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Abstract 
 
Fatigue cracking in metals has been and is an area of great importance to the science and 
technology of structural materials for quite some time.  The earliest stages of fatigue crack 
nucleation and growth are dominated by the microstructure and yet few models are able to 
predict the fatigue behavior during these stages because of a lack of microstructural physics in 
the models.  This program has developed several new simulation tools to increase the 
microstructural physics available for fatigue prediction.  In addition, this program has extended 
and developed microscale experimental methods to allow the validation of new microstructural 
models for deformation in metals.  We have applied these developments to fatigue experiments 
in metals where the microstructure has been intentionally varied. 
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1. INTRODUCTION. 

 
  The fatigue of metals is one of the core problems of structural materials for which great 
progress has been made and yet much remains to be done.  The fatigue problem has been studied 
since the 1850’s and yet remains one of the great limitations of structural metals. [1] Volumes of 
great research have been made on this topic resulting in quantitative approaches for predicting 
fatigue damage, crack growth, and failure for specific materials.  The microscale description of 
the phenomena that underpin the macroscale predictions have become increasingly sophisticated 
[2]. 
 
 Despite all of this progress, the ability to predict the nucleation of fatigue cracks and the 
early stages of their growth for a given microstructure is still quite nascent.  Much work is being 
done in the literature to combine microscale simulation and experiment.  Even during this 
program, several papers have emerged trying to connect polycrystalline plasticity simulations 
with experiments to investigate microscale plasticity in general [3]and fatigue in particular [4]. 
 
 The thrust of this program has been to include as much sensitivity to microstructure as 
possible in simulation and in the experimental techniques that support it.  The challenge of 
including microstructural physics in the simulation of cyclic damage and crack nucleation and 
early crack growth and sustained crack growth is larger than a single program, but this report 
will discuss improvements in the microstructural and computational physics touching each of 
these areas.  Section 2 of this report will discuss new experimental methods for observing plastic 
deformation at the microscale which will allow for a fuller and better connection to 
microstructural simulations.  Section 3 of this report discusses several new or improved 
simulation techniques for including capabilities necessary for microscale simulation of the 
fatigue process.  Section 4 addresses the application of these experimental and simulation 
methods to problems of cyclic plasticity and small crack growth in metals.  Section 5 introduces 
the concept of using probabilistic descriptions of microstructure and properties as a vehicle for 
transporting microscale physics into macroscale predictions.  

 
Section 1 References: 

 
1. Suresh, S., Fatigue of Materials. 2nd ed. 1998, New York: Cambridge University Press. 
2. Xue, Y., et al., Micromechanisms of multistage fatigue crack gowth in a high-strength 

aluminum alloy. Acta Materialia, 2007. 55: p. 1975-1984. 
3. Heripre, E., et al., Coupling between experimental measurements and polycrystal finite 

element calculations for micromechanical study of metallic materials. International 
Journal of Plasticity, 2007. 23: p. 1512-1539. 

4. Dunne, F.P.E., A.J. Wilkinson, and R. Allen, Experimental and computational studies of 
low cycle fatigue crack nucleation in a polycrystal. International Journal of Plasticity, 
2007. 23: p. 273-295. 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2.  EXPERIMENTAL METHODS FOR OBSERVING 
MICROSTRUCTURAL MECHANICS. 
  
 As stated in section I, a key goal of this program was to gain as much microstructural 
understanding about the fatigue problem as possible, both experimentally and through 
simulation.  Recently, there have been great gains in microscale, experimental techniques 
necessary for studying the process of fatigue at the microstructural level.  Techniques such as 
EBSD, micro-DIC, and synchrotron, x-ray, microdiffraction have allowed the mapping of 
crystallography and strain down to the microscale.  This section describes specific additions to 
the experimental capability at Sandia as well as our efforts to quantitatively compare 
experimental and simulation results. 
  
2.1.  New capabilities for electron backscatter diffraction (EBSD) (L.N. 
Brewer (01814), B.L. Boyce (01813), D.S. Schmale (01813) and J.R. 
Michael (01822))  
 
 Electron backscatter diffraction (EBSD) is one of the foremost experimental techniques 
for measuring crystallography at the microscale.  With a spatial resolution down to 10nm and a 
spatial range of hundreds of microns, automated EBSD can rapidly map the crystallography 
within an ensemble of grains.  In addition, the crystallography is sensitive to plastic deformation 
and cracking and can be used as a tool to track these phenomena during mechanical testing.  
EBSD orientation maps can be used both as starting configurations and as validation data for 
FEM simulations of deformation phenomena.  

 
2.1.1 In situ testing methods. 
 
 While most EBSD measurements are made on polished sections of samples that were 
mechanically tested ex situ, data for use in simulations is most efficiently collected using in situ 
experiments.  In situ experiments allow the same area of interest to be readily tracked from one 
strain state to the next without removal of the sample from the microscope.  In addition, the 
atmospheric state of the sample can more readily controlled.  However, few SEM’s have in situ 
straining capabilities, and the in situ straining stages that were commercially available were not 
really designed with EBSD experiments in mind. 
 
 In order to more readily perform in situ EBSD experiments, we designed and built a new 
type of straining stage, specifically designed for EBSD experiments (Figure 2.1).  This straining 
stage has a small footprint in order to be tilted to 70° without damaging the microscope lenses or 
other detectors.  In addition, the dual-lever design keeps the microscopic, area of interest 
centered during deformation because the loading is symmetric with respect to the center line of 
the sample.  This stage is instrumented to control and measure the load and the displacement 
using a Wheatstone bridge transducer and a linear variable differential transformer (LVDT), 
respectively.  A test stress-strain curve on a 304 stainless steel sample can be seen in Figure 2.1. 
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Figure 2.1 Design drawing of novel in situ straining stage for EBSD. (left)  Test stress-strain 
curve on 304 stainless steel using the in situ stage. (right) 
 
 The in situ straining stage was successfully used to collect a number of data sets 
consisting of orientation maps of the same microstructure at multiple strain levels. (Figure 2.2).  
All of the experiments were monotonic and uniaxial pulls in tension.  Low cycle fatigue tests 
would also be possible, but higher cycle fatigue tests would likely damage the in situ stage.  As 
shown in Figure 2.2, we were able to easily track the same microstructural area at different strain 
levels.  In each experiment, the strain was increased to the desired level at a nominal strain rate 
of 10-3/s.  The load at this strain level was recorded.  An EBSD orientation map was then 
collected.  The application of this new in situ capability will be discussed in greater detail in 
section 4.3 of this report. 
 
 One of the shortcomings of this approach is sample drift.  Even rapid EBSD maps using 
the current technology at Sandia National Laboratories requires in excess of 90 minutes for a 
reasonably detailed map (250 by 250 points).  It is possible, and has been observed, during this 
time that the sample can drift from its initial position.  This drift is particularly problematic for in 
situ straining experiments as the goal is to describe the change in the microstructure due to 
applied to strain.  If the change in observed microstructure also includes a component from drift, 
the data set is no longer useful. 
  
 Sample drift can be mitigated in three ways, only one of which is currently available at 
Sandia National Laboratories.  The most basic method, and the one used for these measurements, 
is to simply use a protocol that waits for at least 30 minutes after loading the sample before 
beginning the measurement.  This waiting period was combined with at least two test maps to 
check for drift prior to beginning a large, detailed map.  In the future, these measurements could 
also benefit from the now commercially available fast detectors that can collect patterns between 
400-700 Hz.  Even at 400Hz, the mapping time would be reduced by an order of magnitude, 
resulting in a mapping time of approximately 10 minutes.  This drastic reduction in collection 
time would reduce drift and would reduce the overall all time of the in situ experiment.  Even 
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more recent technology now allows active drift compensation by monitoring an image of the 
surface of the sample and adjusting the scan area to account for sample drift. 
 

 
Figure 2.2  Inverse pole figure maps (with respect to x-tensile direction) for three grain sizes 
of brass strained to three different levels acquired using new in situ straining stage.   

 
 

2.1.2.  Three dimensional FIB-EBSD  
  
 Until recently, EBSD measurements have been restricted to a two dimensional sampling 
of a surface.  In the last three years, work has begun to appear in the literature combining EBSD 
with focused ion beam (FIB) techniques to allow the measurement of microcrystallography in 
three dimensions. [1, 2] Sandia National Laboratories is now one of only a few institutions in the 
United States that has this three dimensional FIB-EBSD capability.  This project brought this 
technology on line and has produced the first three dimensional microcrystallography data sets at 
Sandia National Laboratories. 
 
 The three dimensional experiments were performed on the new FEI Helios Nanolab 
instrument in the Materials Characterization Laboratory (organization 01822).  This instrument is 
of the dual-beam type in that it has a scanning electron column on the vertical axis with a 
scanning gallium ion beam column at a 55 angle with respect to the vertical.  This arrangement 
allows high resolution imaging and EBSD of an area that will be milled by the ion beam.  This 
instrument was outfitted with the Oxford-HKL Channel 6 EBSD hardware and software system. 
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 The experiments basically consists of ion beam-driven serial sectioning.  A 30 keV 
gallium ion beam is used to mill a section of the sample to a flat plane.  There is flexibility about 
the size of the milled area, but it was typically on the order of 10µm by 30µm.  The size of this 
area (the dimension of a single slice) is restricted by the available ion beam time and sputtering 
problems such as redeposition.  One of the unappreciated limitations of the three dimensional 
FIB-EBSD approach is relatively small size of volumes that can be analyzed with currently 
technology.  In order to maintain some reasonable level of resolution in the through-thickness 
direction (z), it is necessary to collect many (>50 slices).  For each slice, the milling can take 
longer than one hour followed by at least an hour for the EBSD mapping.  A 50 slice 
measurement, could therefore easily take more than 100 hours to accomplish.  As can be seen in 
Figure 2.3, the process is started by depositing a platinum over layer, to protect the surface of the 
sample, and a set of fiduciary marks in the form of an inverse pair of concentric rings.  These 
rings allow the software to automatically reposition the area of interest if altered by drift or 
mechanical hysteresis.  The ion beam image in Figure 4.3 shows the perspective of the ion beam 
milling for a given step in the process.  The very edge of the sample will be milled away to a 
nominal depth, e.g. 50nm.  After milling, the sample stage is rotated 180° to position the newly 
milled surface for orientation mapping using EBSD.  An orientation map is then collected.  The 
sample is then rotated back to the original position and corrected for drift or mechanical 
hysteresis.  The next slice is then milled away by the ion beam.  This process is repeated until the 
volume of interest has been analyzed. 
 

 
Figure 2.3 Electron image (left) and ion image (right) of sample being milled during three 
dimensional EBSD experiment. 
 
 The results of this process can be demonstrated with a data set from electrodeposited 
nickel (Figure 2.4).  The value of the three dimensional measurement is immediately apparent 
from the extended aspect ratio of the grains.  If one only mapped the x-y plane of the volume 
(square area in Figure 2.4), then it would be reasonable to describe the grain structure as 
equiaxed, albeit with possible abnormal grain growth.  In addition, the cyan colored grains 
appear to be independent grains which are either truly small or are small because of sectioning 
artifacts.  When the rest of the three dimensional volume is examine, it is clear that instead, the 
grains are quite elongated in the z-direction.  The cyan-colored grains also appear to be three 
dimensional islands that are indeed smaller than the surrounding grains. 
 
 The three dimensional FIB-EBSD capability is only just beginning at Sandia National 
Laboratories.  Now that we have an experimental approach which can collect data reliably, we 
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must now develop methods for representing and analyzing these complex data structures 
effectively.  In fact, this analysis task is at the forefront of literature in this area. [3] As our 
ability to collect, digest, and utilize three dimensional data improves, we will be able to apply 
this approach to a number of materials problems at Sandia National Laboratories. 

 
Figure 2.4.  Three dimensional EBSD data set from electrodeposited nickel material. 

 
 

2.2.  Quantification of Agreement between Experiment and Simulation 
(L.N. Brewer (01814) and C.C. Battaile (01814))  
 
 As discussed, the experiments in this program were designed chiefly to be used by and 
compared to simulation.  However, it is not clear how exactly to compare microstructural 
experiments with microstructural simulations.  Often, the comparison in the literature is simply a 
qualitative description of agreement or disagreement.  However, a qualitative description is not 
sufficient for comparing the details of the experiment and the simulation or for evaluating one 
plasticity model over another.  The evaluation may also be too subjective if there is no 
quantitative figure of merit. 
 
 There are many challenges to the quantitative comparison between simulation and 
experiment.  Foremost is the use of the correct physics for describing the plasticity or fracture.  
As is right, this emphasis is the one usually found in papers describing the comparison of 
experiment with simulation.  However, there are several other important factors that make the 
comparison a challenge.  The volumes of interest are typically not the same for experiment, e.g. 
EBSD, and simulation.  EBSD generally works on a single two dimensional surface which is 
being influenced by an effectively infinite bulk lying beneath it.  The simulation, e.g. FEM, 
generally works in a two dimensional, plane strain configuration in which the grains are extruded 
to infinity in the z-direction.  Clearly this difference in reference volumes could cause 
differences in response.  Additionally, there is a difference in the applied boundary conditions.  
The grains in the experiment experience complex, three dimensional tractions from the 
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neighboring grains even while the far field is some sort of simple, uniaxial tension.  In many 
microstructural simulations, the boundaries are simple, straight-line truncations of the 
microstructure with simple tractions applied to these fictitious surfaces.  The discrepancy in the 
description of boundary conditions may not be a primary factor contribution to experiment-
model disagreement, but it is an important secondary factor to be considered. 
 
 For all of these challenges, there are still two important factors that have been addressed, 
at least in part, in this program: a difference in coordinate systems and a lack of appropriate 
metrics for quantitative comparison.  The first is the difference in coordinate systems between an 
in situ experiment and a microstructural simulation of strain.  The coordinate system during the 
in situ experiment is Eulerian.  The original area of grains moves outside of the same size EBSD 
map after straining.  The size of the EBSD map can be changed to capture the new dimensions, 
but it is difficult, if not impossible, to analyze exactly the same points in the microstructure.  The 
microstructural simulation is typically performed in a Lagrangian coordinate system, i.e. the 
point in the grid move with the simulation.  All of the same points are being analyzed at the 
beginning and the end of the simulation.  Because of this difference in coordinate systems, work 
must be done to transform either the experiment or the simulation to the coordinate system of the 
other. 
 
 Our process for transformation the experimental and simulation data to be compared is 
illustrated in Figure 2.5.  In this comparison, a microstructural map from EBSD was used as the 
starting data in the FEM simulation.  After straining the sample both experimentally and in 
simulation, the data must be transformed.  The first step is to choose a single point of reference 
which is the same in both experiment and simulation.  We have used triple junctions between 
grains for this purpose.  After choosing this reference point.  The coordinate systems for both 
data sets are shifted such that each system has the triple junction as x,y coordinates (0,0).  With 
the coordinate systems now shifted a reduced area for comparison must be chosen such that all of 
the grains to be compared are in both the experiment and the simulation.  In Figure 2.5, the 
EBSD data is cropped; but the same can be done for simulation.  At this point, the data for both 
EBSD and FEM represent the same set of deformed grains, but sampled at different points.  The 
final step is to interpolate on data set onto the x,y coordinates for the other.  Once this operation 
is complete, the data for EBSD and FEM can be compared quantitatively.       
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�
Figure 2.5.  Flowchart for preparing EBSD and FEM data for quantitative comparison.  
�
� This process can be demonstrated for a microstructure of polycrystalline nickel (Figure 
2.6).  The top portion of the figure shows Euler color maps of orientation for FEM (left) and 
EBSD (right).  Careful inspection of these two maps shows that they cover different numbers of 
grains.  We chose a triple junction as the reference point for the comparison.  The data sets were 
then shifted to make the triple junction the zero point and both were cropped to represent an area 
of 50µm by 50µm.  As these areas still do not represent the exact, same grain areas; interpolation 
of the EBSD onto the FEM data results in areas for which there is no comparison (black, Figure 
2.7 a).  The resulting area in Figure 2.7a can now be compared directly and quantitatively with 
the FEM result in the bottom left of Figure 2.6.  As an initial metric, the scalar, angular 
misorientation between all points can be plotted as demonstrated in Figure 2.7b.   

�
�
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�
�
Figure 2.6.  Preparation of data from nickel polycrystal for quantitative comparison between 
EBSD and FEM. 
 
 

 
Figure 2.7.  EBSD data shifted and interpolated to FEM coordinate system (A).  
Misorientation map created by calculating and plotting the scalar, misorientation angle for 
each pixel (B). 
 
 
 
 
 There are any number of quantitative metrics that can be used to quantitatively compare 
the simulation and experimental data after the appropriate transformations that have just been 
described.  In this report, we will consider the use of scalar, angular misorientation and 
normalized area match fraction. 
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 Scalar, angular misorientation is used extensively in the study of plasticity through EBSD 
[4].  The most basic representation of orientation through EBSD data is through the use of Euler 
angles (φ1, Φ, φ2).  The orientation of a point on the x-y plane can be represented by the Euler 
angles through the use of an orientation matrix, G. [5] 
 

 (2.1) 
 
The misorientation between any two points, 1 and 2, can also be represented by a matrix, M, 
which is given by 
 

€ 

M = G1
−1 ⋅G2   (2.2) 

 
The scalar, misorientation angle can then be extracted from M by 
 

€ 

θ = cos−1 M11 + M22 + M33 −1
2

 

 
 

 

 
  (2.3) 

 
 Typically, θ is used to compare points in space, such as adjacent points in an (x,y) 
coordinate system.  However, this metric can also be used to compare the misorientation between 
the same (x,y) point in two different maps, i.e. EBSD and FEM.  A misorientation angle of less 
than 0.5° is within the noise of standard EBSD measurement, and thus represents complete 
registry between the experiment and the simulation.  A large misorientation angle represents 
poor registry between the experiment and the simulation. 
  
