 1728.48

R = 1.63 7.75 23.44

Tw = 168 h full 232.77 351.20 498.79
1-year MTBF none 422.00 2229.56 11960.61

R = 1.81 6.35 23.98

Tw = 5,000 h full 7067.40 10194.01 13724.78
1-year MTBF none 12456.18 66389.87 354470.25

R = 1.76 6.51 25.83

54

Even on relatively small systems, if Tw is small enough, R becomes larger than two
(Highlighted in the table using a bold green font). The ratios in the table do not include
T
rMPI which is dependent on the actual application and problem set being solved.

6.2 Level of redundancy

When using redundant nodes, it does not make sense to run on anything but full redundancy.
Figure 6.1 shows data from a 5,000-hour, one-year MTBF simulation. We show five levels
of redundancy along the x-axis: none, 1/4, 1/2, 3/4, and full. Only full redundancy delivers
the dramatic reduction in application interrupts we seek. This effect can be seen at 100
nodes, but does not really pay off until several thousand nodes (y-axis). Note that the z-axis
(number of interrupts) and the y-axis (number of nodes use a logarithmic scale.

none
1/4

1/2
3/4

full
Level of redundancy 100

1 k

10 k

100 k

Number of
 nodes

1

10

100

1 k

10 k

100 k

1 M

10 M

In
te

rr
up

ts

1
10
100
1 k
10 k
100 k
1 M
10 M

In
te

rr
up

ts

Figure 6.1. Levels of redundancy versus number of inter-
rupts.

6.3 Spare nodes

Most applications doing checkpoint/restart assume that the same number of nodes will be
available at the begin of a restart. In this paper we do not consider repair or reboot time
between an application interrupt and when it can restart again. How many spare nodes
do we need to restart? Without redundancy, each node failure causes a restart and an
application will consume spares equal to the number of failures it encounters throughout its

55

execution time. As we have seen, this number is enormous for long running applications on
large numbers of nodes.

In the redundant case, many nodes may have failed before the application is interrupted.
All of those nodes need to be replaced with spares. Clearly, for both the redundant and the
non-redundant case, nodes need to be repaired once in a while to replenish the set of spares
for applications that run for weeks and months. While the redundant approach requires
more spares after a given fault, the total number of spares for a complete system does not
change. If a given system needs s spare nodes to carry it to the next maintenance period,
whether we are running in redundant or non-redundant mode does not change s.

56

Chapter 7

Related work

Peta-scale systems will require measures beyond checkpoint/restart to be used effectively [5,
14]. Several approaches are currently under investigation such as the work done in [13]
which uses overlay nodes to improve checkpoint writing. Other approaches include optimistic
checkpointing [9] and message logging [10].

The requirements for RAS systems have been studied before [1] and newer work more di-
rectly aimed at large-scale systems is under way [8]. In addition, systems that are specifically
built to reduce the number of faults, and use redundancy to do so, have been available [2].

57

58

Chapter 8

Summary and future work

In this paper we introduced the rMPI library which inserts between an application and the
MPI library. rMPI allows to allocate additional compute nodes for redundant computation.
In the description of the design and implementation of rMPI we detailed the techniques
that are necessary to maintain MPI semantics, especially message ordering on an active
node and its redundant partner. We then ran a series of experiments and determined that
rMPI’s overhead is less than 20%, usually much less, for our applications. We have shown
that implementing node redundancy at the user level is possible, but a higher integration of
rMPI with the MPI library would reduce rMPI’s overhead.

Redundant nodes reduce the number of interrupts an application experiences. That
means less time performing checkpoint, restart, and repeated work that was lost at the last
interrupt. Reducing this overhead allows more jobs to move through a system and increases
the system throughput. We found that for large-scale systems with redundancy enabled, it
is often possible to move more than two jobs through a system in the time it takes a job
without redundant nodes to finish. In those cases the overhead of using twice as many nodes
is justified. rMPI places very few demands on the RAS system. The main requirement is a
method for the RAS system to inform rMPI of failed nodes.

In the future we plan to complete our current rMPI implementation, remove the current
dependencies on MPICH and make it open source. The results of our simulation work show
that applications running on redundant nodes spend too much time writing checkpoints. It
may be possible to calculate a better value for the checkpoint interval.

An alternate way to enable redundant computation is to use transactions between an
active node and its redundant partner. Only the active node would send messages to the
active and redundant destinations. Transactions would make sure both messages have been
sent, or let the redundant sender perform the transmission, if the active node fails to complete
the operation. We are planing an implementation and comparison to the current design.

59

60

References

[1] Michael Barborak, Anton Dahbura, and Miroslaw Malek. The problem in fault-tolerant
computing. ACM Comput. Surv., 25(2):171–220, 1993.