 The misorientation angle metric does show the location and the increase of disagreement 
between simulation and experiment as a function of strain (Figure 2.8).  At 1% strain, only pixels 
right at grain boundaries are show large misorientation (>10°).  As the strain level increases, the 
locations with the largest misorientation continue to be the grain boundaries.  The grain 
boundaries appear to move more in the experiment than in the simulation.  At 10% strain, the 
largest area of misorientation is in a grain in the lower right hand corner of the microstructure, 
which has a misorientation of nearly 90°.  However, this large misorientation is apparently from 
the crystal rotation from one sector of Euler space to another.  The boundaries in Euler space for 
a cubic symmetry system occur at 90° intervals, and thus, can create unrealistically large 
misorientations in the comparison maps.  We are currently working on solutions to maintain the 
comparison in a single portion of Euler space.  
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Figure 2.8.  Misorientation maps comparing EBSD and FEM for increasing levels of strain. 
 
 The utility of the misorientation metric is clear when comparing local and non-local 
crystal plasticity models (Figure 2.9).  By taking the mean value of the misorientation for maps 
at increasing strain levels, the amount of disagreement, in terms of misorientation, can be 
compared for the two types of models.  In this example, the mean misorientation between 
experiment and simulation increases linearly for the local model; while it plateaus for the 
comparison between experiment and the non-local model.  Actually, the local model shows 
better agreement at small strains than the non-local model.   This kind of information is what is 
needed to begin to evaluate the accuracy of particular microstructural plasticity models. 
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Figure 2.9.  Mean misorientation between EBSD and FEM for local and non-local crystal 
plasticity models. 
 
 
 Another possibility for a comparison metric is the normalized area match fraction 
(NAMF).  This quantity was first derived and applied to the comparison and experiments and 
simulations by Demirel [6]for the study of grain growth in aluminum.  The NAMF is basically 
the percentage of pixels that have perfect agreement between experiment and simulation.  The 
formulation in Demirel’s work is too rigid for plasticity as two pixels must have exactly the same 
orientation to be counted as being in agreement.  In equation 2.4, we suggest amending the 
formulation for NAMF to include an angular misorientation threshold.  If the threshold is 
exceeded then the pixel is not counted as being in agreement.   
 

(2.4) 
 

The plot of NAMF versus the strain level (Figure 2.10) gives a similar picture for the comparison 
of the local and non-local models as the mean misorientation (Figure 2.9); but with some added 
richness.  Again, the local model has better agreement (larger NAMF) than the non-local (NL) 
model at small strain levels, but the local model agreement rapidly descends towards zero as the 
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strain increases.  The non-local model NAMF decreases as soon as the strain begins to build, but 
it decays to a relatively stable value.  As would be expected, the NAMF for the non-local model 
with the larger threshold is systematically larger than for the smaller threshold at all strain levels.  
Surprisingly, the NAMF at the two levels for the local model is the same at 1% and 10% strain. 

 
Figure 2.10.  Normalized area match fraction plots comparing EBSD and FEM data using 
local and non-local crystal plasticity models. 
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3.  SIMULATION METHODS FOR PREDICTING MICROSTRUCTURAL 
PLASTICITY AND CRACK BEHAVIOR. 

 
3.1. Material Point Method in elasto-plastic deformation at finite 
strains: Crystal plasticity capabilities in MPALE. (R.P.M. Dingreville 
(01814), T.J. Bartel (06774), and C.C. Battaile (01814)) 
 
3.1.1. Introduction 
 
 A crystal plasticity model was implemented for use in Sandia’s material point method 
code (MPALE).  Tests problems were performed on single crystals and polycrystals to directly 
compare the explicit MPM solutions with an implicit Sandia’s Finite Element (FE) code 
(JAS3D) as a validation of the implementation.  Results demonstrated the differences and 
concordances between the two methods. Stemming from Particle-in-Cell (PIC) methods and 
hydrodynamics codes (FLIP) [1-3], the material-point method (MPM) has been successfully 
applied to solid mechanics problems [4-7].  In this framework, the continuum is represented by a 
distribution of material points having a definite mass.  The material-point method can be 
regarded as a spatial discretization method formulated in an arbitrary Lagrangian-Eulerian 
description of motion.  MPM employs two discretizations to solve the constitutive equations and 
equations of motion of fluids and solids.  A Lagrangian description of the material discretizes the 
continuum into a finite collection of unconnected material points with an assigned mass and 
density consistent with the material density and volume of that point. All states variables and 
constitutive equations are tracked at the set of material points while the equations of motion and 
interactions among the materials points are formulated and solved by using a background 
computational grid.  A mapping between the two discretizations is performed at each step of the 
evolution of the system by means of shape functions.  Since the computational grid can be 
defined in any arbitrary manner, mesh distortion problems are avoided. 
 Few studies have used MPM to investigate elasto-plastic deformation at finite 
deformation.  In fact, most of them use a J2 flow model of plasticity [8, 9] on the classical Taylor 
bar problem   
 In this section, we first introduce the governing equations and basic features of the 
material point approach.  Then example solutions are given in the framework of local crystal 
plasticity and compared with Finite Element Method solutions to show that the MPM approach 
provides satisfying numerical results. 
 The procedure shows considerable promise applications to problems combining 
microstructural evolution and thermo-mechanical solicitations.  The use of material points 
provides the basis to couple the mesoscale and macroscale models by defining both materials 
information at the microstructural level and thermo-mechanical information at the continuum 
level at the same computational particle.  The incorporation of compositional and microstructural 
evolution based on kinetic Monte Carlo would be natural due to its canonical description of 
discrete ensemble. 
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3.1.2 Material Point Method 
 
 Let x denote the position of a material point in the deformed state at time t.  This material 
point is defined by its initial position X in the undeformed state at time t=0 and it is considered to 
be a function of both X and t, with the initial condition being, 

x = x X,t = 0( ) = X   (3.1). 
If the displacement vector u is defined by, 
  u = x − X   , (3.2) 
then the velocity v, and the acceleration a vectors of that material point are defined by, 

  

 

v =
dx X,t( )

dt
= x =

du X,t( )
dt

= u

a =
d 2x X,t( )

dt 2 = x =
d 2u X,t( )

dt 2 = u =
dv X,t( )

dt
= v

  . (3.3) 

Given that x and X define two spatial positions; the deformation gradient and its time derivative 
can be described with respect to both coordinate system.  In the Lagrangian framework (i.e. with 
respect to the undeformed state X), the deformation gradient and its time derivative can be 
defined as, 
  F = x∇0   ,  

 
F = v∇0   . (3.4) 

Assuming that the Jacobean determinant J = det F( )  is non singular (i.e J > 0), the 
correspondence of the gradient operator between the Lagrangian and the Eulerian (i.e. with 
respect to the deformed configuration x) framework arises from the chain rule such that, 
  ( )∇0 = ( )∇ ⋅F   , ( )∇ = ( )∇0 ⋅F

−1   . (3.5) 
This correspondence being defined, it follows that the spatial gradient velocity L is given by, 
  

 
L = v( )∇ = v( )∇0 ⋅F

−1 = F ⋅F−1 = D + W   , (3.6) 
where D is the rate of deformation and the symmetric part of L, and W is the vorticity and the 
skew-symmetric part of L. 
 For a continuum under purely mechanical loading, the above kinematic relations are 
supplemented by the governing differential equations of motion derived from the conservation 
equation of momentum, 
  ρa = σ( )∇ + ρb   , (3.7) 
where ρ x,t( )  is the mass density, σ x,t( )  is the Cauchy stress tensor and b x,t( )  denotes the 
body force per unit mass.  These governing equations are complemented by the conservation 
equation for mass, 

   dρ
dt

+ ρ v( )∇ = 0  (3.8) 

and a suitable constitutive equation (see Appendix).  Note that in a Lagrangian framework, 
equation (3.8) is automatically satisfied. 
 The traction boundary conditions are such that if n denotes the outer normal to a surface, 
the traction t is given by, 
  t = σ ⋅n  (3.9) 
For a given set of traction and displacement boundary conditions, the governing equations (3.1) – 
(3.9) are numerically solved using the MPM framework. 
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As already briefly stated in the introduction, MPM employs two discretizations to solve 
the constitutive equations and equations of motion of fluids and solids throughout the 
deformation process.  At any given time t, a Lagrangian description of the material discretizes 
the continuum into a finite collection of K > 0 unconnected material points x p

t  with an assigned 

mass Mp (p=1...K) and density ρp
t  consistent with the material density and volume of that point.  

Variables such as the velocity v p
t , the Cauchy stress tensor σ p

t , the Green-Lagrange strain tensor 

Ep
e,t , and any other internal state variables associated with a material point p can be tracked 

through the complete deformation history of the system.  At any given time step t, the 
information associated with the material points is mapped to a background computational grid 
constituted of N > 0 nodes.  This grid covers the region of interest and can be chosen arbitrarily 
preventing any associated problem with mesh distortion.  Illustrated in Figure 3.5 is the space 
discretization of the computational domain of interest.  The discrete formulation of equations 
(3.7 –3.9) allows for the momentum equation to be solved at the mesh nodes whereas the 
constitutive equations are evaluated at the material points. 
 

 
Figure 3.5.  Space discretization composed of material points and computational grid. 
 
 
 Similarly to classical Finite Element Method (FEM), the weak form of the equation of 
virtual work [4, 6] can be expressed as, 

ρ a ⋅w +
1
ρ
σ : w( )∇





dΩ

Ω
∫ = ρb ⋅wdΩ

Ω
∫ + t ⋅wdS

∂Ωσ
∫ + σ ⋅n ⋅wdS

∂Ωu
∫ ,∀w ∈W0   ,(3.10) 

where Ω is the current region occupied by the continuum, ∂Ωσ  is the part of boundary where 
traction is prescribed, ∂Ωu  is the part of the boundary where displacements are prescribed and w 
denotes a virtual displacement function.  W0 = w / w = 0 on ∂Ωu{ }  denotes the space of 
admissible accepted displacement fields satisfying the homogeneous boundary conditions.  The 
initial boundary conditions completing the formulation are given by 

  w 0( ) = w0   ,  
 
w 0( ) = v0   ,  σ 0( ) = σ 0   , (3.11) 

where w0 , v0  and σ 0  are the initial fields of displacements, velocities and stresses respectively. 
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 The two space discretizations aforementioned allows for the continuum Ω to be divided 
into a finite number (K) of subregions represented by the material points x p

t , 
 
p = 1…K .  The 

whole mass of a specific region is concentrated at the corresponding material points, so that the 
total mass density field can be written such that, 

  ρ x,t( ) = M pδ x − x p
t( )

p=1

K

∑   , (3.12) 

where δ x( )  is the Dirac function.  Substituting equation (3.12) into the equation of virtual work 
(3.10) converts the integral form to a discrete summation form evaluated at the material point 
such that the equation Error! Reference source not found. becomes, 

  

M p a x p
t( ) ⋅w x p

t( ) +σ ρ x p
t( ) : w( )∇ x p

t




p=1

K

∑

= M pb x p
t( ) ⋅w x p

t( )
p=1

K

∑ + t ⋅wdS
∂Ωσ
∫ + σ ⋅n ⋅wdS

∂Ωu
∫

  , (3.13) 

where σ ij
ρ = σ ij ρ  is defined as the specific stress. 

 In order to approximate the different fields and gradient terms of equation (3.13), 
conventional MPM formulation uses a regular grid mesh with equally spaced nodes.  This grid is 
constructed of 2-node cells for one-dimensional problems, 4-node cells for two-dimensional 
problems, and 8-node cells for three-dimensional problems.  Mapping between the material 
points and grid points discretizations is performed at each step of the evolution of the system by 
means of nodal decomposition using standard finite element shape functions such as, 

  φ x( ) = φiNi x( )
i=1

N

∑   , (3.14) 

where subscript i refers here to the nodal value of 

€ 

φ x( ). 
For instance, the shape functions for 2-node cell in one-dimensional problems are, 

  
N1 = 1− ξ
N2 = ξ





  , (3.15) 

where ξ  is the natural coordinate of a material point in the cell along the X direction.  The shape 
functions for a 4-node cell in two-dimensional problems are, 

  

N1 = 1− ξ( ) 1−η( )
N2 = ξ 1−η( )
N3 = 1− ξ( )η
N4 = ξη













  , (3.16) 

where ξ  and η  are the natural coordinates of a material point in the cell along the X and Y 
directions respectively. 
Finally the shape function for a 8-node cell in three-dimensional problems are, 



33 

  

N1 = 1− ξ( ) 1−η( ) 1−θ( )
N2 = ξ 1−η( ) 1−θ( )
N3 = 1− ξ( )η 1−θ( )
N4 = 1− ξ( ) 1−η( )θ
N5 = ξη 1−θ( )
N6 = ξ 1−η( )θ
N7 = 1− ξ( )ηθ
N8 = ξηθ



















  , (3.17) 

where ξ , η  and θ  are the natural coordinates of a material point in the cell along the X, Y and Z 
directions respectively.  The coordinates x p

t  of any given material point in a cell are therefore 
mapped such that, 

  x p
t = xi

t Ni x p
t( )

i=1

N

∑   , (3.18) 

where xi
t  are the coordinates associated with node I at time t. 

Similarly the displacements u p
t  of any given material point in a cell are defined by the nodal 

displacements ui
t  such that, 

  u p
t = ui

t Ni x p
t( )

i=1

N

∑   . (3.19) 

As a consequence of having the same nodal basis functions for both spatial coordinates and 
displacement decomposition, kinematic compatibility requires that the velocity v p

t  and 

acceleration a p
t  of any given material point in a cell are represented by, 

  v p
t = v i

t Ni x p
t( )

i=1

N

∑   and  a p
t = ai

t Ni x p
t( )

i=1

N

∑   , (3.20) 

,where v i
t  and ai

t  are the nodal velocities and nodal accelerations respectively. 
The framework of equations (3.18 -3.20) ensures that any associated vectors are continuous 
across the cell boundary.  Nevertheless, the use of linear shape function does not necessarily 
guarantee that the gradients of these vectors are continuous across the cell boundary. 
Following equations (3.4 -3.6) and combined with equations (3.18 –3.20), the spatial gradient 
velocity Lp

t  and deformation gradient Fp
t  of any given material point in a cell is given by, 

  Lp
t = v i

tGi x p
t( )

i=1

N

∑   , (3.21) 

  Fp
t = xi

tGi
0 x p

t( )
i=1

N

∑   , (3.22) 

with Gi x p
t( ) = ∇Ni x p

t  representing the gradient of each basis function at the current locations of 

the material points at time t, while Gi
0 x p

t( ) = ∇0 Ni X p
t represents the gradient operator of each 

basis function with respect to the undeformed configuration. 
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Substituting equations (3.18 –3.20) into equation (3.13) yields, 

 wi
t ⋅ mij

t a j
t

p=1

K

∑ + M pσ p
ρ,t ⋅∇Ni x p

t

p=1

K

∑






= wi

t ⋅bi
t

i=1

N

∑
i=1

N

∑ + wi
t ⋅ t̂ i

t

i=1

N

∑ + wi
t ⋅ f̂i

t

i=1

N

∑   , (3.23) 

where mij
t  is the mass matrix depending on the position of the material points with respect to the 

computational grid at time t such that, 

  mij
t = M pNi x p

t( )
p=1

K

∑ N j x p
t( )   , (3.24) 

σ p
ρ,t = σ ρ,t x p

t( )  is the specific stress tensor associated with the material point x p
t  at time t, bi

t  is 
the vector of nodal specific body force field at time t discretized such that, 

  bi
t = M pb x p

t( )Ni x p
t( )

p=1

K

∑   , (3.25) 

t̂ i
t  is the vector of nodal surface traction at time t defined by, 

  t̂ i
t = NitdS

∂Ωσ
∫   , (3.26) 

and f̂i
t  is vector of nodal the contact forces at time t given by, 

  f̂i
t = σ ⋅nNidS

∂Ωu
∫   . (3.27) 

Since the vector wi  is arbitrary except where the degrees of freedom are prescribed at the nodes 
belonging to ∂Ωu , the equation of motion (3.23) can be schematically summarized by, 

  mij
t a j

t

j=1

N

∑ = fi
int, t + fi

ext ,t   , (3.28) 

where the nodal internal force vector ft
int,t  at time t is given by, 

  fi
int,t = − M pσ p

ρ,t ⋅Gi x p
t( )

p=1

K

∑   , (3.29) 

with Gi x p
t( ) = ∇Ni x p

t  representing the gradient of each basis function at the current locations of 

the material points at time t.  The nodal external force vector fi
ext ,t  at time t is given by, 

  fi
ext ,t = bi

t + t̂ i
t + f̂i

t   . (3.30) 
 
3.1.3 Microstructure-based model 
 
 To understand and study non-linear elasto-visco-plastic behavior at the microstructural 
level, the material deformation is treated with a standard crystal plasticity rate-dependent 
formulation presented in the Appendix.   
 
 Suppose the complete state of the continuum is known at time t.  The algorithm consists 
of the following steps (see Figure 3.2): 

(a) For each particle, one first needs to perform the mapping operations (mass, momentum, 
and internal forces) from the particle points to the grid nodes.  These procedure 
includes: 
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The mapping of the mass from the particles to the grid nodes containing these particles, 

 mi
t = M pNi x p

t( )
p=1

K

∑   , (3.31) 

where mi
t  is the mass at node i at time t. 

The mapping of the momentum equation from the particles to the grid nodes containing 
these particles, 

 mv( )i
t
= Mv( )p

t Ni x p
t( )

p=1

K

∑   , (3.32) 

where mv( )i
t  is the nodal momentum at node i at time t, and Mv( )p  the momentum of particle p 

at time t. 
Once these two mapping operations are done, the internal force vector fi

int,t  is obtained 
at the grid nodes using equation (3.29), 

 fi
int,t = − Gi x p

t( ) ⋅σ p
t M p

ρp
t

p=1

K

∑   , (3.33) 

(b) The internal force vector is subsequently used to apply boundary conditions to the grid 
nodes and calculate the nodal force vector fi

t , 
 fi

t = fi
int,t + fi

ext ,t   , (3.34) 
where fi

ext ,t  denotes the external nodal force vector given by equation (3.30). 
(c) The nodal force vector is then use to update the momentum at the grid nodes at time 

t + Δt , 
 mv( )i

t +Δt
= mv( )i

t
+ fi

tΔt   . (3.35) 
(d) Knowing the nodal force vector and nodal momentum, once can, for each particle, 

perform mapping operations (acceleration, velocity, displacement position) from the 
nodes of the cell containing the particle to the particle.  These operations include: 
The mapping of the nodal accelerations back to the particle, 

 a p
t = Ni x p

t( ) fi
t

mi
t

i=1

N

∑   . (3.36) 

The mapping of the updated nodal velocity back to the particle by means of the shape 
functions, 

 v p
t +Δt = Ni x p

t( ) mv( )i
t +Δt

mi
t

i=1

N

∑   , (3.37) 

or alternatively, compute the updated particle velocity by using a explicit time 
integration scheme such that, 
 v p

t +Δt = v p
t + a p

t Δt   . (3.38) 
Note that equation (3.38), while equation(3.37) leads to higher numerical dissipation (if 
quasistatic this  is not an issue). 

The updated particle position is obtained by a backward integration using the nodal 
functions to ensure a continuous velocity field inside the cell and to limit numerical errors, 
 x p

t +Δt = x p
t + v p

t +ΔtΔt   . (3.39) 
The particle displacement is given by, 
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 u p
t +Δt = x p

t +Δt − x p
0   . (3.40) 

(e) Once the spatial information has been updated on the particles, once can update the 
momentum back to the grid nodes containing these particles 

 mv( )i
t +Δt

= Mv( )p
t +Δt Ni x p

t( )
p=1

K

∑   . (3.41) 

(f) The updated nodal momentum helps finding the updated nodal velocities 

 v i
t +Δt =

mv( )i
t +Δt

mi
t   . (3.42) 

(g) In the case of the deformation gradient formulation used in crystal plasticity, the current 
particle velocity gradient can be calculated using the gradient of each basis function at 
the current locations of the material points such that, 

 Lp
t +Δt = v i

t +ΔtGi x p
t( )

i=1

N

∑   . (3.43) 

(h) Following equation (3.5), one can calculate the updated deformation gradient of a 
material point, 

 Fp
t +Δt = xi

t +ΔtGi x p
t( )

i=1

N

∑ ⋅Fp
t   , (3.44) 

or combining equation (3.44) with the explicit time integration of the nodal positions, this gives 
for a Lagrangian framework, 

 Fp
t +Δt = xi

t + v i
t +ΔtΔt( )Gi x p

t( )
i=1

N

∑ ⋅Fp
t = xi

tGi x p
t( )

i=1

N

∑ ⋅Fp
t + v i

t +ΔtΔtGi x p
t( )

i=1

N

∑ ⋅Fp
t   .(3.45) 

(i) The stress increment is found from the local crystal plasticity constitutive model for a 
given deformation gradient increment ΔFp

t +Δt = Fp
t +Δt − Fp

t , 

 σ p
t +Δt = σ p

t + Δσ   . (3.46) 
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Figure 3.6.  Implementation of crystal plasticity in MPALE. 

 

 

3.1.4  Numerical Examples for Crystal Plasticity 
 
 As a validation of the implementation of the crystal plasticity framework into tests 
problems were performed on single crystals and polycrystals to directly compare the MPM 
solutions with Sandia’s Finite Element (FE) code (JAS3D). The crystal plasticity model was 
incorporated into Sandia’s finite element analysis code, JAS3D [10] as a standard subroutine.  
The FEM simulations use eight node (hexahedral) 3D isoparametric elements with a single 
integration point at the element centroid.  To deal with zero energy modes that may arise as a 
result of the single point integration scheme, the code uses an hourglass control, based on the 
work of Flanagan and Belytschko [11].  Numerical integration of the constitutive model is 
performed using a forward Euler scheme.  Restrictions are placed on the time step to ensure that 
the forward integration scheme remains stable.  If the step size requested by the user is larger 
than the allowable size, the step is divided into subincrements of allowable size within the 
constitutive subroutine. 
 
 The first validation test performed was done on a single crystal.  The single crystal was 
represented by a mesh of square cells (MPM) / elements (FEM).  As shown in Figure 3.3, the 
cell/element resolution was taken to be same in both cases i.e. 20 ×10 ×10  cells/elements.  In 
addition, note that in the case of the MPM calculation each cell contains 8 material points.  It was 
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found during the course of this benchmark test, that increasing the number of material points per 
cell (i.e. increase the resolution of points) did not improve the stress-strain curve results.  
Consequently, the resolution of 8 materials points per cell was used in the rest of this study.  A 
simple traction loading condition was applied on the single crystal in the X direction, while the Y 
and Z direction were traction free.  The main difference between the FEM and MPM calculation 
actually resides on the application of these boundary conditions.  Indeed, the FEM code used in 
this study is an implicit time integration code, while the MPM code is a explicit time integration 
code. Therefore, while JAS3D correspond to quasistatic loading conditions (i.e insensitive to the 
loading rate), the MPM code does depend on the loading rate.  As a result and as shown in 
Figure 3.3, we performed a series of calculation with different magnitude in the loading step.  
The smaller the loading step, the closer the MPM calculation to the quasistatic case. 
 

The comparison between the stress-strain curve predicted by MPALE and the one 
obtained by FEM is shown in Figure 3.3.  It is seen that as the loading step becomes smaller the 
MPM calculation converges toward the quasistatic solution and both methods are in good 
agreement.  This phenomena can be explained by the fact that elastic waves are traveling through 
the material as it deforms.  Applying a smaller loading step reduces the amplitude of these wave 
and therefore gives is more time to be damped throughout the materials. 
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Figure 7.3.  Comparison FEM (JAS3D, implicit time integration) vs. MPM (MPALE, implicit 

time integration) on a single crystal. 
 
 
 The second validation test performed was performed on a polycrystal with square grains.  
The single crystal was represented by a mesh of square cells (MPM) / elements (FEM).  As 
shown in Figure 3.4, the cell/element resolution was taken to be same in both cases i.e. 
40 × 40 ×10  cells/elements.  In addition, similarly to the single crystal example, in the case of 
the MPM calculation, each cell contains 8 material points.  Random orientation was assigned to 
each grain. A simple traction in the X direction was applied to the boundary of the polycrystal 
while the Y and Z direction were considered traction free. 
 

 The comparison between the stress strain curve predicted by MPALE and the one 
obtained by FEM is shown in Figure 3.4.  Contrary to the observations made in the case of the 
single crystal, we notice that in the case of the polycrystal the choice of the loading step has little 
impact on the convergence of the results, and both methods (FEM vs. MPM) are in good 
agreement.  This remark can simply be attributed to the fact that in the case of the polycrystal the 
elastic waves traveling through the microstructure are naturally damped at the grain boundaries 
due to the discontinuity of the material properties (Dingreville and Bartel, 2009). 
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Figure 3.8.  Comparison FEM (JAS3D, implicit time integration) vs. MPM (MPALE, implicit 

time integration) on a polycrystal. 
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3.2.  Stress Fields Generate by Surface Triple-Grain Junctions: 
Illustrative Finite Element Results (E.D. Reedy (01526) 

 
3.2.1  Introduction 
 
 

Crack growth in ductile materials often initiates at surfaces. For example, when a pure, 
polycrystalline ductile metal is subjected to cyclic fatigue, cracks typically nucleate at locations 
where persistent slip bands intersect the surface [12]. The surface roughness induced by the 
persistent slip bands is sometimes referred to as extrusions and intrusions. There is also 
experimental data suggesting microstructural features such grain boundaries and crystallographic 
orientation effect fatigue-induced crack nucleation at a stress-free surface [13]. Regions of 
elevated stress within a microstructure are presumably associated with the generation of surface 
roughness and crack nucleation. It is well known that polycrystalline geometry and texture can 
introduce non-uniform stress fields under a nominally homogeneous loading.  Recent work 
includes a 3-D finite element analysis of synthetically generated cubic crystal aggregates [14] as 
well as finite element models based on images of 3D crystalline microstructure [15]. Both 
studies found that regions of elevated stress were associated with grain boundaries and triple-
grain junctions. One challenge when viewing results of such geometrically complex models is 
identifying correlations between the microstructure and the observed stress state. This 
complexity has even motivated the use of data-mining techniques [16]. 
 

Within the context of linear elasticity theory, material and geometric discontinuities in 
triple-grain junction-like geometries can give rise to power-law singular stress fields, i.e.,  s ~ rl), 
where l <0  and r is radial distance from the singular point [17, 18]. It has been shown that the 
stress intensity factors associated with such singularities can be successfully used in failure 
analysis in certain cases [19, 20]. There has been considerable effort aimed at studying the 
asymptotic nature of such singular fields with the primary aim of determining the strength 
(exponent) of the stress singularity. This has included the case where the joined materials are 
anisotropic [21, 22]. There has been relatively less work aimed at examining stress singularities 
within the context of cubic, polycrystalline microstructures and that work has examined interior 
triple-grain junctions in a columnar, polycrystalline material. Tvergaard and Hutchinson [23] 
performed an asymptotic analysis for a special symmetric grain geometry and crystal orientation. 
Picu and Gupta [24] determined the strength of the stress singularity for a range of triple-grain 
junction angles and crystal orientations.  
 

The present work examines the stress fields generated at a surface triple-grain junction; 
the point where a grain boundary intersects a stress-free surface (i.e., the third crystal is the 
empty space adjacent to the surface). A highly idealized, 2-D problem is analyzed to avoid 
complexity; although the expectation is that the results will provide general insights. Particular 
emphasis is placed on determining the magnitude of such stress fields (i.e., the generalized stress 
intensity factor) and characterizing the region dominated by the singularity. The dependence of 
these quantities on crystal orientations, grain boundary orientation, crystal properties, and grain 
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length scale and geometry are considered. The goal of this study, which is illustrative rather than 
comprehensive, is to determine whether the stress fields generated at surface triple-grain 
junctions could possibly be associated with when and where crack growth nucleates along a 
polycrystalline surface. 
 
3.2.2  Analysis 
 
 A highly idealized, 2D, plane strain problem is analyzed. As shown in Fig. 1, a 
cluster of four columnar crystals that are adjacent to the stress-free surface are modeled 
explicitly. There are three hexagonal crystals surrounding a bisected hexagonal (trapezoidal) 
crystal. The angles w1 and w2 define the orientation of the center crystal’s grain boundary with 
respect to the stress-free surface. For a regular hexagon, w1 =120o and w2 =60o. The crystals are 
cubic and have one axis of material symmetry perpendicular to the top surface of the material 
(i.e. aligned with the out-of-plane normal axis). The in-plane orientation of each crystal is 
defined independently with respect to the horizontal, 1-axis (i.e., ga-gd in Fig. 3.5). This cluster 
of crystals is embedded in a homogeneous, isotropic effective material with properties based 
upon random crystal rotations about the out-of-plane axis (see the Appendix for a derivation of 
the relationships used to calculate the effective elastic properties). The model’s length L and 
width W are chosen so that they have negligible effect on the triple-grain junction local stress 
fields. Specifically, L = 2W = 80s, where 2s is the side length of the hexagonal crystal (Fig. 3.5).   
The model is loaded in uniaxial tension parallel to the stress-free surface to generate a nominally 
uniform s11=s*.  
 

 
 
 
Figure 3.5. Geometry of problem analyzed, uniformly displace right edge relative to fixed left 
edge in a direction parallel to the stress-free edge to generate a nominally uniform s11=s*. 
 
 
 The finite element mesh is highly refined in the region surrounding the surface 
triple-junction points, pt1 and pt2, in Figure 3.5 in order to resolve the nature of the stress state at 
those points. There are twenty-one logarithmically spaced rings surrounding these triple-grain 
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junction points. The radius of adjacent rings differ by a factor of 1.33, with an inner ring at 
r/s=0.001 (there is a plug of elements of comparable size to those in the first ring at the center of 
the concentric rings). For the surface triple-grain junctions considered in the present study, it has 
been determined that when a stress singularity exists, it consists of a single, power-law term with 
an exponent between minus one and zero.  In this case the singular stress state has the form 
 
                (3.47) 
 
with                                                  (3.48)  
 
 
where Ka is the generalized stress intensity factor, r is radial distance from the singular point, l is 
the strength of the singularity, and the function fij, which defines the angular variation of the 
asymptotic stress field, depends on  non-dimensional quantities that define the asymptotic 
problem. The function A in (3.48) is a function of nondimensional material and geometric 
parameters that define the microstructure and global geometry. 
 

Results for each finite element analysis are used to determine the associated Ka and l 
values by performing a power-law fit of stress versus distance from the singular point in the 
region dominated by the stress singularity.  In this study, the singularity parameters were 
determined by fitting the finite element results over the distance r/s=0.001 to 0.01 along a ray 
with q=0o (pt1) or q=180o (pt2). The region dominated by the stress singularity is characterized 
by the quantity rd. This length is defined as the distance beyond which the power-law fit and the 
calculated value of srr along the stress-free edge differ by more than 2% (defined along the ray 
with q=0o for pt1 or q=180o for pt2, i.e., along the stress-free edge and directed away from the 
center crystal). Since the computed stress singularities will in general have different values of 
both l and Ka (i.e., A), a direct comparison of singularity fields using these parameters is 
problematic. For this reason, the value of srr at two locations along the stress-free edge will be 
reported (at r/s = 0.01 and r/s = 0.10). This provides a means of comparing stress fields even 
when the singularity parameters differ (or even when the fields are non-singular). 
 

In addition to the finite element-based analysis, the Stroh formalism for anisotropic 
elasticity [25] was used to derive the characteristic equation governing the strength of the 
singularity for those triple-grain junctions analyzed by the finite element analysis.  These results 
were used to verify the accuracy of the finite element calculations. The Stroh-based anisotropic 
elasticity analysis also confirms that when a surface, triple-grain junction singularity exists, the 
singularity is a single power-law term for the material and geometric parameters considered in 
this study. The use of the Stroh formalism to determine the nature of the asymptotic stress field 
at material and geometric discontinuities in anisotropic elastic materials is now well established 
and will not be discussed here. The interested reader can find details on how this type of analysis 
is performed in references [26-28].  
 
3.2.3  Results 
 
Baseline configuration 
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Results will first be presented for a baseline configuration. Subsequent sections will 
present results for material and geometric variations from this baseline. The baseline 
configuration has regular, hexahedral grains (w1 =120o and w2 =60o), a grain side length 2s=10 
mm, and crystal orientations of ga = gc = -gd = 60

o
 and gb = 0

o 
(see Fig. 1). The baseline crystal 

material is copper (Cu) with cubic elastic constants of C11=168 GPa, C12=122 GPa, and C66=76 
GPa. The calculated effective isotropic properties for Cu, based on the relationships derived in 
the Appendix, are E=115 GPa and n =0.354. 
 

Figure 3.6 plots the variation of the stress component s11 with distance from pt1 (pt2) 
along the stress-free edge (along the ray q=0o for pt1 and along the ray q=180o for pt2). Note that 
s11 is the only non-zero, in-plane stress component along the stress-free edge. The stress state is 
singular at pt1 while that at pt2 is nonsingular. This is consistent with published asymptotic 
stress analysis results for interior triple-grain junctions that show that there is only a certain 
range of crystal orientations for a given grain boundary angle that produce singular behavior 
[24]. The singularity at pt1 is much weaker than that found at a crack tip (-0.17 vs -0.5), but it 
dominates a very large region. The FEA results are within 2% of the power-law fit for r/s<0.5. 
Furthermore, stress is elevated over a significant region (s11/s* >1 for r/s < 0.2). 

 

 
Figure 3.6. Radial stress dependence at pt1 (q=0o) and pt2 (q=180o) for baseline geometry and 
material.  

 
 

Figure 3.7 plots the angular variation of the singular stress components about pt1.  The fij 
functions that define this angular variation (Eq. 3.47) have been normalized by setting ftt(q=90o) 
= 1. The plotted results are for the ring with r/s = 0.001, although results for rings with r/s = 
0.010 and 0.1000 essentially overlay those for r/s =0.001. This is consistent with the region of 
dominance suggested by the power-law fit in Fig. 2. Continuity of stress across the grain 
boundary is reflected in the observed continuity in ftt and frt at q=120o. On the other hand, frr 
can be discontinuous across the grain boundary, and that is the case when there is a stress 
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singularity. There is also a discontinuity in the slope of frt at the grain boundary. The magnitude 
of the stress along the stress-free edge can be quite different in the two adjacent crystals. In the 
outer crystal (i.e., the crystal to the right of pt1), where ga=60o, frr(0o)=1.37, while in the center 
crystal, where gb=0o, frr(180o)=0.9. As Fig. 3.8 shows, the deformed microstructure (highly 
magnified) is complex and can include shear coupling induced displacements. Although there are 
differences in detail, the results for the baseline configuration are representative of all the 
junctions examined. 

 
 
 
 
 

 
 
Figure. 3.7. Angular dependence of singular stress at pt1 for baseline geometry and material. 
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Figure. 3.8. Deformed geometry (highly magnified) for baseline geometry and material. 
 