[2] Joel F. Bartlett. A nonstop kernel. In SOSP ’81: Proceedings of the eighth ACM
symposium on Operating systems principles, pages 22–29, 1981.

[3] J. T. Daly. A higher order estimate of the optimum checkpoint interval for restart
dumps. Future Gener. Comput. Syst., 22(3):303–312, 2006.

[4] Jr. E. S. Hertel, R. L. Bell, M. G. Elrick, A. V. Farnsworth, G. I. Kerley, J. M. McGlaun,
S. V. PetneY, S. A. Silling, P. A. Taylor, and L. Yarrington. CTH: A software family
for multi-dimensional shock physics analysis. In Proceedings of the 19th International
Symposium on Shock Waves, pages 377–382, July 1993.

[5] E.N. Elnozahy and J.S. Plank. Checkpointing for peta-scale systems: a look into the
future of practical rollback-recovery. Dependable and Secure Computing, IEEE Trans-
actions on, 1(2):97–108, April 2004.

[6] William Gropp. MPICH2: A new start for MPI implementations. In Dieter Kran-
zlmuller, Peter Kacsuk, Jack Dongarra, and Jens Volkert, editors, Recent Advances
in Parallel Virtual Machine and Message Passing Interface: 9th European PVM/MPI
Users’ Group Meeting, volume 2474 of Lecture Notes in Computer Science, Septem-
ber/October 2002.

[7] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A high-performance,
portable implementation of the MPI message passing interface standard. Parallel Com-
puting, 22(6):789–828, September 1996.

[8] R. Gupta, P. Beckman, B. H. Park, E. Lusk, P. Hargrove, A. Geist, D. K. Panda,
A. Lumsdaine, and J. Dongarra. Cifts: A coordinated infrastructure for fault-tolerant
systems. In To appear in the Proceedings of the 38th International Conference on
Parallel Processing, 2009.

[9] Qiangfeng Jiang, Yi Luo, and D. Manivannan. An optimistic checkpointing and message
logging approach for consistent global checkpoint collection in distributed systems. J.
Parallel Distrib. Comput., 68(12):1575–1589, 2008.

[10] David B. Johnson and Willy Zwaenepoel. Recovery in distributed systems using asyn-
chronous and checkpointing. In Proceedings of the seventh annual ACM Symposium on
Principles of distributed computing, pages 171–181, 1988.

61

[11] Dimitri B. Kececioglu. Reliability Engineering Handbook, volume 2. DEStech Publica-
tions, Inc, May 2002.

[12] D. J. Kerbyson, H. J. Alme, Adolfy Hoisie, Fabrizio Petrini, H. J. Wasserman, and
M. Gittings. Predictive performance and scalability modeling of a large-scale applica-
tion. In Proceedings of the ACM/IEEE conference on Supercomputing, pages 37–48,
2001.

[13] Ron A. Oldfield, Sarala Arunagiri, Patricia J. Teller, Seetharami Seelam, Maria Ruiz
Varela, Rolf Riesen, and Philip C. Roth. Modeling the impact of checkpoints on next-
generation systems. In 24th IEEE Conference on Mass Storage Systems and Technolo-
gies, pages 30–46, September 2007.

[14] A. J. Oliner, R. K. Sahoo, J. E. Moreira, and M. Gupta. Performance implications of
periodic checkpointing on large-scale cluster systems. In Proceedings of the 19th IEEE
International Parallel and Distributed Processing Symposium (IPDPS’05) - Workshop
18, page 299.2, 2005.

[15] Steve J. Plimpton. Fast parallel algorithms for short-range molecular dynamics. J Comp
Phys, 117(1):1–19, 1995.

[16] Sandia National Laboratory. LAMMPS molecular dynamics simulator. http://lammps.
sandia.gov, Nov. 6 2008.

[17] Sandia National Laboratory. Mantevo project home page. https://software.sandia.
gov/mantevo, Nov. 6 2008.

[18] Bianca Schroeder and Garth A. Gibson. A large-scale study of failures in high-
performance computing systems. In Proceedings of the International Conference on
Dependable Systems and Networks (DSN2006), June 2006.

62

DISTRIBUTION:

1 MS 1319 Kurt Ferreira , 1423

1 MS 1319 Rolf Riesen , 1423

1 MS 1319 Ron Oldfield , 1423

1 MS 1319 Kevin Pedretti , 1423

1 MS 1319 Todd Kordenbrock , 1423

1 MS 1319 Ron Brightwell , 1423

1 MS 1319 Jon Stearley , 1422

1 MS 1319 James Laros , 1422

1 MS 0899 Technical Library, 9536 (electronic)

1 MS 0123 D. Chavez, LDRD Office, 1011

63

64

v1.32