Effect of crystal properties 
 

Results for the baseline crystal material, copper, are compared with those for nickel (Ni) 
and silicon (Si) with all other parameters defining the baseline configuration unchanged. The 
elastic constants used in the nickel (Ni) calculation are C11=248 GPa, C12=155 GPa, and C66=124 
GPa, along with computed effective isotropic properties of E=201GPa and n=0.310 for the 
surrounding bulk. Likewise the elastic constants used in the silicon (Si) calculation are C11=166 
GPa, C12 =64 GPa, and C66=80 GPa, along with computed effective isotropic properties of 
E=156 GPa and n =0.222 for the surrounding bulk. The level of crystal anisotropy is often 
characterized by the parameters R and Q, where R=(C12 + 2C66)/C11 and Q=C66/C12, (R=1 for an 
isotropic material).  Table 3.1 compares the calculated results for the stress singularity at pt1. 
Note that for a specified nominal applied stress s* and grain side length 2s, the magnitude of the 
stress intensity factor Ka scales directly with the value of A (Eq. 3.48).  As anticipated, the 
singular stress field does depend on crystal elastic properties. The strength of the singularity and 
the stress magnitude at r/s=0.01 and 0.10 are greatest when the crystals are copper. In all cases, 
the region dominated by the singularity, characterized by rd, is rather large (>0.5s) and there is a 
significant elevation in the stress level out to a distance of r/s=0.10.  
 
 
 
 
 
 
 
 
 
 
 

pt2 
pt1 
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Table 3.1. Effect of crystal properties on pt1 singular stress state. 
 

  R Q A 
(eq. 2) 

λ rd/s σrr(θ=0o)/σ* 
r/s=0.01 

σrr(θ=0o)/σ* 
r/s=0.10 

Si 1.35 1.25 0.84 -0.058 0.72 1.21 1.06 

Ni 1.63 0.80 0.64 -0.133 0.52 1.53 1.12 

Cu 1.63 0.62 0.56 -0.169 0.52 1.68 1.13 
 
Effect of crystal orientation 
 

First consider a variation from the baseline configuration where the set of crystal 
orientations considered have ga=gc=-gd, gb=0 (Figure 3.5). The calculated strength of the stress 
singularity at pt1 for ga=0o, 15o, 30o, 45o, 60o, and 75o is plotted in Fig. 3.9 (ga =60o is the 
baseline configuration). A stress singularities (l < 0) is generated only when 30o<ga<90o. Not all 
surface triple-grain junctions generate a stress singularity. Also plotted in Fig. 3.9 is a curve 
where the l-values were calculated using the Stroh formalism for anisotropic elasticity. 
Singularity strengths determined from the finite element analysis are in good agreement with 
those determined using the Stroh formalism, verifying the accuracy of the finite element 
approach.  
 

Results that further characterize pt1 and pt2 stress states for the crystal orientations 
considered in Figure 3.7, as well as results for three other sets of crystal orientations, are 
presented in Tables 3.2 and Table 3.3, respectively. These results suggest the following general 
observations. First, there are combinations of crystal orientation that generate elevated stress of 
more than 1.4s* for r/s < 0.1.  Consequently, surface triple-grain junctions are likely to influence 
when and where plastic deformation occurs. Second, the magnitude of the elevated stress can be 
affected by grains other then those at the singular point (e.g., Table 3.2: ga=60o, gb=0o, gc=60o, 
gd=-60o vs. ga=60o,  gb=0o,  gc=60o, gd=0o). Presumably local variations in orientation-induced 
stiffness can effect load transfer within a microstructure and influence to what extent a stress 
singularity is excited. Thirdly, orientation combinations with a more negative l (stronger 
singularity) do not necessarily generate a higher stress at r/s = 0.1 (e.g., Table 3.3: ga=60o, 
gb=75o,  gc=15o, gd=-15o vs. ga=30o,  gb=0o,  gc=30o, gd=-30o). A higher Ka (i.e., A) can 
compensate for a weaker singularity (smaller –l).  
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Table 3.2. Effect of crystal orientation on pt1 singular stress state. 
 
γa (o) γb (o) γc (o) γd (o) A 

(eq. 2) 
λ rd/s σrr(θ=0o)/σ* 

r/s=0.01 
σrr(θ=0o)/σ* 

r/s=0.10 

0 0 0 0 - - - 0.78 0.78 
15 0 15 -15 - - - 0.66 0.75 
30 0 30 -30 - - - 0.90 0.90 
45 0 45 -45 0.708 -0.113 0.62 1.55 1.19 
60 0 60 -60 0.562 -0.169 0.52 1.68 1.13 
75 0 75 -75 0.606 -0.108 0.52 1.20 0.93 
60 0 60 0 0.726 -0.168 0.18 2.16 1.48 
60 45 30 -45 1.091 -0.078 0.08 1.73 1.41 
60 75 15 -15 0.850 -0.077 0.82 1.38 1.16 

 
 
Table 3.3. Effect of crystal orientation on pt2 singular stress state. 
 
γa (o) γb (o) γc (o) γd (o) A 

(eq. 2) 
λ rd/s σrr(θ=180o)/σ* 

r/s=0.01 
σrr(θ=180o)/σ* 

r/s=0.10 

0 0 0 0 - - - 0.78 0.78 
15 0 15 -15 0.606 -0.108 0.52 1.20 0.93 
30 0 30 -30 0.562 -0.169 0.52 1.68 1.13 
45 0 45 -45 0.708 -0.113 0.62 1.55 1.19 
60 0 60 -60 - - - 0.90 0.90 
75 0 75 -75 - - - 0.66 0.75 
60 0 60 0 - - - 0.96 0.98 
60 45 30 -45 1.091 -0.078 0.08 1.73 1.41 
60 75 15 -15 0.883 -0.139 0.10 2.10 1.50 
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Figure 3.9. FEA results for the variation of -l with ga at pt1 of the baseline configuration with 
ga=gc=-gd, and gb= 0o are compared with asymptotic -l values determined using the Stroh 
formalism for anisotropic elasticity. 
 
 
Size effects 
 

As in linear elastic fracture mechanics, there is an intrinsic size effect for a triple-grain 
junction, with side length 2s playing the role of crack length. A uniform increase in the size of all 
crystals results in a Ka value that scales as s-l  (Eq. 48). Therefore for a specified s*, stress at a 
fixed radial distance r from the singular point scales as s-l. For example, if the value of s for the 
baseline configuration is increased from 5 mm to 10 mm, the magnitude of the stress at a fixed 
distance r from the singular point will increase by a factor of 1.12, provided that this position is 
within the region dominated by the stress singularity (i.e. 20.169 = 1.12).  
 

The effect of increasing the size of only some of the crystals is less obvious. To examine 
this effect, the embedded crystal geometry shown in Fig. 3.10 was analyzed.  Here the center 
crystal geometry is the same as that of the baseline, but the size of the surrounding crystals is 
increased. Results for the baseline geometry (Figure 3.5) are compared to the Fig. 3.10 geometry 
in Table 3.4. These results are for pt1, with ga=gc =-gd, gb=0 and s=5 mm. Note that since the 
grain boundary angle w1 (Figure 3.5) is the same for both crystal aggregate geometries, both 
geometries will generate the same l value for the specified ga (i.e., they share the same 
asymptotic problem). This limited set of results indicate that there is no consistent trend; the 
stress at a fixed r can either increase or decrease when the center crystal is surrounded by larger 
crystals. 
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Table 3.4. Effect of crystal size on pt1 singular stress state. 
 

geometry γa (o) A 
(eq. 2) 

λ rd/s σrr(θ=0o)/σ* 
r/s=0.01 

σrr(θ=0o)/σ* 
r/s=0.10 

Fig. 1 60 0.562 -0.169 0.52 1.68 1.13 
Fig. 6 60 0.515 -0.170 0.13 1.54 1.03 
Fig. 1 45 0.708 -0.113 0.62 1.55 1.19 
Fig. 6 45 0.735 -0.113 0.62 1.61 1.24 

 
 
 
Effect of grain boundary angle 

A limited number of calculations were also performed to examine the effect of grain 
boundary angle of the stress state at triple-grain junction. The same microstructural geometry 
shown in Figure 3.10 was analyzed, except pt1 (pt2) were moved to change the grain boundary 
angle w1 (w2) from 120o (60o) to 90o (90o) or 150o (30o). As anticipated, the grain boundary 
interface angle affects the nature of the triple-grain junction stress field. Table 3.5 presents 
results for pt1. In the cases examined, the stress state is non-singular when the grain boundary 
interface is perpendicular to the stress-free edge. Interestingly, in one of the cases examined, 
where ga=45o, gb=0o, gc=45o, gd=-45o, the magnitude of the nonsingular stress field is quite high 
with srr(q=0o)/s*=1.6 at r/s=0.1. Examination of the calculated results showed stress generated 
by a undulation along the stress-free surface in the region of the triple-grain junction (Figure 
3.11). The peak stress does not occur at the triple-grain junction, but at r/s=0.042. It should be 
noted that the S11 compliance component of the copper crystal, when rotated at 45o to the 1-axis, 
is about half that of the unrotated compliance. Consequently, there is a large mismatch in local 1-
direction compliance. This result shows that some crystals in a polycrystalline aggregate might 
be subjected to relatively high stress even when the triple-grain junction stress field is non-
singular. Large compliance mismatches can influence crystal deformation and load transfer 
through a crystal aggregate. Clearly, one can not simply ignore all nonsingular triple-grain 
junctions. Regions of large differences in local compliance in the direction parallel to the stress-
free edge should also be considered. 

 
Table 3.5. Effect of grain boundary interface angle on pt1 singular stress state. 
 
ω (o) γa (o) γb (o) γc (o) γd (o) A 

(eq. 2) 
λ rd/s σrr(θ=0)/σ* 

r/s=0.01 
σrr(θ=0)/σ* 

r/s=0.10 
90 45 0 45 -45 - - - 1.57 1.60 
90 0 45 0 -15 - - - 0.65 0.77 
90 0 15 0 0 - - - 0.80 0.81 
150 45 0 45 -45 - - - 0.42 0.59 
150 75 0 75 -75 0.690 -0.040 0.24 0.83 0.77 
150 75 15 75 -75 0.694 -0.142 0.13 1.40 1.02 
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Figure 3.10. Geometry of model used to examine effect of surrounding a crystal with larger 
crystals. 
 
 
 
 
 
 
 
 

 
 
 
Figure 3.11. Deformed geometry (highly deformed) for case where w1=90o and with ga=45o, 
gb=0o, gc= 45o, and gd=-45o. 
 
3.2.4  Discussion 
 

The combinations of crystal and grain boundary orientations that generate a singular 
stress state can be determined by an analysis of the asymptotic problem. This type of analysis 
can determine the strength of the singularity l, but cannot determine the magnitude of the stress 
in the region dominated by a triple-grain junction. The magnitude of the stress field at a triple-
grain junction and the size of the region dominated by the singular field can only be determined 
by performing a full solution of the polycrystalline aggregate of interest. In this work, a finite 
element analysis that utilized a highly refined mesh about the triple-grain junction was used to 
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fully determine the nature of the stress singularity (i.e., determine l and Ka). Many of the results 
published in the literature attempt to model complex polycrystalline microstructures, but do so 
using a relatively coarse mesh. The existence of a region of highly elevated stress adjacent to a 
triple-grain junction might not be apparent in such an analysis. One alternative approach is to use 
results, such as those reported here, to help identify triple junctions of particular interest and 
refine the mesh accordingly. One might expect that there are relatively few combinations of 
crystal and grain boundary orientations that generate stress levels that are significantly higher 
than the nominal value. However, as the results reported here show, there is no definitive method 
for picking out that one triple-junction that is of most interest. Local variations in orientation-
induced stiffness can effect load transfer within a microstructure and influence to what extent a 
stress singularity is excited. Furthermore, there can be special cases where significantly elevated 
stress is generated near a triple-grain junction that has a nonsingular stress field. Regions of large 
differences in local compliance in the direction parallel to the stress-free edge should also be 
considered. Nonetheless, one should be able to narrow the universe of possibilities. 
 

The asymptotic analysis indicates that there are specific combinations of grain boundary 
and crystal orientations that generate a non-singular triple-junction stress state with l=0 (e.g., 
Figure 3.9).  Simple considerations permit the identification of such combinations.  
A triple-grain junction stress singularity is associated with a discontinuity in the radial stress 
srr(q=w) across the grain boundary interface (see Figure 3.7). Note that interfacial stress and 
displacement continuity conditions at the interface permits, but does not require, a radial stress 
discontinuity to exist. There might be certain combinations that generate a fully continuous stress 
state across the interface, and those combinations should generate a nonsingular triple-grain 
junction. 
 

Figure 3.12 shows to half-planes separated by an oblique interface defined by the 
orientation w that separates two cubic crystals that differ only in their crystal orientation.  
Material A has crystal orientation ga while material B has crystal orientation gb. The half-plane is 
subjected to a uniform stress s11=s*, which is consistent with the stress-state found along the 
stress-free edge of the triple-grain junction asymptotic problem. The interfacial continuity 
conditions are: 
 
     

€ 

σrθ
a (θ =ω ) = σ rθ

b (θ =ω ) = −σ * sin(ω )cos(ω )                          (3.49) 
     

€ 

σθθ
a (θ =ω ) = σθθ

b (θ =ω ) = σ * sin2(ω )                   (3.50)   
     

€ 

εrr
a (θ =ω ) = ε rr

b (θ =ω )                        (3.51) 
where the superscripts a and b identify the cubic material with crystal orientation ga  and gb , 
respectively.  
 
Combinations of w, ga, and gb that generate  

 

€ 

σrr
a (θ =ω) =σrr

b (θ =ω) =σ*cos2(ω)                                      (3.52)      (4) 
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are of interest. Now, one can express the strain compatibility requirement (3.51) in terms of the 

associated stress components through the crystal’s compliance components 

€ 

Sij
*
 .  

 

€ 

εrr
a (θ =ω ) = S11

*'(ω − γ a )σrr
a (θ =ω )+ S12

*'(ω − γ a )σθθ
a (θ =ω )+ S16

*'(ω − γ a )σrθ
a (θ =ω )                                                                                                                                      

(3.53) 
 

€ 

εrr
b (θ =ω ) = S11

*'(ω − γ b )σrr
b (θ =ω )+ S12

*'(ω − γ b )σθθ
b (θ =ω )+ S16

*'(ω − γ b )σrθ
b (θ =ω )  

                                          (3.54) 
 

Note that plane strain cubic crystal compliances must be transformed to the 1’-2’ 
coordinate system, which is aligned with the interface, from the coordinate system in which they 
are defined (e.g., for material A, a rotation of w-ga, since the cubic material A is aligned at an 
angle ga from the 1-axis).  
  
The governing equation is then defined by substituting Eqs. 3.49, 3.50, and 3.52 into Eqs. 3.53 
and 3.54, and then equating Eqs. 3.53 and 3.54.  The resulting relationship is 
 

€ 

(cos(4(ω − γ a ))− cos(4(ω − γ b )))cos2(ω )
−(cos(4(ω − γ a ))− cos(4(ω − γ b )))sin2(ω )
+2(sin(4(ω − γ a ))− sin(4(ω − γ b )))sin(ω )cos(ω ) = 0

                                      (3.55) 

 
Interestingly, Eq. 3.55 depends only on w, ga, and gb (i.e., there is no dependence on the crystal 
compliances). Eq. 3.55 can be further simplified to yield 
                     

€ 

cos(4γ a − 2ω )− cos(4γ b − 2ω ) = 0                                (3.56) 
 
Eq. 3.56 has two solutions 
 

€ 

γ a = γ b + n π
2

  where n = integer                                            (3.57) 

 

€ 

ω = γ a +γ b + n π
2

where n = integer               (3.58) 

 
The Eq. 3.57 solution is the trivial result that the stress state is continuous across the grain 
boundary interface when the two adjoining crystals have the same orientation (additional 90o 
rotations do not effect the cubic crystal properties).  Eq. 3.58 is the more interesting result and 
test calculations confirm that l=0 when w=ga+gb (e.g., see Figure 3.9). 
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There is one other choice of orientation parameters that generates a nonsingular stress 
field; whenever w=90o for all ga and gb. When the grain boundary interface is normal to the 
stress-free edge, consistency with the stress-free boundary condition requires that the radial 
stress along the boundary equals zero in both materials A and B (e.g., see Table 3.5). 
 

These simple relationships (Eq. 3.57 and 3.58) provide a demarcation between ranges of 
orientations that generate either singular or non-singular triple-grain junction stress states. 
 

Finally note that the surface triple-grain junction that generates the highest shear stress is 
not necessarily the junction where plastic flow will first initiate. Slip is generated by the shear 
stress that acts on the available crystal slip systems. A junction that generates a lower shear 
stress, but is better aligned with a slip system, could be the first to initiate plastic flow. To 
explore this possibility, one can use the calculated surface triple-grain junction stress field and 
resolve the stress on the available slip systems for that particular crystal orientation. See, for 
example, the approach used by Feron, Zhang, and Suo [29] to determine the critical slip system 
at a sharp corner in strained silicon. Note that along the stress-free interface, the in-plane stress is 
uniaxial, so the maximum in-plane shear is at +/- 45o with respect to the stress-free surface. 

 

 
 
Figure 3.12. Problem analyzed to determine w, ga and gb combinations that generate a 
continuous srr across the grain boundary. 

 
 
3.2.5  Summary 
 

The stress field generated at surface triple-grain junction (the third crystal is the empty 
space adjacent to the surface) was investigated by analyzing an idealized, plane strain problem 
that embedded four columnar cubic crystals within an effective isotropic media. When a surface 
triple-grain junction singularity exists, it can be described by a single, power-law singular term. 
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This stress singularity is much weaker than that found at a crack tip (e.g., -0.17 vs. -0.5) although 
the region dominated by the stress singularity can be relatively large. The illustrative calculations 
performed in this study identified grain boundary and crystal orientation combinations that 
generate stress levels that exceed the nominal applied stress by 40% at a distance equal to 5% of 
the crystal’s side length. Those triple-grain junctions that generated significantly higher elevated 
stress were almost exclusively those associated with a relatively strong power-law stress 
singularity. Some crystals in an aggregate, however, are subjected to high stress even when the 
triple-grain junction stress field is non-singular. Compliance mismatches between neighboring 
crystals can influence local crystal deformation and load transfer through a crystal aggregate. It 
would seem that one cannot simply ignore all nonsingular triple-grain junctions. Regions of large 
differences in local compliance in the direction parallel to the stress-free edge might also be 
regions of significantly elevated stress.  The overall conclusion of this work is that only a few 
special triple-grain junctions along a surface may dominate behavior and possibly influence 
where a persistent slip band will nucleate. The type of analysis reported here may allow one to 
identify those triple-grain junctions that should be observed more closely in an experimental 
study or analyzed in greater detail in a numerical simulation. 
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3.3.  Advancement in an Analytically Enriched XFEM (J.V. Cox 
(01524)) 
3.3.1  Introduction 

This component of the LDRD project addressed a computational approach to fracture 
modeling that has several advantages over more traditional finite element approaches (e.g., 
smeared crack, embedded discontinuity, and interface element formulations).  In particular it 
addresses the changing topology associated with propagating cracks, via the underlying basis 
functions for the approximation (i.e., shape functions from an element perspective) rather than 
through changes in the mesh topology or constraining the crack to propagate along existing 
element edges.  That is, the basis functions themselves contain the discontinuity.  It also models 
the crack opening as being continuous across elements and their boundaries.  While these are 
desirable attributes they come at a price.  In typical implementations, additional degrees of 
freedom (associated with the additional basis functions) are adaptively added to nodes as the 
crack propagates.  Some codes are not structured to have an arbitrary number of degrees of 
freedom, and so clever alternatives (e.g., introducing coincident elements) have been adopted. 
 

Finite element methods that augment the basis locally to enrich the approximate solution 
with features that the typical polynomial basis can not either represent or can not represent 
efficiently are generically referred to as enriched methods.  To maintain the local support and 
continuity of the solution between elements, [30] introduced the partition of unity finite element 
method (PUFEM).  The PUFEM name reflects the form of the enrichment; the approximate 
solution space was enriched locally by a product of enrichment functions and a set of functions 
that constituted a “partition of unity.”  The partition of unity (typically either a subset of the 
original basis functions or a basis of a different order) has the key property that the sum of the 
functions has a value of unity at all points in the desired region of enrichment.  As an example, 
one could use quadratic elements but use the bilinear shape functions associated with the corner 
nodes as the partition of unity.  The displacement in the element then has contributions from the 
original shape functions and from the product of the shape functions associated with the partition 
of unity and enrichment functions.  This can represented by the expression 

€ 

u x( ) = Ν i x( )ui
i=1

NN

∑ + Λ j x( )Ν i
∗ x( )α ij

i=1

N
N*

∑
j=1

NΛ

∑  (3.59) 

where  

€ 

Ni x( ) ~ shape functions for the element,  

€ 

Ni
* x( ) ~ shape functions associated with the partition of unity 

€ 

Λ j x( )  ~ enrichment functions 
ui ~ degrees of freedom associated with the nodal shape functions 
aij ~ degrees of freedom associated with the enrichment. 
 
In Melenk and Babuska’s work an underlying motivation was to incorporate analytically 

derived functions in the basis for the approximate solution space: for example, terms from a 
series solution for a re-entrant corner. 
Belytschko and Black [31] were the first to exploit the partition of unity properties for 
enrichment of linear elastic fracture mechanics (LEFM) problems.  Their enrichment functions 
consisted of the four linearly independent functions that occur in the asymptotic solution for the 
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displacement field.  (For an early review of the related works on fracture, see Karihaloo and Xiao 
[32].)  Belytschko and colleagues presented several advancements and referred to their method 
as the extended finite element method (XFEM) (Sukumar et al. [33]) distinguishing it from the 
standard PUFEM in its representation of geometric features (i.e., the crack) by the enrichment 
functions. 
3.3.2  Previous SNL Work on the Analytically Enriched XFEM 

For cohesive crack problems the literature abounds with studies that have used 
generalized Heaviside or sign functions for enrichment.  Their simplicity facilitates 
implementation, and they are sufficient to allow the discontinuity of the crack to be introduced.  
The use of analytically based enrichment functions for XFEM, while common for LEFM, has 
been very limited for the cohesive-crack problem.  The only studies I am aware of are those 
conducted at Sandia (see e.g., Cox [34, 35]) and those of Xiao and Kariloo [36].  The motivation 
for analytical enrichment (both for LEFM and cohesive crack mechanics) is one of “efficiency of 
scale.”  That is given a sufficiently fine mesh one can always use Heaviside enrichment to model 
a crack.  For some problems in which LEFM is applicable, i.e., the process zone can be idealized 
in 2D as a point, the scale of discretization necessary to resolve a cohesive zone idealization can 
be very small.  In some cases adaptive mesh refinement would have to be used in conjunction 
with XFEM to make the problem tractable.  The same issue exists for cohesive crack problems, 
just not to the same degree.  In both cases, the potential exists for using a relatively coarse mesh 
that is sufficient to represent the gross response and capturing the local response in the vicinity of 
the crack via the analytical enrichment.  To advance the XFEM toward the goal of applying it to 
future micro-structural investigations of fatigue, we sought to investigate and improve the 
accuracy of an analytically enriched formulation that was recently further developed under 
Sandia ESRF funding (Cox [34]). 
 

The earliest work on this analytically enriched XFEM, was aimed at proving the concept 
by showing the quasi-static propagation of a mode-I cohesive crack across a square domain 
could be accurately reproduced.  Since the analytical solutions [37, 38] that were the underlying 
sources of the enrichment functions were based upon ideal quasi-brittle fracture (i.e., the zone of 
plastic hardening or perfect yielding was assumed to be negligibly small – Bazant and Planas 
[39]), the first test problems were idealized as being quasi-brittle too.  From the viewpoint of 
investigating the strengths and weaknesses of the numerical formulation, the added simplicity, 
relative to ductile fracture, makes the evaluation more straightforward.  For example, if (1) the 
bulk material is idealized as being elastoplastic and (2) the localized elements are integrated in a 
manner that accounts for the location of the crack, internal variables for the elastoplastic model 
must be mapped to new points with the change of the integration scheme.  This additional error 
source makes it more difficult to initially evaluate the merit of the enrichment functions.  
Obviously, the more complex problem must be addressed to assess the applicability of the 
enrichment functions to ductile fracture (the subject of an on-going ESRF project), but other 
more general issues that affect the solution accuracy were addressed in this study, namely: (1) 
curved crack mapping, (2) “stress field smoothing” (also called “stress extraction”), (3) stress 
relief for multiple cracks, and (4) effects of anisotropy on the accuracy. 
3.3.3  Extensions to Mixed-Mode Fracture 
 

Once the potential of the formulation was demonstrated for mode-I cracking, the 
formulation was extended to mixed-mode cracking.  This project contributed by addressing 
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issues (1) and (2) listed above, which were critical for effective mixed-mode solutions.  For a 
particular test problem, (3) was also potentially important. 
 

Analytical solutions used for enrichment, have the underlying assumption that the crack 
is straight.  To address curved cracks, a mapping must be used to map from the “actual curved” 
crack to the straight crack of the analytical solution.  The earliest formulations for LEFM 
(Belytschko and Black [31]) included a curved-crack mapping algorithm.  Consistent with the 
early mapping algorithms, the module that contained the enrichment functions in this 
formulation had a piecewise linear description of the crack geometry, the defining points of 
which corresponded to the intersects with the element edges.  The module did not however have 
access to the mesh data.  In brief, the algorithm used the simple idea that each response point (xr) 
in the domain was associated with a particular segment of the crack, initially determined by the 
first segment that satisfied the inequality 
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x r − x2
s( ) ⋅ t s > 0  (3.60) 

where 
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x2
s  ~ coordinates of the second end point of segment s.  The second point is further from the 

cohesive zone tip, as measured along the crack path. 
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x1
s ~ coordinates of the first end point of segment s. 

ts ~ tangent vector for the segment, 

€ 

x1
s − x2

s . 
 

This is graphically depicted in Figure 3.13 for the point xr.  As illustrated in the figure the 
initial association of the point with segment 1 is updated when it is determined that segment n 
also satisfied the inequality and is closer than segment 1.  Once the associated segment is 
determined the local coordinates relative to the crack tip are determined from (1) the 
perpendicular distance (y) and (2) the sum of the segment lengths from the crack tip to 

€ 

x1
s plus a 

scaled tangential distance between the norms of the end points, ns and ns-1, (x).  Note that the 
scaling simplifies the expressions, relative to some mapping schemes in the sense that 
trigonometric functions are not directly used in the mapping. 
 

 
Figure 3.13. Curved crack segment association. 
 

A common approach is to use the analytical enrichment “near the crack tip,” and then to 
switch to Heaviside enrichment in the wake of the crack.  For some implementations, “near the 
crack tip” simply translates to “for the element containing the crack tip.”  For brevity, the results 
shown here adopt analytical enrichment over the length of the crack.  (Reference Cox [34, 35]for 
earlier related work that examined both enrichment schemes.) 
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For a displacement-based FEM solution, secondary variables such as stress are 
approximated less accurately.  In particular, for an un-enriched 4-node quadrilateral element (as 
used in study), displacements are second order accurate and stresses are first order accurate.  
Further more, while the displacement field is continuous, the stress field is discontinuous.  Less 
accuracy in the stress field led to arrestment of the crack at element edges (Cox [34]).  In 
addition to crack arrestment, inaccuracy of the stress field can significantly affect the 
approximation of the crack direction (e.g., when based upon the principal stress direction).  For 
analytical enrichment, these inaccuracies can be more significant, since the enrichment should 
allow one to use a coarser mesh.  Two approaches that previous researchers have adopted are to 
use a polynomial approximation or a nonlocal measure of the stress field.  In this study the two 
are combined in a weighted least squares approximation of the stress field.  Let the difference 
between the FE approximation and that of polynomial representation be given 
by

€ 

d x( ) =σ p x( ) −σ xfem x( ) = c0 + c1x + c2y + ...−σ xfem x( ) .  A weighting function is adopted from 
the nonlocal constitutive model work of Bazant and Pijaudier-Cabot [40] as 
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Ω x( ) = exp −ω r /Lω( )2[ ] where w and Lw are weighting parameters, and r is the distance to the 

position x.  A weighted difference can be defined as 
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R2 = Ω x( )d x( )[ ]2
dA

A∫  and minimized 
(with respect to {ci}) using the method of least squares.  The area (A) is taken to be a disk or 
half-disk defined by a radius, rs., and integration is approximated using sxfem values at element 
gauss points.  In the limits, the relations provide a nonlocal stress measure (sp=c0) or a least-
squared polynomial fit (w=0).  This calculation was applied to each component of the stress field 
to evaluate initiation, crack direction, and propagation. 
 

The effect of smoothing on the accuracy of the crack propagation history (for a single 
mode I test problem) is shown to be approximately equivalent to halving the element size [35].  
However, without using the smoothing the crack path can be artificially jagged – i.e., the lack of 
smoothness is due to numerical not physical sources. 
 

For problems, that involve multiple cracks and stable quasi-static propagation, the 
potential for stress relief of one crack due to opening of another should be considered.  This was 
relevant to the commonly used example examined in this study [35].  To address this, a multi-
level solver scheme only allowed one crack to initiate or propagate at a time – the one that 
satisfied the criterion most strongly.  A new equilibrium solution was then obtained and potential 
points of initiation or propagation were re-evaluated.  Execution continued in this level of the 
solver until no further initiation or propagation occurred for the load step. 
 
 
3.3.4  Application to an Orthotropic Material 

 
An aspect of the study that was not previously documented, is an examination of the 

accuracy of the formulation when underlying assumptions for the analytically derived 
enrichment functions are violated.  In particular, the effect of relaxing the assumption of an 
isotropic material is examined here.  For simplicity, the model problem previously presented to 
evaluate the formulation for quasi-brittle fracture [34, 35] is re-examined for an orthotropic 
material with the Young’s modulus for one principal material direction perturbed.  Previous 
analyses of this model problem focused on the ability of the formulation to represent the 



60

propagation history of the cohesive zone and crack tip.  For the current investigation, we 
examine the accuracy in the fields for the crack at a particular state – the tip of the cohesive zone 
on centerline.  Figure 3.14 depicts the plane stress model problem.  The previous isotropic 
properties were given as E= 37 GPa, and n=0.17.  For this illustrative study only the boundary 
conditions for problem 1 are addressed.  To access the accuracy of the fields, reference solutions 
using very finely meshed FEM domains were obtained.  Figure 3.15 shows the mesh for the 
cracked domain case, which is concentrated near the center. 
 

 
Figure 3.14. Model problem at the state of the cohesive crack extending to the center. 
 
 
 
 

 
 
Figure 3.15.  Reference solution mesh – 81x80. 
 
 
 

Using an approximate reference solution can be problematic.  First of all, it is more 
difficult to calculate a norm of the difference between the two solutions, compared with an exact 
reference solution, which can easily be sampled at an arbitrary point.  Secondly, if the reference 
solution is not sufficiently accurate, the norm of the difference is not an accurate representation 
of the error.  To calculate error norms a new utility was created, that would allow either exact or 
approximate reference solutions.  Part of the motivation for creating a new utility is that XFEM 
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elements had a variable number of gauss points depending upon if they were un-enriched, 
enriched but not localized, and enriched and localized.  The standard FE quad element and the 
XFEM quad element were modified to give both displacements and their gradients at element 
gauss points.  The difference or “error” calculations were integrated using the gauss points of the 
coarse mesh solution (later to be the XFEM solution).  To sample the “same points” of the 
reference solution a similar smoothing technique, as described in the previous section, was 
implemented.  In this application since the reference solution had a significant spatial variation in 
the mesh density, the  number of closest neighbors was prescribed instead of prescribing the size 
of the neighborhood.  Smoothing was limited to polynomial fitting (i.e., the weighting function 
was unity), and parameter studies were conducted to examine the effect of using different orders 
of polynomial and different numbers of neighbors.  The results showed that if the problem is not 
sufficiently over-determined (e.g., a linear polynomial based upon 4 neighbors), the error 
calculations can be inaccurate.  With a sufficient number of neighbors, constant, linear, and 
quadratic polynomials all gave consistent results, typically agreeing in 2 to 5 digits.  Most of the 
results presented here used a second order polynomial and 32 neighboring points. 
 

To both verify the correctness of the norm calculations and the validity of using an 
approximate reference solution, first the simpler problem of the square domain subjected to 
bending without cracking was considered.  The x-component of displacement was displaced as 
depicted in Figure 3.14 (for time<0.1).  The y-component of displacement along each edge was 
held relatively fixed, with an extremely stiff “end plate.”  An exact solution was obtained using 
Euler-Bernoulli beam theory for the special case of n=0.  Approximate solutions were obtained 
for meshes of 4x4, 8x8, 16x16, and 32x32 elements.  Linear relationships (on a log-log plot) 
between the relative norm of the error in the displacement field and relative element size gave 
slopes of 1.99 for the exact reference solution and 2.07 for the approximate reference solution – 
both reflecting second order convergence of the displacements.  For this study the accuracy for a 
given mesh is emphasized more than the rate of convergence, but examining the rate of 
convergence allows us to both verify the norm calculation and evaluate the use of an 
approximate reference solution.  Defining n≠0, complicates the problem some due to the 
constraints along the sides.  This is reflected in Figure 3.16, where the apparent rate of 
convergence increases to 2.3-2.4 (depending upon the smoothing parameters used).  (Note that 
the initial version of the norm calculator only included Sobolev norms, so ||.||0 denotes a 0-
Sobolev norm – equivalent to the L2 norm of the displacements or their errors.  L ~ 1 m – the size 
of the domain, h ~ element height, and Uref ~ the displacement field for the reference solution.)  
The greater deviation from the theoretical optimum is attributed to the more complicated 
response near the corners of the domain, but there are two contributing factors: (1) the reference 
solution is further from the exact solution, and (2) the error is more difficult to integrate.  While 
the 2x2 integration is sufficient to integrate the elements’ stiffness and residual contributions, the 
error field may require more accurate integration.  To examine this the same analyses are 
conducted with elements that are over-integrated (4x4 quadrature).  Figure 3.17 shows the results 
for this case for both sets of smoothing parameters.  The apparent orders of convergence 
decrease and are in better agreement for the two smoothing schemes. 
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Figure 3.16. Relative errors vs. element size for bending problem with approximate reference 
solution, n=0.17, and 2x2 quadrature. 
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Figure 3.17. Relative errors vs. element size for bending problem with approximate reference 
solution, n=0.17, and 4x4 quadrature. 

 
The reference solutions for the cracked case incorporated a column of interface elements 

through the center of the domain (x=0) a priori.  The research code used in this study was 
defined to examine propagating cracks, not stationary cracks, so to examine each case the 
cohesive crack had to be forced to the center of the domain.  The time at which the crack reaches 
the center for the reference solution, was the maximum time applied in the XFEM solutions.  
However, generally the state of the crack for the XFEM solution differed with that of the FEM 
solution.  To address this a few different approaches were examined, the simplest of which was 
to make the criterion for propagation spatially dependent, requiring the principal stress to be 
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much higher than the tensile strength for y>0; this caused the crack to stall at the center of the 
domain as desired.  Figure 3.18 shows the results for an isotropic domain in comparison to the 
uncracked bending results.  Consider two observations: (1) for relative coarse meshes the relative 
errors are very similar with and without the crack, and (2) the apparent order of convergence for 
the XFEM is not optimum.  The size of the cohesive zone is on the order of one element for the 
5x5 mesh and yet the error in the displacement field is about 2%.  The lack of optimum 
convergence rate was expected since the enrichment has not been adjusted for the transition from 
the FEM basis to the enriched basis – the so-called blending region problem.  Solutions to this 
problem exist but have not been implemented, since I would prefer to first examine the effect of 
enriching a larger neighborhood; for the current analyses the approximate solution space of the 
coarser meshes is not contained in that of the finer meshes, since only nodes whose support are 
intersected are enriched.  Thus for the current enrichment scheme, the region of enrichment 
shrinks with mesh refinement leading to “less and less use of the enrichment.” 
 

Only a very limited examination of the effect of deviating from isotropy was possible in 
this study, and it was limited to a single orthotropic material.  A single material parameter, 
Young’s modulus for the 1-material axis, was varied while the other elastic constants remained 
fixed.  To illustrate the variation of accuracy with a deviation from isotropy, E1 is perturbed by 
the sequence of factors {0.6, 0.8, 1.2, 1.4}.  A 5x5 mesh is selected for the XFEM analyses 
because: (1) the initial emphasis of this work was upon trying to use relative coarse meshes and 
let enrichment “pick up the rest,” (2) enrichment is then applied over a larger region, and (3) use 
of the approximate reference solution is more accurate for a coarser mesh.  In the first set of 
analyses, the 1-material axis was defined to correspond to the 1-global axis.  Figure 3.19 presents 
results for both primary (U) and secondary variables (∇U).  Note that for the displacement field 
the relative error changes from about 2% to just over 3%, while the relative errors in ∇U change 
from about 10.5% to 12%.  The fact that the errors for this coarse mesh are a minimum for the 
isotropic case reflect that this is the case the enrichment was derived for, and that it is apparently 
helpful in representing the field around the crack.  On the other hand, the results indicate that 
applying the enrichment functions to problems that involve, at least weak anisotropy may still be 
beneficial.  Analyses that have the 1-material axis rotated at 45 degrees relative to the 1-global 
axis have been undertaken, but convergence is lost in the reference solution before the crack 
reaches the center of the domain.  Further examination of the problem is in progress.  Admittedly 
this later problem is more contrived since the crack is still assumed to propagate vertically 
through the domain. 
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Figure 3.18. Relative errors vs. element size for bending problem, uncracked and cracked. 
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Figure 3.19. Relative error in U and ∇U vs. E1/E2, with E1 varying (5x5 XFEM mesh). 
 
3.3.5  Closure 

The analytically enriched XFEM formulation advanced in this study is apparently one of 
only two published efforts at using analytically derived enrichment functions for the cohesive 
crack problem.  Efforts to address (1) curved crack mapping, (2) “stress field smoothing” (also 
called “stress extraction”), and (3) stress relief for multiple cracks were successful and 
contributed to an earlier publication [35] that addressed propagation of curved cracks.  To further 
evaluate the utility of the analytical enrichment and its limitations when the material is 
anisotropic, fields around a stationary crack were examined.  The case of an isotropic material 
was examined first to verify the correctness of the norm calculations and to determine the 
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applicability of an approximate reference solution in measuring the error.  Using an approximate 
reference solution yielded apparent rates of convergence that were on the order of 10-20% higher 
than the optimum value, but these reference solutions are still considered sufficient for 
examining field errors in XFEM analyses with relatively coarse meshes.  Further study on the 
effect of neighborhood enrichment and specialized enrichment for the blending regions upon the 
accuracy of field predictions is merited since both have been shown to improve results for other 
analytical enrichments.  A limited examination of the effect of anisotropy upon the accuracy of 
analyses (using the current enrichment) suggests that some problems with anisotropic material 
properties could benefit from the analytical enrichment; more extensive study is needed, as the 
current study did not examine the effect upon the calculated crack direction. 
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4.  APPLICATIONS. 
 
4.1. Cyclic plasticity applied to nickel microstructures. (R.P.M. 
Dingreville (01814), C.C. Battaile (01814), L.N. Brewer (01814), and B.L. 
Boyce (01813)) 
 
 This section assesses the sensitivity of cyclic plasticity to microstructure morphology by 
examining and comparing the microplastic ratcheting behavior (cycle-dependent accumulation of 
plastic strain) of different idealized microstructures (square, hexagonal, tessellated, and digitized 
from experimental data).  Whereas ratcheting is typically thought of as a continuum phenomenon 
[1-13], the present study investigates the possible microstructural origins of microplastic 
ratcheting (purely tensile cyclic loading where R > 0) and proposes a combination of experiments 
and FEM simulations for predicting microstructural plasticity and evaluating its sensitivity to the 
microstructure to answer the following question: “how detailed of a microstructural 
representation is necessary to capture micro-plastic ratcheting?”  In other words, we are 
interested in assessing the effect of the description of the microstructure on the simulation of 
micro-plastic ratcheting.  A number of key physical characteristics are taken into account in the 
modeling and simulations to accurately represent the onset and development of microplastic 
ratcheting.  As illustrated in Figure 4.1, we use a coupling between microstructural 
characterization, mechanical testing and numerical simulations to compare experimental and 
numerical results at both macroscopic and microscopic level.  While the present study considers 
one isolated problem in cyclic plasticity (purely tensile microplastic ratcheting), the approach 
could be extended to address other cyclic plasticity issues, such as microstructural crack 
initiation and small crack growth [14] or cyclic evolution of residual stresses [15]. 
 
 The computational model explicitly addresses the effects of microstructure by including 
realistic topological information (grain morphology, topology and crystallography) taken from 
EBSD data.  The physics of deformation of the face centered cubic (FCC) polycrystal are 
incorporated through a classical crystal plasticity formulation that explicitly considers the 
different dislocation slip systems, and the elasto-plastic crystallographic anisotropies at the grain 
level.  A computer-generated, representative microstructure is used to calibrate the crystal 
plasticity parameters to the experimental data. 
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Figure 4.1.  Methodology for coupling microstructure characterization, mechanical testing 
and numerical simulations. 

4.1.1 Methods for coupling experiments and simulations 
 
 Finite element implementation 
 
 To examine microplastic ratcheting at the microstructural level, the material deformation 
was treated with a crystal plasticity rate-dependent formulation [16].  This crystal plasticity 
model was incorporated into Sandia’s finite element analysis code, JAS3D [17] as a standard 
subroutine.  The simulations use eight node (hexahedral) 3D isoparametric elements with a 
single integration point at the element centroid.  To deal with zero energy modes that may arise 
as a result of the single point integration scheme, the code uses an hourglass control, based on 
the work of Flanagan and Belytschko [18].  Numerical integration of the constitutive model is 
performed using a forward Euler scheme.  Restrictions are placed on the time step to ensure that 
the forward integration scheme remains stable.  If the step size requested by the user is larger 
than the allowable size, the step is divided into subincrements of allowable size within the 
constitutive subroutine. 
 
 Parameters for the constitutive models were calibrated using a representative 
microstructure that is meant to approximate the actual specimen’s microstructure to not only 
provide a larger population of grains than provided by the experimental data, but also to 
overcome the artifacts generated by the pixelization of the grain boundaries induced by the 
EBSD-generated microstructure.  This representative microstructure, illustrated in Figure 4.3(a), 
was obtained by means of a two-dimensional Potts model of grain growth [19] with an imposed 
periodicity constraint at the boundaries of the polycrystalline mesh.  The grain growth simulation 
used to generate the representative microstructure employed the Monte Carlo Potts model to 
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simulate ideal normal grain growth with isotropic grain boundary energy and mobility.  
Hereafter, this 199-grain fictitious polycrystal is designated as the representative microstructure.  
The representative microstructure consists of 35873 elements, extends only a single element into 
the third dimension (perpendicular to the plane in Figure 4.3(a)) and contains linear (as opposed 
to stepped) grain boundaries.  Periodic boundary conditions were applied in all directions, which 
is equivalent to simulating a columnar microstructure of infinite extent in all directions. 
 
 
 
 The crystallographic orientations assigned to each grain of the representative 
microstructure were assigned from orientation distribution functions generated from the EBSD 
experimental data.  For every pixel in the experimental digitized images from each of the three 
areas of interest, a set of three Euler angles ϕ1, Φ,ϕ2( , 

 
0 ≤ ϕ1 < 360 ,  0 ≤ Φ < 90 , 

 
0 ≤ ϕ2 < 90  for a crystal with cubic symmetry)  were generated from the EBSD measurements.  

A cumulative probability density function 

€ 

Fθ x( )  was then defined from this experimental dataset 
for each Euler angle such that, 

  

€ 

x → Fθ x( ) = P θ ≤ x( ) = p xi( )
xi ≤x
∑

p xi( ) =
Ni

N

 

 
 

 
 

  , (4.10) 

where 

€ 

Ni  is the total number of pixels having an orientation ranging from 

€ 

θi  to 

€ 

θi + Δθ , 

€ 

N  is the 
total number of data points, and 

€ 

p xi( )  is the probability of observing an orientation 

€ 

θ  in the 
angular interval 

€ 

θi  to 

€ 

θi + Δθ .  Subsequently, 199 sets of Euler angles were randomly generated 
and chosen from the experimental cumulative probability functions 

€ 

Fθ x( )  and assigned to each 
grain of the representative microstructure.  Equivalent orientations based on crystal symmetry 
have been used to assure that the desired orientation distribution was actually imposed.  To 
guarantee this artificial polycrystal was the closest representation of the actual experimental 
polycrystal, 100 different random orientation sets (each one of them containing 199 sets of three 
Euler angles) were generated.  Each orientation set was then deformed to 1% elongation with the 
Taylor model resulting in 100 stress-strain responses.  The average response of these 100 
different stress-strain curves was subsequently determined.  As shown in Figure 4.3(b) the 
simulated stress-strain response obtained from the average orientation distributions agrees well 
with the experimental data.  The orientation set giving the stress-strain response closest to this 
average behavior was chosen as the representative orientation set and, although not shown here, 
the deviations between the 100 different stress-strain curves are relatively small.  Consequently, 
the representative microstructure coupled with the chosen orientation set was considered as 
statistically representative of the macroscopic experimental tensile specimen.  This constitutes a 
valid assumption  
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Area 1 Area 2 Area 3  

Figure 4.2.  Microstructure of the areas of interest (a) revealed by EBSD measurements and 
(b) digitized for the numerical simulations.  (c) The Inverse Pole Figures (IPFs) represent the 
raw grain orientations measured by EBSD with respect to the loading axis.  The colors of the 
IPFs correspond directly to the colors of the grains. 

given the fact that the experimental data is sparse and the microstructure appears to have a 
random texture.  Furthermore, it should be noted that because this work is using a local model 
(i.e the length scale of the microstructure is implicitly accounted for in the materials fitting 
parameters), the effect of the grain size distribution is not primary.  Therefore, correspondence 
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between the modeled and experimental grain size distributions is not a concern in the present 
work. 
 The representative microstructure with the chosen orientations was used to calibrate the 
material parameters to the macroscopic experimental response.  These parameters include two 
flow parameters m( , 

 
γ 0 ) , five hardening parameters τ 0( , H1 , H2 , λ , b)  for three different 

hardening laws (only the first three are defined for the power and Voce hardening laws), and one 
threshold parameter α .  The flow parameters and the hardening parameters were initially fitted 
analytically and then adjusted to the experimental tensile test to further agreement at 1% 
deformation (prior to any stress-controlled cycling or first unloading phase), while the threshold 
parameter was evaluated from the experimental cyclic response and its ratcheting behavior.  
Results are shown in Figure 4.3(b). 
 

 

(a) 

  

 

(b) 

Figure 4.3.  (a) Representative microstructure composed of 199 grains with periodicity 
constraints on the edges. (b) Stress vs strain from experiment (black symbols), and from a 
simulation using best-fit constitutive parameters and grain orientations on the microstructure 
in (a). 
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 Tables 4.1 and 4.2 list the parameters used for the different constitutive models employed 
in this study.  Note that the different sets of hardening parameters used in this work are 
characteristic of the average grain size of the experimental samples. 
 
 
Table 4.1  Elastic and viscoplastic parameters 

€ 

C11 (GPa) 

€ 

C12  (GPa) 

€ 

C44  (GPa) m 

€ 

˙ γ 0  (1/s) α  

246.5 147.3 124.7 0.04  1 0.832 
 

Table 4.2  Hardening parameters 
 Power law 

hardening 

Voce 

hardening 

Taylor 

hardening 

€ 

τ 0 76.0* (MPa) 76.0* (MPa) 24.84 (MPa) 

€ 

H1  2314 (MPa) 398 (MPa) 4.906 (108/m) 

€ 

H2  0.8768 4298 (MPa) 26.65 

€ 

λ  - - 0.5 

b - - 2.517 (Å) 

M 3.06 3.06 - 
* Note that the initial slip resistance 

€ 

τ 0 is weighed by the Taylor factor M  

 
 
 IV.a.1.3 Initial microstructure and boundary conditions 
 
 The deformation behavior of the nickel polycrystalline specimen under cyclic uniaxial 
tension was studied using the crystal plasticity model for comparison against experimental 
results.  The three EBSD-generated microstructures were represented by meshes of square, 
hexahedral, three-dimensional, isoparametric elements.  These meshes consisting of 
120 ×115 ×1 elements representing 36 grains for the first area of interest (Area 1), 120 ×115 ×1 
elements representing 45 grains for second area of interest (Area 2) and 97 × 94 ×1  elements 
representing 35 grains for the third area of interest (Area 3).  As shown in Figure 4.4, the mesh is 
superimposed onto the microstructure, and grain orientations obtained from the EBSD texture 
analysis are assigned to the corresponding elements.  Note that the square grid used in both the 
EBSD and finite element representations, necessitates that most grain boundaries contain right-
angle segments to conform to the topology of the grid.  However, during the course of this study, 
it was found that mesh refinement did not substantially alter the results of the macroscopic 
ratcheting response and consequently the analysis was carried out with the coarser mesh. 
 
 Even in a pure, nominally undeformed metal, the crystallographic data collected by 
EBSD is not uniform within a single grain.  This is due to several factors, including random error 
associated with the measurement itself and any significant lattice imperfections present in the 
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material.  On one hand, the nickel material used in this study is not expected to contain any 
significant deformation.  On the other, it is not straightforward to ascertain the specific source of 
crystallographic inhomogeneity in practice (e.g. “noise” in experimental measurements or real 
local misorientation).  Therefore, we will consider two treatments for each EBSD data set: one in 
which all intragranular crystallographic inhomogeneity is assumed to be important (i.e., “raw” 
orientations), and another in which the orientation of each grain is assigned as the average value 
from the EBSD data within the grain (i.e., averaged orientations).  The orientation maps of the 
three area of interest are shown in Figure 4.2(c) in the case of the raw orientation. 
 
 To simulate the loading conditions of the experiments, a triangular waveform uniform 
traction was applied on both X faces of the reconstructed microstructures, while the Y faces were 
constrained to remain planar and parallel.  The applied traction was chosen for each area of 
interest in order to attain 1% deformation after the first tensile cycle, as in the experiments.  
Periodic boundary conditions were applied to the front and the back faces equivalent to 
simulating a columnar microstructure.  Note that the EBSD data, and therefore the simulated 
microstructures, represent only a small fraction of the test specimen.  The real microstructures 
extend well beyond the boundaries of the regions considered in this study, and this surrounding 
material undoubtedly imposes non-uniform boundary conditions unlike those used here.  It is 
obvious that the present boundary conditions are constraining and affecting the mechanical 
behavior of some of the grains near these boundaries.  This issue will be addressed in a 
subsequent publication [20].  In this paper, we therefore neglect grains close to the edges of the 
computational domains. 
 
4.1.2 Cyclic ratcheting 
 
 
 Numerical simulations vs. experiments 
 
 The comparisons of the experimental data to the representative microstructure and the 
predicted cyclic stress-strain responses for the three areas of interest are illustrated in Figure 4.4 
in the case of the Taylor hardening model with average grain orientation.  The microstructure-
based approach adopted in this work provides good prediction of the microplastic ratcheting 
response.  The cyclic behavior of the representative microstructure and the three digitized 
microstructures agrees well with the experimental results.  The three digitized microstructures 
exhibit a similar cycle-dependent accumulation of plastic strain at a similar rate.  The differences 
between the three different areas and the experiment mainly stem from the small population of 
grains in each area, the effect of the local texture (the three digitized microstructures are softer 
than the representative microstructure) and the nature of the microstructural representation 
(square elements for the digitized microstructures as opposed to paved elements for the 
representative microstructure).  As a consequence of the aforementioned discrepancies, the 
microplastic ratcheting for the digitized microstructures occurs mainly in the first three cycles 
while it occurs across five or six cycles in the case of the representative microstructure and the 
experiments. 
 
 In all cases, both experimental and computational, two different stages can be observed in 
terms of strain accumulation and ratcheting rate.  The first stage consists of a rapid accumulation 
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of the plastic strain for the first few cycles, while the second stage exhibits a steady state where 
the accumulation of plastic strain is very small after each cycle.  Both stages are illustrated in 
Figure 4.5, where only equivalent plastic deformations greater than 1% are shown.  In the first 
stage of ratcheting, the material hardens rapidly and pockets of plastic deformation form in 
grains with preferred orientations.  In the second stage, where ratcheting stabilizes, the cyclic 
hardening is very small after each cycle resulting in a slowly dissipating (approximately 
constant) ratcheting rate. 
 
 The EBSD technique is capable of providing information about deformation-induced 
crystallographic reorientation with subgrain resolution, which is a subset of the information 
available from our computational approach.  However, just as the accumulation of plastic strain 
saturates after only a very few cycles in Figure 4.4(b), the evolution of subgrain-scale 
deformation beyond the first cycle is not significant relative to the measurement uncertainty 
(approximately 0.5° local misorientation).  Therefore, while the agreement between the 
ratcheting simulations and experimental response is good at the macroscopic level, a comparison 
between simulation and experiment at a subgrain level does not provide additional benefit to the 
present analysis.  Nonetheless, it should be noted that these simulations explicitly consider the 
microstructure morphology and micromechanical evolution, and therefore produce more accurate 
representations of the microstructure’s response than continuum based models such as the 
Armstrong-Frederick kinematic hardening law or earlier FEM studies [21, 22]. 
 

 
Figure 4.4  Comparison for (a., left) the representative microstructure and simulated stress-
strain responses for stress-controlled cyclic tests, (b., right) the accumulation of plastic 
deformation as a function of the cyclic history.  The anisotropic Taylor hardening model, with 
averaged orientations per grain, was used in this set of simulations.  The different areas are 
labeled in Figure 2. 
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Figure 4.5  Illustration of the two stages of ratcheting.  Equivalent plastic deformations higher 
than 1×10−2  are plotted for Area 1 (i.e no coloring corresponds to plastic strain lower than 
this threshold) in the case of the Taylor hardening model with averaged orientation per grain.  
Note that the regions close to the edges of the simulation box presented in Figure 4.(b) have 
been omitted.  Area 1 is labeled in Figure 2. 
  
Effect of microstructure representation 
 
 The effort dedicated to a realistic and detailed description of the microstructure in 
numerical simulations is important as morphology/microstructure representation can have a 
significant influence on the mechanical response.  The difference in the microplastic ratcheting 
behavior between the three different areas presented in the previous section suggests the 
sensitivity of cyclic plasticity to the details of the microstructure. 
 
 To have a better assessment of this sensitivity and to ascertain the level of microstructural 
detail required to adequately capture ratcheting behavior both at the macroscopic and 
microscopic scales, we considered several different idealized microstructures that follow a 
natural “microstructural evolution” towards the representative microstructure and compare their 
behavior to the representative microstructure and the three digitized areas.  As illustrated in 
Figure 4.6, this progression starts from a microstructure with square grains comprised of one 
element each (Figure 4.6 (a)), to square grains with a 100 elements per grain (Figure 4,6 (b)), to a 
regular array of hexagonal grains containing several elements each (Figure 4.6 (c)), to a 
microstructure of distorted hexagonal grains containing several elements each (Figure 4.6 (d)).  
The distorted hexagonal microstructure was obtained by randomly displacing the corners of the 
hexagonal grains by a small amount (less than 15% displacements relative to the regular 
hexagonal grains).  These idealized geometries allow for periodic boundary conditions to be 
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applied in all directions.  For the square grains with 100 elements per grain, and the hexagonal 
grains, the crystallographic orientations assigned to each grain were obtained through the same 
procedure used in the case of the representative microstructure presented in section IV.a.1.1.2.  
The orientations for the square grains with one element per were the same as for the square 
grains with 100 elements per, while the orientations for the distorted hexagonal microstructure 
were the same as for the regular hexagonal grain microstructure.  Additionally to these four 
microstructures, we also considered a “shuffled” digitized microstructure (Figure 4.6 (f)).  We 
used the Fisher-Yates shuffling algorithm [23] to randomly permute the orientation set of three 
Euler angles between elements of one of the digitized microstructures (Area 1), i.e. the shuffled 
digitized microstructure consists of a same square mesh with the same population of elements 
and orientation set as the digitized microstructure except that the grain topology is lost in the 
permutation process.  The Taylor hardening model was chosen to describe the evolution of the 
overall resistance to slip 

€ 

τCRSS
α , while the orientation per grain is assumed to be uniform. 

 
 
 
 

 
(a) (b) (c) 

   
  

   
(d) (e) (f) 

Figure 4.6  Different idealized microstructure morphologies used to assess the influence of the 
microstructure on ratcheting: (a) square microstructure with one element per grain, (b) 
square microstructure with 100 elements per grains, (c) regular hexagonal microstructure, (d) 
distorted hexagonal microstructure, (e) digitized microstructure (Area 1), and (f) shuffled 
digitized microstructure (Area 1).  Colors are assigned randomly and do not correspond to any 
properties.  Area 1 is labeled in Figure 2. 
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 The comparison between the macroscopic ratcheting behaviors of the different idealized 
microstructures is illustrated in Figure 4.7.  The microstructural effects of the grain morphology 
do not bring any substantial improvement to the numerical predictions of ratcheting.  The 
idealized microstructures give roughly the same amount of ratcheting as the digitized 
microstructures but deviate from the representative microstructure.  This is partly due to the fact 
that the digitized microstructure possesses jagged right angle grain boundaries, which provides 
the same effect as the square microstructure.  In terms of ratcheting rates, the differences 
between the very simple representations of the microstructure and the digitized microstructures 
are smaller than the differences they have with the experiment/representative microstructure.  
From a continuum point of view, as long as the orientation distribution is reasonable, adding 
microstructural details slows down the simulations but does not significantly improve 
macroscopic predictions over phenomenological models. 
 

 

 
Figure 4.7.  Effect of microstructure on the accumulation of plastic deformation as a function 
of the cyclic history.  The anisotropic Taylor hardening model was used in this set of 
simulations.  Area 1 is labeled in Figure 2. 
 
 
 Despite the apparent similarity in ratcheting response at the macroscale, significant 
differences in the microscale distribution of plasticity were observed for the different 
microstructural representations.  To illustrate these differences, a simple pointwise (local) crack 
nucleation model is used as a common metric at the microstructural level (microscopic scale) to 
evaluate the sensitivity of the cyclic behavior to the microstructure.  Based on a slowly 
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dissipating accumulation of plastic deformation (assumed linear for simplicity), this crack 
nucleation model depends on the magnitude of the plastic strain at the microstructural level.  In 
this model, a crack is considered to nucleate when a critical maximum equivalent plastic 
deformation εnucleation  is locally attained [24] such that, 

  Nnucleation = N0 +
εnucleation − ε0

p,max( )
∂ε0

p,max

∂N










N0

  , (4.2) 

where N0  is the number of cycles for ratcheting to stabilize, ε0
p,max  is the maximum effective 

plastic strain reached during the N0
th  cycle , and 

∂ε0
p,max

∂N










N0

 is the rate of maximum effective 

plastic strain after N0  cycles.  The nucleation strain εnucleation  is assumed to be independent of 
the morphology considered and was arbitrarily chosen to be εnucleation = 0.1 . 
 
 Table 4.3 presents the crack nucleation predictions for the different idealized 
microstructures.  As expected, a notable difference can be observed between the different cases.  
The square microstructure with one element per grain tends to under predict both the magnitude 
and rate of increase of the local maximum plastic strain, and therefore over predicts the number 
of cycles to crack nucleation.  As the microstructural morphology becomes more complex and 
the mesh more refined, more localized plastic deformation occurs in the microstructure, thereby 
lowering the predicted number of cycles to crack nucleation.  By increasingly adding details to 
the microstructure, one starts gradually resolving localized phenomena such as inhomogeneous 
deformation.  It is interesting to note that both the representative microstructure and the digitized 
microstructures predict local maximum equivalent plastic strains of the same order of magnitude.  
Furthermore, despite the small population of grains and the disparity in grain morphology, the 
three different digitized microstructures show similar nucleation predictions. 
 
 Even though the description of the microstructure has a weak influence on the 
macroscopic prediction of ratcheting, the grain morphology strongly impacts the behavior at the 
microscopic scale.  The level of detail necessary to describe a microstructure is therefore closely 
related to the scale and phenomenon of interest.  From a continuum perspective idealized 
microstructures might be sufficient to describe the cyclic behavior of a polycrystalline material.  
However, to adequately describe microscopic mechanisms such as crack nucleation, a more 
faithful depiction of the microstructure might be necessary. 
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Table 4.3  Crack nucleation predictions for different microstructure morphology 

Microstructure 

morphology 
N0  ε0

p,max  
∂ε0

p,max

∂N










N0

 Nnucleation

 

Square grain (1 element / grain) 6 1.3662 ×10−2  9.70 ×10−7  89057 

Square grain (100 elements / grain) 6 1.7680 ×10−2  3.30 ×10−6  24951 

Regular hexagonal grain 6 1.7592 ×10−2  1.73×10−6  47640 

Distorted hexagonal grain 6 1.7819 ×10−2  1.78 ×10−6  46175 

Representative microstructure 6 1.9446 ×10−2  8.77 ×10−6  9191 

Shuffled digitized microstructure 

(Area1) 
6 1.8782 ×10−2  1.48 ×10−6  54840 

Area 1 6 2.1897 ×10−2  3.21×10−6  24337 

Area 2 6 2.2226 ×10−2  4.74 ×10−6  16418 

Area 3 6 2.0622 ×10−2  3.77 ×10−6  21054 

 
 
 
4.1.3  Limitations of the present approach 
 
 Although the procedure presented here provides good predictions of the ratcheting 
behavior and an assessment of sensitivity to the microstructure description, several factors 
should be kept in mind when comparing experimental results to the numerical simulations. 
 
 First of all, the simulated stress-strain responses soften slightly as the mesh refinement is 
increased since the number of degrees of freedom within each grain is also increased.  This is a 
direct consequence of the lack of length scale in the physical models.  No mechanism exists 
within the present framework to define a microstructural length scale.  A non-local crystal 
plasticity formulation would provide a better resolution of the texture evolution, and localization 
and distribution of stresses and strains, at the microstructural level.  Incorporating a length scale 
would intensify the role of the microstructure’s morphology on microplastic ratcheting. 
 
 As previously mentioned, due to the limited microstructural information obtained from 
EBSD measurements, the FE model does not extend beyond the areas of interest studied here and 
consequently the boundary conditions applied to simulate the uniaxial cyclic deformation of 
these regions do not properly account for the surrounding microstructure.  This constraint can 
induce local errors [20] in the predictions of the behavior of the grains close to the edges of the 
mesh. 
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 A related issue concerns the influence of the underlying microstructure on the surface 
fields since deformation mechanisms activated in each grain are three-dimensional.  The 
microstructure below the surface cannot be determined with the experimental procedures used in 
this work.  Experiments combining focused ion-beam and electron back scattered diffraction 
may be able to tackle this issue by their ability to map in three dimensions the grain shape, grain 
size and crystallography within a microstructure.  
 
 
4.2.  Inclusion of microstructure to small crack growth in hydrogen 
embrittlement problems 

 
We often speak of fatigue crack growth and environmental effects as separable. 

Experimental findings, however, indicate that the environment can measurably affect small crack 
behavior. In fact, in some alloys, Stage I growth can be suppressed in vacuum [25].  Details of 
the material system and its susceptibility to a particular environment become increasingly 
important.  In fact, it is this confluence of the environment and the microstructure that makes 
predicting fatigue crack initiation and propagation difficult and, consequently, empirical. 
 

In an effort to narrow the focus and introduce microstructure as a simplifying assumption, 
we consider hydrogen embrittlement.  This focus has relevance to our mission in gas transfer 
systems (GTS) and materials selection for the hydrogen economy.  Specifically, we intend to 
focus on the pertinent mechanical and concentration fields ahead of crack tip in an infinite 
medium.  In this small example, we will briefly review the hydrogen transport equation and a 
segregated coupling methodology employing Aria and Adagio. An examination of the 
mechanical fields will provide the motivation for incorporating idealized microstructure. Finally, 
we compare fields of total hydrogen concentration and make remarks on the processes of 
embrittlement.  
 
4.2.1  Hydrogen transport and coupling methodology.   
 

The derivation for hydrogen transport is taken from Sofronis [26]and Krom [27]. For 
brevity we will only introduce the needed information to justify the current coupling. We 
propose that hydrogen resides on lattice sites (having concentration CL) and at trap sites (having 
concentration CT).  Although one can assume multiple trap sites, we will first just focus on 
dislocations as the dominant (and evolving) trapping mechanism.  We note that empirical 
relations have expressed the number of trap sites NT in terms of the equivalent plastic strain ep 
[28]. We can then write a conservation law for the total hydrogen concentration (CT = CL + CT) 
and propose a constitutive model for the flux through the boundary JL that is derived from a 
chemical potential mL. A key assumption of Oriani [29]assumes a local equilibrium between 
lattice and trap sites and enables one to write CT = CT(CL). One can now write a nonlinear partial 
differential equation governing the transport of hydrogen in terms of material constants and 
variables CL, SH, and ep, where SH is the hydrostatic stress derived from the 2nd Piola-Kirchoff 
stress. An outline of the derivation is presented in Figure 4.8. For completeness, we state that ML 
is the lattice mobility, VH is the partial molar volume, T is the temperature, R is the universal gas 
constant, and DL is the diffusivity tensor. 
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In addition, Figure 4.8 also illustrates the segregated scheme between the quasi-static 
code Adagio and the transient transport code Aria.  Currently, the constitutive model is 
independent of the concentration but future work will incorporate lattice dilation and the impact 
of hydrogen on the yield stress and hardening behavior.  We should also note that the equivalent 
plastic strain is not a good representation of the dislocation density and the number of trap sites 
NT. Future work will link better representations such as the isotropic hardening variable to the 
evolution of trap sites. 
 

 
 
Figure 4.8. An outline of deriving the hydrogen transport partial differential equation and a 
schematic of the segregated coupling scheme between the Sierra codes Aria and Adagio.  
Hydrogen transport is solved in the reference configuration. 
 
4.2.2  An examination of the hydrostatic stress ahead of a crack tip.  
 

In order to obtain a better understanding of surface flaws that could be induced through 
environmental effects, edge defects were examined in a polycrystal. The implementation of 
Marin [30]with Voce hardening was employed. The evolution of slip in the flawed and 
surrounding grains was examined. An outcome of the study was that the hydrostatic stresses 
ahead of the crack tip were consistently greater than those predicted by J2 plasticity. As 
previously noted, because the chemical potential is a function of the hydrostatic stress, those 
differences will affect hydrogen transport. Moreover, Gangloff has asserted that elevated stresses 
are needed to raise lattice and trapped concentration at the crack tip to justify proposed 
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mechanisms of embrittlement (eg., lowering cohesive strength) [31]. In seeking to obtain higher 
stresses hydrostatic stresses, Gangloff invokes strain-gradient plasticity. Through strain gradient 
plasticity and an assumed length scale, one can obtain hydrostatic stresses greater than 10 times 
the yield stress sy. We note that for J2 plasticity, the peak hydrostatic stress is ~ 5sy. We seek to 
show that elevated hydrostatic stresses can be the product of microstructure and one does not 
need to invoke strain-gradient plasticity. Leveraging the work of Dingreville [32], we employ 
both the crystal plasticity model and parameters (for nickel) for our model system.  The idealized 
system of hexagons is noted in Figure 4.9(b). Although it does contrast the measured 
microstructure Figure 4.9(a), hexagonal grains provide a baseline for analysis. In both cases, the 
average grain size is 33 µm. 
 

 
 
Figure 4.9.  Comparison between measured (Dingreville, [32]) and synthetic microstructures. 
Both nickel microstructures have an average grain size of 33 µm. 
 

To simplify the loading and maintain a known driving force, we elect to apply a K-field 
boundary condition.  Given an applied stress intensity factor K and the location of the crack tip, 
we can apply a displacement field at the far-field (disk boundary) derived from the linear elastic 
fracture mechanics (LEFM) solution (Figure 4.10). Provided the plastic zone size is small 
compared to the disk radius and the majority of inelasticity is confined to the region of crystal 
plasticity, isotropic J2 plasticity will provide a smooth transition and will reduce to isotropic 
elasticity at the far-field. 
 

 
 
Figure 4.10.  Applied, far-field K-field displacement boundary condition. 
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To confirm if our assumption regarding J2 plasticity is valid, we examine the quantity of 
interest, the hydrostatic stress, ahead of the crack tip by varying the number of grains 
surrounding the crack tip.  For this particular case, the grain size is 500 µm and the applied stress 
intensity is 89.7 MPa(m)1/2.  As shown in Figure 4.11, the peak stress occurs in the first grain. In 
Figure 4.10, a key attempts to orient the reader as to which randomly oriented grains are modeled 
with crystal plasticity.  If the dotted line contains or intersects the grain, crystal plasticity with 
Taylor hardening was employed. Grains exterior to the dotted line are modeled with J2 power-
law hardening. In hopes of maintaining a consistent representation, we fit our power-law 
hardening model, sp = 46.1 + 327ep

0.358 (MPa), from the averaged macroscopic response of 100 
randomly oriented cases for a 199 grain representative volume element [32]. As noted in Figure 
4.1.3, all curves collapse beyond 2.5 mm, just beyond the crystal plasticity/J2 interface. More 
striking, polycrystalline simulations beyond 1 hexagon (grain) oscillate around the J2 solution 
(with a single grain).  For this case, the first grain dominates the hydrostatic stress. 
 

 
 
Figure 4.11. Variation in the number of polycrystalline grains around the crack tip. For this 
randomly orientated microstructure, added grains only perturb the solution. The simulated 
grain size is 500 µm. 
 

We should also add that although local crystal plasticity does not have a length scale, we 
have introduced a length scale into the problem through both the chosen grain size ld and the 
applied stress intensity KI where lapp ~ gKI

2/sy
2 and g is a geometric factor (eg., 1/2p).  If lapp is on 

the same order as ld, we expect the solution to be more sensitive to microstructure – few grains 
will be sampled. In contrast, for lapp >> ld, we expect the solution to be less sensitive to 
microstructure and more aligned with J2 plasticity. 
 
For lower stress intensities KI = 36.5 MPa(m)1/2, we compare crystal plasticity and J2 power-law 
hardening for 81 grains (hexagons) having a grain size of 33 mm. For the case shown in Figure 
4.12, the long crack solution mirrors previous observations for surface cracks. The hydrostatic 
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stresses ahead of the crack tip are significantly higher if one considers microstructure. To 
compare with previous works, we choose to identify the yield stress not through the chosen yield 
for the power-law fit, sy = 46.1 MPa, but through 0.2% offset, sy = 81 MPa.  This confirms that 
for substantial hardening, J2 yields a sH/sy ratio of ~5 while crystal plasticity yields a ratio of ~8.  
A snapshot of the hydrostatic stresses at the peak loading is also shown in Figure 4.1.5 and one 
can notice the non-uniformity of the hydrostatic stress field.  We note that for this loading, lapp is 
extremely large and in the tens of mm (32 mm for g = 0.16) because the initial yield for pure 
nickel is small compared to structural metals. Nonetheless, even for lapp >> ld, significant 
differences remain between the solutions. 
 

 
 
Figure 4.12. Differences in the hydrostatic stress field as a function of the modeling 
methodology.  The simulated grains size is 33 µm. 
 
4.2.3  Discussion and conclusions.  
 

These initial findings show promise and reveal how the incorporation of microstructure 
can significantly alter the local crack tip fields. We should note that hydrogen transport is 
affected by the gradient of the hydrostatic stress.  Near-tip gradients in the hydrostatic stress are 
significantly different between modeling methodologies (although we only show a 1-D slice). 
Additional non-uniformity also exists in the equivalent plastic strain and future coupled 
simulations of deformation and transport will determine the impact on both lattice and total 
hydrogen concentration; the source of hydrogen embrittlement.  Like all efforts involving 
microstructure, we must also investigate ensembles of grain rotations and applied loadings (for 
constant grain size) to determine if the differences shown are statistically significant.  We regret 
that the current findings, while interesting, are mostly speculative.  Although we have exercised 
the Aria-Adagio coupling for relatively blunt notches, solving systems with large pressure 
gradients at crack tips might require stabilization.  We do assert, however, that our speculations 
do derive from examining microstructure rather than attempting to build more complexity into a 
continuum model. It is our hope that coupled simulations of microstructure do confirm our 
hypothesis and improve our understanding of hydrogen embrittlement. 
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4.3.  Systematically varied microstructures for model development 
and testing (L.N. Brewer (01814), J.D. Puskar (01822), B.L. Boyce 
(01813), C.C. Battaile (01814)) 
 
4.3.1  Introduction 
 
 As has been made clear in this report, the inclusion of microstructure in models for 
plasticity, crack nucleation, and crack propagation is critical to increasing the fidelity of these 
models.  It is important that the microstructures used to develop and test these models be derived 
from actual experimental data.  Unfortunately, experimental data that systematically changes the 
microstructure in metals and is appropriate for model development and testing is difficult to find.  
Many experimental papers only discuss a single grain size or crystallographic texture from a 
given heat treatment process.  Experimental papers that do have a range of microstructures may 
use microstructures that are too complex for current level of plasticity models, e.g. multiphase 
materials, non-slip based deformation such as deformation twinning, etc. 
  
 This section of the report describes an effort to create a series of experimentally-derived 
microstructures that are designed to be used for model development.  Cartridge brass (70 wt% 
copper, 30 wt% zinc) was chosen as the model system because of its crystallographic simplicity 
(face centered cubic), it phase simplicity (simple solid solution in the alpha phase), and its 
relative ease in processing for producing different grain sizes (cold rolled stock followed by 
annealing treatments).  The brass material was processed such that a range of grain sizes from 
1µm to almost a millimeter were produced.   
  
 In situ mechanical testing was performed on these brass samples to collect a series of data 
sets that tracked the microstructural evolution during plasticity for two different scenarios: 
monotonic, uniaxial tension and cyclic, uniaxial tension.  A combination of in situ and ex situ 
electron backscattered diffraction (EBSD) were performed to track the change in the 
microstructure during the deformation.  The resulting data sets can be used by plasticity, damage, 
and crack models to provide initial microstructures and to compare the results of the models with 
experiment. 
 
4.3.2  Production of brass materials 
  
 Annealing treatments on cold-rolled, cartridge brass sheet-coil stock were used to 
produce a range of grain sizes and textures in the materials.  The cold-rolled, cartridge brass 
stock (30% zinc) was procured from Eagle Brass Co.  Individual sheets were cut from this stock 
and annealed in a combination of salt pots and furnaces to produce the annealing schedule found 
in Table 4.4.  Tensile bars, as pictured in Figure 4.13 were cut from the annealed sheet using 
electro-discharge machining with the rolling direction along the tensile axis for all samples. The 
tensile bars were then prepared for EBSD-straining measurements by grinding and polishing 
both sides of the tensile bar to a modest finish level.  One side of each sample was polished to at 
least a one micron finish.  Some of the samples were then electropolished to achieve the best 
surface finish possible. 
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Figure 4.13.  Drawing and image of tensile bar geometry.  Dimensions are in inches.   
 
  
 The grain size of each sample was measured using EBSD.  Lines scans were used for 
these measurements to ensure that a suitable number of grain segments, ideally greater than 500, 
were recorded.  This goal was achieve for all but the largest two grain sizes which did not have a 
sufficiently large enough number of grains in the entire sample.  The grain size data is also 
included in Table 4.11.  In addition, this data allowed an assessment of the crystallographic 
texture in the samples.  The recrystallized samples clearly had a texture with a s rolling plane and 
a <111> rolling direction.  This texture became stronger as the grain size became larger.  
Examples of this recrystallization texture can be found in Figure 4.14. 
 
 
Table 4.4  Heat Treatment Conditions and Grain Sizes for Tailored Brass Microstructures 
Temperature Time Grain Size (microns) 
ºC hours Mean with 

twins 
Mean without 
twins 

400 2 1.4 3.1 
400 4 1.8 3.6 
425 2 2.1 4.3 
450 2 3.0 5.6 
450 8 6.6 19.3 
450 99 10.8 25.5 
600 8 27.3 79.1 
800 8 309.2 725.2 
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450°C/8hrs 
 

 
 
600°C/8hrs 

 
 
Figure 4.14.  Pole figures from recrystallized brass as a function of grain size.  (Note: x is the 
rolling direction and the tensile direction) 
 
 A uniaxial stress-strain curve was produced for brass bars at twelve different grain sizes.  
All of the models described in this report require a basic stress-strain curve to fit the parameters 
needed for the constitutive laws describing plasticity in the models.  As would be expected, the 
yield strengths varied considerably over the range of grain sizes.  This data was combined with 
the grain size data to generate a Hall-Petch plot (Figure 4.15)  This plot displays the yield 
strength as a function of inverse square root of the grain size.  Polycrystalline metals, in general, 
have a straight line behavior on a Hall-Petch plot.  In Figure 4.15, this straight-line behavior is 
observed, but there are two different slopes depending upon whether the grain size measurements 
include twin boundaries or not.  
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Figure 4.15 Hall-Petch plot for cartridge brass.  The two sets of data represent grain size 
measurements taken with and without including twin boundaries. 
 
 
 
 
4.3.3  Monotonic, uniaxial, tension experiments 
 
 In situ straining experiments were performed on three of the grain sizes from Table 4.4: 
3.1, 5.6, and 25.5 microns (excluding twins).  All of these experiments were performed using the 
new in situ straining stage described in section 2.1 on the Zeiss Supra 55 VP-FEG SEM using the 
HKL Channel 5 EBSD system.  In all cases, the straining experiments were performed in a strain 
controlled manner, stopping at specified strain levels so that EBSD maps could be collected.  
The strain rate was nominally 10-3 at room temperature.  The density of points was higher for the 
initial maps (at least 500x500 or 1000x1000 points) than for the maps at higher strain levels 
(200x200 to 500x500).   The higher density of information in the initial maps was used to more 
faithfully recreate the microstructure in related simulations. 
  
 The systematic changes in the microstructure as a result of deformation are clear in the 
orientation and local intragrain misorientation maps (LIMIS) shown in Figure 4.16 and Figure 
4.17, respectively.  The interpretation of these maps has been discussed in more detail in section 
2 of this report.  The inverse pole figure maps in Figure 4.16 clearly show our ability to maintain 
the same area of the microstructure in the experiment as the strain level increases, although the 
total number of grain decreases as the strain increases as was previously discussed in section 2.3.  
While one can seem some rotation cause by the plastic deformation in Figure 4.16, other metrics 
are best used to visualize the deformation.  The LIMIS metric used in Figure 4.17 is more 
sensitive to the amount of deformation-induced rotation on a grain by grain level.  The LIMIS 
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metric is easily calculated for FEM results and may provide a good basis for quantitative 
comparison between experiment and simulation. 
 
 

 
Figure 4.16 Inverse pole figure maps (with respect to x-tensile direction) for three grain sizes 
of brass strained to three different levels.   
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Figure 4.17 LIMIS plots for three grain sizes of brass strained to three different levels.  For all 
figures, blue is 0º misorientation and red is 15º misorientation. 
 
4.3.4 Cyclic, uniaxial, tension experiments 
 
 In order to examine the effects of cyclic deformation on the brass, polycrystalline 
microstructure, we performed ex situ mechanical tests combined with carefully coordinated 
microscopy.  One of the primary manifestations of plasticity during cyclical loading is the 
development of slip steps on the surface of the sample.  These steps grow as the cycles increase 
and can eventually lead to crack nuclei on the surface.   Combined EBSD and atomic force 
microscopy (AFM) experiments have been used previously in the literature to examine step 
formation during cyclic loading. [33-35] For each of the grain sizes (3.1, 5.6, and 25.5 microns 
(excluding twins), samples were prepared by metallographic polishing, followed by 
electropolishing to achieve the smoothest surface possible.  Three areas 100µm by 100µm were 
marked on each specimen using the FIB so that the same area could be examine before and after 
deformation (Figure 4.18).  Orientation maps of the microstructure were collected from these 
marked areas prior to deformation.  The samples were strained in uniaxial tension with a 
combination of cycles and strain amplitudes listed in Table 4.5.  For all samples, the final strain 



94 

level was 5% engineering strain.  After straining, the surfaces in the marked areas on each 
sample were profiled using AFM to measure the slip step heights and widths. (Figure 4.19)  
Finally, orientation maps were collected a second time on each marked area to examine the 
change in crystal orientation and misorientation after the straining experiment. (Figure 4.20) 
 The data from these elaborate experiments is still be analyzed, but we should be able to 
make strong connections between the change in microstructure (grain size and recrystallization 
texture), the change in the nature of the cyclic deformation (strain amplitude per cycle), and the 
resultant change in slip step formation.  Because of the careful collection of microstructural and 
mechanical information throughout the process,  we should be able to do simulations of the slip 
step formation on the surfaces of these microstructures in the future. 
 
Table 4.5 Experimental Matrix for Cyclic Plasticity Experiments. 
Grain Size 
(microns) 

Strain Amplitude (% strain) per Cycle x 
Number of Cycles 

3.1 1 x 5 
5.6 0.1 x 50 
25.5 0.01 x 500 
 
 

 
Figure 4.18 Orientation (inverse pole figure) and LIMIS maps for brass before (A and C) and 
after fatigue.  The maps in this figure are for brass heat treated at 400ºC for 2 hours with 5 
cycles at 1% strain per cycle for a total strain of 5%. 
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Figure 4.19 Combination of atomic force microscope (AFM) image (left, amplitude image) 
and EBSD orientation map (right, inverse pole figure) showing the same areas after fatigue of 
brass samples (450C, 2hrs) with 5 cycles at 1% strain per cycle. 
 
 
 
 
  

 
 
Figure 4.20 Orientation (inverse pole figure) and LIMIS maps for brass after fatigue.  The 
maps in this figure are for brass heat treated at 400ºC for 2 hours. 
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5.  CONNECTION TO THE FUTURE: INCLUDING MICROSTRUCTURAL 
PHYSICS INTO COMPONENT LEVEL PREDICTIONS USING 

PROBABILISTIC DESCRIPTIONS. (C.C. BATTAILE (01814), L.N. 
BREWER (01814), AND J.M. EMERY (01524)) 

 
 This project has progressed the experimental and simulation tools sets used to study the 
evolution of the fatigue process at the microscale.  While this project and recent research at other 
institutions has indeed increased our ability to include microstructures in predictions of 
plasticity, crack nucleation, and small crack growth; an important question remains: 

What do we do with all of this data? 
 

All too often those who work with microstructures are not able to connect their findings with 
those who study deformation and failure at the macroscale.  There is an unfortunate barrier 
between those who study processes at the microscale and those who predict component behavior 
at the macroscale. 
 
 We suggest that the use of probabilistic descriptions of materials properties may provide 
a natural vehicle for transferring what is learned at the microscale to the macroscale in a way that 
can be effectively used for predicting damage and failure.  Emery et al. have recently suggested a 
means for sampling flaw size statistically during a macroscale fatigue simulation. [1]   
 
 Recent work in a related late-start LDRD program (Battaile-138738) has performed 
proof-of-concept research to examine this approach.  In this work, stress concentrators such as 
slots and cylindrical holes were placed into simulated tensile bars of brass with two questions in 
mind: 

1.) How does the inclusion of a polycrystalline microstructure alter the predictions of stress 
and strain concentration from the predictions of continuum theory? 

2.) How much does the local plastic response vary if many instances of the same parent 
microstructure are sampled? 

 
As can be seen in Figure 5.1, the inclusion of a polycrystalline microstructure replaces 

the smooth, cosine-shaped lobes that would be expected at the ends of the slot with a plastic 
strain distribution that possesses an irregular pattern, manifesting in grains that are more suitably 
oriented for plastic deformation.  This microstructurally influenced distribution will be 
comprised of strain levels that are higher and lower than expected by continuum theory.  The 
result of these deviations from expectation is that predictions about phenomena such as crack 
nucleation will be incorrect. 
 
 Multiple realizations of the same microstructure will cause the extent of deviation from 
continuum theory to be probabilistic in nature.  Any given, observed microstructure is only one 
sample from a parent, microstructural distribution.  Parameters such as grain size distribution, 
orientation distribution, and misorientation distribution can be used to statistically characterize 
the microstructure.  As these quantities are statistical, so will be the local plastic responses.  
Figure 5.2 shows the probability distribution for equivalent plastic strain generated by uniaxial 
tension on a plate with the strain concentrator pictured in Figure 5.1.  The probability 
distributions were generated by performing the simulation many times (e.g. 50) with different, 
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but related microstructures.  It is also clear from Figure 5.2, that changing the nature of the 
simulation in terms of hardening model (Voce or power law) or the boundary conditions applied 
(plane strain or bonded), results in a different probability distribution for the equivalent plastic 
strain generated.  The fact that these changes in simulation parameters generate distinct 
distributions is particularly valuable because; using appropriate statistics, tests can be done do 
determine if the changes are statistically significant or not.  In addition, one could perform sets of 
simulations using two different microstructures and then run statistical tests on the distributions 
to determine if the microstructural response is statistically different.  This novel capability would 
add a much-needed dimension to the prediction of component response to a change in the 
underlying material. 
   

(a) (b) (c)

Figure 16. Distributions of local plastic strain in a slotted
polycrystalline mesh deformed to a) 0.2%, b) 0.5%, and c)
1.0% applied strain. The tensile axis was perpendicular to
the length of the slot.

The finite element model shown in Figure 14 was used to perform simulations of uniaxial
tension to 1% applied strain in the Y -direction (i.e. perpendicular to the length of the
slot). Many such simulations were performed, and in each, the crystallographic orientation
of each grain was assigned from a uniform random distribution. An example is depicted in
Figure 16, which shows the distribution of local plastic strain, and its perturbation by the
microstructural environment, for three values of the applied strain.

The histograms of the maximum plastic strain per simulation, are shown in Figure 17.
(The “bonded” boundary condition corresponds to the constraint of a single plane of nodes,
perpendicular to the Z-direction, such that their Z-displacement was prohibited.) The first
and second moments of the distributions are shown in Table 3. Note that for Voce hardening,
the standard deviation of the distribution is nearly 20% of its mean. This observation is
alarming in and of itself, since it means that a relatively moderate stress concentrator (e.g.
compared to a crack) like a rounded slot with aspect ratio 61

3 , can produce local plastic
deformation that varies significantly depending on the microstructural environment.

Table 3. Moments of the Distribution of Maximum Local
Plastic Strain

Hardening Law [9] Boundary Condition µ [%] σ [%] µ/σ [%]
Power Plane Strain 26.76 3.36 12.56
Power Bonded 31.70 3.48 10.98
Voce Plane Strain 25.84 4.79 18.54
Voce Bonded 31.89 5.75 18.03

Note: µ denotes the mean, and σ the standard deviation.
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Figure 5.1. Distributions of local plastic strain in a slotted polycrystalline mesh deformed to a) 
0.2%, b) 0.5%, and c)1.0% applied strain. The tensile axis was perpendicular to the length of 
the slot.  
 

Figure 17. Histograms of the maximum plastic strain
in a slotted polycrystalline mesh deformed to 1% applied
strain. Simulations were performed using both plane strain
and bonded boundary conditions (see text), and with both
power law and Voce hardening equations. Each value of
plastic strain corresponds to a distinct simulation with a ran-
dom distribution of crystallographic orientations per grain.

Comparison with Traditional Incremental Plasticity

For purposes of comparison, the equivalent plastic strain concentration was computed in
the notched specimen using a von Mises yield criterion with an isotropic power-law hardening
model. The parameters describing the J2-plasticity were fit to the average response of a
polycrystal with no notch, i.e. the un-notched version of Figure 14. Figure 18 shows the
equivalent plastic strain versus distance from the left and right corners of the notch. Here, five
crystal plasticity results, representing various probabilities of occurrence, are plotted along
with the J2 results. The effects of the grain boundaries are apparent from the roughness of
each curve. Furthermore, for 1% applied global strain, the peak strain concentration appears
to be contained within the first grain at the notch tip. However, the differences in strain
concentrations near the notch is hidden due to the scaling of the plots.

Figure 19 shows a local view of the equivalent plastic strain versus distance. In addition,
there is a dashed line which represents a least squares fit of the data. This fit is used
to extrapolate the concentration to the edge of the notch. Here the differences in strain
concentrations for the crystal plasticity results are apparent. Of particular interest are the
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Figure 5.2. Histograms of the maximum plastic strain in a slotted polycrystalline mesh 
deformed to 1% applied strain. Simulations were performed using both plane strain  
and bonded boundary conditions (see text), and with both power law and Voce hardening 
equations. Each value of plastic strain corresponds to a distinct simulation with a random 
distribution of crystallographic orientations per grain.  
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